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Abstract

The problem of sending a set of data packets from a source to a destination across

a single data link is considered. Reliable communication is defined as-the delivery

of such a set of packets in order, and without any losses or duplicates. Protocols

for transmitting and receiving data packets are modeled as automata with outputs.

It is shown that when the sending and receiving automata can be "synchronized,"

reliable communication can be achieved.

The problem of communicating reliably is studied when the sending and receiv-

ing nodes may fail and loose their memory. It is shown that when there is no upper

bound on the packet transmission delay, reliable communication and synchroniza-

tion are impossible. Conversely, it is shown that when there is an upper bound on

delay, synchronization and reliable communication can be achieved.
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Chapter 1

Introduction

Reliable data communication is the delivery of some set of information packets

from a data source to a data sink, in order, and without any lost or duplicated

packets. When components of a communication system or network are subject

to failures, providing reliable communication can become difficult or impossible.

Although there has been a considerable amount of work on data link and network

protocols to achieve reliability, the exact situations in which reliable communication

is or is not possible are not completely understood. The specific properties of the

communications model used, such as transmission delay characteristics and proces-

sor failure modes, determine whether reliable communication can be achieved. This

work takes a fundamental look at reliable communication on single data links and in

computer networks, and studies the impact of model characteristics on the ability to

communicate reliably. Several results are presented for single link communication,

and future work on reliable network communication is proposed.

Consider the case of reliable communication across a single data link connecting

two nodes of a network. In a recent paper [31, Baratz and Segall introduce protocols

which can be used to provide reliable communication in this case, provided that

node processors have two bits of nonvolatile memory that can survive node processor

failures. Using their model, we show that when no such memory is available reliable

communication is impossible. A similar result has recently been shown by Lynch,

Mansour and Fekete independently from, and concurrently with, this research[11].
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Figure 1.1: Communication Model

Conversely, when a different communication model is used which upper bounds the

message transmission delay, we show that reliable communication can be achieved.

1.1 Communication Model

Figure 1.1 shows two node processors connected by a bidirectional link. This could

be part of a larger network not shown. Data Link Control (DLC) processes p and q

communicate with each other by exchanging frames. It is the responsibility of the

DLC process to accept data packets from some source, and to transmit them reliably

across the link using some protocol. We assume throughout this research that the

operation of the DLC processes does not depend on the contents of data packets.

This assumption allows us to study the information that a protocol needs in order

to transmit data reliably, without allowing protocols to "hide" such information in

data packets. It is also consistent with traditional ideas of layering in networks[4].

When process p has a frame to send to q, it gives the frame to the transmitter at

x. The transmitter appends error detection information to the frame, and transmits

it on the link. Noise may corrupt the transmitted information, but the order of

transmitted frames is maintained. There is a nonzero probability that the frame

will be received error free. The error detection mechanism at the receiver is such

that the probability of an undetected error in a frame is insignificant, and is assumed
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henceforth to be zero. When a frame arriving at a receiver contains errors, it is

discarded. For convenience, we consider discarded frames not to have been received.

Otherwise, the error detection information is removed, and it is given to process q.

Communication from node y to node x works in a similar way. This motivates the

following models for link operation.

1.1.1 Link Models

All of the communication links considered in the report share the following charac-

teristics.

1. A transmitted frame may be received error free exactly once, or never received.

2. If a frame A is transmitted before a frame B from one end node, and both

frames are received, then A is received before B.

This model has left the transmission delay incurred by a received frame unspec-

ified. Two distinct ways of modeling delay will be considered.

Bounded delay link: There is a known upper bound D on the transmission delay

of a received frame.

Unbounded delay link: There is no known upper bound for the transmission

delay of a received frame.

A major goal of this research is to determine how the type of link delay affects the

ability to provide reliable communication.

In practice, most physical data links can be modeled as having bounded delay,

but there are several reasons for considering the unbounded case as well. Highly

variable message delay may make it difficult to obtain a bound which is tight a large

fraction of the time. If a loose bound is used, this can introduce inefficiencies into

the DLC protocols. Even when a good bound on delay is known for a particular link,

from an engineering prospective it may not be desirable to have the correct operation
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of protocols depend on this bound. As the system grows and evolves, it would be

necessary to modify the protocol to reflect a changing delay bound. A modern trend

has been to integrate the operation of many different networks. In such a situation,

what we are viewing as a link may actually be an underlying network whose delay

characteristics are unknown. Apart from this there is a theoretical question of how

the delay characteristics of a link affect the ability to communicate reliably.

1.1.2 Failure Model

In order to examine whether reliable communication is possible in a network, it

is necessary to have a model which specifies how the nodes and links fail, as well

as how they behave in normal operation. Failures can be divided into two general

types: simple and Byzantine. A simple failure means that a node or link stops

operating. In Byzantine failures, nodes may act in an arbitrary manner perhaps

specifically designed to cause problems. This report is concerned solely with simple

failures. The problem of making network layer protocols robust with respect to

Byzantine failures is currently being addressed by Perlman [12].

The failure of a link results in transmitted frames not being received in one or

both directions for some time interval. We distinguish between an actual physical

failure of the link and the method by which the DLC process tries to detect that such

a failure has occurred. A failure detected by one end node may indicate an actual

physical failure, or may be a decision by the end node that the link is performing so

poorly that data communication should not be attempted. In our model, the only

method that the DLC uses to detect failures is to run a protocol which attempts

to transmit frames, and observes any frames received from the other end node. For

example, if no frames were received for some specified time period, the protocol at

an end node would conclude that the link or the other end node has failed. This

implies that failures of short duration may not be detected, and that there may

not be a one to one correspondence between failures detected at each end node of
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a link. Other methods of detecting failures (such as receiving a lost carrier signal

from a modem) could easily be incorporated into the model, but are ommitted for

notational simplicity. In Chapter 2 we will show that developing protocols which

properly detect link failures is an important and difficult part of achieving reliable

communication.

When a node fails, any process operating at it is halted, and any frames being

received or transmitted by the node are lost. After a failure, if the node has sufficient

nonvolatile data memory which can survive a node failure, it can restart its DLC

process in the state that the process was in before the failure occurred. Otherwise,

the process must be restarted in some initial state. The node is assumed to have

some fixed storage which contains the code that constitutes the DLC process itself.

A major goal of this thesis is to determine how the presense or lack of nonvolatile

data storage affects the ability to provide reliable communication.

When a node has nonvolatile data memory, a node failure can often be modeled,

with respect to either of the previous link models, as a failure of all the links incident

on a given node. Let a node fail during some time interval T. If the node restarts in

the same state that it was in before the failure, then this situation is equivalent to

one in which the node does not fail, but frames received or transmitted by it during

T are discarded. Therefore, if the DLC process is capable of achieving reliable

communication in the presence of link failures, it can also deal with node failures of

the above type. Conversely, when a node failure results in the loss of a DLC process'

state information, it is a fundamentally different event from a link failure. For this

reason, we will be concerned with situations when nodes do not have nonvolatile

data memory. Henceforth, the term node failure is used to imply a loss of state

information.
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1.2 Definition of Reliable Communication

Consider the problem of communicating reliably across a single data link. In defin-

ing reliable communication it is usually assumed that there is a single infinitely

long sequence of data packets which must be sent from the source to the destina-

tion without losses or duplicates [1,7]. This definition might be appropriate when

the source and destination nodes are not subject to failures. If node failures are

permitted, the definition should be modified for two principle reasons.

1. The data packets may be buffered within the node itself. They may not be

able to survive a node failure since the node has no nonvolatile data memory.

2. When nodes fail it is often desirable to inform higher layers of the failure,

and to cancel or reroute sessions as appropriate. When the node becomes

operational, it is unrealistic to assume that it would have the same set of data

packets to transmit as it had before the failure.

In order to present a definition of reliable communication on data links which is

appropriate for node failures, the following notation is introduced. A time interval

during which a node is operational is called a node up period (NUP). During a

node down period (NDP), the node is not operational. Throughout a NUP, the

DLC process at a node is responsible for defining intervals of time during which

it believes the link and the other end node are operational, and during which an

attempt is made to transmit or receive data packets. Each such interval is called a

link up period (LUP). A link down period is defined as an interval between successive

LUPs. Each NUP may contain zero or more LUPs. The DLC process determines

the start and end of a LUP by using one or more protocols which will be described

more formally in Chapter 2. There is not necessarily a one to one correspondence

between the LUP's defined by the two end nodes of a link. Establishing some type

of correspondence between LUPs is one of the goals of DLC protocols.
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In order to describe the sequence of data packets accepted from the data source,

and released to the data sink during a LUP, we use the concept of a string. A string

is a finite ordered sequence of zero or more elements. The empty string is denoted

e. A prefix of a string s is any initial sequence of s, including s itself. The empty

string is a prefix of every string.

Let x and y be two nodes connected by a bidirectional data link, and consider

the problem of sending data packets reliably from x to y. For convenience in the

following definition, assume that the LUPs at x and y can be numbered, and that

each data packet can be uniquely identified. Let Si(t) be the string of packets that

node x has accepted from its data source by time t of LUP i at x. Similarly, let

Rj(t) be the string of packets that node y has released to its data sink by time t of

LUP j at y. For convenience, we define Si(t) to be equal to the empty string for

all t prior to the start of LUP i at x. For all t following the end of LUP i at x,

we define Si(t) to be equal to the string of all packets accepted during LUP i. A

similar convention applies to Rj(t).

Definition 1 (Reliable Communication) Communication of messages from x to

y is defined as reliable if and only if the following properties hold.

1. If Rj(t') is nonempty for some t' in LUP j at node y. then there exists a LUP i

at node x such that Rj(t) is a prefix of Si(t) for all t in LUP j.

2. Let R,(t) be a nonempty prefix of Sk(t). and let Rj(t') be a nonempty prefix of

Si(t'). Then, i < j if and only if k < I.

Together, the two properties assert that if node y releases some string of data

packets to the data sink during a LUP, then there exists exactly one corresponding

LUP at x during which the data packets were accepted from the data source. Fur-

thermore, if two LUPs at y release data packets, then the two corresponding LUPs

at x are in the same relative order as those at y.



The above definition does not contain a liveness property. The issue of liveness

will be addressed when specific protocols are discussed in Section 2.1.

1.3 Summary of Report

Using the previous definitions, Chapter 2 examines the problem of reliable commu-

nication on a single data link. It is shown that communicating reliably depends

upon being able to synchronize protocols at the source and the receiver. Two types

of synchronization are studied and are shown to be equivalent. It is shown that

for a given communication model, if there exists a protocol which achieves synchro-

nization, then reliable communication can be achieved as well.

The major results of Chapter 2 show that, using the unbounded delay link model,

synchronization and reliable communication are impossible when node failures may

occur. Conversely, it is shown that using the bounded delay link model, both

synchronization and reliable communication are possible.
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Chapter 2

Single Link Communication

The problem of reliable communication on data links has been studied for many

years, but there still exists a lack of understanding concerning the specific capa-

bilities of DLC protocols. For example, a recently published paper [3] has shown

that HDLC (a common bit oriented DLC process) can allow inadvertent loss of data

packets in situations involving link failures. In this chapter, it is shown that when

node failures may occur, reliable communication is possible for bounded delay links,

and impossible for unbounded delay links.

2.1 Protocol Model

A model of the DLC process operating at each end node of a link is needed to make

precise statements about the capability for reliable communication. The model used

here is similar to those in [1] and [3]. The DLC process operating at a node x is

modeled by one or more automata which have inputs and outputs associated with

their state transitions. In this report, we assume that the automata are finite. This

restriction is not essential, and will be removed in later work. Formally, one such

automaton at node x is defined by a Mealy machine [15, p. 42], with some additional

capabilities which will be described. The Mealy machine can be expressed as a

seven-tuple.

A, = (Q., ,, A., 6, A, i, f) ,



where Q, is a set of states,

Ez is the input alphabet

A, is the output alphabet,

6. is a transition function1 mapping Qz x Ez into Q9,

Az is a transition function2 mapping Qz x Ez into A,,

i, i, E Q. is the initial state,

fz fz E Q, is the final state.

A similar definition is made for node y and defines an automaton Ay. A particu-

lar execution of an automaton during some time interval is called an instance of the

automaton. Together, Az and Ay define a protocol. The DLC processes at x and y

may consist of several protocols, each defined by a pair of communicating automata.

Typical tasks of individual protocols will be addressed in the next section.

The input alphabet E. may be subdivided into two classes, R. and Tz. Rz is

the set of message inputs which can be received from y, and Tz is a set of timeout

transitions. Therefore, Ez = Rz U Tz. A timeout transition from a given state

has a particular value of time associated with it. If the automaton has been in

the given state for the specified amount of time, then the transition occurs. Thus,

an automaton has a relative sense of time in terms of how long it spends in each

state, but has no absolute time reference. This facility allows protocols to react to

delay conditions on the link, and to repetitively transmit messages. Some of the

message inputs which are received from y may also contain a piggy-backed data

packet. The automaton can store a finite number of received data packets, and

can release a previously received packet to the data sink when making a transition.

The behavior of the automaton may depend upon receiving a message transmitted

together with a data packet, but cannot depend upon the contents of data packets

15, (q, a) is the next state if the current state is q, and a is the input.

2 A,(q, a) gives the output associated with a transition from state q, with input a.
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themselves.

The output alphabet A. can be divided into three classes, M., S$, and E. There-

fore, Az = M. U Sz U {E}. Mz is the set of messages which the automaton may try

to send across the link to node y. Sz is a set of start signals for the other automata

which comprise the DLC process at node x. When a member s of S, is output,

Az terminates, and the automata indicated by s is started in its initial state. The

empty output E indicates that no message is sent for a particular transition. When

sending a message m E M 2, A. may piggy-back a data packet which it has pre-

viously accepted from the data source. The automaton can store a finite number

of accepted data packets, and can append a previously accepted data packet to a

transmitted message.

Let A. and Ay be a pair of automata defining some protocol. The automata are

communicating, so each should accept the other's messages. Thus, Mz C Ry and

My C R,. Since each DLC process may be composed of more than one automaton,

when A, is operating at node x, it may receive input messages from any of the

automata in the DLC process of node y.

Although Az and A, are deterministic automata, a particular sequence of re-

ceived messages may result in several different state transition sequences depending

upon the relative timing of the received messages. Thus both a message sequence

and a particular timing are needed to uniquely determine a particular path in an au-

tomaton. The appropriate timing is indicated by having members of T" interspersed

in the input to A,.

At the start of a NUP, one of the automata (called the initial automaton) in

a node's DLC process is started in its initial state. A particular execution of an

automaton at a node is called an instance of the automaton. When the node crashes,

any running automaton is halted, and all state information is lost. An automaton

being halted is different from it terminating and starting another automaton as

described above.
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For convenience, the DLC process has been modeled as a collection of automata

which can call one another, and each of which presumably performs a different

task. However, one can also view this situation as one large automaton performing

the entire DLC process. This approach will be taken in Section 2.5 when proving

impossibility results.

This protocol model is general enough to express the types of operation usually

found in practical DLC processes such as HDLC, but several issues relating to

the practical operation of such a protocol model have been omitted since they are

unimportant to the theoretical issues under study.

2.2 Protocol Types

The DLC process at a node is typically composed of at least two protocols which

deal with different aspects of reliable communication. A link initialization (LI)

protocol is often used at the start of a NUP and between successive LUPs at a node.

This protocol is responsible for determining when to begin the next LUP, and for

establishing a set of conditions on the link which will enable the data transmission

protocol which follows it to work correctly. When the LI protocol decides that a

LUP should begin, it terminates and starts a data transmission protocol called an

ARQ (automatic repeat request) protocol. The ARQ protocol attempts to transmit

and receive data packets and determines if and when the LUP should end. To end

a LUP, the ARQ protocol terminates and starts the LI protocol.

For convenience, all frames transmitted by an instance of one of the two au-

tomata which define an ARQ protocol are called ARQ frames. Similarly, frames

transmitted by an instance of one of the automata which define some protocol P

are called protocol P frames.
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2.2.1 Correct ARQ Initialization

A major reason for breaking the reliable communication problem up into two pieces

is that there are well understood ARQ protocols which are known to transmit data

packets reliably provided that they are properly initialized by an LI protocol. Ex-

amples of such protocols include Stop and Wait, Go back-n, and Selective Repeat[4].

The following definitions specify what is required to properly initialize an ARQ pro-

tocol, and describe the sense in which it operates correctly. Assume that A= and

Ay define an ARQ protocol for transmitting data from node x to node y.

Definition 2 (Corresponding Automata Instances) An instances) An instance A of A and

an instance A}, of Ay are said to correspond if:

I. All of the ARQ frames received by Ai were sent by Ai. and

2. all of the ARQ frames received by Ai were sent by A'.

Definition 3 (ARQ Correctness) An ARQ protocol is correct if given that an

instance Ai of A= and an instance A, of A4 correspond, then the string of packets

released to the data sink by Ai is a prefix of the string of packets accepted from the

data source by A'.

A proof that standard ARQ methods such as Go back-n are correct in the above

sense can be found in [4].

2.2.2 Synchronization

Due to the success of ARQ protocols, much of the research on reliable communica-

tion has focused on the link initialization (LI) protocols which are used to recover

from link and node failures. The idea is to design an LI protocol which brings the

two end nodes of a link to a state such that an ARQ protocol can begin transmit-

ting packets reliably in the above sense. Such an LI protocol is said to accomplish

synchronization of the two end nodes.
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Weak Synchronization

Weak synchronization is a requirement on an LI protocol which will be shown to

enable correct ARQ initialization. It is weak in the sense that it is a less stringent

requirement than strong synchronization which will be discussed below. In the

definition which follows, we assume that there is a protocol defined by Az and A,,

and state the conditions it must satisfy to achieve weak synchronization.

Definition 4 (Weak Synchronization) Let an instance of Az start in its initial

state at time tl, and enter its final state at time t 2. The protocol achieves weak

synchronization at node x if in the interval [tl,t 2 ], node x must receive a protocol

frame that was sent by an instance of A4 during [t 1,t 2]. A protocol achieves weak

synchronization if it achieves weak synchronization at both nodes x and y.

Since y must send a protocol message to x during [t 1,t 2], the definition implies

that the protocol must have been running at y at some time during this interval.

This required time overlap between instances of A, and Ay is the important property

that will allow an ARQ protocol to be correctly initialized.

Strong Synchronization

Strong synchronization is the somewhat standard type of synchronization which is

used in [3]. Let nodes x and y be connected by a link. An LI protocol provides

strong synchronization if it achieves the clear property defined below.

Definition 5 (Clear Property) During an LDP at one end node, there is a time

when the link is down at the other end node. and no ARQ frames are in transmission

on the link. Such a point in time is called a clear point.

At this point we can observe the difference between strong and weak synchro-

nization. The definition of weak synchronization implies that there must be a time

during an LDP at an end node when the link is down at the other end node, but

does not address the issue of ARQ frames being present on the link.
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2.2.3 Protocol Liveness Conditions

DLC protocols are designed to accomplish a particular task provided that the link

and the end nodes operate properly, and the frame delay is acceptably small. For

LI protocols, the task to be performed is to terminate under the proper conditions,

and to start an ARQ protocol. A terminable protocol is defined as follows.

Definition 6 (Terminable Protocol) Assume that both end nodes are operational

for a sufficiently long time interval following the start of a protocol at one end node.

and that during this interval all transmitted packets are received with sufficiently small

delay. The protocol is terminable if both automata must have entered a final state

within a finite time after starting. and if the arrival of any protocol frames at an end

node after the protocol terminates does not cause the protocol to restart.

What constitutes a "sufficiently long" time interval, and a "sufficiently small"

frame delay depends on the definition of a particular protocol. It can be seen from

the last part of this definition that an LI protocol being terminable depends upon

the behavior of the ARQ protocol which follows it.

Liveness conditions for ARQ protocols are stated in a similar way, except that

the required task is releasing one or more packets to a data sink.

2.3 Achieving Reliable Communication

In this section it is shown that if a protocol exists for achieving weak synchroniza-

tion, then that protocol achieves strong synchronization as well. This shows that

although their definitions are different, the two types of synchronization are in a

sense equivalent. Given that a correct synchronization protocol exists, we show

that it can be used in conjunction with an ARQ protocol to achieve reliable com-

munication. We assume that the required liveness conditions for all protocols are

met.
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Figure 2.1: Timing Diagram for Lemma 1

Lemma 1 Let P be a protocol defined by A, and Ay which achieves weak synchro-

nization. Assume that an instance Ai of A, starts at time t1 and terminates at time

t 2. This is shown in Figure 2.1. From the definition of weak synchronization. Ai must

receive at least one protocol P frame which was transmitted by y in [tl,t 2]. Let the

last such frame be transmitted by an instance Ai of A, at time t 3 . Then. Ai must

receive a protocol P frame from Ai before time t 3 .

Proof. By contradiction. Assume that A', does not receive any protocol P

frames from Aiz before time t 3. We construct a modified scenario at x which will

cause the protocol to fail. Let the instance Az be delayed by A time units, where

A > t3 - t 1. Similarly, let all messages received by A' be delayed by A. A'i receives

the same messages with the same relative timing as before, but does not achieve

weak synchronization since t3 < tl + A. E

Theorem 2 If a terminable protocol P achieves weak synchronization, then it also

achieves strong synchronization.

Proof. Refer to Figure 2.2. Let protocol P be defined by Az and Ay. Assume

that an instance A' of Az executes at node x starting at tl and terminating at t 2.

A'/ must receive at least one protocol P frame which was transmitted by y in [tl, t 2].
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Figure 2.2: Timing Diagram for Proof of Theorem 2

Let the last such frame be transmitted by an instance Al, of Ay at time t 3 . Similarly,

Al, must receive a least one protocol P frame that was transmitted by x in [t4,t 5 ].

Let the last such frame be transmitted by A, at time t 6. From Lemma 1, A, must

receive a frame from A' before t 3 . Therefore, the link is clear of ARQ frames from

x to y in [ts,t 2]. Using Lemma 1 in the other direction shows that the link is clear

of ARQ frames from y to x in [t6, t 5]. This implies that the greater of t 3 and t 6 is a

clear point. Thus, strong synchronization is achieved. El

To show that the ability to perform synchronization implies that reliable com-

munication is possible we rely on the correctness of well known ARQ strategies

mentioned in Section 2.2.1. Correctness proofs for such strategies may be found

in [31 and [4]. The use of synchronization in conjunction with ARQ strategies to

provide reliable communication is not new. An alternate development of it can be

found in [3].

Theorem 3 A link which can be synchronized can provide reliable communication.

Proof. To prove the theorem, we must show that synchronization allows

nodes to initialize an ARQ protocol in such a way as to satisfy the conditions for

correctness in Section 2.2.1. Assume that nodes x and y execute an LI protocol



which achieves synchronization before starting any instance of an ARQ protocol.

Let a correct ARQ protocol be defined by A, and Ay. Assume that some instance

Ai of A4 executes at node y and releases some nonempty string of data packets to

the data source. Since each instance of Az or Ay is both preceded and followed by

a clear point, all ARQ frames which are received by Ai must have been sent by a

single instance of Az, say Az. Similarly, any ARQ frames received by A'z must have

been sent by A,. Therefore, the conditions for correct initialization of the ARQ

protocol are satisfied, and reliable communication is achieved. E]

2.4 Unbounded Delay Links

In this section it is shown that reliable communication and both types of synchro-

nization are impossible on unbounded delay links with node failures, when protocols

are modeled as stated in Section 2.1. It is common in papers on network proto-

cols [14,8] to use the unbounded link model with node failures, and yet to assume

that synchronization is possible. The results of this section show that such an

assumption is inconsistent with the model.

To obtain the desired impossibility results, we model a candidate DLC protocol

for achieving synchronization or reliable communication as a pair of automata with

output, communicating via the unbounded delay link model. We then construct a

scenario of node failures and message timing that will cause the protocol to fail to

meet its objective.

2.4.1 Automata Paths

Let A. and Ay be two automata defining a protocol on the link connecting x and y.

Assume that A. and Ay communicate with each other via the unbounded delay link

model for some time, and that any protocol liveness conditions are met. We assume

that during this communication no frames are lost. Az and Ay will exchange some
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set of messages which depends upon the delay incurred by the transmitted frames.

Let Wz be the set of inputs to Az (including both message and timeout inputs)

which results from the communication between Az and Ay. String W2 takes A2

from its initial state iz to some state j2. Similarly, let W v be the set of inputs to A v

that results from this communication. W, and W v are two sample paths that the

automata might traverse in accomplishing some task. Using only prefixes of these

paths, we will design a failure scenario which will cause the protocol to fail.

The following definitions are used in specifying the behavior of the automata.

Let s be a string, and let T be a set. Then

s\T is the string which results from removing the elements of T from s,

IZ(s) is the largest prefix of W 2 such that3 (I,(s)\T2 ) = s, and

O(s) is the output string of A, if it accepts input string s, starting from

its initial state.

If s is a message string, Iz(s) is the largest prefix of Wz that can be constructed

by appropriately interspersing timeout inputs in s. Since Wz and W v result from

some communication between Ar and A v we have

W. = Iz [O (WA)] (2.1)

and

WY = I AO (W.)] (2.2)

The proofs of impossibility which follow will make use of a particular sequence of

prefixes of W, and Wy which are now defined. Since A2 and Ay traverse paths defined

as W. and W v by exchanging messages, at least one automaton must send a message

upon receiving one or more initial timeout inputs, and no message inputs. This

3 For example, if T2 = {tl,t 2 }, and W2 = tlmlm2t 2ms, then Ix(e) = tl, I(ml) = tlm1,

IZ(mlm2 ) = tlmlm2 t 2 , and I 2 (m1m 2m 3) = WT.

21



implies that O0(I 2 (E)) or Oy(Iv(E)) must be nonempty. Without loss of generality,

it is assumed that O0(I,(E)) is nonempty. A sequence of prefixes X, of W. and a

sequence of prefixes Y, of W v are defined as follows.

Xo 0 I.(=) (2.3)

Y _ I [Oz (Xn)] for n > 0, (2.4)

1X , -- I O0 (Y,-)] for n > 1. (2.5)

String X 0 is the largest prefix of W, which A, accepts before receiving any messages

from Y. String Y, is the largest prefix of Wy which Ay accepts after receiving only

those messages produced by Az when A, accepted Xn. Similarly, Xn for n > 1 is the

largest prefix of W, which A, accepts after receiving only those messages produced

by Ay when A, accepted Yn- 1.

Lemma 4 There exists an n* such that for all n > n*, X, = W, and Yn = W,.

Proof. Assume that Xn :$ W. for some n. Let m be the member of W. which

follows the last member of Xn. By the definition of Xn, m must be a message input.

Automaton Az accepts Wz by definition, so A 2 must receive m from Ay. When Ay

has received all of the messages in O(X,), it must send m in order to eventually

accept Wy. This implies that Oy(Y,) must contain m, and by equation 2.5, so must

X,+1. Therefore, Xn+l is larger than Xn, and there must be some value of n, say

n* such that Xn = Wz. By equations 2.4 and 2.5, if Xn = Wz for some n = n*,

this will be true for all n > n* as well. A similar argument can be used to show the

existence of an n,, such that Y, = W, for all n > n*. To complete the proof we let

n* = max(n, ,n). EO

This lemma will be used to construct a set of general failure scenarios which will

prove the desired impossibility results.
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to

Node y Yo Y Yn*_1

time

Node x Xo 1 X1 | Xn*-1 jXn-W = W
tl t2

Figure 2.3: Failure Scenario for Weak Synchronization

2.4.2 Impossibility Results

Theorem 5 Using the unbounded delay link model with node failures, there does not

exist a protocol which achieves weak synchronization.

Proof. Let A, and Ay define a candidate terminable protocol for x to initiate

weak synchronization. We define a scenario of frame timing and node failures which

will cause the protocol to fail. Let Wz be a path in A, taking it from an initial state

to a final state. When it enters its final state, Az asserts that weak synchronization

has been completed. Let Wy be any path in Ay such that equations 2.1 and 2.2 are

satisfied. If the protocol works, then such a W, and Wy must exist. Prefix sequences

Xn and Y, are defined as before.

Consider the following node failure scenario. Automaton A. accepts Xo and

then node x fails. Automaton Ay receives the messages sent by Az; Ay accepts Yo,

and then node y fails. Each node begins operating immediately after failing. This

process continues until for some n* we have Xn, = Wz. By lemma 4, such an n* must

exist. This is illustrated in Figure 2.3. The vertical lines indicate node failures. The

arrows indicate the string of output messages produced when the indicated string is
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accepted as input. Let t 1 be the starting time of the indicated NUP, and time t 2 be

the time at which A, first reaches its final state during that NUP. The node failure

at x indicated by tl is delayed so that it occurs after the node failure at y indicated

by to. At time t 2 , A, decides that a weak synchronization has been achieved, but

none of the messages received by x in [t1,t2] were transmitted by y in [tl,t 2]. Thus

the protocol fails. Ol

Theorem 6 Using the unbounded delay link model with node failures, there does not

exist a protocol which achieves strong synchronization.

Proof. The same method is used as in the proof of Theorem 5. Automata A,

and Ay define a terminable protocol for achieving synchronization. Let Wz define

a path in Az from its initial state to a final state where strong synchronization is

achieved, and the link is declared up. Similarly, Wy takes Ay from its initial to final

states. Strings Wz and Wy are such that equations 2.1 and 2.2 are satisfied. If the

protocol achieves strong synchronization, such a pair must exist. Prefix strings Xn

and Y, are defined as in the proof of Theorem 5, and a similar failure scenario is

used. Let n* be an integer such that X,. = Wz, and Y,. = Wy. By Lemma 4, such

an n* must exist.

Node failures occur as before, except that after Ay accepts Y,, node y does not

fail, and thus declares the link to be up at time to. The scenario is illustrated in

Figure 2.4. The failure of node x after accepting X,. is delayed until time t1 > to.

Node x calls the link up at time t 2 after accepting X,.. The interval [tl,t 2] defines

an LDP at x, but the link is called up at y during this interval. Such a situation

violates the clear property of strong synchronization. [l

Theorem 7 Using the unbounded delay link model with node failures, there does not

exist a protocol which achieves reliable communication, if two or more data packets

may be released in a LUP.
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Node y Y Y1 

time ...

Node x Xo X1 Xn. Xn =Wz
tl t 2

Figure 2.4: Failure Scenario for Strong Synchronization

Proof. The same method as in the proofs of Theorems 5 and 6 is used, except

that since A, and A. may not be terminable, Wr and Wy are defined differently.

Automata A, and A. define a protocol intended to provide reliable communication

from x to y. Let W, define a path in A., starting from its initial state, which results

in the transmission of the first n > 1 data packets of a NUP. Let Wy define a path

in Ay, starting from its initial state, which results in the release of the first n > 1

data packets of the NUP to a data sink. Similarly, let W, and Wy be additional

input strings for A. and Ay such that WW, and WyWy result in the transmission

and release of the first m > n messages of a NUP.

Consider a node failure scenario shown in Figure 2.5. The index n* is large

enough such that Xn, = W, and Y,. = Wy. The NUPs at x and y have been num-

bered for convenience. Let the string of data packets accepted from the data sink by

x during NUP i be P = PlP2P3 ... , and for NUP j, let the string be P3 = PPP _....

Node y accepts Wy and releases data packets P1P2 ... Pn at the start of NUP k. Sim-

ilarly, node x accepts Wz at the beginning of NUP j, but all of the frames it sends,

O(Wz), are lost. At this point, Az and Ay begin error free transmission of data

packets Pi +lPn+2 .. Pm by accepting W, and WY, respectively. The result is that
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NUP k

Node y Yo | MY |=WV- ) wY

time...

Node x Xo n X (X,1 =W.) W.
NUP i NUP j

Figure 2.5: Failure Scenario for Reliable Communication

during NUP k, node y releases the string Pk = P1P2 ... PnPn+1 ... Pm

Since Pn and p+,+ were transmitted during different NUPs at x, they must also

have been transmitted during different LUPs. Assume that NUP k contains a LUP

which releases two or more data packets to the data sink. If we choose n such that

pn and p4+l are released during this LUP, then node y violates condition one of

reliable communication. O

2.5 Bounded Delay Links

Given the impossibility results of the previous section, it is interesting to examine

whether synchronization and reliable communication are possible when an upper

bound is known on the frame transmission delay. The following theorem shows

the not very surprising result that these tasks are indeed possible for the bounded

delay case. The method used to avoid the scenarios of the previous section is to

have an automata ignore received messages, and not send any messages, for some

time interval after it is started. This has the effect of sweeping the link clear of old

messages, and is effective because an upper bound on the frame transmission delay

26



T=t / SYNC

(X3 T=2D/SYNC SYNC/ 

T=t / SYNC

A T=2D / SYNC SYNC / E

Figure 2.6: Protocol for Weak Synchronization

is known.

Theorem 8 Using the bounded delay model with node failures, there exist protocols

for achieving weak synchronization, strong synchronization, and reliable communica-

tion.

Proof. By the results of Section 2.3, it suffices to show the theorem for

weak synchronization, and by symmetry, it suffices to show weak synchronization

at node x. Let the maximum frame transmission delay be D time units. Consider

the protocol defined in Figure 2.6. On each arc the input message or timeout is

indicated, followed by the output which results from the transition, if any. Node x

starts Az in state iz whenever it wishes to achieve weak synchronization at x. We

assume that if node y does not receive any frames other than SYNC for some time

interval, then any automaton which is running at y must start A. in state i4. Let

node x start A, at time tl. While it is in its initial state iz, Az ignores all received

frames. If both nodes and the link are operational for a sufficient time following

t1 , then Az must eventually enter state fz. Call this time t 2. Automaton Az must

27



enter state jz at time t1 + 2D. Any SYNC frames which Az receives while in state

j, must have been sent by y after time tl + D. This implies that a SYNC received

while A. is in state j, was sent in [tl, t2], and proves weak synchronization at x. A

similar argument shows weak synchronization at y. o
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