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Abstract

The effects of single particle 90° impingement were

investigated using a rotating arm erosion tester. The

resultant impacts were studied using a scanning electron

microscope. The primary mechanism of the this erosion

appears to be pure shear. Secondary damage caused by frag-

ments of the specimens and the test apparatus clouds the

results of rotating arm erosion tests.
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Introduction

Gradual wear process is commonly known as erosion.. The

subject of this thesis is erosion caused by solid particle im-

pingement. In many cases, this wear is highly undesirable.

Several examples of the detrimental effects of erosion are the

following:

1.) The compressor blades of gas turbines when operated

over dusty terrains are seriously damaged by erosion. The

efficiency of the compressor drops radically as the airfoil

surfaces of the blades wear. On small gas turbines the trail-

ing edge of the blades, often as thin as five thousandths of

an inch, is consequently readily worn away. In some cases, the

life of such turbines is reduced to 10% of its expected life.1,2

Steam turbines perating in the wet-steam regions are also

affected similarly by erosion caused by the water droplets.

2.) In industrial processes involving pipelines such

3
as the catalytic cracking of oil, foreign particles suspended

in the fluid can cause serious erosion. This problem is great-

est at bends in the lines or at constrictions such as valves

where particles are more likely to strike the surfaces.

3.) Erosirn due to rain can cause considerable damage

to the nose of aircraft. In a radome, not only is the struc-

ture of the dome weakened but the effectiveness of the radar

is also greatly reduced. 4
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4.) Rocket nozzles cn be sevely dam--ged by slid

particles carried by the ht ases that flow through them. 5

On the other hand, erosion can be used beneficially to

machine surfaces as in sand blasting or the erosive drilling of

hard materials. 0

Although many people have solved specialized erosion

problems when undertaking a specific design ask, few until

recently have attempted to examine the overall mechanism of

erosion. In 1958, Finnie derived euations based on cutting

tool theory, for the weight loss of material caused by a

particle moving i a known manner. In a later study in 19GO,

Finnie suggested that lwo factors were involved i the amnount

of material eroded. These were the conditions of the fluid

flow and the mechanism of material removal. For ductile

materiLls, he predicted the manner in which material removal

varies with particle direction and seed. Althou-!gh his figures

did not disagree with the results of metal cutting tests, they

could not accurately determine the amount of erosion that

occurred.

For brittle materials, Bitter predicted the initial

fracture of the material by calculating stresses hetween the

particle and te surface.3 In ractice, a distinction between

brittle and ductile beha-vior is very difficult to deteri-.1ne.

Nominally brittle materials ay act in a ductile fashion when

sm.lall loads are aplied. Since none of the proosed theories
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seem to pedict the amount of erosion accurately, se research-

ars have proposed that the erosion strength of a material

is an entirely separate property unrelated or only slightly

related to the known material properties.

The results of previous investigators can be most

easily summarized by considering four main variables: angle of

impingement, particle size, speed, and ma terial roperties.

General agreement in the literatuire exists regardirig the effect

of the angle of narticle ipingerent. This effect is resented

in Figure 1 far ductile-actii-g materials and in Figure 2 for

brittle-actino materils.-

3
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It is interesting to note that the same material may act either

in a brittle or ductile manner depending on the size of the

impinging particle. It has been generally fou! nd that erosion

increases with increasing particle size u to a critical size.

Areement as to -the exact relation between erosion and particle
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size has not been reached; both linear and non-linear functions

have been reported.

The amount of erosion has been shown to increase with

increasing velocity. For ductile aterials, erosion has been

shown to be proportional to about the 2.3 power of the velocity.

Erosion in britle materials also rises as a power of the

velocity, but this power varies from 1.4 to 5.1 depending on

the secific material. ther factors which can affect the amount

of erosion ut wJhich are unrelated to its actual mechanism are

particle cmposition and cncentration o erosive particles in

a fluid..

Most previous studies have dealt with the weight loss

of material per weight of irnnacting particles. This study is

prinmarily concerned with the effect of single particle imringe-

ment. By studying the effect under magnification, it may be

possible to determine the mechanisms of material failure. A

relation between failure and grain size is also investigated.
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Experimental Procedure

The method mployed to achieve a single particle impinge-

ment consists of dropping a silicon carbide particle into the

path of a specimen moving at a known velocity and impact angle.

This control of the specimen is attained by placing it on a

rotating arm. To eliminate aerodynamic effects the whole

experiment is performed in a vacuum.

Test Apparatus:

A rotating arm erosion tester had been designed and

built in the Materials Processing Laboratory. This apparatus

consisted of a twelve inch arm which rotated in a vacuum

chamber, an air turbine to drive the arm, and a photo transistor

coupled with an electronic counter to measure the speed of the

arm. In order to obtain a low vacuum for accurate determination

of impingement speeds, silicon rubber gaskets and neopreme "0"

rings were used on shafts and demountable surfaces.. A mercury

manometer was used to measure the vacuum. An arm was designed

and built to undergo constant stress throughout its length and

to withstand the bending moment created by the specimens. The

apparatus is shown in Figures 3 through 9.

Test Procedure:

Tests were performed on the following three materials:

a.) 1020 C.R. steel

both as received and annealed for 1 hour 17280 F

annealed specimen grain size 35/
-8-
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b.) Modified. 1010. steel* ( phase ), forged @ 1350°F

both as received and annealed for 1 hour 1100°F

annealed secimen grain size l1/

Composition:

.6% Magnesium

.13% Carbon

.5% Titanium

.17% Plutonium

c.) Doped Titanium alloy*, forged 1400°F

both as received and annealed for 1 hour ED 1100 F

annealed specimen grain size 1/-

Composition:

1.5% Hafnium
.5% Zirconium
. 15% Chromium
.12% Molybdenum

To prevent corrosion during annealing, the 1010 steel and titan-

-4ium samples were heated in a vacuum of less than 10 torr. ll

of the specimens were milled to a uniform size of Y x Y" x /1'.

They were then polished with successively finer grades of emery

and polishing wheels terminating with 4-0 paper for the 1020

steel and 5abrasives for the modified 1010 and titanium alloys.

All polishing was done before heat treating to avoid work hard-

eningzof the surface.

In the erosion tests, the specimens were mounted on the

arm, the silicon carbide particles ( 60 mesh or 250-500L6) loaded

*The 1010 steel and titanium samples were obtained from Dr.Ernest
.tAbramson at the U.S. Army 1Materials Research Center in atertown,
Massachusetts.
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into the dropping mechanism, and the cleaned chamber evacuated.

For the 1020 steel, a vacuum of 1 mm. was oained for all the

runs except the lC00 ft/sec. run at which the vacuum was 2 mm.

For the 1010 steel and titanium alloy, a vacuum of 3 mm. w1as

obtained for all the runs except for the 1000 ft/sec. runs at

which the vacuum was 4 mmin. The poorer vacuum at high speeds

was caused by the deterioration of the '"0" ring seal on the shaft.

Small leaks developed in the chamber which accounted for the poor-

er vacuum during the modified steel tests. The vacuum was measur-

ed by comnaring the manometer reading of the chamber to the

barometric pressure. The barometric pressure was determined

by connecting the vacuum pump directly to the mEnometer.

After a snecified vacuum had been obtained, the arm rS

then rotated by, acce erating nhe turbine with compressed air.

For the lowest seed ( 10G feet per second ), a steady sate

sOeed was at-ained. For the higher speeds, the arm was run

at an ariroximately cons-;ant acceleration. The articles

were dropped when the counter indicated the correct speed.

In all cases, the total error in the collision speed was not

more than 10:I. A small enough number of particles was always

dro,-ped to insure that only single partic e impacts occurred.

After the --articles were drooped, the api-iaratus was shut

down and the specimens relmoved. The secimens were then

examined and hotographed using a ELCO model J.3M3- Scanning

Electron Microscope. Stereo photographs were taken to ermit

three dimensional analysis.



Results

The scanning electron microscope pictures are presented

on the following pages.
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Fig. 16 A.R. odified li10 3teel, 300 feet/sec.

Fig. 17 Annealed Podified 110 Steel, 3 f et/sec.
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Fig. 22 !.-I. i-dified 1010 it'-eel, 500 feet/sec.

Fig. 23 ;. . roCified 010 DALee, 5e - Feet/sec.

-24-

i



oiw . I5 : H ,-- - i i , i j_ I(j-o,* 25 inch-t3 1 io 'I di F , j1, '.0 ;.1 o .i.I_; f -- /i/S. 
-)5

Fin. 2 i. r Fodi-ieci 110 3tel, 10 fet/s~---c



-i. , ' .. Titaniumn lloy, 50' fa et/sncIA .1 1 I 1 - L

04
a L

11

:JOD feat/s-c.F J L- 277



Fi~r. 23 Alnnsaled 120 tcel, GO fcet/sc.

a-

r Fi. 29 " * Modified IA]!0 LI 1e i2iu 11I seC

-27-



:.. MIodified 11i0 tIe.l, -O fet/sec.

j

i-g. `0

__ _

FiQ. 31 1 il. C~ . kor - ` -d 1 A D , L--l, ~~~i~~~~~. 3L ~ I , " .. L -G --, ) i L



4

Fig. 32 Annealed Modified 1010 S3teel, ~'5 feet/ec.

o00 feeat/sec.

- --

Fin, 33TiU:-ni ,.. -1l ,



; i .

' , .

34

3 J

G DE'f,0 P t s c ,-,nneiiod Tita;nium ··· !I t ~V,

1 -', 1 ·~7 ' ;,I !js U: C L~~~i~~L: iu i-j J /-ec



A0a
F

Fig. 3E6 qn nr!io- 12[IJ tdei, l i; fP'rt- /2cc.

0.
et

i 7., 3 X 1_20 t o !',1 I -, " j !c i*.u-,11 i -. t /I c C 



0.
a1

r i

. I t .

I I 11, -iz I·nI r I

'-'.j > Rt nu6eteb it'i i':: 13'fI 1L. L... - Ft/oc.

F .4 u6 R.R. P'Iodificd 10 st~tel. A..$1 r eon



18000 Teet /s e2c.Fig. 4D0 A.R. Titaniurnri Alloy,



Discuasion

The darrmae iwhich occurred during the rarticle im inge-

mE;;t tests relies on many factors. First among these is -the

s rength of ietals, which determines the degre of damage.

A second conributing factor is material defects and varia-

tKons in material c postion. Finally, the variations in

speed may affect the damage to the specimens.

Tests over 1G20 feet per second Lere not performed

because of the limiting effect of the theoretical strength

of metals. From a omic-bond theory:

O-theoretical 15

anl d = E 

-theoretical = .0-

Now consider the case of a mass traveling at velocity 

hitting a long rod. In time At te end of the rod mrrves a

distance Vat.

I mass I V 

At:at 9 i

Fig. 41, Strain waiave in a rod.

A stress wave travels in time At a distance cAt where c is

the soeed of sound in the rod ( for steel, c=1.36 x 104 ft/sec. ).

Since - c at 

then c- C6
-34-
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Therefore, in order to remain within the theoretical strength,

the maximum value of V must be less than approximately

1000 ft/sec. for steel. This assumes that the abrasive

particles are rigid.

Our results with te small grained specimens are diff-

icult to evaluate due to numerous voids throughout the specimens.

These voids are clearly shown in Figures 13,15,17,18,19,25,26,

32, and 34. Material properties such as the comoressive strength

of the material may be drastically affected by such voids. The

examination of the right side of Figure 26 with stereo viewers

shows that apparently a section of the surface is depressed

without showing any displaced metal elsewhere. This may be

an indication that some of the voids were eliminated during

the process.

An uncertainty was caused by particles other than the

intended ones striking the surface of the specimens. Figures 13

and 14 both show chios which imbedded only slightly in the

surface. No damage is observed as the chips appear to be just

lying on the surface. Low velocity ( 100 ft/sec. ) is most

likely a significant factor in the absence of damage. The

chip in Figure 13 appears to have been freshly " machined "

while the chip in Figure 14 looks as if it struck several things

before finally lodging in the specimen.

At higher velocities, however, the damage caused by

such chips may be uite severe as shown in Figures 26,2,32,and 34.
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Since the articles la3ck the voids that are prevalent in the

surface of the specimens, it is doubtful that they are of

the same materill. Furthermore, with the possible exception of

Figure 26, the articles do not appear to be silicon carbide,

a non-conductor which would apoear white under the microscope.

Nost likely, the particles are chips from eitLher the rotating

arm or the sides of the test chamber. Figure 33 shows a large

chip which imbedded in the surface. A similar chip hit the

surface in Figure 32 but upon impact shattered into many

smaller pieces. Figure 29 shows a dramatic example of frag-

mentation. Figures 30 and 31, which are both enlargements of

Figure 29,show respectively 50-micron fragments and sub-micron

fragments. Logically, all of the fragments in these pictures

did not remain lodged and some would be free to strike the

surface again causing more damage. It is unlikely that either

the chips or the fragments of the chips would be stationary

inside the test chamber; instead, they would be traveling

at some unknown velocity. Since the specimen is moving at a

known velocity, the impact speed would be the vector sum of the

umknown velocity and the known velocity. Therefore our results

are obscured by not knowing the true impact conditions.

Now that the uncontrollable aspects of the experiments

have been examined, it is possible to discuss objectively the

results of the controlled variations in the testing. As might

be expected, increased impingement velocity generally resulted



in increased crater depth. Figures 10,11,12,and 15 all show

shallow craters which were formed by FOarticles traveling at

100 ft/sec. Slightly deeper craters were formed at 300 ft/sec.

as shown in Figures 17 and 13, still deeper craters at

500 ft/sec. as shown in Figures 20, 22, and 25, and the deepest

craters at 00 and 1000 ft/sec. as shown in Figures 27,28,35,3a,

and 39. This result is fairly conclusive as the 1020 steel

acted in the same manner as the uestionable materials in which

voids were numerous.

The secondary damage which was mentioned before ( damage

by fragmented particles and material ) also tends to increase

with increasing test velocity.- Only a general statement can

be made since the true impinging velocity is not known. Figures

29,30, and 31 show an excellent example of secondary damage.

Other examples are shown in Figures 26, 33, and 40.

So far, observations on the mechanisms of erosion have

not been discussed in this paper. Finnie's model of micro-

machining as mentioned in the introduction is possibly

supported in four cases... It should be noted that his model.

was based on smaller impingement angles then 90'. However, due

to the uncertainty in our testing, it is possible that this

damage occurred from particles moving in unknown directions.

Figure 34 shows a fragment of metal or silicon carbide which

skimmed along the surface machining a groove until it lodged

in the specimen. Figures 21 and 39 show a similar occurrence.
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The foreign article in Figure 39 was assumed to have been

lodged after the erosion took lace. In Figure 22, a larger

particle could have skimmed from the lower left of the picture,

machined a groove, and as it left, formed the large ridge.

Figures 23 and 24 are enlargements of this damage.

The most revalent form of damage, however, appears to

be the pure shearing of -the sides of the craters.. Although the

best examples of this are in Figures 38, 28, 20, and 10L,

shearing can also be seen in Figures 12,15, 18,15,22,25,26,27,

35,36,and 39. In Figure 12 it can be seen how cleanly the

shearing took place. In the lower left corner, the voids were

undisturbed during the shearing process.

Another very interesting occurrence is the appearance

of fibrous material in the bottom of the craters. This looks

very similar to the exposed surface of a ductile material

after a tensile fracture. Figures 38,22,20, and 10 show this

effect in decreasing clarity as do many of the other pictures

listed above that show erosion in the shear mode.

Several other infrequent occurrences may also be noted.

Figure 16 shows a small particle which imbedded in the surface

of the specimen. Two fragments of the surface, equal to the

size of the article, have been almost broken loose. If the

particle had had more energy, possible both the fragments and

the particle would have left the surface and the resultant

crater would have been similar to that in Figure 12. Another

-38-



interesting case is Figure 27 where the right crater is on the

specimen's edge ( bright white lines ). The crater itself is

cold worked and many voids have been formed. Also, no

fluid-like flow aeared to take place in any of the cases, as

had been previously reported by Sherman.ll

Finally, no difference was observed in the erosion

characteristics of the different materials. However, until

the mechanisms of erosion are more fully understood, observing

the effects of impacts in different materials cannot accurately

predict their espective erosion characteristics. For this

reason, no conclusion is drawn as to the superiority of one

metal over another.
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Conclusions

As a result of the 90 ° single particle impingement

tests performed, the following conclusions may be drawn.

The rimary mechanism of this erosion 'appears to be pure

shear.. Uncertainties caused by secondary damage from both

the specimen and the apparatus cloud the results of rotating

arm erosion tests. Until the mechanisms of erosion are

more fully understood, the analysis of materials should be

done by more conventional erosion testing rather than by single

particle impingement tests.
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