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ABSTRACT
Many effectors of microtubule assembly in vitro enhance the polymerization of

subunits. However, several S. cerevisiae genes that affect cellular microtubule-
dependent processes appear to act at other steps in assembly, and to affect
polymerization only indirectly. Here we use a mutant a-tubulin to probe cellular
regulation of microtubule assembly. tub1-724 mutant cells arrest at low temperature with
no assembled microtubules. The results reported here demonstrate that the heterodimer
formed between Tubl-724p and P-tubulin is less stable than wild type heterodimer. The
unstable heterodimer explains several conditional phenotypes conferred by the mutation.

We also describe genes that affect formation of the tubulin heterodimer. Our
approach to identify such genes is based on the observation that excess Rbl2p, a ,-
tubulin binding protein, is lethal in tub1-724 mutant strains. We show that excess Rbi2p
is similarly lethal to cells bearing mutations in CIN1 and PAC2. Genetic and biochemical
analysis demonstrates roles for each in heterodimer formation in vivo. Both haploid and
heterozygous tub1-724 cells are inviable when, PAC2, is over-expressed. These effects
are explained by the ability of Pac2p to bind a-tubulin, a complex we demonstrate
directly. And, excess Cin1p rescues the phenotypes of tub1-724 cells, strongly
supporting a catalytic role for Cinlp in heterodimer formation. Pac2p is associated with
Cinlp and with the tubulin polypeptides. The activities of these proteins in vivo are both
similar to and distinct from the role of their homologues in vitro assays for tubulin folding.
Our results uncover potential roles for these proteins in catalyzing tubulin
heterodimerization in vivo and so in maintaining the balance between individual tubulin
polypeptides.

Both excess -tiibulin and benomyl lead to loss of microtubules, large budded
cell-cycle arrest and cell death. This parallel is supported by the consequences that
changes in ihe level of either Rbl2p or a-tubulin have for both of these microtubule
poisons. Overexpression of either gene rescues cells from the effects of 3-tubulin
overexpression and confers increased resistance to benomyl. We screened for
galactose-induced cDNAs that confer resistance to benomyl in wild type cells. We
describe the identification and initial characterization of two genes that allow cells to
Live on Benomyl when Overexpressed (LBO).

Thesis Supervisor: Frank Solomon

Title: Professor of Biology
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CHAPTER I:

Introduction



Microtubules are found in all eukaryotic cells and are composed of

heterodimeric subunits of a- and -tubulin. The filamentous arrays formed by

microtubules are essential for life and microtubules are known to function in a variety

of cellular processes including mitosis, meiosis, intracellular transport,

morphogenesis, and cell motility ( reviewed in (Dustin, 1984)). Some of the properties

specifying microtubule assembly are intrinsic to the tubulin heterodimer. For example,

the microtubule is a polar structure with a fast growing plus end and a slow growing

minus end. And microtubules are dynamic, exhibiting periods of rapid growth and

rapid shrinkage. In vitro, purified tubulin is sufficient to recreate microtubule polymers.

The conditions for the assembly of microtubules from tubulin have been well defined.

Among the factors that influence microtubule assembly are: concentration of tubulin;

presence of GTP; concentration of cation; temperature and pH (reviewed in (Dustin,

1984) ). However, other factors are necessary to specify the full range of structures,

organelles and movements that microtubules specify in living cells. In addition, unlike

microtubule assembly in vitro, which begins with purified tubulin and looks at the

formation of polymer; cells must assemble heterodimer de novo from the individual a-

and A- tubulin monomers. Recent work from a variety of different sources have

identified proteins that may participate in tubulin heterodimer formation and suggest

that formation of heterodimer is itself a regulated event.
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Experiments in this thesis probe the activities of isolated tubulin polypeptides

and tubulin binding proteins in vivo. Our thinking has been greatly influenced by the

realization that free (a- and - tubulin are functionally distinct in vivo; excess -tubulin

is a microtubule poison. We have used the activity of free P-tubulin to investigate

various aspects of microtubule assembly in vivo. That analysis has allowed us to look

at genes that impact the state and activities of tubulin chains in the cell and to uncover

possible regulatory mechanisms.

Tubulin Structure

The tubulin heterodimer serves as the building block for the assembly of

microtubules. The microtubules of most cells are arranged as 13 parallel

protofilaments that close to form an intact hollow cylinder. Each protofilament is made

up of linear arrays of tubulin heterodimers. Longitudinal bonds connect alternating oa-

and 13-tubulin subunits in a protofilament. The subunits of adjacent protofilaments

slightly staggered and are connected by lateral bonds that are primarily a-( and 13-

interactions. However, since microtubules form a shallow helix with respect to the

lateral bonds; lateral bonds also form a-5 and 13-a interactions when the subunits

make a complete turn (reviewed in (Downing and Nogales, 1998; Dustin, 1984;

Erickson and Stoffler, 1996).

The high degree of homology between the tubulins of very different organisms

suggests that the molecular basis for conserved microtubule structure in part arises

from the primary sequence of the a- and P-tubulins. Recently, the structure of the ap

tubulin dimer has been solved by electron crystallography (Nogales et al., 1998). This
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work corroborates many of the insights into tubulin structure gained though more

indirect biochemical analysis and genetic analysis.

The a- and 3- tubulin monomers are about 55,000 daltons. Both monomers

bind GTP and share about 40% amino acid identity. Nogales and coworkers found

that a- and - tubulin are also very similar at the structural level (Nogales et al., 1998).

The GTP binding site on a-tubulin is buried with the tubulin dimer and is non-

exchangeable (N). The P-tubulin GTP binding site is exchangeable (E). The state of

the nucleotide at this E site is thought to contribute to microtubule dynamics (Nogales

et al., 1998). According to their model, there are three possible states for the

nucleotide bound at the E site, GTP, GDP + inorganic phosphate (Pi), and GDP. The

crystal structure of the tubulin dimer predicts that both the inter-and intra- dimer

interactions are very tight. Thus, the conformation of the polymer could be altered by

the state of the nucleotide, by microtubule associated proteins, or by drugs (Nogales et

al., 1998). The authors suggest that fine tuning of these interactions could regulate

assembly and the dynamic instability of microtubules (Downing and Nogales, 1998;

Nogales et al., 1998).

Interestingly, tubulin was found to be similar in structure to FtsZ, a GTPase that

is essential for cell division in prokaryotes (Nogales et al., 1998); (Lowe and Amos,

1998; Nogales et al., 1998). FtsZ forms a filamentous ring-shaped septum at the

division site in prokaryotes. In addition, FtsZ shares the "tubulin" signature sequence

with a, 3, and y which is involved in GTP binding. Like tubulin, FtsZ can polymerize

into protofilaments and tubules in a GTP dependent manner (Bramhill and Thompson,
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1994; Erickson et al., 1996; Mukherjee and Lutkenhaus, 1994). Because of this, FtsZ

has been described as the prokaryotic precursor of tubulin (Erickson, 1998; Erickson,

1995; Erickson and Stoffler, 1996). That tubulin and FtsZ share structural similarity

suggests that studies of FtsZ a might provide insight into tubulin biology and vice

versa.

Microtubule associated proteins

Potential regulators of microtubule assembly and organization have been

identified by virtue of their ability to cycle with brain tubulin though several rounds of

assembly and disassembly (Borisy et al., 1975; Cleveland et al., 1977). These proteins

present in substochiometric amounts may serve to regulate both quantitative and

qualitative aspects of microtubule assembly. Some microtubule associated proteins or

MAPs (Weingarten et al., 1975) include MAP1A (Bloom et al., 1984), MAP1E3B (Noble et

al., 1989), MAP2 (Shiomura and Hirokawa, 1987), MAP4 (Parysek et al., 1984),

XMAP230 (Andersen et a'., 1994), and Tau (Drubin et al., 1984). Fractionation

schemes using microtubules (Magendantz and Solomon, 1985; Pillus and Solomon,

1986) and microtubule affinity chromatography (Barnes et al., 1992) have also been

used with varying degrees of success to isolate microtubule binding proteins. Many of

the proteins identified by all these methods co-localize with microtubules or

microtubule organizing centers in vivo and enhance microtubule stability both in vivo

and in vitro (Cleveland et al., 1977; Knops et al., 1991; Leclerc et al., 1996; Sandoval

and Vandekerckhove, 1981).

In addition, proteins that inhibit microtubule polymerization and so have the

opposite effect of MAPs have also been identified. XKCM1 is a kinesin related protein
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from Xenopus ovary that increases the catastrophe rate of microtubules (Walczak et

al., 1996). Oncoprotein 18/stathmin binds to tubulin dimer and affects tubulin

assembly by increasing the catastrophe rate and decreasing the growth rate of

microtubules (Belmont and Mitchison, 1996).

There are limitations in using biochemical approaches for isolating proteins that

affect microtubule assembly. For example, proteins that are important for microtubule

assembly but that only transiently interact with microtubules might not be identified by

these methods. Moreover, that a protein can bind to microtubules does not mean that

it functions with microtubules or that the binding is biologically significant.

Phage assembly as a model for microtubule assembly

Parallels between microtubule assembly in vivo and other assembly pathways

allow us to exploit observations made in these systems and apply them to studies of

microtubule assembly. In particular, the study of bacteriophage assembly provides

several useful paradigms for studying the interactions required for assembly of a multi-

subunit structure (reviewed in (Weinstein and Solomon, 1992)). By using a

combination of biochemical and genetic methods, a detailed and ordered pathway of

the protein-protein interactions required to assembly a bacteriophage particle was

generated.

One approach that was successfully used in the phage system to identify

interacting components was pseudo-revertant analysis. In the phage P22 system,

Jarvik and Botstein (1975) showed that revertants of missense mutations were often

conditional lethal mutations in gene products that physically interact with the protein

product of the original mutant gene (Jarvik and Botstein, 1975). A second lesson of
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bacteriophage assembly is that assembly pathways are sensitive to stoichiometry; a

deficit in one component relative to another may result in qualitative rather than

quantitative defects in assembly (Floor, 1970; Sternberg, 1976). These studies

suggest that one can identify interacting proteins genetically by screening for

stoichiometric suppressors of the original phenotypes. Both of these approaches have

been successfully applied to the problem of microtubule assembly in yeast and are

described below (Weinstein and Solomon, 1992).

Microtubule assembly in yeast

Yeast offers the opportunity to study microtubule function in a genetically

tractable organism (Huffaker et al., 1988). The genes encoding the primary

components of microtubule structure, a- and 3-tubulin, have been cloned and

characterized (Neff et al., 1983; Schatz et al., 1986). Saccharomyces cerevisiae has

two genes encoding a-tubulin, TUBI and TUB3, that are 90% identical at the amino

acid level (Schatz et al., 1986). TUB1 is essential for mitotic growth while TUB3 is

non-essential (Schatz et al., 1986). The differences between the two can be

accounted for by differences in their level of expression (Schatz et al., 1986). -tubulin

function is encoded by a single, essential gene, TUB2 (Neff et al., 1983).

Microtubule arrays in yeast cells are known to be important for specific

functions: mitosis, meiosis and nuclear fusion during mating (Delgado and Conde,

1984; Huffaker et al., 1988; Jacobs et al., 1988). Collections of mutations in tubulin

genes that affect both quantitative and qualitative aspects of microtubule function are
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available (Huffaker et al., 1988; Reijo et al., 1994; Schatz et al., 1988). The analysis of

tubulin mutants can provide insight into those steps. For example, the phenotypes of

cells containing tub2-401, a mutant 3-tubulin that affects only the cytoplasmic

microtubules, suggest that cytoplasmic microtubules are needed to position the

spindle in the bud neck but are not required for spindle elongation at anaphase B

(Sullivan and Huffaker, 1992). Yet, the defects of mutant tubulins are largely

understood in terms of the arrest phenotype rather than their execution point.

For another important cytoskeletal polymer; actin, analysis of the requirements

for actin assembly was facilitated by the availability of both structural information about

actin and collections of actin mutants. Consequently, studies in yeast show that many

actin alleles have properties that are readily interpreted in light of the actin structure

(Wertman et al., 1992). The available three dimensional structure of the (Xa 

heterodimer will make a similar analysis of tubulin possible (Nogales et al., 1998).

Pseudo-revertant analysis of tubulin mutations has yielded both tubulin and

non-tubulin suppressors. For example, in S. cerevisiae suppressers of conditional xa-

tubulin alleles have been isolated in 3-tubulin (Schatz et al., 1988). In Aspergillus

nidulans, Morris and co workers isolated ao-tubulin revertants of conditional alleles in

0-tubulin (Morris et al., 1979). Non-tubulin suppressors have also been identified in

this manner. The most striking example comes from the work of Oakley and Oakley

(1989) in Aspergillus nidulans. By screening for suppressors of a mutation in P-

tubulin they identified mipA, the gene encoding -ytubulin (Oakley and Oakley, 1989).
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y-tubulin is an evolutionarily conserved tubulin family member involved in microtubule

nucleation (Oakley et al., 1990; Steams et al., 1991; Zheng et al., 1991). More recently

in S. cerevisiae screens for suppressors of P-tubulin mutations have identified

mutations in the genes encoding the microtubule associated proteins STU1

(Pasqualone and Huffaker, 1994) and STU2 (Wang and Huffaker, 1997).

Genetic approaches that focus directly on processes known to involve

microtubules in S. cerevisiae have also yielded a number of microtubule associated

proteins. For example, BIK1 which localizes to the nuclear spindle was identified in a

screen for karyogamy defects (Berlin et al., 1990). Karyogamy is the process during

mating by which two haploid yeast nuclei fuse to produce a single diploid nucleus.

This process requires nuclear congression, a microtubule dependent process, and

nuclear envelope fusion (reviewed in (Rose, 1996)). Cells deleted for BIK1 exhibit

defects in chromosome segregation and nuclear migration. Similar functional screens

in yeast have identified a variety of microtubule based motors (Eshel et al., 1993; Hoyt

et al., 1992; Li et al., 1993; Lillie and Brown, 1992; Meluh and Rose, 1990; Roof et al.,

1992) spindle pole body components (Nguyen et al., 1998; Page and Snyder, 1992;

Schutz et al., 1997; Winey et al., 1991) and proteins involved in the spindle assembly

checkpoint (Hoyt et al., 1991; Li and Murray, 1991).

Another approach to identify gene products involved in microtubule assembly is

to screen for synthetic lethal interactions with deletions or defective alleles of known

microtubule related proteins. For example, ASE1 was isolated as a mutation that is

synthetic lethal with BIK1. Aselp localizes to the spindle midzone until the end of
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mitosis (Pellman et al., 1995). Keml/Sepl, a putative MAP, was isolated in a screen

for mutations that enhanced the nuclear fusion defect of karl-1 (Kim et al., 1990).

However, from these same types of functional analysis there is a growing list of

gene products that affect microtubule-dependent processes but do not interact directly

with the microtubule polymer. For example, several genes that affect chromosome

instability (Hoyt et al., 1990) sensitivity to microtubule depolymerizing drugs (Stearns

et al., 1990) excess 0-tubulin (Archer et al., 1995) dependence upon a mitotic motor

(Geiser et al., 1997), and y-tubulin function (Geissler et al., 1998) encode proteins that

act on microtubules at some step other than the polymerization reaction. That

mutations in proteins not present on the assembled polymer affect microtubule stability

in vivo suggests that there are other regulatory steps for crucial microtubule assembly.

In addition, such regulatory functions are evident in the response of cells to tubulin

imbalances described below.

The dynamic behavior of microtubules suggest that fluctuations of tubulin

concentration in the cell may regulate quantitative and qualitative aspects of

microtubule assembly (Mitchison and Kirschner, 1984). Indeed, in animal cells,

manipulation of tubulin levels by drug induced depolymerization or by microinjection

of tubulin was found to affect tubulin mRNA stability (Cleveland, 1988). And

overexpression of a-tubulin transgene in CHO cells was found to downregulate

endogenous ac-tubulin protein levels, perhaps by translational repression (Gonzalez-

Garay and Cabral, 1996). Thus, animal cells may contain regulatory mechanisms to

maintain homeostasis with respect to tubulin levels.

Introduction18



In yeast it is possible to vary tubulin levels by varying the copy number and/or

the expression levels of tubulin genes. Cells with increased copies of a- and P-

tubulin genes, or of a- tubulin genes alone, downregulate tubulin levels (Katz et al.,

1990). However, in S. cerevisiae the absolute cellular levels of tubulin can vary from

0.5X to 1.2X without very little effect in mitotic growth or microtubule organization (Katz

et al., 1990). In contrast, experiments designed to alter the cellular ratio of ax-tubulin

relative to 3-tubulin show that yeast cells can tolerate high levels of ca-tubulin; in

contrast, even a small excess of 0-tubulin is lethal (Katz et al., 1990; Weinstein and

Solomon, 1990).

Effects of 13-tubulin overexpression

Acute overexpression of P-tubulin is lethal in budding yeast (Burke et al., 1989;

Weinstein and Solomon, 1990), but overexpression of a-tubulin is not (Weinstein and

Solomon, 1990). The lethality associated with excess 03-tubulin is preceded by the

rapid disassembly of microtubules in the cell (Weinstein and Solomon, 1990).

Moreover, the -tubulin that accumulates co-localizes with the spindle pole body

(SPB) (M. Magendantz, personal communication). These effects depend on the ratio

of - to a- tubulin rather than the absolute level of either subunit since concomitant

overexpression of a-tubulin rescues both the microtubule phenotype and the lethality

of excess -tubulin (Weinstein and Solomon, 1990). This situation is similar to some

aspects of bacteriophage assembly (described above); a deficit in one component
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relative to another results in qualitative defects rather than quantitative defects in

assembly. Thus, in vivo, normal heterodimer assembly requires that the components

be held in balance, while an imbalance permits illegitimate interactions that can be

deleterious to the cell (reviewed in (Weinstein and Solomon, 1992) . We and others

have identified proteins that may participate in this process. For example the yeast

protein, Rbl2p, affects how cells survive alterations in the ratios of oX- to P3-tubulin

(described below and (Archer et al., 1995). Levels of PaclOp and the GIM genes

affect a- to -tubu!in ratios (Alvarez et al., 1998; Geissler et al., 1998). That excess 13-

tubulin appears to interfere with microtubule assembly might be explained if the

excess 3-tubulin forms inappropriate interactions with other components that might be

limiting for assembly (Weinstein and Solomon, 1992).

Rbl2p. a 3-tubulin monomer binding protein.

Our lab identified RBL2 as a high copy suppressor of excess 3-tubulin lethality

(Archer et al., 1995). Rbl2p is able to rescue P3-tubulin lethality to the same extent as

a-tubulin. Overexpressed Rbl2p can suppress the effects of both too much -tubulin or

too little a-tubulin (Archer et al., 1995). Rbl2p shares other properties with a-tubulin:

both confer increased resistance to microtubule depolymerizing drugs when

overexpressed, and both bind to P-tubulin in vivo (Archer et al., 1995)

Rbl2p binds P-tubulin to form a complex that excludes a-tubulin and is less

stable than the a-13 heterodimer (Archer et al., 1998). In vivo, Rbl2p is competent to

bind 3-tubulin both before and after it has been in the a- heterodimer suggesting that
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the form of 3-tubulin recognized by Rbl2p is in equilibrium with the a-d heterodimer

(Archer et al., 1998). Thus, the Rbl2p-3-tubulin complex defines a second pool of 3-

tubulin in the cell. Our analysis of the Rbl2p-p3-tubulin complex suggests that the ability

of Rbl2p to rescue cells from excess -tubulin lethality likely requires binding of 13-

tubulin in vivo.

Rbl2p can be deleterious in both wild type and mutant cells by competing with

a-tubulin for f3-tubulin binding. We have characterized a mutant a-tubulin allele that is

synthetically lethal with both RBL2 deletion and over-expression (Vega et al., 1998).

Our analysis of this mutant, detailed in Chapter Two, suggests that tubulin

heterodimers containing the mutant a-tubulin protein, tub1-724 are less stable than

the wild type heterodimers (Vega et al., 1998). These results provide both a structure-

function analysis of tubulin as well as information about the function of non-tubulin

genes important for microtubule assembly in vivo (see below).

Tubulin Folding and heterodimer formation

Protein folding is the process by which the linear information contained in the

primary amino-acid sequence of a polypeptide gives rise to the native, three

dimensional structure of the functional protein (Hartl, 1996). Some proteins, such as

ribonuclease A, can spontaneously acquire their native conformations in vitro

(Anfinsen, 1973). However, the folding of other polypeptides is facilitated by the action

of molecular chaperones that bind non-native states of proteins and assist them to

reach a native conformation (Bukau and Horwich, 1998)).
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The evolutionarily conserved heat shock family of molecular chaperones were

first identified as proteins that are rapidly induced by stress. Although they are stress

proteins, they play essential roles in the quality control of proteins under non-stress

conditions as well. These functions include: folding of nascent polypeptides,

translocation of proteins across membranes, promoting assembly and disassembly of

oligomeric proteins; and facilitating the degradation of misfolded proteins (reviewed in

(Hartl, 1996). Tailless complex polypeptide 1 (TCP-1), a cytoplasmic homologue of

hsp60 chaperonin, forms a hetero-oligomeric torodial complex that is responsible for

folding a specific subset of cellular proteins, including tubulins and actin (Lewis et al.,

1992; Sternlicht et al., 1993).

In vitro, incubation with TCP-1 and ATP is sufficient for both actin and y-tubulin

to achieve a native state (Gao et al., 1992). However, Cowan and colleagues found

that in addition to TCP-1 and ATP, (a- and 3-tubulin require the presence of GTP and of

additional protein cofactors to interact with the tubulin chains before they are

competent to assemble into exogenously added heterodimers (Campo et al., 1994;

Gao et al., 1992; Gao et al., 1993; Tian et al., 1996; Tian et al., 1997). In that assay, ,3-

tubulin released from the chaperone is bound independently by cofactors A or D, and

a-tubulin is bound by either cofactor B or E. The 3-tubulin released from cofactor A

and the a-tubulin released by cofactor B fails to exchange into exogenous

heterodimer as assayed by native gel electrophoresis. Instead, cofactor A and

cofactor B enhance the efficiency the exchange reaction by 90% (see Figure 1-1 and

(Tian et al., 1996; Tian et al., 1997).
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Model for the in vitro tubulin folding assay and S. cerevisiae

cofactor homologues. P-tubulin or a-tubulin is released from the chaperone (eight

subunit toroid) and is bound independently by cofactors A or cofactor D for P-tubulin;

or cofactor B or cofactor E for a-tubulin . The 3-tubulin released from cofactor A and

the a-tubulin released from cofactor B are not competent to exchange into exogenous

heterodimer. The formation of native heterodimer requires that the c(- and P3-tubulin

monomers bind cofactors D and E, respectively. Cofactors D bound to -tubulin and

cofactor E bound to a-tubulin form a quaternar, complex. Finally, cofactor C in a GTP

dependent step mediates the release of the a-P3 tubulin heterodimer.

Introduction

Figure 1-1.
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In yeast, TCP1 and TCP1 related genes are essential and conditional mutations

in the genes encoding TCP1 subunits, TCP1, BIN2, BIN3 and ANC2 exhibit

cytoskeleton defects, including abnormal nuclear distribution, aberrant microtubule

structure, sensitivity to microtubule depolymerizing drugs, (Campo et al., 1994; Miklos

et al., 1994; Ursic and Culbertson, 1991; Ursic et al., 1994; Vinh and Drubin, 1994)

and allele specific interactions with tubulin genes and with actin (Ursic et al., 1994).

Thus, proper folding of tubulin in vivo likely requires the action of the cvtoso!c

chaperonin. More recently, Oka et al., (1998) reported that loss function of hsp70

/Ssal p in S. cerevisiae led to microtubule defects and showed synthetic lethality with

mutations in the gene encoding y-tubulin, TUB4 suggesting that hsp70-hsp40 may

also have a role in y-tubulin biogenesis (Oka et al., 1998). Alice Rushforth has shown

that SSA and SSB co-purify with both a- and -tubulin in vivo (A. Rushforth., personal

communication), and Rbl2p was found to have homology to the "J domain" of DNA

(Llosa et al., 1996). It will be interesting to see if the hsp70 family of heat shock

proteins have a role in a p heterodimer formation.

Homologues of many of the mammalian cofactors involved in the tubulin

folding assay have also been identified in yeast by diverse screens for mutations that

affect microtubule processes. Rbl2p is structurally and functionally homologous to

cofactor A (Archer et al., 1995). Cinl p, the cofactor D homologue, was first identified

in two independent screens for mutation that increase sensitivity to microtubule

depolymerizing drugs (Hoyt et al., 1990) and fidelity of mitotic chromosome

transmission (Steams et al., 1990). Pac2p, the cofactor E homologue was found as a
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genetic interactor with the mitotic motor CIN8 (Hoyt et al., 1997). Only Alf1 p was

identified by virtue of its homology to the mammalian cofactor B rather than in a

genetic screen (Tian et al., 1997). Thus far there is no known S. cerevisiae

homologue of the mammalian cofactor C. However, S. cerevisiae has two additional

proteins CMN2 and CIN4 that were not identified in the in vitro assay. CIN2 and CIN4,

were identified in the same screens that identified CIN1 ; and appear to function with

CIN1 in vivo (Hoyt et al., 1990; Hoyt et al., 1997; Steams et al., 1990). Perhaps in S.

cerevisiae, CIN2 and CIN4 might take the place of the mammalian cofactor C. In vivo,

deletion in any one of these genes- RBL2; ClN's 1,2,4; ALF1; and PAC2; -confers

increased sensitivity to the microtubule depolymerizing drug, benomyl (Archer et al.,

1995; Hoyt et al., 1990; Stearns et al., 1990; Tian et al., 1997). However, the benomyl

supersensitivity of the strains varies depending on the null.

In the in vitro assay cofactor D and cofactor E are essential (Tian et al., 1996;

Tian et al., 1997). In fission yeast, the cofactor D,B,E homologues are required for

viability and mutations in these genes affect cell polarity (Hirata et al., 1998).

However, in budding yeast, none of the gene products that is required for the in vitro

folding assay are essential [Hoyt, 1997 #1833; and unpublished results]. Only under

conditions of stress, such as cold, or in combination with other mutations affecting

microtubules are these gene products essential. There may be redundant functions in

yeast specified by genes as yet undetected, or the in vivo tubulin folding could follow a

different pathway. Thus, the extent to which the in vitro tubulin folding assay is

relevant to the in vivo situation is not clear. Some of the work in this thesis, detailed in

Chapter Two and Chapter Three addresses this question.
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Based on the observation that an excess of Rbl2p is lethal in cells containing a

less stable heterodimer; experiments in chapter three of this thesis, describe how we

have applied RBL2 overexpression to identify non-tubulin genes that influence

heterodimer stability. From that analysis we found that excess Rbl2p is lethal in cells

bearing mutations in CIN1, the cofactor D homologue, and PAC2. the cofactor E

homologue. Our genetic and biochemical analysis demonstrates roles for each in

heterodimer formation.

Tubulin and Microtubule drugs

Tubulin polymerization is affected by various antimitotic drugs that either inhibit

or enhance microtubule polymerization and inhibit cell proliferation. At high

concentrations, drugs such as colchicine, the vinca alkaloids and nocodazole inhibit

polymerization in vivo and in vitro (reviewed in (Jordan and Wilson, 1998)). Other

drugs such as taxol act by stabilizing microtubules against depolymerization (Schiff et

al., 1979; Schiff and Horwitz, 1980).

Only a subset of microtubule drugs affect S. cerevisiae. For example

nocodazole, benomyl and methyl benzimidazole-2yl carbamate (MCB) are known to

cause the depolymerization of yeast microtubules in vivo (Jacobs and Huitorel, 1979;

Kilmartin, 1981; Quinlan et al., 1980) but colchicine does not (Baum et al., 1978). In

addition, yeast microtubules are not sensitive to the microtubule stabilizing drug taxol

(Barnes et al., 1992). Benzimidazole treatment in yeast results in the failure of

microtubule mediated processes such as nuclear division, nuclear migration and

nuclear fusion (Delgado and Conde, 1984; Jacobs et al., 1988).
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Altered sensitivity to benomyl is a phenotype associated with impaired

microtubule function in S. cerevisiae and is often used to suggest that a gene product

is involved in a microtubule related process. Mutations in the a-tubulin genes, TUB1

and TUB3, as well as the P-tubulin gene, TUB2, can confer increased benomyl

supersensitivity (Reijo et al., 1994; Schatz et al., 1988; Stearns and Botstein, 1988). In

addition the tubulin genes, mutations in a number of genes involved in microtubule

morphogenesis are known to be supersensitive to benomyl. Some examples include

mutations in genes encoding: microtubule motors (Cottingham and Hoyt, 1997), mitotic

checkpoints (Hoyt et al., 1991; Li and Murray, 1991), spindle pole body function

(Brachat et al., 1998), centromere function, (Baker and Masison, 1990; Foreman and

Davis, 1993) microtubule associated proteins (Kim et al., 1990; Schwartz et al., 1997),

and tubulin folding (Chen, et al., 1994; Hoyt et al., 1990; Hoyt et al., 1997; Stearns et

al., 1990). Mutations in genes that confer increased resistance to microtubule

depolymerizing drugs are less common. For the most part, mutations that confer

increased resistance to benomyl map to the -tubulin encoding gene, TUB2 (Reijo et

al., 1994; Thomas et al., 1985). However, mutations in genes other than TUB2 have

also been isolated that confer BenR. These irclude: nulls in CDP1, which requires

centromere binding factor I (Cbflp) for viability (Foreman and Davis, 1996), and alleles

of SAC3, isolated as a suppressor of act1-1 (Bauer and Kolling, 1996).

Increased resistance to microtubule depolymerizing drugs can also be acquired

by overexpression of various gene products. For example, the Candida albicans

multidrug resistance gene, BENr, is an efflux pump that confers increased resistance

to benomyl in S. cerevisiae. (Ben-Yaacov et al., 1994). Our laboratory showed that
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overexpression of the 3-tubulin binding proteins, a-tubulin or Rbl2p confers increased

resistance to benomyl in wild-type cells (Archer et al., 1995; Schatz et al., 1986). We

designed a screen to identify genes in S. cerevisiae that confer resistance to benomyl

when overexpressed. In particular, were interested in genes that might be involved in

microtubule assembly. We identified two genes that like Rbl2p and -atubulin confer a

BenR phenotype. These results are described in chapter Four of this thesis.

Finally, in Chapter Five of this thesis I have described some of the ongoing

questions in our laboratory and I have proposed a few experiments that may address

some of these questions.
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CHAPTER 2:

An a-tubulin mutant destabilizes the heterodimer: phenotypic
consequences and interactions with tubulin binding proteins.



INTRODUCTION

Microtubules participate in a variety of specific functions crucial for

morphological differentiation, cell growth, and cell movement. The diversity of these

functions requires that microtubules assemble into quite different structures even

within the same cell. Many of those structures are dynamic, allowing them to

disassemble rapidly and thus provide the components necessary to form another

microtubule organelle. Possible mechanisms for regulation of these processes can be

envisioned at several levels: primary sequences of tubulin genes (Hoyle and Raff,

1990; Joshi and Cleveland, 1989), message stability (Pachter et al., 1987), folding and

dimerization of the protein subunits (Chen et al., 1994; Ursic and Culbertson, 1991),

properties of the polymer (Mitchison and Kirschner, 1984; Saxton et al., 1984), and the

interaction of the polymer with non-tubulin proteins (Caceres and Kosik, 1990;

Dinsmore and Solomon, 1991).

Recently, several diverse experimental approaches have identified proteins that

may participate in tubulin heterodimer formation. In vitro assays for proper folding of

denatured a- and p-tubulins require several protein co-factors that interact transiently

with the individual polypeptide chains (Melki et al., 1996; Tian et al., 1996; Tian et al.,

1997). These complexes of tubulin polypeptides with co-factors may be intermediates

that form in the interim between release of tubulin polypeptide from the TCP1-

containing ring complex (TRiC) and its incorporation into pre-existing heterodimers by

exchange. In at least some cases, those polypeptides form binary or higher order
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complexes with the tubulins that are stable enough to be isolated but are still reactive

(Tian et al., 1997).

Homologs of these cofactors (except cofactor C) are identified by diverse

screens for mutations that affect microtubule processes in budding yeast. The

processes affected include sensitivity to microtubule depolymerizing drugs (Stearns et

al., 1990), fidelity of mitotic chromosome transmission (Hoyt et al., 1990), response to

over-expression of 3-tubulin (Archer et al., 1995), and interactions with mitotic motors

(Geiser et al., 1997). Although most of these co-factors are essential for the in vitro

assay, none of their S. cerevisiae homologs are essential for viability. Therefore, they

may participate in the folding and heterodimerization of tubulin polypeptides, but there

must be pathways that do not depend upon them.

The genetic data alluded to above suggest that there may be multiple steps in

tubulin assembly subject to cellular control. Analysis of tubulin mutants can provide

access to those steps. A panel of a-tubulin mutants cold-sensitive for growth arrest at

their restrictive temperature with diverse microtubule phenotypes (Schatz et al., 1988).

Some of the mutants arrest with no microtubules (class 1), some with a normal

complement of microtubules (class 2), and the rest with an apparent excess of

microtubules (class 3). This variability suggests that the conditional defects in these

mutant a-tubulin proteins can affect different aspects of microtubule assembly and

function. Certain of these mutations are suppressed by specific mutations in -tubulin

(Schatz et al., 1988), and others by extra copies of the mitotic check point BUB genes

(Gu6nette et al., 1995) or by yeast homologues of the mammalian checkpoint gene
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RCC1 (Kirkpatrick and Solomon, 1994). However, there is insufficient structure-

function information for tubulin to permit an understanding of the phenotype in terms of

the tubulin mutation itself.

Another distinction among the tubl mutants is uncovered when they are

assayed in the presence of varying Rbl2p levels. Rbl2p binds -tubulin to form a 1:1

complex (Archer et al., 1998; Melki et al., 1996). Rbl2p binding to P-tubulin excludes

ca-tubulin binding to -tubulin. Four class 1 a-tubulin mutants are synthetically lethal

with deletion of rb12. Two of those are also synthetically lethal with over-expression of

RBL2, but several other class 1, 2 or 3 mutants show no such interactions (see Table

2-1 and Archer et al., 1995).

The present study analyzes and exploits the properties of one of those two

mutants. The tub 1-724 mutation fails to support growth at 180°C, and only partially

supports growth at 25°C, but grow as well as wild type cells at 30°C (Schatz et al.,

1988). The lethality and loss of microtubules at the non-permissive temperature is not

a consequence of degradation of a-tubulin; the steady state a-tubulin levels in these

cells is the same as that in an isogenic wild type control (our unpublished results).

Upon induction of GAL-RBL2, tub1-724 cells at permissive temperature rapidly lose

assembled microtubule structures, and within 20 hours fewer than 0.1% of the cells

are viable (Figure 2-1 and Archer et al., 1995). After 5 hours in galactose, tub 1-724

cells overexpressing Rbl2p lose most of their assembled microtubules (see Figure 2-2

(B) and Archer et al., 1995).
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Table 2-1.
Strains

Synthetic Lethality of RBL2 Overexpression and Null

Allele RBL2Overexpression ARBL2

tub 1-724, -728

tub1-738,-759 +

tub 1-704,-714, + +
-744,-750

tub 1-727,-730,-733, + nd
-74 1,-746,-758

Ability of mutants to grow at permissive temperatures upon induction of

pGAL-RBL2 or in RBL2 nulls. nd = not determined
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Figure 2-1. Synthetic Interaction of RBL2 Overexpression with tubl-724.

Haploid cells contain two plasmid each: either TUB1 or tubl-724 on a CEN plasmid

as their only source of a tubulin, and either GAL-RBL2 or a YCpGAL (control) plasmid.

These strains were grown overnight in selective raffinose media at 30°C. At T=0

hours, galactose was added to 2%. Cell viability equals the number of colonies

arising on glucose plates divided by cell number counted in a light microscope.

An Unstable Tubulin Heterodimer45



TUB1, 

10 20

W - ,r Ir

TUB1, YCpGAL

,I-RBL2

P1-724, pGal-RBL2

30

TIME IN GAL (HOURS)

1

.1

.01

0
C)

-J
uJ

m
-J

.001

.0001
0

tsghl-79 Vt'-A



Figure 2-2. Microtubule disassembly in tub1-724 cells over-expressing

RBL2. tub1-724 cells growing at 30 °C and containing either control (A) or pGAL-

RBL2 (B) plasmids were fixed and processed for anti-tubulin immunofluorescence

after 5 hours in galactose. In control cells, there are a variety of tubulin staining

patterns. n cells overexpressing Rbl2p, large budded cells contain little or no

localized staining.
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The data presented here demonstrate that tubulin heterodimer containing this

mutant a-tubulin protein is less stable than the wild type heterodimer. We use this

property to analyze interactions between tub1-724 and altered levels of two of the

cofactor homologues mentioned above. The results provide a structure-function

correlation for tubulin as well as insight into the cellular activities of the -tubulin

binding protein Rbl2p and the putative (a-tubulin binding protein Pac2p.
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MATERIALS AND METHODS

Strains. Plasmids. and Media

All yeast strains are derivatives of FSY185 (Weinstein and Solomon, 1990) with

the exception of the tub1 mutants (Schatz et al., 1988). We used standard methods for

yeast manipulations (Sherman et al., 1986; Solomon et al., 1992). All the relevant

strains are listed in table2-2.

To construct pLV27- an Aat lI-Sph I fragement of pRB624 containing tub1-724

was ligated into Aat Il-Sph digested YCp50. The plasmids pLV30, 32,36,37,38 were

constructed byin vivo recombintation between the Pvu II digested backbone of pLV27

and the Aat Il-Sph I fragment containing the mutant tub1 allele. pGP2L was

constructed by isolating the Sal I-Not I fragment from pPA45 and inserted into the Sal

I-Not I site of the pGLR vector. pLV56 was constucted by P.C.R. of PAC2 from genornic

DNA the 5' primer was 5' GCAAAACGAATTTCAGAGATAGCATG and the 3' primer

inserts 6 histidine tag and a Not I site with the sequence

5'CTACCGCGGAGCTCTTAGTGATGGTGATGGTGATGGCGGCCGCCCGATGGGCTG

TTAACCTTCTGAATGCTCTTGTTATTTACTGG. The resulting PCR. product was

cloned into pRS316-GAL1 (Liu et al) then a 111 bp Notl fragment containing the triple

HA epitope from B2385 (Fink Lab) was cloned into the Not I site of pLV56. For pLV62,

the Sal I -Sac II fragment from pLV56 was ligated into Sal I -Sac II digested pGLR.

Synthetic Lethality

RBL2 Overexpression - FSY182 (wild type)or haploid strains containing tub 

alleles were transformed with pA5. Transformants on were grown SC-ura-leu, viablity
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assessed by plating strains to glucose and to galactose plates. The cell number and

size of the colonies were assesed by visual inspection in most cases.

Arbl2 - JAY422 (Arbl2 haploid) was crossed to haploid tub1 mutants. The

diploids were sporulated, and dissected. Synthetic interactions were judged by two

criteria: % dead spores and marker analysis (inability to recover tub1 allele + Arb12

products).

Viability measurements and Immunofluoresence

LTY6, LTY1, LTY374, LTY8, LTY376 and LTY11 were grown overnight in SC -

ura -leu raffinose media. Log phase cells were then induced with 2% galactose and at

various time points aliquots of cells were taken and counted using a haemocytometer.

Known numbers of cells were then plated to SC -ura glucose plates. Cell viability was

measured as the percent of counted cells able to form colonies on the SC -ura glucose

plates. At various time points cells were fixed for immunofluorescence in 3.7%

formaldehyde. Anti -tubulin staining was done with #206 (Bond et al., 1986) at

1/2000 in phosphate buffered saline containing 0.1% bovine serum albumin.

Phenotypes of TUBI or tubl-724 heterozygous diploids

Stubl, Atub3 strains containing tub1-724 or TUBI gene on LEU2:CEN

plasmids were crossed to FSY183(wild type) containing YCpGAL, pPA45 or pA5. The

diploid strains were grown to saturation overnight in SC -ura -leu -his glucose liquid

media. The saturated cultures were serially diluted in 96 well dishes, and spotted onto

SC -ura glucose and SC -ura galactose plates.

a-tubulin rescue of tub 1-724 haploids double overexpressors
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FSY157 was transformed with various combinations of pGP2L, pJA3, pRS317,

YCpGAL, and pPA45. Transformants were selected on SC-ura-lys plates. The haploid

cells were grown to saturation overnight in SC-ura-lys glucose liquid media. The

saturated cultures were serially diluted in 96 well dishes, and spotted onto SC -ura-lys

glucose and SC-ura-lys galactose plates at 300C.

Rescue of JAY47

JAY47 (Archer et al., 1995) was transformed with genomic CEN: URA3

plasmids containing TUB1, tub1 alleles or with CEN:URA3:RBL2. Cells were plated to

SC -leu -ura glucose plates at 300°C and to SC -leu-ura galactose plates 30'C, 180C

and 15°C. The number of colonies on galactose relative to glucose was measured.

DNA Sequencing

DNA sequencing was performed using modified T7 DNA polymerase

Sequenase with the dideoxy chain termination method (U.S. Biochemical

Corporation).

Immune techniques

Immunoblots: Standard procedures were used (Solomon et al., 1992). After

gel electrophoresis and transfer to nitrocellulose membranes, we blocked blots with

TNT (0.025M Tris, 0.17M NaCI, 0.05% Tween-20, pH 7.5) for 30-120 minutes. Primary

antibodies were incubated for >12 hours at 1/3500 (#206 or #345; Weinstein and

Solomon, 1990) or at 1/100 (#250 (Archer et al., 1995) and then washed 5 times (5

min. each) in TNT. Bound antibody was detected by 251 Protein A (NEN) or (for

12CA5) 1251 sheep anti-mouse IgG (NEN). Commerical preparations of anti-HA were

used (Boehringer).
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Immunoprecipitations: The procedure described previously (Archer et al. 1995)

was used with slight modifications. The monoclonal antibodies A1 BG7 (anti -) and

B1BE2 (anti-P), raised against the carboxy terminal 12 amino acids of Tubl p and

Tub2p, respectively, were affixed to Affigel-10 beads (BioRad). Yeast strains FSY157

and FSY182 were grown up at 300°C. Total protein was harvested by glass bead lysis

in PME (0.1M Pipes, 2mM EGTA, 1 mM magnesium chloride, pH 6.9) plus protease

inhibitors and was added to antibody beads for one hour incubation with rotation at

4°C. We washed the beads eight times with PME + protease inhibitors. Bound

proteins were eluted by boiling in SDS sample buffer and resolved by SDS-PAGE

analysis.

Purification of His, tagged proteins

The Ni-NTA nickel slurry and column materials were from Qiagen. We used

protocols from the Qiagen handbook and modifications of this protocol that have been

previously described (Magendantz et al., 1995).

In vivo Hisi-Rbl2p--tubulin association experiments

Yeast strains LTY291 and LTY292 are FSY157 and FSY182 transformants with

a CEN pGAL-RBL2-HIS 6 (pGHR). We grew LTY 291 and LTY292 overnight at 30°C in

selective media containing raffinose to about 2X109 cells per experiment. 2%

galactose was added to induce His6-RBL2 expression. After 0,1, and 2 hours protein

was harvested by glass bead lysis in 1 ml PME buffer plus protease inhibitors. We

applied 0.85 mis of protein extract to 1 30ul Ni-NTA beads. We washed and eluted the

bound proteins as previously described (Magendantz et al., 1995). Eluted proteins
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were subjected to SDS-PAGE analysis and probed for ca-tubulin, -tubulin and Rbl2p

and quantitated by densitometry.

In vivo HIS-(HA)-Pac2p-(a-tubulin association experiments

We grew yeast strains LTY539, LTY541, LTY439 and LTY 440 overnight in

selective raffinose media at 30°C. 2% galactose was added to induce Pac2p-(HA)-His6

and a-tubulin or P-tubulin expression. 6.0X109 cells were harvested by glass bead

lysis per experiment in 1.1 ml PME buffer plus protease inhibitors. We applied 1 ml of

protein extract to 25ul Ni-NTA beads. We washed and eluted the bound proteins as

previously described (Magendantz et al., 1995). Eluted proteins were subjected to

SDS-PAGE analysis and probed for a-tubulin, -tubulin and HA(12CA5). For Pac2p,

the bead eluants represent 120x the load of whole cell extract. For a- and -tubulin,

the bead eluants represent 500x the load of whole cell extract.
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TABLE 2-2 Strains and Plasmids
Genotype

a/a; ura3-52/ura3-52, leu2-3,112/leu2-3,112, his3200/his3a200,
lys2-801lys2-801, ade2/ADE2
a; ura3-52; leu2-3,112; his3A200; lys2-801

a; ura3-52; leu2-3,112; his3A200; lys2-801; tubl::HIS3,
Atub3::TRP1 [pRB624]
a; ura3-52; leu2-3,112; his3A200; ys2-801; Atubl::HIS3,
atub3::TRP1 [pRB539]
FSY157 plus YCpGAL

FSY182 plus YCpGAL
FSY157 plus pGHR
FSY182 plus pGHR
FSY1 57 plus pPA45
FSY182 plus pPA45
a/a, ura3-52/ura3-52, leu2-3,112/leu2-3,112, his3A200/his3A200,
Iys2-801/lys2-801, ade2/ADE2, TUB2/TUB2-LEU2-GAL-TUB2
JAY47 plus YCp50O
JAY47 plus A21A
JAY47 plus pLV32
JAY47 plus pAlA5106
JAY47 plus pLV30
JAY47 plus pLV38
JAY47 plus pLV36
JAY47 plus pLV37
a/o; ura3-52/ura3-52; eu2-3,112/leu2-3,112; his3A200/his3A200;
lys2-801/lys2-801; TUB 1/Atub::HIS3, TUB3/Atub3::TRP1;
[pRB539, pA5]
like LTY392 but with pPA45 rather than pA5
like LTY392 but with YCpGAL rather than pA5

a/a; ura3-52/ura3-52; leu2-3,112/leu2-3,112; his3,200/his3A200;
lys2-801/1ys2-801;TUB 1/itub 1::HIS3, TUB3/Atub3:: TRP 1,
[pRB624, pPA45]
like LTY396 but with pA5 rather than pA45
JAY47 plus YCpGAL
JAY47 plus pLV56
like LTY396 but with YCpGAL rather than pA45
FSY183 plus pJA3 and pLV62
FSY183 plus pJA3 and pRS317
FSY183 plus YCpGAL and pLV62

Reference
(Weinstein and
Solomon, 1990)

(Weinstein and
Solomon, 1990)
(Schatz et al.,
1988)

(Schatz et al.,
1988)

(Archer et al.,
1995)
This study
This study
This study
This study
This study
(Archer et al.,
1995)

This study
This study
This study
This study
This study
This study
This study
This study
This study

This study
This study
This study

This study
This study
This study
This study
This study
This study
This study
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Strains
FSY185

FSY183

FSY157

FSY182

LTY8

LTY11
LTY291
LTY292
LTY374
LTY376
JAY47

LTY319

LTY321
LTY323
LTY325
LTY338
LTY340
LTY343
LTY345

LTY392

LTY393
LTY395
LTY396

LTY397
LTY440

LTY439
LTY399
LTY539
LTY541
LTY540

-
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TABLE 2-2

Plasmid Gerotype
YCp50 CEN-URA3

pAlA5106

pA21A
pA5
pGHR
pRB624
pRB539
pPA45
YCpGAL
pLV30
pLV32
pLV36
pLV37
pLV38
pLV56
pLV62
pRS317

TUB1-CEN-URA3

RBL2-CEN-URA3
GAL 1-10-RBL2-URA3
GAL 1-10-HIS6-RBL2-URA3
tub 1-724-CEN-LEU2
TUB1-CEN-LEU2
GAL 1-10-PAC2-CEN-URA3
GAL 1-1O-CEN-URA3
tub1-704 in YCp50O
tub 1-724 in YCp5O
tub 1-737 in YCp50O
tubl-747 in YCp5O
tub1-714 in YCp5O
GAL 1-10-PAC2-HA-HIS6-CEN-URA3
GAL 1-10-PAC2-HA-HIS6-CEN-L YS2
CEN-LYS2

Reference
(Kirkpatrick and F.,
1994)
(Kirkpatrick and F.,
1994)
(Archer et al., 1995)
(Archer et al., 1995)
(Archer et al., 1998)
(Schatz et al., 1988)
(Schatz et al., 1988)
(Alvarez et al., 1998)
(Archer et al. 1995)
This study
This study
This study
This study
This study
This study

This study
(Sikorski and Hieter, 1989)
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Results

A model for the interactions between tub1-724 and altered levies of Rbl2p

We reasoned that the conditional loss of assembled microtubules in class 1 cx-

tubulin mutants, incuding tub 1-724, could arise from cold sensitivity of any of several

steps in microtubule morphogenesis. However, the synthetic lethality of Tub1-724p

with both Rbl2p deletion and over-expression suggest that the mutant defect arises

from a weaker heterodimer. This model is depicted in Figure 2-3. If the heterodimer

formed by the Tubl-724p dissociates more readily than does wild type heterodimer,

the increase in free, undimerized 3-tubulin could be toxic in the absence of the P-

tubulin binding capacity provided by Rbl2p. Conversely, an excess of Rbl2p, which

has only minor phenotypes in a wild type cell, could compete effectively with the

mutant a-tubulin protein for 13-tubulin and so diminish the level of tubulin subunits to

cause loss of microtubules and cell death. The experiments in this chapter present

tests of this model.

Co-immunoprecipitation of a- and 03-tubulin from wild type and tub 1-724 mutant cells

We assessed the stability of the wild type and mutant a-P heterodimers by co-

immunoprecipitation. Extracts from tub1-724 mutant cells and wild type cells grown at

30°C were incubated with antibodies to either (c-tubulin or P-tubulin coupled to Affigel

beads. The beads were washed extensively to remove adventitiously adhering

proteins, and specifically bound proteins were released by SDS. The tubulin chains in
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Figure 2-3. Synthetic lethal interactions between tubl-724 and altered

levels of Rbl2p: a model. Cells expressing tub1-724 as their sole source of a-

tubulin die either when Rbl2p is absent or over-expressed. Those relationships are

explicable if the heterodimer formed by the Tub1-724p (*3) dissociates more readily

than that formed by the wild type Tublp (a:). In the presence of a normal complement

of RBL2, the mutant cells would have a high concentration of free 3-tubulin (REE)'

which may be responsible for the conditional phenotypes of the mutant (e.g. benomyl

supersensitivity). In the absence of Rbl2p, the activity of PF,,EEwould increase to toxic

levels. In contrast, an excess of Rbl2p could bind to -tubulin and so enhance

dissociation of the mutant heterodimer, promoting dissociation to levels below those

necessary for viability.
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A MODEL FOR INTERACTIONS BETWEEN tub 1- 724 AND ALTERED LEVELS OF RBL2 P
II I- I .I

In wild type cells:

RBL2 ca

In tub 1-724 cells:

Rbl2p
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the immunoprecipitates were analyzed by immunoblotting with antibodies to o and P

tubulin. An example of this is shown in figure 2-4. From extracts of wild type cells,

antibodies against each of the tubulin polypeptides co-precipitates the other chain with

high efficiency; the ratio of the tubulins in the co-precipitates is comparable to the

original extracts. This result suggests that under the conditions of tubulin

immunoprecipitation, normal heterodimer largely remains intact. From extracts of

tub1-724 cells, however, the anti-tubulin antibodies complex efficiently with the

specific tubulin chain against which they are directed, but precipitate the other tubulin

chain only poorly.

Because we recover only a small fraction of Tub1-724p heterodimer by

immunoprecipitation, we can not directly compare the stability of the mutant and wild

type heterodimers. We previously established that at least 98% of the f3-tubulin in wild

type cells is in the form of ox-P heterodimer (Archer et al., 1998). Since tub 1-724 cells

grow normally at 300°C, presumably most of the tubulin in those cells is in heterodimer

in vivo. Thus, the dissociation of the heterodimer likely occurs in the course of the

immunoprecipitation itself, which exposes the heterodimer to large dilutions at low

temperature (4°C). Under similar conditions, we showed that the the wild type

heterodimer has a half life of about 10 hours (Archer et al., 1998).

The only difference between the primary sequences of TUB1 and tub 1-724

genes predicts substitution of threonine for arginine at codon 106 (AGA becomes

ACA) (data not show). Arginine-106 is a highly conserved residue among a-tubulins.

The single mutation in Tubl-724p predicted from DNA sequence is loss of a positive
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Figure 2-4. a- and - tubulin co-immunoprecipitate with low efficiency

from tub1-724 cells. Immunoblots with anti-a-tubulin (top row) and anti-3-tubulin

(bottom row) of whole cell extracts (WCE) and the precipitates with the two antibodies

(alP, PIP) from wild type TUBI or mutant tub1-724 cells.
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charge at position 106. Based upon the structure of tubulins reported by Nogales and

her colleagues (Nogales et al., 1998), this residue occurs in the region between the B3

and H3 loops that contact the phosphates of the non-exchangeable GTP. That site is

at the postulated interface between a- and -tubulin in the heterodimer. The wild type

arginine at this position probably contributes to phosphate binding, and so may

indirectly participate in a(-1 interactions.

Formation of Rbl2p-3-tubulin complex in wild type and tub1-724 mutant cells

Rbl2p is complexed with 3-tubulin in vivo, and the level of that complex

increases as the cellular level of Rbl2p increases (Archer et al., 1998; Archer et al.,

1995). The model presented in figure 2-3 predicts that over-expressed Rbl2p will form

a complex with -tubulin more readily in tub1-724 cells than in wild type cells. To test

that possibility, we introduced a plasmid encoding His6-Rbl2p under the control of the

galactose promoter into wild-type TUB1 cells or tub1-724 mutant cells. The

transformants were grown at the permissive temperature for the mutant in non-

inducing medium, and then were shifted to inducing medium containing galactose for

1 or 2 hours. We used nickel-agarose beads to purify the His6-Rbl2p -- tubulin

complex. The bound proteins were eluted and analyzed by immunoblotting with

antibodies against a-tubulin, -tubulin or Rbl2p. As expected, the levels of His6-Rbl2p-

,3-tubulin complex increase upon induction in both control and mutant cells, but as

shown in figure 2-5 (A,B); 3-5 fold more complex forms in tub1-724 cells relative to

wild type. In these experiments, we detect only a trace of a-tubulin bound to the nickel
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Figure 2-5. The Rbl2p-P-tubulin complex in vivo is enhanced in tub1-

724 cells. (A) Cells growing in raffinose ("O hours") were induced with galactose to

express His6-Rbl2p for 1 or 2 hours. His6-Rbl2p was isolated by affinity

chromatography of the whole cell extracts, the levels of -tubulin in the original extract

and bound to Rbl2p assayed by immunoblotting. (B) The results are the averages of

two independent experiments as in (A) for each strain and time point with the ranges

indicated by error bars. In both of these experiments, the wild type strain produced

slightly more His6-Rbl2p upon induction (our unpublished results). black bars, TUBI

cells; grey-bars, tub1-724 cells.
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columns, and its level does not increase with time in galactose (Archer et al., 1998 and

our unpublished results). This result suggests either that Rbl2p competes more

efficiently with Tubl-724p than with wild type a-tubulin for binding to P-tubulin in vivo,

or that there is a greater pool of free -tubulin available for binding to Rbl2p in the

tubl-724 mutant (see Discussion). Either possibility is consistent with Tubl-724p

forming a less stable heterodimer with -tubulin than wild type a-tubulin.

Rescue of B-tubulin lethality by wild type and mutant a-tubulins

An excess of either ca-tubulin or Rbl2p rescues cells from -tubulin lethality

(Archer et al., 1995; Alvarez et al., 1998); the rescue likely depends upon the ability of

these two proteins to bind 0-tubulin. Even a modest excess of c-tubulin, expressed

under the control of its own promoter from a low-copy plasmid, increases the survival

of cells over-producing -tubulin by 2-3 orders of magnitude. If Tub1-724p binds P-

tubulin with low affinity, we would expect it to rescue -tubulin lethality poorly. To test

this hypothesis, wild type or mutant alleles of ca-tubulin were introduced into JAY47, a

diploid strain with a normal complement of tubulin genes plus a third, integrated copy

of the -tubulin gene TUB2 under the control of the galactose promoter. We

measured the percent survivors on galactose relative to glucose at both the permissive

(300°C) and the non-permissive temperature (180 C). As shown in Table 2-3 rescue of

P-tubulin lethality by tubl-724 is substantially less efficient (0.84%) than by wild type

TUB1 (15.4%). The efficiency of rescue is further diminished at the non-permissive

temperature for the mutant: at 180°C, tub1-724 rescues -tubulin lethality (0.06%) to

essentially the same extent as the negative control (0.03%). In contrast, four other

mutant a-tubulins rescue at levels comparable to that of the wild type, and their
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Table 2-3. Rescue of excess -tubulin lethality by ca-tubulin alleles

Plasmid 30°C 18°C

YCpGAL .04 .03

RBL2 6.8 7.2

TUB 1 12.0 15.4

tub 1-724 .84 .06

tub1-704 10.9 18.9

-714 14.0 20.0

-737 4.1 8.5

-747 11.8 21.0

JAY47 cells, which contain an integrated GAL-TUB2 gene, carrying the indicated ~a-

tubulin alleles on plasmids are plated to media containing either galactose or glucose

and incubated at either 30°C or 180C. Rescue is reported as the percent of cells the

form colonies on galactose plates compared to glucose plates.
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Cold sensitivity of TUB1/tub1-724 heterozygotes and their suppression by excess

Rbl2p.

The tub1-724 phenotype is not completely suppressed in a heterozygote with

TUB1. A diploid strain containing only single chromosomal copies of TUBI and TUB3

plus a low copy plasmid expressing tub1-724 is cold sensitive for growth at 18°C. In

contrast, heterozygotes containing TUBI and other tub1 mutants show the same

temperature sensitivity as do wild type cells (our unpublished results). The conditional

growth of TUBl/tubl-724 heterozygotes must reflect a property of the mutant

heterodimer, rather than a deficiency in tubulin levels, since diploid cells with only

50% of their wild type complement of tubulin are wild type for growth at low

temperatures (Katz et al., 1990).

We hypothesized that the cold sensitivity of these TUBl1/tub1-724 heterozygous

cells is due to the free -tubulin produced by dissociation of the mutant heterodimer

(see model in Figure 2-6 (A). Consistent with that explanation, the cold sensitivity of

the heterozygotes is substantially suppressed by overexpression of RBL2 from the

galactose promoter as shown in figure 26 (B). The presence of excess Rbl2p can

bind the free -tubulin and so protect the cell from its deleterious consequences. This

result is in striking contrast to the lethal effect of GAL-RBL2 in cells expressing tub 1-

724 as their sole source of a-tubulin (see Figure 2-1).
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Figure 2-6 Rbl2p overexpression in TUB 1/tubl-724 heterozygous cells.

(A) Model: TUB1/tubl-724 heterozygous cells contain both , wild-type (od) and mutant

(ax*) heterodimers . At 18°C, a restictive temperature for the mutant a-tubulin allele,

the mutant (a*3) heterodimers will tend to dissociate resulting in excess free 13 tubulin

(P3ree) and sickness in these cells. Overexpression of Rbl2p can bind to the (
3 Free) and

rescue these cells from P-tubulin toxicity. (B) Over-expression of RBL2 suppresses

TUB1/tubl-724 heterozygous cells. Serial (four-fold) dilutions of saturated cultures

were plated to galactose containing media, and allowed to grow at 18°C. The cells

were either wild type diploids or TUBlltub1-724 cells; carrying either YCpGAL or CEN-

GAL-RBL2.
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Model for tubl-724/TULB1 interactions with increased levels of Rbl2p
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Over-expression of PAC2 in tub 1-724 cells

Pac2p is a candidate for an -tubulin binding protein in yeast. It is the homolog

of cofactor E in the in vitro system described above. Cofactor E plays an essential role

in this assay: it is believed to bind to (a-tubulin after its release from the TriC complex

(Tian et al. 1997). This binary complex is then thought to form a quaternary complex

with cofactor D and -tubulin. The cofactor E-a-tubulin complex is rather unstable, and

is detectable on native gels only after it is stabilized by glutaraldehyde fixation.

The S. pombe homolog of cofactor E is essential in vivo (Hirata et al., 1998). In

budding yeast PAC2 is not essential but mutations in pac2 affect microtubule

functions. pac2 mutations are super-sensitive to benomyl (Hoyt et al. 1997). It is

required in cells deleted for cin8, which encodes a kinesin-related protein that

participates in anaphase (Geiser et al., 1997), or deleted for paclO (Alvarez et al.,

1998.), which affects ratios of a-tubulin to -tubulin (Alvarez et al., 1998.; Geissler et

al., 1998).

If Pac2p is an -tubulin binding protein, we would predict that at elevated levels

it would be deleterious to cells containing the unstable tubl-724 heterodimer. As

shown in figure 2-7, induction of GAL-PAC2 in haploid tub1-724 cells grown at

permissive temperature (30°C) causes rapid loss of viability, down 10-fold in

approximately 3 hours. In contrast, GAL-PAC2 has only a modest effect on the

viability of wild type cells (figure 2-7). In that time, the induction of GAL-PAC2 causes

microtubule disassembly in the mutant (figure 2-8 [B]), but not in wild type cells (figure

2-8 [C]); representative micrographs are shown in figure 2-8 . From such fields, we

An Unstable Tubulin Heterodimer71



Figure 2-7. Over-expressing PAC2 is lethal in tub1-724 cells.

tub1-724 (triangles) and wild type (squares) containing either control plasmid (open

symbols) or GAL-PAC2 (filled symbols) cells growing at 300C were shifted to galactose

containing media at 0 time, and aliquots taken at intervals and scored for total cells

and viable cells.
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Figure 2-8. Microtubule disassembly in tub1-724 cells over-expressing

PAC2. Anti-tubulin immunofluorescence of tubl-724 cells containing the control

plasmid YCpGAL (A), or a CEN-GAL-PAC2 (B); and wild type cells containing a CEN-

GAL-PAC2 plasmid (C). Cultures were grown in galactose for 3.5 hours before

fixation for immunofluorescence.

An Unstable Tubulin Heterodimer74



A.

B.

C.



find that overexpression of PAC2 increases the proportion of tub 1-724 cells that have

no microtubules by 10-fold (53.2% versus 5.4%) but has no effect on wild type cells

(10.1% for both strains).

Effect of elevated Pac2p levels in tubl-724 heterozygotes

Both phenotypes of elevated Pac2p levels on tub1-724 haploid cells are the same as

produced by elevated levels of Rbl2p (compare 2-1; 2-7 and 2-2 ; 2-8 and Archer et al.,

1995). Therefore, these results could represent Pac2p binding to either 3-tubulin or a-

tubulin. However, the effect of GAL-PAC2 expression in TUB1/tub1-724 heterozygotes

does distinguish between these two possibilities. As shown in figure 2-9 , over-

expression of PAC2 in the heterozygotes causes a significant loss of cell viability at the

permissive temperature. This result contrasts with that shown in figure 2-6 above,

showing that over-expression of RBL2 actually suppresses the phenotype of the

TUB 1/tub 1-724 heterozygotes.

These results are explicable if the Tub1-724p-3-tubulin heterodimer is relatively

unstable (see figure 2-3). The increased levels of an a-tubulin binding protein might

be expected to increase free -tubulin to toxic levels in both tub 1-724 haploids and

TUB l/tub 1-724 heterozygotes. This outcome is in contrast to the effect noted for

excess Rbl2p in the heterozygotes, where the increased capacity to bind f3-tubulin

would be expected to reduce its levels and so suppress the TUB1/tubl-724

phenotypes. Taken together, these results suggest that Pac2p can bind to a-tubulin in

vivo, and so are consistent with the conclusion of the in vitro experiments (Tian et al.,

1997).
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Figure 2-9. Over-expression of PAC2 is lethal in TUB1/tubl-724

heterozygous cells. Serial (four-fold) dilutions of saturated cultures were plated to

galactose containing media, and allowed to grow at 30°C. Strains were wild type

diploids or TUB1/tub 1-724 cells containing either YCpGAL or CEN-GAL-PAC2.
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Isolation of a Pac2p-a-tubulin complex

To demonstrate directly a Pac2p-a-tubulin complex, we used a form of Pac2p

that contains the HA tag followed by 6 histidines at its carboxy terminus. This modified

allele is functionally indistinguishable from wild type Pac2p in both Apac2 and tub1-

724 cells (our unpublished results). We can isolate a complex containing ca-tubulin

and Pac2p-(HA)-His6 from extracts of cells over-expressing both proteins (figure 2-10,

lane c); no P3-tubulin is detected in this complex. We can not detect this complex

unless both Pac2p and a-tubulin are overexpressed. In contrast, over-expression of

both Pac2p and 3-tubulin does not produce a complex between those two proteins

(figure 2-10, lane g). These results support the conclusion that Pac2p can bind cX-

tubulin in vivo. Over-expression of Pac2p-(HA)-His 6 alone in tub1-724 cells does not

produce measurable levels of the Pac2p-a-tubulin complex (our unpublished results).

Co-overexpression of a-tubulin suppresses the synthetic effects of Pac2p

overexpression in tubl-724.

We tested the ability of a-tubulin to rescue the lethal effects of Pac2p

overxpression in tub1-724 cells. As expected, we found that co-overexpression of

GAL-TUB1 is able rescue tub1-724 haploid (see Figure 2-11) and TUB1/tubl-724

heterozygous cells (data not shown) from the lethal effects of overproduction of

Pac2p.
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Figure 2-10. Binding of a-tubulin to Pac2p-(HA)-His 6 in double over-

expressing cells. Whole cell extracts (lanes a, b, e, f) and eluants from nickel

agarose beads (lanes c, d, g, h) were analyzed by SDS-PAGE and immunoblotting for

HA-tagged Pac2p, a-tubulin and -tubulin. The fractions were from cells

overexpressing Pac2p-(HA)-His6 and a-tubulin (a, c), Pac2p-(HA)-His6 and -tubulin

(e, g); a-tubulin alone (b, d); or P-tubulin alone (d, h). For Pac2p, the bead eluants

represent 120x the load of whole cell extract. For ca- and -tubulin, the bead eluants

represent 500x the load of whole cell extract.
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Figure 2-11. Co-overexpression of a-tubulin rescues Pac2p lethality in

tub-724 cells. Serial (five-fold) dilutions of saturated cultures were plated to

galactose containing media, and allowed to grow at 300C. From left to right: tub1-724

cell containing YCpGAL and pRS317 (control); CEN-GAL-PAC2-URA3 and pRS317;

CEN-GAL-PAC2-L YS2 and YCpGAL; CEN-GAL-PAC2-L YS2 and CEN-GAL-TUB 1 -

URA3; CEN-GAL-PAC2-L YS2 and CEN-GAL-TUB -URA3; CEN-GAL-TUB 1 -URA3

and pRS317.
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DISCUSSION

A tubulin mutation that affects heterodimer stability

tub 1-724 is one of a set of ao-tubulin mutants generated by chemical

mutagenesis and selected on the basis of their conditional growth at low temperature.

Because of the familiar cold lability of microtubules evident both in vivo and in vitro, a

reasonable prediction might have been that mutants so selected would arrest because

their microtubules were especially cold labile at temperatures permissive for wild type

cells. Instead, only a subset of the mutants arrest with no microtubules; the others

have at least normal complements of assembled tubulin.

Here we have characterized the properties of the protein encoded by one of the

mutants that arrest with no microtubules, tub1-724. We previously showed that cells

expressing only this a-tubulin allele are dead when Rbl2p is either over-expressed or

absent. Since Rbl2p is a P-tubulin binding protein, we hypothesized that these lethal

interactions could reflect an unstable heterodimer formed by Tubl-724p (Figure2-3).

Several of the experiments presented above demonstrate that the mutant heterodimer

does act as if it were unstable relative to wild type. The mutant heterodimer does not

remain intact in vitro during immunoprecipitation. Similarly, in vivo the mutant

heterodimer reacts more readily with excess Rbl2p to produce Rbl2p-P-tubulin. An

alternative measure of Tubl-724p binding to -tubulin is manifest in its inability to

rescue cells from 13-tubulin overexpression even at permissive temperature for the

mutant (Table 2-3); success in that assay most likely depends upon the ability of the xa-
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tubulin protein to bind P-tubulin. These results indicate that Tubl-724p has a reduced

affinity for -tubulin. However, the normal growth of the mutant cells requires that most

of its tubulin be in heterodimers, rather than as free a- and f3-tubulin. We previously

showed that the microtubules in 50% of cells overproducing 3-tubulin are completely

depolymerized when -tubulin levels are 1.4-fold greater than wild type (Weinstein

and Solomon, 1990).

A weaker heterodimer could readily explain the arrest phenotype of tub 1-724

cells. At the restrictive temperature, increased dissociation of the mutant heterodimer

could be lethal either by decreasing the level of heterodimer below that necessary to

maintain microtubules or by increasing the level of undimerized -tubulin, which in

turn causes microtubule disassembly and cell death even at modest excess (Katz et

a., 1990; Weinstein and Solomon, 1990).

The single mutation in Tubl-724p predicted from DNA sequence is loss of a

positive charge at position 106. Based upon the structure of tubulins reported by

Nogales and her colleagues (Nogales et al., 1998), this residue occurs in the region

between the B3 and H3 loops that contact the phosphates of the non-exchangeable

GTP. That site is at the postulated interface between a- and 3-tubulin in the

heterodimer. The wild type arginine at this position probably contributes to phosphate

binding, and so may indirectly participate in a-3 interactions. Further analysis to

understand the physical properties of mutations in this region are underway.

An Unstable Tubulin Heterodimer85



This analysis of Tubl-724p provides insight into the primary molecular defect

that explains the mutant phenotypes. In general, the defects of mutant tubulins are

largely understood in terms of the arrest phenotype rather than their execution point.

For example, mutations in yeast -tubu!in can selectively affect a subset of

microtubules (Sullivan and Huffaker, 1992), or cause cells to become benomyl

dependent (Huffaker et al., 1988). Similarly selective tubulin mutations have been

identified in other organisms as well (Oakley and Morris, 1980). However, the precise

molecular basis for the defective arrest phenotype is not yet understood. A possible

exception is the disruption produced by substitution of lysine for the highly conserved

glutamate at position 288 in the Drosophila 32 protein; this mutation causes an

apparent packing defect, so that the protofilaments do not close to form a tubule (Fuller

et al., 1987). However, the same substitution in yeast -tubulin has no apparent effect

(Praitis et al., 1991). The generalizability of the mutation found in Tubl-724p also

requires further testing.

Genetic interactions between tub 1-724 and PAC2

Instability of the Tub1 -724-p-tubulin heterodimer predicts that over-expression

of an a-tubulin binding protein should be deleterious to tub 1-724 cells, perhaps by

producing more toxic free -tubulin in the mutant cells. The work of Tian et al. (Tian et

al., 1997) suggests the vertebrate homolog of the yeast protein Pac2p binds ct-tubulin.

As predicted, over-expression of PAC2, is lethal in tub1-724 cells, and causes loss of

all assembled microtubules. Consistent with this result, we can recover a complex

containing Pac2p and a-tubulin from double over-expressing cells. These results
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demonstrate for the first time that Pac2p can bind a-tubulin in vivo. This result does

not distinguish among many possible functions for PAC2. It may act as does cofactor

E in the in vitro assay, facilitating the incorporation of ac-tubulin into heterodimers (Tian

et al., 1997), but it is not essential for that reaction since PAC2 is not an essential gene

in vivo (Hoyt et al. 1997). pac2 is synthetically lethal with other microtubule mutants

- Acin8 (Geiser et al., 1997), ApaclO (Alvarez et al., 1998.), and tub1-724 (unpublished

results).

Regulating microtubule function

The first analyses of microtubules at a molecular level focused on protein

factors that could be responsible for assembly in an in vitro reaction. It is striking that

so many of the genes which appear to affect microtubules in vivo almost certainly do

not participate in the polymerization reaction itself. In this sense, the CIN genes (Hoyt

et al., 1990; Stearns et al., 1990), the PAC genes (Geiser et al., 1997), the GIM genes

(Geissler et al., 1998) and the RBL genes (Archer et al., 1995), although identified - in

some cases more than once - by a wide variety of approaches, have fundamental

properties in common. They are not essential for cell viability in budding yeast, and

their deletion does not confer a quantitative defect in microtubule assembly.

Conversely, their over-expression does not increase the level of assembly, as could

be expected for a modulator of microtubu'e assembly. For only one of these proteins -

alp 1, a CIN1 homolog in fission yeast - is there evidence suggesting that it binds

along the length of the microtubule (Hirata et al., 1998).
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A role for these proteins arises from the in vitro system for incorporating

separated tubulin chains into heterodimer. Alone among proteins that have been

analyzed in such assays, the tubulin polypeptides appear to require factors that act

after release from the chaperonin. Without those factors, there is no exchange of

newly folded polypeptide with the exogenously added heterodimer. Some of the

protein factors are homologous to gene products in S. cerevisiae and S. pombe that

affect microtubule functions, and in S. pombe some of them are essential (Hirata et al.,

1998). That they are not essential in S. cerevisiae, however, suggests that there must

be other mechanisms for folding tubulin and forming heterodimer in those cells.

These proteins may also have alternative functions. Rbl2p levels affect how

cells survive alterations in the ratios of (- to 3-tubulin (Archer et al., 1995). Levels of

Pac10Op and the GIM genes affect those ratios (Alvarez et al., 1998.; Geissler et al.,

1998). It is clear that yeast cells are sensitive to those ratios. These proteins may

participate in maintaining proper balance of the tubulin components, which may

become an important step especially under times of stress. Such a role could help

explain why expression of RBL2 mRNA increases when cells are incubated with a

microtubule depolymerizing drug (Velculescu et al., 1997), although there is no

evidence that the tubulin chains themselves are expressed in greater amounts. The

results from these several approaches suggest that the early steps of microtubule

morphogenesis may be crucial for cell function.
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CHAPTER 3:

Tubulin Heterodimerization in vivo



INTRODUCTION

The spatial and temporal control of microtubule assembly is an essential aspect

of many cellular functions, including division, motility, and organization of the

cytoplasm. The development of a robust in vitro assembly reaction of microtubule

polymers from heterodimeric subunits of a- and 3-tubulin has had a major impact on

the field. That assay led to identification of factors - structures, proteins, and small

molecules - which influence the extent and organization of microtubule assembly.

Reverse genetic techniques have enabled evaluation of the relevance of some of

those factors to in vivo conditions. Surprisingly, such experiments have revealed that

proteins that are required for the in vitro assembly reaction are not essential in vivo.

In principle, conventional genetic approaches should identify genes that are

relevant to cellular microtubule function. Indeed, such screens have identified

functions that directly modulate the assembly of subunits into microtubules

(Pasqualone and Huffaker, 1994). What is notable, however, is the growing list of

gene products that affect microtubule-dependent processes but do not interact directly

with the polymer. For example, several genes that affect chromosome instability (Hoyt

et al., 1990), sensitivity to microtubule depolymerizing drugs or excess -tubulin

(Archer et al., 1995; Stearns et al., 1990), dependence upon a mitotic motor (Geiser et

al., 1997), cell polarity (Hirata et al., 1998), y-tubulin function (Geissler et al., 1998) or

phenotypes of tubulin mutants (Vega et al., 1998) encode proteins that must act on

microtubule control at some step other than the polymerization reaction.
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It is also striking that the screens enumerated above have, despite their diverse

designs, frequently identified the same genes. For example, certain CIN

(Chromosome INstability) genes affect not only chromosome instability and sensitivity

to benomyl - the contexts in which they originally were identified - but also yeast cells'

ability to function without the kinesin Cin8p (Geiser et al., 1997). Similarly, mutations

in the PAC genes perish in the absence of Cin8p, but some also participate in cellular

responses to excess 3-tubulin and to y-tubulin function (Alvarez et al., 1998; Geissler

et a., 1998).

Mammalian homologues of some of these proteins also have been identified as

essential factors in an in vitro reaction that mediates formation of up-tubulin

heterodimers from the unfolded individual polypeptides (Gao et al., 1994; Gao et al.,

1992; Gao et al., 1993; Melki et al., 1996; Tian et al., 1996; Tian et al., 1997). Under

the conditions of this reaction, the tubulin polypeptides released from the chaperonin

complex are not competent to exchange efficiently into pre-existing heterodimers (Tian

et al., 1997). Instead, a series of five factors are necessary to interact with monomeric

(a- and -tubulin, and then to bring them together in a large complex that is the direct

precursor of heterodimer (Tian et al., 1997). Four of those factors have homologues in

budding yeast, three identified by independent genetic investigations - CIN1 (Hoyt et

al., 1990; Steams et al., 1990), RBL2 (Archer et al., 1995) and PAC2 (Geiser et al.,

1997) - and a fourth, ALF1, identified by its homology to the vertebrate protein (Tian et

al., 1997). That none of these proteins is essential in S. cerevisiae suggests that the in

vitro assay can not fully represent the early part of the in vivo pathway of microtubule
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assembly. Even with that caveat, the in vitro assay strongly suggests in vivo activities

for these proteins.

The RBL2 (Rescue excess tubulin Lethality) gene has properties that make it

particularly valuable for exploring the processing of tubulin polypeptides in vivo. Over-

expression of Rbl2p effectively rescues cells from the microtubule disassembly and

cell death phenotypes of excess 3-tubulin (Archer et al., 1995). Like its mammalian

homolog cofactor A in vitro (Melki et al., 1996) Rbl2p binds 3-tubulin both in vivo and

in vitro to form a heterodimer that excludes a-tubulin (Archer et al., 1995; Archer et al.,

1998). Unlike cofactor A, which binds only to a form of P-tubulin that is not competent

to bind a-tubulin, Rbl2p can bind to 0-tubulin molecules both before and after they

have been incorporated into heterodimer (Archer et al., 1998). RBL2 is not essential

for mitotic growth but is essential for normal meiosis and normal resistance to

microtubule depolymerizing drugs. In addition, its synthesis may be up-regulated at

the G2/M stage of the cell cycle, when -tubulin expression is apparently unchanged

(Velculescu et al., 1997).

These properties suggest that Rbl2p functions may affect processes other than

folding of 0-tubulin. Analysis of genetic interactions of Rbl2p has helped to identify

those processes. For example, rbi2 deletion makes PAC10 essential; PAC 10

regulates the ratio of a- to -tubulin (Alvarez et al., 1998). Conversely, overexpression

of RBL2 is lethal in cells expressing a mutant a-tubulin that makes a weaker (a-tubulin

heterodimer (Chapter Two and Vega et al., 1998) .
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In this study, we have applied RBL2 overexpression to identify non-tubulin

genes that influence heterodimer stability. We show here that null mutations in both

CIN1 and PAC2 are synthetically lethal with excess Rbl2p. Both mutations enhance

the formation of the Rbl2p-3-tubulin complex, which may deplete the pool of

heterodimer and so cause cell death. The data presented here indicate that the effects

of Cin p and Pac2p are a consequence of their ability to promote heterodimer

formation.
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MATERIALS AND METHODS

Strains, Plasmids. and Media

All yeast strains are derivatives of FSY185 (Weinstein and Solomon, 1990) with

the exception of the tubi mutants (Schatz et al., 1988). We used standard methods for

yeast manipulations (Schatz et al., 1986; Solomon et al., 1992). All the relevant

strains are listed in Table 3-1.

Screen for erl mutants

Wild-type cells containing pGAL-RBL2:URA3:CEN (pA5) were mutagenized

with ethyl methanesulfonate (EMS) to 25% survival. The mutagenized strains were

grown in YPD media for four hours. The cells were frozen at -70°C in 25% glycerol.

Cells were plated from frozen stocks to SC -ura glucose plates (-200/plate) and after

-40 hours growth were replica plated to SC -ura galactose plates. Replica plated

colonies that were unable to grow on galactose were retested by streaking to SC -ura

galactose and SC -ura raffinose plates. Cells unable to grow on galactose were

streaked to SC 5-fluoroorotic acid (5-FOA) plates to select for loss of the plasmid.

Positive erl (enhancer of Rb12p lethality) mutants were able to grow on galactose after

loss of the pA5 plasmid, but were unable to grow on galactose after retransformation

with the same pA5 plasmid.

Construction of CIN1 and PAC2 knockout

The primers, 5'-GCACGACGTCGATAATATTTTT IGGAAAGAACGCC and 5'-

GCAGAGATCTGTTGATCGCGGCAATCGTCTGTTGGTGC were used to amplify DNA

in the 5' UTR of CIN1. The primers 5'-

GACCGTCGACGAGATAAAGAAATGCGGAATGAAGC and 5'-
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GACCGCATGCGAGATAAAGAAATGCGGAATGAAGC were used to amplify DNA in

the 3' UTR of CIN1. The PCR products from these primers were ligated into pNKY51

(Alani et al., 1987) on opposite ends of the hisG-URA3-hisG sequence. The plasmid

was digested with Aatll and Eagl and the CIN1 5' UTR-hisG-URA3-hisG -CIN1 3' UTR

DNA fragment was isolated (Quaiex II from Quiagen) after electrophoresis on a 1%

agarose gel. This DNA was then transformed into FSY185 to create a disruption of the

entire CIN1 open reading frame. The disruption was confirmed by Southern blot

analysis of the diploids and of their haploid segregants, and by the phenotypic

analysis of the haploid segregants. To disrupt PAC2 pPA14 containing 1050 bp of 5'

PAC2 UTR and 800 bp of 3' PAC2 UTR (Alvarez et al., 1998) joined together at a

BamHI site in pGEM (Promega, Madison, WI) was digested. The BamHI-Bglll fragment

containing hisG-URA3-hisG from PNK51 was cloned into the BamHI site of digested

pPA14. The resulting plasmid pLV59 was digested with Bglll and Notl to release a

5.7kb disruption fragment to transform FSY183. The disruption was confirmed by PCR

analysis.

Viability measurements

JFY203 (cin 1 containing pA5), JFY3 (wild-type containing pA5) and LTY500

(Apac2 containing pA5) were grown overnight in SC -ura raffinose media. Log phase

cells were then induced with 2% galactose and at various time points aliquots of cells

were taken and counted using a haemocytometer. Known numbers of cells were then

plated to SC -ura glucose plates. Cell viability was measured as the percent of cells

able to form colonies on the SC -ura glucose plates.
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In vivo His,-Rb1l2p-3-tubulin association experiments

Yeast strains LTY503(Apac2), JFY253(Acin1) and LTY573 (wild-type)

containing a GAL-RBL2-HIS6 plasmid (pGHR) were grown overnight at 300°C in

selective media containing raffinose to about 2X109 cells per experiment. 2%

galactose was added to induce His6-RBL2 expression. After 3 hours protein was

harvested by glass bead lysis in 1 ml PME buffer plus protease inhibitors. We applied

0.85 ml of protein extract to 50ul Ni-NTA beads (Qiagen). We washed and eluted the

bound proteins as previously described (Magendantz et al., 1995). Eluted proteins

were subjected to SDS-PAGE analysis and probed by immunoblotting for a-tubulin, 3-

tubulin and Rbl2p.

Immune Techniques

Immunoblots: Modifications of standard procedures (Solomon et al., 1992)

were used to assay for Rbl2p-His6-3-tubulin association. After gel electrophoresis and

transfer to nitrocellulose membranes, we blocked with TNT (0.025M Tris pH 7.5, 0.17M

NaCI, 0.05% Tween-20) for 30-120 minutes. Primary antibodies were incubated for

>12 hours at 1/3500 (#206 or #345; (Weinstein and Solomon, 1990)) or at 1/100 (#250

(Archer et al., 1995) and then washed 5 times (5 min. each) in TNT. Bound antibody

was detected by 1251 Protein A (NEN).

In other experiments, after gel electrophoresis (as above), we blocked with milk

(5% Carnation) TBST (0.05M Tris pH8.0, 0.15M NaCI, 0.1% Tween-20) overnight.

Primary antibodies were incubated for 1-2 hours 1/3500 fo 206 and #345 and at

1/5000 for 12CA5 (Boehringer) in milk TBST. The blots were washed 6 times (two 20
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sec, one 15 min, three 5 min) in TBST alone. Blots were incubated with 1/3000

dilutions of horseradish peroxidase conjugated goat anti-rabbit (Jackson

ImmunoResearch) for #206 and #345 and horseradish peroxidase conjugated rabbit

anti-mouse (Jackson ImmunoResearch) for 12CA5, in milk TBST, washes were done

in TBST as above, and detected by chemilumenescence (Renaissance NEN).

Immunofluorescence: We used standard techniques (Solomon et al., 1992).

Primary antibody was #206 (anti-p-tubulin) and secondary antibody was fluorescein

conjugated goat anti-rabbit IgG (Cappel). DAPI (Boehringer Mannheim) was used to

visualize DNA.

Sensitivity to 0B-tubulin overexpression

We crossed Acin I or Apac2 strains with a haploid derivative of JAY47

containing TUB2-GAL-TUB2-LEU2 allele. The resulting diploids were sporulated and

haploids that were Acinl or Apac2 and contained the TUB2-GAL-TUB2-LEU2 allele

were obtained. The Apac2, TUB2-GAL-TUB2-LEU2 were covered with pLV63

(LTY558) or with the control plasmid pRS313 (LTY559). The Acinl, TUB2-GAL-TUB2-

LEU2 cells were covered with p18C (JFY238) or with the control plasmid pCT3

(JFY236). To test the sensitivity of these strains to -tubulin overexpression, we grew

up LTY558 and LTY559 in liquid SC -his-leu raffinose, and JFY236 and JFY238 in

liquid SC -ura-leu raffinose or. -tubulin overexpression was induced by adding

galactose to 2%. At various time points aliquots of cells were taken and counted using
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a haemocytometer. Known numbers of cells were then plated to SC-his-leu or SC-

ura-leu glucose plates. Cell viability was measured as above.

Analysis of a-tubulin mutations synthetic lethal with Acin and Apac2

Acin Atubl Atub3 (JFY474) or Apac2 Atub 1 tub3 (LTY479) strains containing

a plasmid with a genomic copy of TUB1 on a URA3 CEN vector or TUB3 on a URA3

2um vector, respectively were transformed with LEU2 CEN plasmids containing the

various a-tubulin mutations. The strains containing both the wild type and a mutant

form of TUB1 were grown on 5-FOA plates to select for cells that have lost the wild type

(-tubulin plasmid, since 5-FOA kills URA3 but not ura$ cells. Apac2 or Acin 1 strains

that are synthetic lethal with the (a-tubulin mutations will be unable to lose the wild-type

a-tubulin plasmid and cannot survive on 5-FOA. However, strains that are viable

without the wild-type a-tubulin allele are able lose this plasmid along with the URA3

gene and form colonies.

Construction of GAL-CIN1

The CIN1 ORF and additional 5' and 3' UTR was amplified by P.C. R. The 5'

primer (5'-GACACGCGTCATGAACAATATTCGGGCCTTGC) contained a Mlul site and

the 3' primer, (5'-CAGCCGCGGATTATATGTAAAATTTGCCGTTTAC)

contained a Sacll site. The PCR product was ligated into the pT7-Blue plasmid from

Novagen. This DNA was then digested with Mlul and Sacll and ligated into the

pRS316-Gal plasmid (Liu et al., 1992). The construct (pJF10) suppressed the

benomyl supersensitive phenotype of cells deleted for CIN1.
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Interactions of a-tubulin mutant alleles with overproduced CIN1

Atubl; Atub3 strains containing mutant alleles of the TUB1 gene on LEU2:CEN

plasmids (listed in Figure 2) were transformed with pJF10 and YCpGAL. These strains

were grown to saturation overnight in SC -ura glucose liquid media. The cultures

were serial diluted in 96 well dishes, and spotted onto SC -ura galactose plates

containing 10ug/ml benomyl and to SC -ura galactose plates incubated at 25°C (a

semipermissive temperature for the growth of tub 1-724 mutant strains) as well as to

galactose and glucose plates at 30° as a growth control.

Effect of CIN1 overproduction on excess Pac2p tub1-724 lethality

Atubl:Atub3 strains containing the tub1-724 mutant (c-tubulin allele on a LEU2

CEN plasmid were transformed with the following plasmids: pGAL-CIN1 CEN URA3

and pGAL-PAC2 CEN LYS2 (JFY475), pGAL-CIN1 CEN URA3 and pCEN LYS2

(JFY476), or pCEN URA3 and pGAL-PAC2 CEN LYS2 (JFY477). The strains were

grown overnight in SC - lys -ura glucose liquid media. The cultures were serial diluted

in 96 well dishes, and spotted onto SC -lys -ura galactose plates. Cells were also

spotted onto glucose plates as a growth control.

Construction of GAL-CIN1-HA and GAL-CIN1-HA-His,

The 3' third of the CIN1 open reading frame was amplified using PCR. The 5'

primer (5'-GATGTAGGACGTCTGGTAAGAATACAGGC) contained an Aatll site. Two 3'

primers were used. To make the GAL-CIN1-HA construct we used the 3' primer (5'

CTCACCGCGGCTAGCGGCCGCCTAAAGTGATATCAGACTCTAATATATTCGC)

containing a Notl site followed by two stop codons and a Sacll site. To make GAL-
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CIN1-HA-His6 we used the 3' primer (5'

CTCACCGCGGCTAGTGATGGTGATGGTGATGGCGGCCGCCTAAAGTGATATCAGAC

TCTAATATATTCGC) containing 6 in frame histidine residues, a Notl site, two stop

codons, and a Sacil site. The PCR products were ligated into pT7-Blue plasmid

(Novagen). The Aatll Sacll fragments were then ligated into pJF10 to create pJF11

and pJF12 respectively. A 111 bp Notl fragment containing the triple HA epitope from

B2385 (provided by G. Fink, M.I.T.) was cloned into the Not I site of pJF1 1 and pJF12

to create pJF14 and pJF15 respectfully. pJF14 and pJF15 suppressed the benomyl

supersensitive phenotype of cells deleted for CIN1 to a similar extent as did pJF10.

pJF14 and pJF15 also suppressed the conditional phenotypes of the tub 1-724 mutant

as well as the pJF10 construct (as described in results).

In vivo Cinlp-HA-His6 and Pac2p-HA-His6 association experiments

We grew yeast strains overnight in selective raffinose media at 30°C. Galactose

(2%) was added to induce the tagged constructs for -4 hours. 6.OX109 cells were

harvested by glass bead lysis per experiment in 1.1ml PME buffer plus protease

inhibitors. We applied ml of protein extract to 25ul Ni-NTA beads. We washed and

eluted the bound proteins as previously described (Magendantz et al., 1995). Eluted

proteins were subjected to SDS-PAGE analysis and probed for a-tubulin, 3-tubulin

and HA(12CA5). For Cinlp-p3-tubulin association experiment we used strains JFY470

(pGALi-10 CIN1-His6-HA CEN URA3) and JFY471 (YCpGAL). For Pac2p-Cinlp

association experiment we used strains LTY564 (pGAL-10 PAC2-His6-HA CEN

LYS2, YCpGAL), LTY565 (pGAL1-10 PAC2-His6-HA CEN LYS2, pGAL1-10 CIN1

CEN URA3), LTY566 (pGAL 1-10 PAC2-His6-HA CEN L YS2, pGAL 1-10 CIN1-HA
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CEN URA3), and LTY567 (pCEN LYS2, pGALl-10 CIN1-HA CEN URA3). For Pac2p-

a-tubulin association experiments we used strains LTY498 (Acinl pGAL 1-10 PAC2-

His-HA CEN URA3), LTY597 (pCIN1 GAL 1-10 PAC2-His6 -HA CEN URA3), and

JFY252 (Acin1 YCpGAL).
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Table 3-1. Strains and plasmids

Strairdplasmid Genoype Reference
t~~~~~~~~~~~~~~~~~~~~~~~~~Rfren

MATa his3i200 leu2-3, 112 ys2-801 ura3-52 (pA5)

MATa his3i200 1eu2-3,1121ys2-801 ura3-52a tub 1::HIS3a tub3::TRP1 (pRB539)
MATa his3I200 leu2-3, 1121ys2-801 ura3-52Atub1::HIS3Atub3::TRP1 (pRB624)
FSY183 plus pA5
FSY183 plus YCpGAL
MATa his3,200 ieu2-3, 1121ys2 -801 ura3-52 erl-1 (pA5)
MAT@ his3A200 leu2-3 112 Iys2-801 ura3-52 Acin ::hisG:URA3:hisG
MAT@ his320 leu2-3,112 s2-801 ura3-52 Apac2::hisG:URA3:hisG
MAT@ his35200 leu2-3, 112 lys2-801 ura3-524 dn1::hisG
JFY206 with pA5
MAT@ his3200 leu2-3, 112 lys2-801 ura3-52 pac2::hisG (pA5)
FSY 183 with pGRH
JFY206 with YCpGAL
JFY206 with pGRH
MAT@ his3J200 leu2-3,112 lys2-801 ura3-52A pac2::hisG (pGRH)
MAT@ his3200 leu2-3, 112 lys2-801 ura3-52 jcin 1::hisG TUB2-LEU2-GAL-TUB2 (pCT3)
MAT@ his33200 leu2-3, 112 lys2-801 ura3-52 jcin1::hisG TUB2-LEU2-GAL-TUB2 (p18C)
MA T his3A200 leu2-3, 112 lys2-801 ura3-52 Apac2::hisG TUB2-LEU2-GAL-TUB2
(pRS313)
MAT@ his3200 leu2-3, 112 lys2-801 ura3-52 Apac2::hisG TUB2-LEU2-GAL-TUB2 (pLV63)
MA Ta his3200 leu2-3, 112 lys2-801 ura3-52 Acin 1::hisG jtub 1::HIS3 jtub3::TRP1
(pA1A5106)
MA Ta his35200 leu2-3, 112 Iys2-801 ura3-52 pac2::hisG Atub 1::HIS3 .1tub3::TRP1 (pTUB3
URA3 2u)
FSY157 with pJF10
FSY157 with YCpGAL
FSY182 with pJF15
FSY182 with YCpGAL
FSY 182 with pJF10 and pJF16
FSY 182 wth pJF10 and pRS317
FSY 182 with YCpGAL and pJF16
FSY182 with pLV63 and YCpGAL
FSY182 with pLV63 and pJF10
FSY182 with pLV63 and pJF14
FSY182 with pRS317 and pJF14
JFY206 with pLV56
FSY183 with pLV56

CEN URA3
CIN1 CEN URA3
CEN URA3

GAL 1-10 RBL2 CEN URA3
GAL 1-10 RBL2-HIS6 CEN URA3
tub 1-724 CEN LEU2
TUB1 CEN LEU2
GAL1-10 CIN1 CEN URA3
GAL1-10 CINI-HA CEN URA3
GAL 1-10 CIN1-His*-HA CEN URA3
GAL 1-10 PAC2-His6-HA CEN L YS2
GAL 1-10 PAC2-His -HA CEN UPA3
GAL 1-10 PAC2 CE)N L YS2
CEN L YS2

CEN HIS3

TUB1 CEN URA3

TUB3 2pm URA3
PAC2 CEN HIS3

Weinstein and Solomon,
1990
Schatz et al., 1988
Schatz et al., 1988
This study
This study
This study
This study
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RESULTS

Mutations in the CIN genes are sensitive to Rbl2p overproduction

We searched for non-tubulin genes that affect heterodimer stability. Our

strategy was based on the observation that excess Rbl2p kills tub 1-724 (Chapter Two

and Archer et al., 1995), which encodes an ac-tubulin with relatively weak affinity for F-

tubulin ( Chapter Two and Vega et al., 1998). This synthetic lethality is probably

explained by depletion of the heterodimer pool in mutant cells, since excess Rbl2p

competes with and displaces the mutant xc-tubulin protein.

Accordingly, we mutagenized wild-type haploid cells and screened for mutants

that could not survive when the GAL-RBL2 plasmid (pA5) was induced (see

Experimental Procedures). This screen identified one mutant, er11-1 (for enhancer of

Rbl2p /ethality), that was unable to live when overproducing Rbl2p. The er11-1 strain is

cold-sensitive at 11° C and extremely sensitive to benomyl.

By several criteria, we demonstrated that the er11-1 mutation is an allele of

CIN1. A library plasmid containing the entire CIN1 open reading frame rescued both

the benomyl phenotype of the er11-1 mutant and the lethality upon RBL2

overexpression. To confirm that loss of cinl function confers the erl phenotype, we

deleted the entire open reading frame of CIN1 by integrative transformation, and

tested the effect of RBL2 overexpression. As shown in Figure 3-1, Acin 1 cells

overproducing Rbl2p start to lose viability -4 hours after induction, and after -12 hours

Tubulin Heterodimerization in vivo107



Figure 3-1. The lethality of RBL2 overexpression is enhanced in CIN1

and PAC2 nulls. AcinI (open triangles A), Apac2 (open circles 0), and wild-type

strains (closed squares ) containing a pGAL-RBL2 plasmid were grown overnight in

selective non-inducing media. At t = Ohr, Rbl2p overproduction was induced by

addition of galactose to 2%. Cell viability is determined as the percentage of cells able

to form colonies on glucose plates.
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fewer than 0.1% of the cells are viable. Finally, we confirmed that erl1-l is indeed an

allele of CIN1 by both complementation and linkage analysis (see Methods) with a

cinl null allele originally characterized by Steams and colleagues (Stearns et al.,

1 990).

Several previous results connect CIN1 to microtubule function. It was first

identified in genetic screens for mutations that result in chromosome instability (Hoyt et

al., 1990) or supersensitivity to benomyl (Steams et al., 1990). Mutations in cin I are

synthetically lethal with loss of either CIN8 - a mitotic motor (Geiser et al., 1997) - or of

PAC10 - which regulates the ca- to 0-tubulin ratio and which is itself synthetically lethal

with Arbl2 (Alvarez et al., 1998; Geissler et al., 1998). Finally, cofactor D, a vertebrate

homolog of Cinlp, participates in the in vitro mediated folding of P-tubulin (Tian et al.,

1996).

The chromosome instability and drug sensitivity screens that first identified CINI

also identified CIN2 and CIN4 (Hoyt et al., 1990; Steams et al., 1990). The

phenotypes of the double and triple CIN1, 2 and 4 mutants suggest that these three

genes act as components of a complex or in a common pathway (Stearns et al., 1990).

Although the erl screen did not identify mutations in cin2 or cin4, we directly tested

strains bearing null alleles of each (Hoyt et al., 1990; Stearns et al., 1990) for the erl

phenotype. Over-expression of Rbl2p is lethal in both cin2 and cin4 null strains,

although to a lesser extent than for cin 1 nulls (data not shown). This result supports

the conclusion that the common microtubule-related functions of these three CIN

genes is affected by Rbl2p levels.
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Deletion of PAC2 is sensitive to Rbl2p overproduction

Cinl p and Rbl2p are two of the four yeast homologues of vertebrate protein

cofactors involved in a tubulin folding assay (see Introduction). We tested the other

two components for interaction with excess Rbl2p. One of the components, Pac2p, is

homologous to mammalian cofactor E (Hoyt et al., 1997). Figure 3-1 demonstrates

that cells deleted for pac2 rapidly lose viability upon over-expression of RBL2. In vivo,

Pac2p binds to x(-tubulin and its over-expression, like that of Rbl2p, kills tub1-724 cells

- probably by binding the a-tubulin of the unstable heterodimer and thus generating

toxic levels of free -tubulin (Chapter 2 and Vega et al., 1998) . The other homolog,

Alflp, is related to the vertebrate cofactor B which binds to ca-tubulin (Tian et al., 1997).

There is no effect of over-expressing RBL2 in Aalfl cells (data not shown).

Under normal growth conditions CIN1, PAC2, and RBL2 are not essential. In

addition, pairwise combinations of Arb12 with Acin I or Apac2 are viable (unpublished

results; Hoyt et al., 1997). Thus, these pairs of genes do not define an essential

function. However, in the context of RBL2 overexpression, PAC2 and CIN1 function

become essential for viability.

Rbl2p-3-tubulin formation and microtubule depolymerization in pac2 and cin I nulls

overexpressing Rbl2p

The effect of overexpressed Rbl2p in cin 1 or pac2 mutants suggests that the

functions of those two genes may affect the state of the tubulin heterodimer. We know
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that the lethality of excess Rbl2p in tub1-724 cells is accompanied by enhanced

formation of Rbl2p-p-tubulin complex, and presumably concomitant depletion of

heterodimer (Vega et al., 1998) . Therefore, we determined if the same reaction

occurs in Acin and Apac2 mutant strains. Extracts were prepared from galactose

grown Acin 1, Apac2 or wild type cells transformed with a plasmid encoding His6-Rbl2p

under the control of the galactose promoter. His6-Rbl2p and bound proteins were

specifically purified by incubation with nickel-agarose beads and elution with

imidazole. Immunoblot analysis (Figure 3-2 (A, B) demonstrates that the amount of 3-

tubulin associated with the His 6-Rbl2p fraction was 2-5 fold higher in Apac2 and cin 1

cells. There is no significant binding of xc-tubulin to His6-Rbl2p in any of the strains.

In tub 1-724 cells, an additional consequence of RBL2 overexpression is the

loss of microtubule structures (Chapter two and Vega et al., 1998) . Figure 3-3

demonstrates that Rbl2p overexpression has the same consequence for both Acin 1

and Apac2 cells. After Rbl2p overproduction for 3 hours, microtubule staining in wild-

type cells is normal; 78% of the cells have intranuclear microtubules, 18% show a dot

representing the spindle pole body, and 4% have no detectable staining. In contrast,

only 25% of either Acinl or Apac2 cells overexpressing Rbl2p have short or long

spindles; the remainder have either no staining at all (28% for Acin 1, 38% for Apac2)

or single dots. Thus, a common feature of mutations that enhance Rbl2p
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Figure 3-2. Enhanced f3-tubulin binding in CIN1 and PAC2 nulls. (A)

Protein extracts from Acin 1, Apac2, and wild-type strains containing a pGAL-RBL2-

HIS6 plasmid were obtained from cells grown three hours in selective inducing media.

The tagged Rbl2p and bound proteins were purified using nickel-agarose. Nickel

eluates were analyzed by immunoblotting with antibodies to a-tubulin, -tubulin and

Rbl2p. (B) Quantitation of the Rbl2p-3-tubulin complex formed from Acin 1, Apac2,

and wild-type strains as in (A). The amount of Rbl2p and -tubulin signal was

quantitated by densitometry and normalized to Rbl2p signal. The values are

expressed as fold increase above the wild-type control. Error bars represent the

standard deviation of three independent trials.
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Figure 3-3. Microtubule staining in Acinl and Apac2 cells

overexpressing RBL2. After three hours of RBL2 overexpression, cin 1, Apac2

and wild-type cells were processed for immunoflouresence. Cells were stained using

an anti- 0-tubulin antibody to detect microtubule structures and with DAPI to stain

nuclei.
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overexpression lethality is the facilitation of Rbl2p-3-tubulin complex formation and the

concomitant loss of microtubules.

Effects of PAC2 and CIN1 levels on -tubulin lethality

Sensitivity to P-tubulin overexpression is affected by both an excess of or a

deficit in of two 0-tubulin binding proteins, Rbl2p and a-tubulin (Archer et al., 1995). At

one extreme, overexpression of either of these -tubulin binding proteins dramatically

decreases lethality of P-tubulin overexpression. The in vitro tubulin folding assay

demonstrates that 3-tubulin binds the mammalian homolog of Cinl p (cofactor D). It

also provides indirect evidence for but does not demonstrate directly a complex

containing -tubulin, a-tubulin, cofactor D, and the mammalian homolog of Pac2p,

cofactor E (Tian et al., 1997). Therefore, we tested whether overexpressed Cin p or

the combination of Cin p and Pac2p could rescue cells from the lethality associated

with excess -tubulin. A diploid yeast strain (JAY47) that contains a third integrated

copy of the P-tubulin gene, TUB2 under the control of the galactose promoter grows

normally on glucose, but only 0.01% of JAY47 cells can form colonies when plated to

galactose. Co-overexpression of galactose promoted ca-tubulin or Rbl2p raises plating

efficiency on galactose to about 70% (Archer et al., 1995). However, overexpression

of Pac2p or Cin p, separately or together, does not rescue cells from the excess P-

tubulin lethality (data not shown). Similarly, over-expression of CIN1 does not rescue
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the microtubule phenotypes of a Atub3 strain which has a constitutive excess of 3- to

a-tubulin (data not shown).

At the other extreme, Arbl2 cells are supersensitive to P-tubulin overexpression

(Archer et al., 1995). We also assayed the effects of deleting PAC2 or CIN1 on cells'

ability to survive excess P-tubulin poisoning. We made derivatives of wild type haploid

cells containing an integrated GAL-TUB2 allele and a deletion of either PAC2 or CIN1.

We induced -tubulin overexpression with galactose and monitored the viability of the

cultures. As seen in figure 3-4 (A)(B), cells deleted for either PAC2 or CIN1 are more

sensitive to -tubulin overexpression than are the control strains. This result suggests

that, although overexpression of neither gene rescues cells from -tubulin lethality,

their function does participate in protection against excess 3-tubulin lethality.

Consistent with that conclusion, both Apac2 and Acinl, as well as Arbl2, are lethal in

combination with a deletion in paclO (Alvarez et al., 1998). PaclOp affects the /P

tubulin ratio, and in ApaclO cells there is a constitutive excess of -tubulin(Alvarez et

al., 1998; Geissler et al., 1998). We conclude that the functions of C/N1 and PAC 2

become essential in the presence of such an imbalance in the tubulin polypeptides.
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Figure 3-4. Deletions of CIN1 or PAC2 make cells more sensitive to P-

tubulin overproduction. Haploid strains with an integrated copy of GAL-TUB2

containing either deletions of CIN1 (A) or PAC2 (B) were grown and analyzed for

viability as in Figure 3-1. (A): Acinl cells with a pCIN1-CEN covering plasmid are

represented by closed squares (), and Acinl cells with a control plasmid are

represented by open triangles (A). (B): Apac2 cells with a pPAC2-CEN covering

plasmid are represented by closed squares (), and Apac2 cells with a control

plasmid are represented by open circles (). Data represent results from four

independent determinations.
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Absence of Cin p or Pac2p is lethal with specific a-tubulin mutants

Previous work established that RBL2 becomes essential in specific a-tubulin

mutants (Archer et al., 1995). We asked whether Acinl and Apac2 have similar

interactions. Strains bearing cinl and pac2 null alleles, and carrying a plasmid

bearing wild-type a-tubulin (marked with URA3) as their major source of -tubulin

were transformed with one of 12 different tub mutants (marked with LEU2) and plated

to medium containing 5-FOA. Acinl and Apac2 strains that require the wild type a-

tubulin gene can not lose the plasmid marked with URA3 and thus are unable to grow

on 5-FOA. Five of the twelve a-tubulin mutations tested are synthetic lethal with both

Apac2 and Acinl (Table 3-2). Significantly, four of these five mutants are also

synthetically lethal with Arb12 (Archer et al., 1995). Several other -tubulin alleles do

not interact with rb12, cin , or pac2. The results suggest that PAC2, CIN1 and RBL2

affect related functions.

Overexpression of CIN1 suppresses the phenotypes associated with tub 1-724

Over-expression of either RBL2 or PAC2 in cells expressing Tubl -724p as their

sole a-tubulin was previously shown to cause microtubule disassembly and cell death

(Archer et al, 1995; Vega et al., 1998). This lethality is explicable because the mutant

a-tubulin forms a weaker heterodimer. Thus, excess Rbl2p, a 3-tubulin binding

protein, or Pac2p, an a-tubulin binding protein ( Chapter Two and Vega et al., 1998),

deplete the heterodimer in tub1-724 cells below the level needed for viability.
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Table 3-2. a-tubulin alleles synthetic lethal with nulls in RBL2, CIN1, and PAC2.

n.d. = not determined

Viability

Arbl2* Acin 1 Apac2

tub 1-724, -728, -738, -759 - - -

tub 1-735 n.d.

tub1-704, -714, -744, -750 + + +

tub1-727, -730, -733, -741, n.d. + +
-746, -758

ii nl · I~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

* (Archer et al., 1995)
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Moreover, the formation of a Pac2p-a-tubulin complex (Chapter Two and Vega et al.,

1998) likely produces free 3-tubulin, which is toxic.

The effect of excess Cin1p in tub 1-724 cells yields a dramatically different result

from that of Rbl2p or Pac2p. We transformed the plasmid pJF10, containing CIN1

under control of the GAL promoter, into the tub1-724 mutant strain, and monitored cell

growth under various conditions. Cinl p overproduction suppresses both the lethality

of the tub1-724 mutant strain at 250C (semi-permissive temperature), as well as the

benomyl supersensitivity (Figure 3-5 A). The suppression activity is specific, since

CIN1 overexpression has no effect on the other uo-tubulin alleles listed in Table 3-2.

Furthermore, we find that excess Cinl p partially suppresses the deleterious

consequences of overproduced Pac2p in tub1-724 cells (Figure 3-5 B).

We show below that Cinlp is a 0-tubulin binding protein. However, the

suppression by excess Cin1p of tub1-724 does not represent a -tubulin sequestering

activity, since excess Cinlp does not rescue either r3-tubulin overexpressers or cells

deleted for the minor a-tubulin, tub3.

The ability of excess Cinl p to prevent disruption of the mutant heterodimer by

the a-tubulin binding protein Pac2p, may be due to a direct interaction between Pac2p

and Cinlp that prevents the formation of a Pac2p-a-tubulin complex, or from the

formation of another complex that overcomes Pac2p sequestration of a-tubulin.

Biochemical experiments described below help to distinguish between these

possibilities.
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Figure 3-5. Overexpression of CIN1 is able to rescue conditional

phenotypes of the tub1-724 mutant. (A) Saturated cultures of tub 1-724 mutant

cells containing either pGAL-CIN1 or a YCpGAL control plasmid were serial diluted

(one sixth dilutions for the 25°C plate, one fourth for the benomyl plate) and spotted to

selective galactose plates containing 20 pg/ml benomyl and to selective galactose

plates incubated at 25°C. (B) Saturated cultures of tub1-724 strains containing two

plasmids each: either pGAL-CIN1 or YCpGAL control plasmid and either pGAL-PAC2

or the pRS317 control plasmid were serial diluted (one fourth dilutions) and spotted to

selective galactose plates.
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Physical interactions of Cinlp

To assay for protein complexes between Cinlp and the tubulin polypeptides

suggested by the in vitro work and the in vivo results above, we constructed a modified

form of CIN1 under control of the inducible GAL promoter, that contains both an HA

epitope tag and a His6 -sequence at its carboxy terminus (pJF15). This allele of CIN1

rescues the benomyl phenotype of Acinl cells, and suppresses the tub1-724

phenotypes like the unmodified CIN1. Extracts prepared from wild-type cells

transformed with pJF15 or a YCpGAL control plasmid and grown for three hours in

galactose were fractionated by nickel-agarose chromatography to purify the tagged

Cinlp and proteins bound to it. The proteins were eluted and resolved by SDS-PAGE

followed by immunoblotting. In five independent trials we found that -tubulin

specifically co-purifies with the tagged Cinl p. A representative blot is shown in

Figure3-6. In contrast, there is no detectable enrichment of (-tubulin among the

proteins eluted with Cin1p. Formation of the Cinlp-3-tubulin containing complex is

independent of Pac2p (data not shown). This result suggests that Cin1p can bind

directly or indirectly to -tubulin but not a-tubulin in vivo, similar to Rbl2p. However,

unlike Rbl2p, the Cinl p-1-tubulin interaction does not suppress the phenotypes of

excess 3-tubulin.

The in vitro assay of tubulin folding demonstrates a complex between the Cin lp

homolog cofactor D and -tubulin (Tian et al., 1997). Those experiments also infer a

complex containing both Cinrp and Pac2p homologs along with both tubulin
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polypeptides. To test for such a complex in vivo, we transformed cells with plasmids

encoding various tagged forms of both CIN1 and PAC2 under control of the GAL

promoter. For these experiments, we used either a GAL-CIN1 construct that contains

three HA epitopes in tandem at the extreme carboxy terminus of the open reading

frame (pJF14) or a Gal-CIN1-HA-HIS6 construct. Both of these alleles are

indistinguishable from wild type CIN1 as assayed by overexpression in both cin 1 and

tub 1-724 cells (data not shown). The GAL-PAC2 construct contains three carboxy-

terminal, tandem HA epitopes followed by a His6 sequence (Vega et al., 1998) or a

version of GAL-PAC2 -HA that lacks the His6 tag. Figure 3-7 (A) shows that Cinlp and

Pac2p co-purify from extracts of cells over-expressing both proteins.

We find that small amounts of a and 3-tubulin co-purify with the tagged Pac2p-

HA-His6 when it is overproduced; as shown in Figure 3-7 (B), the level of this complex

increases when Cinl p is co-overexpressed in the same cells. The relative amount of

co-purifying P-tubulin is significantly greater than the amount of co-purifying a-tubulin

in both strains. The ability of overexpressed Pac2p-HA-His 6 to bind some P-tubulin is

apparently due to an interaction with endogenous Cin1p; when Pac2p-HA-His 6 is

overexpressed in Acinl cells, neither tubulin polypeptide is associated with it. A

representative blot from four independent trials is shown in Figure 3-7 (C).
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Figure 3-7. Pac2p, Cinlp and tubulin. (A) FSY182 cells containing two

plasmids as indicated: lane 1, pGAL-PAC2-HA-His 6 and pGALCIN1-HA; lane 2,

pRS317 (control vector) and pGAL-PAC2-HA-His 6; lane 3, pGAL-PAC2-HA and

YCpGAL (control vector); lane 4 pGAL-CIN1-HA-His6 and pGAL-PAC2-HA; Cells

were harvested after 4 hours of induction in galactose containing media. The tagged

Pac2p or tagged Cin p was purified and analyzed before. The results shown are

representative blots from six independent trials where Cin1p co-purifies with His6

tagged Pac2p (lanes 1, 2), and two independent trials showing that Pac2p co-purifies

with His6 tagged Cinlp ( lanes 3, 4). (B) Enhanced binding of Pac2p to tubulin in the

presence of excess Cin1p. FSY182 cells containing two plasmids as indicated: lane

1, pGAL-PAC2-HA-His6 and YCpGALcontrol vector; lane 2, pGAL-PAC2-HA-His6 and

pGAL-CIN1; lane 3, pRS317 control vector and pGALClIN1-HA; control were harvested

after 4 hours of induction in galactose containing media. The tagged Pac2p was

purified and analyzed as above. (C) Extracts from wild-type and .Acinl strains

containing either pGAL-PAC2-HA-His6 or YCpGAL control plasmid were obtained after

four hours growth in inducing media. The tagged Pac2p and bound proteins were

purified and analyzed as above.
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DISCUSSION

The data presented here identify genes that affect tubulin dimer formation in

vivo. Mutations in these genes render cells sensitive to overexpressed Rbl2p, a P-

tubulin binding protein that depleted tubulin dimers. Consistent with that finding, two

of these mutants, Apac2 and Acin 1, are synthetically lethal with a mutant xc-tubulin that

destablizes heterodimers. Overexpression of Cinlp rescues that same mutant. Since

Cinlp is not a stable ligand of the a-P tubulin heterodimer, the rescue is likely a

consequence of Cinlp's ability to promote the formation of heterodimer rather than

stabilize heterodimer. We also show that Pac2p and Cinl p interact with one another,

in complexes that can contain the tubulin polypeptides. Taken together, the results

demonstrate catalyzed tubulin heterodimerization in vivo. These findings demonstrate

the extent to which activities of an in vitro tubulin folding assay described by Cowan

and colleagues pertain to the in vivo situation. That these activities are not essential

for tubulin assembly or function suggests that they may have other roles in cell

physiology.

Consequences of Rbl2p overproduction in cin 1 and pac2 nulls

Rbl2p over-expression in wild type cells confers only moderate phenotypes.

However, induction of GAL-RBL2 in tub1-724 cells rapidly causes microtubule

disassembly and cell death (Chapter Two and Archer et al., 1995). By several criteria,

the Tub1-724p a-tubulin binds less tightly to -tubulin than does wild type a-tubulin

(Chapter Two and Vega et al., 1998) . That property allows excess Rbl2p to bind more
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P-tubulin in the mutant than in wild type cells, leading to depletion of the heterodimer,

loss of assembled microtubules and loss of viability.

These properties of tub 1-724 cells are shared by Acin and Apac2 cells.

Induction of RBL2 overexpression causes loss of microtubule structures and cell death

in both strains. Strikingly, the Rbl2p-P-tubulin complex forms much more readily in

these mutant strains than in wild type cells. These results suggest that the tubulin

heterodimer in Acinl and Apac2 cells is also destabilized relative to wild type.

However, the underlying mechanism of this destabilization must differ from that of

tub1-724 cells, since neither Cinlp or Pac2p are stably associated with the bulk of

tubulin heterodimers and therefore would not be expected to stabilize the heterodimer

directly. Instead, it is more likely that these two proteins participate in reactions

leading to heterodimer formation, and that their absence makes those reactions less

favorable or less efficient. As a result, Acinl and Apac2 cells might have lower levels

of heterodimer and higher levels of free tubulin polypeptide chains. An excess of a 3-

tubulin binding protein could further deplete the pool of heterodimer. Alternatively,

these mutants may have a diminished ability to convert Rbl2p-P-tubulin into

heterodimer, an exchange reaction which occurs both in vivo and in vitro (Archer et al.,

1998; Archer et al., 1995).

Effects of Cinlp and Pac2p levels in tubulin mutants

Null alleles of cin 1, pac2 and rb12 are lethal in combination with the same four

mutant ca-tubulins, suggesting that they affect related functions. Each of the relevant
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tub1 mutations falls into class 1 - they are cold-sensitive and lose microtubules at the

restrictive temperature (Schatz et al., 1988). However, not all class 1 mutants are

lethal in combination with Acinl, Apac2 or Arb12. We have characterized the

molecular defect in one of these mutations - tub1-724 - as a weakened heterodimer.

We rationalized the inability of tub1-724 cells to live without Rbl2p as a consequence

of excess 3-tubulin released by dissociation of the weaker heterodimer combined with

loss of the ability of Rbl2p to sequester excess -tubulin. The results suggest that this

subclass has a common defect exacerbated by mutations that affect heterodimer

formation.

Similar to Rbl2p, the absence of Cinlp and Pac2p makes cells more sensitive

to 03-tubulin over-expression. However, it is unlikely that Cinlp and Pac2p act in

exactly the same way as Rbl2p - by binding and sequestering 3-tubulin. In particular,

Rbl2p overproduction but not Cin1p overproduction suppresses the phenotypes

associated with genetic conditions that produce an excess of P-tubulin - either GAL-

TUB2 or Atub3 strains (Archer et al., 1995; Hoyt et al., 1997). Conversely,

overproduction of Cin1p suppresses the phenotypes of tub 1-724 cells, while

overproduction of Rbl2p kills that mutant.

The conditional phenotypes of the tubl-724 strains are due to the release of

free P-tubulin by dissociation of the unstable mutant heterodimer (Chapter Two and

Vega et al., 1998) . Why does excess Cinlp rescue these phenotypes but not the

phenotypes associated with excess -tubulin in Atub3 or j-tubulin over-producing
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strains? A significant difference among these situations is that the tub1-724 mutant

contains a pool of undimerized a-tubulin, while the TUB2 over-expressing strain and

the Atub3 strain do not. This analysis suggests that Cinlp acts to promote the

formation of the heterodimer.

Binding partners of Cinlp and Pac2p

Fractionation experiments performed using Cinip and Pac2p have allowed us

to characterize the complexes these proteins form in vivo. Here, we show that -tubulin

can co-purify with Cin1p in wild-type cells when Cin1p is overexpressed. That

complex is detected in the presence or absence of Pac2p. In addition, we show that

Cin1p is able to copurify with Pac2p when both proteins are overexpressed. The

association of Cin1p with Pac2p also includes both a- and f3- tubulin. Interestingly the

amount of 3-tubulin that copurifies is greater than the amount of a-tubulin. This may

imply that there is a complex containing only Pac2p, Cinlp, and -tubulin. Alternatively

the a-tubulin present in this complex in vivo may be easily lost during purification.

We reported that over-expressed Pac2p binds a-tubulin but not P-tubulin when

either tubulin is co-overexpressed (Vega et al., 1998) . We now find, using a

substantially more sensitive assay, that both 3-tubulin and a-tubulin are associated

with Pac2p when it is over-expressed in wild type cells. The binding of both tubulin

polypeptides to Pac2p is dependent on Cinlp in this assay. However, we do detect a

diminished level of Pac2p-a-tubulin complex in cinl nulls co-overexpressing Pac2p

and a-tubulin (L. Vega unpublished results). Therefore, it appears the Pac2p-a-
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tubulin complex can form in the absence of Cinlp, but the binding is enhanced by

Cin1p. Taken together, the results are consistent with interactions between Pac2p and

both a-tubulin and Cin1p, which in turn can bind P-tubulin.

Tubulin assembly pathways. in vivo and in vitro

A series of in vitro experiments by Cowan and colleagues identified factors in

addition to chaperones required for incorporation of P-tubulin and a-tubulin into

exogenous heterodimer (Gao et al., 1992; Gao et al., 1993; Tian et al., 1996; Tian et

al., 1997). In that assay system, 3-tubulin released from the chaperone is bound

independently by cofactors A or D, and a-tubulin is bound by either cofactor B or E.

The -tubulin released from cofactor A and the (x-tubulin released by cofactor B fail to

exchange into exogenous dimer directly. Instead, the pathway to heterodimer requires

the a- and P-tubulin monomers to bind cofactors D and E, respectively. Cofactors D

bound to -tubulin and cofactor E bound to a-tubulin form a quaternary complex and

finally, cofactor C mediates the release of the a-P tubulin heterodimer.

Four of these mammalian cofactors are homologous to yeast genes: Cofactor D

shows 21% identity with Cin1p (Hoyt et al., 1997); cofactor E is 30% identical to Pac2p

(Hoyt et al., 1997). Cofactor A is structurally and functionally homologous to Rbl2p

(Archer et al., 1995), and cofactor B is 32% identical to Alf1 p (Tian et al., 1997). In the

in vitro assay, cofactors D and E are essential. However, none of the homologous

yeast genes are essential, even in various combinations (Hoyt et al., 1997;
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unpublished results). There may be redundant functions in yeast specified by genes

as yet undetected, or the in vivo tubulin folding could follow an different pathway.

Some of the functional interactions we detect in vivo among these proteins are

also consistent with the in vitro model. For example, the ability of excess Rbl2p to kill

Acin I or Apac2 cells is readily explained by the in vitro pathway (detailed above).

Also, the ability of excess cofactor E (with cofactor B) to sequester o-tubulin from

preexisting heterodimer (Tian et al., 1997) reflects the ability of excess Pac2p to kill

tub 1-724 cells (Chapter Two and Vega et al., 1998).

However, other results demonstrate differences between the in vivo and in vitro

situations. Most important, suppression by excess Cin1p of a mutant a-tubulin with

lowered heterodimer stability is not consistent with the in vitro model. The data

suggest that Cinlp in vivo acts differently than cofactor D does in vitro. The ability of

Cin1 p to suppress the tub 1-724 mutant contrasts with the in vitro data that show

cofactor D can interact with and disrupt the heterodimer forming a cofactor D-3-tubulin

complex. Other evidence indicates that Cin1p has an activity that does not require

stoichiometric Pac2p. First, overexpression of Cin1p alone is sufficient to suppress

tub1-724. Second, overexpression of Cin1p is able to rescue the benomyl

supersensitive phenotype of Apac2 strains (Hoyt et al., 1997). Therefore, it appears

Cinl p does more than bring -tubulin into a quaternary complex containing Pac2p

and a-tubulin. The suppression mechanism in tub1-724 cells may involve Cinlp

presenting -tubulin to a-tubulin and thus keeping the free -tubulin from acting as a
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poison in the cell. Perhaps Cin1p provides the function of cofactor C in the in vitro

system, given that no S. cerevisiae homolog of that gene exists.

Many but not all of the protein complexes we identified in vivo are predicted by

the in vitro tubulin folding assay (Tian et al., 1996; Tian et al., 1997). The Cinlp 13-

tubulin complex demonstrated here, the Rbl2p-3-tubulin complex (Archer et al., 1995),

and the Pac2p (a-tubulin complex (Vega et al., 1998), are all detected in vitro.

However, our results demonstrate that the binding of ac-tubulin to Pac2p is at least

partially dependent on Cinlp in vivo. This may explain why the a-tubulin - cofactor E

(Pac2p homolog) complex in vitro is detectable only after chemical crosslinking (Tian

et al., 1997).

There are further differences with respect to the protein-protein complexes

detected. The in vitro data suggest that -tubulin can exchange directly between

cofactor A (Rbl2p) and cofactor D (Cinl p). However, the very different activities of

these 13-tubulin binding proteins in vivo with respect to excess 13-tubulin suggests that

they either bind different forms of the protein or that the resulting complexes have

different activities. We have also shown that Rbl2p can bind to -tubulin both before

and after it binds to a-tubulin (Archer et al., 1998); the second finding is inconsistent

with the in vitro model. Finally, the in vitro data suggest that aC-tubulin binds to cofactor

B (Alf1 p) or cofactor E (Pac2p) (Tian et al., 1997). However, unlike overexpressed

Pac2p, we have found that excess Alf1p is not lethal when overexpressed in tub 1-724

cells (data not shown).
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Figure 3-8. Genes that affect tubulin dimer formation in vivo. The tub 1-

724 mutation affects the stability of the heterodimer directly and render cells sensitive

to overexpressed Rbl2p. The properties of tub1-724 cells are shared by Acin and

Apac2 cells. Since neither Cinl p nor Pac2p is associated with the bulk of tubulin

heterodimers, Cinlp's ability to rescue tub1-724 mutant cells is likely a consequence

of Cinl p's ability to promote the formation of heterodimer rather than stabilizing

heterodimer directly. Pac2p and Cin1p interact with one another in complexes that

can contain the tubulin polypeptides. Taken together, in vivo Cin p and Pac2p work

together to promote tubulin heterodimerization.
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Conclusion

The experiments presented here demonstrate that proteins which interact with

individual tubulin polypeptides can influence the formation of heterodimer in vivo.

Especially in the case of Cinl p, the relationship between protein activity and

expression levels suggests that this protein acts catalytically to promote a-3-tubulin

complex formation. Such an activity will require coupling to a highly exergonic step, in

order to make the reaction act as if it were unidirectional. A candidate for that coupling

factor is Cin4p, which has a predicted GTP binding motif (Hoyt et al., 1997) and which

likely acts either in the same pathway or in a complex with Cinlp.

The in vivo data also demonstrate differences and similarities between the

activities of tubulin interacting proteins in vivo and the activities of their vertebrate

homologs in vitro. Most striking is the fact that the proteins are not essential in vivo.

Screens for genes involved in a parallel pathway redundant with the one defined by

these proteins have not been successful, raising the possiblity that the primary and

sufficient tubulin heterodimerization pathway is uncatalyzed. In that circumstance, the

activities described here may become important only under special conditions - for

example, in mediating fluctuations in the pool of unassembled tubulin heterodimer and

its dissociation products.
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CHAPTER FOUR:

Identification and characterization of overexpressed

cDNAs that confer benomyl resistance



INTRODUCTION

Yeast microtubules are sensitive to microtubule depolymerizing drugs,

such as benomyl and nocodazole. The consequence of drug treatment is the

failure of microtubule mediated processes such as nuclear division, nuclear

migration and nuclear fusion (Delgado and Conde, 1984; Jacobs et al., 1988).

Thus, altered sensitivity to benomyl is a phenotype associated with impaired

microtubule function in S. cerevisiae and is often used as evidence that a gene

product is involved in a microtubule related process. A number of mutations

defining several complementation groups are known to be supersensitive to

benomyl (BenS). Both a-tubulin genes, TUB1 and TUB3, as well as the P-

tubulin gene, TUB2, can be mutated to confer a Bens phenotype (Reijo et al.,

1994; Schatz et al., 1988; Steams and Botstein, 1988).

In addition to the tubulin encoding genes, other components of the mitotic

apparatus may be mutated to benomyl hypersensitivity. But only a few genes,

other than the tubulin genes, have been identified that confer supersensitivity to

very low concentrations of benomyl (10 ug/ml) a concentration of benomyl that

has little effect in wild-type cells. Extreme sensitivity to benomyl seems to be

correlated with mutations in genes that affect tubulin assembly. These genes

include CIN1, 2 and 4 which were identified in a genetic screen for benomyl

supersensitive mutants (Stearns et al., 1990). These three genes were also

identified in an independent screen for chromosome instability mutants (Hoyt et

al., 1990). In addition, mutants in pac2 are super-sensitive to very low
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concentrations of benomyl and have defects in microtubule functions (Hoyt et

al., 1997). PAC2 is required in cells deleted for cin8, which encodes a kinesin-

related protein that participates in anaphase (Geiser et al., 1997).

Other benomyl hypersensitive mutants include genes whose products

have been implicated in a mitotic checkpoint control which monitors spindle

formation and requires that microtubules be intact for mitosis to proceed. The

MAD (mitotic arrest defective) genes and the BUB (budding uninhibited by

benomyl) genes were isolated as mutants that fail to arrest when challenged

with high concentrations of benomyl (Hoyt et al., 1991; Li and Murray, 1991).

Indeed mutations in almost every aspect of microtubule assembly have been

identified that confer a Bens phenotype.

In contrast, mutations in S. cerevisiae that confer resistance to benomyl

(BenR) are rare. Most of them map to TUB2; the gene encoding P-tubulin (Reijo

et al., 1994; Thomas et al., 1985). In addition to mutations in -tubulin, CDP1

nulls which require centromere binding factor I (Cbf1 p) for viability also show

increased benomyl resistance. cdpl cells display unusually long cytoplasmic

microtubules and show increased frequencies of chromosome loss (Foreman

and Davis, 1996). Alleles of SAC3, isolated as a suppressor of act1-1, are also

benomyl resistant (Bauer and Kolling, 1996).

We found that overexpression of either a-tubulin or Rbl2p in wild-type

cells confers a reproducible, benomyl resistant phenotype (Archer et al., 1995;

Schatz et al., 1986). a-tubulin is a component of the tubulin heterodimer and
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RBL2 is a 13-tubulin monomer binding protein in vivo (Archer et al., 1995). a-

tubulin and Rbl2p share another feature: overexpression of either gene

rescues the effects of P-tubulin overexpression, microtubule depolymerization

and cell death (Archer et al., 1995; Weinstein and Solomon, 1990). We

reasoned that we might identify other -tubulin binding proteins by screening for

gene products whose overexpression confers increased resistance to benomyl

and nocodazole but not to unrelated compounds. Alternatively, overexpressed

genes that confer increased resistance to benomyl might be general stabilizers

of microtubules that can overcome the destabilizing effects of benomyl and

excess -tubulin. We designed a genetic screen in wild type cells for galactose-

induced cDNAs that confer resistance to benomyl.
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MATERIALS AND METHODS

Strains, Plasmids. and Media

All yeast strains are derivatives of FSY185 (Weinstein and Solomon,

1990). We used standard methods (Sherman, et a., 1986; Solomon, et al.,

1992). We used a yeast cDNA (CEN) library from pool 10A (Liu et al., 1992).

For pLV6, a 3.7 kb fragment containing the entire ADE3 gene flanked by Not I

sites was generated by P.C.R. using the primers 5' primer -(D41524)

5'ATAAGATAGCGGCCGCTAAAGGATCCGGAGTACTTACGTGAGC and 3'

primer-(D41 484)-5'AAGGAAAAGCGGCCGGTGGTTATAGATTTGGATACTTG

and ligated into the SK- Bluescript vector. pLV8 and pLV10 contain the Not I

ADE3 fragment inserted into the Not I site of pA5 or p4C respectively. pLV127

was constructed by P.C.R. of the 3' end of pBRO5 (pGAL-LBO1) using the 5'

primer -(D50266)

5'AAATCCTTAAGGAGGTACCCATACGACGTCCCAGACTACGCTTAGACGAA

CTATTTGAAACC which included a single HA epitope and the 3' primer

(D50267) 5'TAGACGAACTCTTTGAAACCAATT. The P.C.R. product digested

with Afl I-Not I and cloned into the Afl I-Not I site of pBRO5. pET15 containing

pGAL-LB02 with a triple HA epitope tag, was constructed by using P.C.R. The

5' primer, 5'-

AAAATTGTTGAGATTGATAATCCCAGCATTTTG GGTGATTTCACAAGGGAAGA

TCGCGCGCGCTGACCGGCTATATCAATGCACCTAAAT introduced a Not I site

at the 3'- end of LB02 coding sequence and the 3' primer (D52016) 5'-
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GAATTGGAGCGCCACCGCGGTGGCGACCGCCC was to the vector but

deleted a Not I site on the pRS316-GAL1 vector. The 111 bp triple HA epitope

cassette from B2385 (Fink Lab) was then cloned into the Not I site. pLV21 was

constructed by subcloning a 2.3 kb EcoR I fragment containing the entire LBO2

genomic sequence from pLV17 into the EcoR I site of the pCT3 vector. pLV15

contains the 5' and 3' flanking region flanking the LB02 ORF. The 5' flanking

sequence of LB02 was amplified by P.C.R. of genomic DNA using the 5' primer

(D50983)-KOBPAAT 5'

AGCGTGACGTCCAGGAACATTGGTATTCTTATCATGTTGAG and the 3' primer

(D50981) 5'-GAAGATCTTTCTTATTCTTGTTAACTTCGTCCT and cloned into

the Aatll-Bgl II site of pNK51; the resulting plasmid was digested with Sal I-

BamHl and 3' sequence of LB02 ,amplified using 5' primer (D50982) 5'-

CGGGATCCGACCGGCTATATCAATGCACCTAAATTCAGAACA and the 3'

primer 5'-ACGCGTCGACAGTCAGACACCTATCTAACTTTCATTAAATTATC

was inserted into the Sal I-BamH I. A similar approach was used to construct

LB01 disruption construct, pLV19. The 5' flanking region of LB01 was

amplified by P.C.R. using the primers (D500265) 5'-

AAGATGACGTCGATCTTTCTCATTCTCATTTAAAGTTCG and (D50626) 5'-

GAAGATCTTGTAGTTATAATGGAAGGAGGGGGTG and inserted into the Aat II-

Bgl II site of pNK51 to make pLV14. The 3' flanking region of LBO1 was

amplified by P.C. R. amplified using

5'CGCGGATCCACGAACTATTTGAAACCAA1T I T CAATATAGA I I GGC

and
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ACGCGTCGACCCGCCATAAACTTGCAAAGCAGCATTGGACATAGTTATAC

and cloned into the BamH I -Sal I site of pLV14 to make pLV19.

pLV25(GAL- YDR066C) containing the LB02 homologue under the control of

the galactose promoter was constructed by P.C.R. using 5' primer

5'ACGCGTCGACGGAGGCATTCTGGAAAAATTGCAGC3' the 3' primer was

5'ACATCGGCCGTACGCCAAACGGTTGACACTATTCAG3'. The P.C.R. product

was digested with Sal I-Eag I and ligated into the Sal I-Eag I of pRS316-GAL1.

pLV28, disrupts the entire coding sequence of YDR066C. A 430 bp of 5'

YDR066C flanking sequence with an additional Xba I site added was amplified

by P.C.R. using the 5' (D61131) primer- 5'

ACCGTGCGATATATTGCAAGGACAGCC and the 3' (D61130) primer-

5'TGCTCTAGATATGGCTTGCGTTGCTCCTGTCC and 658 bp of 3' YDR066C

flanking sequence with Xma I and Sac I sites added was amplified by using the

primers 5' (D61129) primer

5'TCTCCCCGGGTAGGTAGTATAATTAAATCGTCTTCATCAGG and the 3'

primer (D61128) primer-5'

TCAAAGAGCTCTATGGTTTGTTCGGTCAATTAACAAGGGC and by P.C.R.

pLV29 containing the YDR066C 5' and 3' UTR around LEU2 in JH-L2 was

constructed by cloning the 5' UTR P.C.R. product of YDR066C digested with

HinDIIIl and Xba I and the 3' UTR P.C.R. product digested with Sacl and Xmal

into JH-L2.

Sectoring Assay
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We transformed ade2,ade3 yeast with either a CEN-URA3-ADE3-GAL 1-

RBL2 plasmid or with a CEN-URA3-ADE3-GAL control plasmid and plated cells

to low adenine glucose plates, low adenine galactose plated and to low

adenine galactose plates containing 30 ug/ml benomyl at 300C. Growth was

monitored by visual inspection.

Screen

Wild-type diploid cells containing were transformed with a URA3 marked

cDNA library (Liu et al., 1992). We transformed pool 10A into FSY185 and

obtained (X). We grew the transformants in selective glucose media to

saturation and plated approximately 4.0 X 104 transformants onto SC galactose

plates containing 26, 30, and 35 ug/ml. We made a slurry of galactose survivors

and re-plated these cells onto SC -ura glucose. We tested 534 benomyl

survivors for plasmid dependence by selecting for loss of the URA3 plasmid on

5-FOA, then checking for loss of benomyl resistance. After isolation of the

library plasmid, we identified plasmids containing TUB1, TUB3 or RBL2 by a

combination of restriction digests, colony hybridization, and DNA sequencing.

The isolated plasmids were re-transformed into FSY185 and checked for their

ability to confer survival on galactose benomyl plates.

Quantitation of LBO Phenotype

Diploid celis containing galactose promoted RBL2, TUB 1, LBO1, LB02 or

YCpGAL were plated to, galactose plates and to galactose plates containing

various concentrations of benomyl 0-50 ug/ml. We determined the ratio of the

number of colonies that grew on the various galactose benomyl plates relative
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to the galactose plate without benomyl. Alternatively diploid strains containing

the indicated plasmid were grown to saturation overnight in SC -ura glucose

liquid media. The cultures were serial diluted in 96 well dishes, and spotted

onto SC -ura galactose plates containing various concentrations of benomyl

and to SC -ura glucose plates incubated at 30°C.

Construction of KO constructs

The 5' flanking sequence of LB02 was amplified by P.C.R. of genomic

DNA using the 5' primer (D50983) and the 3' primer (D50981) and cloned into

the Aatll-Bgl II site of pNK51; the resulting plasmid was digested with Sal I-

BamHI. The 3' sequence of LB02 ,amplified using 5' primer (D50982) and the

3' primer 5'-ACGCGTCGACAGTCAGACACCTATCTAACTTTCATTAAATTATC

was inserted into the Sal -BamH I site to generate pLV15. pLV'5 was digested

with Pvu II and Sal I to release was the disruption fragment and the fragment

was isolated (Quiax II from Quiagen) after electrophoresis on a 1% agarose gel.

This DNA was then transformed into FSY185 to create a disruption of the entire

LB02 open reading frame. The disruption was confirmed by Southern blot

analysis of the diploids and of their haploid segregants, and by the phenotypic

analysis of the haploid segregants. A similar approach was used to construct

LB01 disruption construct, pLV19. The LB01 5' (600 bp) and 3' (300 bp) UTR

was amplified using the polymerase chain reaction and inserted around the Bgl

Il-BamHI site of hisG-Ura3- hisG of pNK51 using the primers described above.

The 4.5 kb LB01 disruption fragment was released by digesting pLV19 with

BstXI and Sal I. The purified knockout fragment was used to transform FSY1 85

cDNAs That Confer BENR153



and transformants were selected on sc -ura. As before, putative heterozygotes

and haploid segregants were confirmed by Southern blot analysis. To knock

out the YDR066C coding region we digested pLV28 containing 5' and 3' UTR

flanking YDR066C around the LEU2 gene in JH-L2 with Apal and Sacl to

release the knockout fragment. We purified this fragment as before and used it

to transform FSY185. The disruption was confirmed by Southern Blot analysis

of the diploids and of their haploid segregants.

Viability measurements and Immunofluorescence

Cell containing the indicated plasmids were grown overnight in SC -ura

raffinose media. Log phase cells were then induced with 2% galactose and at

various time points aliquots of cells were taken and counted using a

hemacytometer. Known numbers of cells were then plated to SC -ura glucose

plates. Cell viability was measured as the percent of cells counted able to form

colonies on the SC -ura glucose plates. At time points indicated cells were fixed

for immunofluorescence in 3.7% formaldehyde. Anti -tubulin staining was

done with #206 (Bond et al., 1986) at 1/2000 in phosphate buffered saline

containing 0.1% bovine serum albumin.

To measure the effect of high temperature on albo2, cells containing the

indicated plasmids were grown overnight in SC -ura glucose media at 30°C. At

the T=0 the cells were shifted to 370C or were maintained at 30°C. At various

time points aliquots of cells were taken and counted using a hemacytometer.

Known numbers of cells were then plated to SC -ura glucose plates. Cell

viability was measured as the percent of cells counted able to form colonies on
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the SC -ura glucose plates at 30°C. For some experiments, cells were fixed for

immunofluorescence in 3.7% formaldehyde and stained with anti -tubulin

antibodies as described above. For other experiments the bud size distribution

of fixed cells was determined for the indicated time points. The size of the bud

was determined as unbudded cells, small/medium budded cells (the size of the

bud was less than the size of the mother), large budded cells (the cells were

close to or equal the size of the mother.

FACS Analysis

Cells were grown under the desired conditions to early log phase. For each

analysis, between 5 x106 to 1 x107 cells were used. Cells were pelleted in IEC

(1000 rpm). Cells were fixed in 66.5% EtOH at 4°C overnight. Fixed cells were

pelleted as before washed in 5 mis of 50 mM NaCitrate (pH7.4). After washing,

the cells were pelleted again and resuspended in 1 ml of 50 mM NaCitrate

(pH7.4) plus 0.25 mg/MI RNase A and incubated for one hour at 500C.

Proteinase K is added to a final concentration of 1 mg/ml and the cell are

incubated for an additional hour at 50°C. Finally, 1 ml of 50 mM NaCitrate

(pH7.4) containing 16 ug/ml of propidium iodide is added and the cells are

incubated overnight at 4°C wrapped in tin foil. The samples were sorted by

FACS analysis.

Immune techniques

Immunoblots: We used standard procedures (Solomon, et al., 1992).

For 1251 detection we blocked blots for 15-30 min. in TNT, 0.05% Tween. Primary

antibodies were incubated overnight in TNT, 0.05% Tween at 1/3500 (#206 or
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#345) or at 1/1000 (12CA5) ( Babco) and then washed 5 (5 min. each) in TNT,

0.05% Tween. Bound antibody was detected by 251 Sheep Anti-mouse Ig

(SAM) (NEN).

Immunoprecipitations - Antibodies 206 or 345 were affixed to Affigel-10

beads (BioRad). Yeast strains grown up at 30°C. Total protein was harvested

by glass bead lysis in PME (0.1 M Pipes, 2mM EGTA, 1 mM magnesium

chloride, pH 6.9) plus protease inhibitors (Solomon, et al., 1992) and added to

antibody beads for a one hour incubation with rotation at 4°C. We washed the

beads eight times with PME + protease inhibitors. Bound proteins were eluted

by boiling is SDS sample buffer and resolved by SDS-PAGE analysis.

Protein A sepharose beads were used to immunoprecipitate HA tagged

proteins. To prepare beads, protein A beads were blocked in 10% BSA, 0.05

M Tris pH 8.0, 0.1% NaN3 for 1 hour at 4°C then washed 7X with PME +

protease inhibitors. For 12CA5, 40 ul of antibody was added to 200 ul protein

extract prepared as above. After one hour 300 ul of the protein A in PME was

added to the 12A5 containing extract and incubated for an additional hour with

rotation at 4°C. The Beads were then washed as above and bound proteins

were eluted by boiling is SDS sample buffer and resolved by SDS-PAGE

analysis.

cDNAs That Confer BENR156



RESULTS

Plasmid Segregation and Benomyl Resistance

We tried to identify cDNAs that confer a BenR phenotype directly by

picking colonies that grew on galactose benomyl containing plates. However,

the background was very high, many of the colonies that arose were not

reproducibly benomyl resistant. The reason for the high background remains

unclear. To make the screen feasible, we required improved methods for

detecting the BenR colonies from the background colonies.

Based on previous work from others, we expected that cells resistant to

the effects of benomyl would segregate a CEN plasmid more faithfully than the

background colonies that are able to grow on benomyl. In S. carevisiae the

frequency of chromosome loss is about 1 in 105 per cell division (Guthrie and

Fink, 1991). For CEN plasmids, the frequency is higher--1% plasmid loss per

generation (Guthrie and Fink, 1991). However, in the presence of benomyl the

frequency of chromosome loss and plasmid loss increases (Jacobs et al.,

1988).

To test whether overexpression of Rbl2p could reduce benomyl induced

plasmid loss, we used the ADE2, ADE3 sectoring assay in S. cerevisiae. ade2,

ade3 mutant cells are white. If ADE3 is present in an ade2 mutant

background, the cells accumulate a pigmented metabolite, and are red. Loss of

the ADE3 plasmid gives rise to a white sector on the red colony background

(Hieter et al., 1985; Elledge and Davis; 1988).
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We transformed ade2,ade3 yeast with either a CEN-URA3-ADE3-GAL 1-

RBL2 plasmid (figure 4-1 C, D) or with a CEN-URA3-ADE3-GAL 1 control

plasmid (figure 4-1 A, B) and plated cells to low adenine glucose plates (A, C)

and to low adenine galactose plates containing 30 ug/ml benomyl (B, D). As

shown in figure 4.1 cells containing a CEN-URA3-ADE3-GAL control plasmid

lost the plasmid early in colony growth: most of the colonies on the benomyl

containing plates are white (B). In contrast, the CEN-URA3-ADE3-GAL 1-RBL2

plasmid was selectively maintained when cells were plated to galactose-

benomyl plates (D). This increased rate of plasmid loss was benomyl

dependent. At lower concentrations of benomyl, the plasmid was maintained in

both the experimental and the control (data not shown). These experiments

demonstrate that, despite the high background, it is possible to identify over-

expressed genes that confer benomyl resistance.

Revised screen

There is no ADE3 -marked yeast cDNA library available that would

enable us to have a color assay for plasmid maintenance in the presence of

benomyl; however, we can use any library marked with a selectable marker to

identify benomyl resistant colonies that maintained the library plasmid by

plating the benomyl survivors to selective plates.

We transformed the pRS316-GAL1 cDNA library (Liu et al., 1992) into

wild-type cells. Transformants were selected in liquid media containing glucose

as the carbon source but lacking uracil. To select and enrich for galactose

induced cDNAs that conferred benomyl resistance, we plated the transformants
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Figure 4-1. Overexpression of Rbl2p increases plasmid

maintenance on benomyl plates. ade2, ade3 cells containing a CEN-

URA3-ADE3-GAL control plasmid (A, B) or CEN-URA3-ADE3-GAL-RBL2 (C, D)

were plated to low adenine glucose plates (A, C) and to low adenine galactose

plates containing 30 ug/ml benomyl (B, D) and incubated at 300C. Colonies

were visually inspected for the ability to sector.
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onto plates containing galactose, benomyl and uracil. The cells were allowed

to form colonies. From our previous experiment, we knew that the colonies that

grew up at this point could be background survivors as well as bona fide BenR

survivors. We expected colonies containing galactose regulated cDNAs that

confer BenR to maintain the URA3 library plasmid.

We scraped the survivors off of the benomyl plates and we plated a slurry

of these cells to ura- plates to select for the library plasmid. This would enable

us to distinguish between background growth that had lost the plasmid and

BenR colonies that maintained the library plasmid. We picked Ura+ colonies

from individual plates to characterize further.

To determine if any of the Ura+ cells contained library plasmids that

confer a plasmid dependent BenR phenotype, we picked individual colonies

and restreaked these cells onto plates containing uracil to allow the URA3

plasmid to be lost. Then we selected for absence of the URA3 plasmid by

growing the cells on 5-FOA plates. We compared colonies derived from the

same original benomyl survivor with and without the URA3 containing plasmid

on benomyl plates by serial dilution. Yeast cells requiring the CEN library

plasmid to grow on galactose-benomyl plates were identified. A summary of the

results of this screen are shown in Table 4-1.
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LBQO Screen Results

Number of Cells Plated to Galactose Benomyl
Number of Colonies Tested for BenR
Number of Putative Plasmid Dependent BenR
Number of Plasmids that Retranformed

cDNA indentity

TUB1
RBL2
LB01
LB02

4.0x 104
534
18
5

Number of
isolates
1

1

1

2
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As expected we found plasmids encoding Rbl2p and one of the a-

tubulins (Tubl p) but not the other. We also identified two additional cDNA's

which allow cells to Live on Benomyl when .Qverexpressed LBO's 1 and 2. An

example of wild type cells retransformed with the LBO 1 or LB02 cDNA is

shown in figure 4-2. Gal-P4 in figure 4-2 is an example of a cDNA that failed to

increase benomyl resistance upon retransformation. That we only identified

one isolate for each of the cDNA's that conferred benomyl resistance, suggests

that our screen was not saturated.

Gene products that act to suppress the benomyl sensitivity of wildtype

cells might do so in various ways. Suppressors could include gene products

involved in transport of the drug. For example, expression of the C. albicans

genes CDR1 and BENr, which encode potential drug efflux pumps, confers a

multiple drug resistance phenotype in S. cerevisiae (Cannon et al., 1998; Ben-

Yaacov, et al. 1998). We previously showed that neither Rbl2p nor a-tubulin

overexpression is capable of conferring a multiple drug resistance phenotype

(Archer et al., 1995). We tested whether yeast cells overexpressing LBO 1 or

LB02 for resistance to cycloheximide and ethidium bromide and found that they

did not confer resistance to these other compounds (data not shown).

Quantitation of the LBO phenotype

Cells containing extra a-tubulin or extra Rbl2p show both quantitative

and qualitative differences relative to control cells when plated to benomyl

containing plates--more colonies form and these colonies are larger than

colonies that grow up on control plates. To characterize the ability of LBO01 and
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Figure 4-2. Overexpression of LBOs confer increased benomyl

resistance. Wild-type diploid cells were retransformed with plasmids

containing GAL-LB02, GAL-LB01, GAL-P4, GAL-RBL2 or YCpGAL. Serial

(four-fold) dilutions of saturated cultures were plated to SC-ura: glucose,

galactose and galactose benomyl as indicated and incubated at 300C.
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LB02 to increase the benomyl resistance of wild-type yeast cells we performed

a quantitative plating experiment. Diploid cells containing galactose promoted

RLB2, TUB1, LB01, LB02 or YCpGAL were plated to, galactose plates and to

galactose plates containing various concentrations of benomyl. We determined

the ratio of the number of colonies that grew on the various galactose benomyl

plates relative to the galactose plate without benomyl. As shown in figure 4-3

overexpression of Rbl2p was the best at protecting cells from the effects of

benomyl even at the highest concentrations of benomyl. LBO's 1, and 2 were

slightly better than TUB1 at the highest concentrations (50 ug/ml) of benomyl.

Overexpression of LBO's in benomyl supersensitive mutants

We were interested to know whether we could identify mutants in which

the overexpression of LBO genes did not increase benomyl resistance. Such a

situation would suggest that the benomyl resistant phenotype depended on the

presence of the wild-type function of the mutant gene product. We tested

whether the overexpressed LBO genes also increase the benomyl resistance of

various mutants stains that are supersensitive to benomyl. In all the

backgrounds tested -Atub3, Acin 1, Acin2, Arb12, and tub2-590 - the LBO were

able to confer increased resistance benomyl (data not shown).
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Figure 4-3. Quantification of the LBO phenotype. Wild-type diploid

cells containing GAL-LB01, GAL-LB02, GAL-TUB1, GAL-RBL2 or YCpGAL

were plated to galactose plates and to galactose plates containing increasing

concentrations of benomyl. The ratio of the number of colonies that grew on the

various galactose benomyl plates relative to the galactose plate was

determined.
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Overexpression of LBO's in wild type cells.

cDNAs encoding proteins that interact along the length of microtubules or

at the ends of rnicrotubules might stabilize the microtubules and confer

resistance to microtubule depolymerizing drugs. For example, a KAR3-lacZ

hybrid protein, containing the microtubule binding domain of a kinesin heavy

chain related protein that is essential for karyogamy in S. cerevisiae, stabilized

pre-formed cytoplasmic microtubules to nocadazole mediated depolymerization

(Meluh and Rose, 1990). A similar observation was made for cells expressing a

fusion protein of another gene, CIK1 (Chromosome Instability and Karyogamy)

(Page and Snyder, 1992). Thus, proteins that bind to microtubules may confer

at least a transient resistance to benzimidazole-mediated microtubule

depolymerization. Perhaps the presence of microtubule-associated proteins on

the yeast microtubule alters the binding capacity for the drug. In the absence of

benomyl, we might expect overexpressed proteins that hyperstabilize

microtubules would cause a growth phenotype in wild type cells. For example,

the cells may not be able to transit though the cell cycle since hyperstable

microtubules may interfere with microtubule dynamics.

We examined the effect of galactose induced overexpression of LBO 1

and LB02 in wild-type yeast cells at 30°C. Yeast cells containing GAL-LB01,

GAL-LB02 or containing YCpGAL were induced with 2% galactose at 30°C. At

various times the cells were counted and a dilution plated to non-inducing

plates to determine viability. As shown in figure 4-4, overexpression of LB01 is

toxic. The viability of the culture is down to about 3% after 20 hours. In contrast
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Figure 4-4. Viability of cells overexpressing LBOs.

Diploid cells containing YCpGAL (+),GAL-LB01 (circles), orGAL-LBO2

(squares), were grown overnight in selective non-inducing media at 30°C. At

T=0 overexpression of the indicated gene was induced in log phase cultures by

the addition of 2% galactose. At various time points aliquots of the cells were

taken and counted by hemacytometer. Known numbers of cells were plated to

SC -ura glucose plates and incubated at 30°C. Cell viability was measured as

percent of counted cells able to form colonies on SC -ura glucose plates. Two

separate GAL-LBO1 and GAL-LB02 transformants were monitored.
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overexpression of LB02 is only moderately toxic in wild-type cells: the viability

is -50% after 20 hours in galactose. However, we found that anti-tubulin

immunofluorescence of cells overexpressing either LB01 or LB02 was

indistiguishable from control cells. We could not detect increased amounts of

microtubule polymerization. This suggests that, the growth defect i cells

overexpressing LB01 or LB02 is probably not due to a gross hyperstablization

of the microtubule cytoskeleton. Perhaps a more sensitive test will be

necessary to determine if the microtubules in cell overexpressing LBO1 or

LB02 are hyperstabilized.

Identification of LB01

We established the identity of the LB01 plasmid by dideoxy sequencing

of the insert cDNA. The LBO1 cDNA is 3.85 kb and the full length cDNA

encodes a previously identified yeast protein SCP160 for Sacchromyces

Control of Ploidy (Wintersberger and Karwank, 1992). The carboxy-terminus of

Scpl60p contains 14 K homology (KH) domains (Castiglone Morelli et al.,

1995; Delahodde et al., 1986; Siomi et al., 1993). KH motifs are evolutionary

conserved and have been shown to bind to RNA in vivo [Dejgaard, 1996

#1908; Urlaub, et al., 1995]. SCP160p shares significant homology, particularly

within the KH motifs, with the conserved vertebrate RNA binding protein, vigilin

(Webber et. al, 1997).

LBO1/SCP160 nulls

Strains deleted for SCP160 are viable; however, Wintersberger and co-

workers (Wintersberger et al., 1995) reported that deletion of parts of the
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SCP160 gene resulted in decreased viability, abnormal morphology and

increased DNA content of the mutant strains. We disrupted the complete open

reading frame encoded by SCP160 in wild type diploids. Diploids containing a

disruption allele at the correct chromosomal location were identified by

Southern blot analysis and were sporulated and dissected on YPD at 30°C. As

shown in figures 4-5 (A, B) cells deleted for the entire coding sequence of

LBO1/SCP160 are viable. We tested tetrads for various conditional phenotypes

-temperature sensitivity at 150C, 18°C, 25°C, 37°C and benomyl sensitivity- and

found that no conditional phenotype co-segregated with dIbo1/scpl60::URA3.

Marker analysis on 40 complete tetrads showed 2:2 segregation of

URA+:ura- in 37 of 40 tetrads examined. Three of the tetrads analyzed were 1:3

for URA+: ura3-. 39 of the 40 tetrads showed the correct 2:2 segregation for

ADE+:ade-. As show in figure 4-5 (C), Southern blot analysis on the tetrads

showed 2:2 segregation of the Albol1/SCP160 disruption allele in 3 of the 4

tetrads tested. One of the four segregants (4b) from tetrad #4 was heterozygous

for the disruption allele even thought this tetrad showed normal 2:2 Ura+:ura-

segregation. This particular tetrad was also the only one that showed aberrant

segregation of ADE+: ade-.

Localization of Lbolp-Scp160p

We generated an allele of LBO1/SCP160 tagged at the carboxy

terminus with a single HA epitope tag. The tagged construct is as effective as

the untagged version in conferring benomyl resistance. As shown in figure 4-6,

the epitope tagged protein runs as a single band of about 160 kD on SDS
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Figure 4-5. Cells deleted for LBO1/ SCP160 are viable. Diploid cells

heterozygous for theAlbo 1/scp 160::hisG-URA3-hisG disruption allele were

sporulated in 1% potassium acetate, dissected on YPD and incubated at 300°C

for 2 days. (A) and (B) are two independent heterozygous diploids. (C)

Southern blot analysis of 4 of the tetrads generated from the above dissection.

A indicates the Abol/scp16O::hisG-URA3-hisG allele; WT indicates the wild-

type LB01 allele.
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PAGE gels from extracts of cells overexpressing Lbolp/Scp160p-HA (G). This

protein band not present in extracts from uninduced cells (R) . By

immunofluorescence microscopy we found that Lbolp/Scpl60p-HA the

localizes to the nucleus and to what appears to be the ER (data not shown).

However, we did not compare this localization with a nuclear or ER marker

since our result is similar to the localization that has been previously reported

(Wintersberger et al., 1995). We tested whether overexpressed

Lbolp/Scpl6Op-HA shows any direct interaction with either (-or 0-tubulin.

However, co-immunoprecipitation experiments with the anti-tubulin monoclonal

antibodies or with the anti-HA failed to show any direct interactions with tubulin

(data not shown).

LBO2

The LB02 sequence is 0.96 kb in size and encodes a novel yeast ORF,

with a predicted molecular weight of 22.6 kD and a predicted pi of 4.81. LB02

protein sequence contains a P-loop motif commonly found in ATP/GTP binding

proteins. In addition, LB02 sequence shares 65% similarity and 46% identity

with another hypothetical yeast ORF, YDR066C (BLAST).

Charaterization of Albo2 cells

To determine the loss of function phenotype of LB02 we generated an

LB02 disruption construct by P. C .R. that deletes the entire predicted open

reading frame of YER139C. The 5'- and 3'- flanking region of LB02 was cloned

around hisG-URA3-hisG in pNK51. Diploids transformants were selected on

SC -ura and putative heterozygotes were analyzed by Southern blot. We
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Figure 4-6. SDS PAGE analysis of epitope tagged Lbolp/Scp160-

HA. Two independent str-;ns containing GAL-LB01/SCP160-HA were grown

overnight in SC -ura raffinose media. 2% galactose (G ) was added to log

phase cultures to induce Lbolp/Scpl60-HA or 2% raffinose (R ) was added to

the control culture. Total protein was harvested by glass bead lysis in PME plus

protease inhibitors then boiled in SDS sample buffer. Samples were run on

7.5% SDS PAGE, transferred to nitrocellulose, probed with the monoclonal

antibody 12CA5 and detected with 1'25 SAM (NEN). A single band of about 160

Kd is detected.
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Figure 4-7. Cells deleted for LB02 are viable. Diploid cells

heterozygous for theAlbo2:.:hisG-URA3-hisG disruption allele were sporulated

in 1% potassium acetate, dissected on YPD and incubated at 300 C for 2 days.

Three independent heterozygous diploids were tested however only one

diploid is shown.
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sporulated and dissected diploids containing the disruption allele at the correct

chromosomal location. Tetrad analysis showed that Albo2cells are viable at

30°C (shown in figure 4-7).

However, as shown in figure 4-8, we found Lbo2p function is required for

growth at 370C . Albo2 containing a control plasmid ( pCT3, open figures) or

covered with a low copy genomic plasmid containing LB02 (pLV21, closed

figures) were grown at 300°C (squares) or were shifted to37°C (circles). We

counted cell number and plated cells to monitor the viability of the culture at

various times. Figure 4-8 (A), shows that the cell deleted for LB02 stop dividing

after about 2 doublings at this temperature. Moreover, prolonged incubation of

Albo2 cells at 37°C results in loss of viability. As shown in figure 4-8 (B), after

20 hours at 37 °C only about 0.1% of the Albo2 cells are viable (open squares).

During the course of our analysis Smith et al., (1996) performed a systematic

functional analysis of the genes on yeast chromosome V by genetic footprinting.

They reported that Tyl transposon insertions in YER139C reduced the fitness of

S. cerevisiae at elevated temperatures (Smith et al., 1996).

To determine if cells deleted for LB02 arrest at a specific point in the cell

cycle we quantitated the bud size distribution of Albo2 cells or wild-type cells

after a 9 hour shift to the non-permissive temperature. As shown in figure 4-9

(B), we found that the percentage of unbudded cells increased 2-fold for Albo2

cells relative to Ithe control when held at the non-permissive temperature for 9
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Figure 4-8. Lbo2p is required for growth at 37°C. (A) Albo2 haploid

cells containing a genomic copy of LB02 on a CEN plasmid, pLV21 (filled

figures), or with a control plasmid, pCT3 (open figures), were grown overnight in

SC -ura media. At T=O, the cultures were shifted to 37°C (circles) or were

maintained at 300C (squares). Cell number was monitored by hemacytometer

counts. At 37°C cells deleted for LB02 stop dividing after 2 doublings. (B) At

various time points after shifting to 37°C aliquots of the Albo2 haploid cells

covered with pLV21(filled squares) or with a control plasmid, pCT3 (open

squares) were taken and counted by hemacytometer. Known numbers of cells

were plated to SC -ura glucose plates and incubated at 30°C. Cell viability was

measured as percent of counted cells able to form colonies on SC -ura glucose

plates.
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Figure 4-9. Incubation at 370C alters the bud size distribution of

Albo2 cells. Two independent Albo2 haploids (LTY161, LTY162) covered

with pLV21 or with the pCT3 control plasmid were grown at 30°C (A) or at 37°C

for 9 hours (B). We determined the bud size distribution of cells by visual

inspection and we processed cells for FACS analysis as described in materials

and methods. After 9 hours at 37°C zlbo2 cells containing pCT3 showed an

increase in the percent unbudded cells. (A): Albo2 #1, ( n=1 19); WT #1, (n=98);

lAIbo2 #2, (n=154); WT #2 (n=127). (B): AIbo2 #1, (n=122); WT #1 (n=125);

Albo2 #2, (n=150); WT #2 (n=122).
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hours. However, we found that the percentage of cells in G1/S did not increase

when measured by F.A.C.S. analysis (data not shown).

To test whether cells deleted for LB02 also have a defect in microtubule

assembly, we performed anti-tubulin immunofluorescence analysis of AIbo2

cells shifted to 37°C for 9 hours. As shown in figure 4-10 (A), the unbudded

Albo2 show very elaborate cytoplasmic microtubule arrays for unbudded cells.

By DAPI staining the DNA in lbo2 cells appears enlarged and somewhat

disorganized at 37°C. In contrast wild-type cells do not show this phenotype

when subjected to thee same conditions (figure 4-10 (B)). The microtubules of

wild type, unbudded cells usually look like dots or small asters.

Localization and Immunoprecipitation experiments with Lbo2p-HA.

As previously mentioned, we found that overexpression of LB02 is toxic

in yeast cells (figure 4-4); however, we failed to find any gross alteration of the

microtubules in LB02 overexpressing cells by immunofluorescence. Because

of the elaborate microtubule arrays in Albo2 cells we were interested to see if

the wild-type Lbo2p co-localized with microtubules or whether Lbo2p showed

any discrete localization in vivo. Therefore, we generated both a galactose-

promoted and a genomic-promoted version of Lbo2p with a triple HA epitope

tag at the extreme carboxy terminus. We tested genomic Lbo2p-HA constructs

for the ability to complement the temperature sensitivity of AIbo2 cells at 370°C

and the GAL-promoted constructs for the ability to confer benomyl resistance

when overexpressed. We found that both the genomic and the galactose
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Figure 4-10. Ilbo2 cells exhibit aberrant microtubule morphologies

at 370C. Anti -tubulin immunofluorescence and DAPI staining of dlbo2 cells

containing pCT3 (A) or covered with pLV21 (B) after 9 hours at 37°C. Albo2

cells appear enlarged and show aberrant tubulin staining.
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tagged versions of Lbo2p-HA were fully functional (data not shown). As shown

in figure 4-11, Lbo2p-HA runs as a single band above the 31 kd marker. Thus,

Lbo2p-HA runs slightly larger on SDS PAGE than the predicted molecular

weight of Lbo2p (22.6 kd) plus the triple HA tag (-4 kd). We used both the GAL-

promoted and the Genomic promoter versions of Lbo2p for immunolocalization

experiments. Neither version of Lbo2p-HA showed any discrete localization in

vivo; rather, Lbo2p-HA showed diffuse staining in both the nucleus and the

cytoplasm (data not shown).

Rbl2p binds to -tubulin monomer and its overexpression like, Lbo2p,

confers benomyl resistance in wild-type cells (Archer et al., 1998; Archer et al..

1995). However, Rbl2p does not give a discrete localized signal by

immunofluorescence microscopy; thus, it does not appear to co-assemble into

microtubule polymer in vivo (Archer et al., 1995). We tested whether Lbo2p.

like Rbl2p, showed any physical interaction with the individual tubulin chains by

co-immunoprecipitation with the anti-tubulin monoclonal antibodies or with anti-

HA. However, we did not find any direct interaction of Lbo2p with either ca or 3-

tubulin (data not shown).

YDR066C is an LB02 homologue by sequence but is not a functional

homolopue,

LB02 shares sequence similarity with YDR066C, a hypothetical yeast

ORF of 196 amino acids. As shown in figure 4-12, YDR066C shares 46%

identity to Lbo2p over 105 amino acids (BLAST). Unlike LB02, YDR066C does
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Figure 4-11. SDS PAGE analysis of epitope tagged Lbo2p-HA.

Yeast strains containing GAL-LBO2-HA or YCpGAL (control) were grown

overnight in SC -ura raffinose media. 2% galactose was added to log phase

cultures to induce the expression of Lbo2p-HA. Total protein was harvested by

glass bead lysis in PME plus protease inhibitors then boiled in SDS sample

buffer. Samples were run on 7.5% SDS PAGE, transferred to nitrocellulose,

probed with the monoclonal antibody 12CA5 and detected with 1125 SAM ( NEN).

A band of about 35 Kd is detected.
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Figure 4-12. Lbo2p is homologous to a hypothetical yeast ORF,

YDR066C. Sequence alignment of Lbo2p and YDR066Cp shows that they

share 46% identity over their entire length.
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not contain a P-Loop motif. In addition YDR066C has mitochondrial energy

transfer protein signature motif (DATABASE).

To test whether the loss of function phenotype of YDR066C was similar to

that of Albo2 cells we disrupted the ORF encoded by YDR066C. Briefly, we

cloned 5' and 3' flanking region of YDR066C, 225 and 658 bp respectively,

around LEU2 in pJH-L2. The disruption fragment was transformed into a wild-

type diploid and transformants were selected on SC leu-. Putative

heterozygotes were checked by Southern blot analysis. Diploids containing the

disruption allele at the correct chromosomal location were sporulated and

dissected on YPD at 300°C. We found that cells deleted for YDR066C are viable

(data not shown and figure 4-13). The tetrads were serially diluted and plated

to different growth conditions to test for sensitivity to benomyl, various

temperatures, and auxotrophies. We were unable to detect any growth

phenotype for the conditions tested. In addition, we tested whether Ibo2,

AYDR066C double mutants were viable. As shown in figure 4-13 the double

mutant is viable. We found that double mutant cells show the same temperature

sensitivity as the single Albo2 mutant (data not shown).

In order to determine if the protein encoded by YDR066C was also a

functional homologue of Lbo2p we cloned the YDR066C sequence under the

control of the galactose promoter. We transformed wild-type cells with pGAL-

YDR066C and plated cells to galactose benomyl plates. We found that
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Figure 4-13. Ilbo2; AYDG066C mutants are viable. +Abo2::URA3

hisG, +IAYDG066C::LEU2 double heterozygous diploid cells were sporulated in

1% potassium acetate, dissected on YPD and incubated at 300C for 2 days. (x)

indicates double mutant cells.
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galactose overexpression of YDR066C did not confer increased benomyl

resistance in wild-type cells. Since we did not have a functional assay for

YER066C it was not possible to determine if the protein encoded by construct

was expressed.
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DISCUSSION

Our laboratory showed that overexpression of the -tubulin binding

proteins, a-tubulin or Rbl2p confers increased resistance to benomyl in wild-

type cells (Archer et al., 1995; Schatz et al., 1986). We have screened for other

cDNAs that allow cells to Live on Benomyl when Overexpressed (LBO). Gene

products with this property may provide valuable information about microtubule

assembly and perhaps about the response of animal cells to chemotherapies.

In this chapter, we describe the identification and initial characterization

of two such genes LB01 and LB02. Like Rlb2p and cx-tubulin, overexpression

of either LB01 or LB02 in wild-type cells confers increased resistance to

microtubule depolymerizing drugs but not to other unrelated compounds. We

found that in the absence of benomyl overexpression of either gene product is

slightly toxic. However, we were unable to identify a defect in microtubule

assembly in cells overexpressing either LB01 or LB02. Further analysis will be

necessary to determine the mechanisms by which cells overexpressing LBO

gene products confer increased resistance to microtubule depolymerizing

drugs. Unlike Rbl2p and a-tubulin which we know interact with P-tubulin, we

did not find that either LB01 or LB02 can interact with the individual tubulin

chains by co-immunopreciptiation.

Neither LBO1 nor LB02 are essential under standard conditions;

however, the LB02 gene product is required for viability at high temperature
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(this study and (Smith et al., 1996). We found that cells deleted for LB02 stop

dividing after about two doublings at the restrictive temperature. Albo2 cells

accumulate as unbudded cells and have aberrant microtubule staining. Further

analysis will be necessary why Lbo2p is required for viability at elevated

temperatures.

LB01 and KH domain proteins

Lbolp/Scpl60 shares homomlogy to a family of conserved proteins

containing KH domains (Siomi et al., 1993). Some KH domain containing

proteins are clinically important. These include: the FMR1 protein, involved in

human fragile X syndrome and Nova-1, an autoantigen in paraneoplastic

opsoclonus myoclonus ataxia (POMA), a disorder associatd with breast cancer

and motor dysfunction (Buckanovich et al., 1993; Buckanovich et al., 1996; Burd

and Dreyfuss, 1994; Siomi et al., 1993). In some cases KH domain proteins

have been shown to bind to RNA in vivo and in vitro [Dejgaard, 1996 #1908;

Urlaub, et al., 1995; Burd, 1994 #1911; Buckanovich, 1997 #1915] however, the

details of how KH domain containing proteins interact with RNA are not known.

And KH domains have been shown to be involved in the regulation of RNA

synthesis and RNA metabolism (Buckanovich and Darnell, 1997; Burd and

Dreyfuss, 1994). Interestingly, koc mRNA, encoding a KH domain containing

protein Qverexpressed in cancer, was found to be highly overexpressed in

various human cancer cells (Mueller-Pillasch et al., 1997). However, the precise

role of koc in human tumor cells is unknown. It will be interesting to determine if

Lbolp/Scpl60p is also an RNA binding protein in vivo. Work by Weber and
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colleagues suggests that Scpl 60 binds various types of nucleic acids non-

specifically including ribohomopolymers; rRNA, ssDNA and dsDNA (Weber et

al., 1997). Perhaps Lbolp/Scpl60 can interact with and stabilize specific

RNAs. For example, it may be that excess Lbolp/Scpl60p (either specifically

or non-specifically) binds and stabilizes TUB1 or TUB3 mRNA which in turn

leads to more a-tubulin and increased benomyl resistance. Recent work in our

laboratory by Adelle Smith and Margaret Magendantz suggests that perhaps

the a-tubulin message is unstable in certain genetic backgrounds. We are now

testing whether excess LB01 causes an increase in c-tubulin levels in vivo.

Parallels between benomyl and excess D-tubulin

Both excess -tubulin and benomyl lead to loss of microtubules, large

budded cell-cycle arrest and cell death. This parallel is supported by the

consequences that changes in the level of either Rbl2p or xo-tubulin have for

both of these microtubule poisons. Overexpression of either gene rescues cells

from the effects of P-tubulin overexpression (Archer et al., 1995; Weinstein and

Solomon, 1990) and deletion of Rbl2p renders cells more supersensitive to

excess f-tubulin (Archer et al., 1995). Extra Rbl2p or x-tubulin produced by the

galactose induction confers resistance to benomyl, while the absence of Rbl2p

or a modest decrease in the a-tubulin levels produced by disruption of the

TUB3 gene renders cells more sensitive to the drug (Archer et al., 1995; Schatz

et al., 1986). The mechanisms by which extra c-tubulin or extra Rbl2p mediate
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resistance to benomyl is not still not clear. However, the benomyl resistant

phenotype together with the other interesting properties of a-tubulin and Rbl2p

may indicate that resistance to benomyl occurs via a microtubule related

process.
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CHAPTER 5:

Future Directions



Prospects for further studies

-How does free -tubulin poison cells.

Many experiments in our laboratory and in this thesis stem from the observation

made by Brant Weinstein when he was a graduate student that free excess f3-tubulin

poisons microtubule assembly and results in cell lethality. We have used the activity of

free -tubulin to examine cellular mechanisms controlling microtubule assembly.

However, we still do not understand the mechanism by which f3-tubulin kills cells.

Despite many attempts by several people in the laboratory we have been

unable to identify the lethal target of excess P-tubulin. The original RBL screen

(Rescue Beta-tubulin Lethality) developed by Julie Archer and continued by Pablo

Alvarez employed high copy suppression of a galactose-promoted P-tubulin gene.

This approach did not identify the lethal target of P-tubulin but rather led to the

identification of Rbl2p, a -tubulin monomer binding protein. Adelle Smith and Kate

Compton tried to identify mutations that suppress -tubulin lethality in cells

overexpressing -tubulin from the galactose promoter. However, they found that in

each of several cases the ability to suppess -tubulin lethality does not segregate in

genetic manner. Kate Compton is trying to understand the epigenetic phenomenon

involved in rescue of f3-tubulin overexpression. Finally, Alice Rushforth has tried to

identify biochemically components that bind to overexpressed 3-tubulin. By using

mass spectroscopy analysis she has identified candidate tubulin binding proteins,
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including some hsp70 family members. But none of the proteins identified thus far are

specific for -tubulin over a-tubulin; rather, these proteins are enriched in cells

overexpressing either tubulin chain.

Perhaps an analysis of genetic interactors with tub1-724 will uncover other

genes that affect -tubulin lethality. We showed (in Chapter Two and (Vega et al.,

1998) ) that the cold sensitivity of tub1-724 is semi-dominant in cells heterozygous for

the mutant allele of a-tubulin. The semi-dominant cold sensitive phenotype in these

cells is suppressed by overexpression of Rbl2p. This result argues that these cells die

due to the free -tubulin produced by dissociation of the mutant heterodimer or by

newly translated f3-tubulin which is unable to dimerize with the mutant x(-tubulin at the

restrictive temperature. Our work suggests that suppressors of the conditional

phenotypes of tub1-724 heterozygous cells may be useful to identify genes that affect

heterodimer formation or that affect J-tubulin lethality.

For example, we could create wild type haploid cells that contain a plasmid

copy of tub1-724 on a genomic promoter (CEN or 2um). If, as we suspect, these cells

have a significant cold sensitive phenotype we could mutagenize these cells and look

for mutations in genes that either enhanced or suppressed the conditional

phenotypes. This would allow us to look at cells with very modest levels of free 1-

tubulin. It is likely that genes that are involved in heterodimer formation would be

identified in this manner.

In addition, we could perform a high copy suppressor screen to identify genes

that when overexpressed are able to rescue tubl-724/TUB1 and/or the tub1-724
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haploid phenotype. From this type of analysis we could identify genes that interact

with the 0-tubulin monomer and/or that promote heterodimer formation such as RBL2,

CIN1, and ac-tubulin. We might also be able to identify the essential target of P3-tubulin.

By overexpressing the essential target of P-tubulin, the modest levels of free [-tubulin

generated as a result of dissociation of the mutant heterodimer would no longer be in

excess over the target. This screen has the advantage over the original RBL screen

that the amount of free 3-tubulin should be substantially less than the free -tubulin

generated from the galactose promoter. Thus, the kinetics of 3-tubulin lethality should

be slower, allowing the cells more time to establish suppression. In addition,

depending on the library used, the target gene product could be available prior to

shifting the cells to the non-permissive temperature that generates free 13-tubulin.

Quantitatively, the ability of a gene product to rescue acute P-tubulin poisoning from

GAL-TUB2 may differ from its ability to rescue the chronic amounts of free 3-tubulin in

tub1-724/TUB1 cells. For one thing, it may be that the essential target of 3-tubulin is

itself toxic or lethal when it is highly overexpressed. Because the levels of free P-

tubulin are less in the tub1-724 mutant cells than in cells containing a galactose

promoted TUB2, we may screen for high copy suppressors using more moderate

levels of overexpression (2um library).

It may be useful to mutagenize 3-tubulin (or the HIS6 tagged -tubulin) to

identify mutant -tubulin alleles that are unable to poison microtubule assembly. If we
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do this in a tub2-590 strain we can quickly eliminate mutants that fail to express the 3-

tubulin using dot blot western analysis of protein extracts. Cells that express the non-

poisonous -tubulin can then be screened for the ability to interact with -tubulin in the

a/3 heterodimer by co-immunopreciptiation with 3-tubulin antibodies. In addition we

can use indirect immunoflourescence with anti-p-tubulin to detect whether these 3-

tubulin alleles are still competent to incorporate into microtubules. It will be interesting

to see if we can recover any alleles of P-tubulin that are no longer able to poison

microtubule assembly but that are still able to interact with x(-tubulin either at the level

of (a-3 heterodimer polymer or formation. Using the available crystal structure for

tubulin we would map residues important for 0-tubulin poisoning onto the -tubulin

structure. We could then mutagenize cells containing the benign form of P-tubulin and

try to identify mutant genes that can restore the excess -tubulin lethality.

Are we looking at folding?

Another interesting question is; what is the fate of the dissociated tubulin in

tub 1-724? Is the free monomer degraded or is there a system to recycle the

unpartnered tubulin chains into new heterodimer? Perhaps one clue comes from Jim

Fleming's work on overexpression of CIN1 in tub1-724 cells. Overexpression of

Cinlp, which he shows to be a -tubulin binding protein, suppresses the phenotypes

of tub1-724 cells but has no effect in either Atub3 or GAL-TUB2 overproducing strains.

A significant difference among these situations is that the tubl-724 mutant cells
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contain a pool of a-tubulin large enough to bind all of the free 0-tubulin, while the

TUB2 over-expressing strain and the Atub3 strain do not. That excess Cinl p rescues

the tub1-724 mutant phenotype suggests that the dissociated heterodimer can be

recovered at least to some extent.

We can look at the in vitro tubulin folding assay (Tian et al., 1997) from the

perspective of these data. The in vitro assay for tubulin folding requires the addition of

exogenous heterodimer. The output of this assay is the ability of the newly folded

tubulin chain to exchange into pre-existing heterodimer. Perhaps the "folding"

reaction is not assaying folding but rather factors that are important for exchange of

newly folded subunits with pre-existing heterodimer. Cofactors D and E are required

in this assay, however, in S. cerevisiae the corresponding genes, Cinlp and Pac2p,

are non-essential and have relatively minor phenotypes in wild-type cells. We and

others have identified situations in which some of the S. cerevisiae homologues of the

mammalian co-factors become essential: in the cold, with microtubule depolymerizing

drugs, with mutations that affect to tubulin ratios, or in combination with mutations

in tubulin encoding genes (including tub1-724 ). We think that tub 1-724 cells require

CIN1, PAC2 and RBL2 for viability because the heterodimer is less stable in these

cells. Under these circumstances, a salvage pathway to recycle unpartnered tubulin

chains may be essential. In wild-type cells this pathway is not important because most

of the heterodimer remains intact. Cold temperatures, or microtubule depolymerizing

drugs, may affect the stability or the structure of the tubulin heterodimer. In our

analysis we found several alleles of a-tubulin that are lethal in combination with
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deletions in PAC2, CIN1, and RBL2. All of the alleles fall into the class of mutant (-

tubulins that arrest with no microtubules at the non-permissive temperature. It will be

of interest to see if any of these a-tubulin mutants also affect heterodimer formation

and/or stability.

We presume that heterodimer breathing occurs in vivo. Yet to our knowledge

no one has tested whether this occurs. We have in the laboratory reagents to test

whether heterodimer exchange occurs --antibodies to two distinct forms of 3-tubulin.

By using a strain that contains wild-type versions of both TUB1 and TUB2 and in

addition contains an inducible copy of tub2-590 we can test whether newly

synthesized monomers can exchange into pre-existing heterodimer. The cellular

tubulin can be radiolabelled with S35methionine under non-inducing conditions. After

chasing the with cold methionine we could briefly induce tub2-590 expression.

Antibody #339 is specific for tub2-590, and can be used to immunoprecipitate tub2-

590 heterodimer. We could determine whether the newly synthesized tub2-590 is

able to associate with the labeled a-tubulin. If we find that heterodimer exchange

occurs in vivo, we could look at genetic configurations that affect this exchange. Or

look for a change in the rate of exchange. For example, we could look in cells deleted

for Cinlp or overexpressing Cin1p to see if Cinlp affects this process.

How does Rbl2p rescue cells from -tubulin lethality?

We know much about the properties of Rbl2p. However, the mechanism by

which Rbl2p rescues cells from -tubulin poisoning remains unclear. Preliminary work

by Julie Archer, shows that the percentage of cells rescued by Rbl2p depended on the
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amount of Rbl2p. The plating efficiency of -tubulin overexpressing cells containing

Rbl2p under the control of the galactose promoter is an order of magnitude higher that

cells containing a genomic copy or Rbl2p. Kate Compton has extended this analysis

and has found that more subtle changes in Rbl2p levels affects the ability of 3-tubulin

rescue by Rbl2p.

The ability of Rbl2p to rescue excess f3-tubulin lethality likely requires binding of

3-tubulin in vivo. Kate Compton has found that in vivo, only a small amount of Rbl2p is

complexed to P-tubulin in cells overexpressing both proteins. Only in tub1-724 cells

does she find a large pool of the Rbl2p-P3-tubulin complex. Kate Compton has

preliminary evidence which suggests that Rbl2p appears to be unstable in vivo, when

it is not complexed to P-tubulin. She also finds that rescue of f3-tubulin overexpression

by Rbl2p requires that Rbl2p must be co-translated with 3-tubulin, perhaps because

the unpartnered Rbl2p is degraded.

The question remains, how does Rlb2p act to rescue cells from free -tubulin?

Rbl2p might be part of a buffering system that prevents accumulation of significant,

toxic amounts of undimerized 13-tubulin. We know that even a slight excess of 1-

tubulin affects essential functions. Those imbalances can be generated by

perturbations in expression levels or as a consequence of a-, tubulin dissociation

such as in cells expressing the mutant -tubulin, tub1-724. We are investigating

whether cells encounter such imbalances under normal circumstances as well . A

recent comprehensive study of cell-cycle regulated genes in S. cerevisiae shows that
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tubulin message may be cell cycle regulated (Spellman et al., 1998). This study found

that TUB2 message peaks in G2. In addition, they found TUBI also peaks in G2 albeit

to lower levels than TUB2, and TUB3 showed little to no difference throughout the cell

cycle (Spellman et al., 1998). We are interested to know whether Rbl2p levels

increase in response to alterations in the ratio of a to 3 tubulin. Will Chen and I are

looking at whether Rbl2p is upregulated in cells with alterations in tubulin levels or in

response to microtubule depolymerizing drugs. It will be interesting if indeed Rbl2p

levels are upregulated in vivo. Perhaps, Rbl2p activity might be important during a-

heterodimer breathing or during heterodimer degradation.

What does benomyl do to microtubules in vivo.

Mutations in many of the genes that affect microtubule function in vivo, are

supersensitive to the microtubu'e depolymerizing drug, benomyl. In many organisms,

mutations that confer resistance to benomyl map to the P-tubulin encoding gene.

Since both -tubulin overexpression and benomyl toxicity are rescued by

overexpression of either a-tubulin or Rbl2p (Schatz et al 1988; Archer et al 1995), we

hypothesized that perhaps benomyl caused the a-p heterodimer to dissociate and

release free P-tubulin. Some experiments not described in this thesis suggest that

benomyl does not cause the heterodimer to fall apart in wild-type cells (unpublished

results). However, it is still possible that the interaction of benomyl with tubulin causes

a more subtle effect on the conformation -tubulin.

Future Directions214



BIBLIOGRAPHY

Spellman, P. T., Sherlock, G., Zhang, M. Q., lyer, V. R., Anders, K., Eisen, M. B., Brown,
P. O., Botstein, D., and Futcher, B. (1998). Comprehensive identification of cell cycle-
regulated genes of the yeast saccharomyces cerevisiae by microarray hybridization [In
Process Citation]. Mol Biol Cell 9, 3273-97.

Tian, G., Lewis, S., Feierbach, B., Steams, T., Rommelaere, H., Ampe, C., and Cowan,
N. (1997). Tubulin subunits exist in an activated conformational state
generated and maintained by protein cofactors. J Cell Biol 138, 821-832.

Vega, L., Fleming, J., and Solomon, F. (1998). An ac-Tubulin Mutant Destabilizes the
Heterodimer:Phenotypic Consequences and Interactions with Tubulin-binding
Proteins. Molecular Biology of the Cell 9, 2349-2360.

Future Directions215



APPENDIX

Publications



Cell, Vol. 82, 425-434, August 11. 1995. Copyright © 1995 by Cell Press

Rbl2p, a Yeast Protein That Binds to P-Tubulin
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Summary

Genetic configurations resulting in high ratios of p-tubu-
lin to a-tubulin are toxic in S. cerevisiae. causing micro-
tubule disassembly and cell death. We identified three
non-tubulin yeast genes that, when overexpressed,
rescue cells from excess -tubulin. One, RBL2, res-
cues p-tubulin lethality as efficiently as does a-tubulin.
Rbl2p binds to p-tubulin in vivo. Deficiencies or ex-
cesses of either Rbl2p or a-tubulin affect microtubule-
dependent functions in a parallel fashion. Rbl2p has
functional homology with murine cofactor A, a protein
important for in vitro assays of -tubulin folding. The
results suggest that Rbl2p participates In microtubule
morphogenesis but not in the assembled polymer.

Introduction

Cytoskeletal structures are constructed from a few basic
polymers that are notable for the stringent and detailed
conservation of their ultrastructure Those polymers oc-
cur, however, in arrays with a wide range of geometries
and functions. For example. microtubule organizations dif-
fer dramatically among cell types Even n a single cell
type, the microtubule arrays can vary In form and extent
of assembly during development or upon passage through
the cell cycle. An unresolved issue s an understanding
of how cells specify the quantitative and qualitative varia-
tions in cytoskeletal assembly

Regulation of microtubule assembly could occur at any
of several places along the pathway Divergent domains In
the primary sequence of tubulin subunits could be crucial
(Fuller et al., 1987). The amount of the ndividual subunits
(Cleveland et al., 1981) and folding of the polypeptides to
form assembly-competent dimers (Yaffe et al., 1992) may
also be important. A variety of experiments demonstrate
that activities that nucleate microtubule assembly (Oakley
et al.. 1990) and that stabilize microtubules by binding
along their lengths (Caceres and Kosik, 1990. Dinsmore
and Solomon, 1991) can contribute to microtubule func-
tion. The precise role and detailed mechanism of action of
each of these factors are not yet well understood, nor Is their
contribution to the regulation of microtubule structure

Genetic approaches provide valuable tools to dentify
important steps and essential components of morphoge-
netic pathways in vivo. A standard tool s the analysis of
Interacting mutations An early and successful application
of this sort of analysis s crucial to our understanding of

phage assembly. Isolation of second-site revertants of mu-
tant components identified Interacting structural partners
such as genes 1 and 5 in bactenophage P22 (Jarvik and
Botstein, 1975). For microtubules, second-site revertants
of tubulin mutants identified y-tubulin, a presumably ubiq-
uitous and essential component of the microtubule-organ-
izing center (Zheng et al., 1991), as well as proteins that
may act along the length of microtubules (Pasqualone and
Huffaker, 1994). This approach has been particularly use-
ful in identifying genes that affect actin assembly in yeast
(Adams and Botstein, 1989; Adams et al., 1989). These
suppression events are likely to represent physical inter-
actions.

An alternative genetic approach to a qualitative suppres-
sion analysis derives from quantitative considerations.
The assembly of complex structures can require coordi-
nated participation of multiple elements, some at interme-
diate steps and some in the final product. Again, phage
studies demonstrate that successful assembly of complex
structures may be sensitive to the relative levels of those
components and require precise stoichiometries; an ab-
normal stoichiometry can lead to formation of aberrant
and poisonous intermediates. For example, amber muta-
tions in the T4 tail fiber gene 18 result in a lowered expres-
sion level of product, and mature phage progeny are not
produced. Suppressors of this defect include amber al-
leles of interacting components (tail base plate genes) that
result n lower, balanced levels of expression of the two
components (Floor, 1970) This Interaction is interpretable
if one considers that the two gene products ordinarily inter-
act and that a deficit in one of them leaves the other free
to form otherwise forbidden nteractions that lead to de-
fects in assembly Normal assembly, then, depends not
on the absolute level of the gene products but rather a
balance of components (Floor, 1970; Sternberg, 1976).
The same sort of reasoning explains the requirement for
balanced expression of histone proteins to produce nor-
mal chromosome segregation n the yeast Saccharo-
myces cerevisiae (Meeks-Wagner and Hartwell, 1986).

The details of tubulin expression in yeast present an
opportunity to apply this analysis to microtubule assembly
(Weinstein and Solomon, 1992). Genetic configurations
that result in an increase In the ratio of -tubulin to a-tubulin
relative to wild-type cells are either toxic or lethal (Burke
et al., 1989; Katz et al., 1990; Schatz et al., 1986). When
-tubulin is overproduced using an inducible galactose
promoter on a 2 (multicopy) plasmid, cells lose their mi-
crotubules within 1.5 hr. as assayed by mmunofluores-
cence. Only 1% of the cells are viable after 4 hr, at which
time the 13-tubulin protein levels have only increased 2- to
4-fold. In contrast, the galactose-mediated induction of
a-tubulin on a high copy plasmid does not affect microtu-
bule assembly and becomes modestly toxic only after
many hours and much higher levels of expression. How-
ever, restoration of the balance between a- and 3-tubulin
levels, by simultaneous overexpression, rescues both the
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microtubule and cell lethality phenotypes associated with
excess -tubulin (Weinstein and Solomon. 1990).

It is not clear why 3-tubulin in the absence of Its normal
partner, -tubulin, affects microtubules ana. presumably
as a result, causes cell death. It may compete with a3-
tubulin heterodimers for growing ends of microtubules or
for microtubule-associated proteins. It also may poison the
nucleation site: shortly after the microtubules disappear In
cells overexpressing 03-tubulin, small foci of anti-1-tubulin
but not anti-a-tubulin staining appear near the nucleus
(Weinstein and Solomon, 1990); those dots colocalize with
spindle pole body staining, using the ants-90 kDa spindle
pole body component descnbed by Rout and Kilmartin
(1991) (M. Magendantz and F. S., unpublished data). By
sequestering stabilizing factors or blocking nucleation
sites, 3-tubulin poiypeptides may preclude native microtu-
bule structure.

To identify proteins that Interact with -tubulhn we de-
signed a screen to find genes whose products suppress
the lethality associated with 1-tubuln overexpression. Our
rationale was that the overproduction of the target of
g-tubulin, or more generally any 3-tubulin-binding protein.
would titrate the excess polypeptide and so allow polymer
assembly and cell viability. We have Identified three genes
encoding proteins other than a-tubulin whose overexpres-
sion suppresses excess -tubulin toxicity. One of them,
here called RBL2 (for rescues excess g-tubulin lethality),
encodes a protein that rescues the excess -tubuln phe-
notype as efficiently as does a-tubulin Rbl2p Is a [3-tubulin-
binding protein (the second identified, after c-tubulin). Its
properties in vivo are similar to those of a-tubulin. and ts
levels affect microtubule functions Rbl2p s a structural
and functional homolog of cofactor A, a protein dentified
as necessary for an n vitro assay of tubulin folding (Gao
et al., 1993, 1994). The results are consistent with an activ-
ity for Rbl2p In microtubule assembly at a step after folding
but before dimerization.

Results

A Screen for Non-Tubulin Components of the
Microtubule Assembly Pathway
To identify gene products that Interact with -tubulin. we
screened for cDNAs that when overexpressed allowed
cells to grow in the presence of excess 0-tubulin JAY47
Is a diploid strain into which we integrated a third copy of
the TUB2 gene under control of the galactose promoter
This strain is ndistinguishable from Its wild-type parent
In glucose, but in galactose t rapidly loses microtubule
staining, arrests as large-budded cells, and dies with a
half-life essentially identical to strains bearing pGAL-TUB2
on a 2vi plasmid (Weinstein and Solomon, 1990) We trans-
formed a pGAL1-1 0-promoted yeast cDNA ibrary (Liu et
al., 1992) into JAY47 and selected colonies that were able
to survive on plates with galactose as their sole carbon
source (see Experimental Procedures) We Isolated the
plasmids from the suppressed JAY47 cells and sequenced
the cDNA inserts.

The suppressing cDNAs encoded both of the yeast a-tubu-

lins, Tub1 p and Tub3p, and three other proteins. We have
named the non-tubulin genes RBL1, RBL2, and RBL3. We
evaluated their effectiveness as suppressors by compar-
ing the number of colonies that arise on galactose (induc-
ing) plates versus those on glucose (noninducing) plates
(Table 1). For JAY47 cells containing a control plasmid,
that ratio is 0.01%. By this assay, RBL2 is as good a sup-
pressor as either a-tubulin gene, TUB1 or TUB3 (Table
1); 70% of the RBL2-suppressed JAY47 cells can form
colonies on galactose. The colonies are robust and uni-
form In size. Both RBL1 and RBL3 confer intermediate
values of suppression (1% and 3%, respectively), and in
both cases there is some variability in the size of the colo-
nies. These characteristics of RBL suppression argue
against a model in which there is a constant probability of
death at each cell division, since that circumstance would
predict a high percentage of colonies when growing on
galactose, although small in size. An alternative explana-
tion is that cells plated in galactose could face an early
event at which the suppressed state can be established
and thereafter maintained. In this sense, the effectiveness
of the suppressors reported in Table 1 is a measure of
their ability to establish suppression at early times.

The Sequences of the RBLs Suggest
Different Functions
We cloned the genomic version of each of the RBL cDNAs
and determined that each represented its full-length tran-
script. RBL 1 bears no homology to any sequence available
In the database. The sequence of RBL3 was entered in
the database during the course of this study under the
names TIF3 (Altmann et al., 1993) and STM1 (Coppolec-
chia et al., 1993). The gene product of RBL3 is similar to
human translation factor elF4-B, although a direct assay of
initiation activity is not yet available. Rbl2p is 32% identical
and 61% similar at the level of predicted amino acid se-
quence to mouse cofactor A (Figure 1) Cofactor A is a
necessary but not sufficient component required for a- and
1-tubulin release from the chaperone t-complex polypep-
tide 1 (TCP-1) In a form competent for exchange into exog-
enous bovine tubulin dimer (Gao et al., 1993, 1994).

Table 1 RBL 1, RBL2. and RBL3 Suppress JAY47 Lethality

Colonies on Galactose
Plasmid Number of Isolates Colonies on Glucose

YCpGAL NA 0 0001
TUBr and 95 0 7

TUB3
RBL I 1 0 01
RBL2 31 0 7
RBL3 1 0 03

Of 8 1 x lOs JAY47 cells containing the pGAL cDNA library plated
on galactose medium. 950 survived to grow Into colonies Of these,
194 were plasmid dependent,. and we have isolated 146 of these plas.
mids The number of Isolates column lists the representation of TUB1
and TUB3 and RBL 1. RBL2. and RBL3 among the plasmids recovered
The remaining 18 fall to suppress when retransformed into JAY47
Upon retransformation of the TUB and RBL plasmids. we determined
their extent of suppression by plating cells to galactose (inducing) and
glucose (noninducing) plates and comparing colony.forming units
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Figure 1. Yeast Rbl2p and Mu4.ne Coao- A Are 32 Identical

Figure 1. Yeast Rbl2p and Murine Cotactor A Are 32% Identical
Comparison of predicted complete amino acid sequences of Rbl2p
and cofactor A by the Genetics ComDuter Group program BESTFIT.
Sequences are 32% dentical an( 61% similar across their entire
lengths.

Effect of Overexpressing RBL Genes
on Tubulin Levels
A potential mechanism for suppression of 5-tubulin lethal-
ity is diminished accumulation of excess -tubulin poly-
peptide due to effects at any point n its synthesis or on
its stability. None of the RBLs appear to act n this manner.
Protein samples harvested f rom galactose-lrduced JAY47
cells suppressed with each of the RBL plasmids contain
an increased level of -tubulin relative to noninduced cells,
as judged by Western blot (Figure 2A). The result suggests
that overproduced RBL gene products act by rendering
the excess P-tubulin protein nontoxic to the cells. The
a-tubulin levels remain constant for RBL 1 and RBL2, but
increase modestly in cells with RBL3 (Figure 2B). How-
ever, in wild-type cells, overexpressing RBL3 does not
increase steady-state levels of a-tubulin (data not shown),
so we do not know whether t represents a direct effect
on a-tubulin synthesis

Our preliminary characterization suggests that the three

RBL genes may act in quite different ways. We have cho-
sen to focus on RBL2, which is as effective a suppressor
as a previously known B-tubulin-interacting gene, TUB1.

Specificity of Genetic and Physical Interactions
between Rbl2p and Tub2p
Excess Rbl2p does not act as a general suppressor of
lethality resulting from the overexpression of other cy-
toskeletal genes. In particular, overexpression of Rbl2p
does not rescue cells overexpressing either ACT1 (encod-
ing actin) or TUBI (a-tubulin; data not shown). This speci-
ficity and the similarity between the efficiency of suppres-
sion displayed by Rbl2p and a-tubulin suggest that Rbl2p
may interact physically with the -tubulin polypeptide.

The specificity of the genetic interaction is recapitulated
by the results of immunoprecipitations from cells overex-
pressing Rbl2p and either a- or -tubulin. We prepared
total cell protein extracts from cells overexpressing both
RBL2 and either TUB2 (JAY286) or TUB1 (JAY381). We
see Rb12p expression increase by approximately 30-fold
when induced behind a galactose promoter (data not
shown). Each extract was incubated with antibodies
against a- or -tubulin or against Rbl2p, and the resulting
precipitates were analyzed by immunoblots with antibod-
ies against all three proteins (Figure 3). The antibodies
against each of the tubulin polypeptides bring down the
other chain with high efficiency. The results also demon-
strate that approximately 5%-10% of total Rbl2p coim-
munoprecipitates with 3-tubulin when both are overex-
pressed in the same cells. In contrast, only 0.5% or less
coprecipitates with anti-a-tubulin antibodies when those
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Figure 2 Levels of A- and a-tuDulin n Suppressed JAY47 Cells
JAY47 cells (diploids with an integrated pGAL-TUB2) containing pGAL-
TUB1, pGAL-RBL1. pGAL-RBL2. or pGAL-RBL3 CEN plasmids were
plalea to galactose or glucose plates We harvested colonies from
galactose plates after 2 5 days or from glucose plates after 1 5 days
and prepared total protein extracts Samoles representing 2x and
1 x loads normalized to cell number were analyzed on 7 5% SDS-
polyacrylamide gels After transfer to nitrocellulose. [I- (A) and a-tubulin
(B) levels were assessed by Western blot using the polyclonal antlbod-
ies 206 and 345. respectively

Figure 3. Rbl2p Coimmunoprecipitates with -Tubulin
Cells containing nducible RBL2 (CEN plasmid) and either inducible
TUB2 (JAY286) or TUBI (JAY381) on 21i plasmids were grown in raffi-
nose and then shifted to 2% galactose for 8 hr. Total protein extracts
and relevant Immunoprecipitates were analyzed by immunoblotting
after resolution on three parallel 12% polyacrylamide gels. 0-Tubulin.
a-tubulin, and RBL2 ndicate the antibodies used for blotting; GAL-
and GAL-a are the strains co-overexpressing either Rbl2p and tubulin
or Rbl2p and a-tubulin, respectively. Lanes contain protein precipi-
tated with anti-o-tubulin (a), antil--tubulin (), or anti-Rbl2p (R). Lane
T contains total cell protein. representing one-fourth the material in
the mmunoprecipitates
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Figure 4 Synthetic Interaction of RBL2 Overexpression with tub 1-724

(A) Haploid cells contain two plasmids each either TUB or tub 1-724
on a CEN plasmid as their only source of a tubulin and either inducible
RBL2 or YCpGAL (control) CEN plasmid These strains were grown

two proteins are overexpressed. The same specific associ-
ation is apparent when anti-Rbl2p antibodies are used.
Much more 0-tubulin than a-tubulin is present in anti-Rbl2p
precipitates from the respective overproducing strains.
We precipitate the same specific comp;ex, although with
lower efficiency, in strains overexpressing only Rbl2p but
none of the tubulin genes. In strains not overexpressing
Rbl2p, we fail to detect coimmunoprecipitation, probably
because endogenous levels of Rbl2p are so low.

We can detect no colocalization of Rbl2p with assem-
bled microtubule structures in cells. In both wild-type cells
and in strains overproducing Rbl2p, antibodies against the
protein do not give a discretely localized signal by immu-
nofluorescence microscopy (data not shown). Instead,
anti-Rbl2p antibodies do stain Rbl2p-overexpressing cells
very brightly, suggesting that the antibodies can recognize
cellular Rbi2p after fixation. We conclude that the failure
to detect a discrete signal probably reflects a diffuse local-
ization of the protein. Therefore, the apparent association
of Rbl2p and -tubulin is likely to occur with unassembled
tubulin chains rather than assembled microtubules.

Microtubu!e Defects Are Sensitive
to the Level of Rbl2p
The overproduction of Rbl2p in wild-type cells leads to a
modest loss of viability. After 10 hr of induction, about
800/ of the cells are not viable, but the effect levels off
at that point. However, overexpression of Rbl2p in some
backgrounds with compromised microtubules greatly en-
hances this lethality. For example, we previously de-
scnribed a panel of a-tubulin mutants (Schatz et al., 1988),
several of which are conditional lethals that arrest with no
microtubules at low temperature and are supersensitive
to the microtubule-depolymerizing drug benomyl at per-
missive temperatures. Overexpression of Rbl2p at permis-
sive temperature in one such mutant strain, tub1-724,
causes rapid and nearly complete cell Jeath (Figure 4A).
One other tub1 allele, tubl-728, shows a similar loss of
viability when Rbl2p is overexpressed, while several tub1
alleles show no such interaction (Table 2). This lethal inter-
action also causes a dramatic loss of microtubules. Figure
4 also shows immunofluorescence micrographs of tub 1-
724 In the absence (Figure 4B) or presence (Figure 4C)
of excess Rbl2p for 5 hr.

The phenotype of RBL2 overexpression is recapitulated
by RBL2 null alleles. RBL2 is not essential for mitotic
growth, but it has a synthetic lethal phenotype in combina-
tion with four tub1 alleles, but not with four others (Table
2). Two of those four alleles that do interact genetically
with the JRBL2 null, tub 1-724 and tub1-728, are the ones
that enhance the lethality of excess Rbl2p.

overnight In selective raffinose media at 300C At t = 0 hr. galactose
was added to 2% Cell viability equals the number of colonies artsing
on glucose plates divided by cell number counted In a light microscope
(B and C) At I = 5 hr In galactose. tub1-724 cells containing either
control (B) or pGAL-RBL2 (C) plasmids were fixed and processed for
immunofluorescence with antl-P-tubulin antibody 206 In control cells.
there are a variety of tubulin staining patterns In cells overexpressing
Rbl2p. large-budded cells contain little or no localized staining

_
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Table 2. Synthetic Lethality of RBL2 Overexpression and
Null Strains

RBL2
Allele Overexpression ARBL2

tub1-724 and tub-728
tubl-738 and tub-759
tub1-704, tub-714, +

tub-744, and tub-750
tub1-727, tub-730, tub-733. - ND

tub 741, tub-746.
and tub-758

Ability of mutants to grow at permissive temperatures upon Induction
of pGAL-RBL2 or in RBL2 nulls. ND. not determined.

That both excess and absence of the RBL2 gene product
affect viability and probably microtubule assembly in these
different genetic backgrounds suggests that it acts as a
structural rather than catalytic element in microtubule as-
sembly. In addition, the allele specificity of the interaction
with mutant tubl alleles indicates that the combinatorial
defect represents a more proximal functional interaction
than simply two defects in unrelated processes.

The Stoichiometry of Rbl2p to Tubulin Is Critical
As noted above, any genetic configuration that results in
an excess of Q-tubulin over a-tubulin s toxic. Changes in
the level of Rbl2p expression affect the phenotypes associ-
ated with changes in a-to-O tubulin ratios. Overexpression
of Rbl2p suppresses excess B-tubulin lethality; similarly,
when overexpression of -tubulin s induced in strains
bearing a deletion in RBL2, the cells lose viability with
more rapid kinetics than strains wiid type for RBL2 (Fig-
ure 5A).

In the converse direction. extra Rbl2p also rescues the
phenotypes produced by creating a modest deficit in
a-tubulin. Strains bearing a deletion of the quantitatively
minor a-tubulin gene, TUB3, are viable but benomyl super-
sensitive (Schatz et al., 1986). The enhanced sensitivity
to this microtubule-depolymerizing drug is suppressed by
a modest increase in Rbl2p (Figure 5B). This result fulfills
our expectation that excess -ltubulin is lethal because of
its stoichiometry relative to a-tubulin rather than its abso-
lute level. Therefore, Rbl2p levels appear to compensate
for the defects associated with either too much D-tubulin
or too little a-tubulin.

Rbl2p Levels Affect Cellular Sensitivity to the
Microtubule-Depolymerizing Drug Benomyl
In a sense, the phenotypes of excess 3-tubulin mimic those
of benomyl; both lead to loss of microtubules, cell cycle
arrest as large-budded cells, and death. This parallel is
supported by the consequences that changes in the level
of either Rbl2p or a-tubulin have on either poison. Extra
Rbl2p or a-tubulin (Schatz et al.. 1986) produced by galac-
tose induction confers resistance to benomyl (Figure 6A).
Conversely, the absence of Rh!2p renders cells more sen-
sitive to the drug (Figure 65). A modest decrease in a-tubulin
levels produced by disruption of the TUB3 gene also pro-
duced supersensitivity to benomyl (Schatz et al., 1986).
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Figure 5. Phenotypic Consequences of Altered Stoichiometry be-
tween Rbl2p and Tubulin
(A) Effects of Rbl2p levels on sensitivity to -tubulin overexpression.
Haploid cells with an integrated copy of inducible pGAL-TUB2 (deriva-
tives of JAY47) either wild type for RBL2 or bearing a null allele were
grown and analyzed for viability as described in Figure 4.
(B) Effects of excess Rbl2p on the benomyl sensitivity of cells with a
deficit In a-tubulin. TUB3 haploids (FSY21) containing either control
(minus) or genomic RBL2 (plus) on a CEN plasmid were serially diluted
on plates containing 10 og/Iml benomyl. Dilutions were by halves, be-
ginning at 10' cells per milliliter In the first two columns and at 10'
cells per milliliter in the second two columns.

The phenotypes of RBL2 overexpression do not appear
to be manifestations of multidrug resistance because they
do not include resistance to several other drugs, such as
cycloheximide and ethidium bromide (data not shown).
This phenotype is further remarkable because it is uncom-
mon; enhanced resistance to this drug suggests a degree
of specificity for microtubule function not inherent in en-
hanced sensitivity.

.0
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Figure 6 Levels of Rbl2p Affect Growth on Benomyt. a Mcrotubule-
Depolymerizing Drug
(A) Dploids cells containing control (YCpGAL). pGAL-RBL2. or pGAL-
TUB1 CEN plasmids were serially diluted on selective galactose plates
with 20 ug/ml benomyl Dilutions were by halves. beginning at 10'
cells per milliliter.
(B) dRBL2 haplold cells containing control or genomic RBL2 CEN
plasmids were serially diluted as in (A) on 0 and 20 ug/ml benomyl
plates

Rbl2p Is Important for Meiosis
Although RBL2 is not essential for mitosis, it is necessary
for cells to complete sporulation and meiosis successfully.
We made diploids that were heterozygous or homozygous
for ARBL2. Both grew normally. However, the ARBL2 ho-
mozygotas sporulate abnormally; they produce asci with
only slightly reduced efficiency, but substantially fewer of
those asci contain four spores (Table 3). Those spores
vary significantly in size and are arranged in a disorderly

fashion. In contrast, the heterozygotes sporulate compa-
rably to wild-type diploids. We examined this defect with
an assay for haploid spores, using the difference in c lor
between ADE2 and ade2 colonies. We sporulated strains
that were heterozygous at the ADE2 locus. Colonies from
either ADE2 haploids or unsporulated ADE2/ade2 diploids
are white; cells bearing only the ade2 alele are red. We
recovered no red colonies from the homozygous RBL2
nulls. The same strain containing RBL2 on a low copy
plasmid produced red colonies at an efficiency indistin-
guishable from wild type (35%-40%).

A Functional Homology between Rbl2p
and Murine Cofactor A
The predicted protein sequence of Rbl2p is approximately
30% identical to mouse cofactor A across their entire
lengths (see Figure 1). Cofactor A is thought io p.rticipate
in chaperonin-mediated folding of B-tubulin in vitro (see
Discussion). To determine the relationship between Rbl2p
and cofactor A, we expressed mouse cofactor A in yeast.
Like excess Rbl2p, overexpression of this sequence in
yeast cells confers substantial resistance to excess B-tubulin
lethality (Figure 7A); the efficiency of suppression is ap-
proximately 5%, compared with 70% for the yeast protein.
In addition, murine cofactor A suppresses the benomyl
supersensitivity associated with deletions of RBL2 (Figure
78). These results suggest that cofactor A performs over-
lapping functions with Rbl2p.

Discussion

We identified Rbl2p in a screen for proteins that, when
overexpressed, protect cells from the deleterious effects
of f-tubulin overexpression. We envisioned at least two
possible sorts of suppressing elements that would answer
this screen. One might be a protein with which excess
0-tubulin Interacts to cause microtubule disassembly,
which might include associated proteins or nucleating ele-
ments, but also might include tubulin itself. For example,
y-tubulin acts as a nucleator of microtubules and interacts
genetically with -tubulin (Oakley and Oakley, 1989). How-
ever, overexpression of the presumptive yeast y-tubulin
TUB4 (L. Marschall and T. Stearns, personal communica-
tion) does not rescue 3-tubulin lethality (data not shown).
Another suppressor might be a protein with which undi-
merized -tubulin interacts normally, as part of the mor-
phogenetic pathway. The interaction between actin mono-

Table 3 .RBL21JRBL2 Cells Have a Defect In Sporulation and Melosis

Spores per Ascus

Strain Plasmid Percent Asci Four Three Two One Zero

Wild type None 71 69 9 9 2 11
ARBL21IJRBL2 RBL2 56 47 13 12 4 24
JRBL2/J RBL2 Control 49 18 24 18 12 28

After 4 days in sporulation media (1% potassium acetate [pH 7)) at room temperature. each population was scored for the number of spores within
asci. We designated cells as asci based on their rounded shape and thickened cell coat and counted the number of spores contained within The
category of zero spores per ascus met the criteria for an ascus but looked either empty or murky inside. The strains are either wild type (FSY185)
or ARBL2/JRBL2 homozygotes containing either a RBL2 genomic or control CEN plasmid We counted >300 cells for each.
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Figure 7 Overexpression of Murine restes Cofaclor A Has Pheno-
types Reminiscent of Rbi2p n Yeast
(A) JAY47 cells containing pGAL cofactor A CEN Diasmid) are sup-
pressed relative to those containnq control CEN plasmd on galactose
plates
(B) JRBL2 haplolds transformed with DGAL cofactor A (plus) or control
(minus) CEN plasmid serially ailuted on ga:aciose benomyl (25 ig/
ml) plates by halves. beginning at 10 celis per milliiiter

mers and profilin may serve as a precedent (Magdolen et
al., 1993). The experiments descriDed above suggest that
Rbl2p may be in the second class of potential suppressors.
The suppression and immunoprecipitation data argue for
an intimate interaction between Rbl2p and 3-tubuln The
binding of Rbl2p to 3-tubulin probably explains the sup-
pression of excess 3-tubulin by Rbl2p The aggregate ge-

netic evidence suggests that Rbl2p acts along the microtu-
bule assembly pathway But the fact that Rbl2p cannot
be detected In the end product of this pathway, assembled
microtubules, Implies that It participates In some Interme-
diate along the pathway

Scaffolding Proteins and Surveillance Functions
Assembly of bacteriophage proceeds through Intermedi-

ates that can contain scaffolding proteins. elements that
participate In the maturation of the particle. but which are
not Incorporated Into the final structure For instance, the

prohead of P22 grows around a core of gp8 molecules
that are later replaced by DNA while the coat proteins

expand to arrange themselves as the head (King et al.,
1973). Some properties of Rbl2p suggest that it may act
as a scaffolding protein in microtubule assembly. For ex-

ample, the stoichiometry of a scaffolding protein would be
predicted to be important for ensuring proper assembly.
Although Rbl2p s not essential for mitosis, aberrant levels

of the protein are deleterious when microtubule integrity

is impaired: genetic backgrounds bearing mutant a-tubulins

or In the presence of benomyl. However, there is no evi-
dence that scaffolding proteins are required in the forma-

tion of microtubule polymer from an a3 heterodimer. No
Intermediates nvolving transiently associated proteins

have been identified, and, at least in vitro, tubulin hetero-
dimers can self-assemble. Perhaps, then, Rbl2p acts be-

tween the synthesis of the 3-tubulin polypeptide and its
incorporation into active dimer. The physical interaction
with 0-tubulin and the specificity of the suppressor activity
of excess Rbl2p for 3-tubulin are consistent with Rbl2p

binding to the -tubulin monomer. Alternatively, Rbl2p
could act transiently during remodeling of microtubules
among different organizational states. In any of these sites
of action, Rbl2p might mediate progress through the as-

sembly process, like a phage scaffolding protein.
Another possibility s that the screen that identified

Rbl2p represents Its function In cells: Rbl2p might act as a
-tubulin ligand to suppress deleterious Interactions under

aberrant conditions in which -tubulin monomers occur.
Such a surveillance function could quite adequately be

executed by a-tubulin tself. However, significant ex-
cesses of a-tubulin are deleterious and do not persist (Katz
et al, 1990. Weinstein and Solomon, 1990). In addition,
a role for a -tubulin-binding protein may become more
Important under special circumstances. for example,
when the fa-tubulin gene product s compromised in mutant
tubi strains

Functional Similarities between Rbl2p
and a-Tubulin
We find striking similarities between the properties of
Rbl2p and a-tubulin in vivo (Figure 8). The ability of Rbl2p,

like a-tubulin, to bind 3-tubulin s itself strong evidence of

function. An excess of either protein suppresses -tubulin
lethality and confers resistance to the microtubule-depoly-

menzing drug benomyl. Deficiencies of either enhance
sensitivity to benomyl (Schatz et al., 1986). Extra Rbl2p

can actually compensate for a quantitative defect in
a-tubulin: cells lacking the minor a-tubulin gene are super-
sensitive to benomyl, but are rescued by genomic RBL2
on a low copy plasmid. Finally, the phenotypes of a-tubulin

mutants are strongly affected by levels of Rbl2p. In sum,

Rbl2p s a -tubulin-binding protein in vivo, and that bind-
ing is detectable both physically and functionally.

The benomyl resistance could be explained if that drug

acts by promoting dissociation of the a3 dimer to release
free -tubulin that poisons the microtubules in the cell.

However, two other suppressors of excess 3-tubulin, RBL 1

and RBL3, fail to confer benomyl resistance. Another pos-

sibility is that the binding of benomyl to tubulin creates
toxic drug-dimer complexes analogous to those that may
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Figure 8 Alterations in the Level of Rbl2p or Tubulin Have Similar
Effects on Cell Growth Under a Variety of Conailons
The lesser-than symbol denotes nhibition o' rowth bv a cnange n
the level of Rbl2p relative to the normal comolemert the qreater-nhan
symbol represents better growth The asterisi denotes thnose circum.
stances in which changes In the level of r]otuDuln nave lee same ettects
as RbI2p The carat indicates those experiments not done in a I with
q-tubulin

be the active species in Inhibition of microlubule assembly
by colchicine (Skoufias and Wilson '992) hese toxic
complexes might be sequestered by the activity of excess
Rbl2p or ri-tubulin

The melotic requirement for Rbl2p may be due to a
greater reliance on events that are In fact common to both
meiosis and mitosis. Cells undergoing mitosis even In the
absence of Rbl2p may be safely above a threshold for an
essential component. for example. an assembly-competent
tubulin dimer or a Rbl2p functional homolog. whereas mei-
osis may change that threshold so that the contribution
of Rbl2p becomes required Cells may be more sensitive
to free 3-tubulin during meiosis Alternatively. Rbl2p may
perform an essential metosis-specific function We note
that although cofactor A mRNA Is present In many mouse
tissues, it s most abundant in testes iGao et al . 1993)
Although this observation originally was explained as re-
flecting a role for cofactor A In constructing sperm flagel-
lae. instead t may reflect an increased dependence on
mouse cofactor A n meiosis tself

A Comparison with Cofactor A
Cofactor A is a polypeptide that, together with a fraction
called cofactor B, is necessary for the release of a- and
D-tubulin from the chaperone TCP-1 n a form competent
for exchange into exogenous bovine tubulin heterodimer
(Gao et al., 1993, 1994). TCP-1 alone can bind both un-
folded act;n and y-tubulin polypeptides and release them
in a form that migrates normally on a native gel. TCP-1
and TCP-1 -like proteins may play an Important role In actin
and tubulin function in vivo. Complexes containing TCP-1
and actin or tubulin can be solated from animal cells

(Sternltcht et al., 1993). Strains bearing mutant alleles of
TCP-1 homologs can exhibit microtubule and actin pheno-
types in yeast (Chen et al., 1994; Vinh and Drubin, 1994).
In the in vitro assay, proper tubulin folding Is assayed not
by the measure of folded monomer, but instead by Incorpo-
ration of the monomer into tubulin dimers. It requires the
addition of native tubulin dimers. The presence of cofactor
A results in the appearance of D-tubulin dissociated from
TCP-1; in contrast, cofactor A does not have the same
effect on a-tubulin dissociation from TCP-1 The specificity

for 1-tubulin strongly Implies that cofactor A is not Involved
In common protein folding pathways. If TCP-1 acts as does
GroEL (repetitive binding of unfolded forms until they do
fold properly in solution [Weissman et al., 1994]), Rbl2p
could act after the release step, to capture and stabilize
folded 0-tubulin. That model is consistent with our results,
with the failure of cofactor A to promote a-tubulin release
from the same TCP-1, and with the failure of others to
detect any direct interaction between cofactor A and
TCP-1 (Gao et al., 1994).

In summary, a screen for overexpressed wild-type
genes that restore balance to the components of microtu-
bule assembly identified a stoichiometncally acting com-
ponent that behaves like a scaffolding element. Changes
in the level of Rbl2p exacerbate circumstances that com-
promise microtubule assembly, suggesting that it may act
at a crucial and regulatory step in microtubule morpho-
genesis

Experimental Procedures

Strains. Plesmids, and Media
All yeast strains are derivatives of FSY185 (Weinstein and Solomon.
1990) with the exception of the tub 1 mutants (Schatz et al. 1988) We
used standard methods (Sherman et al. 1986. Solomon et al . 1992)
We used a yeast cDNA (CEN) library from pool 10A provided by H
Liu (Liu et al. 1992) pJA10O was constructed with the Pvull-Eagl
(pGAL-RBL2) fragment of pA5 Into the Pvull-Eagl backbone of YEp13
ILEU2. 2u) pJA34 was constructed by isolating mouse cofactor A from
a FVB mouse adult testes cDNA library (provided by D Page) by PCR
and cloning the fragment into the Salil-Notl backbone of the pGAL-
:EN library plasmid (Llu et al. 1992)

Screen for Suppressors of p-Tubulin Lethality
We transformed 10A into JAY47 and obtained approximately 6 8 x
10' original transtormants We grew the transformants in selective
glucose media to saturation (expansion of >10-fold) We tested 950
galactose survivors for dependence on the plasmid by selecting for
loss of the URA3 plasinid on 5-FOA and then checking for loss of
suppression After isolation of the library plasmid. we identified those
that contained either TUBI or TUB3 by a combination of restriction
digests, colony hybridization. and DNA sequencing The isolated plas-
mids were retransformed into JAY47 and checked for their ability to
confer survival on galactose plates

DNA Sequencing
DNA sequencing on both the cDNA inserts and genomic versions was
performed using modified T7 DNA polymerase Sequenase with the
dideoxy chain termination method (U. S Biochemical Corporation).
The genomic clones were solated either from 2ii yeast genomlc librar-
ies RB378 and 380 (Carlson and Botstein, 1982) or from a CEN yeast
genomic library prepared by C Thompson and R. Young (Massachu-
setts Institute of Technology MITI). The genomic clones and cDNAs
match exactly. indicating that both contain the entire open reading
frames

Immune Techniques
Antibody Production and Purification
A glutathione S-transferase-Rb2p fusion protein was overexpressed
using pGEX-5X (Pharmacia) In Escherichia coh, purified and injected
into three rabbits. and boosted at 2.4, and 6 weeks. Ant-Rbl2p antibod-
ies (248. 249. and 250) were affinity purified against the fusion protein.
Rabbit antisera against -tubulin (206) and a-tubulin (345) are de-
scribed elsewhere (Weinstein and Solomon, 1990).
Immunofluorescence
We used standard procedures (Solomon et al., 1992). Secondary anti-
body was fluorescein isothiocyanate-conjugated goat anti-rabbit IgG
(Cappel). For Rbl2p staining, we also tried extracting fixed cells after
attaching to the slides with 0.5% NP-40 in PM2G followed by using
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a 0.1% BSA blocking step (M Magendantz and F S. npublished
data), by using methanol/acetone fixation (Rout and Kilmartin. 1991).
and by varying the time n formaldehyde 10 mtn to 2 hr) or n first
antibody (1-16 hr). DAPI (4'.6-aamricno-2.phenylhndole dlhydrochlo-
ride; Boehringer Mannhelm) was used to visualize DNA
Immunoblots
We used standard procedures (Solomon et al. 1992) After gel electro-
phoresis and transfer to nitrocellulose membranes. blots were blocked
blots 3% BSA. PBSA, sodium azide for 30-120 min Primary antibod-
les were incubated for >12 hr at 113500 206 or 3451 or at 1/100 (250)
and then washed five to seven times (5 min each) in 2% hemoglobin.
0. 1% SDS, 0.05% NP-40. Bound antiody was detected by ['il]protein
A (New England Nuclear).
Immunoprecipitations
Antibodies were affixed to Aftigel-tO beads (Bo-FRad) Yeast strains
JAY286 and 381 are FSY185 transformants with two 2u plasmids.
pGAL-RBL2 (pJA10) and either pGAL-TUB2 (pBW54 or pGAL-TUB1
(pQX3). Total protein was harvested by French Press n PME (0 1 M
PIPES. 2 mM EGTA. 1 mM magnesium chloride IpH 6 9]) plus protease
inhibitors (Solomon et al . 19921 and added t antibody beads for a
1 hr incubation with rotation at 40C We washed the beads eight times
with PME plus protease nhibitors

Genetic Analyses
Construction of RBL2
We replaced SnaBI-Xhol of pA21A genomic RBL2 plasmia). which
completely removes the RBL2 open reading frame. with Sspl-Sall of
pNKY51 (Alani et al. 1987). which contains UFIA3 flanked by hisG
repeats for efficient loopout We used an Sspl-Munl disrupting frag-
ment to create a heterozygous knokocut n FSY185. confirmed by
Southern blot analysis We sporulatea and d:ssected the heterozygote
to produce haploid JRBL2 cells confirmed by Southern and Western
blot analysis.
Synthetic Lethality
ForRBL2 overexpression FSY 185 w*ld-tye diplood) or haplold strains
containing tubl alleles were transformed with pA5 Transformants
were grown overnight in selective raftinose media. and then galactose
was added. Viability was assessed at various times by companng cell
number by hemocytometer count to colony-forming units on glucose
plates. Altematively. differences could also be assessed by plating
strains to galactose plates anc comparing cell number and size

The ARBL2 JAY422 strain J RBL2 haploid) was crossed to haplold
tubl rmutants The diploids were scorulaled and dissected Synthetic
interactions were ludged by two crterfa percent of dead spores and
marker analysis (inability to recover rub I allele plus J RBL2 products)

Aaeay for Melosis
JAY472 and 474 are transformants ot a heterozygous ADE2/ade2.
homozygous JRBL2/JR8L2 strain (JAY428) with A21A (RBL2 geno-
mic CEN plasmid) or with a control CEN plasmid JAY472. JAY474.
and FSY 185(wild-type) cells were grown to midlog. washed with water.
and shifted to 1% potassium acetate (pH 7) Sporulating cells were
incubated rotating at room temperature By visual inspection at 4 days.
we scored the presence of asci containing zero to four spores The
crintena for an ascus were rounded shape and thickened cell wall
JAY474 has spore sacs that usually contain fewer than four spores
For quantitation of appearance of ade2 cells. we allowed strains to
sporulate, digested the cell walls with Zymolyase- 100. and plated After
3 dsys we counted the number of red colonies and the number of total
colonles.
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The mechanistic analysis of cytoskeletal function in cell
morphology began with a senes of formative drug inter-
ference experiments. Several types of animal cells grow
in culture with a relatively symmetnc morphology but
can be induced to take on their charactenstic differenti-
ated shape by changes In their growth media. Drugs
that depolymerize microtubules nhibit the acquisition
of differentiated morphology or. in cells that have estab-
lished morphology, the drugs cause loss of asymmetry.
That phenomenology fits well with the typical geometry
of the microtubule network n many cells--a radial pat-
tern extending toward the penphery-since t is the pe-
riphery of the cell where the motile events that underlie
shape change occur.

A straightforward prediction of these results is the
existence of molecules that are responsible for motile
specializations at the cell penphery and whose localiza-
tion depends upon intact microtubules. In fact, very few
such molecules have been dentified. Instead, the pre-
dominant cytoskeletal participant in determinants of cell
motility and associations with penpheral molecules is
the actin cytoskeleton. For example, bud site selection
and growth in S. cerevisiae occur as if they are essen-
tially independent of microtubule functions (Jacobs et
al., 1988); rather, they are strongly associated with
F-actin structures and functions (Chant and Pringle,
1991). An analysis by Mata and Nurse (Mata and Nurse,
1997 [this issue of Cell)'of teal, a gene in Schizosac-
charomyces pombe, helps bnng microtubules back into
the picture. The details of the molecule they are studying
present a potentially intriguing parallel with microtubule-
associated activities in animal cells.
Control of Growth Morphology
in Fission Yeast
The cells of S. pombe elongate at their tips, in a manner
that depends upon the stage of the cell cycle (see Nurse,
1994, for a review). At their birth, new daughter cells
grow only at the "old end"-the end that existed in the
mother cell. After passage through part of the cell cycle,
growth initiates at the "new end" as well. This bipolar
elongation continues until the onset of mitosis, when it
stops at both ends. Thus, the precise temporal and
spatial controls on cell growth In S. pombe are inte-
grated with the cell cycle. Both microtubules and micro-
filaments contribute to cell growth. The position of actin
patches during the cell cycle correlates with the posi-
tions of cell growth: first at the old end, then at both the
old and new ends, and finally n mitosis at the midline
where the new septum will form. Further supporting this
correlation, the actin inhibitor cytochalasin D blocks cell
wall formation. The spatial correlation is less direct with
respect to cytoplasmic microtubules. The microtubules

Minireview

extend along the major axis of the cell during interphase,
then depolymerize to form the intranuclear spindle. Dis-
ruption of microtubules, either by drugs or by mutations
in tubulin genes, causes abnormal growth, bending, and
even branching.

The phenotypes of mutations that affect growth pat-
terns fall into morphological classes and can be ranked
by the extent to which they lose organization (Verde et
al., 1995). The orb mutant cells are spherical, suggesting
total loss of control over the localization of growth. tea
mutants can initiate a third discrete growth zone, form-
ing T-shaped cells. The ban mutants curve like bananas,
which could represent disproportionate lengthening of
one side, although the cells still elongate at two posi-
tions. The microtubule and microfilament cytoskeletons
in all three classes are abnormal.
tea lp, Growth Zones, and Microtubules
Cells bearing a disruption of teal (for tip elongation
aberrant) display the curved ban phenotype at 25C, but
some cells show elongation at a third tip at 36°C. As
shown by immunofluorescence, teal p localizes primar-
ily to the ends of cells. However, unlike actin, its distal
position persists whether or not there is growth at the
tip; teal p's presence Is not sufficient to specify a growth
zone.

Over-expression of teal p substantially reproduces
the null morphological phenotypes of bent or three-
tipped cells, and the protein is no longer restricted to
the growth zones. The morphological defect in over-
expressers could be due to this mislocalization of teal p.
However, since localization is not sufficient to specify
a growth zone, excess teal p could disrupt organization
by titrating out other relevant components. The cells also
apparently regulate teal p levels to meet physiological
requirements. Pheromone response in S. pombe relaxes
the restriction of precise antipodal tip growth so that
cells can bend toward a mating partner. Treating cells
with pheromone causes down-regulation of teal p.

The authors note two structural features of interest in
the 127 kDa teal p gene product. First, the amino-termi-
nal domain contains 6 internal repeats like those in
kelch, a protein associated with the ring canals of Dro-
sophila that mediate transport of nurse cell cytoplasm
to the oocyte (Xue and Cooley, 1993). The kelch repeats
are believed to be indicative of actin-binding proteins,
and the ring canals are themselves associated with actin
filaments. Second, the carboxy-terminal domain is pre-
dicted to form coiled-coil structures. From sequence
comparisons, the authors find two predicted open read-
ing frames in S. cerevisiae containing these same two
motifs.

Despite the predicted actin association and the ob-
served colocalization with actin patches, cells bearing
mutations in either of two actin-associated proteins, and
which have substantially disrupted actin patterns, show
normal localization of teal p. Normal localization of
tealp, however, is dependent upon intact cytoplasmic
microtubules. Depolymerization of microtubules in-
duces delocalization of tealp from growth zones, per-
haps with a slight lag. Reassembly of the depolymerized
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microtubules to their normal length by removing the
drug Induces concomitant re!ocalization of tealp. The
intermediates are intriguing: shortly after repolymenza-
tion commences, but before the microtubules return to
their original length distribution, teal p Is In bnght spots
throughout the cell, most of which colocalize with distal
ends of microtubules. Indeed, even in untreated cells,
many of those dots of teal p that are not at growth zones
co-localize with microtubule ends.

The microtubule cytoskeleton's Interactions with
tealp are reciprocal. In a sub-population of null cells.
some microtubules grow long enough to curl around the
ends of cells. These same extra-long microtubules are
seen In the pheromone-treated cells that have reduced
levels of teal p. In contrast, the microtubules are signifi-
cantly shorter in cells that over-express teal p.
Models of tea p Function
Mata and Nurse (1997) conclude that teal p is required
for correct placement of growth zones. although t is
neither sufficient nor necessary for growth. But how are
the interactions with microtubules to be interpreted?

One possibility proposed by the authors Is that teal p
is a regulator of microtubule length-a capping activity
analogous to those observed for F-actin modulators.
The length of microtubules could depend inversely upon
the levels of tealp in the cell, or on the proportion of it
that localizes to the cell tips. In this view, the delivery
of the growth machinery to the appropnate location In
the cell is accomplished by producing microtubules of
appropriate length and relying on the constraints of the

cell's geometry to point the microtubules in the right
direction. In addition to the consequences of altered
expression levels on cytoplasmic microtubules, other
results also fit such a model. For example, the results
show that teal p can bind to microtubule ends without
Interacting with the cell surface, but that it does not
remain at the cell surface without microtubules. And
the authors report that their efforts to clone tealp by
complementation were defeated by plasmid loss; per-
haps levels of teal p affect microtubule organization in
the spindle as well. Among the alternative models is the
possibility that tealp localization at the growth zones
is important for stabilizing microtubules that reach those
positions or for recruiting the growth machinery itself.
teal p r uld associate with the cell surface in these
domains, stabilized there by the dual interactions with
microtubules and some cortical element.

The present data do not distinguish among these and
other possibilities raised by the reciprocal effects of
teal p levels and microtubule length. However, possible
roles for teal p-or the teal p complex-- should be testa-
ble by in vitro assays of microtubule assembly dynamics,
identification of proteins that cofractionate with it, and
a search for other binding partners. Of particular interest
will be testing the prediction from sequence compari-
sons that teal p can associate with actin.

As noted above, microtubules have no apparent influ-
ence on either bud site selection or growth in the bud-
ding yeast, S. cerevisiae; Instead. their participation in
morphogenesis may be limited to determining nuclear
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position and orientation of the spindle. Perhaps the roles
of the homologs of tealp in this organism will modify
that view. Interestingly, this distinction between these
organisms extends to mechanisms for distribution of
mitochondria, which are independent of microtubules
in S. cerevisiae but are strongly affected by mutations
in both tubulins in S. pombe (Yaffe et al., 1996).
An Animal Cell Parallel
The properties of tealp are reminiscent of a family of
proteins studied in animal cells. Eznn was first identified
as a component of the intestinal microvillar actin cy-
toskeleton (Bretscher, 1983). It and the other members
of the ERM family, radixin and moesin, localize to subdo-
mains of the cell cortex - nonmotile structures such as
microvilli and adherens junctions, and motile elements
including the leading edges of migrating cells and cleav-
age furrows. Some in vitro assays suggest that ERM
proteins bind to F-actin, but at least in vavo, they colocal-
ize with only a small subset of the cells' actin structures
(Tsukita et al., 1997).

Of particular interest is a comparison between the
properties of teal p with those of ERM proteins in cul-
tured hippocampal neurons (Goslin et al., 1989). Anti-
ERM antibodies stain these cells at their growth cones
almost exclusively. The staining pattern is very similar
but not identical to that of the F-actln in growth cones.
It is entirely distinct from that of microtubules that are
prominent along the length of the process but barely
detectable if at all in the growth cones themselves.
These neurites can attach along their length to the solid
substratum upon which they are grown, so that they do
not retract for long periods after addition of microtubule
depolymerizing drugs. Those drugs do cause the micro-
tubules along the length of the neunte to depolymerize
rapidly, in ordered, distal-to-proximal fashion. During
the period when the neuntes remain in place but the
microtubules are receding, all of the anti-ERM staining
leaves the domain of the growth cones. Initially, the
delocalized ERM appears in the process, always distal
to the receding tubulin staining. Eventually, when no
assembled tubulin is detectable, the ERM staining also
disappears. Even at this point, staining of two other
growth cone markers, GAP43 and F-actin, remain in
place. Depolymerization is readily reversible by washing
out the drug, and the microtubules rgrow along the
length of the neurite, in proximal-to-distal fashion. ERM
staining reappears, but only in the growth cone and only
when microtubule reassembly is complete to the end of
the neurite.

Thus, the cortical localizations of teal p in S. pombe
growth zones and of ERM in growth cones occur in
patterns similar to that of F-actin. In fact, both may be
actin binding proteins. However, their normal localiza-
tions are dependent upon intact microtubules. Unlike
teal p, ERM proteins have not yet been detected in close
apposition to the ends of the shortened microtubules;
and although ERM proteins are not among the tealp
homologs identified by Mata and Nurse (1997) in a
search of the database, the two proteins do show signifi-
cant similarity (Figure 1 and Table 1). That similarity is
not in the kelch repeat regions, but rather is dispersed
throughout the protein. Perhaps teal p and ERM depend
upon different motifs for their close association with
F-actin in situ.

Table 1. Homology among teal p, Human EzAn. and Kelch
(BESTFI)

Identity %) Snmilarity (%)

tealp and kelch 20.5 40.8
teal p and ezrn 23.3 47.6
Kedch and ezrin 15.3 35.8

The exact role that ERM proteins play in assumption
and maintenance of cellular asymmetry is not known.
Depletion experiments using antisense strategies cause
significant defects in cell attachment and in morphologi-
cal differentiations at the cell surface, but these pheno-
types may be indirect consequences of disrupting the
cortical actin cytoskeleton by removing one of Its com-
ponents (Takeuchi et al., 1994). There is also evidence
that ERM proteins interact with Rho in a phospholipid-
dependent fashion (Hirao et al., 1996) and with integral
membrane proteins (Tsukita et al., 1994), strengthening
their possible role as connectors between cytoskeleton
and the plasma membrane.
Morphogenesis in Yeast and Animal Cells
There are of course other circumstances in animal cells
where microtubules are required to maintain asymmetry
at the molecular level. A role for the microtubule cy-
toskeleton in sorting of proteins to the apical and baso-
lateral domains of epithelial cells is suggested by
drug interference experiments, an interpretation that is
strengthened by specific depletion of microtubule mo-
tors (Lafont et al., 1994). Yet there remains a significant
difficulty in comparing the effects of microtubules on
morphology in yeasts to their role in animal cells. In
animal cells, the loss of microtubules means the loss of
asymmetry. Obviously yeasts have other mechanisms
that can replace microtubules. Perhaps the yeast cell
wall may circumvent a structural role for microtubules
in supporting asymmetry as it is formed.

Microtubules apparently participate in fine tuning of
the global organization in S. pombe. Their effect is more
subtle in S. cerevisiae, but detailed analysis of mutant
phenotypes do suggest that microtubules and microfila-
ments interact, for example to orient the nucleus in mat-
ing projections (Read et al., 1992). In fact, the notion
that the elements of the cytoskeleton function in concert
has arisen from several descriptive experiments. The
identification of teal p and other proteins that act as if
they engage more than one of those elements may lead
us to mechanisms that will make sense of those obser-
vations.
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The yeast protein Rhl2p suppresses the deleterious effects of excess -tubulin as efficiently as does a-tubulin.
Both in vivo and in vitro. Rbl2p forms a complex with -tubulin that does not contain a-tubulin, thus defining
a second pool of 11-tubulin in the cell. Formation of the complex depends upon the conformation of J3-tubulin.
Newly synthesized 1-tubulin can bind to Rbl2p before it binds to a-tubulin. Rbl2p can also bind -tubulin from
the a/fi-tubulin heterodimer. apparently by competing with a-tubulin. The Rbl2p-J-tubulin complex has a
half-life of -2.5 h and is less stable than the oaJ3-tubulin heterodimer. The results of our experiments explain
both how excess Rbl2p can rescue cells overexpressing P-tubulin and how it can be deleterious in a wild-type
background. They also suggest that the Rbl2p-1-tubulin complex is pa"- of a cellular mechanism for regulating
the levels and dimerization of tubulin chains.

Much of the work on microtubulcs has tocised on the as-
sembly reaction from ai-tubulin hctcrodimer to polymer.
This reaction is well characterized n itro. and cnetic and
pharmacological studies demonstrate ts mp)rtance and pos-
sible in vivo mechanisms for its regulation. Less well under-
stood are the steps leading to the formation of the hetcrodimer
in the cell. There is now considerable cvidence that these steps
are themselves subject to cellular controls crucial for microtu-
bule function.

The proper folding of the tubulin chains n vivo (22. 23) and
in vitro (6, 12. 26) apparently requircs the action of chaperone
complexes (variously abbreviated ;as TriC CCT.TCP!c-cpn).
Unlike other proteins that are TriC substrats,. however, a- and
1-tubulin require other proteins n vitro to exchange into ex-
ogenous heterodimers, as assaved by natsce gel clectrophoresis
(2, 7, 8). The extent to which this n vitro reaction is applicable
to the in vivo situation is unknown. bhcgnning as it does with
fully denatured protein rather than newly svnthesized protein
(5). Comparison of elements of the n itro reaction with cel-
lular activities reveals both sirilarities and differences. For
example. yeast strains with altered forms ol TCP-I genes do
exhibit cytoskeleton defects (3. 15. 22-24). On the other hand.
a protein that is required for the in vitro reaction is the ho-
.nolog of a yeast protein, CinIp. that is not essential in vivo but
which may be involved in microtubule functions (10, 20, 21).

A recent study of the in vitro folding reaction identified
cofactor A, which promotes the recovery of -tubulin. as a
monomer from the chaperonin (7). -lowcecr. in this assay, the
form of 13-tubulin released by cofactor A does not exchange
into exogenous dimer. A genetic analysis of cellular responses
to -tubulin levels identified Rbl2p as a yeast structural ho-
molog of cofactor A; Rbl2p s ai nonessential protein that
suppresses the lethality associated with ovcrexpression of ,-tu-
bulin (1). The murine cofactor A was show n to partially replace
Rbl2p in this in vivo assay (1). Although results of the in vitro
assay first suggested that cofactor A was .t co-chaperonin. the
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yeast experiments demonstrated that Rbl2p interacts with
3-tubulin directly, rather than with TCP-I. Results of a revised

version of the in vitro assay agree with the observation that
Rbl2p/cofactor A interacts with -tubulin rather than with
TriC and that Rbl2p is not essential for ,3-tubulin folding (21).
More recently, Melki and colleagues (14) have shown that
cofactor A. like Rbl2p, binds noncovalently to -tubulin. This
cofactor A-,3-tubulin complex elutes from a gel filtration col-
umn in a position consistent with it being a 1:1 heterodimer.

To analyze the function of Rbl2p in the cell, we have isolated
and characterized a stable complex of Rbl2p and -tubulin,
formed both in vivo and in vitro, that lacks ca-tubulin. The data
suggest that Rbl2p binds to a folded form of 13-tubulin and
predict possible roles for Rbl2p in the regulation of tubulin
assembly.

MATERIALS AND METHODS

Plasmids. strains, and media. pQE-60/RBL2 was used to produce recombi-
nant -ls,-Rbl2p in Eschenchia coi. This plasmid was constructed by PCR to add
.'col and BgIll sites to the RBL2 gene just before the start codon and just after
the penultimate codon. respectively. The PCR primers were 5'TAGGACACC
ATGGCACCCACACAATTG3' ad 5 'AATCTGAGATCTTTTAGAATCGA
GTAATTC3' The PCR product was cloned into the Ncol and Bgll sites of
Olagen vector pOE-60

pGRH allows inducible expression of Hls,-Rbl2p im Saccharomyces cermlsae.
pQE-60/RBL was digested with Hindlil. blunted. and then digested with Mfel.
This fragment was cloned into pA5 (URA3 C'N GALI-10 promoter il]) that had
been digested with Nodl. blunted. and then digested with Mfel. pMMII Is a 2-m
plasmid encoding His,-Tub2p under control of the GALI-10 promoter. Starting
with the vector pBW47 containing the 3' half of TUB2 (5). we used PCR to
generate a fragment containing an Ncol site 5' of codon 291 and a Bgill site just
after the penultimate codon. The 5' primer was 5'CCGGACACCATGGCAGC
AAATGTTGAT3'. The 3' primer was 5'CAATCTrAGATCTTCAAAA7T
CTCAGTGAT3'. This fragment was cloned into the Ncol and BgIll sites of
pOE-60. placing six histidine codons at the carboxy terminus followed by a stop
codon. A Satl-indlll fragment was cut from this construct and cloned into
pBW54 (25) from which the Sal-Sarl fragment had been removed.

All yeast strains used in this study are derivatlves ot FSY182. -183. or -185 (25).
JAY47 Is a diploid containing a third copy of the TL'B2 gene integrated at the
71UB2 locus and under control of the (;GAL promoter (I). JAY614 is FSY 185 plus
pGRI. JAY570 is JAY47 plus pGRH. FSY820 is a derivative of FSYI82 con-
taining a deletion of the chromosomal RBI.2 locus (1). This strain was trans-
formed with a CEN plasmid (marked with URA3) bcanng tub2-590 under control
uif the GAL promoter (25) and with a CEN plasmid (111.3) encoding tis,-Rbl2p
under control of the RBL2 promoter. The latter plasmid was created by cutting
pGRH with Mfel and haull and subcloning the fragment into pJA33. a plasmid
containing the entire RB1.2 gene (I) from which the Mfel-EcoRV fragment had
been removed. FSY82I is similar to FSY820 except that it constitutively ex-
presses tub2-590 and conta;ins TUB2R under control of the G.4L promoter. We
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crossed FSY127 (h2-590 1111) with FSY t, 1 (rtl . I I ';:,(, c dcrinhed
,porulatedsegrcgant, bearing the marker lor the Art12 llc le its the I. R-. cne I
.and the ruh2-5(X) allele bi Westtcrn hlottinel I'he.,e creant w.ere plated n
:-tluoro-orotic acid. and cells that had h iped ut the I t I cqucnce were
recosvered Fnalls. these cell were tr.lnstormcd with pl.,smid, pM -. Contain-
tog GAiL-7L82 1 25. and pJA33. a ( EN plimid cnodne is,-Rbl2p under
control of the RBL2 promoter LTY333 cont.ains he p\%1. II p.lamid in l:SY 12
I tubl Atub3 PRB53j) ( ht L Y2')2 i -S) 1: pl, p ,R lI ( It)

Ae ud standard methods .and mcdi.a 1 I'))
Purification of !is,-taggted proteins. hic \i-ntrilotriJtic .acid N rXA) slurr

and column matcrials were from ()i.ivn ',c u,d prt tio that are shlht
mt)difications of both thtose described e.rh, m l i nd ith rommended h, the
manufacturer Immunohlot signals ,ere qu.lntitcd fr m multiple urn, within
the linear range nm using the IS-I(XX) Diell. I . ine n.xitem i.\lpha nnotech
'Corporatlon )

In vivo asociation experiments. %,e grc. I ')92 -'srnieht n lctisC
raflinosec medium and then induced expresinl ,with ga.lact-. f)r t t) It) h We
harvested protein by glass head smash f 9i. ulng .pprsim.iatcls 4 cell, per
experiment We used a volume of PME hulfer plus protcsce nhlbitors 1) equal
to the volume of the cell pellet After ceitrolucatLa n I it l - . 3 mini. 8501 I
of extract was mixed with 130 1L of Ni-NTA\ lurr h.at had hen preincubated
with buffer I (20 mM midazole. 310 mM1 NAL. '1 1iS siM hum phophate bulfer
{pH Si}1) Ater' s I-h mincuhation at 4 we wlshcd the %i-NTA hea.ds three
times with 1 ml of buffer I plus fir; glscerol Ihnd proteins wrc clutcd bs
incubation with an equal volume of buffer I , niatnine 41I mM1 imiduole r with
2/ gel ample bulfer i4`; sodium dcl stllit 1)s 1 i' %f dithiothrcitol.
2'1O glycerol I

In vitro association experiments. %c hrsCtJd rotein from -bYsiN (wldd-
t.pe} cells After breaking the cell in 1M'11- hullcr .til .i I rnch pre,,. we
immediately added 3X) to 50() l o h.lctcri.l Is.le (ontalininte recombinant
His,-Rbl2p and then proceeded a dcribhed ih,e he 1s.lte .s, prepared
from E colt cells containing pOE-61) RBL2 -hich hd rcn induced with iso-
propyl-B-)-thiogalactopvrant)oside for h Approxismiatclx ' 5 ml o p.icked cells
were opened y sonmcation in 20 ml of buffer I tlli.ed hs c.ntrltug.Lation at
31.0(X) x e for 20( min. To assay denatured prtmins,. c hrimght I ml of extract
to a final concentration of 6 M guanidinc hdrihlorldc for 5 min t I'C We
diluted the sample (or untreated control IIo-hld it I'Mn11- buffedcr plus proteast:
inhibitors plus 51}) 1 of recombinant Ilii,-Rhl2p ( il mg ml). n.uha.ted the
mixture for I h at 4'C. and then isiidlated the Lomplcx is dc~rlhbed for the in sso
associatlon experiments

Dissociation experiments. We prepared Is, R12p--wluhulin complex rom
JAY570 protein extracts. and His,,- 3-tubulin htcrdinmcr tron L'Y333 pro-
tein extracts ells were opened n P1: utitr I rench pres,, .a dscribed
above. and the extracts were centrifugced it I IXi : a nd then mixed with
Ni-NTA slurrmies also as described above nund piotcns, were ashed awas
hvby three washes 15 ml per 13i0 I1 o roin aLnd . ruspcnded the samples In
PME buffer plus protease inhibitors 1(25-11ld dlution i \t arious times. e
centrifuged ailhquots of the amni,. removed the uprn.iin .and eluted bound
proteins with butffer I containing 4iNM mM inud/olc or with cl sample bulffer

RESULTS

Characterization of a His6 -Rbl2p--i-tuhulin complex formed
in vivo. Previous work demonstrated that Rbl2p can form a
complex with 13-tubulin but not a-tubuhln n stvo. demonstrat-
ing the existence of a second pool f 3-tubulin in the cell in
addition to that of the at/3-tubulin heterodimer ( I ). We orig-
inally isolated this complex bv immunoprccipitation with anti-
13-tubulin or anti-Rbl2p antibodies. Ilowever. this isolation
method has drawbacks. First. the monoclonal anti-a-tubulin
antibody has only a modest level of affinity. so the immuno-
precipitates are somewhat unstable. Second. on SDS-polyacryl-
amide gels, the sizes of the tubulin polypcptides are similar to
those of the immunoglobulin G heasy chains. which are abun-
dant in the precipitate and interfere with analyses.

To avoid these problems in analyses of the Rbl2p-p-tubulin
complex. we constructed a version of the RBL2 gene encoding
a form of the protein with six histidincs at ts carboxv terminus.
By several criteria, this modified form o Rbl2p has the same
activities as dloes the unmodified form.

First. overexpressed His,-Rhl2p suppresses the lethality as-
sociated with overexpression of -tubulin with an efficiencyv of
49%, under conditions where only .(1Mr; of cells containing
the YCpGAL control plasmid survive. This value is only slight-
Iv less than the 70% efficiency achieved with unmodified Rb2p
(1).

Mot.. CELL. BiO-L

UNINDUCED INDUCED
W.C.E. bound W.C.E.bound

0-tubulin i. _

a-tubulin -

Rbl2p

FIG I c His,-Rbh2p-3-tubulin complex fo)rmed in vivo ts devoid of a-tu-
huhlin LTY292 cells carrying a plasmit-borne gene specifing His,,-Rbl2p under
control of the Gi.4L promoter were grown for 2 h in medium containing raffinosc
(uninduced) or galactose linduced). The Hits,-Rbl2p was separated from extracts
hv using Ni-.NTA eads The whole-cell extracts (W C.E.) and bound proteins
were analyzed hby immun(blottine for 1B-tubulin. a-tubulhn. and Rbl2p as shown.
The bottom film was exposed six times longer than the top two. The presence of
0-tuhulin n the bound proteins required cxpresst(on of His,-Rbl2p. but no
i-tubulin was detected in the bound proteins under either cndition.

Second. like Rbl2p. His,,-Rbl2p overexpression confers re-
sistance to the microtubule-depolvmerizing drug benomyl.

Third. protein binding to His,,-Rbl2p is similar to that of
unmodified Rbl2p. We mixed extracts of cells that inducibly
overexpress His,-Rbl2p with Ni-NTA beads (see Materials and
Methods). -Tubulin binding to the beads strictly depended
upon His,-Rbl2p expression (Fig. 1). This complex, like the
one previously characterized by immunoprecipitation. contains
no detectable cs-tubulin.

The level of Rbl2p-3-tubulin complex increases when both
of its components are co-overexpressed (data not shown), al-
though we detected no increase in Rbl2p levels when 1-tubulin
alone was overexpressed. Analysis of extracts from the co-over-
expressing strains by gel filtration identified a peak containing
13-tubulin and Rbl2p which luted at an apparent molecular
mass of -60 kDa (3a). consistent with the finding by Melki and
colleagues that cofactor A and 3-tubulin form a 1:1 hetero-
dimer (14). As shown in Fig. 2 below. we also detected this
complex in extracts of wild-type cells. but the level of the
complex was extremely low. To estimate the relative sizes of
the two pools, we used immunoprecipitation to measure the
proportion of the cellular 13-tubulin not associated with ca-tu-
hulin. The anti-ot-tubulin antibody was covalently attached to
beads and was incubated with wild-type extract. Under condi-
tions where that antibody leaves - 1% of the total a-tubulin in
the supernatant. we found that <2% of the f3-tubulin also
remained. We can therefore place a limit on the proportion of
13-tubulin associated with Rbl2p as being no greater than 2% of
the total -tubulin.

Ordering the formation o Rbl2p-13-tubulin complex and
ot/I-tubulin heterodimer in vivo. To order the formation of
these two 3-tubulin complexes with respect to one another. we
constructed yeast strains that would allow us to monitor the
compartmentalization of newly synthesized -tubulin relative
to that of the steady-state pool. In FSY820 cells, the only
source of Rbl2p is a low-copy-number plasmid that constitu-
tively expresses His,-Rbl2p under the control of the RBL2
promoter. On the chromosome the constitutively expressed
P-tubulin gene is wild-type TUB2. An inducibly expressed 03-tu-
bulin gene. tub2-590. is on a second plasmid under control of
the GAL promoter. The product of that gene. Tub2-590p, is a
fully functional 13-tubulin protein. Because it lacks the carboxy-
terminal 12 amino acids, we could distinguish between the
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f IG; 2 \c'ls %rnihe,izd -tubulin .. n irid , 'I. , i),',ribuion o 13-tuhuln htwecn the Rbl2p nd n-tubulin p(,l In FSY x20 cells is shown. IA)

Immunblot,. ,1 khole-cll extract, ( ( I . I.rt, t ,in tImlnnlprccitplate l I P ). and pr)tetn bhound t t,,-Rbl2p cither at tcad. state (.s.) or after a hnbrief
(e.Jlaettc tor 11 min follosed hx luc,,. t.r i , .'.. ,ul n .I 1 uh2-i'mip ;pul',c .Ire shown The blots were probed with antilhbNlie spccific for either wild-typc

tuh2p o(2ttI o r ne Iattcr-mlgratine Tuh ',,ip r :, g ' ,, *mr, m .i and exposure tmcs wcre .IdJusted to) gsC detectable sIgnals trom all fractions. (B) Analysts ot
thc dtal ,,hon in panel A The rto , rprcIm . :.. ' .-.. .,I the induced 13-tubulin (Tuh2-5'X)p) rclative to the constitutIec .-tubulin (Tub2p) present as the
,-tuhulin heterodimer or ass(ci:llcd U1t 1 lh 'I, "

: '' -.....:inl t11, Icds ltatCe and after a hbrief nduction Tuh2-5)p expression (pulse).

[3-tubulin proteins bv uin t. .lllhbii.ics 1211 .i1nd 339) that
hind specifically to the wJld-t!pc .nd trurL.lcd fornrms. respec-
tively (II). In addition. Tub2-5)lp Imzir.atc, ,laster on SDS-
polyacrylamide gels than the x ild-t pc I1 h2r

To examine the partitioning o ncwlx , nthcs.lizcd [-iubulin.
,a culture of FSY820 cells rowvn In r."itin::c \.i x\posed to
galactose for 10 min and then to lucos, r n ..dditonal }
min. We fractionated extracts o, thcsc cells xwith .mntl-(-tubulin
antibodies to isolate the i( -tuhulin hctcrodimers and with
Ni-NTA beads to bind the iA-RKhlt2p--tbuhulin complexes.
As a steady-state control. an idcntl.il ulture if raffinose-
grown FSY82( cells was shifted to gcucose or 2t1 min. The
distributions of the two -tubulin [prrtcins in whole-cell ex-
tracts and in the two fractions were ,,ist.I d bh SDS-polvacryl-
amide gel electrophoresis followedll nimmunhilotting.

Results from a representative eperimnent a;re shown in Fig.
2A. The different fractions arc reprectlcd hby cry different
exposures because they are so diffitrent n .hundance. Some
Tub2-59()p. the induced 3-tubulin protein. is detectable n the
steady-state cell extracts because the (;. I/. promoter is weakly
expressed in raffinose medium.

To monitor the newly synthesizcd [-ltuhulin. wc recovered
the fractions associated with o-tubulin .nd ,.ith Rbl2p and
normalized the recoveries using the nstitutivelv expressed
Tub2p. Figure 2B presents an analysvs (t the results shown in
Fig. 2A. The short exposure to galactosc ncreased the level of
Tub2-590p approximately fourfold. hlile the levels of wild-
type P-tubulin were unaffected. -Thc r.itio of Tub2-590p to
Tub2p associated with Rbl2p increased about 5.4-bold after the
induction. In contrast. the ratio tor the Ixo [f3-tubulin proteins
present as oit/W-tubulin hcterodimcr ticrealscd on(l about 1.6-
fold.

This difference in partitioning ()t ncw I. synthesiLzed -tubulin

is not the consequence of a subtle difference in the proper-
ties of the two proteins. We repeated this experiment using
FSY821 cells. in which the constitutive and inducible 3-tubulin
genes are switched. In this experiment. the levels of the induc-
ible Tub2p increased sixfold after the same induction protocol.
After the induction, the relative proportion of this newly syn-
thesized -tubulin protein to the constitutive Tub2-590p was
1()-fold higher in the Rbl2p pool but only about 1.5-fold higher
in the a/-tubulin heterodimer (data not shown).

These data demonstrate that newly synthesized -tubulin
can hind to Rbl2p before it incorporates into a/0-tubulin. If
the opposite were true. i.e.. if 3-tubulin could bind to Rbl2p
only after it had been in heterodimer. we would not detect any
enrichment for the induced protein in the Rbl2p pool. since
the heterodimer pool is at least 50-fold larger than the Rbl2p
pool. It is important to note, however. that this result does not
demonstrate that this order is obligatory (see Discussion).

Formation of Rbl2p-fp-tubuli in vitro. To determine if
Rbl2p could bind only to newly synthesized -tubulin or if
instead it could bind to 3-tubulin that had previously been in
a/3-tubulin heterodimers. we used an in vitro assay. We ex-
pressed His,,-Rbl2p in E. coi and incubated it with extracts of
wild-type yeast cells and then assaved for bound proteins by
using Ni-NTA beads. We found that Rbl2p bound 0-tubulin in
a time-dependent fashion (Fig. 3). Like the complex formed in
vivo. this in vitro complex contained only a trace amount of
a(-tubulin. which amount did not increase with time. Therefore.
it is likely that the a-tubulin detected represents adventitious
binding.

The time course demonstrates a linear rate of association
between Rbl2p and -tubulin for at least 4 h. Extrapolated
back to zero time. the kinetics give evidence for a small but
reproducible initial burst of complex formation. One interpre-
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tltion of this biphasic tirne course i,, that it rcprc.,cnt,, r;caetion
with two distinct n xitro pools f3-tubulin. hc low rte at
xhich the majorit tit the complex form, n rcprccnt 
rate-determining release of ree 13-tubulin iorn tile htcro-
dimer. by far the predominant population f1 tubulin in the
extract. The initial burst could rpresent te diffusion-con-
trolled raction oft a.I small equllibrium population of undinier-
izcd 13-timbulin in the Ncast extracts. . hich ,hould bind to Rbl2p
at the diffusion-controlled limit. Fhc I. ci it 3-tubulin that
reacts at this high rate fits 1well with our cttml.ite ti the lcvel of
3-tubulin not asociated with a-tubulin i extracts (ec aht.ec).

Thcse results suggest that Rbhl2p can nteraLt vith 3-tubulin
molecules that haxe pro, iously been dimeizced and hence cornm-
pletely folded. Converscly. the abilit o t-t tulin to hind to
Rb2p in vitro is abolished by dcnaturation. \e treated wild-
type yeast protein extracts with h NI gufuanidinc hdrochlorhdc
and then diluted the protein into olutins tontainin, [its,,-
Rbl2p. Conventional chaperone hinding and ldingm assays
toften make use of substratcs that ire dcnatured bh treatment

wxith MN guanidine hdrochloridc. Rel.tl. tc the control
reaction mixtures that werc diluted but not e\xsc t denaturing
agent. the amount oft 3-tubulin bound t Rb12p w.,as onl. barely
detectable (it. 4. In contrast. xirtualls ni hIound (i-tubulin
was detected n either the denatured oir uintrc.atcd samples.
lmmuntblots of these samples with anti-Rb12p dmonstrated
that the amounts of Rb2p bound t behads erc the .me in
the treated and untreated samples. This rult is consistcnt
with the failure of -tubulin denatured n this lashion to hind
the murine Rb2p hom()!o)g. cofactor .\. in the in \itro "\stem
(7. 8).

Stability of the Rbl2p-3-tubulin complex. Ilc in itro ex-
periment described aboyc suggests that 3-tubtilin can transfer
from -tubulin to RbhI2p. The in ix( experiment suggests that
[f-tubulin can interact with Rbl2p bchf.orc it interacts th ct-tu-
bulin. A crucial issue for understandin R2p unction is how
these two complcxcs of 13-tubuhin cmp.tre t oinc .another.
.-\ccordinzlv. wec measured their stablities n x\itro.

We isolated the His,,-Rbl2p->--tubuli cmplex from x-
tracts of vcast cells that overproduce oth protcins iand then
measured the dissociation of the cmplex b: monitoring the
loss of 3-tubulin from the Ni-NTA eads (,ce \Materials and
Methods). Under the conditions ottthis experiment. te His,,-
Rbhl2p protein does not dissociate rom the hbeads. A\s shown in
Fig. 5. the Rbl2p-3-tubulin complcx dissociates exponentially
through about to half-lies. These r sults .ire consistent with
a simple dissociation reaction vwith halt-life t about 2.5 h.
corresponding to a dissociation rate constant. A,,. o 8 '< 10 

The stability of this complex should be compared to that of
the ta,[-tubulin hterodimer with hich t cn interact. The
equilibrium dissociation constant for that heterodimer s re-
ported to be --8 '< 10 M (4). We cannot measure the com-
parable constant for the Rbl2p--tubulin complex. either di-
rectly or indirectly (hby measuring it, association rate constant).
since we do not have a source ot nati\e monomeric 3-tubuhlin.
I lowev,r. the bimolecular association constants or molecules
of similar sizes are on the order of I1 t Il NI 1 s, (). It
we choose the consenative valule o 1" I ' , '. the RbhI2p-
V3-tubulin complex would have a Ka, t) If) ". That value
would make the Rbl2p-,-tubulin cmplex significantly more
stable than the a 03-tubulin htcrodimer. r17 cmpare the sta-
hilities of the complexes more directly bhx similar assays, we
prepared a,,3-tubuhn heterodimer rom1 cells expressing l-His,,-
Tub2p (see Materials and Methods). We solatcd this complex
on Ni-NTA beads and then monitored it, dissociation hvby as-
saying for loss of the a-tubulin polypeptlde. 1'hie rate of a-tu-
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I IG I orm.totln ,t1 ils,.,-Rhbl'2p--tubulhn complex n %tro Bactenal ex-
traclt containing 1,,,-Rhl2p vwas incubated with wld-i.pc .east cll extracts at
4 (C At .arou, tsmes. ain aliquotl %as removed and added to Nt-NTA beads fr
I minm 'he bead, were a.shed. and the hound protein s were assayed by elution
ollowed hvby nimunoblotting with anti-tuhulin antiblodies. The data are reported

a.s percent li-tuhulin and cx-tuhulin hound as a function t time

bulin loss from thc beads is low. onsistent with a half-life for
thc heterodimer of about 10 h (Fig. 5). Therefore. b using
cssentiallv thc same method to assay the stabilities of the two
complexes. it can be concluded that the a;c3-tubulin hetero-
dimer dissociates much more slowvly than does the Rbl2p-1-
tubuhn complex.

DISCUSSION

That W-tubulin can interact specifically with a protein other
than (x-tubulin suggests several possible functions for such a
complex. The results presented above characterize the forma-
tion and properties of the Rbil2p-1-tubulin complex.

The results demonstrate that the formation in vitro of the
Rbl2p-3-tubulin complex is dependent upon the conformation
of -tubulin. Although there may be conformational altcr-
ations of -tubulin prior or subsequent to binding Rbl2p. the
form of -tubulin that binds Rbl2p is at least in equilibrium

W.C.E. - +

-tubulin

x tubulin
FIG. 4 Rhl2p does not hind to denatured 3-tubtlin. tracts rom wild-tvpe

,ells IWC I ) were incubated either with control uffer -) or ith 6 M gua-
mnidine hdrochlord e ( +) tor 5 min. diluted ilm-told. .mind then incubated with
li1,,-Rb2p plus Ni-NTA\ heads. The specificalh hund proteins ere eluted

from the heads .and assayed for he presence ol oth -tubuhlin and a-tubuhn hv
immunoblotting The hinding o -tubulin to Rhl2p s:s esscntiall ahbolished byhv
the preincubation with denaturing agent. N hbound -tubuhn s.1,s detected
under eilther condition
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t it 'IdtlJlIII 11i lrltr
du1i ' iJ t ultlh.in L.,. 11

, J'%il I'.l i .. I 4 ( .ni
.It ·. &l tames1 h1lC In-
, ,, ltIlllI~ LLx nd

, uhulIn (sure-.) dls-. l.iltln I \tr.l.. I r, i, , ' r. .- nc ·.lr r i 2p i'r nd
Its. Rhl2p or III,, luh2p i11lmc wcre u-&d , m, .,t , x-,,,J.t .n el L3-lu-
huhln It , lluhutlhln rcpC tl,,,c

with tile form that hinds t-tubtiliil I 1 , i!1 tl:c In i1\o and in
%itro complexes aIrc esscnti.l% lc 1 ltL 1l i lhbulJlnl ,arues thlat
Rhl2p competes with t-tubhul;n t,r tIml ,:: i, -tubulin. per-
haps because oth ligands hind iI, .liir.! - 'tes Un 3-tubulin.
'These characteristics of tlCe Rbtl2p-o-tilhiilJll romlplcx ire con-
,,itcnt ith the compara;lbl ctliclct.tl i,., ltl flp mnd i-tubulin
in rescuing cells from 3-tubulin lIchlislx I: 1.ll extr;lcts. it is
clear that much more {-tubuliln is ,,,,.itd \\ith ot-tubulin
than v th Rhl2p. reflectin! not (nIlx tl I,1lllc ti.btlihtics but also
the likelihood that there is much k,,, R 12p thali.in m(-tubulin in
vulld-tpe cells. We note that the is\,:rprdu.llOln ot Rbl2p ,
modecstl toxic (1). a phcnotype tliit mr.i et cxplaincd by the
abilitv ot high lcvels to compete sIctc,, Ustlt \,\ ith ol-tubulin .Ind
so to) sequester -tubulin.

Two results are consistent \%ith .1 ilc 1,ir Rl'2p n the
pathway leading to hetcrodimcr htrnlm, ,n I rs. the in iitro
data suggest that the ti/3-tubultn hcrcrthllmcr is more stable
than the Rbhl2p-3-tubulin complex. ( )I ,lursc this comparison
is of dissociation rates that need nt rcict imrtditions in vive.
For example. that the tubull hcri tinlcr L.tn halCe an alter-
natlse fate to dissociation. I.e. pllcri/.ltl t(n. mlliv affect ItS
apparcnt stabilitv in the cyioplasm IIl .ddIJtl. n there mav he
ftfcctors that m(odifv the stahilit\ (t cither tl-luhbulin complex.

Second. the pulse induction cpcimncilt h,li ,:s that [?-tubulin
can Intcract w ith Rbl2p before it Inerilci, ltl i-lubulin. llhis
result is consistent with the inter crltlll, ill lrn rported for
the rctfolding (t completely denlatured i lhulln ( 21). which
suggest that the murine homoloug it Rbhl2p. ilactor A. hinds
P-tubuliln hortlv after its release from t he Icp-Il complex.
liowcver. at steady tate the anlotnlnt ( t ,-Ilbt ll n itl ialtlable for
dimerization with the nec lv vnthcsi/cd mitcrial nmayv he lim-
itin. Under that circumstance. t lhe iLdti .Cd [-t ubu in may be
forced nto association with uncomplcxcd R,112p. Vherclore.

this experiment does not permit us to conclude that this se-
quence of formation of the two -tubulin complexes is oblig-
atorv or that 13-tubulin ordinarily passes through the Rbl2p
complex as part o dimer formation. The experiment does
establish that Rbl2p may be on the pathway of heterodimer
formation for newly sxnthesized 3-tubulin.

These results do encourage further comparisons with the in
vitro assay for Rbl2p cofactor A in heterodimer formation. We
show here that Rbl2p can bind to 3-tubulin that has been in the
,/B-tubulin hterodimer. In contrast. Gao et al. originally re-
ported that 3-tubulin bound to cofactor A fails to exchange
into exogenous hetcrodimer in the in vitro reaction (7). That
result could mean that the formation of Rbl2p-13-tubulin from
tubulin heterodimer is not reversible. Alternativelv. the inabil-
itv to detect this exchange reaction mav reflect the slow disso-
ciation of -tubulin from the Rbl2p complex relative to the
length of the in vitro assay. It may also reflect the fact that the
level of ct-tubulin aailable to bind the released -tubulin in
that assay mav be very low. limited bhv the rate of dissociation
from the heterodimer.

What might Rbl2p do n cells'? We can consider here two
possible roles. First. the demonstration that Rbl2p-1-tubulin
can form from newly svnthesized protein. before that ,-tubulin
is ncorporated into heterodimer. demonstrates that Rbl2p
may participate as a scaffolding protein for -tubulin in the
assembly of the tubulin heterodimer. If so. it obviously does
not define the sole pathway for formation of this essential
protein. since RBL2 ,, :tself not essential in wild-type cells.
Alternaticlv. Rbl2p could serve as a buffer to sequester free

-tubulin. Even modest excesses of P-tubulin are deleterious to
the cell. For example. strains deleted for the TUB3 gene. and
so lacking about 15; t o their normal (t-tubulin complement.
show distinct microtubule phenotypes (17). which are com-
pletely suppressed b ,an extra copy of RBL2 under control of
its own promoter (I). Experimentally. the extreme toxicity of
13-tubulin s best remedied by two proteins that bind to it
specifically. (-tubulin and Rbl2p. The cell could find an advan-
tage in using Rbl2p rather than excess (t-tubulin in this role.
Increased levels of (t-tubulin would have the consequence of
changing the level of heterodimer. which in turn could affect
the balanced dynamics likely to be an Important part of suc-
cesstul niicrotubulc tunction.

In some genetic backgrounds. including those carrying mu-
tations in t-tuhulin genes. RBL2 function is essential (1). De-
tailed analysis of these situations may provide more insight
both into Rbl2p function and into cellular mechanisms for
regulating tubulin assembly.
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Many effectors of microtubule assembly in vitro enhance the polymerization of subunits.
However, several Sacclharonitccs cerevisiae genes that affect cellular microtubule-depen-
dent processes appear to act at other steps in assembly and to affect polymerization only
indirectly. Here we use a mutant c-tubulin to probe cellular regulation of microtubule
assembly. tubl-724 mutant cells arrest at low temperature with no assembled microtu-
bules. The results of several assays reported here demonstrate that the heterodimer
formed between Tubl-724p and 3-tubulin is less stable than wild-type heterodimer. The
unstable heterodimer explains several conditional phenotypes conferred by the mutation.
These include the lethality ot tubl-724 haploid cells when the 3-tubulin-binding protein
Rbl2p is either overexpressed or absent. It also explains why the TUBl/tubl-724 heterozy-
gotes are cold sensitive for growth and why overexpression of Rbl2p rescues that
conditional lethality. Both haploid and heterozygous tubl-724 cells are inviable when
another microtubule effector, PAC2, is overexpressed. These effects are explained by the
ability of Pac2p to bind t-tubulin, a complex we demonstrate directly. The results
suggest that tubulin-binding proteins can participate in equilibria between the het-
erodimer and its components.

INTRODUCTION

Microtubules participate in a variety of specific func-
tions crucial for morphological differentiation, cell
growth, and cell movement. The diversitv of these
functions requires that microtubules assemble into
quite different structures even within the same cell.
Many of those structures are dynamic. allowing them
to disassemble rapidly and thus provide the compo-
nents necessary to form another microtubule or-
ganelle. Possible mechanisms for regulation of these
processes can be envisioned at several levels: primary
sequences of tubulin genes (Joshi and Cleveland, 1989;
Hoyle and Raff, 1990), message stability (Pachter et al.,
1987), folding and dimerization of the protein sub-
units (Ursic and Culbertson, 1991; Chen et al., 1994),
properties of the polymer (Mitchison and Kirschner,
1984; Saxton et al., 1984), and the interaction of the
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polymer with non-tubulin proteins (Caceres and Ko-
sik, 1990; Dinsmore and Solomon, 1991).

Recently, several diverse experimental approaches
have identified proteins that may participate in tubu-
lin heterodimer formation. In vitro assays for proper
folding of denatured a- and 3-tubulins require several
protein cofactors that transiently interact with the in-
dividual polypeptide chains (Melki et al., 1996; Tian et
al., 1996, 1997). These complexes of tubulin polypep-
tides with cofactors may be intermediates that form
between release of tubulin polypeptide from the
TCP1-containing ring complex and its incorporation
into preexisting heterodimers by exchange. In at least
some cases, those polypeptides form binary or higher-
order complexes with the tubulins that are stable
enough to be isolated but are still reactive (Tian et al.,
1997).

Homologues of these cofactors (except cofactor C)
are identified by diverse screens for mutations that
affect microtubule processes in budding yeast. The
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processes affected include sensitivity to microtubule-
depolymerizing drugs (Stearns ct al., 1990), fidelity of
mitotic chromosome transmission (Hovett ail., 1990),
response to overexpression of 3-tubulln (Archer et al.,
1995), and interactions with mitotic motors (Geiser ct
al., 1997). Although most of these cofactors are essen-
tial for the in vitro assav, none of their Sacchlaroinllces
crcrvisiae homologues are essential for viabilitv. There-
fore, they may participate in the folding and het-
erodimerization of tubulin polyvpeptides, but there
must be pathways that do not depend on them.

The genetic data alluded to above suggest that there
may be multiple steps in tubulin assembly subject to
cellular control. Analysis of tubulin mutants can pro-
vide access to those steps. A panel of a-tubulin
mutants cold sensitive for growth arrest at their re-
strictive temperature with diverse microtubule pheno-
types (Schatz et al., 1988). Some of the mutants arrest
with no microtubules (class 1), some with a normal
complement of microtubules (class 2), and the rest
with an apparent excess of microtubules (class 3). This
variability suggests that the conditional defects in
these mutant a-tubulin proteins can affect different
aspects of microtubule assembly and function. Certain
of these mutations are suppressed by specific muta-
tions in 13-tubulin (Schatz ct al., 1988) and others bv
extra copies of the mitotic check point BUB genes
(Guenette ct al., 1995) or by yeast homologues of the
mammalian checkpoint gene RCC7 (Kirkpatrick and
Solomon, 1994). However, there i! too little structure-
function information for tubulin to permit an under-
standing of the phenotype n terms of the tubulin
mutation itself.

Another distinction among the tubil mutant,, is un-
covered when thev are assaved in the presence of
varying Rbl2p levels. Rbl2p binds 3-tubulinl to form a
1:1 complex (Melki ct al., 19ch; Archer t al., 1998).
Rbl2p binding to 3-tubulin excludes (t-tubulin binding
to 3-tubulin. Four class I a(-tubulin mutants are svn-
theticallv lethal with deletion of rlll12. Tawto of those are
also synthetically lethal with overe\pression of RBL2,
but several other class 1, 2, or 3 mutants show no such
interactions (Archer et al., 1995).

The present study analyzes and eploits the prop-
erties of one of those two mutants. The tubl-724 mu-
tation fails to support growth at 18'C and only par-
tially supports growth at 25°C but grows as %well as
wild-type cells at 300C (Schatz ct al., 1988; see Figure
5). The lethality and loss of mlcrotubules at the non-
permissive temperature is not a consequence of deg-
radation of r-tubulin; the steady-state (t-tubulin levels
in these cells is the same as that in an isogenic wild-
type control (our unpublished results). Upon induc-
tion of GAL-RBL2, tubl-724 cells at permissive temper-
ature rapidly lose assembled microtubule structures,
and within 20 h <0.1%, of the cells are viable (Archer
ct al., 1995).

The data presented here demonstrate that tubulin
heterodimer containing this mutant a-tubulin protein
is less stable than the wild-type heterodimer. We use
this property to analyze interactions between tubi-724
and altered levels of two of the cofactor homologues
mentioned above. The results provide a structure-
function correlation for tubulin as well as insight into
the cellular activities of the 13-tubulin-binding protein
Rbl2p and the putative -tubulin-binding protein
Pac2p.

MATERIALS AND METHODS

Strains, Plasmids, and Media
All yeast strains are derivatives of FSY185 (Weinstein and Solomon,
1990) with the exception of the tbl mutants (Schatz et al., 1988)
(Table 1). We used standard methods for yeast manipulations (Sher-
man et al, 1986; Solomon et al., 1992).

Viability Measurements and Inm unofluoresence
LTY374, LTY8, LTY376, and LTY11 were grown overnight in SC-
Ura-l-eu raffinose media. Log phase cells were then induced with
2%o galactose and at various time points aliquots of cells were taken
and counted using a haemocytometer. Known numbers of cells
were then plated to SC-Ura glucose plates. Cell viability was mea-
sured as the percent of counted cells able to form colonies on the
SC-Ura glucose plates. At various time points cells were fixed for
Immunofluorescence in 3.7%" formaldehyde. Anti-p-tubulin staining
was done with #206 (Bond et al., 1986) at 1.2000 in PBS containing
0.1%/ BSA.

Phenotypes of TUBi or tubl-724 Heterozygous
Diploids
Atubl, Atub3 strains containing tub l-724 or TUB] gene on LEU2:CEN
plasmids were crossed to FSY183 (wild type) containing YCpGAL,
p'A45, or pAS. The diploid strains were grown to saturation over-
night in C-Ura-l.eu-l-lis glucose liquid media. The saturated cul-
tures were seriallyv diluted in 96-well dishes and spotted onto SC-
Ura glucose and SC-Ura galactose plates.

Rescue of JAY47
IAY47 (Archer t al., 1995) was transformed with genomic CEN.
UA3 plasmids containing TUBI, tubh alleles or with CEN:URA3:
RBL2. Cells were plated to SC-Leu-Ura glucose plates at 300 C and to
SC-Leu-Ura galactose plates 30, 18, and 15'C. The number of colo-
nies on galactose relative to glucose was measured.

DNA Sequencing
IDNA sequencing was performed using modified T7 DNA polymer-
ase Sequenase with the dideoxy chain termination method (United
States Biochemical, Cleveland, OH).

Inmune Techniques
linmunoblots. Standard procedures were used (Solomon et al.,
1992) After gel electrophoresis and transfer to nitrocellulose mem-
branes, we blocked blots with TNT (0025 M Tris, 0.17 M NaCI,
0.05% Tween 20, pH 7.5) for 30-120 minm. Primary antibodies were
incubated for > 12 h at 1:3500 (#206 or #345; Weinstein and Solomon,
1990) or at 1:100 (#250; Archer et al., 1995) and then washed five
times (5 min each) in TNT Bound antibody was detected by 1251-

protein A (New England Nuclear, Boston, MA) or (for 12CA5)
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'2sI-sheep anti-mouse immunoglobulin ( (ew England Nuclear).
Commercial preparations of anti-HA vwere used (Bvhrlnger Mann-
heim, Indianapolis, IN).
Imnmunoprecipitations. The proceIdUre de.,cribed previously (Ar-
cher et al. 1995) was used with slight moditications The monoclonal
antibodies AIBG7 (anti-cr) and BIBE2 (.mlntl-. raised against the
carboxvl-terminal 12 amino acids ot Tublp and Tub2p, respectively,
were affixed to Affigei-lO beads lio-Rad. Iercules. C). Yeast
strains FSY157 and FSY182 were grown up at 30( C. Total protein
was harvested by glass bead hsis I'M1\: it I N1 pperazine-N.N'-
bis[2-ethanesulfonic acid], 2 mM EGT-\. I nNl mnesium chlonde,
pH 6.9) plus protease inhibitors and v .1a added to antibody beads
for a -h incubation with rotation at 4 C \X\e washed the beads eight
times with PME plus protease nhibitir lund proteins were
eluted by boiling in SDS sample butter uand rsol ed by SDS-PAGE
analysis.

Purification of His6-tagged Proteins
The Ni-NTA nickel slurry and column na.terial, were from Qiagen
(Chatsworth, CA). We used protocols trom the Qiagen handbook
and modifications of this protocol that ha t bpn pre \l usI' de-
scribed (Magendantz et al, 199;)

In Vivo His6 -Rbl2p-,3-Tubul n . ssocilatio n
Experiments
Yeast strains LTY291 and L.TY292 a re HF.- 1-7 .r.d IS\t 182 transtor-
mants with a CEN pGAL-RBL2-H15, (ptI IR) ,e grew I.TY291 and
LTY292 overnight at 300C in selecti t m.edia ,ontaining rattinose to
about 2 10' cells per expenment Galiactcse (2".,) was added to
induce His,-RBL2 expression. :\tter 0, 1. nd 2 h, protein was
harvested by glass bead lsis in I ml t I'MIE butffer plus protease
inhibitors. We applied 0.85 ml ot prottein extra.t to I 4) l of NI-NTA
beads. We washed and eluted tht bound protein. as previouslv
described (Magendantz et al, 1'9q Fluted proteins \ere subectted
to SDS-PAGE analysis and probed tr r-tbulin. -tubulin, and
Rbl2p and quantitated by densitometrx

In Vivo HIS 6-(HA)-Pac2p-ax-Tubu 'lin .AIssociation
Experiments
We grew yeast strains LTY539. I Tn 4 1, I ' 4 . and I.Y) 40 ox er-
night in selective raffinose media at .( C t ..Jk tos (i2',) was added
to induce Pac2p-(HA)-His, and t-tubuhln r -ttubulln expression.
Cells (h 0) 101) were harvested by gilas, tad I.l ;ss r experiment
In 1.1 ml of PME buffer plus protea.e inhibithors e applled I mi ot
protein extract to 25 1.d of Ni-NTA bead, k.'e a.hed an.d e luted the
bound proteins as previously described I!agvendant ct t/, 0Q5)
Eluted proteins were subjected t SS-l'.\A;LE analvsis and probed
for ca-tubulin. -tubulin, and HA\ 12C.\V) or l'ac2p, the bead elu-
ants represent 120 times the load ort . hole-cell extract For a- and
/3-tubulin, the bead eluants represent (00 hme the load of whole-
cell etract.

RESULTS

Characterization of Cold-sensitiv tubl ,Mutants
The conditional loss of assembled microtubules in
class I a-tubulin mutants could arse from cold sensi-
tivity of any of several steps in microtubule morpho-
genesis. However, the svnthetuc lethalitv t)t Tub 1-724p
with both Rbl2p deletion and overexpression suggests
that the mutant defect arises trom a weaker het-
erodimer (Figure 1). If the heterodimer formed by the
Tubl-724p dissociates more readily than does wvild-

type heterodimer, the increase in free, undimerized
3-tubulin could be toxic in the absence of the 3-tubulin

binding capacity provided by Rbl2p. Conversely, an
excess of Rbl2p, which has only minor phenotypes in
a wild-type cell, could compete effectively with the
mutant c-tubulin protein for 3-tubulin and so dimin-
ish the level of tubulin subunits to cause loss of mi-
crotubules and cell death. The experiments described
below present tests of this model.

The only difference between the primary sequences
of TUB and tb1-724 genes predicts substitution of
threonine for arginine at codon 106 (AGA becomes
ACA). Arginine-106 is a highly conserved residue
among a-tubulins. The possible significance of this
mutation for heterodimer stability is presented in DIS-
CUSSION.

Coinmmunoprecipitation of a- and P3-Tubulin from
Wild-Type and tubl-724 Mutant Cells
We assessed the stability of the wild-type and mutant
a-(3 heterodimers by coimmunoprecipitation. Extracts
from tbl-724 mutant cells (FSY157) and wild-type
cells (FSY182) grown at 300C were incubated with
antibodies to either a-tubulin or 3-tubulin coupled to
Affigel beads. The beads were washed extensively to
remove adventitiously adhering proteins, and specif-
icallv bound proteins were released by SDS. The tu-
bulin chains in the immunoprecipitates were analyzed
by immunoblotting (Figure 2). From extracts of wild-
type cells, antibodies against each of the tubulin
polypeptides coprecipitate the other chain with high
efficiency; the ratio of the tubulins in the coprecipitates
Is comparable to the original extracts. This result sug-
gests that under the conditions of tubulin immunopre-
cipitation, normal heterodimer largely remains intact.
From extracts of tubl-724 cells, however, the anti-
tubulin antibodies complex efficiently with the specific
tubulin chain against which they are directed but pre-
cipitate the other tubulin chain only poorly.

Because we recover only a small fraction of Tubl-
724p heterodimer by immunoprecipitation, we cannot
directly compare the stability of the mutant and wild-
type heterodimers. We previously established that at
least 98°% of the )3-tubulin in wild-type cells is in the
form of a-3 heterodimer (Archer et al., 1998). Because
tubl-724 cells grow normally at 300C, presumably
most of the tubulin in those cells is in heterodimer in
vivo. Thus, the dissociation of the heterodimer likely
occurs in the course of the immunoprecipitation itself,
which exposes the heterodimer to large dilutions at
low temperature (4°C). Under similar conditions, the
wild-type heterodimer has a half-life of -10 h (Archer
ct al., 1998).
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Table 1. Strains and plasmids

Strain/plasmid

a/la; ur352r5/l3-52. 'u2-311-3 112 .1122 . It 1s3A200/his3A200. lys2-801/lys2-801, ade2/ADE2
a; ura3-52; let2-3.72 1 ,, A200 l,2-S$O1
a; ura3-52; leuZ-3.71712: ls.3A2(l0l lu,2-01. tubl::HIS3. Xtub3::TRP1 [pRB6241
a; ura3-52: h'u2-3.112. hIis3A2U0. ih :2-81): Atubl::HIS3 Atub3::TRP1 pRB539
FSY157 plus YCpGAL
FSY182 plus YCpCAL
FSY157 plus pGHR
FSY182 plus pGHR
FSY157 plus pPA45
FSY182 plus pPA45
a/a, ura3-52/ura3-52. h'u2-3.112Icu2-3.112. Is3A2700/s3A200. lys2-801/lys2-801,

ade2/ADE2, TUB2TUB'2-1.ELI2-GAL-TLUB2
JAY47 plus YCp50
JAY47 plus A21A
JAY47 plus pLV32
JAY47 plus pA1A510h
JAY47 plus pLV30
JAY47 plus pLV38
JAY47 plus pLV36
JAY47 plus pLV37
a/a; ura3-52/u ra3-52: cu2- 3. 112/lcu2-3.112. lus3A200/1ihs3A200; Iils2-801/ys2-801;

TUB1/Atubl::HIS3. TUB3/Atub.3 TRPI. [pRB539, pA5]
like LTY392 but with pPA45 rather than pA5
like LTY392 but with YCp(CAL. rather than pA5
a/c; ura3-52/ura3-52, h'u2-3 2-1' u23.112. hIis3A200is3200i ; ls2 -801/lys 2- 801;

TUBl1/Atubl::HIS3.TUB3/tulb3' TRPI. [pRB624, pPA45]
like LTY396 but with pA5 rather than pA4 5

JAY47 plus YCpGAL
JAY47 plus pLV56
like LTY396 but with YCpGAL rather than pA45
FSY183 plus pJA3 and pl\h62
FSY183 plus pJA3 and pRS317
FSY183 plus YCpGAL and pL\'62

CEN-LIURA3
TUB1 -CEN-URA3
RBL2-CEN-URA3
GAL 1-10-RBL2-URA3
GAL 1-70-HIS,-RBL2 llRA3.
tubl -724-CEN-LEU2
TUB1-CEN-LEU2
GAL 71-1-PAC2-CEN-URA I
GAL-10-CEN-URA3
tubl-704 in YCp50
tubl-724 in YCp5O
tubl-737 in YCp5O
tubl-747 in YCp50O
tubl-714 in YCp50
GAL 1-10-PAC2-HA-HIJS,.C*EN-LIlRA3
GALl-10-PAC2-HA-HtlS,.-CEN.\'-I S2
CEN-LYS2

Weinstein and Solomon, 1990
Weinstein and Solomon. 1990
Schatz et al., 1988
Schatz et al., 1988
Archer et al., 1995
This study
This study
This study
This study
This study
Archer et al., 1995

This study
This study
This studv
This study
This study
This study
This study
This study
This study

This study
This study
This study

This study
This study
This study
This study
This study
This study
This study

Kirkpatrick and Solomon, 1994
Kirkpatrick and Solomon, 1994
Archer t al., 1995
Archer t al., 1995
Archer ct al., 1998
Schatz t al., 1988
Schatz et al., 1988
Alvarez et al., 1998
Archer et al., 1995
This study
This study
This studv
This study
This studv
This study
This study
Sikorski and Hieter, 1989

Formation of Rbl2p-P-Tubulin Comnplex in Wild-
Type and tubl-724 Mutant Cells
Rbl2p is complexed with /3-tubulin in vivo, and the
level of that complex increases as the cellular level of
Rbl2p increases (Archer et nl., 1995, 1998). The model
presented in Figure 1 predicts that overexpressed
Rbl2p will form a complex with -tubulin more
readily in t1bl71-724 cells than in wild-type cells. To test

that possibility, we introduced a plasmid encoding
His6-Rbl2p under the control of the galactose pro-
moter into wild-type TUBI cells or tubl-724 mutant
cells. The transformants were grown at the permissive
temperature for the mutant in noninducing medium
and then were shifted to inducing medium containing
galactose for 1 or 2 h. We used nickel-agarose beads to
purify the His,-Rbl2p-/3-tubulin complex. The bound
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;enotype Reference

Strains
FSY185
FSY183
FSY157
FSY 182
LTY8
LTYI I
LTY291
LTY292
LTY374
L-Y376
JAY47

LTY319
LTY321
LTY323
LTY325
LTY338
LTY340
LT'343
LTY345
LTY392

LTY393
LTY395
LTY396

LTY397
LTY440
LTY439
LTY399
LTY539
LTY541
LTY540

I'lasmids
Y'Cp5O
pA A5106
pA21 A
pA5
pGHR
pRB624
pRB539
pPA45
YCpGA L
pLV30
pi V32
pLV36
pLV37
pLV38
pLV56
pLV62
pRS317

----- �
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SYNTHETIC LETHAL INTERACTIONS BETWEEN tub1-724 AND ALTIE) LEVELS OF FBL2P

In wild type cells:

a - - a + FFE
RbI2 p
*- - Rb12p 

In tub1-724 cells:

a*3 -' a + e RbI2 I Rbl2 p + FREEMODEATELY INCEASED IFFEE

BEOMY L SUPESSSITIVITY

IJCEASED [pIFEE
CBL DEATH

G4L-FBL2:
Rb12 p 

Fa - bl2p DEPLETION OF HETEBODMER
CELL DEATH

Figure 1. Synthetic lethal interactions between tubI-724 and altered levels of Rbl2p: a model. Cells expressing tubl-724 as their sole source
of a-tubulin die when Rbl2p is either absent or overexpressed. Those relationships are explicable if the heterodimer formed by the Tubl-724p
(ar'B) dissociates more readily than that formed by the wild-type Tublp (a13). In the presence of a normal complement of RBL2, the mutant
cells would have a high concentration of free 0-tubulin (,,), which may be responsible for the conditional phenotypes of the mutant (e.g.,
benomyl supersensitivity). In the absence of Rbl2p, the activity of 3of would increase to toxic levels. In contrast, an excess of Rbl2p could
bind to I-tubulin and so enhance dissociation of the mutant heterodimer, promoting dissociation to levels below those necessary for viability.

proteins were eluted and analyzed by immunoblot-
ting with antibodies against -tubulin, f3-tubulin, or
Rbl2p. As expected, the levels of His,-Rbl2p-/-tubulin
complex increase upon induction in both control and
mutant cells, but three- to fivefold more complex
forms in tubl-724 cells relative to wild type (Figure 3).
In these experiments, we 'detect only a trace of a-tu-
bulin bound to the nickel columns, and its level does
not increase with time in galactose (Archer et al., 1998;
our unpublished results). This result suggests either
that Rbl2p competes more efficiently with Tubl-724p
than with wild-type a-tubulin for binding to 3-tubulin
in vivo, or that there is a greater pool of free ,-tubulin
available for binding to Rbl2p in the tubl-724 mutant
(see DISCUSSION). Either possibility is consistent
with Tubl-724p forming a less stable heterodimer
with P/3-tubulin than wild-type (r-tubulin.

Rescue of P-Tubulin Lethality by Wild-Type and
Mutant cr-Tubulins
An excess of either a-tubulin or Rbl2p rescues cells
from P-tubulin lethality (Archer et al., 1995; Alvarez et
al., 1998); the rescue likely depends on the ability of
these two proteins to bind f3-tubulin. Even a modest
excess of a-tubulin, expressed under the control of its

own promoter from a low-copy plasmid, increases the
survival of cells overproducing 3-tubulin by two to
three orders of magnitude. If Tubl-724p binds P-tu-
bulin with low affinity, we would expect it to rescue
3-tubulin lethality poorly. To test this hypothesis,
wild-type or mutant alleles of a-tubulin were intro-
duced into JAY47, a diploid strain with a normal
complement of tubulin genes plus a third, integrated
copy of the 3-tubulin gene TUB2 under the control of
the galactose promoter. We measured the percent sur-
vivors on galactose relative to glucose at both the
permissive (30°C) and the nonpermissive (18°C) tem-
peratures (Table 2). Rescue of 3-tubulin lethality by
tubl-724 is substantially less efficient (0.84%) than by
wild-type TUB 1 (15.4%). The efficiency of rescue is
further diminished at the nonpermissive temperature
for the mutant: at 18C, tubl-724 rescues /3-tubulin
lethality (0.06%) to essentially the same extent as the
negative control (0.03%). In contrast, four other mu-
tant a-tubulins rescue at levels comparable to that of
the wild type, and their efficiency is unaffected by the
temperature of growth. In fact, the activity of those
alleles persists even at 150C (our unpublished results).
These results are consistent with the conclusion that
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Figure 2. at- and 13-Tubulin coimmunoprecipitate with low effi-
clency from tubl-724 cells. Immunoblots with anti-a-tubulin (top
row) and anti-3-tubulin (bottom row) ot * hole-tell extracts (WCE)
and the precipitates with the hvo antibodies llIP and PIP) from
w ld-type TUBI or mutant tubl-724 cells

Tubl-724p binds 3-tubulin with lower affinity than
does wild type a-tubulin.

Cold Sensitivity of TUBI/tubl-724 Heterozygotes
and Their Suppression by Excess Rbl2p
The tubi-724 phenotype is not completely suppressed
in a heterozygote with TUB1. A diploid strain contain-
ing only single chromosomal copies of TUBI and
TUB3 plius a low-copy plasmid expressing tub-724 is
cold sensitive for growth at 180C. In contrast, het-
erozygotes containing TUBl and other tubi mutants
show the same temperature sensitivitv as do wild-
type cells (our unpublished results). The conditional
growth of TUBi/tubi-724 heterozygotes must reflect a
property of the mutant heterodimer, rather than a
deficiency in tubulin levels, because diploid cells with
only 50% of their wild-type complement of tubulin are
wild type for growth at low temperatures (Katz et al.,
1990).

We hypothesized that the cold sensitivity of these
TUB1/tubl-724 heterozygous cells is due to the free
03-tubulin produced by dissociation of the mutant het-
erodimer. Consistent with that explanation, the cold
sensitivity of the heterozygotes is substantially sup-
pressed by overexpression of RBL2 from the galactose
promoter (Figure 4). The presence of excess Rbl2p can
bind the free 3-tubulin and so protect the cell from its
deleterious consequences. This result is in striking
contrast to the lethal effect of GAL-RBL2 in cells ex-
pressing tubl-724 as their sole source of a-tubulin (see
above).

0 1 2
time in galactose (hours)

Figure 3. The Rbl2p-3-tubulin complex in vivo is enhanced in
tub1-724 cells. Cells growing in raffinose (0 h) were induced with
galactose to express His 6-Rbl2p for I or 2 h. His 6-Rbl2p was isolated
by affinity chromatography of the whole-cell extracts, and the levels
of 3-tubulin in the original extract and bound to Rbl2p were assayed
by immunoblotting. The results are the averages of two indepen-
dent experiments for each strain and time point with the ranges
indicated by error bars. In both of these experiments, the wild-type
strain produced slightly more His,-Rbl2p upon induction (our un-
published results). Solid bars, TUBI cells; cross-hatched bars, tubl-
724 cells.

Overexpression of PAC2 in tubI-724 Cells
Pac2p is a candidate for an a-tubulin-binding protein
in yeast. It is the homologue of cofactor E in the in
vitro system described above. Cofactor E plays an
essential role in this assav: it is believed to bind to
a-tubulin after its release from the TCPI-containing

Table 2. Rescue of excess /3-tubulin lethality by a-tubulin alleles

Plasmid 30°C 18°C

.04 .03
RBL2 6.8 7.2
TUBI 12.0 15.4
tubl-724 .84 .06
tubl-704 10.9 18.9
- 714 14.0 20.0
- 737 4.1 8.5
-747 11.8 21.0

JAY47 cells, which contain an integrated GAL-TUB2 gene, carrying
the indicated a-tubulin alleles on plasmids were plated to media
containing either galactose or glucose and incubated at either 30 or
18° C. Rescue is reported as the percentage of cells that form colonies
on galactose plates compared with glucose plates.
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TUBI/
TUBI

GAL-RBL2 -

tit

+

GAL 1804

Figure 4. Overexpression of RI.BL2 spprte-4., FUI1
erozygous cells. Serial (fourfold) dilution ot ..it
were plated to galactose-containimn nti.l .nd lllo
18°C. The cells were either wlld-tvpc dlpIlds or
cells, carrying either YCpGCAI or (F.N' (C.,I KRI 

ring complex (Tian et al. 1997). This binar'
then thought to form a quaternary comp
factor D and P-tubulin. The cofactor E-r-t
plex is rather unstable and is detectable or
only after it is stabilized by glutaraldehv

The Schizosaccharomlccs oll omolog
tor E is essential in vivo (Hirata .'t al., 19
ding yeast PAC2 is not essential, but muta
affect microtubule functions. ipac2 mutatior
sensitive to benomyl (Hoyt t al. 1997). It is
cells deleted for citl8, which encodes a kin
protein that participates in anaphae ((

TU B / 1997), or deleted for paclO (Alvarez et al., 1998), whichaffects ratios of ct-tubulin to 0-tubulin (Alvarez et anl.,
tbl-724 1998; Geissler t al., 1998).

If Pac2p is an -tubulin-binding protein, we would
________ predict that at elevated levels it would be deleterious

to cells containing the unstable tubl-724 heterodimer.
As shown in Figure 5, induction of GAL-PAC2 in

~+ haploid tubl-724 cells grown at permissive tempera-
ture (30°C) causes rapid loss of viability, down 10-fold
in -3 h. In contrast, GAL-PAC2 has only a modest
effect on the viability of wild-type cells (Figure 5). In
that time, the induction of GAL-PAC2 causes microtu-
bule disassembly in the mutant but not in wild-type
cells; representative micrographs are shown in Figure
6. From such fields, we find that overexpression of
PAC2 increases the proportion of tubi-724 cells that
have no microtubules by 10-fold (53.2 vs. 5.4%) but
has no effect on wild-type cells (10.1% for both
strains).

Both phenotypes of elevated Pac2p levels on tubl-
724 haploid cells are the same as produced by elevated
levels of Rbl2p (Archer et al., 1995). Therefore, these
results could represent Pac2p binding to either 3-tu-
bulin or a-tubulin. However, the effect of GAL-PAC2
expression in TUB/tulbi-724 heterozvgotes does dis-
tinguish between these two possibilities. As shown in
Figure 7, overexpression of PAC2 in the heterozygotes
causes a significant loss of cell viability at t,- permis-
sive temperature. This result contrasts with that
shown in Figure 4 above, showing that overexpression
of RBL2 actually suppresses the phenotype of the
TUB1/tubl-724 heterozygotes.

These results are explicable if the Tubl-724p-13-tu-
bulin heterodimer is relativel unstable (Figure 1). The
increased levels of an a-tubulin-binding protein
might be expected to increase free -tubulin to toxic
levels in both tub1-724 haploids and TUBl/tubl-724

C heterozygotes. This outcome is in contrast to the effect
noted for excess Rbl2p in the heterozygotes, where the

I/teh-uu4 ht increased capacity to bind -tubulin would be ex-
wed to grow at pected to reduce its levels and so suppress the TUB1/
TLIBl/tbl-.724 tubl-724 phenotypes. Taken together, these results

suggest that Pac2p can bind to (c-tubulin in vivo and
so are consistent with the conclusion of the in vitro
experiments (Tian t aI., 1997).

y complex is
lex with co-
ubulin corn- Isolation of a Pac2p-cv-Tubulin Complex
n native gels To demonstrate directly a Pac2p-a-tubulin complex,
de fixation. we used a form of Pac2p that contains the HA tag
'ue of cofac- followed by 6 histidines at its carboxvl terminus. This
98). In bud- modified allele is functionally indistinguishable from
tions in pac2 wild type Pac2p in both Aac2 and tubl1-724 cells (our
is are super- unpublished results). We can isolate a complex con-
required in taining -tubulin and Pac2p-(HA)-His, from extracts

esin-related of cells overexpressing both proteins (Figure 8, lane c);
7eiser t al., no -tubulin is detected in this complex. We cannot
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SYNTHETIC EFFECTS OF PAC2p OVERPRODUCTION IN tubl-724 CELLS

TIIRI (YCnCAL)
tubl-724 (YCpGAL)

TUBI (GAL-PAC2)

.1

.01

.001

tubl-724 (GAL-PAC2)

o 3 6 9 12 15 18 21 24

TIME IN GALALTOSE HOLRS)

detect this complex unless both Pac2p and a-tubulin
are overexpressed. In contrast, overexpression of both
Pac2p and 3-tubulin does not produce a complex be-
twveen those two proteins (Figure 8 lane g). These
results support the conclusion that Pac2p can bind
a-tubulin in vivo. Overexpression ot Pac2p-(HA)-His,
alone in tubl-724 cells does not produce measurable
levels of the Pac2p-a-tubulin comple\ (our unpub-
lished results).

DISCUSSION

A Tubulin Mutation Thtat Affects Hetcrodimer
Stability
tubl-724 is one of a set of a-tubulin mutants generated
by chemical mutagenesis and selected on the basis of
their conditional growth at low temperature. Because
of the familiar cold labilitv of microtubules evident
both in vivo and in vitro, a reasonable prediction
might have been that mutants so selected would arrest
because their microtubules were especially cold labile
at temperatures permissive for wild-type cells. In-
stead, only a subset of the mutants arrest with no
microtubules; the others have at least normal comple-
ments of assembled tubulin.

Here we have characterized the properties of the
protein encoded by one of the mutants that arrest with
no microtubules, tubl-724. We previously showed that

Figure 5. Overexpressing
PAC2 is lethal in tubl-724
cells. tubl-724 (triangles) and
wild type (squares) containing
either control plasmid (open
symbols) or GAL-PAC2 (filled
symbols) cells growing at
30°C were shifted to galactose-
containing media at zero time,
and aliquots were taken at in-
tervals and scored for total
cells and viable cells.

cells expressing only this a-tubulin allele are dead
when Rbl2p is either overexpressed or absent. Because
Rbl2p is a 03-tubulin-binding protein, we hypothe-
sized that these lethal interactions could reflect an
unstable heterodimer formed by Tubl-724p (Figure 1).
Several of the experiments presented above demon-
strate that the mutant heterodimer does act as if it
were unstable relative to wild type. The mutant het-
erodimer does not remain intact in vitro during im-
munoprecipitation. Similarly, in vivo the mutant het-
erodimer reacts more readily with excess Rbl2p to
produce Rbl2p-P-tubulin. An alternative measure of
Tubl-724p binding to P-tubulin is manifest in its in-
ability to rescue cells from /3-tubulin overexpression
even at permissive temperature for the mutant (Table
2); success in that assay most likely depends on the
ability of the a-tubulin protein to bind 13-tubulin.
These results indicate that Tubl-724p has a reduced
affinity for P3-tubulin. However, the normal growth of
the mutant cells requires that most of its tubulin be in
heterodimers, rather than as free a- and f3-tubulin. We
previously showed that the microtubules in 50% of
cells overproducing fl-tubulin are completely depoly-
merized when j3-tubulin levels are 1.4-fold greater
than wild type (Weinstein and Solomon, 1990).

A weaker heterodimer could readily explain the
arrest phenotype of tubl-724 cells. At the restrictive
temperature, increased dissociation of the mutant het-
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A

B

C

Figure 6. Nicrotubule disassemblx in :.rl 724 cells
overexpressing PAC2. Antl-tubulin mmunorluore-
cence ot tubl-724 cells containing theI' wirtri plasmid
YCpGAL (A) or a CEN-GAL-PAC2 (l) .and \ld-tvpe
cells containing a CEN-GAL-PAC2 plasmlid {Ct Cultures
were grown in galactose tor 3 h hetor ti\,.tion tor
immunofluorescence.

erodimer could be lethal either by decreasing the level
of heterodimer below that neces.sarv to maintain mi-
crotubules or by increasing the le\ el ot undimerized
fi-tubulin, which in turn causes microtubule disassem-

bly and cell death even at modest excess (Katz et al.,
1990; Weinstein and Solomon, 1990).

The single mutation in Tubl-724p predicted from
the DNA sequence is loss of a positive charge at po-
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TUB1/
tubl-724

a b
Pac2p-HA-HIS6 + -

a-tubulin + +
PB-tubulin - -

Pac2p-HA-HIS6 

cd
+ +

GAL-PAC2

GAL 300 C

Figure 7. Overexpression of PAC2 is lethal in TUB /tubl-724 het-
ero.zygous cells. Serial (fourfold) dilutions tit saturated cultures
were plated to galactose-containing media and allowed to grow at
10°C. Strains were wild-type diploids or TUB1/tul-724 cells con-
taining either YCpGAL or CEN-GAL-PAC2.

sition 106. Based on the structure of tubulins reported
by Nogales et anl. (1998), this residue occurs in the
region between the B3 and H3 loops that contact the
phosphates of the nonexchangeable GTP. That site is
at the postulated interface betaween a- and 13-tubulin in
the heterodimer. The wild-type arginine at this posi-
tion probably contributes to phosphate binding and so
may indirectly participate in a-/3 interactions. Further
analysis to understand the physical properties of mu-
tations in this region are under iway.

This analysis of Tubl-724p provides insight into the
primary molecular defect that e: olains the mutant
phenotypes. In general, the defects of mutant tubulins
are largely understood in terms of the arrest pheno-
type rather than their execution point. For example,
mutations in yeast /3-tubulin can selectively affect a
subset of microtubules (Sullivan and Huffaker, 1992)
or cause cells to become benomyl dependent (Huf-
faker et al., 1988). Similarly selective tubulin mutations

P-tubulin _ 

Figure 8. Binding of a-tubulin to Pac2p-(HA)-His 6 in double-over-
expressing cells. Whole-cell extracts (lanes a, b, e, and f) and eluants
from nickel-agarose beads (lanes c, d, g, and h) were analyzed by
SDS-PAGE and immunoblotting for HA-tagged Pac2p, a-tubulin,
and -tubulin. The fractions were from cells overexpressing Pac2p-
(HA)-His, and a-tubulin (a and c), Pac2p-(HA)-His6 and 0-tubulin
(e and g), a-tubulin alone (b and d), and 3-tubulin alone (d and h).
For Pac2p, the bead eluants represent 120 times the load of whole-
cell extract. For a- and 3-tubulin, the bead eluants represent 500
times the load of whole-cell extract.

have been identified in other organisms as well (Oak-
ley and Morris, 1980). However, the precise molecular
basis for the defective arrest phenotype is not yet
understood. A possible exception is the disruption
produced by substitution of lysine for the highly con-
served glutamate at position 288 in the Drosophila 132
protein; this mutation causes an apparent packing
defect, so that the protofilaments do not close to form
a tubule (Fuller t al., 1987). However, the same sub-
stitution in yeast f3-tubulin has no apparent effect
(Praitis et al., 1991). The generalizability of the muta-
tion found in Tubl-724p also requires further testing.

Genetic Interactions between tubl-724 and PAC2
Instability of the Tubl-724p-3B-tubulin heterodimer
predicts that overexpression of an a-tubulin-binding
protein should be deleterious to tubl-724 cells, per-
haps by producing more toxic free /3-tubulin in the
mutant cells. The work of Tian t al. (1997) suggests
that the vertebrate homologue of the yeast protein
Pac2p binds cu-tubulin. As predicted, overexpression
of PAC2 is lethal in tubl1-724 cells and causes loss of all
assembled microtubules. Consistent with this result,
we can recover a complex containing Pac2p and ca-tu-
bulin from double-overexpressing cells. These results
demonstrate for the first time that Pac2p can bind
a-tubulin in vivo. This result does not distinguish
among many possible functions for PAC2. It may act
as does cofactor E in the in vitro assay, facilitating the
incorporation of a-tubulin into heterodimers (Tian et
anl., 1997), but it is not essential for that reaction, be-
cause PAC2 is not an essential gene in vivo (Hoyt ct al.
1997). Apac2 is synthetically lethal with other microtu-
bule mutants: Acin8 (Geiser et al., 1997), ApaclO (Al-
varez t't al., 1998), and tubl-724 (Vega, unpublished
results).
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Regulating Microtubule Function

The first analvses of microtubules at a molecular
level focused on protein factors that could be re-
sponsible for assembly in an n vitro reaction. It is
striking that so many of the genes that appear to
affect microtubules in vivo almost certainly do not
participate in the polymerization reaction itself. In
this sense, the CIN genes (Hoyt t al., 1990; Stearns et
al., 1990), the PAC genes (Geiser ct al., 1997), the
GIM genes (Geissler et al., 1998), and the RBL genes
(Archer et al., 1995), although identified-in some
cases more than once--b a wide variety of ap-
proaches, have fundamental properties in common.
They are not essential for cell viability in budding
yeast, and their deletion does not confer a quantita-
tive defect in microtubule assembly. Conversely,
their overexpression does not increase the level of
assembly, as could be expected for a modulator of
microtubule assembly. For only one of these pro-
teins, alpl, a CINI homologue; in fission veast, is
there evidence suggesting that t binds along the
length of the microtubule (Hirata ct al., 1998).

A role for these proteins arises from the in vitro
system for incorporating separated tubulin chains into
heterodimer. Alone among proteins that have been
analyzed in such assays, the tubulin polypeptides ap-
pear to require factors that act after release from the
chaperonin. Without those factors, there is no ex-
change of newly folded polypeptide with the exog-
enously added heterodimer. Some of the protein fac-
tors are homologous to gene products in S. cerevisiae
and S. pombe that affect microtubule functions, and in
S. pombe some of them are essential (-lirata ct ,Il., 1998).
That they are not essential in S. ccrevisiae, however,
suggests that there must be other mechanisms for
folding tubulin and forming heterodimer in those
cells.

These proteins may also have alternative functions.
Rbl2p levels affect how cells survive alterations in the
ratios of a- to 3-tubulin (Archer ct al., 1995). Levels of
Pacl0p and the GIM genes affect those ratios (Alvarez
ctt al., 1998; Geissler t al., 1998) It is clear that yeast
cells are sensitive to those ratios These proteins may
participate in maintaining proper balance of the tubu-
lin components, which mav become an important
step, especially under times ot stress. Such a role could
help explain why expression of RBL2 mRNA increases
when cells are incubated %with a microtubule-depoly-
merizing drug (Velculescu ct al., 1997), although there
is no evidence that the tubulin chains themselves are
expressed in greater amounts. he results from these
several approaches suggest that the earlv steps of
microtubule morphogenesis may be crucial for cell
function.
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