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ABSTRACT

At about 3:30pm on April 20, 2004, a 30m deep excavation adjacent to Nicoll Highway
in Singapore collapsed, resulting in four casualties and a delay of part of a US$4.14
billion subway project. This thesis examines the flaws in the original design of the
bracing system, which have been cited as causes of the failure. The Author then proposes
a revised design for the braced excavation system.

The Plaxis finite element program was used to simulate the excavation process and
compute forces on the major structural elements in the original design. Some pertinent
background information on this program is provided throughout the thesis in order to
better understand the significance of certain errors in the input data of the original model
that ultimately led to the incorrect assumptions and calculations of the original design. A
new model using this same program was regenerated with a corrected set of input
assumptions, thereby leading to reasonable estimates of structural forces. These results
were then used to propose a revised design of the excavation support system and compare
this design to the original used in the excavation project. There are several lessons that
could be learned from this structural failure, one being the need to acknowledge the
limitations built in advanced analysis software systems, and another being the importance
of ascertaining that the user understands every feature of the product.

A cost estimation of the proposed design is given and compared to the original design in
order to evaluate the viability of the proposed design in the construction bid. Finally,
some important conclusions are drawn from this study that should be applied to future
large-scale construction projects where public safety and welfare is at stake.

Thesis Supervisor: Andrew J. Whittle
Title: Professor of Civil and Environmental Engineering
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1. Introduction

Braced excavation systems are widely used in a variety of construction projects, such as

cut-and-cover tunnels and building basements. Common malpractice or negligence in the design

and construction of such systems can result in large-scale losses of capital and human lives.

There are several examples of excavation collapses and corresponding studies that investigate

their origins. This thesis examines one in particular: the 30m deep excavation collapse adjacent

to Nicoll Highway in Singapore, which occurred on April 20, 2004. There have been various

reports that explain the causes of this collapse. The final report of the Singaporean Ministry of

Manpower (MOM) Committee of Inquiry has just been released, and is cited frequently

throughout this thesis. However, it is not the author's intent to further analyze these studies, but

instead to use the information already available to propose an alternate and effective design for

the excavation system.

A finite element model using the soil-structure analysis program Plaxis v.8.0 was

generated for this excavation using the proper parameters to obtain data on the required design

capacities for the temporary diaphragm wall, strutting system, waler connection, and other

elements of the project.

All the design procedures are explained in detail throughout this thesis. The original

design was performed as per the British code BS8002 for soil-strut interaction and BS5950 for

structural steel design. However, the proposed design was done using the American Association

of State Highway and Transportation Officials (AASHTO) Standard Specifications for Highway

Bridges (14th Edition) and the American Institute of Steel Construction (AISC) Allowable Stress

Design (ASD) Manual of Steel Construction (9th Edition). The final design of the excavation

system was obtained through an iteration process of the model and design criteria.

-7-



2. Review of Slurry (Diaphragm) Wall Excavation Systems

2.1 General Methods of Slurry Wall Construction

Slurry wall design and construction demands attention to a variety of factors such as slurry

materials (i.e. processing), excavating equipment, and panel size. For example, the depth of the

slurry wall may be determined by the soil conditions present at the site, or the site layout may

limit panel sizes. One often encounters existing utilities or nearby buildings in urban excavations

and they may need to be protected or relocated. In addition, water-stopping details should be

given special consideration because slurry walls are frequently part of the permanent structure.

Working schedules can also be impacted by the requirements for traffic maintenance.

Construction procedures should therefore address these and other relevant issues in order to

optimize the construction project as a whole.

A slurry wall is constructed by linking a series of slurry wall panels in a predetermined

sequence. The panels are excavated to specified dimensions while at the same time slurry or

another stabilizing fluid is circulated in the trench. Excavation equipment may range from simple

clamshell buckets to hydraulic clamshells to hydrofraises (Xanthakos, 1994, Parkison & Gilbert,

1991, Ressi, 1999, Bauer, 2000). In addition, individual contractors have developed their own

f(typically) patented trenching equipment. Figure 1 displays a variety of trenching equipment

employed in slurry wall construction. (Konstantakos, 2000).

-8-



(a) (b) (c) (d) (e) () Mg) (I) (I)

Figure 1: Trenching Equipment (Xanthakos, 1991)

(a) Clamshell bucket attached to a kelly. (b) Vertical percussive bit with reverse circulation,

(c) Percussive benching bit. (d) Rotary benching bit. (e) Rotary bit with vertical cutter. (f)

Rotary drilling machine with reverse circulation. (g) Bucket scraper. (h) Bell-mouth

suction rotary cutter with direct circulation. (i) Horizontal auger machine.

Figure 2 presents the basic steps in typical slurry wall construction. The first step is to clear

the site of any possible obstructions. Guide walls are then built to stabilize the upper few feet of

soil and to guide the trenching equipment (controlling the vertical orientation of the panels).

End-stops are inserted into the panel after trenching is completed in order to help form water-

tight joints connecting adjacent panels. The end-stops are withdrawn after the adjacent panel is

trenched.

After a panel is excavated to the specified dimensions, then a reinforcement cage is placed

into the slurry filled trench. Reinforcement cages may be spliced if the required cages are too

heavy for the lifting equipment.

The bottom of each panel is cleaned prior to concreting because sands and other soils may

form intrusions that undermine the integrity of the wall (i.e. its water-tightness, stiffness, and

strength). Concrete is then carefully tremied into the trench and continuously displaces the slurry

therein. The top few inches of the panel are always chipped in order to bring the fresh concrete to

the surface because the slurry is trapped in the top inches of the panel.
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An important issue in the concreting process is the segregation of concrete aggregates during

fast concreting. Slurry can become trapped within the tremied concrete, thereby creating soft

zones within the slurry walls. If the panel bottom is not properly cleaned, then the soil and the

waste that may have accumulated there may shift upwards during concreting as a result. This can

lead to major leakage problems (Konstantakos, 2000). Successful construction depends upon

careful construction to detail on site.

Concreted
Panel End Stop

Slurry

K ILII

(B)

End

(D)

:oncreted Ecvtn qi.
Panel

/ 
Slurry

A _F7 F I--:

(A)

Reinforcement Cage

Slurry

C)

FII

Figure 2: Typical Construction Sequence of Slurry Walls (Konstantakos, 2000)

(A) Trenching under slurry, (B) End stop inserted (steel tube or other), (C) Reinforcement cage

lowered into the slurry-filled trench, (D) Concreting by tremie pipes.
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2.2 Cross-Lot Braced Slurry Wall Excavations

Cross-lot bracing shifts the lateral earth (and water pressures) between opposing walls

through compressive struts. The struts are usually either pipe or W-sections and are typically

preloaded in order to produce a very stiff system. Installation of the cross-lot struts is

accomplished by excavating soil locally around the strut and only continuing the excavation once

preloading is finished. A typical sequence of excavation in cross-lot braced excavations is

presented in Figure 3. The struts rest on a succession of wale beams that distribute the strut load

to the diaphragm wall.

Pre-loading ensures rigid contact between interacting members and is achieved by placing a

hydraulic jack as each side of an individual pipe strut between the wale beam and a special

jacking plate welded to the strut (Fig. 4, Xanthakos, 1994). The strut load can be measured with

strain gages or can be calculated using equations of elasticity by measuring the augmented

separation between the wale and the strut.

When the struts were not preloaded in several previous projects, it resulted in large soil and

wall movements as the excavation progressed downward. It has therefore become standard

practice to preload the struts in order to minimize subsequent wall movements.

Cross-lot bracing is advisable in narrow excavations (1 8m to 36m) when tieback installation

is impossible. The struts' serviceability can be adversely affected if the deflections at the struts

are too large. This can occur when the struts' unbraced length is considerable, thereby causing

the struts to bend excessively under their own weight if the excavation spacing is too great.

Furthermore, special provisions should be to taken in order to account for possible thermal

expansion and contraction of the struts (Konstantakos, 2000).

The typical strut spacing is approximately 5.Om in both the vertical and the horizontal

direction. This is larger than the customary spacing when tiebacks are used because the pre-

loading levels are much greater. A clear advantage of using struts is that there are no tieback

openings in the slurry wall, thereby eliminating one source of potential leakage.
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Cross-tot Brace

Slurry

(D)

Figure 3: Typical Excavation Sequence in Cross-lot Excavations

(A) V-cut initial cantilever excavation, (B) Strut installation and pre-loading in small trenches

in soil berms, (C) V-cut excavation to next level and strut installation, (B) Final grade.

8I
th,

,sqpradon

Pipe
Wale.i

H Mrtic
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(b)

Figure 4: (a) Preloading Arrangement, and (b) Measured Brace Stiffness
(Xanthakos, 1994)
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3. The Original Design

3.1 Overview of the Project

The original excavation design was part of an ongoing 33.6 km Circle Line (CCL)

subway project for Singapore's Mass Rapid Transit System that was set to be completed in 2009.

With a cost of approximately US$4.14 billion, the entire CCL project will be a fully underground

orbital line linking all radial lines leading to the city and will be completed in 5 stages (Figure 5).

Figure 5: Overview of Circle Line Construction Stages 1 to 5 (MOM, 2005)

The excavation where the collapse occurred was part of a cut and cover tunneling project

that was being done adjacent to Nicoll Highway in Stage 1 of construction (Figure 6). The route

length covered by this contract was approximately 2.8 km. The temporary works to construct the

cut and cover tunnel used diaphragm walls to support the sides of the excavation, steel struts to
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brace these walls, and jet grout slabs constructed using interlocking Jet Grout Piles (JGP).

Further explanation on these members will be provided in the following sections of the thesis.

BORED
TUNNIEL

CRAWFORD
UNDERPASS

TMA

Ty36 - N

SOURCE: D824CWD-W1W130, D024D-WMM

Figure 6: Overview of Cut and Cover Tunnel Adjacent to Nicoll Highway (MOM, 2005)

The accident area in which the collapse occurred was primarily centered at the Type M2

and Type M3 areas. The Type M3 area is the critical part of the excavation requiring particular

focus (Figure 7). This area is comprised by 12 panels (6 on the north wall and 6 on the south

wall). The wall panels were mostly 0.8m thick. The total length of the Type M3 area is about

33m. The design depth of the walls varied between 38.1m to 43.2m.
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Figure 7: Overview of M3 Area (MOM, 2005)

3.2 Design of M3 Support System

Figure 8 summarizes the assumed soil stratigraphy for the M3 section together with the

design of the lateral earth support system and location of the final tunnel boxes. The initial cut-

and-cover excavation was approximately 20m wide and reached a maximum depth of 33.3m.

The excavation was supported by 10 levels of cross-lot struts. These struts were supported by a

central line of kingposts (Fig. 5 and Fig. 6) that extend deep into the first layer of the Old

Alluvium (SW2). Two layers of interlocking Jet Grout Piling (JGP), 1.5m and 2.6m thick, were

pre-installed to control ground deformations and reduce bending moments in the perimeter

diaphragm wall panels. The upper JGP is a sacrificial layer that is removed during the excavation

process. The final tunnel boxes are supported on drilled shafts (each 1.6m diameter) that extend

into the fundamental Old Alluvium (CZ).
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upper tstuanne 1t1)

Upper Marine Clay M)

Fluvial Sand (Fl)

Fluvial Clay (F2)

reais ana organic son clays

(discontinuous)

very soft clay

predominantly loose sand

(discontinuous)

mainly firm clays

(discontinuous)

Lower Marine Clay (M) soft clay

Lower Estuarine (E) Peats and organic soft clays

(discontinuous)

Lower Fluvial Sand (F) predominantly loose sand

(discontinuous)

Lower Fluvial Clay (F2) mainly firm clays

(discontinuous)

Weathered (OAW) discontinuous - Sands & Clays

N < 30

Slightly weathered 30 < N< 50

(OA-SW2)

Slightly weathered 50 < N< 100

(OA-SW1)

Cemented unweathered N>100

(OACZ)

Table 1: Soil Profile Description (MOM, 2005)

The soil profile (Figure 8 and Table 1) comprises deep layers of marine (MC), estuarine

(E) and fluvial (F2) clays overlying much stronger layers of old alluvium (SW, CZ). The

engineering properties to be used in the original design were specified in a Geotechnical

Interpretative Memorandum (GIM). Please refer to Table 2 for more information on these

parameters.
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Following the collapse, a joint committee of experts reviewed the GIM Table of parameters

and concluded that the parameters were generally reasonable with a couple notable exceptions:

1. Permeability properties of the Old Alluvium were difficult to estimate. In general, the clays

and old alluvium layers are of low permeability.

2. Undrained shear strengths in the Lower Marine Clay (LMC) were potentially than the GIM

recommendations (based on an interpretation of piezocone penetration data). Field

monitoring of on-going settlements and pore pressures in the M3 are suggested that the LMC

layer was under-consolidated, and this may explain why lower shear strengths can ocurr in

this layer.

3. The GIM Table overestimated the undrained shear strength of the Lower Estuarine Clay due

to extrapolation of properties from the Upper Estuarine Clay.

3.3 Plaxis Analyses

Plaxis is a general purpose geotechnical finite element program suitable for modeling a

wide range of geotechnical processes. For the original design, a Plaxis model was generated to

find the maximum design loads, moments and deflections for the diaphragm walls and cross-lot

strut elements. The basic input parameters used in Plaxis to represent the various soil layers are

summarized in Table 2.1

1 Note that some of the input parameters used in the original analysis/design were incorrect. A new Plaxis model has
been generated (see Chapter 4) with the corrected soil parameters.
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Stratum Material Unit Perm Yref Eref Einc Cref R inter

Type Weight
kN/m' m/day mRL MN/m MN/m 2/m kN/M2 Degrees

Fill Drained 19 8.6E102 10 0.1 30 0.67
Estuarine Undrained 15 8.6E 10' 92.9 6 0.92 0.1 18 0.67

M2(upper) Undrained 16 .6E IV 87.9 8 0.64 0.1 22 0.67
F2 Undrained 19 86E10T 92.9 8 0.8 0.1 24 0.67

M3(lower) Undrained 16 8.6E0 87.9 8 0.64 0.1 24 0.67
OA SW2 Drained 20 4.3E10* 70/72 5.0 32 0.67
OA SWI Drained 20 4.3E0 144/158 360/395 0 0.5

OA CZ Drained 20 4.3E10" 200 500 0 0.5
JGP Non por 16 0 131 300 0 0.33

OAClayNJ6 Undrained 20 4.3E10 32 80 0 0.5

OASandN20 Drained 20 4.3E0 40 0.1 32 0.67
OASandN26 Undrained 20 4.3E10 52 130 0 0.5

Table 2: Summary of Plaxis Input Parameters in Original Design (MOM, 2005)

The most significant aspects of the original Plaxis analysis are as follows:

1. The Soil layers are represented as linearly elastic-perfectly plastic materials, with shear

strength governed by the Mohr-Coulomb criterion with effective stress strength

parameters (c' and >').

2. Each of the low permeability clay layers is treated as undrained material, while old

alluvium is assumed to be fully drained.

3. The JGP layers are assumed non-pourus with a cohesive component of shear strength,

Su= 300kPa.

4. Pore pressures in the Old Alluvium were established by specifying a phreatic line , with

reduced pressures below the base of the excavation.

More detailed background information on the use of Plaxis and the parameters included will be

provided in Section 4 of this thesis.
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3.4 Design of Structural Elements

The original design of the temporary wall and strutting system was carried out with the

following assumptions: (using the British Standard Code of Practice for Earth Retaining

Structures BS8002)

1. Effective stress strength parameters for characterizing the marine and estuarine clays at

the excavation site.

2. Load factor of 1.2 for structural elements as per British Standard Code of Practice for

Steel Elements (BS5950).

3. Surcharge load of 20 kPa, with actual surcharge not to exceed 10 kPa.

4. One strut failure analysis at selected locations.

For design purposes, the cut and cover tunnel was divided into 40 wall sections (approx. 6m

each). The selection of wall type was based on an assessment of the soil profile, in particular the

depth of the marine clays, and depth and width of the excavation.

3.4.1 Design of Diaphragm Wall in Type M3 Area

The diaphragm wall in Type M3 area had 10 levels of struts, and 2 levels of JGP slab.

The upper JGP slab was located between the 9 th and 1 0 h level struts. The design required that the

wall was embedded 3 meters in the Old Alluvium (SW2) layer. The soil profiles, strutting levels

and JGP slab levels are presented in Figure 9. (Note that the spacing in the horizontal direction of

the struts was 4m).

- 20 -
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Apparently, the incorporation of JGP slabs was done to help cut off soil seepage and

reduce the need for further embedment of the diaphragm wall into the Old Alluvium (SW2). This

was done in order to control the potential consolidation settlements outside the excavation.
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The Plaxis results were used directly for the structural design of the diaphragm walls and

strutting system. As mentioned earlier, the structural design adopted a 1.2 factor of safety

provided that the "worst credible" soil parameters were used in the model. The load factor of 1.2

was applied to the bending moments and shear forces observed from the Plaxis output, and the

ultimate design values were then used to determine the required steel reinforcement at various

levels in the diaphragm wall panels. Checks for punching shear and wide beam shear were also

performed in this design. The detailed calculations of the diaphragm walls can be seen in

Appendix A.

3.4.2 Design of the Strutting System for Diaphragm Wall in Type M3 Area

The strutting system comprised steel H-sections (W-sections as per AISC) spanning

between the diaphragm walls. Each strut was comprised of either a single or a pair of H-sections

(Types shown in Figure 9 and Appendix B). The width of each diaphragm wall panel was 6m

and the struts were spaced horizontally every 4m. The strutting system was arranged so that

alternate panels were either supported at their mid-point by a strut or towards their edges by a

strut at each edge. The majority of the struts were designed to bear directly against the wall

panel, which had been reinforced accordingly. However, in certain occasions where splayed

struts were required, a short waler beam was adopted in the design. The waler beams had to be

discontinuous due to the curvature of the cut and cover tunnel.

The maximum strut load for each level of the struts was computed from the Plaxis analysis. Once

the factor of safety (1.2) was applied and the ultimate design axial loads were obtained, the struts

were checked to resist buckling. The detailed calculations of the strutting system can be found in

Appendix B.

3.4.3 Design of Strut-Waler Connection

The waler beam design was comprised of steel beams that were of the same size as the

connecting strut. A concrete packing was used to spread the load from the waler beams into the

wall. Steel stiffeners were incorporated at the connections between struts and walers to prevent

local buckling of the waler beam web. Please refer to Figure 10 for an illustrative view of the

strut-waler connection.
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Figure 10: Strut-Waler Connection (Modified from MOM, 2005)

3.5 Construction Sequence

The construction sequence that was planned for the braced excavation system included:

1. Install diaphragm walls: After excavating a trench for the diaphragm walls and placing all the

reinforcing steel for the wall panels, concrete was to be poured and cast on site to build the

diaphragm walls around the perimeter of the excavation.

2. Drive kingposts: Once the diaphragm wall was in place, kingposts were to be driven at the

specified locations (midpoint between the north and south walls and spaced horizontally

every 4 meters)

3. Jet Grout Piling (JGP): Holes for interlocking Jet Grout Piles (JGP) were to be perforated at

the specified locations of the design drawings in order to support the jet grout slabs shown in

Figure 9. The thickness of the upper and lower slabs was 1 .5m and 2.6m, respectively.

4. Install bored piles: JGP were to be bored once the holes were perforated.

5. Excavate up to r.5m lower than the 1st level struts: Excavation was to be carried out down to

an elevation of O.5m below the first level of struts. Please refer to Figure 9 for more

information on strut level elevations.
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6. Install pre-loaded struts: The first level of pre-loaded struts was to be placed and framed to

the diaphragm walls or waler beams (depending on the location) at the specific points

determined in the design. (First level struts were spaced horizontally every 8m).

7. Excavate up to 0.5m lower than the next level struts: Following the installation of the struts,

excavation was to be resumed at an elevation of 0.5m below the second level of struts.

8. Install pre-loaded struts: The second level pre-loaded struts were then to be installed and

spaced every 4m in the horizontal direction of the wall.

9. Repeat steps 7 to 8 until the lowest struts (1 0 th level) were installed and pre-loaded

10. Excavate to formation level: Once the 1 0 th level struts were installed, excavation to formation

level was to be performed and 75mm thick lean concrete was to be cast without delay.
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4. The Collapse

At about 3:30pm on April 20, 2004, a 30m deep excavation adjacent to Nicoll Highway in

Singapore collapsed resulting in four casualties and a delay of part of the US$4.14 billion CCL

subway project. According to the Committee of Inquiry (MOM, 2005) that was set up to

investigate the failure, the main causes of the collapse included two critical design errors in the

temporary retaining wall system. These were:

1. The under-design of the diaphragm wall using Method A2 . The use of Method A in the

original design to model the undrained behavior of soft marine clays was incorrect. The

method over-predicted the undrained shear strength. In other words, it underestimated the

bending moments and deflections of the diaphragm wall. Hence, this resulted in an under-

designed diaphragm wall. Method B should have been used in this circumstance. The

bending moments and deflections in the original design were about 50% of the actual

bending moments and deflections observed by the diaphragm wall. This is equivalent to a

factor of 2 in the original design of the diaphragm wall in the Type M3 area.

2. The under-design of the strut-waler connection in two ways:

a) The original estimation of load on the strut-waler connection for double struts assumed

that the splays would absorb one third of the load in the struts. Where splays were

omitted, the design load that resulted in the strut-waler connection was only about 70% of

the load in the strut, when the full 100% should have been used.

b) The change in the design of the waler plate stiffeners with C-sections (Figure 11) relied

on a stiff bearing length (bl) of 400mm instead of approximately 65mm in accordance

with BS5950, and on an effective length of 70% of the net web depth, where a number

close to 1.2 for unrestrained conditions would have been more appropriate. As a result,

the axial design capacity of the stiffeners was only about 70% of the assumed design load

for the connection. Further explanation of this will be provided later in this section.

2 Method A refers to the use of effective stress strength parameters to represent the undrained shear strength of low
permeability clay. Further explanation will be given in later sections
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Figure 11: Strut-Waler Connection Channel Stiffeners (MOM, 2005)

The under-design of the waler connection caused the failure of the 9 th level strut-waler

connections at the Type M3 area during the excavation to the 10th level. This was the initiating

failure of the collapse. The failure of the 9 th level waler connection caused the transfer of loads to

the 8 th level struts, leading to the failure of the 8 th level strutting system and the subsequent

collapse of the Type M3 area. The collapse then propagated westward to the Type M2 area.

Other errors such as inadequate welding of the members could have also contributed to

the collapse of the excavation system, but these factors were not as critical as the two specified

previously. The failure of the 9 th level strut-waler system together with the inability of the

temporary retaining wall system to resist the redistributed loads as the 9th level strutting failed

led to a catastrophic collapse of the excavation system (Figure 12).
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Figure 12: Site Before and After the Collapse (MOM, 2005)
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4.1 The Under-design of the Diaphra2m Wall Using Method A

In order to appreciate the impact of Method A on the temporary retaining wall system, it

is necessary to provide background information with respect to the design of the temporary

retaining wall system and sufficient detail concerning the Plaxis finite element program.

A user with a sound understanding of the theoretical basis of the Mohr-Coulomb model

and soft soil behavior would realize that Method A could not model the stress-strain response of

soft clays correctly. For soft, normally to lightly over-consolidated clays, the use of effective

stress parameters in a Mohr Coulomb model with undrained material setting will inevitably lead

to the over-prediction of undrained shear strength. The problem inherent in Method A was

therefore a fundamental error in the original design. (MOM, 2005, Ch. 5)

4.1.1 Background and Errors in the Input Data of the Plaxis Finite Element (FE) Program

Plaxis is designed to perform numerical analyses of deformation and stability of

geotechnical problems. It contains a number of features to handle aspects of geotechnical

engineering that are often specific to the given site. In particular, the consideration of soil as a

multi-phase material leads to the provision of special procedures for dealing with the modeling

of the in-situ (on site) stress state, simulation of fill placement and excavation, and the generation

and modification of pore water pressures in the soil. (MOM, 2005, Ch. 5)

Material Types (Drained, Undrained, and Non-porous)

Plaxis allows the user to select different material types (Drained, Undrained, and Non-

porous). In geotechnical engineering, the response of a saturated soil to changes in loading

condition is broadly divided into undrained and drained behavior. Plaxis also includes a third

type of material referred to as Non-porous. When a saturated soil of low permeability is loaded

quickly such that water has no time to escape from the pore spaces, the pressure in the pore fluid

will change. Since the amounts of solids and water do not change during the loading process, the

volume change during loading is nearly zero. This type of soil is considered undrained. The rate

of loading for which the soil behavior may be considered drained or undrained is a function of

its permeability and drainage condition. When a saturated soil has high permeability, or when it
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is loaded sufficiently slowly so that water can flow and escape from the voids without generating

any additional pore pressures, its condition is then considered drained. The flow of water in and

out of the pore spaces will therefore induce volume change in the soil mass. The Non-porous

material type is considered impermeable and does not include any assessment of pore water

pressure. (MOM, 2005, Ch. 5)

Material models

Plaxis provides several material models of varying complexities to model the behavior of

soils. Each material model provides a mathematical representation of the stress-strain and

strength characteristics of the soil. The choice of soil model controls the way in which pore water

pressures are calculated during the undrained loading stages.

The Mohr-Coulomb model was used for all the soil strata and the JGP in the original

Plaxis model. This model assumes the material exhibits isotropic linear elasticity until it reaches

yield. Changes in the shear stresses applied to a Mohr-Coulomb model generate shear strains but

no volumetric strain. Changes in the mean effective stress in the Mohr-Coulomb model generate

volumetric strains but no shear strain. This type of model does not present any volumetric strain

due to shear. As a consequence, the soil must follow a constant stress (p') path in response to

undrained loading. A failure of the soil to resist the loading conditions will occur at a point

where the initial effective mean stress (p') at the start of the loading sequence meets the Mohr-

Coulomb failure line in the p-q space (0-B-A, Fig. 11). (MOM, 2005, Ch. 5)

Most real soils undergo some volumetric change as a result of shearing under drained

conditions. In particular, it is well established that soft, normally consolidated or lightly over-

consolidated clays tend to contract as a result of drained shearing. In undrained loading in which

the soil matrix is prevented from contracting, this contractive tendency will be manifested as

positive pore water pressure within the soft clay. As a result, the soft clay follows an effective

stress path that curves back from the constant stress line (p'), thus reducing the mean effective

stress during the loading stage, as illustrated by path O-D in Figure 13. (MOM, 2005, Ch. 5)

-29-



Due to the contractive nature of the soft clay, the undrained strength (D, Fig. 11) is less

than the drained strength. Since the Mohr-Coulomb model does not model this contractive effect,

it cannot reproduce the stress path followed by the soft clay as it is sheared. The Mohr-Coulomb

model using effective stress strength parameters therefore over-estimates the strength of soft

normally consolidated clay in undrained condition. (MOM, 2005, Ch. 5)

q
Mohr-coulomb
failure line

Cu A
(Method A) ---- ~ --- --- ~-------- ~

cu D B C,
(Mehos ------- -------------

(Methods B, ~~

C, D)
0'

o Confining Stress p', p

Figure 13: Mohr-Coulomb Failure Model (MOM, 2005)

(Undrained shear strengths derived from Methods A, B, C and D used in the original design)

The Mohr-Coulomb model allows the user to input either effective stress parameters (c'

and p') or the undrained strength parameters (c'=cs, p'=O). Although this approach would give

the correct undrained strength, it cannot correctly model the stress path followed by the soft clay.

(MOM, 2005, Ch. 5)

In the original design, the use of a Mohr Coulomb soil model with effective stress

strength parameters in combination with an undrained material type has been referred to as

Method A. Method B refers to the use of Mohr-Coulomb soil model with undrained strength

parameters in combination with undrained material type. The latter method prevents the Mohr-

Coulomb model from over-estimating the strength of soft clay in undrained condition (as shown

in Fig. 11).
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The pore water pressure generated by the Mohr-Coulomb model will not be

representative of those generated in-situ under an undrained loading condition. This is true

regardless of whether the effective stress parameters (Method A) or the undrained parameters

(Method B) are used. The parameters used for the various methods are tabulated in Table 3.

Undrained Behaviour

Plaxis Material Parameters ComputedMethod Material Cmue
Meth d asetting Model Strength Stiffness stresses

A Undrained Mohr- C', ' E',v' Effective stress and
Coulomb (effective) (effective) pore pressure

B Undrained Mohr- Cu, u E', V' Effective stress and
Coulomb (total) (effective) pore pressure

Mohr- u Eu, vu=0.495
C Non-porous Coulomb (total) (total) Total stress

D As in Method A, for other soil models

Table 3: Plaxis Parameters under Different Design Methods (MOM, 2005)

Pore Water Pressure Distribution

There are two calculation types available in Plaxis, referred to as Plastic and

Consolidation analyses. The Plastic calculation type is the non-linear computation carried out for

loading stage, such as surcharge placement or an excavation with changing applied loads. Plastic

calculation steps do not consider time-dependent phenomena such as consolidation or pore

pressure dissipation. The consolidation calculation type refers to a stage involving consolidation

or seepage in which excess pore water pressure will change with time. For the consolidation type

of calculation, the Plaxis program computes the groundwater flow and the volumetric

consolidation or swelling of the ground caused by changes in the mean effective stress. (MOM,

2005, Ch. 5)
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The Plaxis analyses used in the original design did not make use of the seepage and

consolidation capabilities within Plaxis. Only Plastic analyses were used in modeling all the

construction stages, with no seepage or consolidation.

Nevertheless, instead of determining the groundwater pressure distribution by seepage

and consolidation analyses, it is possible to input the groundwater pressure profile directly into

Plaxis. An approximate and simple method is to assume that the groundwater is hydrostatic

below a pre-defined water table.

This was the method adopted in the original analysis. It was assumed that the

groundwater table outside the excavation was at the ground surface. Inside the excavation, the

groundwater table was assumed to coincide with the base of the excavation and was changed

concurrently with the excavation stages. (MOM, 2005, Ch. 5)

Specifying the water profile in this manner was a gross oversimplification of the real

groundwater pressure system resulting from the excavation, and had the following shortcomings:

1. At and directly below the toe of the diaphragm wall there is a step change in the water

pressure profile. On the excavation side, the water pressure is hydrostatic (changes

linearly with depth) from the excavation surface. However, on the retained side of the

wall the water pressure is hydrostatic from the original ground water table. This step

change in pressure can never occur in the real situation.

2. The method cannot be used to study the effect of increasing pore pressure beneath the

excavation as a result of seepage and consolidation processes.

4.1.2 The Impact of Method A and Method B on the Diaphragm Wall Design

The model used in the original design adopted Method A for the Estuarine clay, Marine

clays (upper and lower) and Fluvial clays. As mentioned previously, Method A used the effective

parameters (c' and 9') and Method B used the undrained strength parameters (c'=cu, p'=O). A

revised model was generated adopting Method B for all the soils specified above, while

maintaining a ceteris paribus state in the model (all else being equal).
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Figure 14 presents a comparison of the predicted displacements for wall Type M3 under

each method. The predicted displacements using Method B are more than 100% greater than the

Method A prediction.

Figure 15 shows a comparison of the predicted bending moment profiles for wall Type

M3 under each method. The figure also includes the as-built moment capacity. The unfactored

bending moments predicted using Method B exceeded the as-built moment capacity of the wall

by more than 100% at several locations.
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Figure 14: Diaphragm Wall Deflections under Methods A and B (MOM, 2005)
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It is clear from the results that Method A under-predicted both, bending moments and

displacements of the diaphragm wall. The retaining wall system designed using the results

obtained from the Method A analysis was therefore severely under-designed. This led to the

excess of the wall moment capacity and the formation of plastic hinges as the excavation reached

deeper levels. For example, Figure 16 shows the wall deflections measured by two inclinometers

(1-104, South and 1-65, North) at type M3, for excavation immediately prior to failure on April

17.
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Figure 16: Inclinometer Readings 1-104 & 1-65 (MOM, 2005)
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The use of Method B in the analysis resulted in a diaphragm wall design with thicker wall

sections and possibly deeper penetration into the competent Old Alluvium.

4.2 The Impact of Method A and Method B on the Strutting System Design

The maximum predicted strut load at each level during the excavation sequence using

Method B is given in Table 4 and is compared to the unfactored design of the strutting system.

Predicted Strut Load Design Strut Load
Ratio Method B to

Strut Row Using Method B (unfactored)
(kN/m) Using Method A (kN/m)

1 379 568 67%

2 991 1018 97%

3 1615 1816 89%

4 1606 1635 98%

5 1446 1458 99%

6 1418 1322 107%

7 1581 2130 74%

8 1578 2632 60%

9 2383 2173 110%

Table 4: Strut Loads at Type M3 Area under Design Methods A and B (MOM, 2005)

The strut loads predicted by Method B and the design (unfactored) strut loads using

Method A fall within a range of 60% to 110% of the original design value. For level 9, Method

A resulted in the strut design being under-estimated by about 10% in comparison to Method B.

However, the strut load for level 9 used in the revised design that is presented in Section 5 is less

than that used under Method A (approximately 93% of 2173 kN or 2020 kN). Even though the

revised design was performed using Method B, the variation of the loads in the revised design

from the loads predicted by Method B in Table 4 are due to an increment in the thickness of the
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diaphragm wall used in the revised design. Further explanation on this will be provided in

Section 5 of this thesis.

4.3 Under-design of Strut-Waler Connection

In the original design of the strut-waler connection, the check for local buckling of the

waler web used a wrong value of 400mm for the stiff bearing length. The correct value in a strict

interpretation of the code BS5950 would be 65mm. Stiff bearing length has a direct correlation

with the capacity of the waler system. A longer stiff bearing length produced a buckling

resistance of the waler web in the design calculations. In spite of the error, it was found that the

buckling resistance Pw was still less than the strut load bearing on the waler Pbr.

For H-400, which was used at the 9th level strutting system of the Type M3 area, Pbr was

3543 kN, while Pw was 2218 kN. This meant that the web could not, on its own, be able to

withstand the forces acting on it and therefore stiffeners were required in order to increase the

capacity of the connection against buckling. Please refer to Appendix C for details on these

calculations.

The design error in the stiff bearing length, although not in accordance with BS5950, did

not contribute materially to the capacity of the original stiffener design (using plate stiffeners)

because the wrong waler web buckling capacity (Pw) was not used in this calculation set. The

capacity of the H-400 waler section stiffened with a plate on each side of the web was calculated

correctly as 2424 kN in accordance with BS5950.

The stiffener plates were crucial components of the strut-waler connection. The ability of

the entire strut/waler connection to bear the forces acting upon it was dependent on the strength

of the stiffened section. The integrity of the entire strutting system could be affected by the lack

of adequate capacity in the strut-waler connection to withstand the load. It was therefore critical

that the design of the stiffeners (and any changes made to it) was carefully reviewed to ensure its

adequacy and strength.
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4.3.1 Incorporation of C-channel Stiffeners in Waler Beam Connections

In February 2004, several instances of buckling of the stiffener plates and waler webs

were reported at the Nicoll Highway Station (Figure 17).

Figure 17: Stiffener Plate and Waler Beam Web Buckling (MOM, 2005)

This condition led the contractor to replace the double stiffener plates with C-channel

sections. The replacement of double stiffener plates with C-channels provided only minor

improvement to the design in terms of axial load bearing capacity for the waler connections, but

this came at the expense of ductility. The change worsened the design and made it more

susceptible to the brittle "sway" failure mode. This is proved a posteriori in the results of finite

element analyses and physical laboratory tests that were performed by experts after the collapse

occurred.

Finite element calculations showed that in the elastic range, the C-channels attracted

about 70% of the axial strut load. This caused the yielding of the C-channels before the web

reached its full capacity. Once the C-channel had yielded completely, a fundamental change in

the behavior of the connection occurred: the resistance of the waler flanges to relative

displacement (i.e. lateral sway) was reduced. As the axial compression continued, local crushing

of the web occurred. At this point, there was little resistance to rotation and lateral displacement
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on the outer (towards the excavation, away from the wall) waler flange. The results post-collapse

demonstrated clearly that the connection was susceptible to sway failure under direct

compression.

Once the axial force reached the yield capacity of the C-channel connection, the

connection displayed a very brittle response, resulting in a rapid loss of capacity upon continued

compression. Conversely, the plate stiffeners connection was significantly more ductile. Please

refer to Figure 18 for a graphical visualization of this fact.

5000

4500 01- Waler with double
400plate stiffeners

3500

1500

C1 - Waler with

500 channel stiffeners

0 5 10 15 20 25 30 35 40 45 50
Axial Displacemient (nmm)

Figure 18: Load-Displacement Curves of the C-channel and Plate Stiffener Connections

(MO 2005)

This graph proves that the failure load / peak capacity of waler with C-channel stiffeners

is about equal to that with double plate stiffeners. However, the C-channel stiffeners accentuated

the problem associated with the under-design of the waler connections because they induced the

sway mode of failure into the strutting system. When the C-channel was compressed beyond the

peak capacity, there was a rapid and sudden release of load, resulting in a large reduction of the

capacity of the C-channel connection beyond yield, thereby causing a brittle failure.
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4.3.2 Omission of Splays in Strut-Waler Connections

The strut to waler connection detail adopted one of three possible arrangements

depending on whether it was a single or double strut and if splays were to be used or not. The

estimation of load on the strut-waler connection for double struts assumed that the splays would

absorb one third of the load in the struts (Figure 19).

tr T Strut- Strut

Wider Wi%

liE -& TYE- YPU

Figure 19: Types of Strut-Waler Connections (MOM, 2005)

The original design of the double struts at the 9h level of the excavation in the Type M3

area calculated a maximum strut force (including all factors of safety) of 5314 kN per H-section.

On the assumption that splays would be included, the design load at the strut-waler connection

was reduced to 3543 kN. All of the strut-waler connections on the 9 th level of Type M3 were

designed to withstand a load of 3543 kN. During construction, however, there were a number of

struts on the 9 th level that were not provided with splays. The strut-waler connection therefore

had to sustain the entire strut load of 5314 kN. This was far in excess of the 3543 kN for which

they had been designed. Consequently, the connection as designed did not have the capacity to

cope with the existing loads. Please refer to Appendix C for further details on these calculations.

For the strut-waler connections without splays, the combined effects of the errors in the

stiffeners design and the omission of splays resulted in the design capacity of the connections

being only about one-half of the required design strength.
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5. A Revised Design for the Type M3 Excavation Area

This chapter proposes a revised design for the Type M3 excavation support system. This

revised design is based on Allowable Stress principles for the revised design of the diaphragm

wall, strutting system, and strut-waler connection. The factor of safety was therefore applied to

the member capacities - as opposed to the loads exerted on the members (i.e. bending moments

and axial loads).

5.1 Revised Plaxis Model

A revised Plaxis analysis of soil-structure interaction has been carried out for the Type

M3 section using input parameters provided by Whittle. (Pers. Comm.) 3. The main features of

this revised analysis are as follows:

1. The undrained shear strength profile of the Estuarine, Marine and Fluvial clays has

been supplied directly according to Method B (c'=cu, q'=0). The revised model

parameters are listed in Table 5.

2. The Old Alluvium is also assumed to behave in undrained shearing.

3. The thickness of the lower JGP is revised to 2.6m to reflect the as-built conditions at

Type M3.

4. The revised model assumes no reduction interface shear strength (i.e. R=1, refer to

Table 2) between the cast in situ diaphragm wall and the adjacent soils.

3 Referred to in expert report by Whittle, Andrew as Method B-var 7.
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Layer RL G-'o Yt k su Friction Shear v' Ko Piezo-
(m) (kPa) (kN/m3) (m/day) (kPa) angle, Modulus, metric

[c'] < ' () G (MPa) Head,
H(m)

Fill 102.9 30.0 4.0 0.25 0.5 100.5
43 19.0 0.086 [0]

98.2 1
Upper 98.2 58 20 0 3.0 0.25 0.7 100.5
MC 16.0 8.6 x

85.6 120 10~5 25 1 103.0
F2 Clay 85.6 120 19.0 8.6 88 0 11.7 0.25 0.7 103.0

83.4 132 x10__

Lower 83.4 132 31 0 5.2 0.25 0.7 103.0
MC

75.0 189 16.8 8.6 105.0
x10-s

63.2 293 47 103.0
F2 Clay 63.2 293 8.6 x 88 0 11.7 0.25 0.7 103.0

61.6 309 20.0 10_

OA- 61.6 309 100 0 40.0 0.25 1.0 103.0
weather 20.0 8.6 x

ed 53.9 386 10-4  500 1_ _

OA - <53.9 386 8.6 x 500 0 67.0 0.25 1.0 103.0
compet 10~5

ent
JGP --- 16.0 8.6 x 300 0 108.0 0.15 -- --

10-5

Table 5: Summary of Soil Parameters used in Revised Plaxis Model

The output file of this analysis can be seen in Appendix D.

5.2 Design of the Diaphragm Wall

The bending stress was the greatest concern in the design of the diaphragm wall. Figure

21 summarizes the envelope of bending moments for the complete excavation sequence. The

maximum moment, Mmax (+) = 6.2 1MN-m/m occurs at Elevation 71.6m, while much smaller

bending moments occur at the back of the wall, Mmax ( - ) = 2.22MN-m/m at Elevation 68.3m.
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As per AASHTO Standard Specifications for Highway Bridges (14th Edition), the

required area of steel needed to resist these forces could not be designed for a 0.8m thick

diaphragm wall. Hence, the thickness of the wall must be increased in order to accommodate the

number of rebars required in the design. However, increasing the wall size (and bending

stiffness) generates even higher bending moments in the wall. An iteration process was done to

obtain the optimal wall thickness and rebar area required. The final thickness of the wall was

1.2m, and the required area of steel per meter of wall was 42757mm2/m on the near-end and

11 600m 2/m on the far-end of the wall to resist positive and negative bending moments,

respectively. The area of steel provided in the revised design was approx. 7.5 times higher for

resistance of positive bending moments and 2 times higher for resistance of negative bending

moments than the ones used in the original design. The maximum axial forces observed by the

wall were also included in the analysis and slightly decreased the design bending moments of the

wall. Please refer to Appendix E for further information on these calculations.

The total amount of rebar should be placed in the following manner to effectively resist

the bending moments:

For the entire depth of the wall, # 14 bars should be spaced every 102mm on the front face of the

wall to resist positive bending moments. On the rear face of the wall, # 9 bars should be spaced

every 102mm to resist negative bending moments for the first 19m and the last 21.5m of wall

depth. Please refer to Figure 20 for a sketch of the wall design with location of the rebars.
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Figure 20: Sketch of Proposed Reinforcement for Diaphragm Wall (Plan and Elevation)
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Figure 21: Bending Moment Envelope Diagram for a 1.2m Thick Diaphragm Wall

Figure 22 shows that the maximum deflection observed in the revised design of the

diaphragm wall is approximately 12% greater than that seen in the original design.
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Figure 22: Maximum Deflection Diagram for a 1.2m Thick Diaphragm Wail

Although increasing the wall thickness is an effective design solution, Appendix H

demonstrates that the additional cost for the Type M3 amounts to more than US$3 million.

Alternative solutions to the proposed design might have included increasing the amounts of Jet

Grout Piling (JGP) used in the design or embedding the concrete wall further into the Old

Alluvium (embedment used was 3m).

5.3 Desig-n of the Strutting System

For all practical purposes, struts in the excavation system behave like columns in a

building. Hence, buckling was the greatest concern for the design of the strutting system. The

effective or unbraced length in the x-x direction was nearly 10.1m. In the y-y direction this

length was almost half (5.5m). The struts were braced to the king post at the middle of the

excavation system on the x-x direction. Pre-loading forces were incorporated in the Plaxis model

prior to installation of the struts in order to counteract the compression forces exerted by the soil

and diaphragm wall on these members. The maximum observable axial forces in each stage of
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the excavation were extracted from the Plaxis analysis. Since these forces only reflected one

single line of struts, and the struts were spaced every 4m, the horizontal tributary area was

factored into the calculations. These forces were fairly comparable to the ones observed in the

original design. Please refer to Table 6 for a summary of the strutting system design and Table 7

for a summary of the original and revised Plaxis output strut reactions and strut member designs.

Strut Section Design Axial
Forces Capacities
(KN) (KN)

1 W14x132 1981.0 3831.5
2 W14x132 1793.2 3831.5
3 W14x159 2897.9 4647.0
4 W14x159 2840.8 4647.0
5 W14x176 3016.5 5154.4
6 W14x176 3148.6 5154.4
7 W14x193 3442.0 5697.5
8 W14x176 3075.0 5154.4
9 W14x233 4137.1 6922.9
10 W14x145 2387.0 4216.6

Table 6: Summary of the Strutting System Design

Once the maximum axial forces were identified for each strut, a design was carried out

using the AISC Manual of Steel Construction (ASD) Ninth Edition. The connections on each end

of the struts were assumed (conservatively) to be pinned connections. Since the unbraced length

on the x-x direction of the struts was greater, it was assumed to control the design. A check for

slenderness ratios on each direction was later performed in order to confirm this assumption. All

members were designed below 65% of their capacity to account for possible load increments in

the removal stage of these members. Please refer to Appendix F for further detail on the strutting

system design calculations.

-47 -



Strut Max Strut Reaction Max Strut Reaction Member Member
Original Design Revised Design Original Revised

Layer (KN/m) (KN/m) Design Design
1 376 461 H-350 W14x132
2 831 848 H-400 W14x132
3 1249 1419 2H-400 W14x159
4 1249 1391 2H-400 W14x159
5 1263 1481 2HR-400 W14x176
6 1271 1549 H-414 W14x176
7 1402 1670 2H-400 W14x193
8 1493 1486 2H-414 W14x176
9 2173 2020 2H-400 W14x233
10 1400 1142 2HR-400 W14x145

Table 7: Summary of the Original and Revised Designs for the Strutting System

5.4 Design of Waler Connection

The waler connection was designed as per AASHTO Standard Specifications for

Highway Bridges (14th Edition). The maximum strut load was used to design the strut-waler

connection and the largest size strut was used for the waler beam. For practical purposes, all

waler beams and stiffeners are to be the same size. As it was mentioned earlier, a major problem

in the original design was the under-designed waler connections. The errors in their design

caused the waler beams webs to fail in sway. The stiffener plates also failed in the original

design. The effectiveness of incorporating channel sections instead of stiffener plates was not

valid because, as previously explained, the small gain in axial load capacity came at expense of

large decrements in the ductility of the waler connection. Consequently, it was decided that a

proper design of the plate stiffeners would be sufficient to prevent vertical sway of the waler web

section. In addition, the connection was changed to a single strut-waler connection as opposed to

the splays used in the original design.

As per AASHTO specifications, the stiffener plates were designed as columns exposed to

a compression load (strut axial force) and were therefore checked to resist buckling. Four

stiffener plates were used in each waler connection (2 on each side of the waler beam web). A

strip of web was incorporated in the cross-sectional area of the calculations. This strip had to be
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equal to or less than the length contained between the stiffener plates plus 18 times the thickness

of the waler beam web.

The waler section proposed is a W14x233 with four 1-in-thick stiffener plates spaced

12in from each other (6in from each side of the concentrated strut load). Please refer to

Appendix G for further information on these calculations.

Figure 23 shows a plan and an elevation view of the revised design for the Diaphragm

Wall, Strutting System and Waler Connection for the 9th level of struts. Other strut levels have

the same waler connections but different strut member sizes.

1,2m -nd 800mm

4

800mm THICK
CONC, PACKING

-A

25,4x356mm
STIFFENER (TYP)

-n

W14x233
9TH LEVEL
STRUT (TYP)

*' W14x233
3' *WALER

BEAM (TYP)

____ '4396mm

9 REBARS #14 REBARS
EVERY 102mm EVERY 102mm

25,4x356mm
STIFF, (TYP)

1, 2m -W14x233
WALER

- BEAM (TYP)

Z14x233
9TH LEVEL
STRUT (TYP)

#9 BARS
EVERY #14 REBARS
102mm EVERY 102mm

PLAN VIEW ELEVATION VIEW

Figure 23: Diaphragm Wall and Waler Connection Detail for the 9th Level of Struts.
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6. Summary

Several valuable lessons arise from this thesis. Still, some of these lessons or

recommendations should be used on a specific project basis. Each project must be appropriately

assessed before considering these observations. In summary, these are the fundamental lessons

that can be learned from this study:

1. An effective framework of hazard identification, consequential analysis, risk reduction

strategies, and a responsive safety management should always be implemented in

construction projects in order to identify and address any potential human errors and systems

that may cause or contribute to a major catastrophe.

2. A large-scale deep excavation project has the potential to injure or to cause inconvenience to

the public and must therefore be specially managed with careful instrumentation and

monitoring.

3. There must be a continuous and visible commitment by management and workers,

accompanied with an external consultative approach, to ensuring safety and health, from the

inception of the design to the execution of the project.

4. New or unfamiliar technologies that are employed in the design of major elements of a

construction project must be thoroughly evaluated and understood before they are adopted.

Finally, it is important to remember that most structural components are designed based on

code calculations, and therefore have intrinsic redundancies built into them. These redundancies,

in terms of their load bearing capacity, are over and above the various factors of safety applied in

calculations of the capacity of each member. This robustness is a necessary and essential factor

of safety and stability in the overall context of the design, and it should not be ignored.
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Appendix A: Original Design for the Diaphragm Wall



Summarized Plaxis Output Table (Original Model)

The following data was obtained from the Plaxis Analysis output in the original model: (Please
note that this data gives the maximum forces/moments in each phase of the of the excavation
and that the 21 phases in this model are comparable to the 24 phases used in the revised
model)

Construction Max Deflections Max Mom (+) Max Mom (-) Max. Shear
Phase [mm] [kNm/m] [kNm/m] [kN/m]

1 51.2 203.6 -107.4 -243.0
2 26,3 272.4 -101.9 -240.0
3 54.3 769.6 -220.5 309.9
4 46.8 680.5 -340.3 350.5
5 75.3 1101.4 -528.6 552.3
6 65.2 857.0 -400.9 487.3
7 90.1 1294.8 -1150.5 825.8
8 82.7 1111.6 -529.1 510.5
9 106.5 1596.2 -852.9 918.5

10 97.1 1335.2 -581.9 544.9
11 114.1 1701.1 -621.3 920.2
12 105.3 1401.1 -579.6 534.2
13 117.6 1783.4 -725.2 937.4
14 107.7 1305.4 -652.6 507.1
15 114.6 1632.0 -760.8 922.9
16 107.6 987.5 -652.2 -465.6
17 107.6 885.8 -513.2 806.0
18 107.4 883.8 -512.0 -591.0
19 106.8 1050.4 -1240.1 1247.0
20 107.0 878.9 -783.2 836.3
21 107.0 1325.6 -1078.2 997.5

Overall Maximum 117.6 1783.4 -1240.1 1247.0



Diaphragm Wall Design of Main Rebars

Please note that envelope calculations for the moments were included in this design, thereby leading
in some occasions to greater moments than those shown in the summarized Plaxis output table for
the original model.

Design Data:

40 N/mm4 fc
460 N/mm"

6000 mm

800 mm

fsy
7ms

-YLF

Reinforcement Against ( +) Moment

Level d K Mmax Reqr'd As Provided As

[m bgl] [mm] KNm/m mmz mmZ
7.8 710 0.912 1209 5601.371 5864.30

12.8 710 0.889 1369 6506.757 6597.35
30.8 710 0.862 1795 8798.732 9617.47
37.3 710 0.925 1050 4796.346 5864.30
44.3 710 0.903 1326 6204.670 6597.35

Reinforcement Against ( -) Moment

Level d K Mmax Reqr'd As Provided As

[m bgl] [mm] KNm/m mmZ mmZ
5.3 710 0.916 1162 5360.1 5864.30
11.8 710 0.826 2170 11100.5 11728.62
19.3 710 0.944 800 3580.8 3753.15
24.3 710 0.872 1692 8198.7 8796.47
34.3 710 0.91 1240 5757.6 5864.30
44.3 710 0.947 761 3395.5 3753.15

18 N/mm'

400 N/mm'

1.15 mm

1.2 mm

B

h



Appendix B: Original Design for the Strutting System



Strutting System Design

Axial Loads: (Please refer to Plaxis output for more information)

Strut 1 2 3 4 5 6 7 8 9 10
Pre-load Force 200 550 650 600 700 700 800 850 800 700

Phase 1 0 0 0 0 0 0 0 0 0 0
Phase 2 200 0 0 0 0 0 0 0 0 0
Phase 3 376 0 0 0 0 0 0 0 0 0
Phase 4 23 550 0 0 0 0 0 0 0 0
Phase 5 831 0 0 0 0 0 0 0 0
Phase 6 423 650 0 0 0 0 0 0 0
Phase 7 205 1249 0 0 0 0 0 0 0
Phase 8 358 667 600 0 0 0 0 0 0
Phase 9 313 521 1249 0 0 0 0 0 0

Phase 10 351 604 648 700 0 0 0 0 0
Phase 11 357 548 560 1263 0 0 0 0 0
Phase 12 351 601 594 692 700 0 0 0 0
Phase 13 353 601 529 637 1271 0 0 0 0
Phase 14 347 607 593 651 643 800 0 0 0
Phase 15 343 616 590 592 564 1402 0 0 0
Phase 16 337 609 596 652 626 734 850 0 0
Phase 17 336 614 603 653 588 610 1493 0 0
Phase 18 333 612 599 656 622 688 879 800 0
Phase 19 333 616 605 666 622 588 765 2173 0
Phase 20 329 615 604 663 624 629 807 1649 700
Phase 21 329 618 607 667 632 632 732 1630 1400

AX Values (KN/m 376 831 1249 1249 1263 1271 1402 1493 2173 1400



Summary Table

Strut Max Strut Reaction Original Max Strut Reaction Member Member
Layer Design (KN/m) Revised Design (KN/m) Original Design Revised Design

1 376 461 H-350 W14x132
2 831 848 H-400 W14x132
3 1249 1419 2H-400 W14x159
4 1249 1391 2H-400 W14x159
5 1263 1481 2HR-400 W14x176
6 1271 1549 H-414 W14x176
7 1402 1670 2H-400 W14x193
8 1493 1486 2H-414 W14x176
9 2173 2020 2H-400 W14x233

10 1400 1142 2HR-400 W14x145

As it can be observed from the summary table above, there is not much difference between the strut forces in each model (original and revised).
Hence, the designs of the strutting system members under each model should be approximate.

However, due to the incorporation of removal phases in the original excavation design, the strut forces used in this design increased by as much as 70% in some

levels. The revised design does not include these phases and therefore cannot compare to these values. A table including all three sets of values is shown below.

Strut Max Strut Reaction in Original Max Strut Reaction in Max Strut Reaction Revised
Layer Design Including Excavation Original Design Including Design (KNlm) (Excavation

Phases Only (KNlm) Removal Phases (KNlm) Phases Only)
1 376 568 461
2 831 1018 848
3 1249 1816 1419
4 1249 1635 1391
5 1263 1459 1481
6 1271 1322 1549
7 1402 2130 1670
8 1493 2632 1486
9 2173 2173 2020
10 1400 1400 1142

The sizes of the strut members used in the original design can be seen in Appendix B of the thesis.



Appendix C: Original Design for the Waler Connection



H-400 (HR-400)
Check Web Buckling And Bearing Resistance
(Not applicable for angles.)

(Ref: BS5950:Part 1:1990)

.i) Design Data: (Input data are shown boxed.)
..11) Design Force:

Factored reaction load F, = kN at end of beam.
Factored reaction load F, = k at interior of beam

..2) Trial Steel Section: H-400x400x13x2I

.1.3) Steel strength: py = 265 N/mm2

.1.4) Properties of section:
A = 218.7 cm2  t'= 13 mm d= 314 mm
D = 400 mm 11= 21 mm w,= 172 kg/m
B = 400 mm r= 22 mm

.1.5) A = 2.5*d/t. = 60.3846
.ii) Buckling resistance of the unstiffened web:

.ii.1) Compressive strength p, = 213.231 N/mm2

.ii.2) check at end of beam
Stiff bearing length bi = mm

n' = 0.5D =N/A mm
Buckling resistance P, = (b1+ ql1)tpe = N/A

(e.g., bearing plate, end of strut, etc.)

O.K.t
.ii.3) Check at Interior of beam

Stiff bearing length bi = 400 mm (e.g., bearing plate, end of strut, etc.)
I w 0.5*D'2 = 400 mm

Buckling resistance P. = (bl+ 7ii)t,.N = 4Z17, kN < Fx N.G.? Provide stiffeners.

Web stiffener plates required.

.II) Bearing check of the unstiffened web
Required A, a FA/p, N/A mm2

Required Ab, 2 F/p, = 10550.9 mm2

.li.1) Check at end of beam
Actual Ah,= [b1 + 2.5(iq + r)t. = N/A mm2

.Mii.2) Check at interior of beam
Actual A, = [1 + 5(t+ r)t= 7995.0 mm

at end of beam.
at interior of beam.

O.K.I

N.G.? Provide stiffeners.

. Web stiffener plates required to increase bearing area.

Developed by: DPMundo UserD: Nishimatsu Const. Co., Ltd.

[D - 2(, + r))

Source: E72 Pg 74-10

5.6 Design calculations for waler connection showing the error in stiff
Figure . bearing length (extract from E72).



4.5 Check against web buckling and bearing

Design load

The factored strut reaction (Nu) in below table are derived from P.4-25.

Factored max. force Max. Bearing Stiffener

Waler Member Strut in one strut member load TYPE* Plate

Nu (kN/No) Pbr (kN/No) (mm)

H-294H-300, HR-300 1979 1979

H-344 2799 2799 1 2X 12

H-350, HR-350 Single 2204 2204

H-350 (Ml1-P, M3-1s) 2891 2891 E4 X 12

H-400, HR-400 5592 2796 2 -2 X 12

HR-400 (S-ial) 3630 3630 1 *4 x 12

H-400, HR-400 Double 5314 3543 3

H-4i4 Single 8784 4392 2 2 X 12

H-414 Double 6439 4293 3

* refer to the sketch below

Considering the effect of splays, the bearing load Pbr is derived as follows:

For single strut (IYPE- 1) i z .y / A- A'4'
Pbr= Nu/2 7)4& 4 7 A..

For double struts (TYPE- 2)

Pbr = 2Nu /3

5trAt

FL-- No

-TYPE-k

0~4  , 4 4

II
Strut Strut

SpI& y Wjr
W Wler 1777

t Fr

A/ 2 z

TYP- 2 TYPE-3

The calculation results are shown in P. 74-2 ~ 74-19.

Source: E72 Pq 74-1

Figure 5.7 Design calculation for waler connections (extract from E72).
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TEMPORARY WORKS-DRAWING CHANGE NOTIFICATION
N.C JV CONTRACT: Circle Line Sta e I C824
Date: 1109 Ppared By: I },45 -g
Drawing Change Notifkc Number: DC/824/NCHI

Orawin umbeI W/8241 -, 2-I Revision:
The Changes wil be Incorporated Into: 1. Same Drawing New RevIsIon:

2. AsBuilt Dmwin - Same Number
3. New Drawin:

Descaption of Amendment:

(U 00.(7 V
AMached Sketch(es) Number-

Reason for Amendment:

Other RemarkslComnents:

Aprol tausAproeo No d- Reason Sin Date
NLC P!n Nlnr
NLC Temp Workt PEIZ

Source: Maunsell ER Pg 82

Figure 5.10 Temporary Works - Drawing Change Notification for change from
stiffener plates to C-channel.



Design of Web Stiffeners against Web Buckling

Waler W Strut Factored reaction lead Buckling resistance I,-P.
FP. Odw (N)

Single 2796 578 1
R-400, HR-400 2218 - -- -

Double 3543 .. .1325 2

H1 single 4392 892 2

Double 4293 798 _!_£

* refer to C8241DEMsIC9104D P. 74-10, 74-14, 74-16, 74-18
(1) TYPE-I

Provide 2[-160X75X8.6x10

Ap2X23.71=47.42cm2

ry=6.03cm

rzy2.22cm

L.=414-2X21=3.8=3n

. Z =L./rA,5.9 ,AYMLAry=16.1

p.='64Nhnms (BW5950 7ble27(c))

P.=pc -A=264X47.42X 102w 12S2kN>F-P.,=57gkN

RA= Ec= 0.375wL

RB = .26wL-
2[-150X 76 X6.5X 10

RA+Ro= 0.375X2796 1049N<Pc =1252kN
-Web .1

RD 1.25X2796/2 =1748kN<Pw= 2218kN

Source: Maunsell ER Pg 83

Figure 5.11(a)

OK!

OK!

OK!

Design calculations for C-channel connection in Drawing Change
Notification.



(2) TYPE-2

Provide 2[-200 X80X7.5X11

A=2X3L38=62.66cm-

r=7.i.8cm

r.,2.32em

L.=40.0-2X2.4=8c.8m -

A x=1Dru=4.5 , A y=Lvhy=16.4

pe-266N/mm (BS5960 Table27(c)

Pe=pe - A=-265X62.GX100=I88kN>F%-P=1325kN OK!

- - A

W -

RA=Rc=.875wL

RTa 1.25wL

S2o-2x8ox1.5x11

PA+Ro-0,876 4M 1647kN <P= 1660kN OK!

-Web
Rx = L2 X4892/2=2746kN<Pw=3500kN . -OKI

Source: Maunsell ER Pg 84

Figure 5.11 (b) Design calculations for C-channel connection in Drawing Change
Notification.



Appendix D: Plaxis Output/Revised Analysis



Summarized Plaxis Output Table (Revised Model)

The following data was obtained from the Plaxis Analysis output in the revised
model: (Please note that this data gives the maximum moments in each phase
of the of the excavation and that the 24 phases in this model are comparable
to the 21 phases used in the original model)

Construction Max Deflections Max Mom (+) Max Mom (-)
Phase [mm] [kNm/m] [kNm/m]

1 2.99 10.3 13
2 2.99 10.4 13
3 7.78 152 167
4 46.3 - 587
5 23.75 637.6 557.5
6 44.59 1900.8 1135
7 39.95 1764.2 1022.9
8 57.53 2799 1411
9 54.17 2600 1357
10 71 3635.8 1896
11 67.18 3350 1808
12 86.1 4471 2222
13 81.62 4150 2080
14 99.46 5026 1452.3
15 95.63 4670 1375.4
16 113.9 5410 1452.3
17 110.3 4950 1313.4
18 123.3 5400 1177.8
19 119.68 4800 1131.7
20 125.9 5440 1233.4
21 123 5160 1102.7
22 130.98 6210 1236.6
23 128.4 5730 1243.5
24 131.6 5920 1244

Overall Maximum 131.6 6210.0 13.0



Plaxis Output Table (Revised Model)

The following data was obtained from the Plaxis Analysis output: (Please note that this data gives the force
envelope including all the phases of the of the excavation)

Elevation Max Deflections Max Mom (+) Max Mom (-) Max. Shear ( +) Max. Shear ( -)
[im] [mm] [kNm/m] [kNm/m] [kN/m] [kN/m]

102.9 14.10 0.00 0.00 0.29 -0.63
102.65 14.85 0.41 -1.26 3.81 -10.02
102.4 15.59 1.95 -5.00 8.70 -19.84
102.15 16.34 4.72 -11.18 13.55 -29.58
101.9 17.08 8.68 -19.78 17.90 -39.28
101.9 17.08 8.68 -19.78 422.17 -292.47
101.65 17.82 84.48 -91.46 412.05 -301.99
101.4 18.57 186.21 -168.35 401.46 -313.13
101.15 19.31 285.22 -248.13 390.39 -325.04
100.9 20.05 381.37 -330.94 378.87 -337.70
100.9 20.05 381.37 -330.94 379.01 -337.53
100.45 21.40 547.13 -488.12 357.74 -361.49

100 22.77 703.16 -656.54 335.34 -387.22
99.55 24.15 848.81 -836.98 311.65 -414.85
99.1 25.56 983.43 -1030.21 286.52 -444.48
99.1 25.56 983.43 -1030.21 582.27 -72.54

98.875 26.28 1046.44 -1035.54 575.85 -88.28
98.65 27.01 1106.52 -1057.20 569.56 -104.11
98.425 27.75 1163.65 -1082.40 563.40 -119.86

98.2 28.49 1217.83 -1111.11 557.38 -135.37
98.2 28.49 1217.83 -1111.11 556.77 -137.50

97.75 30.00 1318.86 -1182.81 541.09 -181.40
97.3 31.54 1410.53 -1274.57 524.93 -226.62

96.85 33.12 1492.79 -1387.05 508.36 -273.46
96.4 34.73 1565.63 -1520.97 491.40 -322.24
96.4 34.73 1565.63 -1520.97 491.64 -321.82
96.2 35.46 1595.48 -1587.56 484.99 -344.31
96 36.20 1623.91 -1658.74 478.14 -367.36

95.8 36.95 1650.93 -1734.58 471.11 -391.01
95.6 37.70 1676.51 -1815.18 463.91 -415.27
95.6 37.70 1676.51 -1815.18 1158.37 -0.34
95.35 38.67 1706.49 -1691.86 1128.41 -0.33
95.1 39.65 1734.25 -1576.40 1097.67 -0.33
94.85 40.64 1759.79 -1469.05 1066.21 -0.32
94.6 41.65 1783.10 -1374.17 1034.03 -0.32
94.6 41.65 1783.10 -1374.17 1034.14 -0.32

93.975 44.21 1885.96 -1312.46 950.63 -0.31
93.35 46.85 2105.09 -1308.92 862.75 -95.96

92.725 49.55 2294.34 -1366.92 770.50 -199.10
92.1 52.32 2453.45 -1489.85 673.92 -307.91
92.1 52.32 2453.45 -1489.85 1389.77 -4.01
91.85 53.46 2508.58 -1356.32 1347.49 -5.19
91.6 54.61 2558.92 -1271.64 1304.53 -13.59
91.35 55.77 2604.42 -1198.54 1260.93 -21.98
91.1 56.94 2645.04 -1137.29 1216.72 -30.37
91.1 56.94 2645.04 -1137.29 1216.61 -30.37

90.475 59.89 2827.27 -1037.22 1103.15 -51.38
89.85 62.89 3077.37 -1015.69 985.21 -72.52



89.225 65.92 3280.84 -1076.20 862.75 -202.15
88.6 68.99 3437.17 -1222.27 735.71 -344.28
88.6 68.99 3437.17 -1222.27 1502.50 -115.03
88.35 70.25 3486.91 -1020.86 1447.33 -123.43
88.1 71.51 3529.26 -833.84 1391.41 -131.70

87.85 72.78 3564.31 -733.42 1334.86 -139.78
87.6 74.05 3592.16 -652.02 1277.76 -147.63
87.6 74.05 3592.16 -652.02 1277.69 -147.05
87.1 76.59 3748.30 -535.45 1161.74 -162.13
86.6 79.14 3948.30 -481.95 1043.43 -175.46
86.1 81.69 4108.81 -492.99 923.32 -186.43
85.6 84.23 4231.47 -570.03 801.94 -220.76
85.6 84.23 4231.47 -570.03 1649.17 -206.17
85.35 85.52 4281.13 -359.40 1586.58 -204.96
85.1 86.80 4324.58 -165.05 1523.92 -203.34
84.85 88.08 4362.10 -136.83 1460.90 -201.58
84.6 89.36 4393.93 -142.79 1397.26 -200.00
84.6 89.36 4393.93 -142.79 1396.77 -200.36
84.3 90.88 4424.90 -149.22 1320.65 -198.17
84 92.39 4448.42 -155.07 1242.97 -197.70

83.7 93.88 4464.00 -160.74 1162.69 -199.75
83.4 95.37 4583.58 -166.62 1078.75 -205.11
83.4 95.37 4583.58 -166.62 1077.39 -207.09
83.2 96.34 4659.18 -171.12 1022.71 -215.10
83 97.32 4727.67 -175.98 966.78 -226.85

82.8 98.28 4789.00 -181.17 909.92 -242.86
82.6 99.24 4843.14 -186.65 852.42 -258.84
82.6 99.24 4843.14 -186.65 1699.14 -258.66
82.35 100.44 4901.06 -193.90 1622.14 -278.22
82.1 101.63 4947.83 -201.58 1544.62 -297.37
81.85 102.80 4983.69 -209.67 1466.63 -316.07
81.6 103.96 5008.88 -218.16 1388.27 -334.29
81.6 103.96 5008.88 -218.16 1388.19 -334.39

81.025 106.56 5026.95 -239.24 1206.70 -375.14
80.45 109.06 5190.91 -262.50 1022.91 -414.26
79.875 111.45 5331.60 -288.01 836.87 -451.88

79.3 113.73 5401.64 -315.85 648.64 -489.68
79.3 113.73 5401.64 -315.85 1384.64 -489.55

79.05 114.72 5410.84 -328.69 1298.44 -517.07
78.8 115.68 5407.07 -342.00 1211.85 -544.54

78.55 116.62 5390.54 -355.78 1124.92 -572.44
78.3 117.54 5361.44 -370.02 1037.68 -600.17
78.3 117.54 5361.44 -370.02 1037.60 -600.44
77.8 119.31 5329.85 -399.91 862.02 -654.59
77.3 120.98 5394.25 -462.22 684.90 -708.68
76.8 122.56 5396.99 -601.84 506.36 -761.85
76.3 124.05 5338.80 -745.72 326.49 -813.23
76.3 124.05 5338.80 -745.72 1765.90 -811.62
76.05 124.79 5287.85 -819.16 1671.15 -837.69
75.8 125.51 5221.53 -893.26 1576.18 -861.85
75.55 126.20 5140.42 -967.04 1481.05 -884.92
75.3 126.85 5045.09 -1039.42 1385.81 -907.75
75.3 126.85 5045.09 -1039.42 1385.72 -905.70

74.925 127.78 4917.74 -1172.56 1242.53 -713.45
74.55 128.62 4949.01 -1243.32 1098.69 -521.84

74.175 129.37 5049.21 -1257.19 954.22 -349.38
73.8 130.02 5359.47 -1235.32 809.16 -221.55



73.8 130.02 5359.47 -1235.32 1419.99 -263.59
73.425 130.60 5635.46 -1211.67 1268.60 -314.39
73.05 131.06 5856.59 -1195.35 1116.42 -365.27
72.675 131.40 6022.41 -1186.26 963.48 -415.34

72.3 131.61 6132.43 -1184.34 809.83 -464.82
72.3 131.61 6132.43 -1184.34 809.66 -466.55

71.575 131.58 6212.23 -1279.09 510.00 -558.01
70.85 130.96 6133.53 -1423.47 206.41 -657.77
70.125 129.72 5915.24 -1605.07 17.59 -774.51

69.4 127.85 5728.53 -1925.53 9.77 -891.74
69.4 127.85 5728.53 -1925.53 13.80 -865.91

69.125 126.98 5623.42 -2060.26 35.78 -756.79
68.85 126.03 5538.29 -2155.60 71.20 -642.66
68.575 125.00 5470.80 -2209.95 123.05 -523.24

68.3 123.89 5418.71 -2222.04 179.46 -402.76
68.3 123.89 5418.71 -2222.04 179.47 -414.47

67.925 122.24 5374.09 -2175.21 283.04 -244.62
67.55 120.45 5367.35 -2062.98 375.40 -96.16
67.175 118.51 5392.78 -1905.28 463.86 -0.14

66.8 116.43 5441.61 -1722.67 499.34 -0.14
66.8 116.43 5441.61 -1722.67 487.19 -0.13
65.9 110.80 5405.68 -1326.73 392.57 -228.29
65 104.29 5116.69 -1015.88 299.07 -475.79

64.1 96.96 4578.69 -787.10 209.48 -734.96
63.2 88.88 3796.97 -636.64 126.57 -1000.14
63.2 88.88 3796.97 -636.64 135.30 -976.65
62.8 85.08 3395.97 -634.37 120.35 -1027.23
62.4 81.18 2976.24 -639.60 106.96 -1070.14
62 77.18 2540.43 -646.29 96.82 -1107.22

61.6 73.10 2090.96 -652.18 91.60 -1140.31
61.6 73.10 2090.96 -652.18 103.76 -1093.60
60.85 65.29 1341.93 -669.50 191.32 -868.14
60.1 57.34 805.55 -506.39 319.95 -605.57
59.35 49.31 399.09 -236.50 384.80 -480.14
58.6 41.23 0.00 0.00 185.31 -666.11

Overall Maximum 131.61 6212.23 -2222.04 1765.90 -1140.31



Bending Moment Envelope (Max Moments)
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Appendix E: Proposed Design for the Diaphragm Wall



Diaphraam Wall Design

Conversion Values

1 KN = 0.224809 kips

1 MPa = 014503 ksi

1 m = 328084ft

Plaxis Analysis Output Values (Force Envelopes)

Maximum Moment (+)

Maximum Moment (-)

Negative Rebar Depth (Top)

Negative Rebar Depth (Bottom)

Maximum Axial Force (P)

= '8.21 MN-m/m

= 2.22 MN-m/m

= 17.3m

S19.9 m

= 727 KN/m

1396 k-tft

499 k-ft/ft

56.8 ft

65.3 ft

50 klft



Transverse Steel Reinforcement

Rebar design as per AASHTO Standards

Notes and Assumptions:
English System was adopted for these calcualtions. Converted values to Metric System are shown in thesis
All calculations are done per foot of length of wall
Please refer to Plaxis output for further information on the analysis

14 Steel Bars

# 9 Steel Bars

Wall Elevation
NTS

I-F
d2 = 1066.7 mm

, ,.
9 Steel Bars

0.

I-
d1 = 909.32 mm

J

304.8 mm (1ft)

# 14 Steel Bars

t = 1200 mm

Wall Plan
NTS

Reinforcement at near-end of diaphraum wall (positive moment):

INPUT VALUES

Use grade 60 steel reinforcing bars

= 29000 ksi
= E ~ ksi
= 60 ksi
= I 4 ksi
= in

2in
= 1.2 m

Choose Bar Size # :

OK>1.5*db

18.6 m

4.4 m

21.3 m

K
VI

Es
Ec
fy
f'c
cover length
Width (b)
Wall Thickness

Bar diameter
Bar spacing
Number of rows

47.2 In

in



OUTPUT VALUES

Wall Section Properties:

= 4.14E+07 KN/m
= 4.96E+06 KN mA2/m

Loads/Moments obtained from Plaxis analysis:

Positive Bending Moment (Mwal) =

Max. Axial Force (P) =

Check Cracking Moment (Mcr.ck):

Depth (d1)
xbar (from left)
lg= b*(tott)/12
Yt
fr
Mcrak = fr*lg / Yt

1.
2

*Mcrack

1396 k-ft / ft of wall (Absolute value)
50 k / ft of wall (Compression)

AASHTO 8.13.3

35.8
23.6

105449
23.6

0.5
176

in
in
in4

in
ksi
k-ft

212 k-ft

(Distance from N.A to edge in tension)
AASHTO 8.15.2.1.1

AASHTO 8.17.1.2

Required Area of Reinforcing Steel:

fs
fc
n = Es/Ec
r = fs/fc
k = n/(n+r)
j= 1-k/3

dr-xbar

24 ksi
1.6 ksi

6
15

0.28
0.91

12.2 in

Ma = Mw,1 + P*(drxbar)

Design Moment (Md)

Reqr'd As = [Md/(fs*j*dl) - P/(fs)]

Actual A.(pr fi)

1447 k-ft / ft of wall Ma>1.2*Mcrack

1447 k-ft / ft of wall

20.20 in2 / ft of wall

[ 2in2 / ft of wall OK > reqr'd

Note:

Due to a varying moment, # 14 bars spaced every 4-in might not be needed for the entire depth of the wall.
However, because significant depth of the wall would need this amount of reinforcement, it was assumed that
these rebars would run the entire depth of the wall. Please refer to Plaxis output for more information on the
moment diagram of the diaphragm wall.

EA
El
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Reinforcement at far-end of diaphraom wall (negative moment):

INPUT VALUES

Choose Bar Size #:

Bar diameter
Bar spacing
Number of rows

OUTPUT VALUES

Negative Bending Moment (Mwag)

P (Axial Force of Wall)

Required Area of Reinforcing Ste

Depth (d2)

xbar (from right)

d2 - xbar

Ma = Mw 11 + P*(d2-xbar)

Design Moment (Md)

Reqr'd A.= [M/(f,*j*d2) - PW(8)]

Actual As (pr ft)

499 k-ft / ftw11

50 k / ft of wall (Compression)

= 42.0 in

= 23.6 in

= 18.4 in

= 575 k-ft /ft of wall

= 575 k-ft /ft of wall

S548 in2 / ft of wall

S5.96 in2 / ft of wall

Ma>1.2*Mcrack

OK > reqrd

Note:
Due to a varying moment, # 9 bars spaced every 4-in are needed only at the top and bottom of diaphragm wall.
Please refer to Plaxis output for more information on the moment diagram of the diaphragm wall.

However, we still need to add the development length to the far-end of the reinforcing steel bars.

n
1125 in

4in OK>1.5*db
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Development Lenath

# 9 Bars:

L'd(ac) = .04*Ab*fy/(f'c)" 2

Factor

Ld (development length)

Lap Splices:

Ld(basic) = .04*Ab*fy/(fc)1/2

Factor

Ld (development length)

Standard Hooks:

Lhb = 1200*dbfe)1/2

90-deq Hooks:

Factor

-dh (development length)

Length of hook (12*db)

AASHTO 8.25

37.7 in

1.4

53 in

AASHTO 8.32.3

37.7 in

1.3

50 in

AASHTO 8.29

21.3 in

07f

15 in

AASHTO 8.25.2

AASHTO 8.25.4

AASHTO 8.32.3.1

AASHTO 8.29.3.4

OK

13.5 in

Conclusion

From the previous analysis transverse reinforcing steel bars should be placed in the following manner:

a) For the entire depth of the wall use # 14 bars spaced every 4-in on the near-end of the wall to resist positive bending moments.

b) For the first 62 ft of wall depth, use # 9 bars spaced every 4-in on the far-end of the wall to resist negative bending moments.

c) For the last 70 ft of wall depth, use again # 9 bars spaced every 4-in on the far-end of the wall to resist negative bending moments.



Appendix F: Proposed Design for the Strutting System



Strutting System Design

Notes and Assumptions:
English System was adopted for these calcualtions. Converted values to Metric System are shown in thesis

Axial Loads: (Obtained from Plaxis output)

Strut 1 2 3 4 5 6 7 8 9 10
Pro-load Force 200 550 650 600 700 700 800 850 800 700

Phase1 0 0 0 0 0 0 0 0 0 0
Phase 2 0 0 0 0 0 0 0 0 0 0
Phase 3 0 0 0 0 0 0 0 0 0 0
Phase4 0 0 0 0 0 0 0 0 0 0
Phase5 200 0 0 0 0 0 0 0 0 0
Phase6 461 0 0 0 0 0 0 0 0 0
Phase 7 73 550 0 0 0 0 0 0 0 0
Phase8 147 848 0 0 0 0 0 0 0 0
Phase9 83 610 650 0 0 0 0 0 0 0

Phase 10 256 516 1419 0 0 0 0 0 0 0
Phase11 178 510 893 600 0 0 0 0 0 0
Phase 12 264 367 924 1391 0 0 0 0 0 0
Phase 13 216 810 422 891 700 0 0 0 0 0
Phase 14 232 356 661 960 1481 0 0 0 0 0
Phase 15 218 389 689 836 1018 700 0 0 0 0
Phase 16 215 368 572 714 1138 1549 0 0 0 0
Phase 17 214 382 619 725 986 1063 800 0 0 0
Phase 18 208 388 591 644 878 1094 1670 0 0 0
Phase 19 211 388 612 681 898 1004 1115 850 0 0
Phase20 211 390 612 663 849 934 1107 1486 0 0
Phase 21 212 388 614 677 877 958 1036 973 800 0
Phase 22 209 395 624 674 844 883 918 1230 2020 0
Phase 23 210 394 624 679 858 907 942 1100 1592 700
Phase 24 208 395 626 681 855 890 883 1037 1752 1142

MAX Values (KN/m) 461 848 1419 1391 1481 1549 1670 1486 2020 1142
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As per AISC Allowable Stress Design Standards

2 3 (1'2+3)

Strut Trib. Width Temp. Effect Design Pa = Design
Layer Max Strut Reaction (KNIm) (m) (KN/nos) Forces Forces (kips)

1 461 4.0 137 1981 445

2 848 2.0 97.2 1793.2 403
3 1419 2.0 59.9 2897.9 651
4 1391 2.0 58.8 2840.8 639
5 1481 2.0 54.5 3016.5 678
6 1549 2.0 50.6 3148.6 708
7 1670 2.0 102 3442 774
8 1486 2.0 103 3075 691
9 2020 2.0 97.1 4137.1 930
10 1142 2.0 103 2387 537

CL Strut (king post bracing)

Lx= 33 ft
F-. ~1

ksi

8 ft

ASD 5-135

ASD Table C-50
[using MAX(KLx/rx,Kly/ry)]

Strut Section rx (in) ry (in) KLx/rx KLy/ry Area (inA2) Pa (kips) fa (ksi) Fa (ksi) fa/Fa

1 W14x132 6.28 3.76 63 58 38.8 445 11.5 22.2 0.52
2 W14x132 6.28 3.76 63 58 38.8 403 10.4 22.2 0.47

3 W14x159 6.40 4.00 62 54 46.7 651 14.0 22.4 0.62

4 W14x159 6.40 4.00 62 54 46.7 639 13.7 22A 0.61

5 W14x176 6.43 4.02 62 54 51.8 678 13.1 22.4 0.59

6 W14x176 6.43 4.02 62 54 51.8 708 13.7 22.4 0.61

7 W14x193 6.48 4.05 61 53 56.8 774 13.6 22.6 0.60

8 W14x176 6.43 4.02 62 54 51.8 691 13.3 22A 0.60

9 W14x233 6.64 4.10 60 53 68.5 930 13.6 22.7 0.60

10 W14x145 6.33 3.98 63 54 42.7 537 12.6 22. 0.57

Summary Table in Metric System

Strut Section Design Axial
Forces (KN) Capacities (KN)

1 W14x132 1981.0 3831.5
2 W14x132 1793.2 3831.5
3 W14x159 2897.9 4647.0
4 W14x159 2840.8 4647.0
5 W14x176 3016.5 5154.4
6 W14x176 3148.6 5154.4
7 W14x193 3442.0 5697.5
8 W14x176 3075.0 5154.4
9 W14x233 4137.1 6922.9
10 W14x145 2387.0 4216.6

Buckling Check:

Fy
K
Lx
Ly

I-



Appendix G: Proposed Design for the Waler Connection



-. - . uiiu. - mu mm -

Waler Connection Design

Notes and Assumptions:
English System was adopted for these calcualtions. Converted values to Metric System are shown in thesis

Calculations done as per AASHTO Standards
Steel waler beams are the same size as the largest connecting strut

High strut reaction force (P) will cause waler beam web to sway (see figure below):

an4-- Strut Force (P)

Waler Beam Cross-Section
NTS

To prevent this failure stiffner plates need to be incorporated:

Diaphragam Wall

Strut Force (P)

Waler Beam

Waler Stiffners

At A

Wall Elevation
NTS

Waler Beam
Strut Force (P)

Waler Stiffners (bottom)

I II*IK

Section A-A
NTS



Waler Stiffners Design

Max. Strut Force (P)

Waler beam properties:

Yield Strength (Fy)
Length of Waler Beam
Waler Beam Size
Beam Depth (D)
Flange width (bf)
Flange thickness (tf)

Web thickness (t,)
Stiffner spacing (do)
Strip of web (b)

AASHTO 10.34.6 (Bearing Stiffners)

930 kips ( 4137.1KN )

50 ksi
19.7 ft

W14x233
04 in

15.89 in
1.72 in

1.07 in
12 in
31 in

( 6m )

OK < 1.5*D

P

B IB

Waler Beam Elevation
NTS

Check for buckling of stiffner plate:

Thickness of stiffner
Width of stiffner (w)
Length of sitiffner (L)
Moment of Inertia (Ix)
Bearing Area (Ab)

Radius of gyration (rx)
Allowable Stress (Fa)
Actual Stress (fa) = P/Ab

= ~ 1in
= 7.41 in
= 12.6 in
= 138.8 inA4
= 63.1 inA2
= 1.48 in
= 23.5 ksi
= 14.7 ksi

OK > 0.76 in

AASHTO Table 10.32.1A
OK < Fa

P""

b 1 in

Section B-B
NTS



Appendix H: Cost Analysis



Cost Analysis

The following are the cost increments associated with the proposed design:

Notes and Assumptions:

1. For practicality, only the increments of the costs associated with the diaphragm wall are included, since the changes made to the design of the
strutting system should not have a strong impact on the cost of the original design.

2. Unit costs include all fringe benefits, taxes and insurance on labor (35%), general conditions and equipment (10%), and sales tax (5%).

3. Unit costs are the standar used in the US. It was assumed that these costs should not vary significantly in Singapore

Excavation Cost

Fill

Depth = 4.7 m
Length = 33 m
Thickness = 0.4 m (increased thickness of the diaphragm wall)

Total Volume = 62.04 m3 81 CuYd

Price per CuYd

Total Cost

Estuarine Clay (Soft Clay)

Depth
Length =
Thickness =

Total Volume =

1.8 m
33 m

0.4 m

23.76 m3

Price per CuYd

Total Cost

$35.9

= $2.915

31 CuYd

$45.8

$9424

Marine Clay (Upper and Lower - Soft Clay)

Depth = 31 m
Length = 33 m
Thickness = 0.4 m

Total Volume = 409.2 m'

Price per CuYd

Total Cost

535 CuYd

$45.8

$24,532



Fluvial Clay (Firm Clay)

Depth =
Length =
Thickness =

Total Volume =

Old Alluvium- SW2 (Hard - Sands & Clays)

Depth
Length
Thickness

Total Volume

Total Excavation Cost

Mobilization Factor

Total Cost for Excavation & Mobilization

= $36,943

5%

= | $38,790

3.8 m
33 m

0.4 m

50.16 m3

Price per CuYd

Total Cost

66 CuYd

$64.3

$4.217

3 m
33 m

0.4 m

39.6 m3

Price per CuYd

Total Cost

52 CuYd

$74.4

$3,855



Material Costs

Concrete:

Wall Depth
Wall Length
A Thickness

Total Volume

44.3 m
33 m

0.4 m (increased thickness of the diaphragm wall)

584.76 m3  
= 765 CuYd

Price per CuYd = $110.4

Total Cost for Concrete = $84,465|

Reinforcing Steel Bars:

Positive Moment (near-end)

Original Design (Please refer to Appendix A) Revised Design

Area of Steel = 0.33614209 m 2  Area of Steel = 0.056977 m2/m = 26.92 in2/ft
Rebar Depth (already included in area of steel) Rebar Depth = 44.3 m
Wall Length = 33 m Wall Length = 33 m

Total Volume = 11.09 m3  Total Volume = 83.29 m3

15 CuYd = O9CuYd

Negative Moment (far-end)

Original Design (Please refer to Appendix A) Revised Design

Area of Steel = 0.275622257 m2  Area of Steel = 0.012624 m2
/m = 5.96 in2/ft

Rebar Depth (already included in area of steel) Rebar Depth = 39.9 m
Wall Length = 33 m Wall Length = 33 m

Total Volume = 9.10 m3  Total Volume = 16.63 m3

12 CuYd =22 CuYd

Total Rebar Volume in Original Design

Total Rebar Volume in Revised Design

Volume Difference (Revised - Original)

Specific Weight of Steel

Total Increased Steel Rebar Weight

Price per Ton

Total Cost for Steel Reinforcement

26 CuYd

131 CuYd

104 CuYd

6.615 Tons/CuYd

690 Tons

$2,027

$1,398,4651



Summary of Cost Increment with Proposed Design

Total Cost for Excavation & Mobilization = $38,790

Total Cost for Concrete = $84,465

Total Cost for Steel Reinforcement = $1,398,465

Cost Increment (per excavation side) = $1,521,720

Cost Increment under Revised Design = $3,043,439


