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ABSTRACT

A policy iteration method for solving sequential decision pro-
cesses of long duration is presented. Consider a system with a discrete
number of states, N, and a set of transition probabilities Pij for move-
ment from state i to state j. There is also associated with the system
a reward rij attached to each transition. In each state i, there is a
choice of several sets of transition probabilities that could be used as
the ith row of the pijj matrix. Each set of probabilities has an associ-
ated set of rewards, rij, and the combination is called an alternative in
the ith state. A policy for the system is a choice of one alternative in
each state so that probability and return matrices are defined. Once the
system is making transitions under a given policy, it exhibits all the
characteristics of a Markov process; however, it is generating a sequence
of returns from its transitions. The problem consists of finding that
policy which will cause the system to have the highest average earnings
after it has reached statistical equilibrium.

The policy iteration method for finding the optimal policy is
based upon a two-part iteration cycle. The entire procedure rests upon
a proof that V-, the total expected return in n moves starting from
state i, can be represented in the form vi + ngi for very large n. The
transient values vi and the gains gi depend only on the starting state i.
In most practical cases gi is independent of i and may be given the
symbol g. The quantity g is called the gain of the policy; it is the
average return per transition after a large number of moves. The optimal
policy is the policy with highest gain.

The first part of the iteration cycle is a procedure which finds
the vi and gi pertinent to a particular policy. The procedure may be
carried out either by solving a set of N by N linear simultaneous equa-
tions or by a simulation approach using Monte Carlo methods.

The second part of the iteration cycle is a policy improvement
routine which will find a policy of higher gain if such a policy exists.
Convergence on the optimal policy is guaranteed.

Problems in baseball strategy and replacement theory are shown
to illustrate the power of the method. This procedure should make possible
the formulation and solution of many important decision-making problems.

Thesis supervisor: Philip M. Morse
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Introduction

The theory of dynamic programming has existed for several years without

finding extensive practical application. In some measure this is due to

the fact that the specialization of the theory to individual problems has

always required a considerable amount of ingenuity. The systems analyst

is more likely to spend his time modifying conventional methods to fit his

problem than he is to develop a new method, even if he has overlying prin-

ciples to guide him. Up to the present time, dynamic programming has been

in this category of providing general principles in solving a problem

without yielding a complete solution.

It is our feeling that dynamic programming can be developed to the

point where a broad class of problems can be solved without the need for

excessive amounts of ingenuity. If this can be done, dynamic programming

should join the arsenal of powerful, convenient techniques available to

the systems analyst.

The Essence of Dynamic Programming

The concept of dynamic programming is useful in multistage decision

processes where the result of a decision at one stage affects the decision

to be made in the succeeding stage. In other words, if the decision-maker

is interested not only in the immediate effect of his decision but also in

the long-run effect, then he (or it) has become involved in a dynamic pro-

gramming problem.

The two main types of dynamic programming problems are deterministic

and stochastic problems. Deterministic problems have the property that

the result of any decision is known to the decision-maker before the
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decision is made. Stochastic problems specify the probability of each of

the various outcomes of the decision. We see that deterministic problems

may always be treated as a special case of stochastic problems although

it may not be fruitful to handle them in this way.

Regardless of the deterministic or stochastic nature of the problem,

the following properties must be found in the problem before it can be

successfully treated by dynamic programming.

1) The states of the system must be describable by a small number

of variables.

2) The function of a decision must be to assign to these system vari-

ables different numerical values.

3) The history of the system must have no influence on future

behavior.

The last property (or Markovian property) can usually be achieved by

adding more variables to the state description, but if too many extra

variables are required, this approach may be self-defeating.

The sequence of decisions in a problem is called a policy; a policy

which is most desirable according to some criterion is called an optimal

policy. Reflection on the sequential nature of the process reveals a

recurrence relation stated by Bellmanl as the:

"Principle of Optimality: An optimal policy has the property

that, whatever the initial state and the initial decision, the

remaining decisions must constitute an optimal policy with

regard to the state resulting from the first decision."

Although the principle of optimality has been the traditional basis

on which sequential decision problems are solved, it is possible to formu-
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late the process of solution for the optimal policy in such a way that

this principle never appears explicitly.

It is possible to describe the sequential decision process using

either discrete or continuous state variables. Since very few such

processes can be solved analytically, it is usually necessary to revert

to electronic computation in order to obtain a solution. The selection

of digital computation ultimately requires a discrete formulation of the

problem. Because this is the end result in so many applications, it

appears especially useful to explore the sequential decision process

from a discrete point of view. The discrete formulation is general enough

to include a wide class of practical problems; it is limited only by the

size and speed of existing computational facilities.

Discrete Formulation

Consider a system with N states. As above, the states must be

describable by a small number of parameters, but these parameters may

take only discrete values. The number of states in the system, N, is

constant for the duration of the problem. We may now consider transforma-

tions of the system at discrete intervals of time. Each transition of the

system will in general cause the system to move from one state to another.

If the initial state of the process is state i or Si, and the succeeding

state is state j or Sj, then we may symbolically write the transformation

process as Sj = T(Si) where T is the symbol for the transformation.

If we define a conditional probability Pij that the system will

occupy Sj given that it previously occupied Si, with Pij 0 and

JPij = 1, then we have a Markov process. The generalization of this
j l
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process that we shall consider differs from the standard Markov process in

two ways:

1) A reward or return rij is assigned to the transition from Si

to Sj.

2) The probabilities Pij and the rewards rij to be associated

with transitions from state i are a function of the decision we make in

the ith state.

The first addition to the Markov process assigns a random variable rij

to each transition. The second addition allows us to characterize the

multistage decision process. In order to see more clearly the character

k k
of the process, let us define Pij and rij as the probability and reward

parameters to be attached to the transition i---.j if we are operating

under the kth alternative in state i. An alternative is the name given

one of the options in the it h state. Before proceeding any further, let

us clarify these remarks with a diagram:

Present state Succeeding state
of system 1 1 of system

Pll, rll

i = 1

i =2

i =3

j =1

j = 2

i =3

I

I

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~I
i-N~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~I i

06
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In this diagram, two alternatives have been allowed in the first

state. If we pick alternative 1 (k = 1), then the transition from state 1

1
to state 1 will be governed by the probability Pll, the transition from

1 1
state 1 to state 2 will be governed by P12' from 1 to 3 by P13, etc. The

rewards associated with these transitions are rll, r , r 3 , etc. If the

second alternative in state 1 is chosen (k = 2), then p2, P2, P P11' P12' P13'

2 2 2 2 2 et
PlN and rll, r 2, r13, . , rN, etc would be the pertinent probabili-

ties and returns. In the diagram above we see that if alternative 1 in

state 1 is selected, we make transitions according to the solid lines; if

alternative 2 is chosen, transitions are made according to the dashed

lines. The number of alternatives in any state may be of any finite size,

and the number of alternatives in each state may be different from the

numbers in other states.

A convenient way to visualize the states and their alternatives is by

means of a three-dimensional array:

.\ \ \ \ \ k
I I r-,- _ iS

jS

i

A Possible Five-State Problem
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The array as drawn illustrates a five-state problem which has four

alternatives in the first state, three in the second, two in the third,

one in the fourth, and five in the fifth. Entered on the face of the

array are the parameters for the first alternative in each state, the

second row in depth of the array contains the parameters for the second

alternative in each state, etc. An "X" indicates that we have chosen a

particular alternative in a state for operation of the system; the alterna-

tive thus selected is called the decision for that state. The set of X's

or the set of decisions for all states is called a "policy." The policy

indicated in the diagram requires that the probability and reward matrices

for the system be composed of the first alternative in state four, the

second alternative in states two and three, and the third alternative in

states one and five. It is possible to describe the policy by a decision

vector D whose elements represent the number of the alternative

selected in each state. In this case

3

D = 2

An optimal policy is defined as a policy which maximizes some per-

formance index. In the five-state problem diagrammed above, there are

4 x 3 x 2 x 1 x 5 = 120 different policies. It is conceivable that one

could find the performance index for each of these policies and then com-

pare the indices to find the policy which had the largest one. However

feasible this may be for 120 policies, it becomes unfeasible for very large

problems. For example, a problem with 50 states and 50 alternatives in

each state contains 50 50 10 policies.
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It is clear that a direct selection of the optimal policy becomes un-

feasible even with the fastest of present computers.

Bellman 2 has proposed one method for circumventing the combinatorial

complexity of the sequential decision problem; it will be illustrated in

the following section. We shall then propose an alternative method which

has certain advantages over Bellman's procedure, especially in the case

where the system is permitted a very large number of transitions.

A Simple Example - Bellman's Iteration Procedure

In order to fix ideas, let us consider a simple coin-tossing example.

Suppose that we have a choice of tossing either of two biased coins.

Coin 1 has probability of heads 3/4 and probability of tails 1/4; coin 2

has corresponding probabilities of 1/3 and 2/3. Profits from playing the

game are calculated as follows: If heads are obtained twice in a row,

three dollars is won; if tails follow tails, one dollar. If either heads

follow tails or tails follow heads, a sum of two dollars is lost.

Consider heads to be state 1 and tails to be state 2. In each state

there are two alternatives: flip coin 1 or coin 2; thus

[I = [23 = [3/4 1/4 and [i = I2 = [1/3 2/3 

The returns are the same for all alternatives so that there is a unique

return matrix for the system, rij] = 2 -12j. We are seeking to determine

that policy which will maximize our expected return in n moves.

Bellman's iteration procedure may be described in the following way.

Let fi be the total expected return in n moves starting from state i

under an optimal policy. Then from the principle of optimality, the recur-

rence relation



N L k k ni
fi = Max Lij(ri + fi)J

k j j

is obtained. The boundary values f when there are no moves remaining may

be set arbitrarily to zero in the absence of any specific values. At each

stage of the process, the best policy to use at that stage is developed

from the recurrence relation.

If the Bellman technique is applied to the coin-tossing problem, we

obtain the following table of calculations for ten stages:

n

0

1

2

.3

5

6

7

8

9

10

nfl
0.0000

1.7500

3.0625

4.1927

5.2470

6.2696

7.2790

8.2829

9.2845

10.2852

11.2855

n n-l
fl- fl

1.7500

1.3125

1.1302

1.0543

1.0226

1.0094

1.0039

1.0016

1.0007

1.0003

n
f2

0.0000

0.0000

0.5833

1.4097

2.3373

3.3072

4.2946

5.2893

6.2871

7.2862

8.2858

n n-l
f2 -f2

0.0000

0.5833

0.8264

0.9276

0.9699

0.9874

0.9947

0.9978

0.9991

0.9996

n n
fl - f2

0.0000

1.7500

2,.4792

2.7830

2.9097

2.9624

2.9844

2.9936

2.9974

2,9990

2.9997

The best policy at any stage is to flip coin 1 when the last flip

produced heads, and coin 2 when it

and f2 for each n are plotted in

produced tails. The values of ff
1

the following graph, Figure 1., Note

that the curves become linear and parallel for large n. From the table

of calculations, it appears that in the limit as n, ,, -ff-1 and



Total
Expected
Return

,n

9

1,2857

-1.714

fn
2

4.

10

es

COIN TOSSING PROBLEM

Total Expected Return in n

I

Moves
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n n- n n
f2 - f2 will approach 1, whereas fl - f2 will approach 3. The equations

for the asymptotes to the curves are fl = 1.2857 + n and f2 = - 1.7143 + n

as n--_<>. Thus, the Bellman procedure has found the best policy and the

amount we expect to make per transition as n- , namely about $1. It

has also found that the state "heads" is worth about $3 more than the

state "tails" after a large number of moves. However, these results are

found, theoretically, only in the limit as n--c>-. We have to perform

many calculations for small n before they appear. It would be very use-

ful to have a procedure which we could use if we restricted our answer to

be valid only for large n. It is just such a procedure which is described

in this thesis.

The policy iteration method to be proposed has the following properties:

1. The solution of the sequential decision process is reduced to

solving sets of linear simultaneous equations and subsequent comparisons.

2. Each succeeding policy found in the iteration has a higher

expected return per transition than the previous one.

3. The procedure will find the best long-run policy; namely, that

policy which has the largest expected return per transition attainable

within the realm of the problem. It will find it in a finite (usually

small) number of iterations.

4. It is not necessary to apply the principle of optimality explicitly.

This policy iteration procedure can be divided into two parts, the

value determination operation and the policy improvement routine; they will

be described in the following sections.



The Value Determination Operation

Consider the system to be operating under a given policy. Since a

policy has been selected, we may drop the subscript k and speak of

probability and return matrices Jpij] and rij . The elements of these

matrices are calculated according to the rule ij PK, rij = rik, with

k = Di.

Suppose that we are going to allow the system to make transitions

indefinitely and that we seek to find the policy which will maximize the

average return we shall receive per transition; from now on this is by

definition the optimal policy.

For any policy under which we operate, we know that the system must

exhibit the behavior of a Markov process. In particular, after a large

number of moves the state occupancy probabilities must converge.* Since

the returns depend on the state occupancy probabilities, we expect the

average return per transition to approach a limit, g, as the number of

moves becomes very large. The nature of g will be more completely

explained below, but suffice it to say at this time that we know g is
Maxbounded because g 5 i,j rij, and the rij are finite. The value of g is

a function of the policy or the set [Di]; it may be called the gain of the

policy. We seek to find that policy which maximizes g.

We shall only obtain an average return g if the system is truly in

the steady state; i.e., has made n transitions, where n ---oo. If we

consider the system for a finite number of moves, n, then the average

* In order to assure convergence, assume temporarily that all ij > 0.

However, it is sufficient that the rank of (I - P) be N- 1, where I is

the unity matrix.

-11-
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return per move will be different from g and will depend upon the state

in which the system is started. Let us define I as the total return to

be expected from operating the system for n moves starting from the

state i under the given policy. The quantity V will in general be com-

posed of two parts, a steady state part ng resulting from the behavior

as n--_, and a transient part v i which depends only on the starting

state, so that

n
Vi = vi + ng for large n.

n
Vi may be called the value of starting the system in state i with

n moves remaining; vi is the transient value of starting the system in

state i. The proof that Vn has the prescribed form is temporarily deferred

for expository purposes.

Let us consider the operation of the system for n moves under a given

policy. Remembering the definition of Vi, we obtain the recurrence equation

n N n-l

Vi j=l i

This equation states that the value of being in state i with n

moves remaining is equal to the weighted average of the sum of the return

from a transition to the jth state and the value of being in state j with

n - 1 moves remaining. The weighting is performed with the probabilities

n
Pij, as expected. If the limiting expression for V i is substituted in

this equation, it becomes:

N

vi + ng j=l pij ij + vj + (n - 1)g

or
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N

Vi + ng => Pij(rij + vj) + (n - l)g>77 Pij
J-1 = 3=1

N
However L Pij = 1 by definition. Therefore

j l

Vi + ng = Pij(rij + v) + (n - l)g

or
N

g + Vi = 4 Pij(rij + v) for i = 1, 2, . . N

A set of N equations relating the gain and transient values to the

probabilities and returns has now been obtained. However, a count of un-

knowns reveals that there are N vi's to be determined plus one g, a total

of N + 1 unknowns contained in the N equations. This difficulty is sur-

mounted if we examine the results of adding a constant, a, to all vi's.

N

g + Vi + a = Pij(rij + vj + a)

N N
g + vi + a = E Pij(rij + vj) + a 0pij

j=1 

N
g + Vi = ij(rij + vj)

j=1

The addition of a constant to all vi's leaves the equations unchanged.

This implies that only the differences between vi's are important, and

that the absolute level of the viTs is arbitrary (as in the case of gravi-

tational potential energy and node pair voltages). Realizing this situa-

tion we may arbitrarily, as far as these equations are concerned, set one

* The transient values which appear in the limiting expression for V are

generally different from those obtained by solving the simultaneous equa-

tions. The former are called "absolute" transient values; the latter,relatives

The distinction, which is mainly of theoretical importance, will be
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of the vi's to zero, say vN. We now have N equations in N unknowns

which may be solved for g and the remaining vi's. The vi's now have the

physical interpretation that at any stage of the process vi - vis represents

the increase in expected return due to entering the system in state i

rather than in some standard state is. This is seen by considering

n n n n
Vi - V = v i Vi + ng - ng or V -Vis = vi - is, independent of n.

From now on it will be convenient to call the vi's relative transient

values (relative to the standard state is for which vi is arbitrarily set

to zero); these quantities will be called simply values in situations in

which no ambiguity can arise.

The equation

N

g + Vi = Pij(rij + vj)

can be written
N N

g + vi = Pijrij + Pij

N

g + vi = qi + Pijvj

N

where qi = Pijrij is the expected return from a single transition

in the ith state. Thus the solution of these equations depends only on

the N quantities qi and on the N by N [ij] matrix. Since the qi's and

Pij's are functions only of the policy, we now have a system of equations

which generates the g and the relative transient vi's pertaining to a

particular policy. Let us call the generation of the gain and values under

a policy the value determination operation.



The Policy Improvement Routine

Having examined the value determination operation, we are ready to

explore the mechanism by which a given policy is replaced by a better one.

Consider our basic set of equations

N

g + vi = Pij(rij + vj)

It is possible to write an expression for g as

g = J1 Pij(rij + j) - Vi

We are attempting to find a better policy, that is, one with a larger

g, so that it is reasonable to attempt a maximization of the right-hand

side of the above equations. Since the vi's have been determined under

the present policy, only the alternatives in each state may be varied in

the maximization procedure. In each state i, we could then find the

alternative k which maximizes Pj(r + vj) - v i. Since the term vi

is independent of the maximization over the alternatives, it may be dropped

and the policy improvement routine given as:

For each state i, find the alternative k which maximizes the quantity
N

Pij(rij + vj) using the vi's determined under the old policy. This k

now becomes Di, the decision in the ith state. A new policy has been deter-

mined when this procedure has been performed for every state. If we define

N kk
qik pij ri as the expected immediate return in a transition from the

it k N
ith state, then qi + Pijvj is the quantity to be maximized.

Further properties of the policy improvement routine including the

proof that it leads to a policy of higher gain will be found in a later

section.



The Iteration Cycle

The basic iteration cycle may be diagrammed as follows:

The upper box, the value determination operation or VDO, yields the

g and v i corresponding to a given choice of qi and Pij. The lower box

yields the Pij and qi which maximize the gain for a given set of vi. In

other words, the VDO yields values as a function of policy, whereas the

PIR yields the policy as a function of the values.

We may enter the iteration cycle in either box. If the VDO is chosen

as the entrance point, an initial policy must be selected. If the cycle

is to start in the PIR, then a starting set of values is necessary. If

there is no a priori reason for selecting a particular initial policy or

for choosing a certain starting set of values, then it is often convenient

to start the process in the PIR with all v i = 0. In this case, the PIR

Value Determination Operation (VDO)

Having Pij and qi for given policy,

N
use g + v i = qi + pijvj with vN = 0

j=l

to solve for g and vi for i = 1, 2, . .. , N - 1

Policy Improvement Routine (PIR)

For each i, find that alternative k' which

N

maximizes qk + pkjvj using the transient

values of the previous policy.

k/ k
Then k becomes Di, qi becomes qi' Pij becomes ij
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will select a policy as follows:

k
For each i, find the alternative k which maximizes qi. Then set

Di = k.

This starting procedure will consequently cause the PIR to select

as an initial policy the one which maximizes the expected immediate

return in each state. The iteration will then proceed to the VDO with

this policy and the iteration cycle will begin. The selection of an

initial policy which maximizes expected immediate return is quite satis-

factory in the majority of cases.

At this point it would be wise to say a few words about how to stop

the iteration cycle once it has done its job. The rule is quite simple:

the optimal policy has been reached (g is maximized) when the policies

on two successive iterations are identical. In order to prevent the PIR

from quibbling over equally good alternatives in a particular state, it

is only necessary to require that the old Di be left unchanged if the

alternative for that Di is as good as any other alternative in the new

policy determination.

An Example - Taxicab Operation

Before introducing more theoretical results, it should be interesting

to investigate a simple example.

The coin-tossing problem is too simple from a policy point of view

to serve as a real test of the method; its solution is left to the reader

and to a later section.

Let us consider here the problem of a taxi driver whose area encom-

passes three towns, A, B, and C. If he is in town A, he has three alterna-

tives:



1) He can cruise in the hope of picking up a passenger by being hailed.

2) He can drive to the nearest cab stand and wait in line.

3) He can pull over and wait for a radio call.

If he is in town C he has the same three alternatives, but if he is

in town B the last alternative is not present because there is no radio

cab service in that town. For a given town and given alternative there is

a probability that the next trip will go to each of the towns A, B, and C,

and a corresponding return in monetary units associated with each such trip.

This return represents the income from the trip after all necessary expenses

have been deducted. For example, in the case of alternatives 1 and 2, the

cost of cruising and of driving to the nearest stand must be included in

calculating the returns. The probabilities of transition and the returns

depend upon the alternative because different customer populations will

be contacted under each alternative.

If we identify being in towns A, B, and C with S1, S2, and S3,

respectively, then we have

State Alternative Probability Return Expected Immediate Return
k ki k p r k N k ki pij rij qi = 5 Pijrij

j =1 2 3 j =1 2 3 =

1 1 1/2 1/4 1/4 10 4 8 8

2 1/16 3/4 3/16 8 2 4 2.75

3 11/4 1/8 5/8_1 6 41 425

2 1 /2 0 1/2 1 4 0 181 16

2 L/16 7/8 l/1]_ 8 16 8 15

3 1 1/41/4 1/2 10 2 7

2 (1/8 3/4 1/8 6 4 2 4

3 3/4 1/16 3/16 4 0 4.5
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The return is measured in some arbitrary monetary unit; the above num-

bers are chosen more for ease of calculation than for any other reason.

In order to start the decision-making process, suppose we make

vl, v2 , and v3 = O, so that the policy improvement will choose the policy

which maximizes expected immediate return. By examining the qk we see

that this policy consists of choosing the first alternative in each state.

In other words, D1 = 1, D2 = 1, D3 = 1 or we can speak of an N-dimensional

column policy vector D with elements Di, so that we can say that the

policy is 

D 1 namely, always cruise.

The transition probabilities and immediate returns corresponding to

this policy are

1/2 1/4 1/4 i ,

[ij 1/2 0 1/2 [q =16

1/4 1/4 1/2 7

Now the value determination operation is entered and we solve the

equations
N

g + vi = qi + Pij i = 1, 2, ., N

In this case we have

g + v1 = 8 + 1/2 v + 1/4 v2 + 1/4 v3

g + V2 = 16 + 1/2 v1 + 0 v2 + 1/2 v 3

g + v3 7 + 1/4 v1 + 1/4 v2 + 1/2 v3

Setting v3 = O arbitrarily and solving these equations, we obtain
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vl = 1.33

v 2 = 7.47

v3=0

g = 9.2

Under a policy of always cruising, the driver will make 9.2 units per trip

on the average.
N

Returning to the PIR, we calculate the quantities qi + pijv for

all i and k:

i k
k N k

+ Pijvj

2

3

We see that for i =

mized when k = 1. For i

words, our new policy is

1 10.50 *

2 8.43

3 5.51

1 16.67

2 21.75 *

1 9.20

2 9.66 *

3 6.75

1, the quantity in the right-hand column is maxi-

= 2 or 3, it is maximized when k = 2. In other

D =

This means that if the cab is in town A, it should cruise; if it is

in town B or C, it should drive to the nearest stand.
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We now have

1/2 1/4 1/4

LPij = 1/16 7/8 1/16 =qi=

.1/8 3/4 1/8

Returning to the VDO, we solve the equations:

g + v1 = 8 + 1/2 v + 1/4 v2 + 1/4 v3

g + V2 = 15 + 1/16 v + 7/8 v2 + 1/16 v3

g + V3 = 4 + 1/8 v + 3/4 V2 + 7/8 v3

Again with v3 = 0 we obtain

8

15

4_

v1 = 3.88

V2 = 12.85

v3 =0

g = 13.15

Note that g has increased from 9.2 to 13.15 as desired, so that the cab

earns 13.15 units per trip on the average. Entering the PIR with these

value s,

i

1

2

3

k

1

2

3

k N k
qi +- pijvj

j=1

9.27

12.1 *
4.91

1

2

1

2

3

14.06

26.00 *

9.26
12.02 *

2.37
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The new policy is thus

D =

The cab should drive to the nearest stand regardless of the town in which

it finds itself.

With this policy

3/4 3/16

7/8 1/16

3/4 1/8

Entering the VDO

g + L = 2.75 + 1/16 v1

g + 2 = 15 + 1/16 v +

+ 3/4 v2 + 3/16 V3

7/8 v2 + 1/16 v3

g + v3 4 + 1/8 v1 + 3/4 v2 + 1/8 v3

With v3 = 0,

v1 - 1.18

v2 = 12.66

v3 =- 0

g = 13.34

Note that there has been a small but definite increase in g from

13.15 to 13.34.

Trying the PIR

1

2

3

2

k N k
qi + Pijv

j =1

10.57
12.16 *

5.53
15.41

26.00 *
9.86

13.33 *
5.40

1/16

[Pij] = 1 / 1 6

8/

[ 2i75
[qi - 1 5

_4 ,

i k

3

2
1

2

3
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The new policy is

D i 2

but this is equal to the last policy, so that the process has converged

and g has attained its maximum; namely, 13.34. The ab driver should

drive to the nearest stand in any city. Following this policy will yield

a return of 13.34 units per trip on the average, almost half as much again

as the policy of always cruising found by maximizing immediate return.

Summarizing the calculations (to two decimal places)

v1 0 1.33 - 3.88 - 1.18

V2 0 7.47 12.85 12.66

v3 O 0 0 0

g -

D, 1 2

D2 1 2 2 2 STOP

D3 1 2 2 2

Notice that the optimal policy of always driving to a stand is the

worst policy in terms of immediate return. It often happens in the sequen-

tial decision process that the birds in the bush are worth more than the

one in the hand.

3,
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Properties of the Value Determination Operation

Having been enlightened with an example, we may return to theoretical

considerations in order to gain more insight into the value determination

operation.

We must solve the following equation for the vi's and the g.

N

g + vi = qi + ijj i =1, 2,. .., N
j =

Rearranging

N

Vi - PijVj + g = qi

Set vN = 0, arbitrarily,

N-1

(6 ij - Pij)vj + g = qi
j=1

where 6ij is the Kronecker delta; 0ij = 0 if i / j, 1 ij 1 if i = J.

If we define a matrix A = fai' where

aij = ij - PijaiN = al ~ pitfor j N

th:n

-P11 - P12 - P,N-l 1

- P21 1

- PN1 - PN,N-1 1

Note that the matrix A is formed by taking the ij matrix, making

all elements negative, adding ones to the main diagonal, and replacing the

last column by ones.

-1-- -

A 
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If we also define a matrix V where

then

V 

vi

VN

V1

V2

VN.

7

-1

- Vi i cN

= g

Finally, let Q = [qi] so that

Q =

The above equation in the vi's and the g can then be written in

matrix form as

AV = Q

V =A -1 Q

Thus by inverting A to obtain A- 1 , and then postmultiplying A -1 by Q,

v i for 1 i N-1 and g will be determined.

Consider matrices T, S:

or

qN
1I-

I
L

_

I
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1

1

1

1

1

1

N S=

0

0

Le

N

By inspection

T =A S

or A- 1 T= S

The sum of the rows of A-1 = O, except for the last row whose sum

is 1.

If Q = a T, where a is a constant, then

V = A- 1 Q = A- 1 a T = a A- 1 T = a S

Therefore all vi = 0, and g = a. If all expected immediate returns are

equal, then all values are zero, and g is equal to the immediate return.

This result checks with our interpretation of the g and v i 's .

Let us consider the effect of subjecting all returns to the linear

transformation

r;. = arij + b.

Since

qi = Pijrij; qi = Pijrij = Pij(arij + b)

qi = a piriri + b Pij

or qi = aqi +b sincepij =1
s

T 

J I_ _
J

1.
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In matrix form

Q =aQ+bT

QV A 1 = a Q + b T

V' a A 1 Q + b A 1 T

V' =aV+bS

or Vi = a vi for all i

and g' =a g + b

We can thus make any scale change on the returns, solve the problem

with simpler numbers, and rescale the g and vi's to correspond to the

original problem.

Let us assume that all Pij > 0, so that all states are recurrent.

Further, let r i be the probability of finding the system in state i

after n transitions where n--o. In other words, the i are the

steady-state probabilities of the system.

The basic balancing relations on the rri are

½T1 = 1lq1l + rr2P 21 + Tf3P31 + + NPN

T2 = lP12 + r2P22 + + ITNPN2

rN = rlPlN + + TNPNN

or
j E-rriPij for all j = 1, 2, . .. , N. N equations,

N unknowns.

Summing over j

I, rj 1iPij

E1j rri Pij

r j i
j i



This result indicates that we do not have sufficient equations to

determine the itj. However, we are fortunate in having an equation we

have not used; namely, 1T i 1.
i

Replacing the last equation of the above set by the condition that

the sum of the steady-state probabilities is 1, and rearranging yields:

(1 - Pl l)l P21-'2 P31'3 .. · * - PNIrdN = 0

- P12'1+ (1 -P22)r2 P32T3........ . - PN2N = 

- P,N-lrl . ..... . . . . . ... PN,N-lTN =0

?rl + 2 + r3 + . · * + N ..........

In matrix form

If

E =N =l

1-p l

- P12

- P21 ·* - PNl

- PN2

- Pl,N-1

1 1

0

rN

-PN,N-1

1

11r

fr2

0

O

O

0

1

and we notice that the matrix premultiplying E is AT ,
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then AT = S

or = (A 1 )T S

aT ST A-1

The matrix IIT is thus equal to the last row of A- 1 so that tLj =a
NJ

for 1 j N.

In other words, we have shown that if we invert the matrix A, we have

solved both the sequential decision problem and the Markov process.

Furthermore, since

V = A - 1 Q

ST V = ST A- 1 Q

but

sT V =g and ST A-1 = IT

therefore

g=T Q

or
N

g = ~~iq i
i=l

The exact nature of g is now clear. The gain is equal to the sum

of the expected immediate returns weighted by the steady-state probabilities.

Let us refer to the last iteration of the taxi problem to illustrate

the above results. At this stage,

D = 2

and we seek to find the corresponding g and vi .



For the above policy

1/16 3/4

EPiil=1/16 7/8

1/8 3/4

15/16

A -1/16

-1/8

V= A-1 Q

-3/4

1/4

-3/4

1

1

1

16/17

-8/119

8/119

0

8/7

6/7

2.75

16/17 0 --- 16/17

A- 1 = -8/119 8/7 -128/19

8/11 9 6/7 9/119

-16/17 2.75 -1.17647

-128/119 15 = 12.65546

9/19 4 13.34454

so that v1 = 1.17647, v2 = 12.65546, v3 = 0 (by definition), and g = 13.34454

as we found in our previous calculations.

We also know that Er rr2 r3 = /119 6/7 9/119¶

or Ir1 = 0.0672, r 2 = 0.8571 and rr3 = 0.0757.

When the driver is following the optimal policy of always driving to a

stand, he will make 13.34 units per trip on the average and he will spend

about 86% of his time in town B, and about 7% of his time in each of towns

A and C. This information is useful in interpreting the nature of the

optimal policy.

Properties of the Policy Improvement Routine

When the policy improvement routine was first described, it was asserted

that the scheme for improving policies would lead to increases in gain.

This assertion will now be proved.

-30-

3/16

1/16

1/8
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The rule for policy improvement is: find k such that

q + pi jkjvj j Vj for k k

kL k/ k k
Let us denote qi by qi, ij by pij, qi by qi' Pij by Pij in order to

simplify notation. The prime always indicates the new policy, while lack

of a prime indicates the former policy.

q + Pijvj a i q Pijj

qi + Pivj qi + pijVj + i

where all i > 0.

In addition, for any quantity x, let x =x - x

i- qi + PijVj - pijj =

The equation for the vi's and g under the old policy were

g + vi = i + ij vj

The equation for the vi's and g' under the new policy are

g + vi = q + pijv

We seek to prove g g, or g* > 0.

Subtracting the above two equations,
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g' -g + vi - V --= q - q + - ijj

3 3

Substituting the equation relating q to ~i

g +i t7piJv + Pijj +PiVj -Pijj
3 0, J

g + i + PijVj

Notice the similarity between this equation and the equation for the

g/ and vj's under the new policy. If we define vectors

V =

*
V1

V2

VN-1
*

g

and r =

and furthermore set n = O; that is, use SN as the standard state, then

and

then

or

A/ V* = r

V* = A'-Tl

Since ST A- 1 = XT as shown earlier

sT V* = ST A-lr

g* = II'/T

N

g* = -r ji
i =1
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Now, if all Pij > O, then all 1ri > 0, and since all d-i 0, then

g* O0 Ifa r i 0O

and g* =0 If all i =

If an improvement can be made in any state using the PIR, then the

gain of the system must increase. The proof that the PIR finds the policy

with the highest gain attainable within the realm of the problem is found

in a later section.

To show that
N

g* = L•i 'i
1

let us return once more to the last iteration of the taxi problem where we

have already determined the ii. Let

qi + PijVj

Consider the case where the policy changed from to L2 and

examine the PIR calculation in which the change was discovered. Here

W1 = 9.27 corresponds to the old decision in state 1

W1= 12.14 corresponds to the new decision in state 1

1= - dl 
= 12.14 - 9.27 = 2.87

T2 and ~3 are both zero, since the decision in those states is

unchanged. Therefore

g*= r 1

= (0.0672)(2.87)

= 0.19



-34-

We know g = 13.34 while g = 13.15, so that g - g = 0.19 as expected.

The above development rests on the assumption that all states are

recurrent, but we know that transient states often occur. In order to

make our remarks apply to situations with transient states, let us con-

sider the following problem. Suppose SN is a recurrent state and an

independent chain so that PNj = 0 for j N and pNN = 1. Furthermore,

let there be no recurrent states among the remaining N-1 states of the

problem.

We know that

V = A-1 Q

where A assumes the special form

f 

1-Pll - P12' ' . .... - Pl,N-1 1 1
- P 21 I

I

0 0... ~ 1
I

PN11------ - 1 - PN-1,N-1 I 1

0 0 0 . . . . . . . 0 

Also since

S =

O

0

O

0

1

N

m m $
So A S'

or ST - ST A 1

A =

_-

m , I - . -
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which means that the last rows of A and A-1 ae identical.

Let A be partitioned as follows

B I P i

A = 

0 . . . 0 01 1

where the nature of B and F are evident by comparison with the A de-

fined above.

We know that the last row of A-1 is ST. From the relations for par-

titioned matrices

~~~A-1~~~~~ = IB- 1 I -B' F

00 . .. 0 1
The elements in the first N-1 rows of the last column are equal to

the negative sum of the first N-1 elements in each row. Also, g = qN as

expected.

What is the significance of B- 1 and BF? Let us consider the rela-

tions for the number of times the system enters each transient state before

it is absorbed by the recurrent state. Let ui equal the expected number

of times the system will enter Si before it enters SN.

The balancing relations for the ui are

Ul = PllUl + P21U2 + ...+ PNlUN + li o

U2 = P2Ul + P22U 2 + ...+ PN2UN + g2i o

u i Pliul + P2iU2 + ...+ PNiUN + 6ii o

uN = PlNUl + P2NU2 + ...+ PNNUN + Ni

where
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r 1 if i = i and Si is the state in which the system
=ii i a is started

= 0 otherwise

Since PNi = 0 for 1 i N-1, the first N-1 equations determine

U 1 , U2 , . . ., UN_1 uniquely. The determinant of this set of equations

will be non-singular if no recurrent states exist in this set, and this is

true by assumption. Rearranging the equations and writing them in matrix

form,

i-pl

- P12

- P21 - P31 * * * - PN-i,1i

- Pi,N-1 * - - PN-1,N-1,N ' _ 

Ul

U2

UN-1

=n

lio

6 2i°

Nli

BT U = L

U - (BT)1ze

UT = T B-1

If the system is started in state io, the ioth row of B- 1 will yield

the average number of times the system will occupy the states Si, i = 1, 2,

. ., N-1.

The element - a I= ai l is the expected number of moves in all

transient states before absorption.

V =A1 Q

N -1 -1 -1
Vio 0= a l qj - ai

N N
Vio = ujqj - g BU

_ _
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where the uj are calculated under the assumption that the system is

started in state io .

An interpretation for the vi is now possible. The vi represent the

sum of the expected number of times the system will enter each state j

times the immediate expected return in that state less the total number

of times any state other than SN will be entered times the gain for SN,

all given that the system started in state i. This is a reasonable inter-

pretation for the vi in this special case.

In particular, if g = 0 for the recurrent state and all qi 0 0 for

i c N, then
N-1

vi = ujqj 0 for all i.

Suppose that there is only one recurrent state SN and that a maximum

g has been found in that state. Then g* = O.

From the development for the all-states recurrent case,

+ v = + i jVJ

V* = (A ) r

sinceg = N =0 and v* = a i = 1, 2, . .. , N-1

We have shown above that al 0 for i, j c N-1. Since arj r 0,

v i > for i = 1, 2, . .. , N-l, if any k> 0.

The result is that in a situation where only SN is recurrent, the PIR

will maximize the vi's after it has maximized the g. This property is

important in applications and is essential to one of the examples presented

below.
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If the words "independent chain with gain gt are substituted for

"single recurrent state SN," the above development is still correct. The

policy improvement routine will not only maximize the g of the independent

chain all of whose states are recurrent; it will also maximize the value of

the transient states which run into that chain.

The Simultaneous Equation Approach - A Baseball Problem

At this point it would be interesting to explore various methods of

solving the discrete sequential decision problem. The policy improvement

routine is a simple computational problem compared to the value determina-

tion operation. In order to determine the gain and the values, it is

necessary to solve a set of simultaneous equations which may be quite large.

In this section the advantages and disadvantages of tackling the solution

of these equations by conventional methods will be investigated. In the

following section a different method which makes use of certain properties

of the basic sequential decision process will be described.

A 704 program for solving the problem we have been discussing has been

developed as an instrument of research. This program contains both the PIR

and VDO, and performs the VDO by solving a set of simultaneous equations

using the Gauss-Jordan reduction. Problems possessing up to 50 states and

with up to 50 alternatives in each state may be solved.

When this program was used to solve the taxicab problem, it of course

yielded the same solutions we obtained earlier, but with more significant

figures. The power of the technique can only be appreciated in a more

complex problem possessing several states. As an illustration of such a

problem, let us analyze the game of baseball using suitable simplifying

assumptions to make the problem manageable.
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Consider the half of an inning of a baseball game when one team is at

bat. This team is unusual because all its players are identical in athletic

ability and their play is unaffected by the tensions of the game. The

manager makes all decisions regarding the strategy of the team and his

alternatives are limited in number. He may tell the batter to hit or bunt,

tell a man on first to steal second, a man on second to steal third, or a

man on third to steal home. For each situation during the inning and for

each alternative there will be a probability of reaching each other situa-

tion that could exist and an associated reward expressed in runs. Let us

specify the probabilities of transition under each alternative as follows:

1. Manager tells player at bat to try for a hit

Player Player Player
Probability Batter on First on Second on Third

Outcome of Outcome Goes To Goes To Goes To Goes To

Single 0.15 1 2 3 H

Double 0.07 2 3 H H

Triple 0.05 3 H H H

Home run 0.03 H H H H

Base on balls 0.10 1 2 3 (if H (if
forced) forced)

Strike out 0.30 out 1 2 3

Fly out 0.10 out 1 2 H (if less
than 2 outs)

Ground out 0.10 out 2 3 H (if less

than 2 outs)

Double play 0.10 out The player nearest first is out

The interpretation of these outcomes is not described in detail. For

instance, if there are no men on base, then hitting into a double play

is counted simply as making an out.
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2. Manager tells player at bat to bunt

Outcome Probability Effect

Single .05 Runners advance one base

Sacrifice .60 Batter out; runners advance one base

Fielder's choice .20 Batter safe; runner nearest to making run is

out, other runners stay put unless forced

Strike or foul out .10 Batter out; runners do not advance

Double play .05 Batter and player nearest first are out

3. Manager tells player on first to steal second

4. Manager tells player on second to steal third

In either case, the attempt is successful with probability 0.4, the player's

position is unchanged with probability 0,2, and the player is out with

probability 0.4.

5. Manager tells player on third to steal home

The outcomes are the same as those above, but the corresponding probabilities

are 0.2, 0.1, and 0.7.

Baseball fans please note: No claim is made for the validity of either

assumptions or data.

The state of the system depends upon the number of outs and upon the

situation on the bases. We may designate the state of the system by a

four-digit number dld2d3d4, where d1 is the number of outs--O, 1, 2, or 3-

and the digits d2d3d4 are 1 or 0 corresponding to whether there is or is

not a player on bases 3, 2, and 1, respectively. Thus the state designa-

tion 2110 would identify the situation "2 outs; players on second and third,"

whereas 1111 would mean "l out; bases loaded." The states are also given
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a decimal number equal to 1 + 8d + (decimal number corresponding to binary

number d2 d3 d4). The state 0000 would be state 1 and the state 3000 would

be state 25, 2110 corresponds to 23, 1111 to 16. There are eight base

situations possible for each of the three out situations 0, 1, 2. There

is also the three out case 3--where the situation on base is irrelevant

and we may arbitrarily call 3--the state 3000. Therefore we have a 25-state

problem.

The number of alternatives in each state is not the same. State 1000

or 9 has no men on base so that none of the stealing alternatives are

applicable and only the hit or bunt options are present. State 0101 or

6 has four alternatives: hit, bunt, steal second, or steal home. State

3000 or 25 has only 1 alternative, and that alternative causes it to return

to itself with probability one and return zero. State 25 is a trapping

state; it is the only recurrent state in the system.

To fix ideas still more clearly, let us explicitly list the transition

probabilities pij and rewards rk for a typical state, say 0011 or 4. In

state 4 (i = ), three alternatives apply: hit, bunt, steal third. Only

non-zero pk are listed.

a. Hit k = 

1 r
Next state j p4j r j

0000 1 .03 3

0100 5 .05 2

0110 7 .07 1

0111 8 .25 0 q4 =.26

1011 12 .40 0

1110 15 .10 0

2010 19 .10 0
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b. Bunt k - 2

Next state j p r

0111 8 .05 0

1011 12 .25 0

lll 15 .60 0

2010 19 .10 0

c. Steal third k = 3

Next state j P 3j . r.

001 4 .20 0

3
0101 6 .40 0 q4

= 0

1001 10 .40 0

The highest expected immediate return in this state would be obtained

by following alternative 1, hit.

Table I, entitled "Summary of Baseball Problem Input," shows for each

state i the state description, the alternative open to the manager in

k the expected immediate return (in runs) from following
that state, and qit the expected immediate return (in runs) from following

alternative k in state i. The final column shows the policy that would

be obtained by maximizing expected immediate return in each state. This

policy is to bunt in states5, 6, 13, and 14, and to hit in all others.

States 5, 6, 13, and 14 may be described as those states with a player on

third, none on second, and with less than two outs.

The foregoing data was used as an input to the 704 program described

earlier. Since the program chooses an initial policy by maximizing expected

immediate return, the initial policy was the one mentioned above. The
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TABLE I

SUMMARY OF BASEBALL PROBLEM INPUT

Alternative Alternative Alternative Alternative Number Initial
1 2 3 . .4 of Alterna- Policy

k:= 1 k = 2 k 3 k = 4 tives in Di if vi
State Description State i set = 0
i 321 1. 2 3 4

qi qi qi qi

1 0 0 0 .03 HIT . 1 1
2 O0 0 1 .11 HIT 0 BUNT 0 STEAL 2 - 3 1
3 0 0 1 0 .18 HIT 0 BUNT 0 STEAL 3 31
4 0 O 1 1 .26 HIT 0 BUNT 0 STEAL 3 - 3 1
5 0 1 0 0 .53 HIT .65 BUNT .20 STEAL H - 3 2
6 0 1 O 1 .61 HIT .65 BUNT 0 STEAL 2 0 STEAL H 4 2
7 0 1 1 0 .68 HIT .65 BUNT .20 STEAL H - 3 1
8 0 1 1 1 .86 HIT .65 BUNT 1.20 STEAL H - 3 1
9 1 0 0 0 .03 HIT --- 1 1

10 1 0 0 1 .11 HIT 0 BUNT 0 STEAL 2 - 3 1
11 1 0 1 0 .18 HIT 0 BUNT 0 STEAL 3 - 3 1
12 1 0 1 1 .26 HIT 0 BUNT 0 STEAL 3 - 3 1
13 1 1 0 0 .53 HIT .65 BUNT 20 STEAL H - 3 2
14 1 1 0 1 .61 HIT .65 BUNT 0 STEAL 2 .20 STEAL H 4 2
15 1 1 1 0 .68 HIT .65 BUNT .20 STEAL H - 3 1
16 1 1 1 1 .86 HIT .65 BUNT .20 STEAL H - 3 1
17 2 0 0 0 .03 HIT -- 1 1
18 2 0 0 1 .11. HIT 0 BUNT 0 STEAL 2 - 3 1
19 2 (3 1 0 .18 HIT O BUNT O STEAL 3 - 3 1
20 2 0 1 1 .26 HIT 0 BUNT 0 STEAL 3 - 3 1
21 2 1 0 0 .33 HIT .05 BUNT .20 STEAL H - 3 1
22 2 1 0 1 .41 HIT .05 BUNT 0 STEAL 2 .20 STEAL H 4 1
23 2 1 1 0 .48 HIT .05 BUNT .20 STEAL H - 3 1
24 2 l 1 1 .66 HIT .05 BUNT .20 STEAL H - 3 1
25 3 -- 0 TRAPPED - - 1 1

"~. ' . -,·. i
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machine had to solve the equations only twice to reach a solution. Its

results are summarized in Table II.

The optimal policy is to hit in every state. The vi have the interpreta-

tion of being the expected number of runs that will be made if the game is

now in state i and it is played until three outs are incurred. Since a

team starts each inning in state 1, or "no outs, no men on," then vI may be

interpreted as the expected number of runs per inning under the given policy.

The initial policy yields 0.75034 for vl, whereas the optimal policy yields

0.81218. In other words, the team will earn about .06 more runs per inning

on the average if it uses the optimal policy rather than the policy which

maximizes immediate expected return.

Note that under both policies the gain was zero as expected since after

an infinite number of moves the system will be in state 25 and will always

make return zero. Note also that in spite of the fact that the gain could

not be increased, the policy improvement routine yielded values for the

optimal policy which are all greater than or equal to those for the initial

policy. This gratifying result was proved as the last proof in the section

entitled "Properties of the Policy Improvement Routine." That proof clearly

applies here because state 25 is a recurrent state, its gain is zero, and

all other states of the system are transient.

The values vi can be used in comparing the usefulness of states. For

example, under either policy the manager would rather be in a position with

two men out and bases loaded than be starting a new inning (compare v2 4 with

vl). However, he would rather start a new inning than have two men out and

men on second and third (compare v23 with v). Many other interesting com-

parisons can be made. Under the optimal policy, having no men out and a
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TABLE II

RESULTS OF USING SIMULTANEOUS EQUATION APPROACH ON BASEBALL PROBLEM

Iteration 1
g =O

State Description Decision Value, vi

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

.16

17

:18

19

20

21

22

23

24

25

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

2000

2001

2010

2011

2100

2101

2110

2111

3000

Hit

11

I

Bunt

it

Hit

II

It

'I

tiBunt

Hit

II

It

ttt1

IJ

11it

II

II

ff

0.75034

0.18284

1.18264

1.82094

1.18079

1.56329

2.00324

2.67094

0.43383

0.74878

0.78970

1.21278

0.88487

1.10228

1.46370

1.93278

0.17349

0.33979

0.39949

0.58979

. 50749

0.67979

0.73949

0.98979

O.

Iteration 2
g = =O

State Description Decision Value, vi

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

2000

2001

2010

2011

2100

2101

2110

2111

3000

Hit

it

It

11

tI

ttII

It

It

tt

It

tt

I!

It

11

ti

It

0.81218

1.24726

1.34743

1.88536

1.56106

2.06786

2.16803

2.73536

0.45604

0.77099

0.85999

1.23499

1.10629

1.*44499

1.53399

1.95499

0.17349

0.33979

0.39949

0.58979

0.50749

0.67979

0.73949

0.98979

nf

A W- ��
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player on first is just about as valuable a position as having one man out

and players on first and second (compare v2 with v1 2 ). It is interesting

to see how the comparisons made above compare with our intuitive notions

of the relative values of baseball positions.

Unfortunately, not all problems can be solved using a straightforward

simultaneous equation approach. For example, there may be systems with

two or more independent recurrent chains. Each chain would in general have

its own gain, and the simultaneous equations could not be solved because

their determinant would be singular. The extension of the simultaneous

equation method to this case is found in a later section.

Another kind of difficulty arises when the equations are poorly deter-

mined or when the number of equations is so large that accurate solutions

cannot be obtained. There are certain computational techniques that can

help when these situations are encountered.

Rather than try to deal with these difficulties as separate and distinct

problems, it would be useful to have a method that could handle the general

case without apology. The simulation approach described in the following

section is such a method.

The Simulation Approach

In order to describe the simulation technique, it will be helpful to

examine its basic building blocks individually. These blocks are the main

line simulation, branch line simulation, recurrent state search, and the

policy improvement routine.
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The Main Line Simulation

The function of the main line simulation is to determine the gain and

the value of the most frequently entered states in a recurrent chain. It

operates as follows. A standard state is which is assumed to be recurrent

is used as a base of operations. If the system is started in state is and

allowed to make transitions according to the probability distribution asso-

ciated with a given policy, then sooner or later the system will again

enter state is. The sequence of transitions from is to is is called a

"period" of the system. In the course of a period every time the system

enters a state i, a "run" is said to be started in state i. A run is

terminated at the end of a period when the system enters state is. The

number of moves, ni, and the total amount of return, Ti, in all runs from

state i are recorded. The number of runs from state i is given the

symbol m i. Let Tir and nir be the return and the number of moves in the

rth run from state i. The expected return from n moves starting from

state i is given by

Vn =vi + ng
n

the defining equation for Vi.

Similarly for i s ,

n
Vi = Vis + ng

Suppose it requires nir moves to reach is from i during the rth run.

Then Tir is an estimate of

V:- n i r = g i+ ng - lis + (n - nir)g

or Tir Lv i - vis + nirg



If v, is set = 0, arbitrarily, then
s

Tir - Vi + nirg

If this equation is summed from r = 1 to mi, then

Ti = miv i + nig

where the Ti, mi, and ni are as defined above. In order to improve the

estimation by Ti, the system is allowed to run for several periods and the

Ti, ni, and mi are summed for all periods before any calculations of g and

vi's are performed. mi, ni, and Ti will now be the number of runs from

state i, the number of moves in those runs, and the total return in those

runs, respectively, for an arbitrary number of periods. Since vi = 0,

then Tis = nisg, or g can be computed as the ratio of Ti to ni. Ti is

the total amount of return the system has made in all its moves, and ni is

the total number of moves that it has made.

For any i is,

Ti = mivi + nig

or

Ti - nig
Vi mi

The main line simulation has thus calculated estimates of g and the

vi's by observing the behavior of the system under the given policy. In

order to avoid estimating a vi for a state which has not been entered very

often, a minimum number of runs is set, such that if m i is below this mini-

mum a vi will not be calculated. If mi is above this minimum, v i is calcu-

lated, and the state i is said to be "established." The minimum itself

is called "the number of runs to fix establishment." After the main line

simulation has evaluated all established states, it goes to the branch line

simulation.
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It is possible that the state is which was assumed to be recurrent

is in fact not recurrent, so that the system will be unable to complete

a period. A parameter called "the number of moves in the transient state

test" is specified such that if the number of moves in a period exceeds

this parameter, the system does not try to complete its period but

instead goes to the recurrent state search.

Let us consider a typical period of a three-state system as an

example. A diagram of such a period might look as follows, if is = 1.

STATE

3 x 1 2 x

1 x
The numbers on the arrows represent the returrs from the transitions.

The return matrix for the system would look like

2

3 5 2

where dashes represent returns for transitions which do not occur in this

period. The method of computation of the g and vi's is shown in the

following table.



From the table,

T n 1
g = Tis = T 1

nis n,

T2 - n2g

m2

v3 = T2 - ng =

m3

v1 = 0 by definition21 =3
7

46 - 3x14
= 4/3

3

22 - 7x3 1/3

3

Of course, it would be unwise to calculate g and the vi's on the

basis of such a limited amount of data. Hundreds of periods may be neces-

sary before meaningful results can be obtained.

Since we are treating the general case in which several independent

recurrent chains may exist, it will prove advantageous to attach a gain,

gi, to each state of the system. All states which are established in a

-50-

No. of runs No. of Total
from state i moves in Total return
= number of No. of all runs return in all
times state Run Move moves from Return series from runs fro

STATE i is entered No. Sequence in run state i for run run state i

i mi - n i , Ti

1 1 1 12232331 7 7 2 +1+4+5+4+2+3 21 21

2 3 1 2232331 6 14 1+4+5+4+2+3 19 46

2 232331 5 4+5+4+2+3 18

3 2331 3 4+2+3 9

3 3 1 32331 4 7 5+4+2+3 14 22

2 331 2 2+3 5

3 31 1 3 3
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single main line simulation will have the same gi. Since all states will

not in general be established in a single main line simulation, some

method of evaluating the unestablished states is necessary. Such a

method is afforded by the branch line simulation.

The Branch Line Simulation

Consider the general equation for the expected return in p moves

starting from the state i

VP = v i + pg

Suppose that after n moves, n p, the system reaches a state ie

whose value has been established. If r = p - n,

VP = Vi
e

but Vi = + rg
ie ie

Substituting
vi + (r + n)g Vi + vie + rg

or vi v + v -ng

Let the system be placed in an unestablished state i and allowed

to run until an established state is reached, Such an event will be

called a run from state i. A record is kept of the total amount of

return from transitions and to this is added the value of the established

state; call the record T. Then, in a single run of n moves, an esti-

mate of vi will be

v i = T - ng

where g is the gain of the established state, gi e If m runs are made
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to insure statistical regularity, and if the T and n counters are made

cumulative, then

Vi = T - n and gi = gi

Thus we have a method for finding the values of the unestablished

states in terms of the values of the established states. Because T con-

tains returns as well as vi s, the values of the states established using

the branch line simulation will in general be known more accurately than

the values of the established states into which they run. The branch line

simulation is a powerful tool for evaluation of transient states or for

evaluating recurrent states which have a low a priori probability. For

consistency, the branch line simulation makes a number of runs equal to

the "number of runs to fix establishment."

In normal operation, the branch line simulation will proceed sequen-

tially through all states, evaluating those that have not been established

in the main line isimulation. Once all states are established, it prints

out all gains and values and enters the policy improvement routine. It

may occur that in trying to evaluate a certain state the branch line simu-

lation will find itself in a recurrent chain that has not previously been

evaluated in a main line simulation. In order to have it perform properly

in this situation, there is a counter which counts the number of moves

the system makes in a single run. If this counter exceeds a constant

called "the number of moves in the transient state test," the branch line

simulation goes to the recurrent state search.

Because of the presence of independent chains, it is possible that a

state to be evaluated will have runs which end in states possessing differ-

ent g values. In this case the branch line simulation will assign the
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state a g which is the average of all gains reached with weightings pro-

portional to the number of runs in which each gie is attained. The value

is calculated from the equation given above, but using this average g.

The Recurrent State Search

The recurrent state search is a simple block which allows the system

to make a fixed number of moves from its present position. The number is

called, appropriately enough, "the number of moves in the recurrent state

search." At the conclusion of these moves, this routine chooses the most

frequently entered state, makes it the new standard state, and exits to

the main line simulation. The sole function of this routine is to find

a recurrent state for use as the standard state of the main line simula-

tion.

The Policy Improvement Routine

The policy improvement routine is almost exactly like that described

before. Its one modification is prompted by the fact that some states may

have transitions to chains with different gains. Since an increase in gi

always overrides an increase in vi, the decision in each state should be

made on the basis of gain, if possible. However, if all alternatives

yield transitions to states having the same gain, then the decision must

be made according to value, as before. The policy improvement routine

implements these remarks.

The final function of the policy improvement routine is to ask whether

the new policy is equal to the old one. If this is the case, the program

stops; otherwise, it exits to the main line simulation. The flow chart

of the entire simulation is given in Figure 2. In order to see the system
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in action as a whole, let us examine the way it would solve the general

two-chain problem.

A and B are two independent recurrent chains with different g values.

States a and b are two members of A, but b occurs very infrequently

compared to a. Corresponding remarks apply to states c and d of

chain B. State e is a transient state running into A; f is a transient

state running into B. State h is a "split" transient state which may

enter either A or B.

Suppose a is picked as the standard state. Then the states of A

will be evaluated in the main line simulation, with the possible exception

of states like b. States b and e would be evaluated in the branch

line simulation. However, if a branch line simulation is tried on f, no

state of known value will be reached and the recurrent state search will

be entered. It will pick a recurrent state in B, say c, as the standard

state and the main line simulation will be entered once more, f will be

established and so will h. State d could be established in either the

main line or the branch line.

It is possible to follow the operation of the simulation method in a

situation by means of the flow chart. For example, suppose e is initially

picked as the standard state. Then the main line simulation will enter the

recurrent state search and the main line simulation will be entered again
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using some recurrent state in A like a as the standard state. The simu-

lation approach is effective in unraveling the complexities of the general

problem.

A 704 program has been developed to implement the logic outlined above.

It is capable of solving problems with the same numbers of states and

alternatives as the simultaneous equation program, but it can work on

arbitrarily complicated chain interconnections.

The taxicab problem solved earlier was solved using the simulation

program. The results were as follows:

Exact Simulation

Iteration Solution Run 1 Run 2 Run 3

1 v1 1.33333 1.24 1.59 1.30

V2 7.46667 7.37 7.65 7.46

g 9.20000 9.18 9.19 9.21

2 vI -3.87879 -5.01 -4.79 -4.61

V2 12.84849 13.18 12.91 13.23

g 13.15152 13.08 13.26 13.58

3 vI -1.17647 -1.24 -1.48 -1.19

V2 12.65547 12.70 12.50 12.98

g 13.34454 13.45 13.31 13.55

V3 is set equal to zero arbitrarily. The simulation program made the

same policy changes as the simultaneous equation program in every run. The

number of periods in the main line simulation and the number of runs to

fix establishment were 1000. The accuracy of results is within a few per-
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cent. The subsidiary quantities Ti, ni, and mi observed in the runs were

compared with exact values; in this case agreement was within one percent.

In order to test some of the operating features of the simulation

program, it was used on the baseball data. The standard state was given

as state 1; a state which is far from being recurrent. The simulation

program discovered that state 25 is indeed the only recurrent state and

made state 25 the standard state. It then proceeded to use the branch line

simulation to evaluate all other states. The simulation approach produced

the same solution as the simultaneous equation approach to within two

significant figures.

The simulation technique should prove to be a powerful computational

tool; the ability to handle complicated interconnections makes it extremely

flexible. By varying the parameters of the program, it is possible to

achieve a wide range of behavior. For instance, relatively short runs

could be made and the values roughly determined for a fast improvement of

the policy. When the policy was close to optimal, longer runs could be

made to pin down the values and gains exactly, or the simultaneous equation

approach could be used for the final stage since the structure of the

problem would be known. One of the attractive features of the simulation

approach is that the states which are entered most frequently are those

whose values are most accurate; it gives the best answers to the most

important questions.



Concerning the Gain, g

In an earlier section the gain, g, was introduced in a heuristic
N

fashion, and then given substance by the result that g = E riqi; namely
i=l

that the gain is the sum of the expected immediate returns weighted by the

absolute state probabilities. Later, in discussing the simulation approach,

a subscript i is attached to each g and it is stated that all states

belonging to one chain have the same gain, whereas different chains have

different gains. At this point, it would seem wise to amplify the previous

remarks by examining the process on a more fundamental level. In particular,

the existence of the limit

n

gin --- o n

will be investigated, and the properties of the limits gi will be determined.

Consider the basic recurrence relation

V =11 N
= qi + PijV j ,

Suppose the final value distribution V is given. Then

V = i = qi + pijj

and N= qi 

+ Pij 

or 2 N

Vi = qi + IPim + PmjVj

N N

= qi += Pimqm + PimPmjVj

where appropriate changes in indices have been made. According to our matrix



definitions for P, Q, and

vn =

Vn
1

Vn2

Vn
N

V2 = Q + pQ + p2V0

V3 = Q + pQ + 2Q + p3 vO

In general,

Vn = Q + pQ + .. + pn-lQ + pnV

Vn = + p + . . + pn- Q + pnVo

vn = + + pn- + Q + pnIo Q + Q

vn 1 1 pn QVo - + n Qml +n-+
n n m=l n n

vn lrn lim 1Pm Q
n n m=l since the last two

terms on the right vanish as n o. The limit on the right-hand side is

a Ces4ro limit; it exists for any stochastic matrix without restriction.

Let this limiting N by N stochastic matrix be given the symbol F.

lim 1 -pm
n vp <n m=l

Then

lim Vn - FQ
n-.-o n

or N
lim 1 vn f

n oon 

The matrix F is the limit transition probability matrix and has the proper-
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lim
n C o o



ties F = FP = PF and F = F If a matrix G = is defined, where

91

g2

0

G =

N
then G = FQ, gi =2 fijqi. By referring to the properties of the F matrix

developed in Doob,3 it is possible to infer the properties of

the G matrix, or in other words, the properties of the gains of the system.

The limit matrix F has all rows equal if and only if there is only

one recurrent chain in the system. In this case all elements of the g

matrix are equal and there exists a unique gain for the system. The value
N

of g is equal to fijqj for any i, where the fij now have an inter-
j=1 N

pretation as the absolute state probabilities rj and g = 7 1jqj as

j=1
before. Furthermore, if there are no transient states, then all rj > 0.

If there are two or more recurrent chains in the system, then the rows

of the F matrix corresponding to the states of a single chain A will all

be equal so that all gi for these states will be equal to, say, gA.

Similarly the rows corresponding to states of chain B will have a gB, etc.

If a transient state always enters the same recurrent chain, then its row

of F will be equal to the F rows corresponding to the chain, and it will

share the gain of that chain. If there are split transient states which

enter two or more chains, the F rows corresponding to the split transient

states will be linear combinations of the typical F rows for each recurrent

chain. Consequently, the gain for such states will be a linear combination

_ _



of the gains of the chains into which they run. For example, if state 4

is a split transient state which may enter chain A with probability 1/3

and chain B with probability 2/3, then g 4 = 1/3 gA + 2/3 gB.

The limit matrix F exists even in the case where there are periodic

chains in the system. In this case the division by n as the limit is

taken performs essentially a time average, with the result that the rows

of F corresponding to such chains represent the fraction of the time the

system spends in each of the respective states of such a chain. This

interpretation is quite useful for our purposes, since it reveals the

nature of the gain for periodic chains.

Before leaving this section, it is worth while to mention two other

properties of the matrix F. First, if Pij = Pji so that P is symmetric,

then F is symmetric, and there can be no periodic chains or transient

states. Furthermore, if there are NA states in chain A, then 7ri N1

for all states i which are in chain A. In particular, if there is only

one recurrent chain, rTi = for all i. Second, if P is not necessarily
N N

symmetric, but is a doubly stochastic matrix so that i pi = 1, then the

ri follow the same rules as for symmetric P matrices.

Now that the exact nature of the gi are understood, let us return to

the basic recurrence equation with the more rigorous limiting expression

for Vn for large n, namely

Vi = vi + ng i

1= qi + Pijj
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N

vi + (n + )gi = qi + Pijj + ngj

N

Vi + ngi + gi = qi + PijVj + n Pijgj
j=l j=l

Since this equation must hold for all sufficiently large n, two sets of

equations may be written:

N

gi = ,Pijgj i = 1 2, . ., N

vi + gi = qi + pijv i = , 2, N 
j=1

There now exist 2N equations in the 2N unknowns vi and gi. Note that the

second set of equations is identical with the equations for transient'

values which were derived earlier with the exception that there is now a

gain associated with each state. The first N equations in the gi's are

especially interesting because they are far from independent. They may be

written in the homogeneous form

N

i ii - PijJj -= 0
j =1

If the rank of the coefficient matrix is R, then the solution will

involve N - R undetermined constants. R can never be equal to N because

the matrix ij - Pij is always singular. If there is only one recurrent

chain, R = N - 1, and there is only one undetermined constant, say g, which

is the gain of the entire system. In this case all gi = g In general,

if there are k independent chains in the system, then R = N - k and there

will be k different gi's. The transient states will have the gain of

the chain into which they run, whereas split transient states will have a

A:Z- :
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gain which is a linear combination of the gains of the relevant chains.

By way of illustration, let us consider our old friend, the final

transition matrix of the taxicab problem.

1/16 3/4 3/16 15/16 gl-3/4g 2-3/16g 3 =

[ij 1/16 7/8 1/16 which yields the equations -1/1 6g1+1/8g 2-1/16g 3 =

1/8 3/4 1/s -1/8g -3/4g2 +7/8g3 =

The rank of the coefficient matrix is equal to 2 so that the solution of the

equations is gl = g2 = g3 , or all gi can be replaced by g and there is

only one recurrent chain.

As a second example consider the following matrix

1 0 0 0

0 1 0 0
Pij] = where states 1 and 2 are each independent recurrei

0 1/2 1/2 0

1/3 2/3 0 0

chains, state 3 is a transient state which enters state 2, and state 4 is a

split transient state which may enter either chain. In this case the

coefficient matrix of the gi equations has rank 2 and the solutions are

g3 = g2 ; g4 = 1/3gl + 2/3g 2 . The gains gl and g2 are independent and the

gains for the two types of transient states are related to them as described

above.

If there are k independent chains in the system, then there will be

k independent gi's to be determined from the transient value equations.

With N vi's and k gi's there is a total of N + k unknowns to be determined

from N equations. The modification of our earlier procedure now required

is that we may set to zero arbitrarily the value of one state in each of

the independent chains. The equations may then be solved for the remaining

N - k values and the k gains.

0

0

0

nt
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The conclusions drawn from examination of the gi equations are exactly

the same as those obtained from the properties of the F matrix. The added

advantage of the equation approach is that it offers a method of solution

for gains and values even in the case of independent chains and split

transient states.

Concerning the Transient Values, vi

In the initial exposition it was stated that for large n the total

expected return in n moves starting from state i, V, could be expressed

as the sum of two quantities: Vi = vi + ng. The vi, or transient values,

are independent of n but dependent on i, whereas the ng term depends

only on n and not on i. In the light of the previous section, this rela-

tion should be modified to Vi = v i + ngi, where all gi are the same if there

is only one recurrent chain in the system. It has already been shown above

lim Vi
that nIo n = g In order to place the defining equation for tran-

sient values on really firm ground, it remains only to show the existence

of the limit:
limv

n-c (Vi ngi) = vi

as follows.

Suppose k is the kth left-sided characteristic vector of the P matrix

and that it corresponds to the characteristic value ?Ak; XkP = kXk.

Further, assume that all characteristic values are distinct so that the

characteristic vectors are independent. It is a readily verified property

of a stochastic matrix that at least one characteristic value must equal one,

and that no characteristic value may be larger than one in magnitude.
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Consider some arbitrary initial state vector IU° which represents the

probability that the system initially occupies each of its states. It is

possible to express I ° in the form

I ° = E. CkXk
k

where the ck are appropriately chosen constants. From the properties of

the transition matrix P,

1 o

2 2= lp = op2

-, n+l = ],opn

where ,I n represents the probability that the system will occupy each of

its states on the nth move. Also,

In+l = opn = k ckX kPn
k

Since

XkP = kXk

XkP2 = kXkP = A k

XkPn = Xk

an+l-ln

lim ,n
n-p-- oa k

lim n
n- coo

=1 cCkX kXk
k

= if k 1

= II CkXk
K1

where K1 are those indices corresponding to characteristic values which

equal one. This incidentally proves the existence of and defines the abso-

Since
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lute state probabilities of the system. We are more interested, however,

in the existence of transient values than in the state probabilities. If

rn is the expected return on the nth move if the system starts with a

state probability distribution T10, rn+l = IEn+lQ = E R+lqi.

rn al = A C k Akiqi

where xki is the ith component of characteristic vector Xk.

rn+l = ck k iExkiqi

n

= T ck A krk

where rk is the expected reward corresponding to characteristic vector Xk;

rk = xkiq i = XkQ.
1

As mentioned above, rn is the expected return on the nt h move; however,

we are really seeking Vn , the total expected return in n moves if the

system has an initial state probability distribution I°--we may call Vn

the value of starting with I1° .

Vn - = r vck k A rk

- ckrk k -

n ckrk + ckrk - k

(Ak=l) ( \k ' 1)
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As noted, K1 are those indices k for which 2\k = 1, whereas K2 are

those indices for which fI'kl C 1. We have now obtained the expected return

in a finite number of moves n starting from IT° .

Since

n---A ok = if k < 1

lira vn nr ~2lim Vn n :ckrk + Ckrk 1- k

The existence and nature of the limit for which we have been searching

has now been shown. If the system is started according to IIO, the total

expected return Vn will have the form

Vn =ng + v

for large n. The gain of IO is g and its transient value is v. These

quantities are defined as

g = ckr k V = ckrk 1
K1- 1 - 3\k

(Wk=l) (Jk c 1)
N

In terms of the gains of each of the N states, m igi = g, and in

N
terms of the transient values, -rrivi = v. We shall usually use these

i=l
relations when the system is started in a particular state i rather than

according to son3 distribution of state probabilities. In this case, 1 0

will have a 1 in the element corresponding to the ith state and zeros else-

where. In this case v i = v, gi = g, and it is appropriate to write

Vi = ngi + Vi

for large n.
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As an illustration of this proof for a particular case, let us return

once more to the final stage of the taxicab problem where:

1/16 3/4 3/16

P = [pi; = 1/16 7/8 1/16

1/8 3/4 1/8 

11/4

Q= [qi 1 5

4f~e'

The characteristic values found by setting the determinant of P - \

equal to zero are 1, 1/8 and -1/16, or

A 2 = 1/8 3 -1/16

Solving the equation XkP = k P yields corresponding characteristic vectors

9 X2= i -3 2 X3 = 1

Also, since
rk = XkQ

r1 = 1588

To find v and gl, set Et = [

r2 = -137/4

0 0]. Then

Io° = ClX1 + c2X2 + c3X3

C2 = 2/7

gl
= C krk = Clrl

1

( k= 1)

V1 = Ckrk 1 \k - c2r2 1 1 + 3r3
2( k 3

(l1k i I 1)

Therefore

gl = 1588/119 = 13.34 v1 =-11.95

To find v2 and g2 , set IIO = [0 1 0]

Ir ° = c1X1 + c2 X2 + c3 x3

X1 = 8 102 0 -1

Solving

r3 = -5/4

cI = 1/119 c 3 = 77/119
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Solving,

c1 = 1/119 c2 = -1/21 c3 -1/51

1 + c 1
g2 = clrI V2 = c2r2 1 + 3r3 1 _ 3

2 3

g2 = 13.34 v2 = 1.89

To find v3 and g3, set II° = O 1] . Then

c1 = 1/119 c2 = 34/119 c3 = -42/119

g3 = Clrl 3 =c 2 2 + c3 r3 1
2 3 - q3

g3 = 13.34 V3 = -10.76

In summary,

g = gl = g2 = g3 = 13.34

vI = -11.95

V2 = 1.89

V3 = -10.76

The gain agrees with our earlier results and so do the values if v3

is subtracted from each of them to make v3 = 0. However, the fact that we

obtained transient values without making some arbitrary choice of a standard

state should give us pause for reflection. The above development which

proved the existence of the vi makes no mention of any arbitrariness in

their numerical values. As a matter of fact, the transient values are

explicitly defined and are definitely not arbitrary. Yet we have been

saying that one transient value in each chain may be chosen arbitrarily.

How is this inconsistency explained? The answer is that the transient

values are relative (one value in each chain may be picked arbitrarily)

as far as the value equations
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N

vi + gi = qi + PijVj

are concerned, but the transient values are absolute as far as the limiting

form

Vn
i = Vi + ngi

is concerned. Since the policy improvement routine depends only on the

differences in transient values, the use of relative transient values is

permissible in the iteration cycle, and there is no need to find absolute

transient values. If the absolute transient values v are desired for some

reason and the relative transient values v are known, only a simple opera-

tion is required.
N

First, we shall show that 1-rivi = 0, where rFi = IT, are the

absolute state probabilities of the system. Suppose the system is started

with a state probability distribution IP = 11; then

lim n x
n( - n c ) kxk

(3\k = 1)

as shown earlier. Therefore all ck for which < ki < 1 must be zero, the

absolute transient value of the distribution II must be zero and hence

N

frivi =0 
i=l-

Another way in which this result may be seen is the following. Suppose

a large number of runs of length n were made using each state as a start-

ing state for a fraction of the runs equal to its absolute state probability.

Then, in a sense, the system is always in the steady state and a return g

is expected per move. Thus
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N
E iTVn = ng
i=l

but
V = va. + ng

and
N N N

1r iVi = ~rivi + f ing

N N

E . = va + ng
i=1 ii 

N a
and thus " rrivi = 0 as before. The above arguments are modified in an

obvious way if there is more than one recurrent chain.

If the Vi are known, finding the vi is quite simple. Suppose

N

vr = b, a constant. Then va = vr - b for all i assures that

N ria = O. It is worth repeating that it is not necessary to know

the absolute values in order to solve the sequential decision problem.

In the preceding example I = clX1 = [/119 102/119 1/11 are

the steady state probabilities, and v = -11.95, v2 = 1.89, v = -10.76

a
are the values. rrivi = 0 as expected.

Multiple Characteristic Values and Certain Other Cases

The foregoing proof concerning the existence of the vi rests on the

assumption that all characteristic values of the P matrix are distinct.

We shall now show the extension of the proof to the situation in which this

is not the case. Suppose that two characteristic values of the P matrix

are identical. In this case the characteristic vectors obtained in a

straightforward way will not in general be sufficient to express an
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arbitrary IT° in the form ckXk. There now exists the problem of find-
k

ing the missing characteristic vector. It is shown by Friedman 4 that such

a characteristic vector may be found by solving X(P - I)2 = 0 using the

repeated A. If Xm is the characteristic vector obtained in a straight-

forward manner from Xm(P - mI) = 0 and 1\m = -\n, then Xn(P - nI)2 = 0

yields Xn, and Xn(P - \ nI) # O. It is convenient to specify Xn(P - A nI) =

Xm so that XnP = \ nXn + Xm . Xn is an unusual kind of characteristic vector

called a "generalized characteristic vector of rank 2." An example will

indicate how our proof is modified in cases where such generalized charac-

teristic values arise. Consider the following system.

1 0 0 1

P [pij = 0 1/2 1/2 Q

1/2 0 1/2 3

By setting the determinant of P - A I equal to zero, the characteristic

values are found to be l = l, 2 ' A 3 = 1/2. The characteristic vectors

obtained from XkP = kXk are

Xi = ° 0 X2 = ° -I]

Also, from rk = XkQ

rl = 1 r2 = -2

Let us first find v and gl, so that T1 = 0 . In this case

if =X1 so that cl =1, c2 = c3 = 0

g = ckrk v = ckrk (sum of 2k series)
k

(Ak =
1 ) ( 17 k 1 )

g = Clrl = 1 V1 = 0



-73-

Next we try to find v2 and g2 with II ° = 1 , and now we are in

trouble since IO° cannot be expressed as a linear combination of X1 and X2.

It is time to find X3 from X3(P - 1/2 I)2 = 0.

1/4 0 o

(P - 1/2 I)2 = 1/4 0 0

1/4 0 o

and X3 may be taken as K -2 ; consequently r3 = 2.

Now I° 0 = X1 -X 2 - 1/2 X3 so that cl = 1, 2 = -1, c3 = -1/2. At

this point a return to the original proof is necessary in order to intro-

duce the necessary modifications.

II n+l = II oPn =Z ckXkPn
k

Now xpn = X n

and

x2Pn = 2nx

but since

X3 P = \3 X3 + X2

X3pn = -AX3 + n-l1X2

In+l = ClXl7% + c2X2 2 + c3X373 + c3X2 n7 1-l
n+l -A2n-lX -A ;X

ITn = c17 X1 + cn l2 + 3 n7 3 X2 + 3

similarly

rn+l cl l r l + c27 r2 + c3n'-lr 2 + c3 r3

n n n
Vn = clrl J-l + r + c3r2 ~ (j-l) j j-2 +

22 j=1 j=l

n j-1

c3r3 9_~ 3
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As n.oc

n1 1 c2r2l\ 2 + +3r2 (j-1) - + c3 r3 I7\
=1 j=1

= nclrl + r 2 C - 2 3 3 13(1 -323 )
so that g = clr 1

v c2r2 + + c3r2 where' O = 3\2 3
v=- o (1 -\ )2

The modification in the proof which occurs in the case of multiple

roots is now clear. Such roots cause terms of the form n \n, n n, etc.,

in the infinite sums for characteristic values with magnitude less than 1.

Such sums always converge so that the limit exists as before. The only

difference is that the limit is more difficult to compute.

Concluding the example, for the case TI = O 1 where we found

1 = 1, c2 = -1, c3 = -1/2; rl = 1, r2 = -2, r3 = 2; and /\ 0 = 1/2,

g2 =1

V2 =6

Finally, considering T0 = [ 0 l , then cl = 1, c2 = -1, c3 = 0, and

g3 = 1

v3 4

In summary, g = gl = g2 = g3 = 1; v = 0, v2 = 6, v3 = . These are

exactly the same results obtained if the value determination operation for

the process is performed with v = 0.

It might appear that multiple roots at N = 1 might cause trouble.

A simple example will remove any mystery surrounding this case.
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Consider

1/2 1/4 1/4 1

0 0 1 

The characteristic values of P areX 1 = 12 = 1, A3 = 1/2. There are

two characteristic values corresponding to \ = 1 found in the straight-

forward way to be XI = 1 i and X2 = 6 0 ; similarly X3 = -1 -1.

Consequently r = 2, r2 = 3, r3 = -3.

g = clrl + c2r2

V = ,cr3,

If ° o= O 0 cl =1/2 c2 =1/2 c3 1/2

and gl = 2.5

V1 = -3

If Tr = 0 1 Cl =1 c2 =0 C3 =0

and g2
= 2

V 2 = 0

If TT = o 1= cl 0 c2= 1 C3 = 

and g3 = 3

v3 = 0

These results are identical with those obtained from the value deter-

mination operation. Multiple roots at \ = 1 do not cause trouble because

they generate a complete set of characteristic vectors. Incidentally, the

number of independent chains is equal to the number of characteristic values

which equal 1.
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Another case which may cause concern is that in which the character-

istic values are complex. Here again, an example will show the interpreta-

tion of this case.

Consider

P = O O 1 Q 2 P= 0 0 Q=

The characteristic values of P are 1 = 1, 2 = -1/2 + 
2

ok=3 =-1/2- j 1

Plot of Characteristic Values

- 1/2 + j 

- 1/2 - j 
2

Imaginary

Real
1

The transition matrix is periodic with period 3. Transitions of the

system may be viewed as rotations of the characteristic value complex vec-

tors. The characteristic vectors are

X3 = 1/2 + 2 1/2 j 2

Also
rl =6 r2 = - 3/2 + j 2 r3 =- 3/2 - j 22 3 2~~~
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·n = Cr k 7 kj-

Vn = ncl rl + c2 r2 ' 2
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+ c3r3 3

For any integer t,

if n = 3t

n - 3t + 1

n = 3t + 2

n = 3t

n = 3t + 1

n = 3t + 2

= 0

= 1

= 1/2 + j 22

n

3

n1 -1

n \ -

=0

= 1

= 1/2 - j;

Vn = nclrl

Vn = nclrl + c2r2 + c3r3

Vn = nclr + c2r2 1/2+ + c3r3 1/2- j2
2 2

As n- .0,, Vn = ng + v(n), and the limit v depends periodically on n

although g is always equal to clr1 . However, let us proceed retaining

distinct v(n).

If °= i o o ] C1 = c2 = c3 = 1/3 g = clrl = 2

v(n) = 0

n = 3t + 1

n = 3t + 2

v(n) = -1

v(n) = -1

It now seems reasonable to define vl as the time average of v(n). If

this is done, v1 = -2/3.

If II = Co 1 o]

n = 3t

n = 3t + 1

n = 3t + 2

c3 = -1/6(1 +r3 )

g = clrl = 2

v(n) = 0

v(n) = 

v(n) = 1

Again defining v2 as the time average of v(n), v2 = 1/3.

If

If n = 3t

If

~-l

^/\ j-

cl 1/3 C2 = 1/6( - r3j)



If i = o 0 ] cl = 1/3 c2 =-1/6(1 + j) c3=- /6(1 - j)

g = clrl = 2

If n = 3t v(n) = 0

n = 3t + 1 v(n) = 1

n = 3t + 2 v(n) = 0

so that v3 = 1/3 by time averaging.

In summary, g = 2 v 1 = - 2/3

V2 = 1/3

V3 = 1/3

All the vi are to be interpreted as time averages. If we agree on this

interpretation, the value determination operation may be used without apology

to find the gain and values. Of course, the values obtained in that way

check with those above. Periodic chains introduce no essential difficulty in

the iteration cycle; all that is required is circumspection in interpretation.

A Flow Graph Interpretation of System Operation

Markov processes have been analyzed using systems concepts and flow

graphs by R. W. Sittler.5 This approach is essentially one which uses gener-

ating functions for the time sequences of probabilities. The main advantage

of the method is that it permits a high degree of visualization. In the

following we shall extend Sittler's work to include the analysis of Markov

processes with associated returns.

According to Sittler, the Markov process defined by

P1 1 P1 2 P13

Fij= P21 P22 P23

P31 P32 P33
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may be represented in the frequency or transform domain by the flow graph:

n 1 z D~AZ44-

The z appended to every branch represents the unit delay that occurs

at each transition. The general transform relation is F(z) =f(n)zn,
n=o

where f(n) is the probability of an event at a time equal to n.

The probability that the system will occupy each of the states after

n moves, Iin , is equal to II° multiplied by the nth power of the transition

matrix P.

IIn = nLtopn

Let -

1I(z) =Z rinzn; P(z) = pnzn.
n=o n=o

IL(z) is a column matrix of size N, and P(z) is an N by N square matrix.

If both sides of the equation for I n are transformed,

IL (z) = IL°P(z)

P(z) may be evaluated directly by multiplying its defining equation

by the matrix (I - zP).

-r - I 
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p(z) = pnzn
n=o

(I - zP)P(z) = (I - zP) Z pnzn
n=o

= pnzn - pln+l
n=o n=o

=I
or

P(z) = (I- zP)-

The solution of the Markov process is then given in transform form

by

I(z) = O(I - zp) - l

If (I - zP) 1 is given the symbol H(z), then

IT(z) = IIO°H(z)

H(z) may be interpreted as the matrix of node-to-node transfer func-

tions of the process. In simple cases it is feasible to find the node

transfer functions by flow graph reduction, and to compose the H(z) matrix

in this way. may be interpreted as the excitation applied to each node

of the system. If l has a one as its ith element and zeros elsewhere,

the ith row of H(z) may be interpreted as the transforms of the output at

each node of the graph for a unit sample input at node i as excitation.

There are many interesting and novel ways5 in which H(z) may be found

from the flow graph. These need not concern us here because we are inter-

ested only in the nature of H(z). As Sittler shows, H(z) must have at

least one pole on the unit circle in the z-plane and no poles within the

unit circle. These statements are equivalent to those made regarding the

characteristic values of stochastic matrices. The poles on the unit circle

correspond to the absolute state probabilities, whereas those outside the unit

circle correspond to the transients in state probabilities which ultimately die



away. Thus H(z) may be divided into two parts by partial fraction expansion.

H(z) = S(z) + T(z)

where S(z) is that part of H(z) with poles on the unit circle (steady-state

component) and T(z) is that part with poles outside the unit circle (transient

component). The ith row of S(O) represents the absolute state probabilities

of the system if it is started in state i.

From our previous development

rn = InQ

vn =Irj ='TI 3 Q
n n

FrherV n -lim
li-+where n-~o is taken to mean "for large n."

?F lim n,
n---P = z-al II(z) = z 1H--* z--=l S(z) + zLl T(z)

lia S(z) does not exist for infinite n because the absolute probabil-

'iv ities do not die away. However for any finite n, vle S(z) can be replaced

bynS(O). Further, z 1 T(z) always exists.
, n

lim. Itm By II°nS(0) + IT(1)

< ~For large n,

Vn nS(O)Q + aT°T(1)Q

The gain of the initial distribution IT° is thus 11°S(O)Q, whereas its

value is LT°T(1)Q. We may define column vectors G = S(O)Q and V = T(1)Q,

so that

Vn = nLoG + E°V
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We have then that the gain and absolute transient value of the ith

state are given by the ith elements of G and V, respectively. This con-

cludes an alternate proof concerning the existence and definition of the

absolute values vi. The above method of calculation of g and vi is no

more practical than the characteristic vector method (to which it is entirely

equivalent) because of the amount of computation involved. In a sense it

provides too much information because it prescribes just how the transient

values approach their limit rather than directly finding the limit itself.

It is for this reason that the simultaneous equation method which yields

relative values is the most convenient for computation of the sequential

decision problem.

It is interesting to apply the transform method to some typical prob-

lems to see just how the computational procedure is carried out. Consider

the following simple problem, which is the earlier coin-tossing problem

using the optimal strategy: toss coin 1 if last toss produced heads; toss

coin 2 if it produced tails.

[3/4 1/i ] 7/4

P = /3 2/3 =0]

The associated flow graph is

3/4 z 2/3 z
1/4 z



(I - Pz) =
(1 - 3/4z) - /4z

- 1/3z (1 - 2/3z)

(I - Pz)1

1 - 2/3z
( -z) (1-5/12z)

l-z) (1-5/12z)

47 +.,/7
1-z 1-5/12z

4/7 -7
•_z 1-5/12z

H(z) = (I- Pz)- 1

-4/7 S

4/7 3/7-z
-z 1-z

1/4z
(l-z)(1-5/12z)

( -z ) (1-5/12z )2

2/- + -3/7 -
l-z l-5/12z

-z + -4/7
l-z 1-5/12z .

- 3/7
1-5/12z

-4 /7 
1-5/12z

using a partial fraction

expansion.

-3/7
1-5/12z

4/7
1-5/12z

= (z) + T(z)

where S(z) has all poles on the unit circle in the z-plane and T(z) has

all poles outside the unit circle in the z-plane.

4/7 3/7
S(O) = 

L4/7 3/7

is the matrix of absolute probabilities; all rows are equal because there

is only one recurrent chain.

36/49
T(1) 

-48/s/ 9

-36/49

8/49

is the sum matrix for the transient components of state probability.

G = s(o)Q =

gl = 1

V = T(1)Q = -
V2/7 ,1

a
vI = 9/7

va = -12/7 =r2 = 3/7
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Thus

g2 = 

rr = 4/7

1/3
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Note that r ivi = O, as required. This result has a simple proof

in flow graph form. Suppose the system is excited with the steady-state

probabilities iT. Then the initial conditions will be exactly matched and

there will be no transient in the state probabilities. Hence, T(z) = 0,

T(1) = 0, and the transient value of the initial distribution I0 = 1 is

zero. Therefore
N

I1 ,ivi v= 
i=l

The relationship of the results obtained above to our earlier results

on the coin-tossing problem is worth investigating. First, for large n

we know that

Vi2 = v + ngi

From above,

v = 9/7 + n - 1.2857 + n

Vn = -12/7 + n = -1.7143 + n

These are just the equations for the asymptotes to f and f found earlier.

Furthermore, it is possible to find the entire functions f and 4 using
the flow graph-transform approach.

The matrix H(z) represents the transform of the probabilities that

the system will occupy state j at time n if it is started in state i.

For example, H() -z l5/12z is the transform of r , the proba-

blility that the system will be in state 1 after the nth transaction given

that it was started in state 1. In general the return on the nth move if

n NN
the system is started in i is r = Tr ijqj. Consequently,

Vn. m m N n m
i = ri =ti t ijqj 

and this relation holds for any n.



Since in this problem ql = 7/4 and q2
= 0,

n n 
V1 - 7/4 ; 11

nmn m
V2 = 7/4 21

mL-

Since Hlj(Z) + and H21(z) - + by inverse
-z 1-5/12z 1-z l-5/12z

trans formation,

n = 4/7 + 3/7(5/12)n 'r = 4/7 -2/7(5/12)n

n mi (5/12) n n 1_(5/12 )nmrr1) = 4/7n + 3/7 1-5/12 : 21 = [/7n- /7 1-5/12
m=1 =

Therefore

V1 = n + 3/4 1-5/12 n -

V1 = n + 9/7 - (5/12)] V = n - 12/7 - (5/12)1 2

These expressions for V and V hold true for any n, even for n - 0.

Note that they approach the asymptotic equations derived above as no.

Since in this problem the same policy is used throughout the computation

when the Bellman technique is applied, in this case f = fn and VT f.

In other words, the total expected return graphs determined earlier for

the coin-tossing problem using the Bellman iteration approach could be

calculated analytically from the equations

f = n + 9/7 - (5/12)0

f2= n - 12/7 i- (5/12)nl

as the reader may verify.
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As a second example, let us solve the problem which previously caused

trouble because it had multiple characteristic values.

1

P 0O

1/2

O O

1/2 1/2

0 1/2

1

Q 2

3

l-z

(I - Pz) = 0

-1/2z

O O

1-1/2z -1/2z

0 1-1/2z

(I- Pz) 1 =

0

1/4z2

(l-z) (-1/2z) 2

1/2z -

1
1-1/2z

0

0

1/2z
(1-1/2z)2

1
1-1/2z

H(z) = (I - pz)-l = S(z) + T(z)

l/1-z 0 0

l/1-z 0 0

1/l-z 0 0

_, 

+1

0

-1

(l-/2z )2

-1
1-/2z

1
l-1/2z

0

0

1/2z

(1-1/2z) 2

1
1--/2z

T(1) = -4 2 2

-2 0 2

G = S(O)Q =
1

F '] 
V T(1)Q =

S(O) =

0 

100
1 0 0

0

6

-z) (-1/2zJ7
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so that
g 1 V1 =0 1 1

g2 = 1 v2 = 6 ' 2 =

g3 = 1 v"3= 4r 31 o

These are the same results obtained from characteristic vector consider-

ations; however, at no place in the above example was it necessary to make

any special provisions for the multiple characteristic values. The trans-

form approach circumvents this difficulty.

As a final example let us consider the case in which there are two

independent chains and a split transient state.

1/2 1/4 1/4 1

P= 1 0 Q 2

0 0 1 3

1-1/2z -1/4z -1/4z

(I- Pz)= 0 l-z 0

0 0 l-z_

(I - z)- 1

1 l/1z 1/4z
1-1/2z T l-1/2z) (l-z) (l-1/2z) (l-z)

0 1 0-.
1-z

1
0 0 1-z

H(z) = (I - z) -l = S(z) + T(z) =

0 1/2
1-z l-z

0 1 0
1-z

0 1
-z

+

1 -1/2 -1/2
1-1/2z 1-1/2z 1-1/2z

0 0 0

0 0 0



o 1/2 1/2 2 - -1

S(O) = 1O 1 0 T(1) =O 0 0 

0 1 0 0 0

G = S(O)Q =2 V = T(1)Q = 

gl = 2.5 a = 3

g2 2 2 = 0

g3 =3 v3 = 0

Thus the case of two independent chains does not produce any difficulty;

the results agree completely with those obtained before. The case of

periodic chains can also be handled by the transform method, but as

expected some concept of time averaging must be introduced.

The transform method is much more satisfying than the characteristic

vector method because it retains physical insight for the process and

avoids certain technical difficulties associated with the characteristic

vector approach. However, either method suffices to prove the existence

of the transient values and to derive their properties.

More on the Policy Improvement Routine

In earlier sections a plausibility argument and proof for the policy

improvement routine were given. At this point a supplementary argument

will be presented. Consider. two policies A and B which are to be com-

pared. Suppose that in making n moves it is decided to use policy A for

the last n-l moves, and to make the first move according to the policy which



will maximize return for the entire n moves. Then if policy B is the

policy to use for the first move in order to maximize return for the first

n moves, by induction it would be a better policy to use for all numbers

of moves larger than n.

Thus since

N n-1

Vi = qi +~ P ij 

j=l

O n = j+ p B n VAn

Policy B is better than policy A if V > Vi .

or if B N B An - A N A An -

if qi +A A
Since V = vj + ngj for large n, B is better than A if

B N B A N AA A
qi Pij vj + (n-l) > qi + Pij A)

j=l

qB + N i v + (n-il) B A i+ p A + (nl) pAgA
q+ Pij ppg > i +(n-1) p

Since n is large, B will be better than A if

N B A N- A A A= APijgj > Pijgj = gi

This is the mathematical form of the statement that the policy improve-

ment routine should make its decision based on gain if a difference in

gain exists. Thus B should be chosen over A in state i if

N B A A

X Pij s > gi

In the case where this relation is an equality (for example where there is
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only one recurrent chain and all gi = g), the policy improvement routine

must make its decision based on transient values. Thus it will decide that

B is better than A if

N N
qiB+ pB > qA + p +

This is exactly the criterion used in the policy improvement routine

in the earlier development where it was assumed that there was only one

recurrent chain in the system. Another formal proof of the fact that

this criterion improves the policy is given there.

Continuing, if the above policy improvement routine is used and policy

B is better than policy A,

Bn n
i I

or vB > n + A

According to this result, if we make a policy improvement in state

i, gi must stay the same or increase. If gi remains the same, then vi must

increase, The precise conditions under which each of these alternatives

will occur have been given previously.

It is a matter of real concern whether the policy improvement routine

can reach a relative maximum and pick as a final policy one which is less

than optimal. It is quite easy to show that the policy improvement routine

will always discover a policy which has a higher gain than the current one,

if such a better policy exists.

Suppose that policy B is better than policy A in the sense that

gB > gA (assume one recurrent chain for simplicity). If an asterisk is

used to denote the difference in corresponding quantities for the two

policies,
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g = gB _ gA and g* is by assumption greater than zero.

N

B B B N BBVi + g = qi + P pjv
j =1

Let us suppose also that the policy improvement routine has not found

that policy B is better than A, so that

A - A A
qi + P ijVj

B N B A
: qi + Z PijVjjl'. ~

Let

A = AA B ~ B ARIi qi + Pijvj - qi - j pijvj

where all . 0.Subtracting the two value equations
Subtracting the two value equations

gB _ gA + v.

Substitut ing

VA B A B BB
qi -_ +4PiVj

orB A
for qi - qi

B A B Ag -g + i Vi = i
N A A

+ pijVj - 4 PijVj

N

Pijvj

N

g* + v J - + p J
=1

The solution of these equations has been shown to be

N
N B

g = i B57, :~ i i

B
where the fTi are the absolute state probabilities for policy

Also

N B B
+ PijVj -

pij 

B. Since
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ITi 0 0 and Yi. 0, the maximum value of g* = 0. However, we have assumed

that g* > 0. Hence we have a proof by contradiction that the policy improve-

ment routine must achieve the largest possible g permitted by the problem;

it has already been shown that this maximum is achieved monotonically in a

finite number of iterations.

The Replacement Problem

The examples of the policy iteration method presented up to this point

have been somewhat far removed from the realm of practical problems. It

would be extremely interesting to see the method applied to a problem which

is of major importance to industry. As an example of such a practical

application, the replacement problem was chosen. This is the problem of

when to replace a piece of capital equipment which deteriorates with time.

The question to be answered is this: If we now own a machine of a certain

age, should we keep it or should we trade it in; further, if we trade it

in, how old a machine should we buy.

In order to fix ideas, let us consider the problem of automobile

replacement over a time interval of ten years. We agree to review our

current situation every three months and to make a decision on keeping our

present car or trading it in at that time. The state of the system, i, is

described by the age of the car in three-month periods; i may run from

1 to 40. In order to keep the number of states finite, a car of age 40

remains a car of age 40 forever (it is considered to be essentially worn

out). The alternatives available in each state are these: The first

alternative, k =, is to keep the present car for another quarter. The

other alternatives, k >l, are to buy a car of age k-2, where k-2 may be

as large as 39. We have then forty states with forty-one alternatives in
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each state so that there are 41 possible policies.

The data supplied are the following:

Ci, the cost of buying a car of age i

Ti, the trade-in value of a car of age i

Ei, the expected cost of operating a car of age i until it

reaches age i+l

Pi' the probability that a car of age i will survive to be

age i+l without incurring a prohibitively expensive repair

The probability defined above is necessary to limit the number of states.

A car of any age that has a hopeless breakdown is immediately sent to state

40. Naturally, P40 = 0.

The basic equations governing the system when it is in state i are:

If k = 1 (keep present car)

g + vi =-E i + PiVi+ + (1 - Pi)V40

If k > 1 (trade for car of age k-2)

g + Vi = Ti - Ck-2 - Ek2 + Pk-2Vk-1 + (1 - Pk-2)V4O

It is simple to phrase these equations in terms of our earlier nota-

tion. For instance,

k
qi = -Ei for k = 1 qk Ti - Ck_2 Ek-2 for k >1

jk4 ork kp j = i+l l Pk-2 j =ok- rk
Pij = pi j =40 or k 1 Pij ~ -Pk-2 j 4 o k > 1

0 other j l other j

The actual data used in the problem are listed in Table III and graphed

in Figure 3. The discontinuities in the cost and trade-in functions were

introduced in order to characterize typical model year effects.
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TABLE III

REPLACEMENT PROBLEM DATA

Survival
Age in Trade-in Operating Proba-
Periods Cost Value Expense bility

i Ci Ti Ei Pi

Survival
Age in Trade-in Operating Proba-
Periods Cost Value Expense bility

i Ci Ti Ei Pi

0 $2,000 $1,600 $ 50 1.000

1 1,840 1,460 53 0.999 .21 $345 $240 $115 0.925

2 1,680 1,340 56 0.998 22 330 225 118 0.919

3 1,560 1,230 59 0.997 23 315 210 121 0.910

4 1,300 1,050 62 0.996 24 300 200 125 0.900

5 1,220 980 65 0.994 25 290 190 129 0.890

6 1,150 910 68 0.991 26 280 180 133 0.880

7 1,080 840 71 0.988 27 265 170 137 0.865

8 900 710 75 0.985 28 250 160 141 0.850

9 840 650 78 0.983 29 240 150 145 0.820

10 780 600 81 0.980 30 230 145 150 0.790

11 730 550 84 0.975 31 220 140 155 0.760

12 600 480 87 0.970 32 210 135 160 0.730

13 560 430 90 0.965 33 200 130 167 0.660

14 520 390 93 0.960 34 190 120 175 0.590

15 480 360 96 0.955 35 180 115 182 0.510

16 440 330 100 0.950 36 170 110 190 0.430

17 420 310 103 0.945 37 160 105 205 0.300

18 400 290 106 0.940 38 150 95 220 0.200

19 380 270 109 0.935 39 140 87 235 0.100

20 360 255 112 0.930 40 130 80 250 0
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The automobile replacement problem was solved by the simultaneous

equation method in seven iterations. The sequence of policies, gains and

values is shown in Tables IV, V and VI. The optimal policy given by itera-

tion 7 is this: If you have a car which is more than 1/2 year old but less

than 6-1/2 years old, keep it, If you have a car of any other age, trade

it in on a 3-year-old car. This seems to correspond quite well with our

intuitive notions concerning the economics of automobile ownership. It is

satisfying to note that the program at any iteration requires that if we

are going to trade, we must trade for a car whose age is independent of

our present car's age. This is just the result that the logic of the situ-

ation would dictate.

If we follow our optimal policy, we will keep a car until it is 6-1/2

years old and then buy a 3-year-old car. Suppose, however, that when our

car is four years old, a friend offers to swap his 1-year-old car for ours

for an amount ao Should we take up his offer? In order to answer this

question, we must look at the transient values.

In each of the iterations, the value of state 40 was set equal to zero,

for computational purposes. Table VI also shows the values under the best

policy when the value of state 40 is set equal to $80, the trade-in value

of a car of that age. When this is done, each vi represents the value of

a car of age i to a person who is following the optimal policy. In order

to answer the question posed above, we must compare the value of a 1-year-old

car, v = $1,151.93, with the value of a 4-year-old car, v1 6 = $42180 If

his asking price, a, is less than v4 - vl6 $730, we should make the trade;

otherwise, not, It is, of course, not necessary to change V4 0 from zero in

order to answer this problem; however, making v4 0 = $80 does give the values

an absolute physical interpretation as well as a relative one.
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TABLE IV

AUTOMOBILE REPLACEMENT RESULTS

Iteration 1

Gain -250.00
Decision Value

Buy 36

Il

I1

to

It

It

It

11
It

il

It

It

It

II
II

It

Keep

If
11

It

It

it

11tt
Itit
It

ii!
11

It

$1373 o61
1253.61
1143.61
963.61
893 o61
823.61
753.61
623.61
563.61
513,61
463.61
393.61
343.61
303.61
273.61
243.61
223 .61
203.61
183.61
168.61
875093
801.00
727.97
658.21
592045
529.72
469.00
411o56
355.95
306o.04
260, 81
218,18
175o58
140.28
110.64

83.61
549C
33 OCo

15,00
0.00

Iteration 2

Gain -193. 89
Decision Value

Buy 20

It

II

11

It

II

It

It

11

II

It

11

II

it

II

1t

Keep
II

Buy 20

II

It

t

11

If

it

to

ifIt

it1
11

$1380.00
1260,00
115000
970,00
900,00

830.00
760,00
630.00
570.00
520.00
470,00
400 00
3 5000
310,00
280.00
250,00
230,00
210,00

190.00
280.00
213 .02
145.00
130.00
120.00 O

110O 0
100.00
900o
80 ,00
70.OC
65o00
60ooc
55 oo
5000
40OC
3500C
30.00
25.00
15.00

7. OC
0,00

Iteration 3

Gain -162.44
Decision Value

Buy 19
It

t

Keep
,t

it

Buy 19
Keep

If

11

Buy 19
it

Keep
to

It

It

t
It

it

to

It

tt

Buy 19
11

It

it

It

it

1t

f

it

It

It

it

$1380.oo

1260,00
115000
1036.63

939095
847.60
760,00
695.04

617.26

542e04
47000
400.00
575 00
520079
470.15
422.74
379.26
338.411
300.00

263 .7

229.32
196.62
1650.6

136. 44
110 Oc
100o 00

90. 0
80. O
70.00
65.oC
60ooc
55.OC
50.OC
4000C
3500C
30OC
25oOC
15.OC
7.00C

0.OC

State

1
2

3

4
5
6

7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

..
= -- ---



-98-

TABLE V

AUTOMOBILE REPLACEMENT RESULTS

Iteration 4

Gain -157.07
Decision Value

Buy 12
it

IIt

tt

tII

II

11

11
It

I1

Keep
II

1t

Itt

r

it

II

Buy 12
t

It

II

it

It

it

It
Ii

t1

tII

tI
II

ilI!

11

tI

If
11

$1380.00
1260,0 0
1150.00
970.00
90000
830.00
760.00
63000
570.00
520.00
470*00
5200 O0

463.84
411.16
361055
314.63
271.11
229 67
1900 0
17500
160.00
14500
130.00
12000
110 00
100.00
90.00
80. OC

70 OC
6500
60o.o00

55.OC
5000
40,OC
3500
3000C
25. 00
15.00

7o0
0.00C

Iteration 5

Gain -151,05
Decision Value

Buy
It

It

Keep
it

Buy
Keep

I,

It

It1!

It

II

it

it

it

Buy
t
If

11

Ii
Itl!

It

It

ttt
IIt1!It

!!

12 $1380.00
1260,00
1150 00
1002.62
917.24
836.21

12 760.00
760.54
69491
632.62
574.05
520.00
470.05
423.84
38103
341.34
305.57
272.50
241.97
213.82
187.93
164.19
142.70

123.79
108.60
97.25

12 90.00
80.00
70, O

65.00
60,00
5500
5000
40.0
35.0
30.OC
2500C
15.00

7.00
0.00

Iteration 6

Gain -
Decision

Buy 12
!,
11

Keep
II

It

II

t
It

11

It

11

!i

tt

11

It

It

It11
Buy 12

ItIt

I!II

ti

It

Itt!It

it

.150.99
Value

$1380.00
1260 00
1150 00
1072.26
987022
906.67
831.16
760,30
694073
632.50
573099
52000
470.12
423.97
381.23
34161
305.92
272.95
24251
214,46
188.68
16507
143.73
124099
110,00
100.00

90.00
80.00
70.00
65,00
60o. 00

55°00
50 00
40.00
35,00
30.00
2500
15.00
7.00
0,00

3tate

State

1
2
3
4
5
6
7
8

9
10
11
12

13

14
15
16

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

..
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TABLE VI

AUTOMOBILE REPLACEMENT RESULTS

Iteration 7 Iteration 7 Values

Gain -150.95 i
Decision Value

12 $3so80.oo00

126000
1160,66
1071.93
986 93
906.43
830.96

760.13
694.61
632.41
573°95
520,00
470016
424.05
381.36
341,80
306,16
273 024
242,87
214.89
189.19
165.67
14442
125 o80

11095
12 100,00

90.00
80.00
70.00oo

65,00
60 00
55000
50.00
40.00
35.00
30,00
2500
15.00

7o00
0.00

V4 0 = $80, Trade-in Value

$1460.00
1340.00
1240.66
1151 .94
1066.93
986,43
910.96
840 013
774.61
712041
653.95
600.00
550.16
504O05
46136
421 80
386 16
353.24
322.87
294.89
269.19
245. 67
224°42
205 80
190095
180o00
170.00
160,00
150 OO0
14S o00
140 o00

13 500
130,00
120,00
115.00
110.00
105.00
95.00

87.00
80.00

State

:1

2
3

4

6

7
El

9
10
11.
12
13

i 14
15
16
17
18
19
20
21
22

23

24
25
26
27
28
29

30
31
32
33
34
35
36
37
38
39
40

Buy
It

Keep
It

It

ti

It

It
ii

I

1
If

itIt

It

I!

It

tt

it
It

It

ti

Buy

It

it

li

tI

1I

tt

t!

if

t

11

_ _ ____
-~~~~~~~~~~~~~~~~~~~~~~~~
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If the optimal policy is followed, the yearly cost of transportation

is about $604 (4 x $150.95). If the policy of maximizing immediate return

shown in iteration 1 were followed, the yearly cost would be $1,000. Thus,

following a policy which maximizes future return rather than immediate

return has resulted in a saving of almost $400 per year. The decrease of

period cost with iteration is shown in Figure 4. The gain approaches the

optimal value roughly exponentially. Notice that the gains for the last

three iterations are so close that for all practical purposes the correspond-

ing policies may be considered to be equivalent. The fact that a 3-year-old

car is the best buy is discovered as early as iteration 4. The model year

discontinuity occurring at three years is no doubt responsible for this

particular selection.

The replacement problem described above is typical of a large class of

industrial. replacement problems. Placing these problems in the framework

of the policy iteration method requires only a thorough understanding of

their peculiarities and some foresight in selecting a suitable formulation.

The Iteration Cycle as a Control System

It is possible to view the entire iteration process as a unique type

of control system. The system might be diagrammed as follows:

Effectiveness Parameter, g

Here the box labelled "Improve" is the policy improvement routine, while

the box labelled "Current Policy" is the value determination operation. The
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system works as follows. When a start order is provided, the improve box

improves on the current policy by picking a new policy from among the alterna-

tives available and by using as part of its improvement procedure the optimiz-

ing parameters vi of the current policy. The feedback of the optimizing

parameters v i is what makes the system unique. Normally feedback control

systems are designed to improve themselves based on their actual output

(g in this case). However, this system generates a special set of optimiz-

ing parameters (the vi) in order to improve its performance. If the system

is used on a fixed problem it will iterate until it has achieved the maximum

g and then it may stop because no further improvement is possible. A more

interesting case is the one in which the problem specifications are changed

at times (so that the maximum gain changes) while the system is continually

iterating. In this situation the system exhibits very interesting behavior

of the type sketched below:

Basic
Iteration

Start \
System i
Gain 

Times at which Problem Changes Occur

The system is attempting to follow changes in the problem so that the

largest return (perhaps minimum error) will be achieved in the long run.



The point of this whole discussion is that the dynamic programming scheme

outlined above is a type of adaptive system. It should be possible to

build high-level servomechanisms using the ideas that have been developed.

Summary

A policy iteration method for solving sequential decision processes

of long duration has been presented ?he general iteration cycle of this

method is shown in Figure 5. Note that this diagram includes the case

where the process may have manyrindependentqgainso

The properties of the process that have been derived are the follow-

ing:

n
1. The total expected return in n moves starting from state i, Vi,

can be represented in the form vi + ng i for very large n The transient

values vi and the gains gi depend only on the starting state i In most

practical cases, gi is independent of i and may be given the symbol g.

The quantity g is called the gain of the system and is the average return

per transition as the number of moves becomes very large.

2. The value determination operation is computationally equivalent

to the solution of the Markov process for its absolute probabilities. The

values and gains of the process can be found either deterministically or

by a Monte Carlo process. The deterministic method requires only the solu-

tion of linear simultaneous equations and enjoys the advantage of relatively

high speed. The simulation method yields more physical insight into the

process and avoids some of the accuracy problems that may be encountered

in solving large sets of simultaneous equations.
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Figure 5

DIAGRAM OF GENERAL ITERATION CYCLE

Using the ij and qi for a given policy, solve the double

set of equations
N

gi = E Pijgj
j=1

N

vi + gi = qi +P i jj
j =1

for all vi and gio The solution will involve as many

arbitrary constants as there are independent Markov

chains; these constants may be set equal to zero.

N
For each state i, determine the alternative k which maximizes pkjgj

N =
and make it the new decision in the ith state. If , pkgj is the same for

j=l
all alternatives, the decision must be made on the basis of values rather

than gains, Therefore, if the gain test fails, determine the alternative

k N k
k which maximizes qk + Pijvj and make it the new decision in the ith

state.

Regardless of whether the policy improvement test is based on gains or

values, if the old decision in the ith state yields as high a value of

the test quantity as any other alternative, leave the old decision un-

changed. This rule assures convergence in the case of equivalent policies.

When this procedure has been repeated for all states, a new policy has

been determined and new [pij] and [qi] matrices have been obtained If

the new policy is equal to the previous one, the calculation process has

converged and the best policy has been found.

.
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30 The policy improvement routine will find a better policy than the

present one if such a policy exists; in other words, this routine must make

a finite increase in the gain if such an increase is possible. Furthermore,

the policy improvement routine will find that policy which has the highest

attainable gain; it cannot be misled by relative maxima. If the policy

improvement routine cannot increase the gain, then it must increase the

transient values.

The main advantage of the policy iteration approach is that it finds

the long-run behavior of the decision process directly rather than asymptot-

ically. Since it avoids the Principle of Optimality and the consequent

computational difficulties, it becomes feasible to work small problems with

a pencil and a piece of paper. This advantage is not trivial from an

expository point of view,

The transient values, vi, have an important use in determining how much

one should be willing to pay to make an instantaneous change of state;

they are indispensable in making decisions regarding "special offers,"

The limitations of the method are clear from its assumptions. First,

one must be willing to continue the process for a large number of moves; the

results are inapplicable to decisions which are to be made only a few times.

Second, the transition probabilities and rewards for each alternative must

be known. The game to be played is one of complete information.

Much additional theoretical work remains to be done, One could consider

the extension of the above methods to cases of incomplete information and

policy restrictions. The question of how to define states originally is

still open. Problems involved in the introduction of discounting of future

returns have yet to be investigated,



In the realm of application there is a variety of interesting and

important problems. Problems in inventory control and industrial replace-

ment which can be formulated in discrete terms are almost without number.

One of the most interesting areas of application could be in the area of

hydroelectric power generation. If the state of the system is defined

by the head of the dam in feet, then we may speak of probabilistic state

transitions caused by rainfall and customer demand and of alternatives

such as producing electric power from coal. The complexity of the prob-

lem considered would depend only on the size of the computational equip-

ment available.

There are problems in many areas of system analysis that may be

formulated as Markovian decision processes. The policy iteration method

should provide a convenient approach to their solution.
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