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Abstract
In this work, we introduce a generalized class of fractal signals, a useful extension of
the 1lf signal modeling framework. While the 1lf signal model plays an important
role in modeling a wide variety of physical signals, we demonstrate that these gen-
eralized fractal signals allow the capturing of an even richer set of phenollena. Just
as it provides a natural environment for the processing of 1/f signals, the wavelet.
transform is shown to be well-suited for the analysis of these generalized fracta.l sig-
nals. Exploiting this property of the transform, we formulate efficient wavelet.-lbased
algorithms for addressing a number of classification and estimation probllelms involv-
ing such signals. Results of simulations are presented to show the viability of these
algorithms.
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Chapter 1

Introduction

The 1lf family of fractal signals has become increasingly important in modeling a.

variety of physical signals. Their characteristic fractionol-power-law spectral behav-

ior offers great versatility for modeling many types of structures and textures. In

addition, the large amount of memory inherent in these 1/f signals is well-suited for

capturing evolutionary and developmental time series associated with a host of na.tu-

ral and man-made phenomena. Texture variation in natura.l terrain, landscapes and

cloud formations, average seasonal temperature, annual amount of rainfall, heartbeat

arrival rate, economic data, and rate of traffic flow are among the numerous phenom-

ena exhibiting 1/f behavior [6] [21]. Motivated by their ubiquity, much work has been

devoted to the study of 1/f signals. Recently, computationally efficient wa.velet-based

algorithms have been developed for solving a number of signal processing problems

involving such signals. While the 1lf signal model ha.s received much attention, a.

number of useful generalizations of this model have not been as actively pursued. In

this work, we focus on the development of a class of generaliza.tions of the 1/f signal

model.

Our interest in generalizations of the 1/f signal model is mainly motivated by

the existence of physical phenomena which, though not well represented in the 1/f

modeling framework, do possess 1/f type quality. As reflected by the model proposed

by Goff and Jordan [4], the seafloor morphology is one such phenomenon. While

observations of the seafloor structure over short length scales reveal 1/f behavior,
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the application of a 1/f model for this modeling purpose is in conflict with the

overall flatness of ocean bottom at long length scales. As another example, in their

description of the structures of diluted gels and colloidal aggregates, Schaefer ct l

suggest a model which exhibit different types of 1/f behavior over different scales

to account for the interplay of mass-fractals and surface-fractals [.3]. The generalized

fractal signal model we develop in this work makes possible the modeling of these

signals.

1.1 Outline of the Thesis

This thesis is structured around the development of a. class of generalized fractal

signals. To show the desirability of this signal class for modeling, we shall mainly

address two issues concerning such signals. We shall first demonstrate that. this signal

class offers much versatility for capturing many phenomena. We shall then show that

efficient schemes exist for processing these generalized fracta.l signals. Before we delve

into these issues, however, we shall first introduce our main tool in this work, the

wavelet transform. As will be clear, the wavelet transform provides a. naturally well-

suited environment for the representation and processing of these generalized fra.ct.al

signals. Because of the novelty of this transformation and its importance to this work,

Chapter 2 is devoted to the discussion of this transform. The main purpose of this

chapter is to convey to the reader a set of interpretations of the transform which will

offer insight into seeing the relation between this transform and fractal signals. Also

presented in this chapter is the architecture of the Discrete Wavelet Transform, a

computationally efficient mechanism which we use throughout this work for actually

computing the dyadic wavelet transform.

Chapter 3 introduces anti describes the class of generalized fractal signals which

we shall study in this work. In this chapter, we see how the notion of these general-

ized fractal signals arises from the 1/f signal model. The key result of the chapter is

a synthesis relation of the generalized fractal signals using the dyadic wavelet trans-

form. Through this, it becomes clear that the dyadic wavelet basis fullnctions fornm
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an approximate Karhunen-Loeve basis for such generalized fractals. This result thus

substantiates the importance of the wavelet transform in the processing of generalized

fractals.

Chapter 4 gives a collection of algorithms for solving several signal processing

problems involving generalized fractal signals. The problems which we focus on are

mainly modeling problems including a parameter estimation and a signal separation

problems. The algorithms given in this chapter exploit the role of the dyadic wa.velet

basis functions as an approximate Karhunen-Loeve basis for fractal signals, and much

of the processing takes place in the wavelet transform domain.
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Chapter 2

Wavelet Transformations

A mathematical tool which we shall use extensively throughout this work is the

wavelet transform. While our interest in this transform is primarily due to the na.t-

urally well-suited environment it provides for representing and analyzing fractal sig-

nals, the recent advent of the Discrete Wavelet Transform, an efficient algorithm for

its computation, helps make the vTavelet transform stand out as the ideal tool for this

work.

Although the wavelet transform recently emerged as a novel idea. involving re)p-

resentations of functions using dilations and trantslations of a prototype function, it

is closely related to a number of well-established notions in signal processing. An

objective of this chapter is to convey to the reader a set of signal processing interpre-

tations of this transform which will provide insight for understanding the desirability

of the wavelet transform for processing fractal signals. In this chapter, we also outline

a derivation of the Discrete Wavelet Transform, a computationally efficient mecha-

nism for computing the wavelet transform. Since we focus mainly on aspects of the

wavelet theory of relevance to this work, the treatment in this chapter is in no way

comprehensive. For more detailed coverage of the theory of wavelet transformations,

sources [1], [9], [15], and [17] are highly recommended.
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2.1 The Continuous Wavelet Transform

The continuous wavelet transform (CWT) is formally defined as

~ = W{x(t)} _ (x(t), /(t)) = L x(t) V,l(t) dt, v, c R, it # O, (2.1)
OO

where the functions Ob(t) are obtained by dilating and translating a basic ,taveleI

(t):

Yy\VI8(t ) _ 1sl. 1 -l/ ( _)

The parameters tl and v are known as the scale and translation factors, respectively.

If the basic wavelet ¥,(t) is admissible, i.e., if its Fourier transform T(Q) satisfies

j lk()J2 ItQl- dQ = C,. < XA, (2.2)

then an inverse continuous wavelet transform (ICWT) can be defined a.n(I is given by

{x(t) = W{ } = ~c, J j X i/'(t) E- 2 di, d . (2.3)

When defined, the ICWT can be viewed as a reconstruction of the original signal

using scaled and translated versions of the basic wavelet, with the CWT XI' acting

as the weighting factors. The CWT, therefore, gives the scale contents of a. signal,

just as the Fourier transform gives its frequency contents.

Since and are continuous variables, it is clear that the set ({VI(t); p, l, C

R, t £ 0 lacks orthogonality regardless of the choice of the wavelet. Consequently,

the CWT carries highly redundant information, and the reconstruction given in (2.3)

is very inefficient. Fortunately, under certain general circumstances, we only need a.

subset of the CWT points to reconstruct the original signal. Indeed, it ran e shown
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that if for some positive constants A, B, a, and bo,

A(x(t), (t)) < E I(x(t), (a-m t - nbo))12 < B(.x(t), x(t))
m,n

for all x(t) L2 (R) (the set of real-valued finite-energy functions), then any L 2(R)

function x(t) is completely specified by the CWT points {X2l; p a, = nboao },

where m and n range over the set of integers [1]. Such a sufficient set of CWT

points is generally referred to as a frame. In this work, we focus mainly on the frame

corresponding to ao = 2, bo = , and are particularly interested in the case where the

associated transform is orthonormal. We shall refer to this transform as the dyadic

wavelet transform.

2.2 The Dyadic Wavelet Transform

The dyadic wavelet transform can be interpreted as a representation of functions using

a complete orthonormal basis made up of dilations and translations of a. basic wavelet

,/,(t). Formally, the transform pair is defined a.s

=I Wd{x(t)} J / (t) S" (, ) dt, 77, E Z, (2.4)

(t) = AW n X' I E ? (t), (2. 5)
m n

where the basis functions are defined as

,m(t) a 2/ 2 ,(2mt - n). (2.6)

The parameters mn and n are referred to as the scale and translation indices, respec-

tively.

To relate this transform to more familiar ideas in signal processing, we first. con-

sider the Fourier transform of a typical wavelet. It can be shown that if 'l(t) decays

sufficiently fast at infinity, the admissibility condition given in (2.2) coincides with

14



the condition

() = ,(t) dt = . (2.7)
-oo

Thus, a basic wavelet cannot have lowpass frequency behavior. Next, the orthonor-

mality of the set {b(t); m, n E Z} requires that

I,(A)l < 1, for all . (2.8)

In addition to these two requirements, a regularity constraint is often imposed on the

design of the basic wavelet to yield smooth basis functions. A function 7(t) is said

to be kth-order regularif for j = 0, 1,...,k - 1,

_ tJ ,(t) dt = O. (2.9)

Hence (2.7) states that an admissible wavelet is at least first-order regular. Although

wavelets having very general frequency behavior do exist, in this work we focus only on

those having bandpass frequency response. Figure 2-1 shows the frequency response

of two typical wavelets, the Haar wavelet and the Daubechies wavelet. Note that they

both have a passband of roughly [r, 27r].

Rewriting (2.4) as

. = {X(t) * o'"(--t)}lt=2m

we see that the dyadic wavelet transform is equivalent to the filter baink shown in

Figure 2-2(a). The sequence xz associated with each scale m can be viewed a.s

the result of the filtering of x(t) with /l, I(-t) followed by a sampling operation.

Since b(t) has a passband of approximately [r, 27r], it follows from (2.6) that 0/'b"(-t)

approximately passes the frequency range [2m"r,2m+l7r]. Figure 2-2(b) depicts the

approximate passband of b ,(-t) for several values of m. This diagram shows that

the dyadic wavelet transform is in fact a particular type of constant-Q or octave-band

15
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I I I , .

0 1 2 3 4 5 6 7 8 9
(a)

I 1
0 1 2 3 4 5 6 7 8 9 I 

(b)

Figure 2-1: Frequency response
4th-order Daubechies wavelet

of two typical watvelets: (a) the Haar wavelet; (b) the

filter bank, and can be viewed as a uniform partitioning of the frequency axis on a

logarithmic scale.

Similarly, the inverse dyadic wavelet transform can be interpreted as the super-

position of signals derived by modulating the functions ,/'"(t) with the sequences x'0 (t) with the sequences I x

and is hence equivalent to the system shown in Figure 2-3. Here, "D/I" denotes a

system that converts a discrete-time sequence to a weighted impulse train, operating

at a duty cycle of T.
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Figure 2-2: Octave-band-filter-bank interpretation of the dyadic wavelet transform:
(a) an octave-band filter bank; (b) approximate passband of each branch
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Xn

(t )

· ·
* ·
* 0

Figure 2-3: Multirate-modulation interpretation of the inverse dyadic watielet trans-
form

2.3 Multiresolution Analysis Interpretation of the

Dyadic Wavelet Transform

The theory of multiresolution analysis offers an alternative perspective for viewing

the dyadic wavelet transform. More importantly, as we shall see in this section, it

leads naturally to an efficient implementation of the transform.

Multiresolution analysis basically involves the approximation of functions using

basis functions of approximation subspaces at various resolutions. In this context,

the wavelet transform is directly constructed from the difference between approxi-

mations at successive resolutions. The set of approximation subspaces is denoted

by {Vm; m E Z}, with increasing m. corresponding to finer resolutions. To ensure

that approximations at any resolution contain the information needed for generating

18



approximations at coarser resolutions, we require that

Vm C V,+l for all n72 Z.

This is referred to as the causality property. The orthogonal complement of I' in

V,+l is denoted by O,. More specifically, we have that

om, I 1'7, and

Om Vn. = V,+-.

The approximation of x(t) at resolution m. is defined a.s the least-squares-error ap-

proximation of x(t) in V,, and is denoted by Amx(t). The difference between the

approximations at resolutions m. + 1 and m., or the detail at resolution m, is denoted

by D,x(t). Note that Amx(t) E Vm and Dm.(t) e O,. Note also that

Amx(t) = A,m_i(t) + D,,_lx(t)
=n-l

= Am-2Xt(t) + Dn-2X(t)+ DmiX(t) = .. = v Dix(t).
=-00

(2.10)

To ensure that all L2 (R) functions are well represented a.t fine resolutions, we require

that the union of the approximation subspaces be dense in L2 (R), i.e.,

00

U Vm=L 2 (R).I= -00

This leads to

(2.11)lim A,,x(t) = x(t),
t-Oo

for all x(t) E L 2(R).

In addition to the causality property, [9] gives a list of conditions on {l',; nm Z}

which ensure that V, and 0, have orthonormal bases with very elegant properties.

19



If Vm; m E Z} are chosen accordingly, then for each m7, >V is spanned by the

orthonormal basis {b'n(t); n E Z}, where

>m(t) = 2/ 2 (2mt - n),

and, for each m, Om has the orthonormal basis {,'(t); n E Z}, where

0bm(t) = 2 1/2V(2mt - n).

The functions +(t) and V,(t) are referred to as the scaling function and uwatclet, respec-

tively. While 4'(t) has the properties given in (2.7)-(2.9) and is roughly bandpass,

+(t) is roughly lowpass in nature:

I(o)l- =1,

I(f)l < 1, for all IQ,

(2.12)

(2.13)

and

as 00. (2.14)

Since {(t); n E Z} is an orthonormal basis for the function space to which

A,x(t) belongs, Amx(t) can be written as

Amx(t) = E a;7 - (t),
n

with a obtained via inner products:

a = (x(t), ,, '(t)). (2.15)

Also, using (2.10) and the fact that D,.x(t) E 0,, A,.x(t) can be expressed in terms

20
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of fb(t) as

m-1
Amx(t) = Zxi i t(t) (2.16)

i=--0 n

where z are obtained via

Xn = ((t), ;/,W(t)), (2.17)

Passing (2.16) to the limit and using (2.11), we obtain

o00

x(t) = lim Am,(t) = x Z xni''(t). (2.18)
M-1 -

m=_-- n

We recognize (2.17) and (2.18) as the dyadic wavelet transform pair.

Exploiting the causality property, we can express a' and x', in terms of a " + l,

and vice versa. Since for each m and n, ?"n(t) and ¥i1,'(t) reside in subspa.ces of /,+1,,

q(t) and V,(t) satisfy the two-scale equations

00 00

,n"(t) (n(t), n+(t)) +tn+(t)= N (0, '(t), 00(t))&+' (t) (2.19)
k=-oo k=-oo

(t)= ]E ((t), N+l~(t))}'+'(t)= (/(t) (t). (2.20)
k=-oo k=-oo

The last equality in these equations follow from a change of variables. From (2.19)

and (2.20), we derive the relations

0o

a = E h[2n - ]a "n+' (2.21)
k=-oo

xm = E g[2n - (2.22)
k=-oo

21
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(a)

.

(b)

Figure 2-4: Multiresolution scheme for computing the dyadic wavelet transform pair:
(a) computation of the dyadic wavelet transform; (b) computation of the inverse
dyadic wavelet transform

and

oo00

a,+ 1 = E h[2k - n]am + E g[2k - n]x, (2.23)
k=-oo k=-co

where

h[n] = (l(t), 0(t)),

g[n] = (,l(t), 4(t))

(2.24)

and

(2.25)

Applying the operation on the right hand side of (2.21) and (2.22) to am , we can

obtain am- 1 and xm- 1. Given an approximation a-, therefore, we can compute the

dyadic wavelet transform at scales coarser than m using the hierarchical scheme shown

in Figure 2-4.

It can be shown that the sequences h[n] and gin] given in (2.24) and (2.25) form a

22



conjuate quadrature discrete-time filter pair and that their Fourier transforms satisfy

G(w) = e-'H*(w + 7r) (2.26)

and

IH(w) 2 + IH(w + r) 2 = 1. (2.27)

More remarkably, although we have derived h[n] and g[n] from +(t) and V,(t), given a

conjugate quadrature discrete-time filter pair, we can conversely determine the scaling

function and wavelet function of the associated multiresolution signal analysis. More

precisely, in the frequency domain, we have the recurrent relations

(Q) = H(a/2)t(f/2) (2.28)

and

(f) = G(f/2)f(Q/2), (2.29)

which can be used for obtaining +(t) and ,(t), respectively.

2.4 Implementation of the Dyadic Wavelet Trans-

form

In this research, we employ the discrete wavelet tran.sforn (DWT) for the actual

computation of the dyadic wavelet transform. Just as the Fast Fourier Transfornm

(FFT) is an efficient algorithm for computing a discretized Fourier Transform of

a discretized signal, the DWT is an efficient mechanism for computing the dyadic

wavelet transform of a discretized signal. The idea of the DWT arises very naturally

from the results of the theory of multiresolution analysis, and is, in fact, an efficient

implementation of discrete-time computations (2.21)-(2.23). The architecture of the

23



DWT and the IDWT is shown in Figures 2-5 and 2-6, respectively. Note that their

structures parallel the scheme shown in Figure 2-4. The filters used in this architecture

are related to the filters given in the previous section via.

ho[n] = h[n]; hi.[n] = hi-z.];

go[n] = g[n]; gl[n] = g[-].

Several issues concerning the computation of the dyadic wavelet transform of

physical signals are noteworthy. First, because the DWT is an operator on discrete-

time sequences, we cannot apply it directly to a continuous-time signal. Instead, we

must first derive the approximation of the signal at the finest scale (using a C/D

conversion, for instance), and then apply the DWT to the approximation.

Another issue has to do with the computation of the dyadic wavelet transform of

physical signals in general. Because in practice, we can only process signals of finite

duration, we are limited to a finite number of scales in the dya.dic wavelet transform

calculations. This can be easily seen from the architecture of the DWT. Indeed, a.

finite duration signal gives rise to a finite length sequence as the input of the DWT.

Due to the downsampling operation at each stage of the DWT, the number of samples

decreases by roughly a factor of 2 per scale. Thus, it follows that we ca.n only obtain a.

finite set of scales. By the constant-Q filter bank interpretation of the dya.dic wavelet

transform, this scale limitation is equivalent to a limitation to a finite frequency

range of the signal. As will become clear in Chapter 4, many of our wavelet-based

algorithms for processing generalized fractals are affected by this limitation in the

number of scales.
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Chapter 3

A Generalized Fractal Signal

Model

In this chapter, we introduce a class of generalized fracta.l signals which are developed

based on the notion of the 1lf signals. In the first half of this chapter, we briefly

review the theory of 1lf signals. Through this discussion, we establish that although

the fractional-power-law spectral behavior and the persistent correlation property

of the 1/f signal class allow the modeling of an already rich class of phenomena,

reasonable extensions of the 1lf signal model make possible the capturing of an even

broader set of physical signals. Motivated by this, we focus on the development of

a class of generalizations of the 1/f signals in the second half of the chapter. We

begin this development by considering a prototype generalized fractal model which

we refer to as the first-order generalized fractal. By showing that the dya.dic wavelet.

basis functions constitute as an approximate KIarhunen-Loeve basis for these first-

order generalized fractals, we motivate that just as it serves as the natural tool for

processing 1/f signals, the wavelet transform plays a, centra.l role in the processing

of more generalized fractal signals. Finally, using first-order generalized fractals as

building blocks, we develop generalized fractals of higher complexity.
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3.1 The 1/f Signal Model

A 1/f random process is characterized by its fractional-power-law power spectral

density

2

s~~(ng~~)~~~ I0I~ (3.1)

The parameter y is a real constant typically found between 0 and 2, although it does

lie outside this range in some occasions. It is clear that when plotted on a logarithmic

scale, the power spectrum given in (3.1) yields a straight line with slope -- y.

A well-known property of the 1/f signal family is their self-sitnilar or fractal be-

havior, which roughly pertains to the scale-invariance of these signals. We present

here an informal plausibility argument which allows us to relate this self-similar be-

havior with the frequency-domain specification given in (3.1). To understand the

relation between scaled versions of a signal, we first note that a.s a random process

is dilated or compressed, its autocorrelation is dilated or compressed in precisely the

same way. Further, invoking the Fourier transform relation

f(t) -- f ) ,[F(lal),

we see that as a random process is dilated in the time domain (i.e., a > 1), the log-log

frequency plot of its power spectrum is first shifted to the left by log a, and then shifted

up by log a. Similarly, a compression of the signal results in a right shift. followed by a

downward shift of the log-log frequency plot of the power spectrum. Figure 3-1 shows

such a transformation on a 1/f power spectrum for the case where the dilation factor

a > 1. Because the log-log frequency plot of this power spectrum is a straight line, it

is obvious that, on a logarithmic scale, the transformed spectrum is always a, vertically

displaced version of the original spectrum. Thus, the autocorrelation flnctions of a

1/f process z(t) and a scaled version of itself, x(t/a), are related by

E{ ( a.) (a} E{x(t + T)x(r))}. (3.2)
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Figure 3-1: Transformation of l/f power spectrum corresponding to scaling in tinme
domain

This implies that, up to a multiplicative factor, the processes have the same second-

order statistics.

The parameter 'y governs the ratio between the two autocorrelations in (3.2), and

plays the key role of characterizing the self-similar behavior. In fact, it can be shown

that 7 is related to the fractal dimension of the 1/f process via

D E + 3-7D=E+

[10]. Here, D and E are, respectively, the fractal dimension and the Euclidean di-

mension of the 1/f process. The Euclidean dimension pertains to the usual notion

of dimension: a curve has a Euclidean dimension of 1, a surface has a Euclidean di-

mension of 2, and so on. Unlike the Euclidean dimension, the fractal dimension need

not be an integer. A fractal curve, in general, can have fractal dimension between 1

and 2, with larger values correspond to rougher curves. Because of its relation with

29



the fractal dimension D, the parameter y can be interpreted as a measure of the

roughness of the signal. Figure 3-2 shows a few computer-generated sample functions

of 1/f processes having different values of y. As can be seen from these plots, the

roughness of the functions is indeed dependent on . That y is not restricted to being

an integer, then, allows the modeling of a rich set of structures and textures as 1/.f

signals.

Another characteristic property of a 1/f process is its strong dependence on its

distant history. Indeed, by applying the inverse Fourier transform to the power spec-

tral density given in (3.1), it can be shown that, for suitable values of 7, the au-

tocorrelation function of a 1lf process decays at a polynomial rate which is much

slower than the exponential decay rate associated with the autocorrelation functions

of the familiar ARMA processes. This persistent correlation, or equivalently. large

memory property makes the 1/f signal class an ideal candidate for iarodeling many

developmental and evolutionary systems.

While the 1lf signal family is characterized by its self-similar behavior, we realize

that a much broader class of signals also exhibit such behavior. This is a consequence

of the typical inability to observe the entire frequency contents of a physical signal.

A low-frequency cutoff arises because of the finite data length, and a high-frequency

cutoff exists due to limited sampling resolution. With this in mind, let us consider

the piecewise linear log power spectrum shown in Figure 3-3. Applying the same type

of plausibility argument as before, we can obtain the power spectrum of a dilation

of the process by merely shifting the plot. However, in this case, it is clear that

strictly speaking, the process is not self-similar; in fact, for any choice of a, the new

power spectrum is not a vertically shifted version of the old one. Nevertheless, for

an observer who is limited to frequency range I, the process appears self-similar over

a range of scales. For the dilation corresponding to the transformation shown in

Figure 3-3(a), for example, the transformed power spectrum differs from the original

spectrum by the same amount over the observed frequencies. Thus, the observer is

led to the conclusion that the process is self-similar. As the process is further dilated

to give the power spectral density S'(fQ) shown in Figure 3-3(b), a second type of
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Figure 3-2: Examples of 1/f signals
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Figure 3-3: Behavior of power spectrum upon scaling in time domnain
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self-similarity is observed due to a different slope in the log-log plot, or effectively

a different , in the observed frequency regime. From this example, we see that

because of the limitations in the frequencies observed, local self-similar or fractal

behavior can arise if the log-log plot of the power spectral density is linear in certain

frequency regimes. Moreover, the quality of local fracta.l behavior is governed by the

slope of the plot in these regimes. A 1lf signal, then, can be thought of as a special

case in which the local fractal behavior is the same over all scales.

That the 1/f model exhibits the same type of self-similarity at all scales greatly

limits the kinds of signals it can describe. To see this modeling shortcoming, we

consider the two computer-generated coastlines given in Figures 3-4 ancl .3-5. In each

case, the coastline is viewed at four different scales. Starting from the second plot

on, each plot is a dilated version of the middle tenth of the previous plot. (i.e., the

portion enclosed by the dashed lines) viewed on a 10 times finer scale. While the

1lf model can only generate coastlines with the same type of roughness a.t all scales,

a model allowing variation of fractal behavior over frequencies can give rise to more

general coastlines. This capability of modeling varying roughness over scales is crucial

for the capturing of, for instance, the type of varying fractal behavior described by

Schaefer et al observations of diluted gels and colloidal aggregates [3]. In such cases,

the existence of mass-fractals and surface-fractals gives rise to two different types of

local fractal behavior observed at two different scale regimes.

Recall that other than its uniform roughness at all scales, the 1/f signal model

is also characterized by a persistent autocorrelation function, or equivalently, strong

correlation over large scales. While this property is central in the modeling of many

slow-varying time series, it is quite unrealistic for a number of phenomena. Indeed,

in their modeling of seafloor morphology, Goff and Jordan propose a model which

exhibits 1lf behavior over small scales but is white at large scales [4]. The power

spectral density corresponding to their model, thus, has a log-log plot which is flat

at low frequencies and rolls off linearly at high frequencies. This example suggests

that a more realistic model should allow points very far apart to be uncorrelated, if

appropriate.
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1 2 3 4 5 6 7 8 9 10

4.6 4.7 4.8 4.9 5 5.1 5.2 5.3 5.4 5.5

4.96 4.97 4.98 4.99 5 5.01 5.02 5.03 5.04 5.05

4.996 4.997 4.998 4.999 5 5.001 5.002 5.003 5.004 5.005

Figure 3-4: A 1/f coastline viewed at various scales
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Figure 3-5: A generalized fractal coastline viewed at various scales
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To summarize, although the 1/f signal model is desirable for modeling many

signals in nature, it is inadequate for some modeling applications. In our development

of a more generalized signal model, we shall keep in mind two types of behavior that

our new model should be capable of modeling:

1. It should allow variations in self-similar behavior over scale regimes.

2. It should allow points far apart to be less correlated, if appropriate.

3.2 First-Order Generalized Fractal Signals

We begin our discussion of more generalized fractal signals by considering a family of

random processes whose power spectral densities are of the form

2

S(fl) . , (3.3)
InlI +p'

where y is a real constant as in (3.1), and p is a. real, non-nega.tive constant.. This class

of processes deserves much attention because it plays a prototype in the development.

of a much richer class of signals. Throughout, we shall refer to this signal model as

the first-order generalized fractal signal model.

It should be clear that the definition of this model is motiva.ted mainly by 1o(d-

els like the previously mentioned seafloor morphology model proposed y Goff and

Jordan. Indeed, the spectral behavior of a, first-order generalized fra.ctal corresponds

very closely to the spectral description of the seafloor model. At high frequencies, or

fine scales, the log-log plot of the power spectrum prescribed by (3.3) decays linearly

with a slope of -y and the process behaves like a 1/f process. On the other hand,

at low frequencies, or coarse scales, the log-log plot is roughly flat, indicating that

points far apart are essentially uncorrelated. The two types of spectral behavior are

separated by a corner frequency of approximately = pl/ . Note that by adding the

variable p to the 1/f spectral specification, we have already achieved one of the two

goals given at the closing of Section 3.1.

Several special cases of this first-order generalized fractal signal mlodel have already
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been studied, and should be quite familiar. When p = 0, for instance, (3.3) reduces

to

S(2) I
smn) In['

which corresponds to the power spectrum of a 1/f signal. Thus, the class of first.-

order generalized fractal signals is a superset of the 1/f signal family. Next, when

7 = 0, (3.3) becomes

-C2
S(n) -l+p

This implies that stationary white processes are also among the collection of first-order

generalized fractals. Finally, when = 2, (3.3) corresponds to the power spectrum of

the first-order autoregressive (AR) model.

Because of its potential lack of integrability, the expression given i (3.3) may

not be a valid power spectral density of a stationary process. In general, therefore,

technical difficulties arise in the definition of first-order generalized fractal processes

as stationary processes. In order to formally characterize such processes, we adopt

the scheme used in [21] for characterizing 1/f processes. By this scheme, we consider

only processes which give rise to stationary processes when filtered by ideal bandpa.ss

filters of the form

Blh(Q) f= -n i( (3.4)
0 otherwise

where 0 < < fh < oo00. This class of signals is made up of numerous signals, some

of which are already familiar to us. For example, included is the set of stationary

signals. Also, from [21], the family of 1lf signals is included in this set.

Based on this scheme, a first-order generalized fractal is characterized as follows:

A continuous-time random process x(t) is called a first-order generalized fractal if for

some non-negative real constants oa2, y, and p, x(t) gives rise to a. stationary process
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Xl,h ( t) having power spectral density of the form

S,h(f) = I Qt ' + p - (3.5)
0 otherwise,

when it is filtered by an arbitrary ideal bandpass filter BI.h(f) as specified in (3.4).

So, intuitively speaking, we say that a signal is a first-order generalized fractal if

the power spectrum derived from any finite resolution measurelent of the signal is in

accord with a function of the form given in (3.3). Note that. this characterization is

generally sufficient since we are typically limited to a finite frequency range when pro-

cessing physical signals. More importantly, this characterization allows uis to exploit.

tools from the context of stationary signal processing such as the Fourier transform

and various wavelet transforms for processing first-order generalized fractals.

3.3 Wavelet-Based Canonical Form of First-Order

Generalized Fractals

The following theorem shows a close relation between first-order generalized fractals

and orthogonal wavelets which will be heavily exploited in this work.

Theorem 3.1 Suppose that for each mn, xz, is a wide-sense stationary, zcro-mcon,

white Gaussian sequence with variance

02
Var x = 2' +p (3.6)

where y > O. Suppose also that for nm m.', xz' and x"7 are luncorrelated. Define

X(t)= E E x;7( t), (3.7)

where ;i4(t) is as defined in (2.6), and 07(t) is a wavelet associated with a nu.l.tiresollu-

tion signal analysis whose scaling function +(t) has a Fourier Transform (f) which.
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Figure 3-6: Karhunen-Lotve-like expansion of first-order generalized factals utsing
the Battle-Lemari wavelet: y = 1.2,p = .1

satisfies (2.12), (2.13) and (2.14), and is contintuous at. Q = 0. Then,

o < PI1 () < ,x (3.8)
IS21Y $ - I nl1' + p

for some kl, k2.

A proof of this theorem is given in Appendix A. Relation (3.8) suggests that x(t) is

a first-order generalized fractal. Indeed, as can be seen in Figure 3-6, which shows

the synthesis of a first-order generalized fractal using the Battle-Lemari6 wavelet, the

shape of the synthesized spectrum has the quality of the spectrum of a first-order

generalized fractal described earlier in section 3.2. Due to the orthonorna.lity of

the wavelet basis functions b(t), and the lack of correlation of the set of random

variables I{x; m E Z, n E Z}, the synthesis scheme given in (3.7) is a Karhunen-Loeve

expansion. Theorem 3.1, therefore, suggests that the wavelet basis functions provide
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an approximate Karhunen-Loeve basis for first-order generalized fractals. An issue

worth mentioning at this point is that to achieve tight bounds in (3.8), values different

from that of the parameter p found in (3.6) are generally needed for the paramleters p

in the bounding values. This implies a modeling inaccuracy in the synthesis relation

and that the value of the p used in the wavelet synthesis (i.e., found in (3.6)) is in

general different from the parameter p found in the power spectral density of the

resulting first-order generalized fractal.

Theorem 3.1 suggests a canonical form for conveniently viewing first-order general-

ized fractals. This is illustrated in Figure 3-7 and can be thought of as a wavelet-based

synthesis filter for generating first-order generalized fractal signals. The input to the

filter, w(t), is white, with zero mean and unit variance. Because the wavelet basis

functions form a complete orthonormal basis, the wavelet coefficients wl; extracted

from the white input wt(t) are a set of uncorrelated zero-mean unit-variance random

variables. Upon weighting each of these random variables by the factor

trY'n = 2t + 1' 7

we obtain a set of uncorrelated random variables x"; with variances as given in (3.6i).

Theorem 3.1 then states that x(t), the inverse dyadic wavelet transform of .x", is

approximately a first-order generalized fractal.

3.4 Higher-Order Generalized Fractal Signals

We now turn to the development of more complex generalized fractal signal models. In

general, we shall use first-order generalized fractals discussed in the previous section

as the basic building blocks for constructing such higher-order generalized fra.ctals.

Although there are several ways of constructing such higher-order generalized fracta.l

signals, we shall see that they all lead to models capable of capturing variations in

fractal spectral behavior over scales.

A way of constructing higher-order generalized fractal signals is illustrated in Fig-
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Figure 3-7: Wavelet-based system for the generation of first-order generalized fractal
processes
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* * 0w(t) rcas ( t )

Figure 3-8: Cascade arrangement of synthesis filters for first-order generalized fractals

ure 3-8. By cascading synthesis filters for first-order generalized fractals, F, ... , FL,

we obtain a synthesis filter for a process whose power spectral density is the product of

the power spectral densities associated with the filters Fl,..., FL. More specifically,

the power spectral density of r,,,(t) in Figure 3-8, Sc,,(Q), is given by

L

Sc(n))= II S(n), (3.9)
i=l

where Si(Q) is the power spectral density of the first-order generalized fra.ctal process

associated with the synthesis filter Fi. Using

csi(f) Li ± (3.10)

in (3.9), we obtain

iL 2

K
=(l| l + p)-..(Inl[ +)'11)

where

L

i=1

It is clear from (3.11) that the corner frequency of each Si(Q) is also a corner frequency

of the power spectrum of S~(). Using this cascade form, therefore, we can build

models which exhibit up to L types of local self-similar behavior over scales. Also,

the use of first-order generalized fractals as building blocks also leads to possibility
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w(t) 'par( t )

Figure 3-9: Parallel arrangement of synthesis filters for first-order generalized fractals

of a flat spectrum at low frequencies.

Similarly, we can consider a parallel arrangement of synthesis filters for first-order

generalized fractals driven by a unit-variance white input. This scheme is illustrated

in Figure 3-9. In the wavelet domain, we have the relation

l 1/2 + at 1/2 2
Va (par)p - 2'1rim p) 1 + p(l)1]

A generalization of this case which eases analysis is shown in Figure 3-10. The systems

F1,...,FL are now driven by independent white inputs with unit variance. Thus,

Xl(t),...,zL(t) are a set of independent first-order generalized fractals. Moreover,

their power spectral densities are of the form

IInYi+ pi
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W2 ( t)

WL( t)

1 p( t )

Figure 3-10: Superposition of synthesis filters for first-order generalizcd fractals

Due to the independence of xi(t), the power spectral density of r,,p(t) is given by

L o.2

Ssup(Q)-= Z (3.12)

Since the log-log plot of the sum of curves is roughly equal to the most dominant

one, it is clear that the self-similar behavior observed at each scale is roughly due to

only one of the first-order generalized fractals making up the higher-order generalized

fractals. Thus, the local self-similar behavior of this higher-order generalized fractal is

captured by one of the yi. This suggests that using this type of construction, we can

also get higher-order generalized fractals exhibiting up to L types of local self-similar

behavior.

This last scheme for constructing higher-order generalized fractals is of interest

because in addition to models for processes having varying self-similar behavior over

scales, this also gives models for certain scenarios of noise-corrupted signals. To see
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this, we note that if both a signal and an additive noise are generalized fractals and

are independent of each other, then the power spectral density of the signal observed

in the noise is of the form given in (3.12). In the rest of this thesis, we shall focus on

the type of generalized fractal processes associated with the scheme given in Figure 3-

10. By an Lth-order generalized fractal, then, we shall be referring to the generalized

fractal process associated with the type of construction given in Figure 3-10.
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Chapter 4

Processing of Generalized Fractal

Signals

Having introduced a class of generalized fractal signals, we now turn to a number of

basic signal processing problems involving such signals. As suggested by Theorem 3.1,

the dyadic wavelet transform provides an ideal environment for studying these gen-

eralized fractal signals. Our strategy for processing such signals, therefore, generally

involves analysis in the wavelet domain.

Throughout this chapter, we shall focus on the case where the signal in ques-

tion is zero-mean Gaussian. This is motivated by a number of reasons. First, this

gives rise to more tractable problems. Indeed, because G'aussianity is preserved by

linear transformations, the wavelet transform of a Gaussian process will be a set of

jointly-Gaussian random variables. Other probability densities, on the other hand,

are generally not as tractable under the wavelet transformation. Furthermore, we

note that this assumption is also somewhat realistic since signals observed in nature

are often the superposition of many elementary processes, and are thus approximately

Gaussian by the Central Limit Theorem.

Although a number of different problems and algorithms will be considered in

this chapter, several aspects are common to all our experimentations. First, the data

used in the simulations are all synthesized using a frequency sampling scheme. By

this scheme, we weight its Discrete Fourier Transform of a white Gaussian random
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sequence according to the desired profile. While this synthesis scheme is easy to

implement and allows much control over synthesis parameters, its fundamental differ-

ence from the wavelet-based analysis framework also allows us to test the robustness

of our algorithms. The second aspect found in all our experimentations is that for

actually computing the wavelet transform, we shall use a DWT scheme with the 4th-

order Daubechies wavelet, which corresponds to an h[n] with 8 nonzero coefficients.

This filter length implies that the range of frequencies we can observe is roughly

i .(8/N) < w < r.

Before we present the algorithms, we first introduce some wavelet-related nota-

tion which will prove convenient in the sequel. While in theory, the dyadic wavelet

transform of a function r(t) can be thought of as the projection of the function onto

the wavelet basis via

rm = r(t) .t(t) dt,

in practice, we can only compute the wavelet transform over a limited range of scales

due to the limitations in signal duration and resolution. In general, the set of scales

is indexed by the set

M = {n,, 2,. ., M},

and the set of points at each scale is indexed by the set

A((nm) = {nl(n),), ..2(n), .. , 7.(m)(77 )}.

N is defined as the total number of wavelet transform points extracted from the signal

r(t), i.e.,

N= E N(n).
mEM
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We also use the compact symbol r, given as

r = Jr,m,n E } = {r,m. E M, n E A/(m)),

to denote the set of wavelet transform points extracted from r(t). As we shall be

using the computationally efficient DWT for obtaining such transform values, the set

of indices can be more specifically labeled as

M = {momc + 1,... ,mf - 1,mf}

where me and mf refer to the coarsest and finest scales, respectively, and

./A(m) = {1,2,..., No2m-1}.

Here, No is a constant dependent on the length of the filter ho[n] used in the DWT.

4.1 Parameter Estimation

While second-order statistics of a random process are very useful in a wide variety

of problems involving the process, this type of information is rarely known a priori.

Referring back to (3.12), we see that the power spectral density of a. generalized fractal

process is completely captured in the set of parameters ( , ,, Pl, , L, 1,... , ,f ).

The first problem we consider then is a parameter estimation problem involving the

estimation of these parameters. In addition to its role in the solving of other prob-

lems, this problem is of significance in its own rights. As pointed out in Chapter 3,

a number of physical properties of generalized fractal signals are reflected by these

parameters. The exponents yi, for instance, sufficiently capture the local self-similar

behavior, or roughness, of a generalized fractal over all scales. Estimators for as are,

therefore, directly applicable to problems such as texture classification and texture

segmentation in image processing.

We shall approach this parameter estimation problem using the wavelet transform.
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Recall that in the context of this thesis, an Lth-order generalized fractal process r(t)

is given by

L

r(t) = E xi(t),
i=l

where xi(t) are independent first-order generalized fra.ctal processes having power

spectra

s,(a)
SSIYi + pi

It is straightforward to see that since xi(t) are independent signals and since the

dyadic wavelet basis functions are effectively eigenfunctions of generalized fra.ctals, r

is a set of essentially independent random variables with variance

Var r = = 2 pi (4-1)
i=1 2-?i + pi

Further, since r(t) is zero-mean Gaussian,

r' N(O , 2

where N(#,v) denotes a normal distribution with mlean 1p and variance v. This

information on the statistical behavior of r'm allows us to set up various estimators

for the parameters. In the rest of this section, we shall give two such estimators,

the maximum-likelihood (ML) estimator, and the maximumn-spectral-flatness-measure

(MSFM) estimator.
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4.1.1 Maximum-Likelihood Estimator

Using the fact that r are independent Gaussian random variables with mean zero

and variance given in (4.1), we can readily set up the likelihood function as

(0) = pr(r; )= n 1 exp (r, ) (4.2)
m,nElR 27in~ 1

where 0 is the vector of parameters (l,... 7L,P1,.) .. ,PL, ... *L, ). The ML es-

timator, then, calls for the maximization of this function over the parameter space

{-oo < y < oo, < Pi < oo, 0 < a2 < oo; i = 1,...,L}. Due to the close

coupling of the parameters in this estimator, simplification of (4.2) is difficult, and at

first sight, it appears inevitable to numerically search the 3L-dimensional parameter

space to locate the maximum of the likelihood. Instead of attempting to solve this

general problem directly, we shall first consider the first-order case. It will turn out

that the solution for this case plays a key role in the solving of the general problem.

First-Order Generalized Fractals

If r(t) is a first-order generalized fractal, then the variance given in (4.1) will be

02
Var r = 2 2~'" + pi

For notational convenience, we set /3 = 21, p = i, and 2 = .12 to obtain, for cr,

the expression

20., -3+p'(4.3)
m m + p

Hence, it is the parameter set

= (/3,p, ,2 )
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we wish to estimate. Note that since the logarithm function is monotonic, the ML

estimate of 'yl can be derived from the ML estimate of 3 via

1 =-log2 3-

It is worth noting that if p is known a priori to be 0, then this problem reduces

to the estimation of the parameters d and Oa2 of a 1f signal. Detailed treatment of

this case is given in [22].

Proceeding to the more general ML problem in which no a priori information of

p is available, we first recall that the likelihood is given by

(O) = pr(r; ) = II exp[ r (4.4)
mnnER -2-;iro r L oO nJ,2(4.4)

Taking the logarithm of (4.4) and grouping terms, we obtain

L() =-2 E N(m)2 +ln(2r, (4.5)
mEM 

where

rn - N(m) nE(rnm)

or the sample variance of the data at scale n.. Our interest then lies in the miaxi-

mization of the log-likelihood function (4.5), with a,2 as specified in (4.3). Taking the

first-order partial derivatives of L(O) with respect to /, p, and r2, respectively, and

setting them to zero, we obtain a set of necessary conditions for a stable point

mEM (am + p)2 { 2 )2 (4.)

m lrm( +2 2 2.)

N(E )m +y- { ) 2 ) (4.)
p . o = 0 (4.8)

tnEM O +O (47)
mE~4 ~ ~~~~ )rm
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Substituting (4.3) into (4.8), we obtain the equation

N(m) ()2( + p)- 2 }=0. (4.9)nEM (220

Solving (4.9) for r2, then, we obtain

E N(rn)m (,)(/3 + p)
mEM2 = 6^ EM N~n) (4.10)

Z N(m)
mEM

So, the estimate of a2 can be expressed in terms of the estimates of 3 and p. Sub-

stituting (4.10) into (4.3), and substituting the result into (4.5), we can express the

likelihood as a function of only 3 and p. Moreover, the resulting function is empir-

ically shown to be very easily optimized. Simple optimization algorithms such as

the Nelder-Mead simplex search algorithm [8] appear to be sufficient for locating the

correct estimates. Once the estimates of /3 and p are obtained, the estimate of O2 can

be readily derived using (4.10).

Preliminary simulations have been done to test the performance of this ML estima-

tor. The estimation was performed on signals synthesized with various combinations

of parameter values, and for each parameter combination, the RMS errors of the pa-

rameter estimates were computed over 32 trials. These RMS errors are plotted in

Figures 4-1 to 4-3. Much can be seen from these plots. First, these plots suggest that

all three estimators are in some sense consistent, as the errors generally decrease with

increasing data length. This is reasonable because as N increases, we can observe the

behavior of the generalized fractal over a broader set of scales (and thus frequencies),

and therefore have more data on which to base our estimates. Although this argu-

ment suggests a monotonic decrease in the RMS errors as data. length increases, a

lack of monotonicity is observed in a number of the plots. This is mainly because the

RMS errors were computed over only 32 trials which was not enough for averaging

out the effects of random errors, and for the RMS errors to converge to their expected

values.
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As we focus on the performance of the individual estimators over different sets of

synthesis parameters, we see that while the performance of the estimator for 2 is quite

independent of the true values of the parameters, the performance of the estimators

for 7 and p both degrade as p increases. Recall that on a logarithmic scale, the shape

of the power spectral density of a first-order generalized fractal is approximated as

being flat at low frequencies and decaying linearly with a fractional slope at higher

frequencies. As the fractional pole is pushed higher, the fractional linear decay portion

of the spectrum cannot be seen over as many scales. Consequently, it becomes more

difficult to correctly fit a generalized fractal model onto the data. and the estimators

give poor results. We note that for very small p, a similar problem arises. In this case,

while the flat part of the power spectrum is absent in the visible frequencies, leading

to difficulty in correctly fitting a first-order generalized fractal model onto the data.,

the effects of 7 can be seen over virtually all scales. Consequently, the estimator for

y is very accurate while the estimator for p suggests that p = 0. It is therefore worth

noting that for the estimators to work correctly, it is important that the first-order

generalized fractal behavior be sufficiently captured in the scales that are available

to us.

The effects of varying y in the synthesis are slightly different. Referring to (3.3),

we see that the spectral breakpoint occurs at roughly we = p'l/. To keep p within the

range of frequencies observable in the DWT, we have chosen p to be smaller than 1

in all of the simulations. This implies that as y increases, the transition frequency w,

moves up. This has the same effects on the estimator for y as that due to increasing

p, and causes an increase in its error. The performance of the estimator for p, on the

other hand, improves as a, increases. This is because when y is large, the transition

of the spectral behavior is very sharp, making it easier for the estimator to locate the

point of transition.
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Higher-Order Generalized Fractals

Turning now to the higher-order case, we first note that in the derivation of (4.2),

we have not made full use of the structure of an Lth-order generalized fractal as a.

superposition of L independent first-order generalized fractals. In this section, we

shall see that this fact allows us to exploit the results of the first-order case in solving

the Lth-order generalized fractal parameter estimation problem. The main tool that

enables us to achieve this is the Estimate-Maximize, or the EM algorithm.

The EM algorithm is an iterative algorithm for solving ML problems [7]. Starting

with an initial guess, the EM algorithm adjusts the parameter estimates to yield a

higher value of the likelihood at every iteration. It is, therefore, certain to locate at

least a local maximum point of the likelihood function. To achieve this monotonic

increase in the likelihood, the EM algorithm requires, at each iteration, the solving of

a maximization problem typically less complex than the original ML problem. Thus,

the EM algorithm can be viewed as a decomposition of a large maximization problem

into a series of small maximization problems. While a detailed derivation of the EM

algorithm is presented in Appendix B, we will present here the key results of the

derivation.

Each iteration of the EM algorithm consists of two steps, the E step and the M

step. In the E step, the variance of each constituent process xi(t) is estimated based

on the current parameter estimates 0 [k] via

s([k]) = Am(®[k]) + Bim(Oe[k])&2

where

A?(O) = Am (1-.\~)t + +Am, + ,

3 7(e) t= n (7 )('
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and

t /3m + pi

In the M step, these estimated variances are used for obtaining the next set of pa-

rameter estimates via

[k+1] = rg max N(m) St(O[k) + In 27rA}) i= 1 ... L,
i 2 EM

(4.11)

where Oi denotes the vector of parameters (/3 ,pi, oi,2). Because (4.11) is of the same

algebraic form as (4.5) techniques used for the first-order case can be applied in the

M step.

We have tested this estimator on second-order generalized fractals synthesized

with one set of parameters, and have obtained the following results.

As in simulations discussed earlier, the RMS errors were computed over 32 trials.

In choosing the parameters, we were concerned that the effects of both constituent

first-order generalized fractals be observable over the scales to which we had access. If

we had allowed either constituent to be dominant over all the scales we could see, we

would end up trying to fit a second-order generalized fractal model onto an essentially

first-order generalized fractal, and this would lead to erroneous estimates of a set of

parameters, 9i. To make the effects due to the two constituent generalized fractal

discernible as well as observable, however, we were forced into a set of parameters

which does not favor the estimation of P2. Recall from our previous discussion in the
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Parameter True Value RMS Error
71 3.0 0.0709
Pl 1.0 x 10- 1 2.31 x 0- 13
al2 1.0 0.2035

72 0.3 0.1392
P2 0.1 0.1
_ A_ _ 10 1.29
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first-order case that a small 7 together with a large p degrades the performance of

the estimator for p. Other than the error in P2, however, the estimates in this case

were quite acceptable.

A particularly interesting case arises when xL(t) is a white Gaussian noise, or, in

other words, when we know a priori that

.L =(or L = 1), PL O, L w = 

and, therefore

Am
2

AL -W- w

In this case, the maximization of

-2 Z N(m){ E A L () + ln2r Ai},2 N(m)A -mEM

is achieved by simply choosing the closed form solution

E N(m)Sr(6)
L = mEM

Z N(m)
mEM

This leads to a computational saving of 1 optimization per iteration.

Figures 4-4 to 4-7 describe the results of simulations performed for the special case

where the second generalized fractal process in a second-order generalized fractal

process is a white noise. In this experiment, we embedded synthesized first-order

generalized fractal in white Gaussian noise, the strength of which we varied. We then

applied the EM-based ML estimator to this corrupted signal to jointly estimate the

signal parameters (y,p, a 2) and the noise strength ,,. The number of data points

used was N = 213, and the RMS errors were calculated over 32 trials. We can see that

the results here agree very well with the results obtained in the parameter estimation

experiment performed on noise-free first-order generalized fractals. More specifically,
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w(t) r(t) r(t) y(t)
---- A B

(a) (b)

Figure 4-8: Idea behind the mazimum-spectral-flatness-measiure estimator: (a) system
generating generalized fractal process from white input; (b) inverse system of A

the estimators for 7 and p are not as reliable for larger values of p, while larger values

of y result in better estimates for p and poorer estimates for 7. Also, we observe that

as the noise strength decreases, the RMS errors in the estimates of -y and p converge

to the values corresponding to N = 23 in the noise-free case. Finally, the accuracy in

the estimates even at low SNR implies that this estimation strategy is quite robust.

4.1.2 Maximum-Spectral-Flatness-Measure Estimator

In this section we present an alternative to the ML estimator for solving the param-

eter estimation problem, namely, the maximum-spectral-flatness-mleasure or MSFM

estimator. The main idea behind this estimation strategy is illustrated in Figure

4-8. Just as we can view a generalized fractal process as the output of a wavelet-

based synthesis filter A driven by white noise, we can think of undoing the effects of

A by using a hypothetical wavelet-based system B. If B is parametrized appropri-

ately, its output y(t), should be a white noise with unit variance. In other words, its

power spectrum should be maximally flat. The MSFM estimator, therefore, uses the

spectral-flatness-measure of the output of B as the criterion for the estimation.

A reasonable definition for the spectral flatness measure is

sfm {y(t)} = exp( N(n) ,a ln(t ) M -(w1) m,1 )

(4.12)

where 2 denotes the variance of the yn. Equation (4.12) can be interpreted as the
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ratio of the geometric mean of the variances 2 to their arithmetic mean. Because

the geometric mean of a collection of non-negative numbers is always less than or

equal to their arithmetic mean, and equality arises only if the numbers are all equal,

sfm {y(t)} < 1, (4.13)

with equality only if all variances are equal. In the case where y(t) is white, the

wavelet coefficients y, will all have the same variance because of the completeness

and orthonormality of the wavelet transform. The resulting spectral flatness measure

as defined in (4.12) is then equal to 1, or maximized. Thus, the definition given in

(4.12) does correspond to a reasonable measure of the spectral flatness of y(t).

In our MSFM parameter estimator for first-order generalized fractal process, we
use, for &2, the sample variances of the sequence ym:

~2 1
2 (y-) 2. (4.14)
N(m) nE(m)

That we can obtain the sample variance via (4.14) is because we model the wavelet

transform r of a first-order generalized fractal as a wide-sense stationary white se-

quence for each m. Weighting the transform values at each scale by the same constant

does not alter the stationarity or the whiteness of the sequence. Moreover, that r(t) is

a zero-mean, Gaussian process implies that each yn is a zero-mean Gaussian random

variable. Hence, the variance of each y2 can still be reasonably estimated using (4.14)

Based on this set-up, a detailed derivation of the MSFM parameter estimator is

given in Appendix B. The resulting objective function to be used in this estimator is

U(3,p)= E N(m)ln( m +p)-( N(m)) .In( N(7)2 (/3m +p).
nEM mEM mEM

Like the ML estimator discussed earlier, this estimator has the desirable property

that the objective function involves only /3 and p, and can therefore be optimized via

a two-dimensional search. The independence of 2 is reasonable if we consider the

log-log plot of the power spectrum. Multiplication by a constant merely shifts the
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log-spectrum vertically, and does not affect its shape. This means that the factor

a2 cannot affect the flatness of the power spectrum and hence its spectral flatness

measure. It is, therefore, not surprising that it drops out of the expression for the

spectral flatness measure.

We have run a set of simulations to examine the performance of the MSFM param-

eter estimator. Again, the experimentation involved the estimation of the parameters

from synthesized signals, and the results are shown in Figures 4-9 to 4-11. Here, we

observe trends very similar to the ones prominent in the ML cases for both noise-free

and noise-corrupted first-order generalized fractals. More precisely, the estimators are

affected similarly by the values of y and p used in the synthesis of the signals. This

is reasonable since given a large number of data points, errors due to the randomness

of the signals will be very small. The main origin of the errors will therefore be due

to the lack of observability of the desired spectral characteristics over the range of

available scales.

4.2 Signal Separation

In this section, we shall consider some problems of signal separation pertaining to our

class of generalized fractal signals. More specifically, given an Lth-order generalized

fractal

L

r(t) = xi(t), (4.15)
i=l

we are interested in estimating the signal component

a(t) = Z:xi(t)
iEr

where F = 11,12, .. ,lk}, with 1 < l1 < 12 .. < k < L. For this problem, we shall

use a least-squares-error criterion for the estimation.
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Because

f E{[a(t) a(t)]2} dt = E E{( - a.n)2},
m,nEZ

where

a(t) = E a. ,n(t)
m,nE62

denotes a scale-limited representation of a.(t), the inverse dyadic wavelet transform

of the least-squares-error estimates of am is the least-squares-error estimate of ii(t).
In other words, the solution obtained using a wavelet transformation gives rise to

the optimal estimate of a scale-limited version of a(t). This justifies a wavelet-based

approach to this problem.

We define the difference between r(t) and a(t) to be b(t), so that

r(t) = a(t) + b(t). (4.16)

Therefore,

b(t)= Zxi(t)
iEr'

with r' defined as

r' = ,...,L}\r.

Using the eigenfunction property of the wavelet functions, we have the wa.velet trans-

form relation

rm = a, + b,
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where {a-, bm; m, n E %} is a set of independent random variables, with

Var a = A = /in a T + Pi
iEr .i

and

Var b = A = 2

iEr' i/ - + Pi

Because a and b are all zero-mean Gaussian, the Bayesian least-squares estimate

of each am given r is

Am

am _ a r
n - A + nr

Using these transform coefficients, then, we can find the estimate of (t) by using the

inverse wavelet transform. The overall processing can be summarized more compactly

as

a(t) = W{-1 W{r(t)}).

Note that in the derivation of this estimateb we have assumed the knowledge of the

parameters {9yipji,r; i = 1,..., L}. In principle, these parameters can be estimated

using, for instance, the algorithms given in section 4.1.

- Shown in Figure 4-12 is the results of applying the signal recovery algorithm

to first-order zero-mean Gaussian generalized fractals corrupted by white Caussian

noise. The data length in this experiment is N = 211. Various choices of noise

strength were used and the SNR gain in each case was the average of 32 trials. Note

that in this experiment, the parameters {-y,p, o 2, a2 } are estimated using the EM

algorithm given in section 4.1. As can be seen from the plot, the performance of the

algorithm is best when -y is large and when Pi is small. This is because the large

difference in the shape of the spectra of signal and the corrupting noise i these cases

lead to a large attenuation of the noise at high frequencies. Notice however that the
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Figure 4-12: Performance of the signal smoothing algorithm

SNR gain can be negative at very high initial SNR. This is because of the removal of

high-frequency information by the smoothing. Shown in Figure 4-13 is an example

of signal recovery. It is a 400-point section of a 2 5-point generalized fractal which

has undergone corruption and recovery. The result is quite remarkable as the main

features of the signal are recovered despite the strong additive noise. Note that a

400-point scale is chosen here because it appears to be the longest length scale at

which the correlation between points are still strong and features still simple. Length

scales longer than this correspond to frequencies below the corner frequency of the

power spectrum of the signal. In such regimes, the observations of the signal are too

uncorrelated and random for the sake of this visual demonstration.
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Original Signal (7 = 3.0, p = .001, a = 1.0, N = 215):

50 100 150 200 250 300 350

Original Signal Corrupted by White Noise (SNR = OdB):

50 100 150 200 250 300 350

Smoothed Signal (SNR = 8.5dB):

50 100 150 200 250 300 350

Figure 4-13: Signal smoothing ezample
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Chapter 5

Conclusions and Future Directions

In this work, we have focused on the development of a generalized class of fractal

signals, a useful extension of the 1f signal model. The generalized fractal model

that we studied in this work was shown to be capable of modeling varying self-similar

behavior over scales. It also allows the modeling of phenomena which show 1/f type

structures at short scales but appear white at large length scales. Having established

that the dyadic wavelet basis functions constitute as an approximate Karhunen-Loeve

basis for these generalized fractal signals, we formulated a number of wavelet-based

algorithms for solving several fundamental signal processing problems involving such

signals. Included in the package were a number of parameter estimation algorithms

for classification purposes and a signal separation algorithm which finds application

in problems such as signal recovery. In general, results of the simulations confirmed

that wavelet transforms are well-suited for the analysis of these generalized fractal

signals. In the parameter estimation problem involving clean first-order generalized

fractal signals, it was demonstrated that both the maximum-likelihood and maximum-

spectral-flatness-measure schemes give rise to consistent estimators with very good

performance. The parameter estimation algorithm involving first-order generalized

fractal signals embedded in white noise yielded good results even at very low signal-

to-noise ratios. Finally, the signal separation problem involving the recovery of a

first-order generalized fractal from observations corrupted by additive white noise

gave reasonable SNR gain as well as recovery of features.
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Although the generalized fractal signal model developed in this work constitutes

as one class of generalization of the 1/f signal model, we note that much richer class of

such generalizations exist. The cascade scheme shown in Figure 3-8, for example, gives

rise to a significantly different class of generalized fractal signals. The development

of even broader generalizations of the 1/f signal model and the associated signal

processing algorithms offers a direction for future research effort.
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Appendix A

Proof of Theorem 3.1

In this appendix, we present a proof of Theorem 3.1.

Proof:

We start by defining zM(t) as a resolution-limited approximation of x(t):

XM(t) = E S to (t).
m>M n

Since for m i m', am and xzn are uncorrelated, and z' is wide-sense stationary for

each m, zM(t) is cyclostationary with period 2 -M [20]. Moreover, since for each mn,

,m is white, with variance

O2
Var (7.

n 2'y + p'

the time-averaged power spectral density of zM(t) is

2

SM(f) = E 2m + p 1(2-n ) l1

Because in practice, an observer is always restricted to a finite range of frequencies,

a measured spectrum is always consistent with the spectral expression

S~(f) = S(Qf;p) - lim SM(l)= E 2m p 1 (2- 0) 12
M-and we shall use this expression in the rest of this proof. Also, we shall set a = 1

and we shall use this expression in the rest of this proof. Also, we shall set a2 = 1
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without loss of generality. Using (2.29), (2.26), (2.27), and (2.28), in order, we can

express S(fl; p) in terms of the Fourier transform of the scaling function, i.e.,

s(Q;P) = ( 2(m-1) + (A.1)

Now for any E R, we can choose 1 < Qlo < 2, and mno E Z such that Q = 2'"noo.

After a change of variables, it follows fromn (A.1) that

S(f; p) = 2-Ymo S (o; 2 ).

Multiplying both sides of (A.2) by (fr + p), we obtain

(QP + p)S(f; p) = ( 4 2- o )S (o; 2 l

which leads to the bounds for S(Qf; p):

inf [(1 y

l<flo<2
moEZ

+ P )S (lo; 

< sup (2 + 2o) o;
mo EZ

)] +p< S(f+;p)
1

f't + p2Pno )

It remains, therefore, to show that

sup (27
l<no<2
moEZ

+ 2o )S (. o; < 00oo

2 + mo )s( ; 27 m ) > 0.
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(A.2)

and

(A.3)

inf [( '
l<no<2
moEZ

(A.4)
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To show (A.3), we first note that by breaking down the snunation, we can rewrite

(A.1) as

S(Q; p)
2i(m-1)+ p 2' m p+ 

+00 1 1
2-(m+l) + p 2-Im p rrtml

(A.5)

where the second sununation has been rewritten via a change of variables. Equation

(2.13) leads to a very simple upper bound for the first sununation:

(2y(m-1) + pm=O 2m + p - - 2,(m-1) +p2-l+
1

2-y +p'

1')
2'ym + p

(A.6)

where the equality arises from the summation of the telescoping sum.

Since O(N) decays at least as fast as 1/Q and is bounded, there exists a constant

C > 1 such that

(A.7)
1 +InI-

Using (A.7), together with (A.6) and the expression in (A.5), we obtain an upper

bound for S (fl; ):

1

2-i' + p/2-"o

+ ( 2-Y(±+l) + p/2-y
m--1

2-_ w + p/2'mo )2-2-'r" + p/21'moU2-"

1

2-' + p/2ymo

+ C2 (1- 2 -'r) E
m=l

2-rm 2 -2m

(2-(m-+l) + p/2'mo )(2-'m + p/2Ymo)
(A.8)

Since y 0,

2-'m + P
2'mo

> 2-' m + 2-Y('"+1) P
2iYmO
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for m > 0. Using (A.9) in (A.8), we get that

s( no; ) < 1

2-' + p/2 Y'mo
aC( ) ((2-ym2-2m

+ ( )1 (2-(m+i))(2ym + 2--_(m+l)p/2.mo)
m--1

1

2- + p/2ymo

1

2-1' + p/2-v-0

(2, + 2 )S( 2 ) < 2 (1

+ (1 2-Y)22 ' 2(-2).
+ 2T + p/2ymo 22m 2

+ C2 (1 - 2-1)2 2 2-2
2 + p/2'Ymo - 2 -2'

+ C2(1 - 2-') 1 2 - 2 < 00,

and (A.3) is thus established.

Proceeding next to show (A.4), we first note that since (Q) is continuous at 0 and

14(0)O = 1, there exists an integer ko such that I(Q)I > 1/2 whenever I1 < 2- ko .

Hence, choosing no = mnax(O, ko), we have that

1I(2-"n-l1o)l > 1/2

from which the lower bound

S (o;
(2E(m-1) + p/2Tmo 2ym + p/2 1mmo) I(2 o)l

m=no+l (2(m-1) + p/2'mo
1 00

> E p/ 2 , o
4m= +-o ) +lp/2-ttO2'"' + p/2 )in"o

2'Ym + p/2Y'"no 
(A.10)

Summing the telecoping sum in (A.10), we obtain

S(no; 2mo)
1 _ 1 ,_ 1
4 T2no + p/2'mo m--oo 2'"r + p/2mo)
1 1

4 21o + p/2'mo '
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and it follows that

)S(flo; )
I1 + p 1
4 ( -Z-o 2,o10(1 + p/2m"o)

- 2 -(2 + "nO) > 0.

Hence (A.4). 
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Appendix B

Derivations of Algorthms in

Chapter 4

B.1 EM Algorithm for Parameter Estimation for

Higher-Order Generalized Fractals

Each iteration of the EM algorithm consists of two main steps, the E step and the M

step. In the E step, an objective function is set up based on the current estimates of the

parameters. In the M step, this objective function is maximized to obtain new estimates.

In this section, we derive the objective function that must be maxinmized in each iteration

of our EM-based ML parameter estimation algorithmln. Note that although we assume that

the wavelet transforms r and (zi)n are zero-mean Gaussian random variables, we are not

restricting this derivation to any specific form of the variance of r" and (;)',.

We define the incomplete data or the observed data to be

r=({r; m,nE }),

and the complete data to be (x, r), where

xI= {(zi)m; m, nE R, i 1, ... , L-1}.

The variance of (zi)m will be represented by A.
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Our task in the E step is to set up the function

(B.1)

where O is the vector of parameters (1I, pi, y, ... , F3L, PL, a). This function is then max-

imized as a function of E in the M step.

Noting that

pr,(r, x; O) = pr lc(rlx; ) px(x; ),

we obtain, from (B.1),

U(E, O) = E{lnprlx(rjx; ®) + lnpx(x; O)lr; )}.

Now, (zi)n are independent zero-mean Gaussian random variables. This implies that

1

m,nEZ'? FT

and

prlx(rIx; ) nI
m,nER

1

exp -

1

r -27r exp -
m,nE7z ~ -

L-1
(r - (Xi=

i=1

i) 2

771

2ALL
[(2L).]2

2A,,L

Substituting (B.3) and (B.4) into (B.2), and grouping terms, we have that

L = 

N(m){ 1 S(6) + 1In 2nrA})
mEM I

where

N(m)
nE.A(m)
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[(Xi)n]2
2AT 

(B.3)

(B.4)

(B.5)

U(O, 6) - Eln pr, x; 0) Jr; 61,

Ef[(.T.i)']'Ir; 01.



Using the properties of Gaussian random variables, we get thet

sm(®) = At(®) + B (e) 2,

where

A 1 - Z)+..A
( A+1 2 + Am+ + L)

1 2

1 + 2 +. + L
Bm(e)

and

am = () (m )2-°'m N(m) (rn) ·
nE~A~( ra)

We recognize the objective function given in (B.5) as merely a sum of L terms, each

having the same algebraic form as (4.5). Moreover, each set of parameters (i, pi, a) exists

only in one such term. It follows, then, that the maximization of (B.5) can be achieved by

performing the maximization of

2 E N(m){ASr(6) +In 27rAM}

for i= 1,...,L.

B.2 The Maximum-Spectral-Flatness-Measure Es-

timator
The expression we use for the spectral flatness measure of a function y(t) with dyadic

wavelet transform yn is

sfm {y(t)}
1 I

- exp (eN(m) E ln(&A))/( eN(,) E t)

- exp (, m) E N(m) n(&))/(E No m )
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where

-&2 1 Z (y) 2

-P N(m) nEA'(m)

In the context of the maximum-spectral-flatness-measure estimation algorithm, we view

y(t) as the "whitened" first-order generalized fractal process r(t) with "normalized" vari-

ance, i.e.,

y(t) = W-1{W {r(t)' I } '

The sample variance of yn,(t) at each scale is just

= N(m) E (r

In terms of the t' = (, p', 0d2), the numerator of the spectral flatness measure is

- exp {

mE

- exp {- h

- 2 exp{

1

] N(m) mEM
M

nL,2 + E
nE N(m) EM

mEM
1 E

E N(m) EM
mEM

N(m) ln(

(rr.n))2/P + p)

1
I 1

KN( Ir) nEA(m'

N(m) In1 N(n 
nE(,n ]

(r )2( 3m +

and the denominator is

1

E N(m) EM
mEM

N(m) 1 .
nE.(m

(r)2f + 
U' 21 1f + ).

()( + p )
C2 b N (m) weER

mEM

Combining (B.6) and (B.7), we get

sfm{y(t)}
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N(n)l ( Em) (nEr(m
(rm )2/3r ±n )) ),-n~.+ t

(B.6)

Y(E')

(B.7)



e{ E N(m) EM e
mEM

m) lnN 1) Z 
nEAr(m)

(r )2(31" +

1 N( ZE (mr)2(3'" + p)
E N(m) m,nEZ

mEM

1

Z N(m) mEM
mEM

+ pi)) 

(B.8)
N(m)&2 (,m + p)N( ruMmr 

-2 1
= N(m) Z (rn)2·

nEA(m)

Taking the logarithm of (B.8), and simplifying, we see that the objective function whose

maximum yields the desired parameter estimates is

U(P',p') = E N(m)ln(3'm + p') -
mEM

mE N(n)) n( E
mEM mEM

N(7,)2,(3" + p±)).
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