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Abstract

We propose a simple and unified approach for a posteriori error estimation and adaptive mesh
refinement in finite element analysis using multiresolution signal processing principles. Given a se-
quence of nested discretizations of a domain we begin by constructing approximation spaces at each
level of discretization spanned by conforming finite element interpolation functions. The solution
to the virtual work equation can then be expressed as a telescopic sum consisting of the solution
on the coarsest mesh along with a sequence of error terms denoted as two-level errors. These error
terms are the projections of the solution onto complementary spaces that are scale-orthogonal with
respect to the inner product induced by the weak-form of the governing differential operator. The
problem of generating a compact, yet accurate representation of the solution then reduces to that of
generating a compact, yet accurate representation of each of these error components. This problem
is solved in three steps: (a) we first efficiently construct a set of scale-orthogonal wavelets that form
a Riesz stable basis (in the energy-norm) for the complementary spaces; (b) we then efficiently esti-
mate the contribution of each wavelet to the two-level error and finally (c) we select a subset of the
wavelets at each level to preserve and solve exactly for the corresponding coefficients.

Our approach has several advantages over a posteriori error estimation and adaptive refinement
techniques in vogue in finite element analysis. First, in contrast to the true error, the two-level errors
can be estimated very accurately even on coarse meshes. Second, mesh refinement is carried out by
the addition of wavelets rather than element subdivision. This implies that the technique does not
have to directly deal with the handling of irregular vertices. Third, the error estimation and adaptive
refinement steps use the same basis. Therefore, the estimates accurately predict how much the error
will reduce upon mesh refinement. Finally, the proposed approach naturally and easily accomodates
error estimation and adaptive refinement based on both the energy norm as well any bounded linear
functional of interest (i.e., goal-oriented error estimation and adaptivity).

We demonstrate the application of our approach to the adaptive solution of second and fourth-
order problems such as heat transfer, linear elasticity and deformation of thin plates.
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Chapter 1

Wavelets in computational modeling

Think globally, act locally.

- Lloyd Trefethen, Spectral Methods in Matlab.

1.1 Chapter overview

In this introductory chapter, we provide a historical overview of the application of wavelets

to the solution of partial differential and boundary integral equations. We then briefly

define the goals and scope of our research and describe how it relates to (and differs from)

the work of other researchers in the area. The final section of this chapter provides an

overview of the contents of the rest of this document.

1.2 A bit of history

The basic principle behind multiresolution analysis is to decompose data sampled at a

fine resolution into a low frequency component (the "average") that captures the global

behavior of the signal and a set of high-frequency components (the "details") that capture

local variations. In most cases of interest, multiresolution analyses possess the perfect

reconstruction property [42]: on adding all the details to the coarse representation, one

exactly recovers the original signal. The use of multiresolution techniques for the efficient

representation of data stems from the fact that the detail coefficients are typically large

14



only near singularities in the signal such as such as edges (in the case of images) and

shocks and transients (in the case of solutions to PDEs) and hence one can obtain a compact

representation of the signal simply by preserving the subset of details that are large.

Although wavelets, filter banks and other concepts from multiresolution analysis have

traditionally been the preserve of signal and image-processing applications, it is clear that

their inherent hierarchical and adaptive nature also offers significant advantages in compu-

tational modeling. There have therefore been a number of efforts in recent years to harness

the power of wavelets for the efficient solution of partial differential and boundary inte-

gral equations. For instance, Beylkin et al. [13] and Alpert et al. [3] proposed the use of

compactly supported wavelet constructions such as those due to Daubechies [23] for the

fast solution of first and second-kind boundary integral equations; Amaratunga et al. [6]

developed several techniques based on the use of compactly supported wavelets for the

efficient solution of one and two-dimensional boundary value problems. They also demon-

strated the application of the adapted wavelet constructions of Dahlke and Weinreich [21]

for the development of multilevel solvers of optimal storage and computational complexity

[50] and proposed the wavelet extrapolation technique for the construction of orthogonal

wavelets on bounded domains [5].

The primary disadvantage of many of the computational methods based on the use

of classical wavelet constructions such as the orthogonal wavelet constructions due to

Daubechies [23] or the biorthogonal constructions of Cohen et al. [19] is that these wavelets

are invariant under translation and dilation. They are therefore best suited for the analy-

sis of regularly-sampled one-dimensional signals or data which can be decomposed into

a tensor product of several one-dimensional signals (such as images). Moreover, many of

the classical wavelet basis functions used in signal processing applications do not have a

closed-form representation and hence the accurate evaluation inner-products of these basis

functions requires special tricks as described for instance in [34]. In summary therefore,

the development of solution techniques for differential or integral equations over irregular

discretizations of complex, bounded domains using the above-mentioned "first-generation"

[45] wavelet constructions is an extremely challenging proposition.

Parallel to the advances in wavelet theory has been the development of hierarchical ba-
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sis methods [46, 51, 52, 53] in finite element modeling. The basis functions in this frame-

work span the same space of functions as traditional finite element interpolation functions

(such as those described in Bathe [10]) except that they possess many desirable stability

properties and have found several applications in finite element modeling, such as the de-

velopment of fast iterative solvers [7, 8] and accurate a posteriori error estimators [9].

It may be shown (see Yserentant [51, 52]) that a hierarchical basis decomposition is

an extremely elementary multiresolution analysis of the underlying Sobolev space of func-

tions. In fact, hierarchical basis functions were termed by Sweldens as "lazy wavelets"

[45] since they do not possess many of the desirable properties that characterize classical

wavelet constructions such as vanishing polynomial moments or orthogonality. An advan-

tage that they do possess however is that they can be constructed on complex geometries

with relative ease and are piecewise polynomials and hence inner-products of hierarchical

basis functions may be computed using simple quadrature rules.

It was shown recently that the dichotomy between wavelets possessing properties such

as orthogonality and vanishing moments (but confined to regular, one-dimensional grids)

and those that can be constructed on complex geometries (but without many desirable char-

acteristics) can be bridged by the use of sophisticated construction techniques such as the

lifting scheme of Sweldens [45], the stable completion technique of Carnicer, Dahmen and

Pefla [16] and their variations (such as the orthogonalization procedure of Lounsberry et al.

[35] and the wavelet-modified hierarchical basis method of Vassilevski and Wang [48, 49]).

These modern techniques have enabled the development of "second-generation" wavelets

[45] that can be constructed on irregular discretizations, bounded intervals and over com-

plex geometries but which at the same time are endowed with several desirable properties

such as orthogonality, vanishing moments and regularity. The fundamental idea behind

these methods is to start with a rudimentary multiresolution analysis (such as a hierarchi-

cal basis decomposition) and then customize the existing wavelets such that the resulting

wavelets also form a valid multiresolution analysis and at the same time possess the prop-

erties desired.

In recent years second generation wavelets have found a multitude of applications in

practical computational modeling. For example, Dahmen and collaborators (see for in-
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stance the review by Dahmen [22] and references therein and Cohen, et al. [18]) have devel-

oped efficient techniques for the solution of partial differential and boundary integral equa-

tions using spline wavelets constructed on the unit interval. Similarly, the wavelet-modified

hierarchical basis method of Vassilevski and Wang [48] has been used to develop fast iter-

ative solvers for finite element systems. More recently, Amaratunga and Castrill6n-Candis

[4, 17] have developed sparsification techniques based on second-generation wavelets for

boundary integral equations on complex geometries and D'Heedene et al. [25] have demon-

strated the construction of operator-orthogonal wavelets using Lagrangian finite element

interpolation functions for the case of second order operators in one and two dimensions.

1.3 Motivation and the big picture

With rapid increase in computing power it has become possible to solve large finite element

problems with thousands or tens of thousands of unknowns in an extremely short period of

time (of the order of a few minutes) even on inexpensive off-the-shelf workstations. One

may therefore be tempted to conclude that adaptive techniques in practical finite element

analysis may no longer be as relevant as they were a few years ago.

However, exactly the opposite is observed in practice: with enormous computational

power at their disposal, finite element practitioners are now able to construct extremely

large and highly accurate finite element models of physical systems with perhaps millions

of unknowns. Even with so much computing power available, one is often very interested

in getting the most "bang for the buck", i.e., how must one discretize the underlying math-

ematical model so that the resulting answer is most accurate for a given number of degrees

of freedom? We believe that the only clear answer to this fundamental question is provided

by the use of efficient and accurate error estimation and adaptive refinement techniques.

It is further clear that the last word in this regard is yet to be written (see for example the

concluding section of the review article by Gratsch and Bathe [33]). This is because a

posteriori error estimators typically used in finite element analysis (such as the explicit,

implicit and recovery-based estimators [1]) have several shortcomings; for example their

accuracy often depends quite strongly on the quality of the initial mesh and the use of overly
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coarse meshes can produce very misleading results. Moreover, many of the classical error

estimation techniques were developed to estimate the error in the energy norm. Hence,

these methods might not be ideally suited to more general problems, such as the problem

of goal-oriented error estimation, where one interested in estimating the error in a given

linear functional of the solution. Apart from the problem of estimating the error in a given

mesh, techniques for adaptive mesh refinement used in contemporary finite element analy-

sis themselves have several disadvantages. For example, adaptive mesh refinement based

on the subdivision of elements leads to geometric artifacts known as irregular vertices that

must be handled using procedures such as the imposition of multi-point constraints or green

refinement [7]. These specialized techniques are typically formulated for a specific class of

elements and can become extremely cumbersome to implement for several refinement lev-

els and higher order interpolation functions such as those due to Bogner et al. [14]. We can

therefore safely conclude that there is indeed a lot of scope for the development of efficient

and reliable error estimation and adaptive refinement techniques that are, in addition, easy

to implement and work across the board for a broad category of problems (including goal-

oriented analysis) and finite element interpolation functions (i.e., not just piecewise linear

Lagrangian finite elements). This, in essence, is the starting point of our investigations.

The primary message of this thesis is that adaptive finite element analysis is essentially

a signal compression problem where the "signal" to be compressed is the solution to the

underlying partial differential or boundary integral equation. The solution can then be de-

composed using second-generation wavelets into a component on the coarsest level mesh

(representing the average or global behavior) and a number of detail components (which

are termed two-level errors and represent the local variations in the solution between two

successive levels of refinement). The error estimation algorithm then computes efficient

estimates of these two-level error components and the adaptive refinement process then

constructs a compact representation of the same by retaining only those wavelets that con-

tribute significantly to a given functional of interest.

There are several advantages to posing the problem of adaptive mesh refinement as a

signal-compression problem as done above. For one, estimating the two-level error in a

mesh is inherently much more accurate than estimating the true error (since the latter be-
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Figure 1-1: An overview of how our research relates to the work of other researchers.

longs to an infinite-dimensional Hilbert space and is hence very hard to estimate accurately

on coarse meshes). Hence, the accuracy of our estimates does not depend to a large extent

upon the resolution of the coarsest mesh. Further as we shall show in Chapter 6, the use of a

scale-orthogonal basis that is also Riesz stable in the energy norm (as done in this investiga-

tion) provides a convenient, computationally efficient (and theoretically sound) framework

for adaptive refinement. Finally, the mesh refinement process at each level itself involves

the addition of a small subset of wavelet basis functions (this process is termed space refine-

ment [18] in contrast to element refinement typically carried out in finite element practice)

and does not have to explicitly handle hanging nodes.

The multiresolution error estimation and adaptive refinement techniques that we pro-

pose in this thesis do not stand isolated, but overlap with the work of a number of existing

researchers in seeming disparate areas. A brief summary of this is provided in Figure 1-1

and further elaborated in the rest of the chapters of this thesis.

19



1.4 What lies ahead

In Chapter 2 we provide a brief overview of multiresolution analysis, wavelets and filter

banks with particular emphasis on wavelets that are not scale and translation invariant and

can hence be constructed with ease on complex geometries and bounded domains.

Chapter 3 focuses on the construction of a multiresolution analysis of a Sobolev space

using finite element interpolation functions. While such constructions are well know for

certain special cases (such as Lagrangian finite element shape functions [17]), we provide a

condition that checks for the existence of a multiresolution analysis for the case of general

finite element interpolation functions.

Chapter 4 introduces the wavelet-Galerkin method, which is the procedure for the so-

lution of partial differential equations posed in terms of the virtual work equations. We

discuss the structure of the stiffness matrices arising from this method and explain the

significance behind coupling and quantify it in terms of the constants in the strengthened

Cauchy-Schwarz inequality. Towards the end of this chapter, we make the case for the

use of scale-orthogonal wavelets for the multilevel solution of linear partial differential

equations.

In Chapter 5 we propose several techniques for the construction of scale-orthogonal

wavelets from general finite element interpolation functions and characterize the stabil-

ity propeties of the resulting scale-orthogonal wavelets. We also describe the trade-offs

involved in the use of each of the proposed methods.

Chapter 6 presents our multiresolution (goal-oriented) error estimation and adaptive

refinement method. As mentioned in the previous section, instead of estimating the true

error at a certain level, our error-estimation procedure only determines an estimate for the

two-level error in a mesh. The adaptive refinement algorithm then determines a compact

representation for the two-level error by projecting the solution onto the that subspace of

Riesz stable scale-orthogonal wavelets consisting only of basis functions that contribute

significantly to a given quantity of interest. We also provide a priori error bounds that

quantify the effect of several approximations made in the estimation and refinement steps.

In Chapter 7 we present several numerical experiments to validate the effectiveness of
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our proposed error-estimation and adaptive refinement approach. The effectivity of the ap-

proach is measured using two quantities, the compression ratio and the accuracy ratio that

illustrate the trade-off between the cost of computation and the accuracy of solution. The

examples presented in the chapter are shown to have a low compression ratio (indicating

fewer degrees of freedom vis-i-vis uniform refinement) and high accuracy ratio (indicat-

ing that the adaptive scheme converges at roughly the same rate as the uniform refinement

scheme with increasing number of levels).

Finally, in Chapter 8 we conclude our presentation by summarizing the research pro-

posed in this thesis and present several promising avenues for further research including

the solution of problems such as two-field, non-linear and time-dependent problems.

Almost every chapter in this thesis begin follows the following model: The first section

provides an overview of the contents of that chapter; the next few sections discuss the main

material presented and the final section summarizes the key points laid out in the chapter.
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Chapter 2

Multiresolution Analysis

"It is, of course, a trife, but there is nothing so important as trifles."
- Sherlock Holmes in The Man with the Twisted Lip

2.1 Chapter overview

In this chapter, we describe some of the notational conventions used in the rest of this thesis.

This will be followed by a brief exposition of the elements of multiresolution analysis

and wavelet theory, where we derive the familiar expressions for the forward and inverse

wavelet transforms in a simple fashion that differs from classical presentations such as in

Strang and Nguyen [42]. In our derivations, we do not restrict ourselves to the traditional

wavelet constructions based on scale and translation invariant wavelets; instead we focus

our attention exclusively on the second-generation wavelet framework of Sweldens [45].

2.2 Notation
def

In this thesis, an expression of the form "a = b" must be interpreted as "a is defined as b".

A multi-index is an n-tuple of non-negative integers, a = (a ... , Ce) with magnitude,

n

zl ef ai (2.1)
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For a smooth function # : IR" -* IR, let

def aIa7(x)aaq#(x) = ax . (2.2)

Consider a subset Q of IR" and let V be a Hilbert space on Q. In particular we let V

correspond to a subspace of the Sobolev space of functions Ws,2 (Q) s > 0 [15, 24], the

space of functions with square-integrable derivatives of order s. Let |, t < s denote the

Sobolev seminorm of order t, i.e., for any v E V

|v 1 J Z (&cv)2 dQ (2.3a)

Q Ial=t

and let I II| denote the corresponding Sobolev norm:

KHII d J (a"V)2 dQ (2.3b)

Finally, the norm on V, IjI will always refer to the Sobolev norm of order s.

Let the discretization of Q at a certain level of resolution j be Qj. Let IC(j) C IN be the

index set of vertices or nodes in Qj such that C(j) C K(j + 1) and let

M(j) KJC(j 1) \ C(j).

Letting Nj be the number of elements at level j, we define { S},} to be a dense

collection of finite element partitions of Qj. The partitions are nested such that the ones are

level j + 1 are constructed by subdividing those at level j, cf. Figure 2-1.

Given a set of functions (resp. coefficients) {XJ,k}, we use xj without the second index

to denote a column vector of the set of functions (resp. coefficients). Given a function

u3 expressed in terms of a basis 5j as uj= Z U5,k we use the same symbol u3 to
k

denote both the function as well as the vector of coefficients. This avoids a profusion of

symbols and should not lead to confusion since the distinction between the function and

the corresponding vector of coefficients is usually clear from the context.
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Figure 2-1: Multilevel discretization of a L-shaped domain. AC(j) = {1, 2,... , 8}, M(j) =
{9,10,... , 21},K(j + 1) = {1, 2,... , 21}.

2.3 A Summary of Wavelet Theory

2.3.1 Multiresolution Analysis

We first consider a multiresolution analysis of V [16, 45, 42] consisting of

1. A ladder of nested approximation spaces V C V such that

Vj C V+j and clos UVj=V
j=0

(2.4a)

2. Complementary (wavelet) spaces W c V such that

W C V+ 1 and V,§i = V e W (2.4b)

Eq (2.4a) and (2.4b) imply that each element in the finer approximation space V+ 1

can be decomposed uniquely into an element lying in the coarser approximation

space V and the corresponding details lying the in the complementary spaces Wj.
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Let each approximation space V have a basis consisting of scaling functions Pj,k and each

complementary space Wj have a basis consisting of wavelets wj,m such that

Vj = clos span {Jj,k}kkC(j) (2.5a)

W = clos span {Wjm}mM(j) (2.5b)

From the nestedness relations Eqs (2.4a) and (2.4b) the scaling functions and wavelets can

be seen to satisfy refinement and wavelet relations of the form

Oj,k , k,P j+1,l (k c AC(j)) (2.6a)
lEK(j+1)

Wj,m = j h,m,1 SPj+1,l (m E M(j)) (2.6b)
1IE(j+1)

where the coefficients hq and h are referred to in wavelet literature [42] as the primary

low-pass and high-pass filters respectively and in most cases of interest have only a small

number of non-zero coefficients.

Note that the symbols Oj,k and wj,m may denote a vector of functions associated with

a vertex in which case the filters h9 and h are matrices. Such basis functions are termed

multiscaling functions and multiwavelets respectively [11, 30, 43].

Further, from the direct-sum decomposition property, Eq (2.4b) each scaling function

Wj+j can in turn be written in terms of scaling functions and wavelets at level j, or there

exists an unrefinement equation of the form

cj+1, = i,k,l) j,k + S k,l)WJ,m (2.7)
kEIC(j) mEM(j)

where the coefficients h and hI are referred to as the dual low-pass and high-pass

filters respectively. Clearly, the primary and dual low-pass and high-pass filters are not

completely independent of each other. For example, on substituting Eq (2.7) into Eqs
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(2.6a) and (2.6b) and simplifying we obtain

Pj,k = k,1>3 ho, (h 0 )T J

kcEICj) EC-(j+1)

W,m = h T

kEICU) 1EKUj+1)

> ho, ( )wi (2.8a)
fEiGM(j) ICK(j+1)

+ 3hjmI ,1 ) Tm,f (2.8b)
mEiM(i) 1EKC(j+l)

and hence the scaling functions and wavelets at each level are linearly independent if

and only if the biorthogonality conditions [42]

lEK(j+1)

1EIC(j+1)

T 0

IK±)h~ ~ ( 7 1 T= 0>3h,I (J&l,i)T =lEK(j+1)

IC(j+1)

are satisfied. Similarly, on substituting Eqs (2.6a) and (2.6b) into Eq (2.7), we obtain

~P iEcIj+1) ky()

h, , +) h,m,l ) j+1,T
mEM4(j)

(2.10)

from which we obtain the perfect reconstruction conditions

(2.11)

which is clearly equivalent to Eqs (2.9a) and (2.9b), see Strang and Nguyen [42].

A multiresolution analysis (MRA) allows the representation of a function fj+ C Vj+1

in terms of its projection on a coarser approximation space along with multiple levels of
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details, i.e.,

+1= +1 ,T i (2.12a)
1EIC(j+1)

-EUjk,O0j,k + Z jr,"jm
k EK(j) mEM(j)

fii

= U OT,k + m rWim (2.12b)
kECK(O) i=0 mEM(i)

A0 9i

where fo represents a coarse resolution version of fj+i and gi, (i = 0, 1, ... , j) represent

the details to be added to this coarse representation to arrive at the representation at level

j+ 1.

Using the unrefinement equation, Eq (2.7), and applying the linear independence of

the scaling functions and wavelets at level j, we can express the approximation and detail

coefficients at level j, resp. uj and rj in terms of the approximation coefficients at level

j + 1, uj+i as

Uj,k = 5 hk,lUj+1,l (2.13a)
EK(j+1)

rj,m = I j,m, uj+l (2.13b)
lE)C(j+1)

Given the approximation coefficients uj, one can recursively apply Eqs (2.13a) and (2.13b)

to determine the approximation and wavelet coefficients at level j - 1 and so on. This is

precisely the basis of the pyramid decomposition algorithm of Mallat [36, 42]. Conversely,

given the approximation and detail coefficients at level j, we can reconstruct the approxi-

mation coefficients uj+1 using the refinement and wavelet equations Eqs (2.6a) and (2.6b)

as:

kEK(0 (2.14)
uj+,l z~ (h,k,I)Tuj,k + 5 (h,I)T'j'

kEIK(j) mEM(j)
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It can be proved (see for instance, Strang and Nguyen [42] Section 7.1) that the detail

coefficients in Eq (2.12a) are very small near regions where the solution is smooth and

large in regions where the solution varies rapidly. We can therefore obtain a compact

representation of the function by adaptively choosing the wavelets wj,m (or adding details)

only near regions of rapid variation in the solution. Of course, when the function is known

only indirectly via a governing PDE or BIE, one cannot resort to Eq (2.13b) to determine

the details since the coefficients usjl at the final level are unknown. In Chapter 6 we discuss

techniques by which the detail coefficients can be estimated in an efficient manner, based

on which the wavelets to be retained can be determined.

2.4 Closure

In this chapter, we provided an overview of the most basic elements of multiresolution

analysis. A major portion of this thesis will deal with the selection of the primary low and

high-pass filters h and hi. As we shall see, the choice of the low-pass filters comes directly

from the choice of the scaling functions, which in turn are assumed to be conforming finite

element interpolation functions on nested discretizations. On the other hand, the filters h!

will be constructed such that the wavelets span the space of orthogonal complements to the

approximation spaces V with respect to the inner product induced by the weak-form of a

differential operator.
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Chapter 3

Construction of Scaling Functions

All truths are easy to understand once they are discovered; the point is to discover them.
- Galileo Galilei

3.1 Motivation and chapter overview

As mentioned in Chapter 1, this thesis concerns itself primarily with the development and

application of wavelet-based multiresolution methods to the the fast solution of partial dif-

ferential equations defined on general domains. One of the main reasons why multireso-

lution methods based on classical wavelet constructions such as those due to Daubechies

[23] or Cohen, et al. [19] have not been widely used in adaptive computational model-

ing is that the basis functions in such constructions are normally constructed on regular,

unbounded, one-dimensional grids. Therefore, in approximating solutions to differen-

tial equations defined on more general meshes, one must develop constructions such as

wavelet-extrapolation [5] to handle bounded domains. Even so, many of these construc-

tions become rather complicated on irregular meshes in higher dimensions. An additional

disadvantage of the classical wavelets constructions is that many cases, the basis func-

tions do not have a closed-form expression and are defined only recursively. Therefore,

computing inner-products of these basis functions is not very straightforward and special

techniques must be devised to evaluate inner-products accurately, see for example Latto, et
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al. [34].

In contrast to classical wavelet basis functions, finite element interpolation functions

have a number of advantages such as piecewise polynomial representation and ease of con-

struction on complex geometries. Therefore, the two fundamental questions that need to be

asked are (a) under what conditions is it possible to construct scaling functions (and hence

wavelets) from finite element interpolation functions and (b) what is the corresponding

refinement relation?

The main purpose of this chapter is to provide an answer for both the questions posed

above; we first define the conditions under which scaling functions may be constructed

from finite element interpolation functions and then go on to derive the refinement equa-

tion for such piecewise-polynomial interpolating scaling functions. We finally provide a

number of examples for the construction of scaling functions from finite element interpo-

lation functions.

It must be noted that while the construction of scaling functions and the derivation of

the associated refinement equation is rather well-established in the existing literature for

the case of Lagrange interpolating functions (see for instance Zienkiewicz, et al. [53] and

Yserentant [51, 52] for piecewise linear interpolating functions and Castrill6n-Candis and

Amaratunga [17] for higher-order interpolating functions on unstructured grids), the con-

ditions under which more general finite element interpolating functions (that interpolate

displacements and rotations) give rise to scaling functions is not very well established ex-

cept for a few simple cases [11, 43].

3.2 Scaling functions from finite element interpolation func-

tions

Definition 3.1. Given a collection D of multi-indices representing nodal degrees of free-

dom, a set of functions {f } ED, kEK(j) is defined to be D-interpolating if

=3# ) -- Ja,/6k,k' k, k' E C(j) and a, 0 E D. (3.1)
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def
Let #5,k = {f }" k Dbe the column vector of all D-interpolating functions associated

with a vertex k E IC(j). For example, in IR 1, the interpolation functions for truss and beam

elements are D-interpolating with D = {0} and D = {0, 1} respectively, see Figure 3-1.

Figure 3-1: Illustration of Eq (3.1) in IR1 for beam elements which have D = {0, 1}

Let PK, K > 0 be some multi-index collection containing all multi-indices with magni-

tude less than or equal to r,. For example in IR2, the multi-index collections {(0, 0), (0, 1), (1, 0)}

and {(0, 0), (1, 0), (0, 1), (1, 1)} are valid examples of P1 whereas {(0, 0), (1, 0), (0, 1), (1, 1), (2, 0), (0, 2)}

is a valid example of P2. Given such a multi-index collection, P, let

,Pj { u : Qj - IR s.t. UIsC, span{ x X12 ... X1-" } (3.2)

denote piecewise polynomials at level j whose exact form is determined by P . Observe

that since the mesh at a level j + 1 is constructed by uniformly subdividing all the elements

in the mesh at level j, we have,

Pr,j C PC j+1 (3.3)

Given a set of partitions {Sj,,}i, suppose that the nodal degrees of freedom D and the

polynomial set P are chosen such that we have a unique set {#j,k }kEK(j) of D-interpolating

polynomials in Prj. Further define V = span {#5,k }kEk(j)'

Now, if the approximation spaces, V1, and the Hilbert space, V, are such that

V = Pr,,j n V, (3.4)
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i.e., the D-interpolating functions are conforming, then we have

V= P,, n V

C ,Ps+1 n V

= V+1 (3.5)

or Vj c Vj+ . We can then simply choose the scaling functions { 0,kk.(j) to be the inter-

polating basis functions, {#j,k}kEC(j) and can write a refinement equation as in Eq (2.6a).

Moreover, the density condition, clos U Vj = V follows from standard a priori conver-
j=0

gence arguments for conforming shape functions (see for example, Bathe [10] Section 4.3

or Brenner and Scott [15] Section 4.4).

Note that non-conforming interpolating basis functions such as the ones due to Melosh

[37] do not lead to nested approximation spaces even though they may be constructed on

nested meshes.

3.3 Refinement relation for interpolating scaling functions

If nestedness of the approximation spaces is established, we can express the scaling func-

tions at level j in terms of the scaling functions at level j + 1 as:

Pi, k S hj,k,l SPj±1,l (3.6)
IEK(j+1)

Since the scaling functions at each level are compactly supported and D-interpolating, we

have

6a,04,i 1 E GZ(j)

def
=k, - ) -- Iak(XI) E E n(j, k) = {m E M(j) s.t. Xm E supp (j,k)}

0 otherwise

(3.7)
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and therefore the refinement relation for D-interpolating scaling functions can be simplified

as

Pj,k = fj+1,k + hj,k,m Tj+1,m (3.8)
mEn(j,k)

Observe that for the case of Lagrange interpolating functions, the filters hj,k,m turn out to

be scalars rather than matrices and correspond exactly to the filters derived by Castrill6n-

Candis and Amaratunga [17] using interpolating subdivision arguments. Moreover, ob-

serve that for higher-order basis functions, the filters are natural generalizations of those

derived for regular, one dimensional grids by Strela and Strang [43] and Beam and Warm-

ing [11].

3.4 Examples of interpolating scaling functions

In this section, we give a few examples of finite element interpolation functions that satisfy

a refinement relation of the form given in Eq (3.8). Even though the refinement relation is

valid for non-uniform meshes, we assume a uniform discretization in the examples to keep

the expressions for the filters simple.

3.4.1 Refinement for discontinuous piecewise linear basis functions

We first consider the refinement relation for the case of discontinuous, piecewise polyno-

mial interpolation functions that are used, for instance, in discontinuous Galerkin methods.

These functions are in fact a generalization of the Haar basis functions [42, 45] commonly

used in wavelet applications and can be used to generate a MRA of L 2(Q). Defining the

two discontinuous segments of a basis function at a vertex k C IC(j) as,, and P, we
can write the refinement equation for the basis function Oj,k shown in Figure 3-2 as

L i LL 1 0 Ljjki _ +1,ki +2 2 IPj+1,m0 + 1 j+1,mi (3.9a)
Wki +1,ki R _ _ J
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ko k1 k2  k0  mo k1 m1 k

Figure 3-2: Refinement relation for discontiuous piecewise-linear interpolation functions

or, by grouping the two discontinuous segments into a column vector,

0 0
Pj,ki = S±1,ki + 2 2 jPj+1,mo + [ 1 j+mi (3.9b)

L0 0 1 }22

3.4.2 Lagrange interpolating functions in IR1

Figures 3-3 and 3-4 respectively illustrate the refinement relations for one-dimensional

piecewise linear and quadratic finite element interpolation functions.

For the piecewise linear case, the refinement relation for the interpolating function at

node ko in Figure 3-3 can be written as:

1
(Pj,ko = SOj+1,ko + +Oj1,mo + P j+1,mi) (3.10)

E) W

MO ko M1

Figure 3-3: Refinement relation for piecewise-linear interpolating function

For the piecewise quadratic case, there are two types of basis functions (denoted in

[17] as oydd and , ,e"), with supports spanning one and two elements respectively. Thei a

Forspnigre3-:Rfinement elationscn for piw s-ineen inepoainsunto
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33S0
j,k 1  + j1,ki +1(j~,mo + Sj+i,mi) (3.11)

1 3
(Pj,k2 =S+1,k 2  (Pj+irO + 1,m i ,M3) + +1(Pj~,mi +j+1,m2) (3.12)

mO ko mI ki M2 k 2  M3

Figure 3-4: Illustration of the refinement relation for piecewise-quadratic interpolating
function

3.4.3 Piecewise cubic Hermite interpolating functions in IR1

Figure 3-5 illustrates the refinement relation for the interpolation functions for the beam

element. The corresponding refinement relation, assuming a mesh width at level j to be h

can be written as:

1 h 1 h

=,k2 =j+1,k2 ± 2 8 j+1,mi + 2 8 ]Pj+l,m 2  (3.13)

Note that for the uniform refinement case considered here, Eq (3.13) corresponds exactly

to the refinement relations derived by Strela and Strang [43] and Beam and Warming [11].

3.4.4 Piecewise bilinear Lagrange interpolating functions in IR 2

Figure 3-6 illustrates the support of the bilinear scaling function, Sj,ko and also indicates

the vertices in the set n(j, ko), see Eq (3.7). The refinement relation can be written as:
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Figure 3-5: Illustration of the refinement relation for piecewise cubic Hermite interpolating
scaling functions

(a) (b)

Figure 3-6: (a) Piecewise bilinear Lagrange interpolating scaling function at node ko (a)
The refinement set nr(j, ko) and (b) (SP,ko
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(a)

(b) (c)

(c) (d)

Figure 3-7:
n(j, ko); (b)

Bogner-Fox-Schmit scaling functions at node ko:
(0i0; (c) ; (d) (01)and (e) i

(Pjko (c (P,ko ; d pj' Oank e)0 jk

(a) The refinement set

1
(Pj,ko = Oj+1,ko + ( 1hji,mi + j+1,m3 + SPj+1,m 4 + Sj+1,m6)

1
+_ ((Pj+1,MO + (Pj+l,M2 + (Pj+l,M5 + (Pj+1,M7) (3.14)

3.4.5 Piecewise bicubic Bogner-Fox-Schmidt interpolating functions

in IR2

Finally, in Figure 3-7 we illustrate the four piecewise bi-cubic Bogner-Fox-Schmidt inter-

polation functions [14] at vertex ko over a square grid along with the refinement set n(j, ko).
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Recall that the Bogner-Fox-Schmidt elements have four degrees of freedom at each vertex

corresponding to D = {(0, 0) , (1, 0) , (0, 1) , (1, 1)}. The filters for the refinement equa-

tions corresponding to the newly introduced vertices at the element faces are given as:

1/2 0 -3

0 1/2

1/8h-1  0

0 1/8 h-1

1/2 3/2 h

1-1/8h-

0

0

1/2

hj,ko,mi =

hj,ko,m3 -

hj,kom
4 =

hj,ko,m 6 =

-1/4

/2h 0

0 -3/2h

1/4 0

0 -1/4 _

0

0

0

0

0 1/2 3/2 h

-1/4

0

00

1/2 -3/2h

1/8h- 1  -1/4

0 3/2 h 0

/2 0 3/2h

0 -1/4

0 -1/8h-1

0

0 -1/4

and the filters corresponding to newly introduced vertices at the edges are given as:
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-1/16h- 1 -1/8

1/16 h-1

1 h-2

1/4

1/16 h-1

1/2 -1

3/16

-1/32 h-1

-3/4 h

-1/8

') /1(2

hj,ko,mo =

hj,ko,m 2 =

hjko,m5 =

hjkom 7 =

1/16 h-1

-1/16 h-1

-1/8

3/16

-3/4h -9/4h 2

3/16 3/8h

-1/8 -3/8h

1/32 h- 1  1/16

-3/4 h 9/4 h2

-3/16 3/8h

-1/8 3/8 h

-1/32 h-1

3/4 h

-3/16

1/16

9/4 h2

-3/8 h

-1/8 -3/8 h

1/32 h- 1

3/4 h

3/16

-1/8

1/16 J

-9/4 h2

-3/8 h

3/8h

-1 h -2 1/32h- 1 -1/32h- 1 1/16

3.5 Closure

In this chapter we summarized the conditions under which general finite element interpo-

lation functions give rise to nested approximation spaces, Eq (3.4) and derived the refine-

ment relation for scaling functions constructed out of such interpolating functions, Eq (3.8).

While we considered only square meshes for simplicity, we must emphasize the fact that Eq

(3.8) is valid even on unstructured meshes as long as the set of finite element interpolation

functions satisfy the conditions given by Eq (3.4).
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Chapter 4

The Wavelet-Galerkin Method

Ut Tensio, Sic Vis.

- Robert Hooke

4.1 Chapter overview

In this chapter we discuss the approximation of solutions to linear partial differential equa-

tions posed in terms of the corresponding virtual-work equations using wavelet basis func-

tions. This technique is often referred to in literature as the wavelet-Galerkin method [5, 6].

One of the main goals of this chapter is to rigorously quantify the role of the interaction

or coupling matrices that contain inner-products of basis functions at different resolutions

using the strengthened Cauchy-Schwarz inequality [51]. We illustrate how the norms of

these matrices directly influence the extent of coupling errors produced on mesh refine-

ment. To keep the discussion as general as possible, we do not specify a priori the choice

of wavelet basis functions; instead in the final section of this chapter, we discuss the mo-

tivation for constructing the wavelet spaces, W such that the interaction matrices at each

level are identically zero.
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4.2 Problem definition

Let a : V x V -+ IR be a symmetric bilinear form on V satisfying the continuity and

coercivity conditions [10, 15, 24]:

(continuity)

(coercivity)
(4.1)

3a s.t. Ja (v, w)l 5 a ||vJ|||w|| (vw E V)

3M s.t. a (V, V) ! M ||V112 (V E V)

We can therefore define the energy norm of a vector v E V, denoted as IIVIIE as:

JvII| = a (v, v) (4.2)

which, from Eq (4.1), is equivalent to the (Sobolev) norm on V.

If I : V -+ IR is a bounded linear functional on V, i.e.,

]K > 0 s.t. jl(v)I 5 K ||v|| (v E V) (4.3)

then by the Lax-Milgram Lemma [15, 24] there exists a unique solution, u E V, to the

primal problem:

a(u, v) = 1(v) (v E V) (4.4)

Moreover, by the symmetry and coercivity of a(., -) we have [10, 15]:

.1
u = arg min -a(w,w) - 1(w)

WGV 2 (4.5)

4.3 The wavelet-Galerkin method

We consider the projection uj of the solution u onto the space V satisfying the virtual work

equation:

a (uj, vj) = I (vj) (V3 E V) (4.6)

or equivalently,

uj = arg min
Vj cV

I1u - VA |IE (4.7)
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From Eq (4.4) and Eq (4.6) we have that the solution error u - uj satisfies the Galerkin

orthogonality condition:

a (u - uj, vj) = 0 (vj E V) (4.8)

and from the continuity and coercivity conditions, Eq (4.1) we have:

u -ng| 5 -- inf ||u - v 11 (4.9)M vicV,

Recall that Cea's Lemma, Eq (4.9) is one of the key results for establishing the a priori

convergence rate of the Galerkin finite element method based on results from interpolation

theory [10, 15, 41].

On expanding uj and v in terms of only the scaling functions (i.e., the finite element

interpolation functions) at level j, we arrive at the system of equations corresponding to a

nodal finite element discretization at level j:

K, uj = f3 (4.10)

where Kj = a ( yo, T) is the nodal finite element stiffness matrix. On the other hand,

on expanding uj and vj in terms of the scaling functions at level 0 and wavelets at levels

0, 1, . ., j - 1, we arrive at a multilevel system of equations:

Kj = fj (4.11)

where the multilevel stiffness matrix K is composed of block matrices of the form:

Ko Bo,1 - Boj

B 1  C1 .. B1,(
Kj = (4.12)

B BT ... C

where Ko = a (po, 4OT) is simply the nodal finite element stiffness matrix at level 0, Bo, =

a(po, wT 1 ), 1 i j and Bi,k = a (wi_, wT 1 ), 1 < i < k < j are referred to as
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Figure 4-1: Sparsity pattern for a four-level stiffness matrix. The dotted lines seperate the
interaction and detail matrices at each scale.

interaction matrices and Ci = a (wi_ 1,w 1 ), 1 < i < j are referred to as detail matrices.

Figure 4-1 illustrates the sparsity pattern for a typical multilevel stiffness matrix. Similarly,

the right-hand side f4 can be written as:

fj=

fo

go

9j-1

(4.13)

where fo = l (po) and gi = l (wi) , 0 < i < j.

4.3.1 Single-level vs. multilevel approaches

While Eq (4.10) and Eq (4.12) give rise to exactly the same solution, uj (albeit expressed

in a different basis), the multilevel system of equations has several advantages over the

single-level system of equations, particularly for applications such as preconditioning and
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adaptive mesh refinement.

Recall that the nodal finite element interpolation functions, upon suitable normalization

are Riesz stable in the L2 norm [15, 29, 51]. That is, there exist two constants c1 and c2

independent of the level of discretization j such that for an element vj E V written as

= VjklPj,k,
kE/K(j)

C1 I I Vkj,k L2  Vi LI2 C2 V3 V,k i,kL2 (4.1
kEK(j) kEk(j)

The practical consequence of this of course is that the nodal finite element mass matrix

upon normalization of the basis is always well-conditioned. However, in case of the energy

norm, we have from the inverse inequality [15] and equivalence between the Sobolev norm

in V and the energy norm that in two dimensions

c14Ei S ||Vkj,kE H< E &C2 < V, k Pi,kBE (4.15)
kEIC(j) kEK(j)

and hence the condition number of the nodal finite element stiffness matrix normalized

with respect to its diagonal grows as 4's which makes the use of iterative solvers extremely

uneconomical especially for higher-order partial differential equations.

In contrast, it is possible to construct wavelet basis functions that are Riesz stable in the

energy norm, i.e., there exist two constants c1 and c2 independent of j such that on writing

an element vj E V in terms of scaling functions and wavelets as Vj = T Vol(po,k +
kEK(O)

j-1

Z2 mWi,m we have
i0 mEM(i)

j- 1  1
\1 T 2 j- ' TW' 2 < jjj 2VTkOk2 j- iM2

C1 VO,kPO,k E±S L imi,m E 0iiC EkY:,k i m
kE K(O) i=O mCM(i) kEK(O) i=O mEM(i)

(4.16)

The construction of multilevel solvers based on the use of Riesz stable bases satisfying Eq

(4.16) has been discussed by a number of authors, for instance Dahmen and collaborators

[16, 18], Vassilevski and Wang [48] and Aksoylu and Holst [2].

Multiresolution solvers based on the wavelet-Galerkin method also offer several advan-
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tages over nodal finite element interpolation functions for applications requiring adaptive

mesh refinement. We recall that adaptive refinement using classical finite element analysis

typically proceeds by element subdivision: the error-estimation step determines the ele-

ments that have large contributions to the error on a particular mesh and one then proceeds

to refine the mesh by subdividing only these elements by quadrisection in two dimensions

and octasection in three dimensions. The main disadvantage of the approach based on ele-

ment subdivision is that it creates geometric artifacts termed irregular or hanging vertices

(see also Chapter 6) that need to be handled appropriately. The methods currently used

for handling hanging nodes (such as imposition of multipoint constraints, green refinement

or the use of transition elements) have several drawbacks. For example, the imposition of

multipoint constraints becomes extremely cumbersome over several levels of refinement

and for higher-order interpolation functions such as the Bogner-Fox-Schmidt shape func-

tions [14] whereas closing irregular vertices often leads to meshes with poor aspect ratios

over several levels of refinement. While special techniques (such as permitting only one

hanging vertex per edge) can be formulated, they are normally very specific to the type

of mesh and do not in general extend in a robust manner to higher-order finite element

interpolations.

In contrast, mesh refinement in the wavelet-Galerkin method is achieved by the addi-

tion of wavelet basis functions over several refinement levels (the process is termed space

refinement [18] in contrast to element refinement) and the implementation does not directly

have to contend with hanging nodes as in the classical finite element method. In this sense

therefore, the wavelet-Galerkin method resembles several meshless methods where the role

of the finite element mesh is simply to serve as a convenient means for computing the inner-

products required for the assembly of the stiffness matrix.

45



4.4 Interaction matrices and the strengthened Cauchy-Schwarz

inequality

In this section, we analyze the role of the interaction matrices Bij in Eq (4.12) in the

wavelet-Galerkin method. As will be evident, the interaction matrices govern how much the

details at the finer levels are influenced by the coarse solution and vice-versa and hence it is

important to first rigorously characterize this influence before developing error estimation

and adaptive refinement procedures based on the multiresolution technique.

Before considering the case of a general Hilbert space, it is instructive to first consider

the influence of non-zero interaction matrices for a two-dimensional Euclidean setting;

the results derived in this case can be easily and naturally generalized to more general

(albeit, finite dimensional) approximation and wavelet spaces using matrix norms as shown

in Section 4.4.2.

4.4.1 A two-dimensional analogy

Consider the two-dimensional Euclidean setting shown in Figure 4-2 where V+1 C JR2

Vj,W C IR1 and a(., -) is simply the dot product. Let 6 be the angle between V and W
and let -y = cos(6). The scaling function and wavelet can then be taken to be:

9 = & (4.17a)

w=y- = 1 + V1 -72 2 (4.17b)

Let the vectors u3 and u 1l correspond to the Galerkin projection of the true solution onto

the spaces Vj and V+l and let gj = 1 (wj). Then, the multilevel system of equations to
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determine the solution u 1l can be written as:

[a (pjy3 ) a (p3,w,)l F61 _l(s 3)l
a Ij a Ij o r, (4 .18 a)

[a (wj,j) a (wj,wj) [rJ l(wmj)J

1 7 ij Ui(4.18b)

7 1 1 rjj gy

from which we obtain,

Ift - u <; :5y jry (4.19)

Therefore, the magnitude of the interaction matrix (which coincides with the cosine of the

angle between the spaces V and W ) detemines how much the solution at the coarser level

mesh changes upon the addition of details.

A related interpretation may be obtained by writing the solution at level j + 1 as:

U+= + ij + r, (4.20)

eVs eW3

def
from which we obtain the two-level error, ej = uj+1 - uj as

ej = rj + (ii - u) (4.21)

E Wj E V

Hence, we conclude that the two-level error may be decomposed into two constituents: the

first consists solely of the details that are added at each resolution; the second component

(which we denote as the "coupling error") on the other hand reflects the extent of interaction

between the scales, since from Eq (4.19), the lesser the interaction (the smaller the value of

-), the lower the coupling error.
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f,3 U3

Figure 4-2: Physical interpretation of the constant in strengthened Cauchy-Schwarz in-
equality for a two-dimensional setting; -y = cos(O)
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The two-dimensional analogy may be extended in a natural manner to higher dimen-

sional Hilbert spaces satisfying the direct-sum property. The fundamental result for gen-

eral approximation and wavelet spaces, referred to by Yserentant [51] as the strengthened

Cauchy-Schwarz inequality may be stated as follows:

Lemma 4.1 (Strenghened Cauchy-Schwarz Inequality). There exists a constant E [0, 1)

independent of j such that

|a(v,w)| y VIE W| E v G V andw E W (4.22)

Proof See Yserentant [51]. 0

Lemma 4.2. For any element vj+1 C V+1 such that vj+1 = vj + rj where vj E V and

rj E Wj
1

Ir lJ+1IE (4.23)

Proof From Lemma 4.1,

IV+1 IE a(v,,vj) + 2a(vjrj) + a (rj, rj)

= Ivj| + 2a (v, r) + |Irj||

IvII - 27 |IVi |E ri HE + r II (Lemma 4.1)

> |Ivjj| - jVj1- 2 |rj|| + ||rj|I (AM-GM inequality)

= (1 - 22) |rgI| (4.24)

from which the desired result follows immediately.

As we shall see in the subsequent discussion, the constant -Y in the more general setting

can be used to prove bounds on the magnitude of coupling errors due to refinement. In

deriving these bounds, it is often convenient to use matrix notation and therefore in the

next section, we provide a matrix characterization of -y in Eq (4.22).
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4.4.2 Matrix characterization of the strengthened Cauchy-Schwarz

inequality

In the two-dimensional setting considered in the previous section, the constant y simply

corresponded to the magnitude of the coupling term in the multilevel stiffness matrix. Not

surprisingly, in the more general case, the constant may be related to the norm of the in-

teraction matrix at each level provided that the scaling functions and wavelets are suitably

normalized. This relation is provided by the following lemma.

Lemma 4.3. Let B3 +1 = a (<pj, w), C±i = a (wj, WJT) and Xj+1 = K 2 Bj+1 C 2. Ify

is the constant in the strengthened Cauchy-Schwarz inequality, Eq (4.22) then Y = IXi+ 11
1 1

where K3 (resp. C,+1 ) is the principal square root of Kj (resp. Cj+1)-

Proof By definition,

Y = sup (v, w)I
vEVj,wEW, ||VIE 11w 1E

VTBJ+1W
= sup

v,w VvTKjv QwTCji+w

1 - 1

o'K 2Bj+ C 2W'

= sup v'|| ||w' where v' = K v, w' = +1

= ||Xj±1|| (4.25)

Remark. Evidently, in the above lemma, we can replace the principal square root of a

matrix with its Cholesky factor.

The next result is an extension of Lemma 4.3 and is used in proving certain estimates

about the the accuracy of the error-estimation and adaptive refinement schemes that we

propose in Chapter 6.

Lemma 4.4. IfXj, 1 is as defined in Lemma 4.3 then I - XT 1 X+ 1 | < 1 and (I - XT+1 X+ 1)

1
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Proof Let Xj+1 have a singular-value decomposition of the form Xj+1 = UYEVT where

-max(Xj+1) = -y. Hence, the matrix I - XT+Xj+l has an eigenvalue decomposition of the

form V (I - A) VT with Amin 0 and Amax =y 2 < 1. Hence,

II- X= 1 - A 2 1 and (4.26a)

(I - X(+1) = _ x) 1 -1 (4.26b)

exactly as desired.

While Lemma 4.3 suggests a convenient numerical procedure to compute the value of Y,

it is possible to arrive at upper-bounds without having to actually assemble the global stiff-

ness, interaction and detail matrices. Instead, as discussed in the monograph by Ainsworth

and Oden [1], we can compute an upper-bound for -y using computations performed at the

element level. Considering two elements v E V and w E W we have:

|a(v,w)| < |: a(V1w)Q1

< E: _YQ 11V1E;Q IIWIIE;Q
QESj,v

< max -yQ S iVIIE;Q IIWIE;Q)
Q ES j . v 

1~j

< ma yQ 2 2 (Cauchy-Schwarz Inequality)

= max yQ |Vo 1W1E (4.27)

Therefore, assuming a regular grid, one can arrive at an upper-bound for the value of Y by

applying Lemma 4.3 to a reference element that is properly supported against all rigid-body

motion. In practice however, these bounds tend to be quite conservative while the estimate

for -y derived directly by applying Lemma 4.3 at each level are in general more accurate.
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4.4.3 Coupling errors and the strengthened Cauchy-Schwarz inequal-

ity

In this section, we extend the results for the two-dimensional Euclidean space and analyze

the influence of the constant -y on the coupling errors for the general case. First, we decom-

pose the finite element solution, uj+l E Vj+1 into two components, iij E V and v3 E W.

The system of equations for determining these components is given as:

[1 [i] [[:1 j [Kjuj] (4.28)
Bj+1 Cj+1_ Lrj, L g L

Observe that for any element vj in V written as v= VPj,k we have,
kE/C(j)

|vg| I= a (vj, vj) =vTKyv, (4.29)

From Eq (4.28) we have

Kj (iij - uj) =-Bj+1rj (4.30)

and hence

| - ug|| rIB,+iKIB,±ir,

tjr, C j1 1BT+K Bj+ C 1
rE 3 r C 3

11fl HE 3 3

B(setting r = C2+1 rj)
r3 rj_j Tixi+1 x+lTj

T
r, r3

<Y2 (4.31)

Therefore,

IKJ - UJIIE 5 ' Ij lIE (4.32)

which has the same form as Eq (4.19). Further, by Lemma 4.2, we can bound the energy-

norm of the coupling error in terms of the energy-norm of the solution at the next level,
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uj+1 as:

11'a - UA||E 5 Uj+1 11 (4.33)
1-2

4.5 Closure

4.5.1 The case for the use of scale-orthogonal wavelets

As evident from the discussion in Section 4.4, a desirable property in the design of fast

adaptive multiresolution solvers it to have no interaction between basis functions at differ-

ent levels of resolution, i.e., we design the wavelet spaces W such that the constant -y in the

strengthened Cauchy-Schwarz inequality is 0 over all levels j. To determine the solution at

a level j + 1, we therefore arrive at a system of equations of the form:

KO u0 = fo and

C+ Ti =gi i = 0, 1, . .. ,(4.34)

which permits the computation of the solution at each level of resolution in an entirely

scale-independent manner, that is, once the solution at a particular level has been computed,

it does not have to be modified on adding details at a finer level. Moreover, in computing

the detail at a certain level j, one needs to factor the detail matrix Cj+ corresponding only

to that level.

In order to arrive at a decoupled system of equations, it suffices for the scaling functions

and wavelets at a certain level j to be a-orthogonal, i.e.,

a (<pj, wj) = 0 (4.35)

Since the scaling functions and wavelets at any level i < j can be expressed solely in

terms of scaling functions at level j, satisfying the one-level scale-orthogonality condition
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therefore also leads to the following orthogonality conditions to hold

T= a (<O, w) = 0 (4.36a)

Bi+1,j+1 = a (wi, wI) = 0, i < j (4.36b)

which in turn leads to a decoupled system of equations, Eq (4.34).

In the next chapter, we describe how it is possible to construct the wavelet basis func-

tions such that the conditions Eq (4.36a) and Eq (4.36b) are satisfied over all levels j leading

to a block-diagonal multilevel system of equations.
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Chapter 5

Construction and Properties of

Scale- Orthogonal Wavelets

It is by logic that we prove, but by intuition that we discover.
- Henri Poincard

5.1 Chapter overview

As concluded in Chapter 4, for the design of fast adaptive multiresolution solvers we de-

sire that the approximation and wavelet spaces be orthogonal with respect to the bilinear

form a (., .). In this chapter we describe several techniques for the construction of scale-

orthogonal wavelets for general operators that span precisely such complementary spaces.

In constructing these wavelets, the essential tasks are ensuring that (a) they can be con-

structed in an efficient manner (ideally, the wavelets must have a local support) and (b)

they form a Riesz stable basis in the energy norm for the wavelet spaces. As we shall see

in Chapter 6, the second property is of utmost importance in the development of fast and

accurate multilevel error estimation and adaptive refinement procedures.

The outline for the rest of the chapter is as follows: we begin in Section 5.2 by deriving

the condition necessary for the linear independence of scaling functions and wavelets using

the polyphase representation. We then describe the most straightforward approach (directly
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using the wavelet equation, Eq (2.6b)) for the construction of scale-orthogonal wavelets.

As will be evident from the discussion, the main disadvantage of this approach is that

ensuring the linear independence of scaling functions and wavelets using the conditions

described in Section 5.2 is extremely cumbersome. Therefore, in Sections 5.5 and 5.6 we

describe two approaches for the construction of scale-orthogonal wavelets by customizing

an existing (non-scale-orthogonal) wavelet basis such that the resulting wavelets are scale-

orthogonal. The first procedure considered (stable completion, due to Carnier, et al. [16])

ensures that most of the wavelets are locally supported, but does not guarantee a priori

that the wavelets are also Riesz stable. On the other hand, the second procedure (Gram-

Schmit orthogonalization) ensures that the wavelets are Riesz stable, but often leads to

globally supported, albeit rapidly decaying wavelets. We then propose a third approach

in Section 5.7 based on partial Gram-Schmidt orthogonalization that leads to the efficient

construction of scale-orthogonal wavelets in an adaptive refinement setting and at the same

time guarantees a priori that the resulting wavelets are also Riesz stable. We also propose

(and derive the operation cost estimates for) a class of simple and efficient algorithms for

the fast assembly and factorization of the stiffness matrices resulting from these wavelets.

In the rest of the chapter, we analyze some of the key properties of the wavelets con-

structed in the previous sections (particularly those constructed via Gram-Schmidt orthog-

onalization and its variations). In Section 5.8 we analyze the decay of these wavelets by

deriving bounds for their point-wise values in terms of the Green's function of the under-

lying operator. Then, in Section 5.9 we prove a priori Riesz stability of the wavelets in

the energy norm using many of the results from Chapter 4 and demonstrate the validity of

the derived bounds for a model fourth-order problem. We do not completely analyze the

influence of partial orthogonalization of the wavelets upon the accuracy of the solution in

this chapter; a thorough analysis of this approximation is instead provided at the end of

Chapter 6.
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5.2 The polyphase representation

When constructing wavelets that are not scale and shift invariant, one is concerned with, at

the very minimum, ensuring linear independence between scaling functions and wavelets.

A convenient method to ensure that the scaling functions and wavelets are linearly inde-

pendent is to use the polyphase or operator notation [16, 42, 45]. In this section, we give a

brief overiew of this technique and derive an a posteriori test that determines if the scaling

functions and wavelets are independent.

Let oj and wj denote the column vector of scaling functions and wavelets at level j.

The refinement and wavelet relations, Eq (2.6a) may be cast in matrix notation as:

1Pj H9[] H=+1 (5.1)
L j H 3j

We now define the even and odd permutation matrices, PE,j and Poj as:

def
PE,j,k,l = 6 k,l (k E K(j), 1 E IC(j + 1)) and (5.2a)

def
POJ,m,i = 6

m,i (m E M(j), 1 E IC(j + 1)), (5.2b)

which satisfy the following perfect reconstruction conditions:

PT PT] PE = I and (5.3a)

E, pT . = I (5.3b)

_Po~j E 0

Eq (5.1) may then be recast as:

[P H T PEJ H P HPT1 PEJ
H1  E, 0 j j+1 - F j+1. (5.4)[wJ[ J 'PT P, LH PT HjP0 ,J [PoJ

In the case of interpolating scaling functions, which satisfy a refinement relation shown in
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Eq (3.8), the matrix represenation takes on the following form:

PJ

Ly Wi

F I

[HP j HjP&J

PE,j

PO,Jy
+Oj±1 (5.5)

where the entries in the matrix Hj correspond to the filters hj in Eq (3.8).

5.2.1 Linear independence of scaling functions and wavelets

To test for the linear independence of scaling functions and wavelets in Eq (5.5), we con-

sider the homogeneous system of equations:

[ T T 0
1P W rJ 1u= (5.6)

Substituting Eq (5.5) into Eq (5.5) and using the linear independence of scaling functions

at level j + 1 we have:

I 0 I1

HT I o

PE,j (H )T

Po,3 (H) - HTPEJ (H)T

- HTPE,J (H1) r

or, the scaling functions and wavelets are linearly independent if and only if the matrix

Po,3 (H')T - HTPEJ (H)T is non-singular.

5.3 Construction of scale-orthogonal wavelets using the

wavelet equation

To construct wavelets satisfying Eq (4.35) we start by assuming a wavelet equation of the

form:

(5.8)Wj,m =
IEM(j,m)
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(5.7b)4= . (PoIj (H')T

h' ,m,Jij+1,i



where M(j, m) c C(j + 1). The support of the wavelet can therefore be determined as:

supp (Wj,m) U supp ((Pj+1,) (5.9)
lEM(j,m)

Substituting Eq (5.8) into Eq (4.35) we have the following constraint on the high-pass

filters:

a (Pj,k, T+1l) (hm,l)T = 0 (k C K(j)), or (5.1Oa)
IeM(j,M)

B+ 1 (h') T  = 0. (5.1Ob)

We therefore conclude that the wavelets with the assumed support are scale-orthogonal

to the scaling function filters if and only if the high-pass filters h! lie in the null space

of the matrix B+. Moreover, the dimension of the nullspace of Bloc, gives the number

of linearly independent scale-orthogonal wavelets with their support governed by the set

M (j, m) in Eq (5.8). As an example of constructing scale-orthogonal wavelets directly

from the refinement relation, we consider piecewise cubic Hermite interpolating scaling

functions, see Figure 3-5 and construct wavelets that are orthogonal to the scaling functions

with respect to the L2 inner-product. The resulting wavelets in the interior and the left

boundary are shown in Figure 5-1. Note that over regular grids, the wavelets shown in

Figure 5-1 (a) and (b) correspond to the ones derived by Strela and Strang [43].

While directly constructing wavelets using Eqs (5.8) and (5.10b) is a valid approach,

it is necessary to verify that the condition for linear independence, Eq (5.7b) holds true

after constructing the filters h. It is therefore more convenient in practice to start with

an existing multiresolution analysis and then customize the wavelets such that they satisfy

the desired properties (such as scale-orthogonality). The most natural choice for such an

elementary MRA is the hierarchical finite element basis framework [51, 52, 53], which is

briefly described in the next section.
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Figure 5-1: Scale-orthogonal multiwavelets: (a) and (b) in the interior and (c) and (d) next
to the left boundary.
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Figure 5-2: A multiresolution analysis of a piecewise linear finite element approximation
space brought about using hierarchical basis functions,Vj e W = Vj+i.

5.4 Hierarchical basis functions

In the hierarchical basis framework, the wavelets are assumed to be the interpolating basis

functions associated with the newly introduced vertices, xm, m E M(j):

HB def)
w.IM =j+1,m (5.11)

corresponding to hm, = 5 m,l, see Figures 5-2 and 5-3. It is easy to see that the comple-

mentary space, WPB = Clos span {W B I satisfies the the nestedness (WJIB C V.+)

and direct-sum conditions (WPB _ _/9 Vj+) and therefore hierarchical bases lead to a

valid (albeit trivial) multiresolution analysis of the space V. For this reason, hierarchical

basis functions are often referred to in wavelet literature as lazy wavelets [42, 45].

(a) (b) (c)

Figure 5-3: Two dimensional piecewise-bilinear hierarchical basis functions: (a) Two-level
mesh; (b) Soj+1,mo centered around a face vertex and (c) pj+1 ,mcentered around an edge
vertex

For certain bilinear forms these rudimentary wavelets are naturally scale-orthogonal to
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Figure 5-4: Multilevel stiffness matrix arising out the discretization of the weak-form for
an Eulerian beam using piecewise cubic Hermite interpolating hierarchical basis functions

the scaling functions. For example, considering the bilinear form for the Poisson's equa-

tion, I du dv
(u, v) = dx (5.12)

dx dx

and choosing the scaling functions to be piecewise linear Lagrange interpolating polyno-

mials gives rise to a diagonal multilevel stiffness matrix [52, 53]. Similarly, considering

the bilinear form for an Eulerian beam,

a(u, v) = E f 2 u d2 V dx (5.13)
Sdx2 dx2

and choosing the scaling functions to be cubic Hermite polynomials results in a block-

diagonal multiscale system of equations as can be seen from Figure 5-4. This property

however breaks down for more general operators, higher order scaling functions and in

higher dimensions and consquently hierarchical basis functions need to be customized in

order to make them scale-orthogonal.
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5.5 Scale-orthogonal wavelets using stable completion

The stable completion method proposed by Carnicer et al. [16] starts with an existing

multiresolution analysis consisting of scaling functions Oj,k and wavelets w9 I. The new

wavelets wj,m are constructed as:

WjIM = aT old 3S T~ k (5.14a)

m'EB(j,m) kEA(j,m)

which can be written out in matrix notation as:

w =G Gwld - Sj (5.14b)

which generates a MRA under certain conditions on the matrix G3 (discussed in Section

5.5.1). One can then impose the required constraints on the wavelets and solve for the

coefficients Gj and Sj. As we shall see in Section 5.5.1, Eq (5.14a) is equivalent to Eq

(5.8), except that it leads to a simpler condition to be verified to ensure that the scaling

functions and wavelets are linearly independent.

When starting with the hierarchical basis framework, the equation for the customized

wavelet, wj,m becomes:

WjIm= T gM/''±1m- S T k,m(Pj,k* (5.15)

m'EB(j,m) kEA(j,m)

5.5.1 Linear independence of scaling functions and wavelets

Before proposing an algorithm for the construction of scale-orthogonal wavelets using sta-

ble completion, we first derive the conditions on the matrix Gj to ensure the linear indepen-

dence of scaling functions and wavelets. First, observe that for hierarchical basis functions,

the refinement and wavelet relations can be written in polyphase notation as:

(PjI H PE (P+1 (5.16)
WHB 0 1
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Therefore, the refinement and wavelet relations for wavelets constructed out of stable com-

pletion can be written as:

oj I 0 1F +1 [ 0 I H1 PE,1

Er: - sT GT B ST GT 0 I PJ -
(5.17)

whence on comparison with Eq (5.5) we obtain S 3  -PE,j (H) and-G Po, (H3) T

HTPE,j (H)T . Hence the scaling functions and wavelets are linearly independent if and

only if the matrix Gj is non-singular. During filter design, checking for the rank of Gj is

usually more convenient than first constructing the H! filters and then verifying Eq (5.7b).

5.5.2 Inverse wavelet transform for wavelets constructed using stable

completion

To derive the expressions for the inverse wavelet transform for wavelets constructed using

the stable completion procedure, consider a function fj+1 written as

+= j+9io+1 = UT] r] (5.18)

On substituting the refinement and wavelet equations in the vector form, Eq (5.17) we have:

U,+T1 - [uT rT] [ l [ Hj I ) Pj+1 = 0 (5.19)
j+ -ST GT 0 I Po~j

Since the scaling functions at level j + 1 are linearly independent (they form a basis for

Vj+) we have the expression for the coefficients u, and rj in matrix form as:

SPEJ Uj+1 = F 1 -sl uj (5.20a)
JL [HI I o G J [r J
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or in coefficient form as:

Uj+1,k = Uj,k - E S,,k,m'rj,m, (k E IC(j))
m'Ea(j,k) (5.20b)

UJ+l,m =,mm'r 1 ,' + kmUj+(m M(j))
m'Eb(j,m) kEN(j,m)

where, b(j, m) = {m' E M(j) s.t. m E B(j, m')} and a(j, k) = {m' E M(j) s.t. k E

A(j, m') }.

Eq (5.20b) can be implemented as follows:

1. Initialization
Vk E K(j) Uj+1,k = Uj,k

Vm E (j) uj+l,m = 0

2. Undo stable completion

Vm EM Uj+1,k - = Sj,k,mrj,m Vk C A(j, m)

uj+1,m + = gj,m',mrj,m Vm' E B(j, m)

3. Subdivision

Vm E M(j), uj+l,m+ = T k,mUj+1,k
kEN(j,m)

5.5.3 Construction procedure for scale-orthogonal wavelets

The procedure for constructing wavelets that are scale orthogonal to the scaling functions

with respect to a given bilinear form can then be summarized as follows:

1. For each customized wavelet, wj,m to be constructed at a given level j, start with the

corresponding hierarchical basis and assume the neighborhood sets A(j, m) c K(j)

and B (j, m) C M (j). This fixes the support of the wavelet. In practice, the sets

A(j, m) and B(j, m) are initially chosen such that they contain the set of vertices

lying in a one-ring neighborhood around each vertex m E M (j).

2. Determine all the scaling functions at level j whose support overlaps that of the

wavelet. Let Q(j, m) = {k E AC(j) s.t. supp (P3 ,k f supp wj,m 5 0}.
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3. Compute the local interaction matrix around the wavelet, K'3C = [Kic"I K1'],

where:

K1j0km, = a (Oj,k, P',Ti,m,) (k E Q (j, m) and m' E B(j, m))

K~Jkm = a (Pj,k, O'k,) (k E Q(j, m) and k' E A(j, m))

4. The condition on {gj,m',m}m'EB(j,m) and {s,,k,m}kEA(j,m) for scale-orthogonality is:

K1cJ GOC = 0 (5.21a)

where

gj,o,m

gj,1,m

Gc = (5.21b)
Sj,O,m

Sj,1,m

The filters can therefore be computed easily using techniques for computing a basis

for the null space of the local interaction matrix, K'OJ such as row-reduced echelon

form reduction or singular-value decomposition.

5. If the matrix K' is non-singular, then there do not exist any scale-orthogonal

wavelets with the assumed support. The support is therefore extended by consid-

ering a larger neighborhood around each vertex (in practice, a two-ring of vertices

around each vertex in the set M (j))

The following lemma ensures that wavelets computed using the above procedure are lin-

early independent from the scaling functions (i.e., the resulting columns in the Gj matrix

are linearly independent):

Lemma 5.1. If wj,m is the set of wavelets constructed using the null-space procedure,

Eq (5.21a) then the scale-orthogonal wavelets are linearly independent from the scaling

functions Pj,k, (k C K(j)).
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Proof Assume the contrary, i.e., assume that there exists a set of solutions where the

columns of the matrix G'P' are linearly independent, but the submatrix corresponding to

the coefficients gj does not have linearly independent columns. By taking suitable linear

combinations of the g3 filters, we can therefore construct a set of wavelets wj,m of the form:

gT= s Sj ,k (5.22)
kEB(j,m)

satisfying

a ('Pj,k, Wlm) 0 (k' E Q(j, m)) or (5.23a)

a (SOjk', WT k) Si = 0 (k' E Q(j, in)) (5.23b)
yEB(j,k)

Clearly this is not possible since (a) B(j, k) C Q(j, k), (b) the inner-product a(-, -) is

symmetric, positive definite and (c) the "interior" scaling functions pj,k, k C B(j, m)

vanish along the boundary of supp wj,m. L

As an example of constructing scale-orthogonal wavelets by computing the null-space

of the local interaction matrix, let the bilinear form correspond to that of the Poisson's

Equation in two dimensions:

a (u, v) = Vu -Vv dQ (5.24)

and select the scaling functions to be the piecewise bilinear finite element interpolation

functions. It is easily shown that on tensor-product discretizations, the hierarchical ba-

sis functions centered on the newly introduced vertices on the element faces are scale-

orthogonal to the scaling functions with respect to the a (., -) inner-product. However, the

hierarchical basis functions centered on the edges are not scale-orthogonal and the null-

space computation procedure described above can be used to customize scale-orthogonal

wavelets centered around the edge vertices. Figures 5-5 (b) and (c) illustrate two such

wavelets centered respectively on edge vertices in the interior and next to a Dirichlet bound-

ary.
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(a) (b) (c)

Figure 5-5: (a) Support of scale-orthogonal wavelets centered on edge vertices; (b)

Scale-orthogonal wavelets associated with the interior vertex mo and (c) Scale-orthogonal

wavelets associated with the boundary vertex mi

We consider more complex examples (for instance, the biharmonic operator) in Chapter

7.

5.6 Scale-orthogonal wavelets using Gram-Schmidt orthog-

onalization

In constructing scale-orthogonal wavelets using the stable completion approach, the choice

of filters, gj and sj for each wavelet is clearly non-unique since they are obtained by solving

a homogeneous system of equations. To avoid solving a homogeneous system of equations

it suffices to choose the filters gj such that they satisfy the invertibility conditions described

in Section 5.5.1; the filters s, can then be determined by imposing the scale-orthogonality

conditions and solving a linear system of equations. A particularly convenient and valid

choice of the filters gj is gj,m',m = 6
m',m which results in the following equation for the

customized wavelets:

Wj,m = Pj+1,m - 8,+1,k,m(j,k, (5.25a)

kEA(j,m)
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which can be written in vector form as:

Wi = wfB - sT+1pi (5.25b)

Note that Eqs (5.25a) and (5.25b) amount to performing a Gram-Schmidt orthogonalization

of the hierarchical basis functions and scaling functions with respect to tha a (-,-) inner-

product. The filter matrix Sj±i is then obtained by solving:

a (SPj,k, (P k) Sj,k,m = a (YP,k' , YTJ,m) (k' E C(j)) or (5.26a)
kcA(j,m)

KI Sj+1 =Bj, (5.26b)

where B HB represents the hierarchical basis interaction matrix.

For wavelets constructed using Gram-Schmidt orthogonalization, it is possible to assign

the following interpretation of the detail matrix, CjA1 and right-hand side, gj:

Lemma 5.2. If the scale-orthogonal wavelets are constructed using Gram-Schmidt or-

thogonalization then the detail matrix corresponding to the orthogonalized wavelets is the

Schur's complement of the hierarchical basis detail matrix and the right-hand side corre-

sponds to the residual of the finite element solution, uj at level j + 1, i.e.,

Cj+1 = CHBJ- (BHB,)T KjBHB, and,

9g = 9B - (B %) T uj

(5.27a)

(5.27b)

Cj+ = a (wj, U

= a (w{B,

=C1 -

= CHB -

= CHB -

T)

(W {B) T) a (w 1B, OT) S5 j _ ST+1 a (j, (zt4 B)T) + ST ia ( j 4O) SHB B 3 3j+ -3+1 B j+1 3

(Byi)Tsj+ 1 - S+ 1Bf 1 + ST 1 KjSj+1

(B B)T K 1 B H1 -- (B 1 ) T K1B H + (BB) T K;Kj K7B H1

(BHB) T KjBy H (5.28)
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Similarly,

g3 = 1 (w.7)

= I (WjHB)_S +11 (

= 9HB - B B K -1f?
= gj- H

H B -HB (5.29)

exactly as desired. F

5.7 Adaptive refinement and approximate Gram-Schmidt

orthogonalization

The main disadvantage of constructing scale-orthogonal wavelets using a Gram-Schmidt

procedure is that solving for the orthogonalization coefficients exactly involves the solution

of a global system of equations at each level and the resulting wavelets often have global

support (this is especially true in higher dimensions). In the case of the L 2 inner-product

considered for instance by Vassilevski and Wang [48], Aksoylu and Holst [2] or Lounsbery,

et al. [35], the coefficient matrix to be inverted in Eq (5.26b) corresponds to the nodal

finite-element mass matrix, which is very well-conditioned, see Eq (4.14). The filters may

therefore be computed efficiently by approximately solving the system of equations using

only a few iterations of an inexpensive iterative solver like Gauss-Seidel or Jacobi. For

more general bilinear forms such as the weak-forms corresponding to partial differential

operators, such simplifications may not apply and computation of the coefficients, Sj+1 at

each level can be prohibitively expensive, particularly in the case of uniform refinement

where the degrees of freedom at each level grow geometrically [52].

However, in the case of adaptive refinement where only a few wavelets are typically

added at each level of discretization, the scale-orthogonal wavelets may be efficiently con-

structed using the following approximate Gram-Schmidt orthogonalization procedure:
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j-1
Wj = w 0j+1P0 - + (5.30)

i=0

since the orthogonalization coefficients at each level i < j can be computed in an entirely

scale-decoupled manner by solving a small system of equations of the form:

Cj+1 Si+1,3+1 = Bi+1,+ 1  i = -1, ... , j - 1 (5.31)

where Co = K 0, Bo,+ 1 = a (o, (wHB)T and Bi+1,j+ 1 = a (wi, (w IB) T

In the uniform refinement setting, Eq (5.25b) and Eq (5.30) are of course entirely equiv-

alent. However, this is not the case in an adaptive refinement setting, since Eq (5.25b)

ensures that the wavelets at level j are orthogonal to all wavelets at the coarser level (ir-

respective of whether they are used for computing the solution or not), whereas Eq (5.30)

ensures that the wavelets at level j are orthogonal only to those wavelets at the coarser

level which are actually used for computing the solution. This subtle difference becomes

important in the a priori analysis of the error estimation techniques proposed in Chapter 6.

5.7.1 On the efficient implementation of approximate Gram-Schmidt

orthogonalization

Directly computing the inner-products of the hierarchical basis functions with the orthog-

onalized wavelets, Bi+,,j+ 1 in Eq (5.31) can be very inconvenient in practice since the

bilinear form a(-, -) might involve integrals of a large number of terms as in the analysis of

plates and shells. In this section, we therefore propose an algorithm for computing the or-

thogonalization coefficients Si+1,j+ 1 and the detail matrices Cj+1 at level j, cf. Eq (5.31),

starting with the hierarchical basis interaction and detail matrices

B+1j+1 a I , i < j (5.32a)

Cj+ B B W (5.32b)
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which, in contrast are extremely easy to assemble in an element-wise fashion (see for ex-

ample, the implementation techinque described in [44]). Our construction procedure relies

on the following close connection between Gram-Schmidt orthogonalization and LDLT

factorization of the Grammian matrix for general inner-product spaces:

Lemma 5.3. Let {# }0N be a collection of N sets of linearly independent functions in

an inner-product space V equipped with an inner-product b(., .). Let the block matrices

Aij = b (i, T ) denote the interactions of these basis function sets and let

A1, 1  A 1 ,2 ... A1,N

A AT,2  A2 ,2  A2,N (5.33)

ATN AN .. AN,N

denote the overall Grammian matrix. Let { }_ 1 denote the set of orthogonal basis func-

tions constructed via a Gram-Schmidt orthogonalization procedure, i.e.,

01 =# and (5.34a)

j-1

y =0#_-ESTV), j>1 (5.34b)
i=1

such that b (Oi IT) = 0, i # j. Then, the matrix A may be decomposed as

A = LDLT (5.35a)

where L is a lower triangular matrix of the form

I

sT2 I
L= ,2  (5.35b)

TN SN
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containing the orthogonalization coefficients and D is a block-diagonal matrix of the form

C,

C 2

CN

(5.35c)

with Ci = b (4', 7) . Gaussian elimination on the Grammian matrix is therefore equiva-

lent to performing Gram-Schmidt orthgonalization on the existing set of basis functions.

Proof We use the convention that matrix entries not explicitly shown are assumed to be 0.

First, we create functions that are orthogonal only with respect to #1:

(5.36)

where A1,, = S1 ,3C1 = Si,jA 1,1. Using an approach similar to Lemma 5.2 the inner

products of the orthogonalized basis functions are then given as

Aij = b ($&, IT) = Aij - ST Ai,,, i > 2, j > i

with C2 = A 2,2 and therefore

C1 I

C2  -. A2,N -Sf 2

A T ... AN,N _- ST
2,N__ _ __ _ _ 1,N

s Tr

or since Si is a unit upper-triangular matrix,

A1, 1  A 1 ,2  A1,N

A,2  A 2 ,2  ... A2,N

LAT A T.. NN

1,N 2,N AN,N

A

I -S1, 2 ' -S1,N

I

S(3

(5.38)

A = ST D, S, (5.39)

Now, given 1 < i < N assume that the functions z, j = i,... , N are orthogonalized with
respect to the functions 4k, k = 1, . . . , i - 1. On orthogonalization of bj, j = i + 1, .. . , N
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with respect to 4'j we have:

Cj Ajj+1 ... A ,N I

ATi+1 Ai+1,i+ ... Aj+, ST

. ATN AT+1,N ... AN,N ,

where Sj = C Aij = i + 1,.

Cl

Ci

AT

ATiN

Ai~i+1

Ai+1,i+1

A+

Di-

... Ai,N

... Ai+1,N

... AN,N .

CI Sii+ ... Si,N

I Ci+ 1  ... Ai+1,N

- A+ 1 , ... ANN I
(5.40)

N. Now observe that

C1

Sii+1

N I.

c,+1

ATi+l,N

Di

X
. Ai+1,N

'.. AN,N

L
I Si,i+l '... Si, N

S4

(5.41)

and therefore,

A = ST D, S, = STST D 2 S2S1 ... = STST ... ST- DN-1 SN-1 ' S 2 S1

Finally, notice that L = STST ... ST D = DN-1 and therefore A = LDLT as

(5.42)

desired.

Remark. In the above proof, we did not explicitly prove that the block matrices Ci are

strictly positive definite (and therefore the coefficients Si are bounded). However, observe

that the assumption that the function sets are linearly independent implies that the spaces

spanned by them have the direct sum property. Therefore, we can derive explicit bounds on

the eigenvalues of these matrices based on the strengthened Cauchy-Schwarz inequality.

From the analysis of Riesz stability, Section 5.9, this therefore means that the minimum

eigenvalue of each of the Ci matrices is bounded away from 0.

Lemma 5.3 is particularly useful in cases where computing the original Grammian is

straightforward, but computing the intermediate inner products, b (q5, OT) , i < 'is highly
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inconvenient since one can then simply start with the original Grammian matrix and com-

pute the orthogonalization coefficients using Gauss elimination. This is exactly the case

with the construction of scale-orthogonal wavelets by Gram-Schmidt orthogonalization of

the hierarchical basis. The next theorem is a straightforward extension of Lemma 5.3 to the

space of hierarchical basis functions.

Theorem 5.4. The construction of scale-orthogonal wavelets using Gram-Schmidt orthog-

onalization amounts to performing a block LDLT -type factorization of the hierarchical

basis stiffness matrix, k' 1 where the blocks correspond to the degrees offreedom added at

each level. The orthogonalization coefficients Si,k are the entries in the triangular matrix,

L3+1, and the detail matrices at each level are the entries in the block-diagonal multilevel

stiffness matrix matrix, Kj+1 corresponding to the scale-orthogonal wavelets. Further; if

W' denotes the wavelet transform matrix corresponding to hierarchical basis functions,

then Kj+ 1 can be computed from the nodal finite element stiffness matrix stiffness matrix,

Kj+1 as

+1 = (LTJ 1W1i)T Kj+1 (LT+1WH%,) (5.43)

Proof The first part of the theorem follows from Lemma 5.3 simply by setting the inner-

product, b(., -) = a(.,-) corresponding to the operator bilinear form, N = j + 1, #1 = <PO

and #i=wH_, i=1,... , j + 1 and observing that the Grammian now corresponds to the

hierarchical basis stiffness matrix at level j + 1, KHB. N maybe obtained from

the single-level finite element stiffness matrix at level j + 1 as

kHB = (W B) T Kj+1 (W I()~l (5.44)

Further, by Lemma 5.3, j+14 can be decomposed as

kHB = Lj+1Nj+,LT (5.45a)
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where

I So,1 - Soi+1

L+1 = I ' - 1,(+ 5.45b)

L ~ I

is the (unit upper-triangular) matrix of orthogonalization coefficients and

Ko

N =+1 = C1 (5.45c)

Cj+ 1 _

is the block-diagonal stiffness matrix corresponding to the scale-orthogonal wavelets. There-

fore

Kj+1 = (Lj+1 )1 K L-+1 = (LI+1w )T K+1 (LT 1w,> 1)

exactly as required.

We now present two versions of the algorithm for computing the orthogonalization

coefficients Si+1,+ 1 (i < j) and detail matrix C3 +1 corresponding to the scale-orthogonal

wavelets at level j using Lemma 5.3. Observe how each approach updates the coefficients

and the detail matrices corresponding only to the newly introduced degrees of freedom at

level j + 1. Also note that in the algorithms described Gram-Schmidt orthogonalization is

carried out at all levels upto level 0. In practice, we can choose to perform orthogonalization

only upto a certain fixed number of levels.

5.7.1.1 Version 1 (Requiring auxilliary storage)

In this first version, Algorithm 1, the orthogonalization coefficients and the detail matrix are

computed out of place, i.e., the interaction matrices, By1 ,± 1 , i < j and the detail matrix

CHBi are not overwritten respectively with the coefficients Si+1,j+1, i < j and the detail

matrix Cj+1 . The function BackSolve is simply a function to solve a system of equa-

tion given the Cholesky factor of the coefficient matrix, whereas the function Cholesky
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returns the Cholesky factorization of a symmetric, positive definite matrix.

Input: Interaction matrices B 1 ,j+1 , i = -1, j - 1 and detail matrix CI
corresponding to hierarchical basis functions introduced at level j.

Output: The orthogonalization coefficients, Si+,,+1 and the Cholesky factor of the
detail matrix, Cj+1 corresponding to the orthogonalized wavelets.

/ Initialize Bi+ 1,+ 1,i = -1,... , - 1
for i <- -1 to j - I do

Bi+1,s+ <- B ,j+1
end
// Initialize Cj+1
Cj+1 <-CHBi j+

fori <- -1 toj - I do
// Compute orthogonalization coefficients

Si+1,j+ <- BackSolve (Ci+1, Bi+,,+1);
for k +- i+1 to j - 1 do

// Update interaction matrices at the finer levels
Bk±1,j+1 <- Bk+1,j+1 - Si+l,k+1Bi+1,+1;

end
// Update decoupled stiffness matrix at level j
Cj+<- C -+1 - STi1,j+±Bi+1,j+;

end
// Replace updated stiffness matrix with its Cholesky

factor
Cj+1<- Cholesky(Cj+1);

Algorithm 1: Algorithm for efficiently computing the orthogonalization coefficients
and factorizing the detail matrices when the wavelets are constructed using Gram-
Schmidt orthogonalization. This version requires storage for the orthogonalization
coefficients as well as the final decoupled stiffness matrix.

5.7.1.2 Version 2 (Not requiring auxilliary storage)

In the second version, Algorithm 2, we overwrite the hierarchical basis interaction matrices

B 1,j+1, i < j with the orthogonalization coefficients Si+1,j+1, i < j and the hierarchical

basis detail matrix CfIB with the Cholesky factor of the detail matrix C +1 corresponding

to the orthogonalized wavelets. Observe the similarity between this version and the active-

column solver described in Bathe [10].
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Input: Interaction matrices BHB1,j+, i = -1, ... j - 1 and detail matrix j+1
corresponding to hierarchical basis functions introduced at level j

Output: The orthogonalization coefficients and the Cholesky factor of the detail
matrix corresponding to the orthogonalized wavelets. The interaction
matrices, Bi+1,,+1 are replaced by the corresponding matrix of
orthogonalization coefficients, Si+1,j+1 and the hierarchical basis detail
matrix, CHBi is replaced by the Cholesky factor of the detail matrix, Cj+1
corresponding to the scale-orthogonal wavelets.

for i - -1 to j - I do
// Compute orthogonalization coefficients
Si+1,j+1 +- BackSolve (Ci+1, Bi+,,+1);
for k +- i + 1 to j - 1 do

// Update interaction matrices
Bk+1,j+1 +-Bk+,j+ - B+

end
// Update stiffness matrix at level j+1
Cj+1 +- Cj+1 - ST+1,j+1Bi+1,j+1;
// Replace interaction matrix with matrix of

orthogonalization coefficients
Bi+1,j+1 Si+,j+1;

end
// Replace updated stiffness matrix with its Cholesky

factor
Cj+<-- Cholesky(Cj+1);

Algorithm 2: Algorithm for efficiently computing the orthogonalization coefficients
and factorizing the decoupled stiffness matrix when the wavelets are constructed us-
ing Gram-Schmidt orthogonalization. This version of the algorithm requires no aux-
illiary storage for the orthogonalization coefficients.

5.7.2 Complexity Analysis

We now provide an analysis of Algorithm 1 for the case of adaptive refinement over several

levels. There are two cases to be considered: In the first case, the cost of the algorithm

is dominated by the cost of computing the filters at the coarsest resolution whereas in the

second case, the cost is dominated by computing the filters at the finer resolutions.

Assume that the coarsest level has N degrees of freedom and the stiffness matrix is

banded with bandwidth b. Assume that each subsequent level contributes n < N degrees

of freedom. The cost incurred in assembling and factoring the detail matrix at level j, Cj+1

can be split into three parts:
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1. Computing the coefficients Si+1,j+1 for i = -1, 1, . . . , j - 1

2. Computing the updated interaction matrices and detail matrix at level j, and

3. Factoring Cj+,1

Further, since the stiffness matrix at the coarsest level is sparse, for steps (1) and (2), we

need to consider the case i = 0 separately from the cases i = 1, . . . , j - 1. Considering

level 0, we have:

1. Computing S0,j±1 = C- 1B H 1 is 0 (bNn) since the matrix Co is already factored

and hence computing the matrix SO,j±1 only involves elimination and backsubstitu-

tion for the n columns of BH+

2. Consider Bi±1,,j 1 = Bi+1,, 1 - ST 1Boj 1 for each i = 0, . . . , j - 1. Since B$7+1

has very few non-zero entries, computing each entry in ST +1BH± 1 requires only a

constant number of operations. Since the matrix Bi+1,,+1 is n x n and j such matrices

have to be updated, the overall cost is 0 (jn2).

Now consider all levels i = 1, ... ,j - 1:

1. Computing Si+1,j+1 = C- Bi+,i+ 1 for each level i is 0 (n') since it involves n

elimination and back-substitution steps corresponding to n columns of the matrix

Bi+1,3+1. Hence for all levels from 1,... - 1, the cost is 0 (jn3 ).

2. Computing Bk±1,j±1 = Bk+1,j+l - i+T,k+ Bi+1,+ for each level is 0 (n) since

the matrices Si+1,k+1 and B±i,,± 1 are both dense in general. Hence over all levels,

the complexity is 0 (jn3 ).

Finally, factoring the matrix C3±1 is 0 (n3).

For the coarsest level to dominate the cost of the algorithm, we require that bN > jn2.

In this case the cost of adding details at level j is 0 (bNn). On the contrary, suppose that

a sufficiently high number of refinements have been performed, such that jn2 > bN then

the asymptotic complexity at adding details at a level j > 0 is 0 (jn3 ).
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In contrast to incremental solution using orthogonal wavelets, assume that the hierar-

chical basis stiffness matrix has to be refactorized after addition of details at each level.

The computational cost of factoring the entire stiffness matrix can then be estimated as

O ((b + jn)2 (N + jn)) = 0 (js3n) provided j 3n3 dominates b2 N. Therefore, in fac-

toring the stiffness matrix incrementally, the asymptotic cost is 0 (jn3 ) as compared to

o (j 3 rn3 ) for factoring the entire matrix at each level.

5.8 Decay properties of scale-orthogonal wavelets

It has been observed before (see for example [2, 35, 48]) that scale-orthogonal wavelets in

two and three dimensions constructed by Gram-Schmidt orthogonalization of hierarchical

basis functions with respect to the L2 inner product have a global support, but tend to

decay rapidly. One might therefore wonder if similar decay properties are also observed in

wavelets that are scale-orthogonal with respect to the inner-product induced by the weak

form, a(., .). If so, one would further be interested in deriving bounds for the point-wise

value of these wavelets at locations that are far removed from the support of the original

hierarchical basis function. In this section, we show that wavelets constructed using the

Gram-Schmidt orthogonalization procedure, Eq (5.25b) do in fact decay rapidly and further

derive upper bounds for their point-wise values away from the support of the hierarchical

basis function.

For a point x0 c Q, let go be the Green's function corresponding to the bilinear form

a(., .), i.e., go satisfies

a(go, v) = v(xo) (v E V) (5.46)

Similarly, for k E IC(j), let gj,k be the projection of g9 onto V, i.e., gj,k satisfies

a(gjk, vj) = Vj (Xk) (vj E V) (5.47)

and let gj,k,k' = g,k (Xk'), k' E J(j).

Then, if the set of scale-orthogonal wavelets are constructed using Gram-Schmidt or-

thogonalization, Eq (5.25b) the coefficients Sj,k,m in Eq (5.26a) can be expressed using the
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coefficients of the projection of the Green's function as

Sj,k,m = gj,k,kB HB,, (5.48)
k'EIK(j)

def
Now, let N(j, m) = {k E AC(j) s.t. m E n(j, k)} where the refinement neighborhood

n(j, k) is as defined in Eq (3.8). Then due to the compact support of the hierarchical basis,

Bjl,k',m= 0, k' 0 N(j, m) and therefore

S =,k,m gj,k',kBjil,k',m (5.49)
k'EN(j,m)

For simplicity, we now consider the point-wise value of the scale-orthogonal wavelet wj,m

at a point k c EC(j) \ N(j, m). A similar, albeit more involved analysis may be performed

for an arbitrary point on the domain outside supp WS+1,m. We first have

Wj,m(Xk) = jWi1,m(Xk) - >: Sj,k,m(Oj,k(X7k) (5.50)
k C-IC (j)

From the interpolating property of the scaling functions we have Wj+i,m(xk) = 0 and

yj,k (Xk) = Jk,k and hence from Eq (5.49)

lWj,M(Xk)l = zwj~m G~k',j~li,k',m
k'EN(j,m)

; c(m) max ,k', (5.51)
k'EN(j,m)

where c(m) = max IB i+1k',m is a constant that depends only on m. Hence, the point-
k'EN(j,m)

wise value of the wavelet depends directly upon the projection of the Green's function of

the operator. For many operators it is possible to determine the decay of this projection in

an a priori manner and hence we can further conclude that in such cases one can construct

approximately scale-orthogonal wavelets with local support by considering only a small,

fixed neighborhood around each new vertex in the subdivided mesh. The construction

of such wavelets (and more importantly, analysis of their accuracy and stability properties)
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appears to be a promising avenue for further investigation (see also Chapter 8). In the rest of

this thesis however, we restrict our attention to the approximately scale-orthogonal wavelets

constructed using the procedure outlined in Section 5.7 as they are also very efficient in an

adaptive refinement setting and in addition have easily quantifiable accuracy and stability

properties.

5.9 Stability properties of scale-orthogonal wavelets

In this section, we derive the stability properties of scale-orthogonal wavelets constructed

via Gram-Schmidt orthogonalization and in particular show that the wavelets are Riesz

stable in the energy norm. We first define the concept of a E-Riesz stable basis and explain

the importance of such a basis in our multilevel approach. Then, we go on to prove a

number of norm-equivalence lemmas that will eventually lead to the desired result, Lemma

5.14. Finally, we demonstrate the validity of our results on a model problem.

Definition 5.5 (E-Riesz Stable Basis). A family of basis functions {1{=,m}m is

defined to be E-Riesz stable if there exist two constants 0 < c1  c2 < oo independent of

j such that

2

ClT 2 TPmb~ T 2 ~~jm C Pmjm (5.52)
mEM(j) MEM(j) E mEM(j)

for any choice of bounded coefficients {Pj,m}mEM(j). In the following discussion, we use

the terms E-Riesz stable basis and Riesz stable basis interchangeably.

Remark. Our definition of Riesz stability differs slightly from that given in Aksoylu and

Holst [2] in that our definition does not depend upon the choice of normalization of the

basis functions and applies without any modifications even when the basis functions have

different dimensions (e.g. displacements and rotations).

Observe that when the basis functions at the same level j form an a-orthogonal basis

for the wavelet spaces, we have ci = C2 = 1 and Eq (5.52) reduces to the Pythagorean
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theorem:
2

Z pim#,m 2 = S Pm',m (5.53)
mEM(j) mEM(j) E

The ratio of the Riesz constants cI/c2 therefore gives an indication of how close a basis is

to an a-orthogonal basis for Wj.

In the construction of adaptive multiresolution solvers, we desire that the scale-orthogonal

wavelets wj,m, m E M (j) form a Riesz stable basis for the spaces W in the energy norm.

This is because, for a function pj = E pTm w,m lying in the space of scale-orthogonal
meM(j)

wavelets, the adaptation error incurred by representing pj using wavelets belonging to a set

M'(j) c M(j) can be given as

PT - 5 PmWjm = T p mwj,m (5.54)
m'EM'(j) m"CM(j)\M'(j)

If the wavelets are Riesz stable in the energy norm, then the adaptation error in the energy

norm can be bounded as

2

C1  P mWjm 2 p - < P mwj,m < C2  PmWjm|2

m"CM(j)\M'(j) m'EM'(j) E M"CMU\M'()

(5.55)

and hence an adapted solution that is accurate in the energy norm can be obtained simply

by retaining only those wavelets that have coefficients with large energy norms.

The ideal situation in an adaptive refinement setting is to have (a) scale-orthogonality

(that leads to block-diagonal stiffness matrices) (b) local support of the basis functions (that

ensures that the individual blocks are sparse) and (c) Riesz stability in the energy norm

(that ensures that the blocks are well-conditioned). The construction procedure described

in Section 5.5 enables the construction of wavelets satisfying conditions (a) and (b), but not

necessarily (c). Likewise, as shown later in this section wavelets constructed using Gram-

Schmidt orthogonalization satisfy conditions (a) and (c), but not necessarily (b). It is not

known if there is a practical technique for ensuring all the three properties simultaneously

in general. However, since there is no unique way of choosing the filters gj, it does appear
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that the a priori Riesz stability constraint could be built into the procedure described in

Section 5.5.

The derivation of estimates for the Riesz bounds for scale-orthogonal wavelets are

based on the use of inverse and oscillatory estimates (see for instance Yserentant [51]) that

are well-established for piecewise linear basis functions. In this section, we first extend

those results to higher-order scaling functions (in particular the Bogner-Fox-Schmidt in-

terpolation functions) and then proceed to prove the Riesz stability of the scale-orthogonal

wavelets constructed from these interpolating functions.

5.9.1 Derivation of inverse and oscillatory estimates for Bogner-Fox-

Schmidt interpolating functions

5.9.1.1 Derivation of inverse estimates

Lemma 5.6. There exists a constant c, independent of the level of discretization, j such

that for any element vj E V,

||v 1|2 < c 22j ||Vj||O (5.56)

Proof Consider a typical element Q c Sj,, with sides a and b whose coordinate system

can be mapped to that of a unit square, Q, as:

x = xo + a r (5.57a)

y = yo + b s (5.57b)

For a function vj E V, the WS, 2 seminorm can be decomposed as
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Vj| .2 s Vj1 = 0, 1, 2. (5.58)

First consider

V a1 = ab J2 (rr + 1 ss drds (5.59a)
r=O s=O

b rr + 2 'rs + ss drds (5.59b)

-2 2 12i (5.59c)

where h is the minimum edge length and [ is the aspect ratio of the mesh. Now, all norms

on the unit square are equivalent. Hence there is a constant c such that )112 < I|i|

c j 0|. But |iVI| = Tb |vg|I;Q h- 2 |IVi .I;Q and therefore

Vj|2Q < c A2 h-' ||Vj||. (5.60)

Similar analysis for the W1 ,2 semi-norm gives

|V ;Q <o C c_12 h -2 ||1 | .j 11 2 c < p _2 h- jj* || 1|2. (5.61)

and hence ||Vj| I c p2 h-4  vI|o for a given mesh. Now assuming that regular subdivi-

sion is performed (splitting each edge along the middle so that the aspect ratio /y does not

vary across levels), we have |v|j I11 c 2'j V3 112 exactly as desired.

5.9.1.2 Derivation of oscillatory estimates

The oscillatory estimates (see also Yserentant [51, 52]) relate the Sobolev and L 2 norms

of an element in WIB. By definition of the Sobolev norms, Eq (2.3b), we have for any

element v E V,

Iv1 < IIvH| , s > 0 (5.62)

However, for elements lying in the space WB composed of oscillatory functions that van-

ish at all the nodes in IC(j), see Figure 5-6, we can actually derive tighter upper-bounds on
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Figure 5-6: An oscillating function

the L2 norms as given in the following lemma:

Lemma 5.7. There exists a constant c independent of the level j such that for any element

jpj1 0 < c 2-2j ||Pj 112 (5.63)

Remark. Assuming that regular subdivision is performed, the L2 norm of finite element

shape functions varies as 2-i and the W 2,2 seminorm varies as 2'.

Proof As in Section 5.9.1.1 we decompose the seminorm of a function pj in W as

|Pj Z P1Q s=0, 1, 2 (5.64)
Q cS3 -1"

Note that the summation is taken over elements at the coarser level - this will be crucial

in proving the desired estimates (see Yserentant[51]). From Figure 5-7, for any such an

element Q, there exist five nodes in M (j) such that

5 2

IPj 1;Q ZPj,mj+1,m s = 0, 1, 2 (5.65)
i=1 s;Q

For the case s = 0, there is a constant c independent of the mesh width such that
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Figure 5-7: Illustration of a subdivided element
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(5.66)

M q&P --- --- q9 2p

Now, due to the interpolating nature of the Bogner-Fox-Schmidt basis functions, pj, , ,

all vanish at the nodes in K(j). Hence the W1 ,2 and W2 ,2 seminorms in Q are in fact bona-

fide norms since |pJlS*Q = 0 <-- pij 9 = 0 for s = 1, 2 (Note that the higher order

seminorms can vanish in general for constant and linear functions respectively. But the

only constant (resp. linear) function that vanishes at the nodes in A(j) along with it's first

derivatives and the cross derivative is the 0 function). We can therefore apply equivalence

between the two norms

I2

| Pj,m,<p±1,mi | . and 5Pj,m<P %+1,mi = |pj|2;

i=1 i=1 2;Q

to give

Summing over all the rectangles immediately provides the desired estimate.

5.9.2 Riesz stability of scale-orthogonal wavelets

Having derived the inverse and oscillatory estimates for higher-order interpolation func-

tions, we can give a proof of Riesz stability of the scale-orthogonal wavelets. This will be
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accomplished as follows: We first prove Lemma 5.8 that establishes norm equivalence be-

tween the hierarchical basis functions and the orthogonalized wavelets. We then only need

to show that the lazy wavelets are Riesz stable with respect to the energy norm. This sec-

ond result is well established for second-order problems (see for instance Yserentant[5 1],

Vassilevski and Wang [48] or Aksoylu and Holst [2]). Our extension to fourth-order prob-

lems discretized using Bogner-Fox-Schmidt basis functions is an extension of the same

principles involving inverse and oscillatory estimates.

Recalling our convention in Section 2.2 of not distinguishing between afunction and the

vector of its coefficients in a given basis, an element p3 E W"B will have a representation

of the form:

Pa= Z mPi+1,m = pT W B (5.68)
mCM(j)

and let Hjpj denote its a- projection onto V, i.e.

a(v,, Hlpj) = a(vj, pj) (vj E V) (5.69)

Then, each wavelet wj,m, m E .M(j) constructed by Gram-Schmidt orthogonalization of

a hierarchical basis function, W IB cf. Eq (5.25a) can be written as

Wjm =W -B WB (5.70)

Remark. The mapping WEIB F__+ W from the space of hierarchical basis functions to the

space of scale-orthogonal wavelets constructed via the Gram-Schmidt procedure is evi-

dently one-one and onto and is therefore invertible.

Lemma 5.8. The following norm equivalence holds:

C1 ||pj||K < ||Pj - UII p < c2 |pJ||| ( Wp C WfB) (5.71)

where the constants 0 < c1  c2 are independent of the level j.

Proof. To prove the lower-bound estimate, we use the strengthened Cauchy-Schwarz in-
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equality, Lemma 4.1. We therefore have from Lemma 4.2,

(1 - -Y2) lip, <- pj - H pA|| (5.72)

To prove the upper-bound, observe that from Galerkin orthogonality,

a (pj - Hf pj, p,) = 0 (5.73)

Therefore

a (pj, pj) = a (Pi - IIAp + rUig Iy P3 Hy Pi + 'Ijpj)

I1pj 112

= a (Hj pj, Hjp)+ a (p, - Hy pj, p - I7 pj) or (5.74)

IPi - UIp||E l1PAE (5.75)

Remark. In the proofs by Vassilevski and Wang [48] and Aksoylu and Holst [2], 11, corre-

sponded to the L 2 projection and hence proving the upper-bound in Eq (5.71) was slightly

more involved. By using the energy projection, we have obtained tight upper-bounds in a

relatively straightforward manner.

In the subsequent discussion, we choose the bilinear form a(., -) to correspond to the

bending energy of a Kirchhoff plate and choose the scaling functions as the Bogner-Fox-

Schmidt interpolating functions.

Lemma 5.9. The following norm equivalence between the energy norm and the L2 norm

holds in the space spanned by the hierarchical basis:

cl 21' ||j | ||Pjl|| < C2 21' ||pj|| (pj E WIB) (5.76)

where the constants 0 < c1 c2 are independent of the level j.
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Proof Since the bilinear form is continuous and coercive, the energy norm is equivalent to

the W2' 2 norm. The upper-bound then follows from the standard inverse estimates, Lemma

5.6:

pj11 < c p1 p 11' c c' 24j II P12 = c2 24 4j 1pj (5.77)

where the constant c' depends on the aspect ratio of the mesh, which remains constant

across all levels provided the mesh is subdivided in a regular manner. Now, from the

oscillatory estimates, Lemma 5.7 we have

Ilpj|| c 2-4j 11pj| , or, cl 24j 11pjll |1pg|| (5.78)

Remark. In the case of nodal finite element shape functions, the inequality |1pgjll < |pi1l

follows trivially. However, the oscillatory estimates, Lemma 5.7 provide a stronger bound

on the L 2 norm of a function lying in the space spanned by hierarchical basis functions.

Lemma 5.10. The hierarchical basis is uniformly L 2 -Riesz stable, i.e.,

C1 |pI|| < S P mWn o C2 p11 (Pj E W ,B) (5.79)
mEM(j)

Proof The function p3 belongs to the finite-element space Vj+1 and hence the L2 norm

equivalence for finite element spaces can be directly applied (see also Section 4.3.1). 0

Corollary 5.11. The eigenvalues of the unscaled mass matrix corresponding to the hierar-

chical basis functions alone satisfy

c 1 2-2 < Aj,,in < Aj,,ax <C 2 2-23 (5.80)

Proof Assume that all the degrees of freedom are scaled to have the same dimension (i.e,

a derivative degree of freedom of order m is multipled by hm . Then the L2 norm of the

basis functions satisfy

c 2 2j < B c2 2 (5.81)
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and hence

c1 |p| 2| 2 -2j P c2 ||P| (5.82)

from which the inequality follows trivially.

Lemma 5.12. The hierarchical basis is uniformly E - Riesz stable, i.e., 3 0 < c1 < C2 < 00

independent of the level j such that

S|| Pm'Pj+1,mIE < c2 I|P||E
mEAM(j)

( p E WYB)

Proof Note that Eq (5.78) and Eq (5.77) apply to each element of the space jB and in

particular to each element of the form Pjm(pj+1,m, m E .M(j). We therefore have

P m(PIj+1,m 2

mGM(j)
E

mEEM(j)

Pjm(P j+1,m 0 2< c |2 | | c2 24 2 -4j | = C2

(5.84a)

and

mPjmcj+,m1 2 c2-4
mEM(j)

Pim(Pj+1,m 2
0>

mCM(j)

c2-4' IIPjjj2 > cl 2 -4j 24j ||pj|| = C1| |PjIIE

(5.84b)

Corollary 5.13. The eigenvalues of the unscaled stiffness matrix corresponding to the hi-

erarchical basis functions alone satisfy

c 22 < Aj,min Aj,max C 2 22'. (5.85)

Proof From the inverse inequality, Eq (5.77) we have for any pj E WHB

||pj 1|| c 2'j | pj 1| | c1 24i 2 -2i pp = T 1 2 2j pT p (5.86a)

and

lip| 112 > c2 4l jjpjf|| > c2 2 4j 2 -2i pjp = c2 2 2j p (5.86b)
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We are finally ready to prove the main result for wavelets constructed using Gram-

Schmidt orthogonalization with respect to the a (-, .)-inner-product. Let, W as before, be

the space spanned by such scale-orthogonal wavelets.

Lemma 5.14. Scale-orthogonal wavelets constructed using Gram-Schmidt orthogonaliza-

tion are uniformly E- Riesz stable, i.e., 3 0 < c1  C2 < o independent of the level j such

that

C| - Z ,m Wj,m 2( E W C2 EiIIj C W)
meM(j)

Proof. This is a straightforward application of Lemma 5.8 and Lemma 5.12:

(5.87)

R 2 T

mEM(j) E
2

< c T HFB

mCM(j) E

< C T 2

MEMQj)

<K1- 1 Tm~~ 2
C1 mEM(j) E

2

2 T mw.B

lIi IIE 3,m 3)m~
mEM(j) E

2

>C ~TwHB
mEM(j) E

~ ~THB 2

ri ~jmoj,m E
mEM(j)

> 1 1: 11 mwT m 2

-C 2 mMMj) jMjmE

(Lemma 5.8)

(Lemma 5.12)

(Lemma 5.8)

(Lemma 5.8)

(Lemma 5.12)

(Lemma 5.8)
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Remark. The eigenvalues of the stiffness matrix corresponding to the un-normalized scale-

orthogonal wavelets alone satisfy the same estimates as Corollary 5.13.

5.9.3 Numerical Verification of Riesz bounds

We now numerically verify the bounds derived in Lemmas 5.8 to 5.14 for an ad hoc test

problem of a clamped square Kirchhoff plate discretized using Bogner-Fox-Schmidt finite

elements.

5.9.3.1 Norm equivalence between hierarchical basis functions and scale-orthogonal

wavelets

Let the stiffness matrices corresponding to hierarchical basis functions and modified wavelets

be denoted as C+1 and Cj+1 respectively. We then require that the extremal eigenvalues

of the mixed eigenproblem

Cj+1 v = A CHBi V (5.89)

remain bounded independent of the level j. Moreover, the maximum eigenvalue must

always be less than or equal to 1. This is experimentally confirmed in Figure 5-8.
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Figure 5-8: Numerical verification of Lemma 5.8
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5.9.3.2 Riesz stability of hierarchical basis functions

Let Djfi be the Jacobi preconditioner for C+,, i.e., it is a block-diagonal matrix composed

of the diagonal elements of Cj 1 . Then, from Lemma 5.12 we have that that the maximum

and minimum eigenvalues of the mixed eigenproblem

CB, V = A D Hv (5.90)

remain independent of the level of discretization, j. This is also experimentally verified in

Figure 5-9.

E-Riesz Stability of HB

7 -ma

2 3 4 5 6 7

Figure 5-9: Numerical verification of Lemma 5.12

5.9.3.3 Growth of eigenvalues of the matrix C'

From Corollary 5.13, we have that the minimum and maximum eigenvalues of the hier-

archical basis detail matrix, Cj+1 increase as 43. This is experimentally verified in Figure

5-10 which shows the theoretical and observed growth rates of the minimum and maximum

eigenvalues.
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Figure 5-10: Numerical verification of Corollary 5.13.

5.9.3.4 Riesz stability of scale-orthogonal wavelets

The statement of the main result, Lemma 5.14 is experimentally verified in Figure 5-11

which claims that if Dj+1 is the Jacobi preconditioner for Cj+l then the extremal eigenval-

ues (and hence the condition number) of the mixed eigenproblem,

Cjtl v = A Dj+1 v (5.91)

remain bounded independent of the level of discretization, j.
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E-Riesz Stability of Lifted Wavelets
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Figure 5-11: Numerical verification of Lemma 5.14.

5.9.3.5 Growth of eigenvalues for the matrix Cj+1

Finally, in Figure 5-12 we experimentally verify the result that the extremal eigenvalues

of the detail matrix Cj+1 corresponding to scale-orthogonal wavelets constructed using

Gram-Schmidt orthogonalization grow at the same rate as the extremal eigenvalues of the

hierarchical basis detail matrix C"i.
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Figure 5-12: Growth of extremal eigenvalues of the matrix Cj+1 with discretization levels.
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5.10 Closure

In this chapter, we discussed two techniques for the construction of wavelets that were

orthogonal to the scaling functions at each level with respect to the bilinear form, a (-, -)

by customization of hierarchical basis functions. The first technique based on the stable

completion approach of Carnicer, et al. resulted in wavelets in the interior of the domain

that had compact support. However, it required the construction of special wavelets at the

boundaries and did not ensure a priori that the wavelets were Riesz stable in the energy

norm. We therefore focused our attention for the rest of the chapter on the second method,

Gram-Schmidt orthogonalization. While this procedure often led to globally supported

wavelets (albeit with fast decay rates), we demonstrated how the corresponding detail ma-

trices could be efficiently assembled and factored for the case of adaptive mesh refinement

using Gauss elimination. We further characterized the stability properties of these wavelets,

demonstrating their a priori Riesz stability in Lemma 5.14. We conclude this chapter by

pointing out an important connection between scale-orthogonal wavelets constructed out

of Gram-Schmidt orthogonalization and stable completion.

5.10.1 Gram-Schmidt orthogonalization and stable completion

Let wqs denote the set of wavelets constructed using the Gram-Schmidt orthogonalization

process. The refinement and wavelet relations may be written in matrix notation as:

= [ 1 [ j [:: W+1 (5.92)
ig s _ (S9GS) I I T Po0h

where the scaling functions and wavelets satisfy a ( Wqs) T = 0. We therefore have,

I ~ ' Hj P J P+1 = P (5.93)
0 I1 o~ (SGS1)T I s
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If we let §c denote the set of scale-orthogonal wavelets constructed using stable comple-

tion, the refinement and wavelet equations can be written in the polyphase form as:

(Pg
Sc

LWj J

I 0

_ (S c) T G

I 0

- (S c)T GJ

JLI Hj

0 I _

I

(SGiS)T

PE~J

Poi_

3

L
0

1
(5.94)

from which we have

(w c T TSI C + S ) + (w s) Gj (5.95)

Once again applying the constraint that a , (w§C) T = 0 we obtain the relation:

S C = S G (5.96)

On substituting Eq (5.96) into Eq (5.95) we therefore obtain the following relation between

wavelets constructed using stable completion and Gram-Schmidt orthogonalization:

wC = G GS or w=Wj 3 3jj' (5.97)E ( m T G
m'EB(j,m)

Similarly, we can relate the wavelet coefficients at level j corresponding to the two types

of basis functions as:

( C T c = (Gj r C T GS _ (TGS T Gs3j 3 \3 33 \3/)3
(5.98)

or, rs = Gy r c

Finally, we can relate the detail matrices corresponding to the two types of basis func-

tions as:

Csc = a w c W.c)T) = GJ a (ws, (GS)T) G 3 = GJCGS G. (5.99)
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Chapter 6

Error Estimation and Adaptivity with

Operator- Customized Wavelets

"You know we are on a wrong track altogether.

We must not think of the things we could do with,

but only of the things that we can't do without."

- Harry in Jerome K. Jerome's Three Men in a Boat.

6.1 Overview and chapter outline

In this chapter, we propose a multiresolution technique for efficiently and adaptively gen-

erating the solution to a given PDE (described using its weak form, Eq (4.4)) such that

a given bounded linear functional of the solution is well-predicted (this is the problem of

goal-oriented adaptivity [12, 27, 28, 33, 32, 38]). Our multiresolution error-estimation and

adaptive refinement framework is based on the use of operator-customized wavelet that

were described in Chapter 5. The use of scale-orthogonal wavelets possessing the Riesz

stability property in the energy norm allows us to (a) efficiently estimate the details at

each level of resolution, based on which the details to be preserved are determined and

(b) to solve a system of equations corresponding only to details chosen to be preserved

in step (a), enabling the implementation of incremental rather than cumulative refinement

schemes. The key point of departure of our technique from the methods currently in vogue
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in finite element analysis is that instead of estimating the true error at each step of refine-

ment, we aim at efficiently computing and representing only its projection at the next level

of resolution (defined in Section 6.2.1 as the two-level error). As can be expected, this

process is much more accurate than estimating the error itself and is almost independent

of the coarsest mesh. Further, as demonstrated in Section 6.2.1, the true solution can be

represented in terms of these two-level errors and hence efficiently representing these er-

ror components automatically leads to an efficient, but accurate representation of the true

solution itself.

Our procedure for estimating the contribution of the two-level errors to the functional

of interest, step (a) in the previous paragraph, can be seen as a variation of both the error-

estimation procedure of Bank and Smith [9] and the dual-weighted residual technique of

Rannacher and collaborators (see for example, Becker and Rannacher [12], Gratsch and

Bathe [32, 33] and references therein). By directly estimating the contribution of the

wavelets at each level of resolution, our approach avoids many of the pitfalls (such as

lack of error cancellation) associated with techniques based on element-wise energy norms

(such as the method originally proposed by Becker and Rannacher [12]). Moreover, unlike

the approach of Prudhomme and Oden [38], which requires the estimation of the error in

both the primal and the dual solution on each mesh, our approach requires the estimation

of the detail components of only the primal solution at a given level of resolution.

In contrast to the adaptive wavelet-Galerkin approach proposed by Cohen, Dahmen and

their collaborators based on the use of biorthogonal spline wavelets on the interval (see for

example, [18, 20] and references therein), our approach is based on the use of wavelets

constructed from finite element interpolation functions. This allows our techniques to be

generalized more easily to complex meshes and higher-order differential operators. Fur-

ther, all computations (assembly, inverse transform, etc.) can be done at the element level

and computing the inner-products of the orthogonalized wavelets does not require special

quadrature techniques and may instead be computed using a simple scheme based on Gauss

elimination that were proposed in Section 5.7.1. Finally, adaptive approaches based on the

wavelet-Galerkin method currently drive adaptivity based solely on the magnitude of the

wavelet coefficients. While this approach is suitable for adaptivity based on the energy
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norm (provided of course that the wavelets are Riesz stable in the energy norm, as con-

sidered by Cohen et al. [18]), this strategy alone is not sufficient in general to drive goal-

oriented adaptivity. A distinguishing feature of our wavelet approach is that we consider

the more general case of goal-oriented adaptivity and our refinement procedure is based on

how much a wavelet contributes to the quantity of interest rather than just the magnitude of

the corresponding coefficient.

6.2 Error estimation and adaptivity in classical finite ele-

ment analysis

Consider again the virtual work equation, Eq (4.4) and let uj E V be the Galerkin projec-

tion of the true solution u satisfying the finite dimensional virtual work equation, Eq (4.6).

Further, define
def

6j U - UJ

to be the error in the solution and let

def

Rj (M =e I (v) -a (uj, v) (v E V)

be the corresponding residual. The true solution can then be written as

U = uj + 6j (6.1)

where the error Ej satisfies the residual equation

a (ej, v) = R (v) (v E V)

and is a-orthogonal to the space V1

a (Ej, vj) = 0 (vj E Vj)
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In principle therefore, given the solution at level j, it is possible to obtain the true solution

provided the error is known. Unfortunately, the error belongs to an infinite dimensional

Hilbert space, V and solving for it is often as expensive as obtaining the true solution it-

self. Therefore, one instead computes an inexpensive approximation to the error, Egt using

various a posteriori error estimators such as implicit, explicit or recovery based error esti-

mators [1, 33]. Then, if the estimated error is larger than a given error tolerance e, a refined

mesh is constructed by subdividing elements based on the principle of equidistribution of

error, i.e., we sudivide those elements Sj,,, V = {1, 2,. , Nj satisfying

es E N (6.2)
3, v E Nj

where 1s 3lE is the energy norm of the contribution of each element to the error estimate

and N is the number of elements at level j. Based on this criterion, we can therefore

establish a refined space of functions +1r C Vj+j on which the improved solution, Tij+i

is computed. This process is repeated until the estimated error is less than the prescribed

error tolerance.

There are a number of disadvantages associated with the canonical error-estimation and

adaptive refinement procedure described above. For example, the quality of the estimated

error often depends very closely on the quality of the initial mesh. In the case of recovery-

based error estimation procedures such as the Zienkiewicz-Zhu technique [54] a lack of

oscillation in the solution is indicative of a more accurate solution. Hence on very coarse

meshes, misleading estimates for the error could be obtained (see for example Gratsch

and Bathe [33], Section 4.3). Another disadvantage with classical error estimators in finite

element analysis is that many of them, particularly the explicit error estimators (see [1, 33])

are based on the element-wise application of the Cauchy-Schwarz inequality to lead to

error-estimates of the form

N
112 <_ 6Est 112 def ~ est 112

Jj~jE -E 1E jv E(6.3)

v=1

Hence, while the individual element-wise error indicators, 11 I E can serve as good indi-
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(a) (b) (c)

Figure 6-1: Handling of irregular vertices using (a) Imposition of multi-point constraints

on vertices MO,... , M3 (b) Green refinement (c) Refinement by successive bisection of

longest edges

cators for driving adaptive mesh refinement, the estimated error 3jSt E often produces an

overestimation of the true error [33] and can lead to suboptimally-refined meshes. A stan-

dard technique for overcoming this problem is to actually refine only a certain fraction of

the elements marked for refinement based on Eq (6.2). However, there is usually no means

for choosing this fraction in a systematic, a priori manner.

Apart for the problems due to inaccurate error-estimation on coarse meshes, classical

adaptive refinement procedures themselves have several disadvantages. For instance, re-

finement schemes based on subdivision of individual elements often have to contend with

hanging or irregular vertices either using transition elements and multi-point constraints,

Figure 6-1 (a) or with specialized techniques such as green refinement of Bank [7] (that

requires heuristics to prevent triangles with poor aspect ratios), Figure 6-1 (b) or succes-

sive longest edge bisection technique of Rivara [39], Figure 6-1 (c). However, most of

these techniques work reliably only for certain special cases (such as piecewise linear in-

terpolation on triangular meshes) and extensions to more general elements (such as the

Bogner-Fox-Schmidt element) are normally extremely tedious to implement and may not

result in displacement fields with sufficient continuity.

There is therefore a lot of scope for the construction of reliable, efficient and easy-to-

implement error estimation and adaptive refinement procedures in practical finite element

analysis (see also the conclusions in [33]).
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6.2.1 A point of departure

Instead of using Eq (6.1) to represent the solution, the multilevel error estimation and adap-

tive refinement algorithms that we propose in this chapter are based the decomposition of

the error ej belonging to an infinite-dimensional space Hilbert space V into a convergent

sequence of errors belonging to successively richer finite-dimensional spaces. The esti-

mation procedure aims at cheaply computing approximations to these components of the

error and the adaptive refinement procedure aims at developing a compact representation

of these components. Unlike standard finite element analysis where the choice of a par-

ticular error-estimation technique (explicit, implicit or recovery-based) is often completely

independent of the choice of a refinement procedure (transition elements, multi-point con-

straints, remeshing, etc.), the estimation and refinement steps in our multilevel technique

are tightly integrated. This allows us, for example, to predict in an a priori manner (i.e.,

before actually computing the details exactly), how much the solution will improve upon

mesh refinement.

Observe that for an estimation technique based on predicting certain components of the

error there is no implicit assumption that if a particular component of the error is negligible,

the total error itself is small. Such techniques can therefore expected to perform in a robust

manner on coarse meshes.

Further, the adaptive refinement procedures themselves are based on the notion of space

refinement [18, 20] where the new approximation spaces, VAdapt are created by selectively

augmenting an existing approximation space VjAdapt with a set of wavelet basis functions.

This form of enrichment does not have to explicitly deal with irregular vertices since the

wavelet coefficients corresponding to these vertices do not enter the system of equations at

all.

The basic principle behind the multiresolution error-estimation and adaptive refinement
00

algorithm is the following: Since for conforming finite element approximations clos U V =
j=0

V (see Section 3.2), we have lim u, = u. Hence, the sequence of two-level errors

def
ej =j+1 - Uj
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belonging to the space V+1 is itself a convergent sequence tending to 0. Given the solution

uo corresponding to the space V of finite element interpolation functions on the coarsest

level mesh, we can therefore decompose the solution u in terms of a telescopic sum as

00

U = uo + E (uj+1 - uj) (6.4a)
j=0

00

= uo + e (6.4b)
j=0

From the above decomposition, it follows that the error at a certain level j can be written

as
00

E= ei (6.5)
i=j

The key properties of the two-level error are summarized in the following lemma.

Lemma 6.1. The two-level error ei, i ; j corresponds to the projection of the true error;

E. onto the space Vi+,

lEj - ei4 E = inf IlEj - Vi+11Evi+lcvi±1

Further the two-level errors are scale-orthogonal, i.e.,

a (uj, ei) = 0 (i > j) (6.6a)

" (ei, ei,) = 0 (i = i') (6.6b)

Proof To prove the first part of the lemma, observe from that the true error at level j

satisfies

a (Ej, vj+,1 ) = 1 (vj+1) - a (uj, vj+1) (vj+l E Vj+)
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and the two-level error satisfies

a (ej, vj+1 ) = a (uj+i, vj+1) - a (uj, vj+1) (vj+i E Vj+1) (6.7a)

= 1 (vj+) - a (uj, vj+) (6.7b)

= a (E, v+1) (6.7c)

and therefore, the proof follows by definition [24].

Further, from the Galerkin orthogonality condition we have

a (ei, vi) = 0 (vi E Vi) (6.8)

and since the two level error e/ E VF+1 C Vi for i > i' the second result follows trivially.

A direct consequence of the above lemma that forms the basis of our multiresolution

method is the following result:

Lemma 6.2. The two level error ej corresponds to the projection of the true solution u

n e (~1Va where V.- is the orthogonal complement [24] of Vonto the spacew = 7jA1 fl whr isth

with respect to the a(., -) inner-product,

|IU - eyj||E = in II - TIAIE (6.9)

Proof By definition

a(uj, j) = 0 (r/j W) (6.10)

and hence

a(ej, %) = a(nu+1, ,) = a(u,7%) (6.11)

since,% E Vj+1. l

Given the solution u3 at a certain level, the task at hand in this chapter is to construct

a compact representation for the two-level errors ej, j = 0, ... , oc that is much less com-

putationally expensive to compute than the solution uj+1. A straightforward technique
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to achieve this is to augment the existing space of functions V using basis functions be-

longing to a subspace satisfying the direct-sum property, Eq (2.4b) such as the space of

hierarchical basis functions W!B. A compact representation of the two-level error can then

be obtained by choosing only the set of hierarchical basis functions belonging to an index

set M'(j) c M(j). As discussed in Section 4.4, a disadvantage of this approach is that the

adaptative refinement procedure is cumulative rather than incremental - each time a new

space of functions is added, the components of the two-level error along the existing space

of functions must be updated due to the coupling between the spaces V and WB

This problem can however be overcome using Lemma 6.2: We determine the two-level

errors by projecting the solution onto the spaces W (which are precisely the spaces spanned

by the scale-orthogonal wavelets constructed in Chapter 5). Due to the scale-orthogonality

of the two-level errors, Lemma 6.1, these error components do not have to be updated upon

the enrichment of the spaces. As for the case of the hierarchical basis functions, a compact

representation of ej can be obtained by projecting the true error on to a subspace WAapt

of W consisting only of a few of the scale-orthogonal wavelets. In the next subsection,

we describe why it is important for the scale-orthogonal wavelets to be Riesz stable in the

energy norm in order to obtain a compact representation of the two-level errors.

6.2.2 On the significance of Riesz stability of scale-orthogonal wavelets

Expanding the two-level error function ej in terms of the scale-orthogonal wavelets span-

ning the space Wj we have:

mEM(j)

Assuming that the adapted solution Uj+1 is computed by retaining only a few wavelets

belonging to the set m E M'(j),

U+1 = Ur + m (6.12)
mEM'(j)
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the error incurred due to the adaptive refinement process (denoted henceforth as the adap-

tation error) can be given as

Ujj- Sj+ rlmwj,m
mEM"(j)

) def

where M"(j) = M(j) \ M'(j). We therefore need a strategy for selecting the set of

wavelets to discard such that the error due to adaptive refinement, uj+ - Uj+ remains

small in some metric, typically the energy norm.

If the wavelets form an a-orthogonal basis for the spaces W, the adaptation error in the

energy norm can be written directly using the Pythagorous theorem [24] as

Ijuj+1 - j+ rIIIT p 2 (6.13)
mEM"(j)

Hence given a certain accuracy threshold T- for the adaptation error uj+l - 7j+1 in the

energy norm, it suffices to choose the set of wavelets to discard such that

r wm ||E < :, (6.14)
mEM"(j)

In practice, it is much easier to discard wavelets with extremely small contributions to the

energy norm, i.e., given a threshold j we select the set of wavelets to discard such that

rTm" im" E M m mwj E rn E M"(j) (6.15)
mEM(j)

In the absence of an a-orthogonal basis, the next best alternative is a basis that is Riesz

stable in the energy norm (see Eq (5.52)). Here, instead of the equality, Eq (6.13), we have

the following equivalence between the energy norm squared of the adaptation error and the

energy-norm squared of the discarded wavelets

ci 5 T Iu,+1-- j+1|| c2 T r2wm,~m (6.16)

mEM"(j) mEM"(j)
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where the constants 0 < c1 < c2 < oc are independent of j. Provided the stability

ratio c2/ci is not very large, in this case too, an adaptation process based on discarding

coefficients with small energy-norm contributions as in Eq (6.15) is theoretically justified.

The procedure discussed above assumes that the wavelet coefficients rj,, m E .M(j)

are known. However, this is rarely the case and computing the wavelet coefficients ex-

actly is usually at least as expensive as computing the solution at the higher resolution. In

practice therefore, one needs an efficient technique for estimating the wavelet coefficients

that is much less expensive than computing them exactly. A technique relying closely on

the Riesz stability property of the wavelets is presented later in this chapter. The essential

principle behind this approach is that the detail matrices Cj±i corresponding to Riesz sta-

ble wavelets are equivalent to their diagonals irrespective of the levels and a good estimate

for the details can be obtained simply by diagonally scaling the corresponding right-hand

sides.

6.2.3 Goal-oriented error estimation and adaptivity

The procedure discussed in the previous subsection was primarily concerned with con-

structing an adapted solution -9 that is close to the true solution u in the energy norm.

However, this form of adaptivity does not ensure that certain other properties of the solu-

tion (such as the average values of the solution or gradient along a section of the domain)

are also predicted with sufficient accuracy (see for example Becker and Rannacher [12]).

There has therefore been much interest in recent years towards the development of more

general, goal-oriented [12, 27, 28, 33, 32, 38] error-estimation and adaptive refinement

techniques that aim at predicting certain linear functionals of the solution in a reliable and

computationally efficient manner. In this section, we give a brief overview of the prob-

lem of goal-oriented finite element analysis; more details, including the classical solution

approaches can be found in the original papers by Eriksson, et al. [27], Becker and Ran-

nacher [12], Prudhomme and Oden [38], the review article by Gratsch and Bathe [33] and

the monograph by Ainsworth and Oden [1].

Given a bounded linear functional Q : V -* IR (the quantity of interest), the prob-
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lem of goal-oriented error estimation and adaptivity is to determine the quantity Q(u) in

an efficient, yet accurate manner. This is done by considering an error tolerance, E, and

constructing a computationally inexpensive approximation U E V such that

def (6.17)
d(u, i) = Q(u) - Q() (6.17)

Since Q c V', the dual space of V, by the Lax-Milgram lemma, there exists a unique

solution z E V to the dual or adjoint problem (called the influence function), z C V,

satisfying

a(z, v) = Q(v) (v E V) (6.18)

From the symmetry of the bilinear form a (-, -), there are therefore two ways of computing

the quantity of interest

Q(u) = a(z, u) = 1(z) (6.19)

that is a powerful generalization of the Maxwell-Betti reciprocity principle.

For the particular case of the output functional Q = 1 we have

d(u,-E) = 11(u) - l(U)I = II12 - I|I1 = IIu - U11 (6.20)

where the adapted solution U is the projection of u onto a subspace VAdapt c V. Hence,

the problem of goal-oriented adaptivity, Eq (6.17) is more general than adaptivity based

on the energy norm. In the rest of this chapter, we threfore propose a simple strategy for

the solution of the problem of goal-oriented analysis based on the use of Riesz-stable scale-

orthogonal wavelets with the implicit understanding that the same principles can be applied

for more traditional forms of adaptivity based on the energy norm.
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6.3 Multiresolution goal-oriented error estimation and adap-

tive refinement

As in Eq (6.4a) we can write the decompose the solutions to the primal and dual problems

in terms of their respective two-level error components as:

00 00

u = uo+Eej and z = zo + E (6.21)
j=O j=O

where uO, zo E V are, respectively, the the finite element solutions of the primal and

dual problem on the coarsest mesh and ej, gy E V9yj are the respective two-level errors.

Moreover, from Eq (6.8 ) we have

a (e, yig) = 0 (i # i') (6.22)

and hence the quantity of interest Q(u) can be further decomposed (using the continuity of

Q(.) and a(-, -) as)

00

Q (u) = Q (uo) + E Q (es) (6.23a)
j=O

00

= a (uo, zo) + 5 a (ej, 77j) (6.23b)
j=0

Further, using the Cauchy-Schwarz inequality,

IQ (ej) I= Ia (ej,r/j)| ; I|ejIE Y jE (6.24)

While the adaptive refinement procedure will be based on the use of Eq (6.23a), Eq (6.24)

will be used to provide a priori upper-bounds for the error-estimation procedures presented

later in this section.
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6.3.1 Construction of adapted complementary spaces

As for adaptivity based on the energy-norm metric, we can expand the two-level error

function at level j in terms of the scale-orthogonal wavelets at that level as

e = rimwj,m (6.25)
mEM(j)

Then, as in Eq (6.12) by computing the adapted solution Uj+l by preserving only the set

of wavelets belonging to the set M'(j) the error incurred in the quantity of interest can be

expressed as

IQ (uj+i - +1)= Q (riwj,m) < IQ (rlmWj,m) (6.26)
mEM"(j) mEM"(j)

Therefore, for an accurate approximation of Q (uj+i) by Q (uj+1) up to an accuracy Tr, we

select the set M"(j) such that

ZQ (rlmwj,m)
MEM < T- (6.27)

max Q (rTmwj,m) ~

or more conveniently, select a threshold ;F and choose M'(j) such that

Q (rJm'wp,mi) ; i> (in' E M'(j)) (6.28)
max Q (rTmwj,m)

mEM(j)

Let WAdapt be the subspace of Wj spanned by the set of wavelets in M' (j) and let VAdapt
3 j+1

def VAdapt E WAdapt. Finally, let the adapted solution U in Eq (6.17) be given as the limit of

the adapted solution at each level,
_def

u= im Uj
3 -+00

To see how the error in the quantity of interest due to adaptive refinement at each level j,

IQ (uj - Uj) I affects the final error IQ (u - U) 1, observe that Q is bounded and linear, and

hence it is also uniformly continuous [24]. We therefore conclude that the final error is
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simply the limit of the error incurred at each step since

d(u, U) = IQ( )= Q (m u) -IQ (m 7" = lim Q (u3 - nj) = lim d (uj - Uj)
/ \-J-00 j /-+o 3-+400 j-*00

(6.29)

The next section describes the details of our error-estimation and adaptive refinement

scheme for goal-oriented analysis. The section following that provides an a priori analysis

of the approximations made for computational efficiency (such as partial orthogonalization,

of the wavelets, approximate computation of the detail coefficients, etc.).

6.3.2 Multiresolution error estimation and adaptive refinement algo-

rithm

In this section, we describe an efficient technique for the estimation of the two-level er-

rors, ej and propose an adaptive refinement algorithm that selects the set of wavelets to

be retained such that the final adapted solution predicts a certain quantity of interest in an

accurate and efficient manner. Observe that steps 1 and 2 below are the estimation steps

while steps 3 and 4 are the adaptive refinement steps.

1. Given solution at level j, uj, estimate the details rj. The details are computed by

solving a system of equations of the form:

Cj+1rj = gj (6.30)

where Cj+1 = a (wj, wT) is the detail matrix corresponding to the addition of scale-

orthogonal wavelets at level j and gj = 1 (wj) is the corresponding load vector. For

scale-orthogonal wavelets constructed using Gram-Schmidt orthogonalization of the

hierarchical basis, Cj+1 is the Schur's complement of the hierarchical basis detail

matrix and the right-hand side is the corresponds to the residual in the space V+ 1,

see Lemma 5.2.

Obviously computing all the detail coefficients at level j by inverting C,+1 is ex-

tremely expensive since it is normally a dense matrix. However, from Lemma 5.8

113



Cj+1 and C"i, (a sparse matrix) are equivalent in the sense that for any vector of

detail coefficients, rj,

(1 - 72) rTCfra rJCsir3  rICci r, Y E [0, 1)

The matrix CH'i is therefore a good approximation to the matrix Cj+1 . Hence, let

= (Cy 1i)g = (Cfi) (gB - (B 1 )TuJ) (6.31)

be an estimate for rj.

In order to compute the estimates ij more efficiently, we use the property that the hi-

erarchical basis functions form corresponding to interpolating wavelets form a Riesz

stable basis for their span, see Lemma 5.12 and Yserentant [51] and therefore the

condition number, r of Cj1 is uniformly bounded. Hence we can approximately

invert C+ 1 using only a few conjugate gradient iterations with block diagonal scal-

ing. In our numerical experiments, the number of iterations required was usually

between 5 and 7.

2. Compute contribution of the detail coefficients at each node to the linear functional

as

Q (JTmwjm) = Q (Wj,m) = fOmQjrm (6.32)

where from Lemma 5.2, the dual load vector, Qj is computed in exactly the same

manner as the primal load vector as

Qj = QHB - (BJ)z (6.33)

with zj being the influence function at level j.

3. Given a threshold Tr, select the set M'(j) of wavelets to be retained according to Eq

(6.28):

Q (-T mWj,m') TT max Q (iImmj,m) (i' E M(j)) (6.34)
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In our numerical experiments, the thresholds were determined by constructing a his-

togram of the quantities IQ (-Tmwj,m) (normalized with respect to max IQ (Tmwj,m) )
mEM(j)

with a bin size of 0.02 and discarding only the coefficients belonging to the last few

bins.

4. Construct scale-orthogonal wavelets corresponding to the set M'(j) using the Gram-

Schmidt orthogonalization procedure, Eq (5.30) and solve for the corresponding de-

tail coefficients exactly.

5. Compute the contribution of retained details to the influence function by performing

one back-solve on the factorized detail matrix (needed for step 2 at level j + 1).

6. Finally, we can estimate the contribution of the discarded detail coefficients as

(uj+1 , 7!j+,) ~Q (-T mWj,m) (6.35)
mEM"(j)

Remark. For symmetric problems, the estimation steps, 1 and 2 in the algorithm above

can be easily shown to be a variation of the dual weighted residual (DWR) approach by

Rannacher, et al. [12]. The key difference however, is that in the DWR method the error in

the quantity of interest is typically estimated by constructing an improved approximation

to the influence function (as done for instance in by Estep et al. [28] and Gratsch and Bathe

[32]), whereas in the present approach, the error in the quantity of interest is estimated by

efficiently constructing an improved approximation to the solution itself (by adding details

at level j) and using the influence function at the current level. Both these approaches have

the advantage that one needs to estimate the errors only in the solution or the influence

function. An additional advantage of our approach is that as in [28, 32], the estimates are

computed directly using the weak-form residuals instead of applying integration by parts

over each element of patch of elements defining a basis function. Hence it is ideally suited

for problems such as the deformation of thin plates and shells where computing the strong-

form residuals is very inconvenient.
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6.4 Analysis of the multiresolution goal-oriented error es-

timation method

In the goal-oriented error-estimation and adaptive refinement algorithm presented in the

previous section, there were three main approximations made: (a) The detail matrix Cj+1

was replaced by the hierarchical basis detail matrix C"1i, (b) the approximate detail co-

efficients fj were computed using a few iterations of the conjugate-gradient method and

finally (c) the scale-orthogonal wavelets were constructed using a Gram-Schmidt orthog-

onalization approach that only ensures partial scale-orthogonality of the wavelets. This

simplification is independent of the other two approximations and has an impact on how

accurately the details (and consequently, the functional of interest) are computed.

6.4.1 Replacement of Cj+1 with Cu

We first analyze the effect of replacing the stiffness matrix corresponding to the orthogo-

nalized wavelets, Cj+1 with that corresponding to the hierarchical basis functions, C"'i

Theorem 6.3. If ej are the exact details and j are the details computed by approximating

C+1 with C', then

IQ (ej - sj)I < Ilej lI Il (6.36)

Proof Since the approximate two-level error functions e- correspond to the estimated de-

tail coefficients if, we first have

CH1 (rj - rj) = (B HB) T K7 1B H1 rj (6.37)
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and hence

Ileyj- s (rj - )T Cj+1 (rj - j)

lEy rICj+1rj

,T ((B HB)T K-'BHB, (CHBJ) C1 q 1 (CHBi) - (B HBJ) TK B rB,

r, C+i r,

(rj) T XT4 Xj+ 1 (I - XT Xj, 1 ) XT+Xj±1 r

(rj T (I - XT+1y1

on substituting Cj+ = i- (Bi)T KjBy'i and setting r = (Cj) r,. We there-

fore have,

le~ - eIE (I - XT+1X, 1) XT JXj+1  (I - XT±1Xj+)
leie l IE <± .2(12

(I - XT+1X+,1 ) ||XT>X (I -XT +
2

< by Lemma 4.4
/1 - 7

(6.38)

Observe that since y < 1, _y2 < -y. Further,

IQ(e, - aj)I = (rlj, ej - j)

< Iei - e|IE 11%1 1E

< 1-

6.4.2 Computation of fj via conjugate gradient iterations

We next analyze the effect of computing the approximate two-level errors ej using k

conjugate-gradient iterations with block-diagonal scaling. The estimates follow in a straight-

forward manner from conjugate gradient convergence theory (see for example Golub and

van Loan [31]).
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Theorem 6.4. If e is an approximation of a3 computed by k conjugate gradient iterations

with block-diagonal scaling, then

Q (ek)) < 2 k(6.39)

Proof Let Dj+1 denote a block-diagonal approximation to CH 1. Then, using standard

conjugate gradient convergence estimates, we have

2

D] 2 (ij - (k)) <4 D~1 ~± 2 ~ ~ D3 3 (6.40)
Di+1 r j+1+1 D-2 CB D7 +o +1+1 i+ j+1

(k) i
Ei D-+2 CH s+

where IXII (xT Ax) is the A-norm of a vector and K = D C4 1 + 0(1)

by the Riesz stability property of the hierarchical basis functions, Lemma 5.12. Hence,

(jk))C+HB k) 4 +Bi 2k (6.41)

Further, by equivalence of the Gram-Schmidt orthogonalized wavelets and hierarchical

bases, Lemma 5.8,

- 2 (k) T ,C B (k) 4 2 1 2k

We therefore have from Eq (6.24),

Q (jj -() 2 -j (k)E E

V_ 2 2 R E 117AE ( V/- )

exactly as desired.
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6.4.3 Partial scale-orthogonalization of the wavelets

We finally analyze the influence of constructing partially orthogonal wavelets by Gram-

Schmidt orthogonalization. Let Wjfe be the space spanned by discarded hierarchical basis

functions up to level j - 1, i.e.,

j-1

WJ_ span n" E M"(i) (6.43)
i=O

Observe that V = VAdapt e wfe. We can then define three pairs of strengthened Cauchy-

Schwarz inequalities, between elements of VAdapt and WHB Adapt and W el and WHB and

Wjes as:

1a(u, v) VAdapt v E WHB (6.44a)
0 s up E fV IIE V C

02 = SUP ja(u, v)I Vu G VAdapt V E WJ_* (6.44b)
IUIIE IIVIE 3

03 = SU a(u, v)I Vu E W E WHB (6.44c)
IIUIE IIVIE

Note that since VAdapt C V and Wjes c V, 01 , 03 < -Y

Theorem 6.5. Let iiAdapt, j and URes, j-1 be the components of uj+1 on VAdapt and Ws

respectively. Then,

y(1+02)
1Q (eyj - sj) 5 1 _ - 2 lRes,j-1 IE Il77 lE (6.45)

Proof First consider the multilevel system of equations to determine the details ej at level

Kdpj BH~daptj+ 1  Res,j UAdaptj fAdaptj

(BHB at-+1J T Be BB+B (6.46)

(Res,j) T (B, CHsj+1 T Res, , _ Res,j-1 Res,j-1
where the interaction matrices BHBani, BHB tan the inner-products of
basisth fnrction ma s A dapta B W e W and Ba cond

bassfnctonsinV Adapt n WHB, Ws and WHB an V AdaPt and Wjes respectively. Now,basi fucton in3 t n , -1 3 an 3 .- 1
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1 ~ .' (cHB, 2~ x (CR B,
on substituting f'a - (KAdapt, Adapt,j, =r + / rs and ii'HB 2 URes,j-1

and suitably normalizing the system of equations we have:

I X +1 Y3 +1 UAdaptj fAdaptj

XT 1 r = g (6.47)
j+1 j+ LL

+1 j+1 I .Res,_-1j gRes,j -1

where from Lemma 4.3,|Xj+ 11 =96, jYj+1|| = 62 and Zj+1 =63. In the case of

adaptive refinement, we neglect the contribution of the solution on the space of discarded

basis functions, URes,j giving rise to a normalized system of equations of the form:

[ X+daptj (6.48)x T IX+1 I i~ L gi

Hence

(I - X,+}1X+ 1 ) (r - = (-Zj±1 + XT+1  +1) iEes,j-1 (6.49)

Let

2

I Yj+1 Xj+1
xj+1= [T l [ (6.50)

Y 3+1 L j+

Then we have,

e -- E

- I -- ,+ r -r

IJ - 1X,+lj (I - XT+Xj+)-l (-Zj+1  X,+ 1Y3 +1 ) +'Res, _1

1
1 -2 (||Zj+1 || + I1X+|I |Yj+1|) ||URes,j-1 1E

1

- 1
= 1 - 6? (63±+6162)1 URes,J--1 lE

< 1 2 (1 + 62) 1IlRes,j-1 lE (6.51)
1- Y

Observe that e' - = 0 either if 63 = 0 and 62 = 0 (i.e. if W L VAdapt and
3 11E
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W~es I WHB) or if 03 =0 and 01 0 (i.e. scales are fully decoupled).

Further as in the previous two results we can bound the error in the quantity of interest

due to partial orthogonalization as:

IQ (ej - -Ej)| I<! 1 ej - -E EInj1,

y (I + 6 2 )

< - 2 l Resj-11E E

6.5 Closure

In this chapter we described a multiresolution approach towards error-estimation and adap-

tivity in finite element analysis based on the use of operator-customized wavelets. Our

proposed approach hinged on two important results. The first was the decomposition of

the solution error belonging to an infinite dimensional Hilbert space into a sequence of

two-level error components belonging to finite dimensional spaces. By Lemma 6.2, these

components could then be determined by projecting the solution u onto the wavelet spaces

spanned by the scale-orthogonal wavelets that were constructed in Chapter 5. Moreover,

due to the scale-orthogonal nature of the assumed decomposition, these components do not

change on the addition of more levels of details. The second key result was the existence

of a Riesz stable basis in the energy norm for the complementary spaces W. This property

provided a theoretical justification for an adaptive refinement process based on discard-

ing wavelet coefficients with small energy norms. We then proposed an error estimation

and adaptive refinement scheme based on the use of our operator-customized, Riesz stable

wavelets for solving the problem of goal-oriented adaptivity. We then derived a priori er-

ror bounds on the accuracy of our estimation technique by considering the effect of various

approximations such as partial orthogonalization of the wavelets.

In the next chapter, we present several numerical examples in error estimation and

adaptive mesh refinement for both energy-norm and goal-oriented adaptivity problems to

validate the effectiveness of the techniques proposed in this chapter.
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Chapter 7

Numerical Experiments

Those who can, do. Those who cannot, simulate.
- /usr/games/fortune

7.1 Chapter overview

In Chapter 5 we described the motivation for the construction of scale-orthogonal wavelets,

proposed procedures for the construction of such wavelets and characterized their stability

properties; in Chapter 6, we proposed an error-estimation and adaptive refinement algo-

rithm based on the use of such scale-orthogonal wavelets. In this chapter, we illustrate

the use of scale-orthogonal wavelets constructed using both stable completion and Gram-

Schmidt orthogonalization for the efficient solution of several linear, elliptic partial differ-

ential equations and demonstrate the effectiveness of the proposed algorithms.

7.1.1 Measuring the effectiveness of the adaptive refinement algorithms

In adaptive refinement procedures, the fundamental trade-off is between compression and

accuracy. As can be observed from the description of the error estimation and adaptive re-

finement procedure proposed in Chapter 6, by choosing the set M'(j) to be very small, it is

possible to obtain an over-compressed solution which might also be highly inaccurate. One

technique to measure this trade off is to define two metrics at each level j, the compression
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ratio, CRj and the accuracy ratio, ARj as

def card M'(j)
CR- =(.a

- card .M(j)
dfIQ(01)

AR - (7.1b)

Obviously, an effective multiresolution error estimation and adaptive refinement procedure

is one that keeps CRj as small as possible while at the same time ensuring that AR are

close to 1 as possible. An important property of an effective adaptive refinement algorithm

is that if one were to plot the error in the functional of interest vs. the number of levels

for both uniform and adaptive refinement cases the two convergence plots will closely

coincide. This property will be observed in many of the examples that we present later in

this section.

7.2 Prototype problems

We first describe some of the problems that can be solved in an adaptive manner using

the multiresolution error-estimation and adaptive refinement approach proposed in Chapter

6. In our numerical experiments we have considered both second and fourth-order linear

elliptic PDEs with constant and varying coefficients and where the field variables are both

scalars as well as vectors.

7.2.1 Poisson's equation

The simplest example considered is the Poisson's equation (governing problems such as

heat transfer), where the strong-form and boundary condition are given as

rV 2 u+f =0 on Q (7.2a)

u = 0 on FD (7.2b)

Vu- =g on IFN (7.2c)
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The Sobolev space of functions V, the bilinear form and the corresponding linear form are

then given as:

V = {V E H,(Q) s.t. vjrD = O} (7.3a)

a(u, v) = rvu - Vv dQ (7.3b)

1(v) = fv dQ + Jgv dF (7.3c)

a rN

7.2.2 Two-dimensional linear elasticity

At the next level of complexity we consider the problem of two-dimensional linear elas-

ticity where the field variables are the displacements in the x and y directions. The strong

form of the PDE (the "equilibrium equation" [10, 40]) expressed in terms of the Cauchy

stress tensor is given as

-4,j + f = on Q (7.4a)

u=0 onlFD (7.4b)

-yi - ftn = ri on FN (7.4c)

The stress tensor can in turn be related to the displacement field using the stress-strain and

strain-displacement relations as

-j= CijklekI (7.5a)

1
eij = (uij + uji) (7.5b)

Using the Voigt notation [40], the 3 x 3 symmetric stress and strain tensors can be rewritten

as 3 x 1 vectors and the Sobolev space of functions and final weak-form can be expressed
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as

V = {v C H'(Q) x H'(Q) s.t. vjrD = 0} (7.6a)

a(u, v) = vT BT CBTu dQ (7.6b)

1(v) = vTf dQ + JvT-r dF (7.6c)

Q r N

where the matrices B and C contain the strain-displacement and stress-strain relations re-

spectively. For the precise expressions, see Bathe [10] or Slaughter [40].

7.2.3 Kirchhoff plate

At the final level of complexity, we consider the problem of deformation of a thin (Kirch-

hoff) plate, where the only field variable is the normal displacement. In this case, plane

sections that are straight and normal before deformation remain straight and normal after

deformation and hence all the strain components normal to the surface of the plate are iden-

tically 0. The strong-form (a fourth-order PDE) and a few typical boundary conditions are

given as [26, 47]

DV4 u = q on Q (7.7a)

u = 0 on FD;Simply-supported (7.7b)

u and Vu- = 0 on ID;Clamped (7.7c)

The Sobolev space of functions and the bilinear form can then be given as
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VSimply-supported = {v E H 2 (Q) s.t. VIrD O (7.8a)

VCIamped = {v E H 2 (Q) s.t. VIrD 0, VV = 0} (7.8b)

a(u, v) = D V2 UV 2v + (1 - v) {2u 12v12 - u11 v 22 - U22v 11 } dQ (7.8c)

1(v) = qv dQ (7.8d)

7.3 Application of locally-supported scale-orthogonal wavelets

In this section, we give several examples of scale-orthogonal wavelets constructed using the

stable completion procedure described in Section 5.5. The construction of scale-orthogonal

wavelets for second-order problems is rather well-established and therefore in this section

we exclusively consider examples of wavelets customized to the thin-plate bending prob-

lem with the bilinear form given by Eq (7.8c).

For simplicity, we consider the case of polygonal domains with either clamped or

simply-supported boundary conditions. The bilinear form Eq (7.8c) can then be simpli-

fied as [26]:

a(u, v) = V2u V2v dQ, (u,v C V) (7.9)

Assume that Eq (7.9) is discretized using Bogner-Fox-Schmidt interpolating polynomi-

als and that the basis functions are normalized such that they all have the same dimension

(for example, the basis function interpolating rotations are multiplied by the mesh width).

The minimum support over which a set of non-trivial solutions to Eq (5.21a) exists

in the interior of the domain is shown in Figure 7-1(a): There are 36 orthogonality con-

straints to satisfy (four constraints corresponding to each of the nine vertices ko, . . . , k8 )

and 36 degrees of freedom (four degrees of freedom corresponding to each of the vertices

M, .. . , m 7 and k 4).

The 36 x 36 local interaction matrix, K" may be decomposed as:
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K1c- K1?c K c K1?c K1 ]G, I Bj,1 B,j,2 B,j,3 A~J

where Ki"B (resp. Ki 2 and K' 3 ) contain the columns corresponding to the ver-

tices M0 , min, M2 (resp. M3 , n 4 and M 5 , M 6 , M 7 ) and are given in the next few pages.
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It can be verified that the columns of the 36 x 12 matrix, GIPC
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form a basis for the null space of the local interaction matrix KEJ. The 12 wavelets

corresponding to these filters are illustrated in Figure7-1(b)-(m).

It can be shown via enumeration that it is not possible to span the space of scale-

orthogonal wavelets using only the wavelets in the interior. We therefore need to construct

additional wavelets adjacent to the boundary. For example, near a clamped boundary, such
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as the one illustrated in Figure 7-2(a), we still have 36 degrees of freedom, but only 24

constraints corresponding to the vertices ko, . . . , k5. The local interaction matrix near the

boundary can now be verified to have a 16 dimensional null space. It can be further veri-

fied that 12 of the resulting wavelets correspond exactly to the ones in the interior, Figure

7-1(b)-(m). The four additional wavelets near the boundary are illustrated in Figure 7-

2(b)-(e).

Figure 7-3 illustrates the use of scale-orthogonal wavelets for incremental solution of

the bending displacements of a clamped square plate. By considering the wavelets in the in-

terior and those next to the boundary, illustrated in Figures 7-1 and 7-2 respectively, we can

construct a scale-orthogonal basis for the wavelet space Wj that preserves the direct-sum

property of the hierarchical basis functions. This is confirmed by the fact that the resulting

block-diagonal matrix is non-singular and upon adding all the wavelets at a particular level,

the reconstructed solution converges at exactly the same rate as the underlying finite ele-

ment approximation. Note that for the bilinear form considered, Eq (7.8c), a discretization

based on classical hierarchical basis functions does not lead to a decoupled stiffness matrix

as evident from Figure 7-3 (d).

The construction of scale-orthogonal wavelets is of course not restricted to square do-

mains with clamped boundary conditions. To emphasize this, in Figures 7-4 and 7-5 we

illustrate the scale-decoupled nature of stiffness matrices arising from for the multilevel

discretization of a simply-supported plate and a L-shaped plate using wavelets that are

customized to the operator.

While incremental computation can be beneficial in the case of uniform refinement, it

becomes even more effective for problems that require adaptive mesh refinement. However,

as mentioned in Section 5.9, in addition to the scale-orthogonality of the basis functions, we

now require that the basis also be Riesz stable in the energy norm. As discussed in Section

5.9, we have not yet incorporated this constraint into the design of our wavelets and indeed

it was observed that the locally-supported scale-orthogonal wavelets illustrated in Figures

7-1 and 7-2 do not satisfy this property. In the next sub-section, we therefore illustrate

the use of wavelets constructed using the Gram-Schmidt orthogonalization technique that

result in wavelets that are Riesz stable in the energy norm. Even though the construction

132



of such wavelets is very expensive in a uniform refinement setting, as discussed in Section

5.7, they can be efficiently constructed for the special case of adaptive refinement, where

only a small fraction of the wavelets are typically retained at each level.
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Figure 7-1: Scale-orthogonal on the interior: (a) Support set; (b) - (m) Scale-orthogonal
wavelets with assumed support set.
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Figure 7-2: Scale-orthogonal wavelets next to a clamped boundary: (a) Support set showing
the clamped boundary; (b) - (d) Scale-orthogonal wavelets with assumed support set, in
addition to the 12 solutions illustrated in Figure 7-1.
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Figure 7-3: Clamped square plate: (a) Deformed shape; (b) Convergence rates in energy
and L2 norms using customized wavelets; (c) Nodal finite element stiffness matrix; (d)
Three-level multiscale representation using hierarchical basis functions and (e) Three-level
multiscale representation using customized wavelets.
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Figure 7-4: Simply-supported square plate: (a) Deformed shape; (b) Nodal finite element
stiffness matrix; (c) Three-level multiscale representation using hierarchical basis functions
and (d) Three-level multiscale representation using customized wavelets.
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Figure 7-5: Clamped L-shaped plate. (a) Deformed shape; (b) Nodal finite element stiffness
matrix; (c) Three-level multiscale representation using hierarchical basis functions and (d)
Three-level multiscale representation using customized wavelets.
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7.4 Application of wavelets constructed using Gram-Schmidt

orthogonalization

In this section, we demonstrate the application of wavelets constructed via Gram-Schmidt

orthogonalization to the adaptive solution of the prototype problems considered in Section

7.2. A typical set of scale-orthogonal wavelets constructed out of the Bogner-Fox-Schmidt

interpolating functions using Gram-Schmidt orthogonalization is shown in Figure 7-6. Ob-

serve that even though the wavelets are globally supported, they decay rapidly outside the

support of the original hierarchical basis functions and the rate of decay is in turn governed

by the rate of decay of the Green's function for the corresponding operator.
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7.4.1 Integrated heat flux for a L-shaped domain

We first consider the adaptive solution of the steady-state heat conduction problem over the

L-shaped domain with varying conductance, r, shown in Figure 7-7. The top boundary is

subjected to homogeneous Dirichlet boundary conditions and the interior of the domain is

subjected to uniform heating. The functional of interest is the integrated heat flux over the

section X - X corresponding to y = -25,

50

Q(u)= JVu -h ndx (7.10)
x=0 y=-25

The reference solution, Ure is taken to be the finite element solution at level 7 with 12545

degrees of freedom.

The set of wavelets retained at three consecutive levels 3, 4 and 5 are shown respec-

tively in Figures 7-7(b), (c) and (d). Observe that to resolve the heat flux accurately, one

needs to add wavelets only near the section of interest. The convergence of the functional

for uniform and adaptive refinement is numerically shown in Table 7.1 and plotted with

respect to the levels in Figure 7-8. As can be observed, the adaptive refinement technique

gives almost exactly the same value of the functional as uniform refinement for each level

although it is computed with much fewer degrees of freedom.

7 UniformRefinement Adaptive Refinement Effectivity

DoF IQ(u ) Q(UJURef) % DoF IQ (-) I Q *Uj-uRf) % CR3  AR3___________ Q(UMe) Q (URef) 1

3 65 156.2500 23.077 65 156.2500 23.077 1.00 1.00
4 225 140.6250 10.769 82 140.6250 10.769 0.36 1.00
5 833 132.8125 4.615 115 132.8125 4.615 0.14 1.00
6 3201 128.9063 1.539 180 128.9063 1.539 0.06 1.00
7 12545 126.9531 309 126.9532 0.000 0.02 1.00

Table 7.1: Convergence of the integrated heat flux for uniform and adaptive refinement.
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Figure 7-7: (a) Problem definition and retained wavelets at levels (b) 4 (c) 5 and (d) 6.
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Figure 7-8: Convergence of integrated heat flux with number of levels for uniform and
adaptive refinement.
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7.4.2 Integrated shear stresses on a portal frame

We now consider the portal frame structure in plane stress described in Section 9.2 in

[33] and illustrated in Figure 7-9. The thickness, Young's modulus and Poisson's ratio are

assumed to be h = 1, E = 3 x 10 and v = 0.16. The frame is subjected to a uniform,

horizontal body load of unit magnitude and the output functional of interest is the integrated

shear stress across a horizontal section at a height of 4 units above the support,

2 16

Q(u) JU12 dx + I-12dx
0 14 ) y=4

From elementary force balance, the exact shear force across the cross section is 144 units,

which corresponds to the volume above the cross section. Figures 7-9 (b), (c) and (d)

show the adapted meshes at levels 2, 3 and 4. Notice that in this case, to resolve the

integrated shear stresses, one needs to add wavelets both near the singularities as well as

near the section of interest. Table 7.2 shows the convergence in the quantity of interest

with increasing levels of resolution and in Figure 7-10 we illustrate the convergence rates

for the cases of uniform and adaptive refinement with increasing number of levels. Observe

that the adapted solution is quite close to the solution obtained by uniform refinement and

hence the adaptation process indeed does not lead to over compression.

7 Uniform Refinement Adaptive Refinement Effectivity
DoF IQ(U) Q(UJURef) % DoF Q() (uURef) % CRj ARj

_______ Q(URef) % DF IQ(j ~~f
1 122 72.7377 49.488 122 72.7377 49.488 1.00 1.000
2 402 137.3411 4.625 202 136.4227 5.262 0.50 0.993
3 1442 152.7357 6.067 270 150.5721 4.564 0.19 0.986
4 5442 151.7893 5.409 318 149.6154 3.900 0.06 0.986
5 21122 148.7684 3.311 378 148.8423 3.363 0.02 1.000

Table 7.2: Convergence of integrated shear stresses at the section of interest for uniform
and adaptive refinement
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Figure 7-10: Convergence of integrated shear stress with number of levels for uniform and
adaptive refinement.
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7.4.3 Integrated normal stresses over the section of a MIT-shaped do-

main

We consider the MIT-shaped domain in plane stress illustrated in Figure 7-11 (a). The

thickness and Poisson's ratio over the whole domain is taken as h = 1 and v = 0.16 and

the Young's modulus over the "M" and "T" portions of the domain is E = 1 x 10' and

over the "I" portion of the domain is E = 2 x 107. The body forces are applied as follows:

the "M" and "T" portions of the domain have a horizontal body forces of magnitude 100

and -200 respectively whereas the "I" portion of the domain has a vertical body force

of magnitude -400. Finally, the section y = 0 is subjected to homogeneous Dirichlet

boundary conditions. The functional of interest is the integrated normal stress o-.y over the

support. Figure 7-11 (b) shows the deformed shape and the distribution of the normal stress

over the domain.

Figures 7-12 (a), (b) and (c) illustrate the set of wavelets retained at levels 2, 3 and 4

while Table 7.3 and Figure 7-13 show the convergence of the integrated normal stress for

the uniform and adaptive refinement cases.

(a) (b)

Figure 7-11: (a) Undeformed initial mesh and (b) Deformed shape showing normal stress
distribution.
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(a)

i o

(b) (c)

Figure 7-12: Retained wavelets over the MIT domain at levels (a) 2; (b) 3 and (c) 4.

j Uniform Refinement Adaptive Refinement Effectivity

DoF IQ (j)II Q(URf) % DoF IQ(;uj) 'Q(URf) % CR3 AR3

1 252 250189.3302 10.089 252 250189.3302 10.089 1.00 1.000
2 840 265498.9751 4.587 350 265477.5437 4.595 0.42 1.000
3 3024 272873.2732 1.937 534 272878.1291 1.935 0.18 1.000
4 11424 276483.5166 0.639 814 276491.5290 0.637 0.07 1.000
5 44352 278262.3455 1206 278278.8867 0.006 0.02 1.000

Table 7.3: Convergence of integrated normal stresses at the support for uniform and adap-
tive refinement

10

E10

10-21

2 3 4 5

Figure 7-13: Convergence of integrated normal stresses at the support with number of
levels for uniform and adaptive refinement.
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7.4.4 Energy-norm adaptivity for a L-shaped plate

In this example, we perform energy-norm based adaptivity for a uniformly-loaded L-shaped

Kirchhoff plate with length, thickness, Young's modulus and Poisson's ratio taken to be

L = 100.0, h = 1.0, E = 1.0 x 10', and v = 0.3. Figure 7-14 shows the distribution of the

error terms |rlmoj,m ,' m E .M(j) (normalized with respect to max l|rjmwj,m ) forerrortermsI I rl~nwjrn I E 7mEM(j) 3 1

four levels of adaptive refinement. As expected, wavelets that contribute significantly to the

residual norm are localized near the corner, particularly at the higher levels. In Figure 7-15

we compare the displacements and M,_ bending moments obtained using mesh adaptivity

to the reference solution obtained from a five-level uniform refinement of the base mesh

(with 50180 degrees of freedom). The numerical values of the errors in the energy and L'

norms are summarized in Table 7.4 and the final adapted mesh is illustrated in Figure 7-

16. Figure 7-17 illustrates the convergence behavior of the adaptive method with increasing

levels of refinement. As can be observed, in the adaptive refinement method, the error (with

respect to the reference solution) decays at approximately the same rate as for uniform

refinement, except that the solution is represented using far fewer degrees of freedom (see

Table 7.4).

j NonUniform Refinement Adaptive Refinement Effectivity

DoF ujax III% IUj UrefIIL2 % DoF U-x 'UJUrfIE% IUiUfI'L2% CR- !ELL
_, ___U__,_ _ HE IIUrefIy j2 IUref lE lIUrefIi2 3 11F

1 260 0.02468 18.24 4.13 260 0.02468 18.24 4.13 1.00 1.0000
2 900 0.02536 11.53 1.76 600 0.02536 11.69 1.79 0.67 0.9998
3 3332 0.02565 7.36 0.72 652 0.02565 7.79 0.78 0.20 0.9997
4 12804 0.02579 4.17 0.23 704 0.02579 4.93 0.29 0.05 0.9997
5 50180 0.02588 764 0.02585 2.64 0.08 0.02 0.9997

Table 7.4: Comparison of results using uniform and adaptive refinement. The reference
solution Urf corresponds to the displacement obtained using the mesh with 50180 degrees
of freedom.
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Figure 7-14: Normalized estimated distribution of wavelet coefficients in the energy norm
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7.4.5 Tip displacements of a cantilever plate

In this example, we consider the goal of determining the tip displacements of a uniformly-

loaded Kirchhoff plate with an overhang as shown in Figure 7-18(a). The functional of

interest can therefore be given as

Q(u)= u 6(x - xo) dQ (7.11)

where xO = (-100, 50). The thickness, Young's modulus, and Poisson's ratio of the plate

are taken respectively as h = 2, E = 1.0 x 10', and v = 0.3. From symmetry considera-

tions, we choose a half-symmetric model with the section indicated by line X-X being left

unconstrained. Figures 7-18(b), (c), and (d) illustrate the adapted meshes at levels j = 3, 4,

and 5 respectively. The convergence of the tip displacement is shown in Table 7.5. It can

be observed that to accurately estimate the point value at the tip, it suffices to refine only

near the origin and not near the point of interest. This is because the detail functions rj

and r/, have large contributions from wavelets only near the origin and not near the point of

interest as is evident from Figure 7-20.

j Uniform Refinement Adaptive Refinement Effectivity

DoF IQ(uref) "Q(UjURef) % DoF IQ(Uj)I Q *U-URef) % CR3 AR3
SQ(URef) Q(URef) ____

2 188 2.81636 17.6993 188 2.81636 17.6993 1.000 1.000
3 628 3.08646 9.8062 212 3.08416 9.8736 0.338 0.999
4 2276 3.25787 4.7973 232 3.25319 4.9338 0.101 0.998
5 8644 3.36129 1.7752 252 3.35341 2.0052 0.029 0.998
6 33668 3.42203 272 3.40989 0.3549 0.008 0.997

Table 7.5: Convergence of tip displacements for uniform and adaptive refinements.
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Figure 7-19: Convergence of tip displacements for uniform and adaptive refinement.
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Figure 7-20: Distribution of (a) the function rj corresponding to the displacement and (b)
the function r corresponding to the influence function at level j = 3

155

- Uniform Refinement
--- Adaptive Refinement



7.4.6 Support bending moments of a square plate

We finally consider the problem of adaptively computing the M-. bending moment at a

point on the support of a uniformly loaded clamped, square plate shown in Figure 7-21(a).

The linear functional of interest is then given as

Q(u) = D (6xx(x - xo) + (1 - v)6yy(x - xo)) u dQ

where 3xx(resp. 6y) is the second partial distributional derivative of the Dirac distribution

in the x (resp. y) direction.

The thickness, Young's modulus, and Poisson's ratio in this problem are taken respec-

tively as h = 1, E = 1.0 x 10 7 , and v = 0.3. Figures 7-18(b), (c), and (d) illustrate the

adapted meshes at levels j = 3, 4, and 5 respectively while the convergence of the support

bending moment can be seen in Table 7.6. Figure 7-22 illustrates the convergence of the

adaptive refinement procedure with increasing number of levels; once again the conver-

gence properties closely resemble those of the uniform refinement case.

In this example, we observe the wavelets need to be added only near the boundary since

the primal solution u is smooth, whereas the dual solution z has large wavelet contributions

near the point of interest.

7 Uniform Refinement Adaptive Refinement Effectivity

DoF Q() Q(UjURef) % DoF IQ ( ) I Q(UjURf) % CR, AR,
_________ Q(URef) __ _ __ _ I______

2 100 434.6900 15.247 100 434.6900 15.247 1.00 1.000
3 324 489.1438 4.630 120 488.9504 4.668 0.37 0.999
4 1156 506.6726 1.212 140 506.6619 1.215 0.12 0.999
5 4356 511.5910 0.253 164 511.7179 0.229 0.04 1.000
6 16900 512.8909 188 513.0806 0.037 0.01 1.000

Table 7.6: Convergence of support bending moments for uniform and adaptive refinement.
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Figure 7-21: Support bending moments for a square, clamped plate. (a) Problem definition
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Figure 7-22: Convergence of support bending moment with increasing number of levels.
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Figure 7-23: Distribution of (a) the function rj corresponding to the displacement and (b)
the function r/ corresponding to the influence function at level j = 3. Note that the two
figures are plotted on different scales and the magnitude of the influence function is much
larger than that of the solution
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7.5 Closure

In this chapter, we demonstrated the application the of error-estimation and adaptive re-

finement techniques proposed in Chapter 6 for the efficient solution of partial differential

equations of second and fourth order. The effectiveness of the proposed techniques was

measured using two quantities, the compression ratio (related to how cheaply the adaptively

refined solution is computed) and the accuracy ratio (related to how accurate the adapted

solution at a particular level is vis-a-vis the solution obtained via uniform refinement).

An interesting observation from the presented results is the clear distinction between

goal-oriented adaptivity and adaptivity based solely on the energy norm of the solution

error. For example, in the case of the Poisson's equation, adaptivity based on the energy

norm would have resulted in a mesh that had a large concentration of wavelets near the

re-entrant corner. However, this mesh would not have resulted in an accurate estimate

for the heat flux since clearly that requires the addition of wavelets near the section of

interest. In contrast, for the case of the cantilever plate, addition of wavelets near the point

of interest would not have resulted in a more accurate estimate for the tip displacements

since, as can be seen from the presented results, most of the contribution from the wavelets

is from those that are localized near the singularity. The presented results also emphasize

the importance of an error estimation technique such as the one proposed in Chapter 6 that

directly computes the error in the functional of interest in contrast to bounding the error

using energy norm of the errors in the solution and the influence function. In the latter

case, the resulting adapted meshes can be highly suboptimal due to over-estimation of the

error.
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Chapter 8

Conclusions and Further Work

The things to do are: the things that need doing, that you see need to be done,
and that no one else seems to see need to be done.

- Buckminster Fuller

In this final chapter, we summarize the work presented in this thesis along with our

major contributions and present several promising avenues for further research.

8.1 Summary of the thesis

As described in Chapter 1, the primary goal of our research was to cast the problem of

adaptive finite element analysis of the solution to the virtual work equation

a (u, v) = 1 (v) (v e V) (8.1)

into the framework of multiresolution signal processing. To this end we considered the

solution u as if it were a signal (albeit one that was known only indirectly via the underlying

weak-form) and developed computationally efficient techniques to estimate and efficiently

represent it at different levels of resolution. There were essentially four "tricks-of-the-

trade" that were developed during the course of our research for this to be possible.

The first was to construct a ladder of approximation spaces Vj, j E IN such that they

formed a multiresolution analysis of the underlying Sobolev space V. This was made pos-
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sible by the use of conforming finite element interpolation functions on nested discretiza-

tions. Eq (3.4) then ensured that upon mesh refinement by uniform subdivision of elements,

the spaces were nested and in the limit, their union was dense in V.

The second trick in our multiresolution finite element framework (which was also a

significant point of departure from classical finite element adaptivity) was the decompo-

sition of the true solution into the solution at the coarsest level mesh, uO and a telescopic

sum consisting of the two-level errors. Unlike the true error in a mesh which is often hard

to estimate accurately on coarse meshes, the two-level errors lie in succesively richer fi-

nite dimensional spaces and lend themselves to highly efficient and accurate estimation.

Moreover, we argued in Chapter 6 that error estimation and adaptivity based on the two-

level error does not depend on the resolution of the coarsest mesh and hence offers several

advantages over contemporary error estimation and adaptivity procedures used in finite

element analysis.

The third trick was then to construct a suitable basis for representing the two-level

errors. This, it was concluded was most effectively done by the construction of scale-

orthogonal wavelets that span the orthogonal complements (with respect to the a(-, -) inner-

product) of the finite element approximation spaces V at each level. It was proven in

Lemma 6.2 that the two-level errors were simply the projection of the solution onto these

orthogonal spaces and hence the solution could be computed in an entirely scale-decoupled

manner. This property in turn permitted efficient local and incremental refinement of the

solution. We also argued that in addition to scale-orthogonality, the wavelets used in our

framework must also ideally be compactly supported and Riesz stable in the energy norm.

The first property ensured that the coefficients corresponding to the wavelets could be com-

puted in an efficient manner whereas the second property guaranteed that an accurate so-

lution in the energy norm could be obtained simply by discarding wavelets with small

energy-norm contributions.

Towards this end, in Chapter 5 we proposed two techniques for the construction of

scale-orthogonal wavelets starting from the hierarchical basis framework [51, 52, 53]. The

first technique based on the stable completion procedure of Carnicer, et al [16] resulted in

the locally supported wavelets that did not possess the Riesz stability property in general.

161



In contrast, the second procedure based on approximate orthogonalization via a Gram-

Schmidt process resulted in globally-supported, albeit rapidly decaying wavelets that were

provably Riesz stable as shown in Lemma 5.14. We also proposed an efficient implemen-

tation technique for the construction of these wavelets based on the connection between

Gram-Schmidt orthogonalization and LDLT factorization of the Grammian matrix and

concluded that it was in fact practical to use these globally supported wavelets provided

they were used within the framework of an adaptive representation (i.e., only a few of these

wavelets were retained at each level).

Once the wavelets were constructed, the final piece of the puzzle was then to decide

which wavelets to keep at a certain level and which ones to discard. This is another instance

where Riesz stability of the wavelets became invaluable: computing the detail coefficients

exactly is as expensive as computing the solution at the next level and we therefore pro-

posed a technique for the efficient estimation of the wavelet coefficients based on the equiv-

alence between the scale-orthogonal wavelets and hierarchical basis functions, Lemma 5.8.

The wavelets to be discarded were then determined simply by looking at the contribution

of each wavelet to a given functional of interest (i.e., we considered the more general prob-

lem of goal-oriented adaptivity rather than just adaptivity in the energy norm). We then

provided an analysis of the accuracy of the proposed method by estimating the effect of

different approximations (such as the replacement of scale-orthogonal wavelets using hi-

erarchical basis functions, the estimation of the details using conjugate gradients and the

approximate orthogonalization of the wavelets using Gram-Schmidt orthogonalization).

Finally, we considered several examples of partial differential equations cast in their

weak-form, such as the Poisson's equation, two-dimensional linear elasticity and the thin-

plate bending equation and demonstrated the effectiveness of our proposed error-estimation

and adaptive refinement approaches both for energy norm and goal-oriented adaptivity.

8.2 A look ahead

The following are the possible extensions to the ideas proposed in this thesis:

1. Construction of Riesz stable locally-supported wavelets. As mentioned in Chapter 5
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the construction procedure for scale-orthogonal wavelets does not, as yet, guarantee

that the resulting wavelets will be Riesz stable in the energy norm. However, the

locally-supported wavelets with a given support are clearly non-unique (as they arise

from the solution of a system of homogenous equations), and it is therefore con-

cievable that appropriate constraints could be imposed during the construction of the

filters that can ensure a priori Riesz stability of the scale-orthogonal wavelets. What

remains to be investigated in this direction is (a) whether it is always possible (in-

dependent of the operator, the finite element interpolation functions and the domain)

to construct locally-supported Riesz stable scale-orthogonal wavelets and (b) exactly

what constraints are necessary on the matrices Gj such that the resulting wavelets

are scale-orthogonal, locally supported and Riesz stable in the energy norm and (c)

whether such a procedure would be computationally efficient.

2. Construction of locally-supported, approximately scale-orthogonal wavelets using

Gram-Schmidt orthogonalization. In Chapter 5 it was argued that the exact con-

struction of scale-orthogonal wavelets using Gram-Schmidt orthogonalization was

prohibitively expensive; hence an approximate orthogonalization technique based on

partial orthogonalization of the wavelets was proposed. Essentially, this procedure

constructed wavelets that were scale-orthogonal only to the basis functions in V~dapt

rather than V. We justified this approximation using the estimates derived in Chapter

6: the error incurred in computing the details can be bounded above by the contribu-

tion of the discared wavelets to the solution. Since this is typically rather small (as

this is the criterion for discarding the wavelets in the first place), the resulting detail

coefficients are very close in practice to the true details at a given level.

An alternative construction procedure for approximately constructing scale-orthogonal

wavelets is to use the decay properties of the Green's function for the given inner-

product and construct locally-supported wavelets that are only approximately scale-

orthogonal. While this procedure can be expected to be computationally efficient,

the key questions that one must answer are: (a) how the accuracy of orthogonal-

ization impacts the accuracy of the computed detail coefficients (b) how a suitable
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neighborhood for orthogonalization can be determined without a priori or with only

an approximate knowledge of the Green's function and (c) how much the approxi-

mate orthogonalization process impacts the Riesz stability property of the resulting

wavelets.

3. Multiresolution error-estimation and adaptive refinement techniques for mixed inter-

polation problems. The main emphasis of this thesis was the development of error

estimation and adaptive refinement techniques for single field problems, i.e., where

all the components of the solution belong to a single Sobolev space V. However, in

many practical problems of interest such as the mechanics of incompressible media

or the deformation of shells, the field variables (resp. displacements and pressure or

displacements and strains) belong to two or more Sobolev spaces [10]. An interesting

extension of our work would be to derive a multiresolution analysis for spaces of the

form V x W where V and W are the individual Sobolev spaces. The open questions

in this regard are (a) under what conditions a MRA exist for V x W, i.e., if V c V

and W C W then is the union of V x W always dense in V x W? In particular

what is the role of the discrete inf-sup condition [10]? (b) whether the construction

techniques for scale-orthogonal wavelets apply equally well to the mixed formula-

tion case and (c) whether the same desirable properties such as Riesz stability can

be guaranteed in an a priori manner as was possible for the case of a single field

formulation.

4. Adaptive solution of time-dependent problems. Another natural extension of our

work would be to the solution of time-dependent problems where the solution u lies

in V x [0, T]. Normally, such problems are solved by carrying out a finite-element

discretization of V that result in a system of ODEs in time; this system can be solved

using standard time marching methods such as the central-difference method, the

trapezoidal rule or the Newmark method [10]. Hence, provided the time stepping

scheme is unconditionally stable or the time-step is kept small enough to guarantee

stability over all resolutions, spatial adaptivity at each time step can be easily per-

formed using the methods proposed in this thesis. However, in addition to spatial
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adaptivity, one also requires time adaptivity in problems such as shock propagation.

This is currently an open problem and it is not known at present whether adaptivity

in both the spatial and temporal domains can be performed in an efficient, accurate

and mathematically rigorous manner.

5. Extensions to nonlinear problems. Yet another possible extension of our work would

be to the adaptive solution of non-linear problems, particularly those involving geo-

metric non-linearities such as the study of buckling and bifurcation phenomena. In

such problems, one would ideally like to take large load steps when the deformations

are still in the linear regime and reduce the load increments as well as add details

close to the bifurcation points. An obvious manner of coupling the two forms of

adaptivity would be to estimate the two-level errors for each load increment as done

for the linear problem (this can be again done in a scale-decoupled manner). If a

large fraction of details are retained over multiple levels, it would indicate that the

system is in turn undergoing inelastic deformations and hence for the next load step,

the load increment can be correspondingly reduced.

"So long, and thanks for all the fish."
- Dolphins in Douglas Adams' The Hitchhiker's Guide to the Galaxy
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