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Abstract
Environmental aquatic flows are seldom free of vegetative influence. However, the im-
pact of submerged vegetation on the hydrodynamics and mixing processes in aquatic
flows remains poorly understood. In this thesis, I present the results of laboratory ex-
periments that describe the salient hydrodynamic and transport features of vegetated
flows. Flume experiments were conducted with dowels and buoyant polyethylene
strips used to mimic rigid canopies and flexible seagrass meadows respectively.

Although traditionally treated as rough boundary layers, vegetated shear flows
more closely resemble mixing layers. Specifically, vertical velocity profiles contain an
inflection point, yielding the flow unstable to a street of Kelvin-Helmholtz vortices.
These vortices dominate transport through the shear layer, such that the rate of
mixing of both mass and momentum is shown to scale upon their size and rotational
speed. However, mass is mixed approximately twice as rapidly as momentum. The
spread of a scalar plume is shown to be a function of the number of vortex cycles
experienced by the plume, irrespective of the canopy characteristics or flow speed.

In contrast to mixing layers, the vortices in a vegetated shear layer grow only to a
finite size, often not penetrating fully to the bed. This separates the canopy into an
upper zone with rapid, vortex-driven transport and a lower zone where mixing occurs
on the much smaller scale of the stem wakes. Vortex growth is shown to cease once
the shear production of vortical energy is balanced by the drag dissipation of that
energy by the canopy. The mixing length of momentum scales upon the final vortex
size, allowing closure of a one-dimensional Reynolds-averaged Navier-Stokes model.

Finally, canopy flexibility has a significant impact on the hydrodynamics of veg-
etated flows. The oscillating velocity field associated with the vortex street drives a
coherent waving of the canopy, whose geometry changes rapidly over time. Using the
height of a waving plant as an indicator of phase in the vortex cycle, synchronized
velocity records show that the turbulence structure at the top of the canopy consists
of a strong sweep at the front of the vortex, followed by a weak ejection at its rear.

Thesis Supervisor: Heidi M. Nepf
Title: Professor of Civil and Environmental Engineering
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Chapter 1

Introduction

Environmental aquatic flows are seldom free of vegetative influence. From coastal sea-

grass meadows and kelp forests to river grasses to watermilfoils, pondweeds and worts

in lakes and wetlands, submerged vegetation is a ubiquitous presence in many flows of

interest. Therefore, to begin to predict flow conveyance in vegetated channels, wave

attenuation and shore protection by vegetated coastal beds or flow patterns in lakes

and wetlands, one must first appreciate the hydrodynamic impact of submerged veg-

etation. Furthermore, submerged vegetation plays an important role in the chemistry

and biology of aquatic systems. Through the direct uptake of nutrients and heavy

metals (Kadlec and Knight [31]), the capture of suspended sediment (Palmer et al.

[49]) and the production of oxygen, submerged vegetation can dramatically improve

water quality. Submerged canopies also provide habitats for macrofauna (Edgar [15])

and settlement sites for larvae (Grizzle et al. [27]). Despite the impact of vegetation

on both the hydrodynamics and ecological function of aquatic systems, the structure

of vegetated aquatic flows is not well understood. In this thesis, I describe the salient

hydrodynamic features of flows with submerged vegetation and their impact on mass

transport.

The underlying theme of this thesis is that flows with submerged vegetation should

be patterned upon a mixing layer, rather than a rough boundary layer (as first pre-

sented by Raupach et al. [52]). The inflection point in velocity profiles of both mix-

ing layers and these vegetated flows yields them inherently unstable to the Kelvin-
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Figure 1-1: Time series of streamwise velocity (u, thick line) and vertical momentum
transport (u'w', thin line, where w is vertical velocity, positive upward) taken at
the top of a flexible experimental canopy (Ghisalberti and Nepf [24]). Both signals
oscillate at the frequency of vortex passage, approximately 0.11 Hz. In the time series
of momentum transport, a strong sweep (Sw, u' > 0, w' < 0) is followed by a weak
ejection(Ej, u' < 0, w' > 0).

Helmholtz vortex instability (see, e.g., Brown and Roshko [4], Ikeda and Kanazawa

[29]). The vortex street generated in flows with submerged vegetation results in

strongly periodic flow and transport. This is demonstrated in Figure 1-1 (taken from

Ghisalberti and Nepf [24]), which shows streamwise velocity and vertical momentum

transport at the top of a model canopy oscillating at the vortex passage frequency of

approximately 0.11 Hz. Vertical momentum transport is highly structured in these

flows, with a strong sweep into the canopy preceding a weak ejection. In this thesis, I

show that the rates of vertical transport of both momentum and scalars in vegetated

shear flows are directly dependent upon the size and rotational speed of these coher-

ent vortices. The oscillatory flow generated by the vortices also drives the monami, a

progressive, coherent waving of flexible aquatic canopies in strong currents. The ter-

restrial equivalent of this waving, the honami, is most commonly observed as waving

16
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fields of wheat.

Flows with submerged vegetation are just one example of obstructed shear flows.

Other examples include environmental flows (both aquatic and aerodynamic) over

porous media, boulder beds, urban landscapes and agricultural and forest canopies,

as well as industrial flows such as those through heat exchangers and wind farms. In

particular, an understanding of the turbulent exchange of heat, mass and momentum

between terrestrial canopies and their surroundings is fundamental in the description

of global carbon dioxide and hydrologic cycles, and has attracted much scientific

attention (see, for example, the excellent summary by Finnigan [16]). The framework

developed in this thesis is expected to be qualitatively applicable to the suite of

obstructed shear flows.

1.1 Thesis structure

This thesis is presented as a series of distinct chapters, some of which have been sub-

mitted for publication, followed by appendices that contain auxiliary data. Chapter

2 is a paper published as Ghisalberti and Nepf [23]. It presents a description of the

stability of obstructed shear layers, which explains the cessation of shear layer growth,

and describes the applicability of a constant mixing length model for Reynolds stress

closure. This closure is then used in a one-dimensional Reynolds-averaged Navier-

Stokes model to predict the velocity profiles of the experimental flows. Data from

this chapter also appear in an article submitted to the Journal of Fluid Mechanics

as H. Nepf, M. Ghisalberti and B. White, "A scale constraint for shear-layers gen-

erated in canopies and other obstructed flow". Chapter 3 is a paper submitted to

Environmental Fluid Mechanics. In this chapter, a novel experimental technique is

used to evaluate the spread of scalar plumes in vegetated shear layers in the labora-

tory. The rate of scalar transport is characterized by the size and rotational velocity

of the vortices and is shown to be much greater than the rate of momentum trans-

port evaluated in Chapter 2. The spread of a scalar plume is shown to be almost

solely a function of the number of vortex cycles experienced by the plume. In Chap-

17



ter 4, some simple scaling arguments are used to characterize the theoretical rate of

longitudinal dispersion in vegetated shear flows. By contrasting vegetated channels

with their unvegetated counterparts, this chapter also highlights the impact of sub-

merged vegetation on mixing processes. Chapter 5 explores the influence of plant

flexibility, specifically the monami phenomenon, on the hydrodynamics described in

previous chapters. An emphasis is placed upon description of the vortex structure

and the strongly oscillatory nature of obstructed shear flows, which in turn drives the

oscillatory motion of the plants.

18



Chapter 2

The limited growth of vegetated

shear layers1

Abstract
In contrast to free shear layers, which grow continuously downstream, shear lay-
ers generated by submerged vegetation grow only to a finite thickness. Because these
shear layers are characterized by coherent vortex structures and rapid vertical mixing,
their thickness controls exchange between the vegetation and the overlying water. Ex-
periments conducted in a laboratory flume show that the growth of these obstructed
shear layers is arrested once the production of shear-layer-scale turbulent kinetic en-
ergy (SKE) is balanced by dissipation of SKE within the canopy. This equilibrium
condition, along with a mixing length closure scheme, was used in a one-dimensional
numerical model to predict the mean velocity profiles of the experimental shear layers.
The agreement between model and experiment is very good, but field application of
the model is limited by a lack of description of the drag coefficient in a submerged
canopy.

2.1 Introduction

Aquatic macrophyte communities, which include the plants as well as the plankton,

benthic flora and epiphytic organisms that live among them, depend on a supply of

nutrients from the surrounding water column (e.g., Short et al. [58]; Taylor et al. [61]).

In turn, these communities play an important role in maintaining the water quality

1This chapter has been published as Ghisalberti and Nepf [23].
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of coastal regions by filtering nutrients from the water column (Short and Short [57]).

Submerged macrophytes also provide an important habitat for invertebrate larvae

(e.g., Phillips and Menez [50]). Settlement and recruitment of larvae to this habitat

depend not only on organism behavior but also on hydrodynamic processes at many

scales in and around the canopy (as reviewed in Butman [7], also in Eckman [14];

Duggins et al. [12]; Gambi et al. [21]; Grizzle et al. [27]). The drag exerted by the

vegetation promotes sediment accumulation by reducing the near-bed stress (Lopez

and Garcia [38]) and this is also expected to strongly influence the vertical transport

of chemicals released by the sediment. This paper presents predictive models for key

aspects of the canopy-scale hydrodynamics, described below.

The dominant hydrodynamic feature of flow with submerged macrophytes is a

region of strong shear at the top of the canopy, created by the vertical discontinuity

of the drag (Gambi et al. [21]; Nepf and Vivoni [44]). Figure 2-1 shows the vertical

profile of mean velocity for a flow with submerged, flexible vegetation (data taken

from Ghisalberti and Nepf [24]). The shear layer contains an inflection point, making

it dynamically analogous to a mixing layer, with vertical transport through the layer

dominated by coherent, shear-scale, Kelvin-Helmholtz (KH) vortices (Raupach et al.

[52]; Ikeda and Kanazawa [29]; Ghisalberti and Nepf [24]). These vortices therefore

control the exchange of nutrients, larvae and sediment between a submerged canopy

and the overlying water. In an unobstructed mixing layer, the vortices grow continu-

ally downstream (e.g., Brown and Roshko [4]). In a vegetated mixing layer, however,

the vortices grow to a finite size a short distance from their initiation (Ghisalberti

and Nepf [24]). In many instances (as in Figure 2-1), the final vortex size, and the

region of rapid exchange it defines, extends to neither the water surface nor the bed.

This segregates the canopy into a upper region of rapid exchange and a lower region

with more limited water renewal (Nepf and Vivoni [44]).

The goal of this paper is to explain the dynamic equilibrium that arrests the

growth of vortices formed in a vegetated shear layer. Once established, this equilib-

rium condition can be used, with simple turbulence closure, to predict the vertical

velocity profile within and above submerged canopies. Previous studies have shown

20
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Figure 2-1: Mean velocity profile of a flow with submerged, flexible vegetation of
height h (data taken from Ghisalberti and Nepf [24]). The shear layer is defined by
the limits z (where the mean velocity is U1 ) and z2 (U2), and has a thickness tl.
The total shear across the layer is AU (= U2 - U1 ). The velocity profile contains
an inflection point near the top of the vegetation. Despite its asymmetry, the profile
qualitatively resembles the hyperbolic tangent profile (solid line) of a mixing layer.

that the velocity profile above a vegetated boundary follows a logarithmic form, with

velocity scale (u,) defined by the turbulent stress at the top of the canopy and rough-

ness scale (z) defined by canopy morphology (e.g., Thom [62]; Shi et al. [56]; Nepf

and Vivoni [44]). However, the logarithmic form begins a full canopy height (h) above

the actual top of the canopy (i.e. at z = 2h). The velocity profile within the canopy

is often assumed to be uniform, resulting from a balance of vegetative drag and hy-

draulic gradient. The in-canopy and above-canopy profiles are then matched using

semi-empirical relations (e.g., Kouwen et al. [35]; Kouwen and Unny [34]). Numerical

models that use turbulence closure schemes in which the canopy elements are both a

sink of mean flow energy and a source of turbulent energy have also been employed

to predict velocity profiles in vegetated flows (e.g., Burke and Stolzenbach [6]; Lopez

and Garcia [39]; Neary [42]). These models, however, do not predict the cessation of

shear layer growth.
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2.2 Shear layer hydrodynamics

This paper presents a one-dimensional approximation to a three-dimensional flow.

The fully-developed mean flow is assumed to be steady, parallel and uniform in x and

y (with coordinate directions defined in Figure 2-1). Using the standard Reynolds

decomposition (i.e. ui = Ui + u ) and an overbar to denote temporal averaging, the

streamwise momentum equation takes the form

a09ht7 1g = -CDaU21 (2.1)
Oz 2

where a represents the frontal area of the vegetation per unit volume, CD the drag

coefficient of the canopy and S the surface slope (= -dH/dx). We note that vegetated

shear flow is horizontally inhomogeneous at several scales (see, e.g., Finnigan [16]),

but in this analysis the inhomogeneity is removed by spatial averaging. Specifically, all

velocity statistics presented in this paper, including those in (2.1), represent averages

over the horizontal plane of local temporal means. In (2.1), we assume that the canopy

is sufficiently dense that bed drag is negligible in comparison to canopy drag and the

'dispersive flux' (which arises from spatial averaging) is negligible in comparison to

the turbulent flux (see, e.g., Brunet et al. [5]).

There are two dominant turbulence scales in the flow, the shear (KH vortex) scale

and the wake-scale. The turbulent kinetic energy budget can be separated into these

two distinct eddy scales, such that the canopy acts as a sink of shear-scale turbulent

energy but as a source of wake-scale turbulent energy. As the KH vortices dominate

vertical transport and govern shear layer growth, only the budget for shear-scale

turbulent kinetic energy (SKE) will be considered here. Following Shaw and Seginer

[55], the budget for SKE in a vegetated shear layer can be written as

Dk, / ,9U Ow'k, I owp'
Dt _Tw/-_ '_ _ -W- - e (2.2)

Dt p z AZ p AZ

(I) (II) (III) (IV) (V)

where p is the fluid density, p the pressure and k, the instantaneous SKE. The terms
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on the right-hand side of (2.2) are shear production (I), turbulent transport of SKE

(II), pressure transport (III), dissipation by canopy drag (IV) and viscous dissipation

of SKE (V). The canopy dissipation, W, represents the conversion of shear-scale

turbulence into wake-scale eddies by the canopy elements. Similarly to Finnigan [16],

W CDaU(2u'2 + ' 2), (2.3)

where here it is expected that, because of cylinder geometry, the dissipation of hor-

izontal turbulent motions by the canopy will be much more pronounced than that

of vertical turbulent motions. We assume that there is no export of SKE outside

the shear layer. This assumption is supported by velocity spectra, which exhibit

a clear peak at the vortex frequency inside the shear layer (Ghisalberti and Nepf

[24]), but not outside. If the pressure transport term in (2.2) is assumed to be due

predominantly to shear-scale pressure fields (as in Zhuang and Amiro [69]), then in-

tegration of (2.2) between the lower and upper limits of the shear layer (zl and z2,

respectively, as shown in Figure 2-1) eliminates the transport terms. Furthermore,

we expect that drag dissipation of the shear-scale structures will dominate viscous

dissipation (see, e.g., Wilson [68]). Therefore, for a fully-developed vegetated shear

layer (Dk/Dt = 0),

-u dz = CDaU (2u '2 2 dz, (2.4)

where h is the canopy height. We postulate that the growth of vegetated shear layers

ceases once SKE production is countered exactly by canopy drag dissipation within

the shear layer, much as bottom friction impedes the growth of shallow, horizontal

shear layers (see, e.g., Chu and Babarutsi [10]). We prove this using experimental

observations.

The integral conservation of SKE described in (2.4) can be simplified with the

assumption of an appropriate eddy viscosity, T. As the length scale of vertical

transport (i.e. the vortex scale) is not significantly smaller than the distance over

which the curvature of the mean shear changes appreciably, a flux-gradient model is
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not strictly valid (Corrsin [11]). However, many turbulent transport problems violate

this condition, yet are modeled successfully with an eddy viscosity. Therefore, the

assumption of an eddy viscosity was deemed reasonable, if not strictly fundamentally

valid. The eddy viscosity can be regarded as the product of a vertical turbulent

length scale (which will scale upon the thickness of the shear layer, tl) and a vertical

turbulent velocity (which will scale upon the total shear, AU). Although the turbulent

length scale is expected to be constant throughout the shear layer, the turbulent

velocity is not; the vortices create much stronger vertical velocity fluctuations along

their centerline than at their edges. Thus, VT will be maximized at the vortex center,

in the middle of the shear layer. So, we may define

VT = CU/Az= C tf(z*), (2.5)

where C1 is a constant and z* = ((z - zi) /trl) is the fractional distance above the

shear layer bottom. The shape function f(z*) is expected to peak in the middle of

the shear layer, at z* = 0.5.

Within shear layers created by model aquatic vegetation, the vertical profile of

-u'w'/(2u'2 + v'2 ) is similar across a wide range of canopy conditions (data taken

from Dunn et al. [13], ad = 0.002 - 0.016). This ratio increases from zero at z* = 0 to

a maximum at the top of the canopy, z* = (h - zl) /tml (as also shown in Nepf and

Vivoni [44] and by our own unpublished data). Note that the ratio (h - zl) /tl rep-

resents the fraction of the shear layer that lies within the canopy and will henceforth

be denoted by a. If we assume that the vertical profile of -u'w'/(2u' 2 + v'2 ) has the

same form as f(z*) but peaks at z* = a rather than z* = 0.5, then within the canopy

uIw' C2f(z*)
(2.6)

2u,2 + v,2 (a/0.5)'

where C2 is a constant. With (2.5) and (2.6), (2.4) becomes

fi(au)2 t hmla h aU (2.7)
z*j f (Z*)dz C2 CDa ' z .2
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Because unbounded vegetated shear layers have no externally imposed length

scale, it is reasonable to assume an approximate self-similarity of velocity profiles (as

is done for all free shear flows). Furthermore, we will assume that f (z*) has a single,

universal form in vegetated shear layers. Under these two assumptions, the left-hand

side of (2.7) will scale upon (AU)2 . So, if (CD a) is assumed to be constant through

the canopy, then (2.7) becomes

(AU)2 - (h - zl)CDa (U - Uv), (2.8)

where Uh and U1 are the mean velocities at the top of the canopy and at the bottom

of the shear layer respectively. Recall that the scaling relationship in (2.8) holds if

the production and drag dissipation of SKE are equal. As we postulate that shear

layer growth ceases once this equality is satisfied, it is expected that the stability

parameter

'-(h -zl)CDa (1 U2 U) (2.9)

will be a universal constant for fully-developed vegetated shear flows. At the be-

ginning of shear layer development, SKE production outweighs dissipation and Q (a

scaled ratio of production to dissipation) will be high. The resulting increase in SKE

is manifest as vortex growth, and thus an increase in (h - z), such that Q will de-

crease along the canopy until reaching its equilibrium value. SKE production and

dissipation will then be equal and shear layer growth will cease. The following ex-

periments were conducted to confirm the universal constancy of t in fully-developed

vegetated shear layers.

2.3 Experimental methods

Laboratory experiments were conducted in a 24-m-long, glass-walled recirculating

flume with a width (b) of 38 cm (Figure 2-2). A constant flow depth (H) of 46.7 cm

was employed. Smooth inlet conditions were created using a dense array of emergent

cylinders to dampen inlet turbulence and a flow straightener to eliminate swirl. Model
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Figure 2-2: Side view of the 38-cm-wide laboratory flume (note the vertical exaggera-
tion). Smooth inlet conditions were created using a dense array of emergent cylinders
to dampen inlet turbulence and a flow straightener to eliminate swirl. Vertical profiles
of ten-minute velocity records were taken with three 3-D acoustic Doppler velocime-
ters at 25 Hz.

canopies consisted of circular wooden cylinders (d = 0.64 cm) arranged randomly in

holes drilled into 1.26-m-long Plexiglas boards. Five boards were used, creating a

model meadow 6.3 m in length. The packing density (a) was varied between 0.025

cm - l and 0.08 cm-1, as described in Table 2.1. The range of dimensionless plant

densities (ad = 0.016 - 0.051) is representative of dense aquatic meadows (see, e.g.,

Chandler et al. [8]). The average height of the canopy (h) was 13.8 or 13.9 cm (Table

2.1), changing slightly as dowels were added.

Velocity measurements (u, v, w) were taken simultaneously by three 3-D acoustic

Doppler velocimeters (ADV), separated laterally by 10 cm (Figure 2-2). Velocity

statistics from the three probes were averaged to obtain the spatial mean, as discussed

earlier. All probes were located within the central 30 cm of the flume, outside of the

sidewall boundary layers (Nepf and Vivoni [44]). Vertical profiles consisting of 32

ten-minute velocity records were collected at a sampling frequency of 25 Hz. Due to

the configuration of the ADV probes, the uppermost 7 cm of the flow could not be

sampled. A 8-cm-long slice of dowels (equivalent to 1.6 - 2.8 times the inter-cylinder

spacing, AS) was removed across the channel to allow probe access. As shown in
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Table 2.1: Summary of experimental conditions and vegetated shear flow parameters.
Run A B C D E F G H I J K
Q (xlO-cms - 1) 48 17 74 48 143 94 48 143 94 48 17
h (cm) 13.9 13.9 13.9 13.9 13.8 13.8 13.8 13.8 13.8 13.8 13.8
a (cm - 1) 0.025 0.025 0.034 0.034 0.040 0.040 0.040 0.080 0.080 0.080 0.080
S (x10 5) t 0.99 0.18 2.5 1.2 7.5 3.2 1.3 10 3.4 1.3 0.26
tml ( 1.0 cm) 32.8 25.3 31.4 30.7 35.4 33.5 28.8 33.9 32.7 28.5 21.8
U1 (cms - 1) 1.3 0.50 1.7 1.1 3.5 2.4 1.1 2.7 1.7 0.77 0.27
Uh (cms - 1) 2.5 1.0 3.5 2.4 6.7 4.6 2.3 6.3 4.0 2.1 0.93
AU (cms-l) 3.2 1.3 4.9 3.5 9.5 6.0 3.3 11 7.4 3.9 1.7
h - z ( 0.5 cm) 12.5 9.0 11.7 11.3 11.3 10.9 10.5 10.6 9.6 8.3 6.4
a 0.38 0.36 0.37 0.37 0.32 0.32 0.36 0.31 0.29 0.29 0.29
Reml (x10 - 4 ) 1.1 0.34 1.7 1.1 3.7 2.2 1.0 3.8 2.4 1.1 0.36
Red 170 68 230 150 460 320 160 400 250 130 57
CDh 1.2 1.4 1.1 1.1 0.95 0.99 1.1 0.79 0.84 0.92 1.1
t The uncertainty of S, which was obtained through least squares regression, was estimated as
roughly 5%. Likewise, U1, Uh and AU represent lateral averages that approximate the horizontal
mean with estimated uncertainties of 5%, 10% and 2% respectively.

Ikeda and Kanazawa [29], the removal of canopy elements over a short length (7AS

in their study) has little impact upon the measured velocity statistics. All velocity

profiles were measured at x = 6.0 m. Fully-developed flow (i.e. /Ox = 0) was

established well before this sampling point; e.g., tml and AU changed by less than

1% between x = 4.6 m and x = 6.0 m in Run G.

Eleven flow scenarios with varying values of discharge, Q, and a were examined

(Table 2.1). The hydraulic radius Reynolds number (ReRh = Q/ {v(2H + b)}) varied

between 1250 (transitional) and 11800 (fully turbulent). However, as discussed in

Ghisalberti and Nepf [24], the nature of vegetated flows is likely to be much more de-

pendent upon the mixing layer Reynolds number (Reml = AUtml/v). In unobstructed

mixing layers, the transition from laminar to turbulent conditions is characterized by

the development of small-scale turbulence superimposed upon the coherent vortical

structures. This transition occurs over the range Reml ~ 6 x 103 - 2 x 104 (Kooches-

fahani and Dimotakis [33]). As shown in Table 2.1, the flow scenarios of this study

encompass values of Reml less than, within, and greater than the critical range.

The surface slope, S, along the meadow was too small to be accurately measured

by surface displacement gauges. Therefore, S was estimated as

[ax 16h < z < z2 (2.10)Sg L O9z 'zz
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in accordance with (2.1). This method provided good estimates of the measured

surface slope in the flume of Dunn et al. [131 and (in a previous study) the flume

used here (Nepf and Vivoni [44]). As shown in Figure 2-3, the vertical profile of u'w'

within h < z < z2 is clearly linear, allowing easy estimation of S. Above z = z2,

secondary circulation appears to significantly affect the vertical gradient of u'w' (see

Dunn et al. [13]).

2.4 Experimental results

2.4.1 Basic properties of velocity profiles

The parameters defining the vegetated shear layer in each experiment are listed in

Table 2.1. In this table, the cylinder Reynolds number has been evaluated using the

velocity at the top of the canopy (i.e. Red = Uhd/v). The limits of the shear layer

(i.e. z and z2) were taken as an average of the estimated locations of zero shear and

of zero Reynolds stress.

The vertical profiles of mean velocity and Reynolds stress for Runs H and J (a =

0.08 m-l1 for both) are shown in Figure 2-3. Below the mixing layer (z < zl), the

Reynolds stress and velocity shear are both negligible. The value of u'w'j increases

upward through the canopy to approximately 0.02 (AU)2 at the canopy top and then

decreases linearly above the canopy to a value of zero at z ; z2. The maximum shear

occurs not at the drag discontinuity but an average of 1.2 cm ( 2d) below the top

of the canopy. This is presumably due to a greatly reduced drag coefficient near the

free end of the cylinders, as will be shown in §2.4.3. The Reynolds stress, however,

is maximized exactly at the top of the canopy, providing the first indication of a

reduction in the rate of vertical turbulent transport within the canopy. Figure 2-3

highlights the following trend shown in Table 2.1. For a given value of a (0.08 cm - 1

in Figure 2-3), increasing the surface slope (S = 1.3 x 10 - 5 and 1.0 x 10 - 4 for Runs

J and H respectively) increases the shear layer thickness (tml) and the shear layer

penetration into the canopy (h - zl). This is due predominantly to the reduction in
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Figure 2-3: Vertical profiles of U and u'w' for Run H (S = 1.0 x 10-4 ) and Run J
(S = 1.3 x 10-5). An increase in surface slope causes a slight increase in shear layer
thickness and penetration. The value of u'w'I is approximately 0.02 (AU)2 at the top
of the canopy and decreases linearly above the canopy to a value of zero at z - 2.
The thick horizontal lines indicate the limits of the shear layers. The thin horizontal
bars represent the standard uncertainties in the lateral means of U and u'w'. In some
instances, this measure is smaller than the marker.

drag coefficient with increasing cylinder Reynolds number. Table 2.1 also shows an

inverse correlation (r2 = 0.8) between a (the packing density) and a (the fraction of

the shear layer within the canopy). That is, denser arrays act as a stronger sink of

vortex energy and thus allow less vortex penetration therein.

A distinct correlation was observed between the normalized shear (AU/Uh) and

the dimensionless plant density (ad) (Figure 2-4), namely

AU
16(ad) + 1, 0.016 < ad < 0.081. (2.11)

While it is not surprising that denser arrays generate more shear, it is curious that

AU/Uh is not proportional to CD. The data clearly bear out no dependence upon the

drag coefficient; considering the ad = 0.051 data, the observed values of AU/Uh vary
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Figure 2-4: The correlation between the normalized shear (AU/Uh) and the dimen-
sionless plant density (ad). The ad = 0.081 data comes from experiments in which the
shear layers penetrated to the bed (d = 0.64 cm, h = 7.1 cm, provided by M. Ghisal-
berti, unpublished data, 2002). The vertical bars represent the standard uncertainty
in the lateral mean of AU/Uh.

by only 4%, despite a 35% variation in a representative drag coefficient, CDh, defined

in §2.4.4 and listed in Table 2.1. It is important to note that (2.11) is only valid

within the experimental range 0.016 < ad < 0.081. We currently have insufficient

data from sparse canopies to speculate on the behavior of the curve below ad = 0.016.

In extremely sparse canopies where the canopy contribution to drag is much less than

the bed contribution, the mixing layer analogy will break down completely and the

scaling in Figure 2-4 will be invalid.

As shown in Figure 2-3, the flow above the shear layer cannot be described by the

one-dimensional momentum balance in (2.1). This is likely the result of secondary

currents. As described by Ghisalberti and Nepf [24], the shear layer vortices have a

finite width (b, - tm1/2) and the flow is divided laterally into several sub-channels of

this width. Each channel contains a vortex street that is out of phase with those in
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neighboring channels. It is expected that cellular secondary currents develop within

each sub-channel, much as secondary currents are generated in sub-channels between

neighboring longitudinal bedforms in rivers (see Nezu and Nakagawa [47]). We suggest

that these secondary currents are not generated by the flume walls, but rather are

inherent to flows with submerged vegetation. This assertion is supported by the fact

that vegetated shear layers generated in a wide flume (2.3 < b/H < 5.5, Dunn et al.

[13]) exhibit the same growth behavior as the shear layers in this study (b/H = 0.8,

see White et al. [66]).

2.4.2 Vertical profiles of eddy viscosity and mixing length

This section examines the vertical profiles of eddy viscosity (VT) and specifically the

validity of the critical assumption that f(z*) (= VT(Z*)/ClAUtml, from (2.5)) has

a universal form in vegetated shear layers. Firstly, point estimates of YU/9z were

obtained using central differencing. Then, the vertical profiles of both OU/Oz and

u'w' were smoothed using a weighted, 5-point moving average. The smoothed val-

ues of OU/Oz and u'w' were used in (2.5) to estimate VT. With the data grouped

according to their value of ad, Figure 2-5 depicts the profiles of eddy viscosity (nor-

malized by AUtml) in the shear layers. Note that the vertical scale in this figure

is z*, the distance from the bottom of the shear layer (zl) normalized by the shear

layer thickness (tml). Due to the differencing and smoothing processes, only values

within the range 0.1 < z* < 0.9 could be determined. The data from Runs B and K

were not included in this analysis, because the measured values of Lu'w'I within the

shear layer (0(10-2 cm2 s-2 )) were not significantly greater than the noise levels of

the ADV probes (0(10 - 2 cm2 s-2 ) (Voulgaris and Trowbridge [63]). The collapse of

the profiles of VT (normalized by AUtml) is excellent, validating the assumption of a

singular form of f(z*) in vegetated shear layers. As expected, the eddy viscosity takes

a maximum value (of roughly 0.012 AUtml) in the center of the shear layer (z* = 0.5),

irrespective of a.

The validity of a constant mixing length model was also examined, as this will be

used in §2.5 to predict the velocity profile. The vertical mixing length, 1, is defined
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Figure 2-5: Vertical profiles of eddy viscosity (vT) throughout the shear layers. The
data have been normalized by AUtml and are grouped according to their value of ad.
The vertical scale, z*, represents the distance from the bottom of the shear layer (zl)
normalized by the shear layer thickness (tml). The shaded area represents the range
of locations of the canopy top (z* = a). The collapse of the profiles of VT/AUtml is
excellent, validating the assumption of a universal form of f(z*) in vegetated shear
layers. The horizontal bar is representative of the standard uncertainty in each data
point.

by

12 = U (2.12)
(9Ul/z) 2

and would be expected to scale upon tl. Figure 2-6 depicts the vertical profiles of

l/trl. The assumption of a constant mixing length throughout the shear layer is quite

reasonable as the standard deviation of all values is less than 20% of the mean. In the

upper half of the mixing layer, the mixing length is constant ((0.10 ± 0.01) tm1) and

the collapse of the data is excellent. Below this region, there is a smooth transition

to a minimum value just below the canopy top (located at z* = a). It is worth noting

that similarly depressed values are observed near the top of canopies that are more

dense (ad = 0.081, provided by M. Ghisalberti, unpublished data, 2002) and less

32

0 ad=0.051
ad = 0.025

X ad=0.022
A ad = 0.016

'a- -' ' ' s -

. El[]~~: c"

[]d 

....~~I .- -1 - I I 

- -

�



0.8

0.6

Z*

0.4

0.2

n
0 0.05 0.1 0.15 0.2

ltm

Figure 2-6: Vertical profiles of mixing length (1) throughout the shear layers. The
data have been normalized by t,, and are grouped according to their value of ad.
The vertical scale is as in Figure 6. The shaded area represents the range of locations
of the canopy top (z* = a). The mixing length varies little throughout the shear
layer; the standard deviation of all values is less than 20% of the mean. For modeling
purposes, the mean mixing length above the canopy (lac) is 0.095tm,. The horizontal
bar is representative of the standard uncertainty in each data point.

dense (ad = 0.007, from Lopez and Garcia [38]) than those employed in this study.

For modeling purposes, the mean mixing length above the canopy (lac) is 0.095tmi.

Moving downward into the canopy, 1 increases and takes significantly larger values

in the sparser arrays. It was initially thought that the profile of I within the canopy

arose from the vertical variation in CD (as will be discussed in §2.4.3). However,

even with CD assumed constant in a k-e model, Lopez and Garcia [381 predicted that

1 reaches a local maximum within the canopy and then tends towards zero at the

bottom of the shear layer. Examination of the unsmoothed statistics of this study, as

well as experiments in which the shear layers penetrated to the bed (h = 7.1 cm, ad

= 0.081, provided by M. Ghisalberti, unpublished data, 2002), reveals that all vertical



profiles of I (with the exception of Run J) do indeed exhibit local maxima deep within

the canopy. That the maxima occur at a fairly consistent distance (0.10 ± 0.03 tl)

from z1, and not the bed (1-8 cm), suggests that boundary effects are not responsible.

Finally, the values of 1 at the limits of the shear layer make physical sense. At zl,

all vortical motion has been dissipated by the canopy elements, so I should approach

zero. Above the canopy there is no drag dissipation, so is expected to maintain its

constant value to Z2, as demonstrated by the unsmoothed data and by Lopez and

Garcia [38].

For modeling purposes, the slight vertical variation of I within the canopy will be

ignored. The mean in-canopy mixing length () for each run was taken as the average

of the unsmoothed values, where a linear extrapolation from the local maximum to

zero at z = z was applied. The mean normalized in-canopy mixing length (lc/tml)

correlates well with the penetration ratio (). Considering all nine runs in Figure

2-6,

= 0.22 ± 0.01. (2.13)

This indicates that the destruction of vortical motion by the canopy decreases the

in-canopy mixing length and the extent of vortex penetration to the same degree.

In an infinitely sparse array (for which we would expect a = 0.5), the mean mixing

length based on (2.13) approaches the value observed well above the canopy (0.ltml),

as expected.

An approximately constant mixing length in vegetated aquatic shear layers con-

trasts sharply with the terrestrial analogue, in which vertical turbulent length scales

increase with height (see, e.g., Raupach et al. [52]). Terrestrial vegetated shear layers

are, however, embedded within an atmospheric boundary layer of a much larger scale.

The height-dependence of vertical length scales is indicative of the extent to which

boundary-layer-scale turbulence impacts transport within terrestrial vegetated shear

layers. In aquatic flows, the general absence of an extensive overlying boundary layer

should allow an approximately constant mixing length (that scales upon the vortex

size) throughout the shear layer, irrespective of the canopy density.
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2.4.3 Drag coefficient of a submerged array

While characterization of the drag coefficient (CD) for arrays of submerged cylinders

was not a focus of this study, it is a necessary step toward evaluating Q (2.9) and

modeling the flow. As a framework, we first consider established relationships for the

drag coefficient from previous studies. The drag coefficient of an isolated, infinite,

smooth cylinder (CDc) is well known, its dependence on Reynolds number (Red)

having the form

CDC - 1.0 + 10.O(Red)- 2 /3, 1 < Red < 2 x 105 (2.14)

(White [67], p. 210).

For an array of submerged cylinders, however, wake interactions and finite cylinder

length will both impact the drag coefficient (CD). Unfortunately, these effects have

not been comprehensively evaluated. The turbulence of upstream wakes delays sepa-

ration on downstream cylinders, resulting in a lower drag (Zukauskas [70]). Although

the transition to a turbulent wake structure within a sparse (ad < 0.1), emergent

array is expected to occur at Red > 200 (Nepf [46]), the shear-layer-scale turbu-

lence sweeping through submerged arrays may trigger wake turbulence at lower local

Reynolds numbers. Bokaian and Geoola [3] quantitatively described the suppression

of the drag coefficient of a cylinder when in the wake of an upstream cylinder and its

dependence upon the relative positions of the two cylinders. Using this information,

Nepf [46] conducted a numerical experiment to evaluate the bulk drag coefficient of

an emergent array, by assuming that the reduction in the drag coefficient of an in-

dividual cylinder is due entirely to the wake of the nearest upstream cylinder. The

author found that the bulk drag coefficient (CDA) of a random, emergent array of

cylinders at high Reynolds number decreases with increasing cylinder density (ad),

according to the best-fit polynomial

CDA -= C {1.16- 9.31(ad) + 38.6(ad)2 - 59.8(ad)3 } (2.15)1.16
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for ad < 0.1. The agreement between experimental data from random, emergent

arrays with Red > 200 and the expression in (2.15) is very good (Nepf [46]).

The free end of a cantilevered circular cylinder generates strong longitudinal vor-

tices near the tip which cause considerable disturbance to the wake structure. The

effect of this free-end disturbance is to increase the wake pressure, leading to a reduc-

tion in drag, as compared to an infinitely long cylinder. For a single cylinder with a

large aspect ratio (h/d > 13) at high Reynolds number (Red 4 x 104), the magni-

tude of drag coefficient suppression is independent of aspect ratio and is confined to

a region that extends 20d from the free end (Fox and West [20]). In such cases, the

minimum drag coefficient is roughly 0.7CD.

The data of Luo et al. [40] show that a submerged cylinder (h/d = 8) placed a

distance 5d immediately behind another submerged cylinder has a mean drag coeffi-

cient roughly equal to that predicted by combining upstream proximity and free-end

effects. However, shear-scale turbulence in the free-stream of vegetated shear flows

will undoubtedly alter these effects and the interaction between them. Because no

previous studies enable accurate prediction of CD(Z), an empirical form was sought

in these experiments for subsequent use in the numerical model.

For each experimental run, the vertical profile of the drag coefficient within the

canopy was evaluated using (2.1), i.e.

2 (gS - (ui'w)/Oz)
CD(z) a (Z) (2.16)

The vertical gradient of u'w' was evaluated using a central difference. The ratio of

the observed drag coefficient to that for an infinite cylinder array (CDA, evaluated

using the depth-specific velocity), will be defined as

(z) = CD(Z) (2.17)

This parameter explicitly describes the effects of the free end on the drag coefficient of

the array. The vertical profiles of 7r for the experimental arrays are shown in Figure 2-
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Figure 2-7: Vertical profiles of q7, the ratio of the observed drag coefficient to the
theoretical value predicted by considering array density and Reynolds number effects.
The solid line is a best-fit curve through all points, and has the form shown in 2.18.
The horizontal bar is representative of the standard uncertainty in each data point.

7. As in §2.4.2, Runs B and K were not included in this analysis because of uncertainty

in recorded values of u'uw'. The collapse of r7 is good across all flow conditions, with

no discernible dependence upon Red or ad. From a value of roughly 0.45 at the bed,

r7 increases towards the free end, taking a maximum value of approximately 1.2 at

z/h - 0.76. Above this point, r decreases steadily to zero at the top of the cylinders.

The collapsed profiles of 7 are in fair qualitative agreement with the data of Dunn et

al. [13] (ad = 0.002 - 0.016). The best-fit curve shown in Figure 2-7 takes the form

-4.8 () + 4.8, 0.76 < z/h < 
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2.4.4 Behavior of the stability parameter

To facilitate evaluation of the stability parameter (Q), the product CDhI was chosen

as a representative bulk drag coefficient for the submerged arrays. CDh is the value of

CDA at the top of the canopy (see Table 2.1) and accounts for the effects of Reynolds

number and packing density on the drag coefficient. The parameter I represents the

arithmetic average of r(z) within the shear layer and accounts for free-end effects.

Since zl/h < 0.76 for all runs, from (2.18),

= 1 1 j | (z/h) d(z/h)
0.63 - 0.4,33'5 - 0.45,3

1- X(2.19)

where , = zl/h.

The estimated values of Q (8.7 + 0.5), evaluated using (2.9) and CD = CDh,

are remarkably constant (Figure 2-8). Furthermore, Q exhibits no dependence upon

a, suggesting that this constancy extends beyond the experimental range of 0.29 <

a < 0.38. The universal constancy of Q validates the analysis presented in §2.2 and

confirms that the growth of vegetated shear layers ceases once the production and

dissipation of SKE are equal.

Interestingly, Q is independent of both Reynolds numbers that characterize veg-

etated shear flows: that of the individual cylinders (Red = Uhd/v) and that of the

mixing layer (Rein1 = AUt ml/v). Specifically, Q is independent of whether Rem is

less than, within, or greater than the observed range for transition in mixing layers

(- 6 x 103 - 2 x 104). This is not unexpected, as the transition has a strong effect

on small-scale scalar mixing, but not on shear layer growth (Moser and Rogers [41]).

Also note that in several runs, Red < 200 (Table 2.1), violating a requirement of using

(2.15) to predict CD (Nepf [46]). However, the values of Q exhibit little dependence

on Red, and the use of (2.15) in this context appears appropriate for Red > 60.

38



14

12

10

8

6

4

2

0.28 0.30 0.32 0.34 0.36 0.38

a
Figure 2-8: The invariability of the stability parameter Q. The standard deviation
(0.5) of the observed values of Q around the mean (8.7) is very small. There is no
dependence of Q on a, as indicated by the dashed line of regression. The constancy
of Q confirms that shear layer growth ceases once the production and dissipation of
SKE are equal. The vertical bars represent the standard uncertainty in the lateral
mean of Q.

2.5 Numerical model of vegetated shear flow

Having identified the stability constant (Q) and a mixing length model for Reynolds

stress closure, we now use these universal functions to predict the vertical velocity

profile of vegetated shear flows. A one-dimensional numerical model of (2.1) was

created to determine if experimental velocity profiles could be accurately predicted

under the assumptions of constant Q and mixing length (ac above the canopy and ,

within). The model requires as input the canopy parameters a, d and h, the slope S

and the form of r(z).

In the model, the flow was divided into two regions: the portion of the shear

layer within the canopy (i.e. z < z < h, Zone 1) and the portion of the shear layer

above the canopy (i.e. h < z < z2, Zone 2). Below zl, the velocity is assumed to be

independent of depth and dictated solely by a balance of pressure and drag forces.

The nature of the velocity profile above the shear layer was not explored here and
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Table 2.2: Summary of modeling equations for the i-th point in Zone 1.
Parameter Modeling Equation

Velocity profile 1. (aZ)i (a )2 [1 (1 CD, aU - gS) la= 8 + tc \C2D,t i-O.51Z
2. U = Uil + ()iO-.5 z

Drag coefficient CD,i = rliCDA,i t

Mixing length 1, = 0.22(h - zl), from (2.13)
t71(z/h) is given in (2.18) and CDA(Z) in (2.15).

will certainly depend upon the fraction of the depth that the region encompasses

(1 - (z 2/H)). The model assumes a constant mixing length (1,) within Zone 1, such

that (2.1) becomes

ya -j --] g SCDaU2 - gS [Zone 1], (2.20)

which must be solved numerically. However, an analytical solution can be found in

Zone 2. With a constant mixing length, la, = 0.095 til, and an absence of drag, (2.1)

becomes

oa rau[(aa )J (0 095t )2 (2.21)

which has the solution

U(z) = Uh 2+ 3(0t ){(Z 2 - h)3 /2 - (Z2 - Z)3/2} [Zone 2]. (2.22)

The equations that form the basis of the numerical model of Zone 1 are shown

in Table 2.2, where Az (= (h - z) /400) is the chosen distance between grid points.

The subscript i specifies the grid point number. The use of i - 0.5 indicates that

the value taken is the mean of values at points i and i - 1. The first equation in

the table is a discretization of (2.20). As U, dU/Oz and CD are all interdependent,

the model was created in Microsoft Excel, which iterates the modeling equations to

determine the solution (Ui(z)). The results of a model based on (2.20) and (2.22) will

depend heavily upon where the model is initiated (zl) and where the shear layer ends
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(Z2). We thus require two independent relationships that permit the evaluation of

these endpoints. The first relationship is obtained from the definition of the stability

parameter in (2.9), with Q = 8.7 and CD = CDhj as described above:

z = 8.7 CDh7ja 2 - U12 (2.23)

To avoid the interdependence of all variables, it was also necessary to utilize a rela-

tionship between characteristics of the shear layer and of the vegetation. To this end,

the dependence of the normalized shear (AU/Uh) on solely the dimensionless plant

density (ad) (shown in (2.11)) was also employed.

The model is initiated at the base of the shear layer (z1), where U = U1 and

OU/0z = 0. Under the assumption of zero Reynolds stress below the shear layer,

U1 is predicted from a balance of pressure and drag forces in (2.1) (i.e. U1 =

V2gS/CD(zl)a). As CD(Z1) (= (z1)CDA(z1)) is itself a function of U1, a simple

iteration is required. The most accurate predictions of U1 were obtained with rq(zl)

= 0.38, which lies within the range of values observed deep within the canopy (0.45

± 0.15) in Figure 2-7. The model then requires the following iteration:

1. Firstly, initial guesses of z1 and tml are made. Based on the results of this study,

good initial values are zl ;- h - 0.4a-1 and tl - (h - zl)/0.33.

2. Then, with the initial conditions of (U, dU/Oz)z1 = (U1, 0), the equations de-

scribed in Table 2.2 are used to evaluate U(z) up to z = h.

3. With the value of Uh obtained in Step 2, and the guessed values of z and tl

from Step 1, the velocity profile above the canopy (up to z = z2 = zl + tml) is

determined using (2.22).

4. From the complete profile, the value of AU/Uh is evaluated. The value of tml is

then varied, and Steps 2-4 repeated, until AU/Uh takes the value required by

(2.11).

5. Based on the stability analysis, the required value of zl is calculated using

(2.23). If the required value does not agree with the initial guess, we return to
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Figure 2-9: A comparison between observed (marker) and predicted (solid line) pro-
files of mean velocity for Runs B (a = 2.5 m-l), C (3.4 m-l) and H (8 m-l). The
thin horizontal bars represent the lateral variability of the observed velocity. The
thick horizontal lines indicate the predicted values of Z2; the model is not strictly
valid above this point. The table compares the predicted and observed values (P,O)
of tml, h - zl and AU. Over all runs, the model predicts the values of each of these
three parameters to within an average of 7%.

Step 1 and take the required value as the next guess. Steps 1-5 are repeated

until the required value of zl agrees with the guessed value. The final velocity

profile then satisfies both conservation of momentum and the criterion defined

by the stability parameter.

2.5.1 Comparison between the model and experimental data

The agreement between the observed velocity profiles and those predicted by the

model is very good, as shown in Figure 2-9. The predicted values of trt, h - zl and

AU all deviated from observed values by, on average, less than 7%. As a constant

in-canopy mixing length was employed, the curvature of the velocity profile within

the canopy cannot be modeled exactly. In addition, the velocity gradient has a

discontinuity at z = h because of the assumed discontinuity in mixing length. Note
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Figure 2-10: The comparison between observed values of AU and those predicted
by the model. The dashed line indicates perfect agreement. The horizontal bars
represent the lateral variability in the observed value of AU.

that the model is only used to predict U(z) within the region 0 < z < z2. Above

Z2, the velocity begins to decrease as u'w' becomes positive (Figure 2-3). The exact

nature of the velocity profile above this point could not be determined with the ADV

and was not modeled. Finally, there is excellent agreement between the predicted and

observed values of AU over a wide range of that parameter, as demonstrated in 2-10.

Note that while AU/Uh is prescribed by (2.11), Uh is predicted independently, so the

accuracy of predicted AU values is an independent check of model performance. The

good agreement shown in Figure 2-10 indicates that the model is accurate across the

gamut of experimental conditions.

The sensitivity of the model to changes in the value of U1 is highlighted by Figure

2-11, which demonstrates how predicted velocity profiles for Run G vary with U1. The

predicted values of tl and AU are quite sensitive to a 10% variation in U1, changing

by roughly 9% and 15% respectively. The predicted value of h - z1 is relatively

insensitive, changing by less than 1%. That the accuracy of the model relies heavily
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Figure 2-11: Demonstration of model sensitivity to the chosen value of U1. The
figure shows the model prediction for Run G, using three values of U1: (i) the value
predicted using r(zi) = 0.38 (1.15 cm/s), (ii) a value 10% greater than that predicted
(1.27 cm/s) and (iii) a value 10% less than that predicted (1.04 cm/s). The model
predictions of tml and AU are sensitive to a 10% variation in U1, changing by roughly
9% and 15% respectively. The predicted value of shear layer penetration into the
canopy, h - zl, is much less sensitive, changing by only 1%.

upon the accurate prediction of U1 reinforces the importance of quantifying the drag

coefficients of submerged canopies.

2.5.2 Extension of the model to field conditions

Firstly, it is important to note that the analysis described in this paper applies only

to completely unbounded vegetated shear layers. That is, shear layers that extend

neither to the free surface nor to the bed. The agreement between model and ex-

periment demonstrates that assumptions of constant mixing lengths (Ia, lac) and a

universal stability parameter () lend themselves to accurate predictions of the ve-

locity profile within and above dense aquatic canopies. However, to extend the model

to the field, several pieces of information are required. For example, the relationship
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between AU/Uh and ad in sparse canopies (ad < 0.016) must be ascertained. Po-

tentially the biggest obstacle to field application of the model, however, is the lack

of knowledge concerning CD(z). The profile used in this study, described by (2.18)

and (2.15), is strictly valid only for cylinders with h/d 22 within the experimental

range of 60 < Red < 460. Further research into the dependence of CD(Z) upon the as-

pect ratio, packing density, Reynolds number and morphology of submerged canopies

is much needed. In the limit of infinitely thin vegetation (h/d - oo) however, the

assumption of a constant CD (evaluated using (2.15)) may be appropriate. Further-

more, the experiments in this study used rigid dowels to simulate submerged, aquatic

vegetation. In reality, such vegetation is often flexible and can exhibit pronounced

coherent waving (monami) in a unidirectional current (Ackerman and Okubo [1];

Grizzle et al. [27]). The monami can significantly increase the penetration of turbu-

lent stress into the canopy, as the waving reduces the drag exerted by the vegetation

(Ghisalberti and Nepf [24]). A means of estimating temporal averages of (CDa) is

therefore required before application of this model to waving canopies.

2.6 Conclusion

It was postulated that the growth of vegetated shear layers ceases once the production

of shear-layer-scale turbulent kinetic energy is balanced by drag dissipation. This was

confirmed by flume experiments, which showed that a scaled ratio of production to

dissipation is a constant (Q = 8.7 ± 0.5) for fully-developed vegetated shear layers.

This stability constant was used to close a one-dimensional numerical model that

predicts the vertical velocity profile of vegetated shear flows. The model also uses

the assumption of a single mixing length above the vegetation and a single, reduced

mixing length within it. The agreement between model and experiment is good, but

field application of the model is limited by a lack of description of the drag coefficient

in real canopies.
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Chapter 3

Mass transport in vegetated shear

flows 1

Abstract
Submerged aquatic vegetation has the potential to greatly improve water quality
through the removal of nutrients, particulates and trace metals. The efficiency of this
removal depends heavily upon the rate of vertical mixing, which dictates the timescale
over which these constituents remain in the canopy. Continuous dye injection experi-
ments were conducted in a flume with model vegetation to characterize vertical mass
transport in vegetated shear flows. Through the absorbance-concentration relation-
ship of the Beer-Lambert Law, digital imaging was used to provide high-resolution
concentration profiles of the dye plumes. Vertical mass transport is dominated by
the coherent vortices of the vegetated shear layers. This is highlighted by the strong
periodicity of the transport and its simple characterization based on properties of the
shear layer. For example, the vertical turbulent diffusivity is directly proportional
to the shear and thickness of the layer. The turbulent diffusivity depends upon the
size of the plume, such that the rate of plume growth is lower near the source. In
the far-field, mass is mixed more than twice as rapidly as momentum. Finally, plume
size is dictated predominantly by X, a dimensionless distance that scales upon the
number of vortex rotations experienced by the plume.

3.1 Introduction

Submerged vegetation is a critical component of many aquatic ecosystems. Aquatic

canopies provide habitats for macrofauna (Edgar [15]) and can be responsible for

1This chapter was submitted by M. Ghisalberti and H.M. Nepf to Environmental Fluid Mechanics.
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significant nutrient, particulate and trace metal removal in wetlands (Kadlec and

Knight [31], Silvan et al. [59]). The efficacy of these functions depends heavily upon

the rate of exchange between the water within the canopy and the overlying water.

Therefore, to fully describe the impact of submerged vegetation on water quality, we

must be able to quantify the rate of vertical mixing. Through modification of the

flow, vegetation significantly affects vertical transport relative to a bare bed, tending

to increase vertical diffusivity above the canopy and to decrease it within (see, e.g.,

Finnigan [16], Ackerman [2]).

The vertical discontinuity of drag in flows with submerged vegetation creates a

shear layer across the top of the canopy. As in a mixing layer, this shear layer con-

tains an inflection point, rendering the flow inherently unstable to Kelvin-Helmholtz

vortices (Raupach et al. [52], Ikeda and Kanazawa [29]). Vertical transport in a veg-

etated shear layer is dominated by these coherent vortex structures (Gao et al. [22],

Ghisalberti and Nepf [24]). The vertical eddy viscosity (vtz) of the layer scales upon

its thickness (to,, with reference to Figure 3-5) and the shear across it (AU), and

peaks in the middle of the layer (Ghisalberti and Nepf [23]). As shown by Ghisalberti

and Nepf [23], vortex growth ceases once the production of vortex-scale energy is

exactly balanced by drag dissipation. Thus, in dense canopies, the vortex structures

often do not extend fully to the bed, segregating the canopy into a upper region of

rapid exchange and a lower region with more limited water renewal (Nepf and Vivoni

[44]). These two regions differ significantly in their rates of turbulent diffusion. Below

the shear layer, we assume that the flow resembles that through an emergent array

of cylinders, with vertical transport dominated by wake turbulence. In an emergent

array the vertical turbulent diffusivity, Dt, scales upon the cylinder Reynolds number

(Red = Ud/v, where U is the longitudinal velocity and d the cylinder diameter) and

the areal fraction occupied by wakes (Figure 7 in Nepf et al. [45]). Consider a typical

canopy with a plant fraction, P, of 0(1%) in a mean flow of 0(10 cms-'). Based on

the observations of Nepf et al. [45], the vertical diffusivity below the shear layer is

0(0.1 cm2 s-1). Assuming that the turbulent Schmidt number (Sct = vtz/Dtz) is of

order unity, the mean vertical diffusivity in the upper canopy (i.e. within the shear

48

�



F

hc

UIII x=O

Figure 3-1: Side view of dye injection in the flume. Twelve needles spanning the width
of the flume were affixed to the tops of dowels 6 m into the canopy; by this point, the
flow was fully-developed. The injection velocity was kept at the local velocity (Uh)
by a syringe pump. Vertical light sources were placed at 6 locations along the canopy
(x = 19, 54, 90, 150, 250 and 380 cm), where digital footage of the dye plume was
captured.

layer) is 0(1 cm 2 s- 1) (Ghisalberti and Nepf [23]). The order of magnitude difference

between the diffusivities in these two regions of the same canopy highlights the impact

of the coherent vortices on vertical transport.

The goal of this paper is two-fold. Firstly, we seek to develop a simple, inexpensive

experimental technique that allows simultaneous measurement of plume structure at

several locations. Secondly, using this technique, we want to characterize vertical mass

transport in vegetated shear flows, noting the differences to momentum transport.

3.2 Methodology

Laboratory experiments were conducted in a 24-m-long, glass-walled recirculating

flume with a width (w1 ) of 38 cm. The experimental setup is summarized in Figure

3-1. Flow scenarios of varying flowrate (Q) and plant density (a) replicate those used

in Ghisalberti and Nepf [23]', a study conducted with the same flume and canopy,

such that details of velocity structure can be drawn from that study. As in Ghisalberti

and Nepf [23], a constant flow depth (H) of 46.7 cm was employed, with a canopy

'This paper is identical to Chapter 2 of this thesis.



Table 3.1: Summary of experimental conditions and vegetated shear flow parameters.
Runs B, J and K from Ghisalberti and Nepf [23] were not replicated, as the low
velocities complicated the experimental technique.
Run A C D E F G H I

Q (x10- 2 cm 3s- 1') 48 74 48 143 94 48 143 94
ad 0.016 0.022 0.022 0.025 0.025 0.025 0.051 0.051
tml (l.Ocm) 32.8 31.4 30.7 35.4 33.5 28.8 33.9 32.7
AU (cms - 1) 3.2 4.9 3.5 9.5 6.0 3.3 11 7.4
Uh (cms - 1) 2.5 3.5 2.4 6.7 4.6 2.3 6.3 4.0
zl (0.5cm) 1.4 2.2 2.6 2.5 2.9 3.3 3.2 4.2
Red t 91 110 70 240 170 78 170 110

De (cm 2 s- 1 ) 0.11 0.13 0.11 0.20 0.16 0.12 0.23 0.18

D (cm 2 s- 1) § 1.9 2.9 1.9 6.2 3.9 1.8 7.3 4.5

t In contrast to Ghisalberti and Nepf [23], Red is evaluated here using the velocity below the shear

layer.

$ De, the vertical diffusivity in an emergent stand with equal density and flow speed, was estimated

from Figure 7 in Nepf et al. [45].

§ The value in the far-field (X > 8).

height (h) of 13.9 cm. Model canopies consisted of circular wooden cylinders (d =

0.64 cm) arranged randomly in holes drilled into Plexiglas boards. The range of

dimensionless plant densities (ad = 0.016 - 0.051) is representative of dense aquatic

meadows (see, e.g., Chandler et al. [8]). The total canopy length was 10 m. Table

3.1 details the relevant flow parameters, with each run named as in Ghisalberti and

Nepf [23]. In this table, z1 is the location of the bottom of the shear layer (see Figure

3-5) and Red is evaluated using the velocity below this level (U1 ). The parameter De

represents the vertical diffusivity in an emergent array of dimensionless density ad

and flow speed U1, as prescribed by Figure 7 of Nepf et al. [45]. Note that Nepf et

al. [45] focuses on conditions of Red > 200, for which the wakes are fully turbulent.

In this study, 50 < Red < 240, such that the values of De given in Table 3.1 may be

overpredictions. It is important to note that this analysis pertains only to canopies

of sufficient density that the shear layer does not penetrate to the bed and canopy

drag dominates bed drag. This is shown to be true for CDah > 0.1 (as seen in the

data of Dunn et al. [13] and Poggi et al. [51]), where CD is the drag coefficient of the

canopy.
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3.2.1 Image analysis

Digital imaging provides an unintrusive method of generating high-resolution con-

centration data in the laboratory. Data can be gathered simultaneously at all points

in a vertical profile, and at several longitudinal locations. To quantify mixing in

vegetated flows using digital image analysis, a link between pixel intensity and dye

concentration is required. The Beer-Lambert Law (BLL) provides this link, and has

been used to determine concentration profiles in flows through porous media (see,

e.g., Schincariol et al. [54], Gramling et al. [26]). The BLL states that when light is

incident upon a sample of an absorbing species, the relationship between the incident

intensity (Io) and the transmitted intensity (I) is given by

log E() = EbC, (3.1)

where is the absorptivity of the absorbing species, b the path length over which

the light is attenuated and C the concentration of the absorbing species. If C is

non-uniform along the path length, the concentration extracted from (3.1) will be the

mean along the path.

The BLL was used to measure concentration downstream of a continuous dye

injection from a line of ports spanning the flume. The flume was backlit by 120 cm,

32 W fluorescent lamps, with a blue gel food coloring (Country Kitchen, Inc.) used

as the dye. The lamps were wrapped in amber cellophane to maximise the contrast

between undyed and dyed fluid. Digital movies were captured by two digital cameras

(a Sony DSC-S85 (DC1) and a Canon Powershot G3 (DC2)) and a digital video

camcorder (Canon ZR45 (DC3)). From each digital movie, 640 x 480 bitmap images

were acquired using Apple Quicktime (DC1, DC2) and ULead Video Studio (DC3).

MATLAB's Image Processing Toolbox was used to convert images to grayscale and

evaluate pixel intensity (0 to 255) to determine spatial fields of I (during dye injection)

and Io (before injection). The intensity of the lamps was uniform and constant, log Io

varying by approximately 0.2% in the innermost 50 x 1 cm of the tubes and by 0.1%

between images.
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Figure 3-2: Plan view of the calibration used to determine the validity of the Beer-
Lambert Law (3.1) in these experiments. Digital movies were captured of the backlit
isosceles tank (1 = 36 cm) filled with water and three dye solutions. The path length
of light through the tank (b) varied with distance along the front of the tank (6, (3.2)).
This allowed examination of the validity of (3.1) fully in the range 0.12 < bC < 4.0
cmgL - 1. The variation of attenuated light intensity along the tank is shown in the
lower graphic. To minimize uncertainty in b, only central pixels (101 < 0.05) were
examined.

To determine the validity of (3.1) in these experiments, a simple calibration was

conducted using a right-angled isosceles acrylic tank (1 = 36 cm, Figure 3-2). When

placed in the flume, the path length through the triangle between the horizontal lamp

and the camera varied along the length of the tank. Each camera was paired with a

lamp and used to capture four digital movies of the backlit triangle: one while filled

with water, and three while filled with dye solutions (0.017, 0.045 and 0.136 gL-1).

The distance from the camera to the flume (de = 210 cm) was much greater than

the width of the triangle. Using the definitions in Figure 3-2, the length of dye (b)
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Figure 3-3: The relationship observed by DC2 between absorbance (A = log(Io/I))
and bC for three dye solutions in the triangular tank. The linear relationship pre-
scribed by the Beer-Lambert Law is valid in the range 0 < bC < 1.9. The vertical
error bars represent the uncertainty in the mean due to spatial (over the height of
the tank) and temporal (between images) variability.

between lamp and camera at pixel position 5 is given by

b P~1 (3.2)
cos(O/n) + sin(O/n) + /) (3.2)

where n is the relative refractive index of water. This approximation is valid in

the limit of small 0, a restriction imposed to minimize uncertainty in b. Equation

(3.2) was used to determine b for each pixel in the range 7.5 cm < < 28.5 cm

(I0 < 0.05). In each pixel, the intensities in the absence of dye (Io) and in the

presence of the three light-attenuating dye solutions (I) were evaluated. Figure 3-

3 shows the calibration plot of absorbance (A = log(I/Io)) versus bC for camera

DC2. The linear relationship described by the BLL is clearly evident in the range

0 < bC < 1.9 cmgL-l (0 < A < 1.4). Similarly, the BLL was shown to be valid for
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DC1 and DC3 in the ranges bC < 1.4 cmgL-l and bC < 1.3 cmgL-l respectively.

Note that does not have to be maintained exactly between experiments; rather,

(3.1) will be used to determine relative concentrations, with absolute concentrations

obtained through conservation of mass. This calibration merely imposes the range

over which there is a linear relationship between concentration and absorbance for

each camera.

3.2.2 Experiments

In these canopies, shear layer growth is arrested, and fully-developed flow conditions

(i.e. 0/Ox = 0) established, within the first 5 m of the canopy (Ghisalberti and Nepf

[23]). As our analysis is concerned with mass transport in fully-developed vegetated

shear layers, dye was injected into the flume 6 m into the canopy. We will define this

point as x = 0. Twelve 0.9-mm-diameter needles (separated by 3.5 cm) constituting

a line injection were affixed to the top of dowels spanning the flume at x = 0. The

needles were connected by 1/8" Polyurethane tubing to three 50 mL syringes. A

syringe pump maintained the injection velocity at the local mean velocity, Uh. The

volumetric injection rate, 1i, varied between 0.17 - 0.50 mLs-1 . At six measurement

locations (x1 = [19 cm, 54 cm, 92 cm, 150 cm, 250 cm, 380 cm]), dowels within a

4-cm-long slice across the channel were removed and redistributed along the canopy.

This was done to allow a line of sight between each lamp (now vertically aligned) and

its corresponding camera. The length of this slice is equivalent to 0.8 - 1.4 times the

inter-cylinder spacing, AS. As shown in Ikeda and Kanazawa [29], the removal of

canopy elements over a short length (7AS in their study) has little impact upon the

flow conditions.

The dye solutions used in these experiments had concentrations (Ci) of 120 - 250

gL-1. The addition of isopropyl alcohol brought the solutions to neutral buoyancy,

defined arbitrarily as having the buoyant velocity of the dye (Wb) less than 0.5%

of the mean channel velocity. For each flow scenario, the three cameras were used

to capture movies of the plume at measurement locations 1, 2 and 3. The flume

was then re-filled, the dye injection repeated, and movies captured at measurement

54



locations 4, 5 and 6. To keep all images within the linear ranges described in §3.2.1,

less concentrated dyes were used when capturing digital footage at positions 1, 2 and

3. Likewise, DC2, which had the most extensive linear range, was always used in

the measurement location nearest to the source. The camera-lamp pairings and the

camera settings were unchanged from the calibration. The duration of dye injection

(td) varied between 3 and 8 minutes. This time was chosen carefully so as to be

large enough that a steady state was reached at all locations (td > Xz,max/Ul) and

small enough that no dye recirculated to the most upstream location. Note that

Runs B, J and K from Ghisalberti and Nepf [23] have not been included in these

experiments. In such low flows, the buoyant velocity of the dye and the time taken

to reach steady-state made accurate analysis difficult.

In the determination of concentration at heights not equal to the height of the

camera (he), the line between camera and lamp was not horizontal. The distance

between the cameras and the flume (de = 170 - 200 cm) was kept much larger than

the flume width to minimize the resultant parallax error in the measurements. For

the same reason, the cameras were positioned at roughly mid-depth (he = 19 - 23

cm). At the outer edges of the flow, the path from lamp to camera traversed heights

within the flume approximately 2 cm greater than and less than the (quoted) mean

height.

Frames were captured from the digital movies at 1 Hz and converted to grayscale.

The pixel size in the experiments varied between 0.8 - 1.4 mm; near the source, the

size of the plume allowed us to zoom in on the region around z = h. Figure 3-4

shows a sample background image, an image with dye and the resultant CICmax

profile from Run E. Sixteen images preceding dye injection (Figure 3-4(a)) were used

to determine Io(z); this quantity was evaluated by averaging the logarithm of light

intensity spatially (over the innermost 1 cm of the lamp) and temporally (over the 16

images). During dye injection (Figure 3-4(b)), I(z, t) was also evaluated as a spatial

average over 1 cm. The BLL (3.1) was then used to evaluate EC(z, t), accounting for

the weak height dependence of the path length through the flume (wf b < 1.01wf).

Once a steady-state was reached in all pixels (i.e. (C) /&t = 0), values of EC(z) were
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Figure 3-4: Sample evaluation of an instantaneous concentration profile in Run E

(captured on DC2). The figures are: (a) A sample background image, used to de-

termine Io(z), (b) a sample image with dye, used to determine I(z), and (c) the

resultant profile of log Io - log I, which (ignoring the weak height-dependence of path

length through the flume) is directly proportional to concentration (C). As required,
max(log I - log Io) l 0.9 < 1.4, the linear range end-point (Figure 3-2). Once a

steady-state was reached in all pixels, profiles of concentration were averaged over a

minimum of 100 images.

temporally averaged over a minimum of 100 images. Values were then normalized by

the maximum value in the profile to yield steady-state values of C/Cmax (z) (Figure

3-4(c)). As the camera settings were fixed during each experiment, E was assumed

invariant. Absolute concentrations (C(z)) were determined using the conservation

of mass requirement that foH UCdz = VICl/wf (under the assumption that Pe =

Uxl/Dtx > 1).

3.3 Results

Figure 3-5 displays steady-state concentration profiles (C(z)) at all measurement

locations in Run I. All concentration data have been normalized by the maximum

iili

0

N

- -



40

30

z (cm)

20

10

n

0 0.2 0.4 0.6 0.8 1 2

C/Cmax(1) U (cm/s)

Figure 3-5: Steady-state concentration profiles and velocity profile (taken from Ghisal-
berti and Nepf [23]) of Run I. All concentration data have been normalized by the
maximum value at measurement location 1. The velocity shear and, subsequently,
the bed result in a concentration profile that is asymmetric about the injection point
(z = h). The! markers are used simply to identify each profile; the true vertical reso-
lution of the concentration data is approximately 1 mm. The estimated uncertainty
in each data point is roughly 10%.

value at measurement location 1. Over distance, the height of maximum concentration

falls from the injection height (h) to the bed, initially due to the velocity shear and

then due to the no-flux boundary at the bed. The data do not extend to z = 0 and

z = H because of the parallax error in the measurements; a linear extrapolation of

concentration to the boundaries was applied when required.

Intrinsic to this method of image analysis is the lateral averaging of concentration.

However, flows with submerged vegetation have significant lateral heterogeneity. In

strong currents, flexible submerged vegetation exhibits a pronounced waving (mon-

ami) at the vortex frequency, f. This waving is clearly confined to lateral subchannels

(Ghisalberti and Nepf [24]); in each subchannel, the waving (and hence vortex street)

is out of phase with that in neighboring subchannels. This lateral heterogeneity is

demonstrated in the photographs of Figure 3-6, taken during Run H. This figure
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Figure 3-6: Evidence of the lateral heterogeneity in vegetated shear flows. The flow is
divided laterally into (in this case, two) subchannels of the vortex width (e tw/2). In
the left-hand picture, the dye in the vortex street nearer the camera is swept into the
canopy simultaneously to the vortex street in the neighboring subchannel ejecting dye
above the canopy. In the right-hand picture, taken half a vortex period (-L) later,
the reverse is true.

clearly shows the presence of two subchannels. In the left-hand image, dye streaks in

the subchannel nearer to the camera undergo a sweep into the canopy (u' > 0, w' < 0,

using the standard Reynolds decomposition). Simultaneously, the dye streaks in the

subchannel farther from the camera undergo an ejection (u' < 0, w' > 0). In the

right-hand image, taken half a vortex-period (- - 7 s) later, the situation is re-

versed. Since the plume in each subchannel experiences a periodic sequence of sweeps

and ejections, the laterally-averaged profile provides a good estimate of the tempo-

ral average in each subchannel. It is important to note that the subchannel width

appears to be a function of the vortex size, such that in shallower flows in the same

flume, three subchannels have been observed (Ghisalberti and Nepf [241).

The influence of the coherent vortices in vegetated flows is elucidated in Figure

3-7. Figure 3-7(a) captures a dye injection, distinct from the experiments described in

§3.2.2, during Run H. The incorporation of the dye streak into a growing vortex at the

front of the canopy (roughly 1.5 m in) is clearly evident. Such clarity of visualization of

the vortical structure was only possible near the front of the densest canopy, where the

rate of vortex rotation is highest. Figure 3-7(b) shows the smoothed power spectrum

of the depth-averaged in-canopy concentration at measurement location 1 in Run E.
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Figure 3-7: The importance of Kelvin-Helmholtz vortices in vertical transport in
vegetated shear flows. (a) The negative image of a dye injection made at the front
of the canopy in Run H. The dye rises (as fluid is redirected over the drag elements)
before being incorporated into the growing vortex street approximately 1.5 m into
the canopy. (b) The smoothed power spectrum of the depth-averaged in-canopy
concentration at measurement location 1 in Run E. There are clear, pronounced
peaks at the vortex frequency (f,, 0.068 Hz) and 2f,.

There are clear peaks at both f, (the vortex frequency, 0.068 Hz) and 2f, as there

are in spectra of momentum transport, u'w' (Ghisalberti and Nepf [24]). The strong

periodicity of in-canopy concentration is indicative of the dominance of the vortices in

vertical transport. The presence of two subchannels in these flows, combined with the

lateral averaging of concentration, augments the peak at 2f,. The average Strouhal

number (St = fO,/U, where 0 is the momentum thickness of the shear layer and U is

the average of the velocities at the top and bottom of the layer) is 0.037 ± 0.002. This

is slightly higher than the value observed for bent, flexible canopies (0.032 ± 0.002)

but in agreement with the value observed when the same flexible canopy was erect

under low flows (0.037, Ghisalberti and Nepf [24]).
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3.Figure 3-8: Definitive diagram of the two-box and fluxelgradient models used to de-

T characterizibe vertical transport. In in vegetated shear flows, the validity of ae two-box

model was examined. As shown in Figure 3-8, we seek to quantify the mass flux

(rizi(h)) between the upper, unvegetated box (h < z < H) and the lower, vegetated

box (O < z < h). Velocity and concentration are considered uniform within each box

(Ua and Ca in the upper box, U and Cc in the lower box). We assume a constant

exchange coefficient (k, with units of LT-') such that rhz(h) is proportional to k and

the difference in concentration between the boxes. That is, over a distance dx,

7z, (h) = k (wf dx) (CC - Ca). (3.3)

While this exchange parameter doesn't take into account vertical variation in velocity

and diffusivity, it is a useful tool when considering chemical and biological processes

that occur fully within the canopy and not at all above it (e.g., nutrient uptake).

Using this two-box formulation, the exchange coefficient can be evaluated by track-
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ing the longitudinal variation in the concentration of one of the boxes.

distance dx,
dC= (h) dx

(H - h)wfdx U,

using (3.3) and assuming Pe > 1. Therefore,

dxC, = k (C - C).
x (H - h) U,)

Similarly,
dC_ k
dx kr(C - C.)dxx hU,

By defining AC = C- C. as the difference in concentration between the two boxes,

subtracting (3.5) from (3.6) gives

dAC _k (
dx =k hU +(H- h) ) C.

Integration of (3.7) yields

AC(x) = AC(O) exp (- (H - h)Ua))

By substitution of (3.8) into (3.6),

dC~ k/c(o) (
d'- huCe exp -kxdx hU, (H - h)Ua))

Ac(o)

(1 + (H-h)U,)

exp (-kx (hU-
+ 1(Hh)U )

+(H - h) U,I

where C(oo) is the concentration achieved when the dye has become perfectly well-

mixed over depth. That is,

Cc(oo) =
hU,

(3.11)
hU + (H- h)U,'
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( kdx(C, - Ca)(H - h)U, (3.4)

(3.5)

(3.6)

(3.7)

(3.8)

Therefore,

C(x) =

(3.9)

+ Cc(oo), (3.10)

Over the

kx u1 +



From (3.10) we define C*, the normalized in-canopy concentration, as follows:

C*(x) = cc(0) C () = exp -kx ( + (H (312)

That is, under the assumptions of uniform velocity and concentration within each

box, C* decays exponentially with distance along the canopy (from unity to zero).

As the injection is at the interface between the two boxes,

CC(o) = TIci/2hwfU. (3.13)

To account for concentration and velocity gradients in the experiments, quantities

within boxes are represented by vertically-averaged experimental values (i.e. Gc 
1 h 1 da

Jo G dz; Ga = (H-h) fh Gdz, where G = [U,C]). As described in Ghisalberti and

Nepf [23], velocity measurements could not be taken within approximately 7 cm of

the free surface. The experimental velocity profiles were extrapolated to the surface

(see Figure 3-8) to best match near-surface profiles taken above vegetated shear layers

[M. Ghisalberti, unpublished data, 1999]. Figure 3-9 shows the observed exponential

decay of C* over distance. Data with the same plant density (but different flow speeds)

are grouped. The vertical bars represent the standard uncertainty in each point and

thus reflect the variability within each group. This variability is small, with a mean

of roughly 0.02 on the C* scale. The legend of Figure 3-9 displays the mean in-group

values of k*, the fitting coefficient in the curve C*(x) = exp (-k*x). Clearly, the well-

mixed condition is approached more rapidly, and k* is higher, for denser canopies.

Denser canopies generate vortices with a greater rotational speed (which scales upon

AU), relative to the mean flow ( Uh) (Ghisalberti and Nepf [23]). The higher rates of

rotation result in a more rapid flushing of the canopy over distance. The exponential

relationship in (3.12) is clearly invalid near the source, where the assumption of a

uniform in-canopy concentration breaks down. While the theoretical concentration

at the source is given by (3.13), the true value is much lower (iCi/2hwfUh) since,

in reality, the injection is at the point (z = h) of the highest in-canopy velocity.

The concentration profiles show that the in-canopy concentration becomes uniform
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Figure 3-9: The exponential decay of normalized in-canopy concentration (C*) over
distance. Data with the same plant density (but different flow speeds) are grouped,
with vertical bars representing the variability within each group. For clarity, the
ad = 0.022 data (which falls alongside the ad = 0.025 data) has been omitted.
Exchange between the canopy and overlying water occurs more rapidly over distance
for dense canopies. This is highlighted by the mean in-group values of k*, the fitting
coefficient in the curve C*(x) = exp (-k*x). This exponential relationship is invalid
near the source, where the assumption of a uniform in-canopy concentration breaks
down.

(varying by less than 15% around the mean) by x = 54 cm (for ad = 0.025,0.051)

and x = 92 cm (for ad = 0.016, 0.022). The curve fit is only applied beyond this point

where, despite the fact that the upper, unvegetated box isn't similarly well-mixed,

C* clearly decays exponentially. Although the curves of best fit were determined by

prescribing the intercept (i.e. C*(O) = 1), the exponential fits to the data alone had,

on average, an intercept of almost exactly unity. This suggests that the deviation

from a uniform in-canopy concentration in the near-field does not significantly affect

the bulk exchange between the canopy and the overlying fluid.

We would expect the exchange coefficient (k) to simply scale upon the shear across
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Figure 3-10: The direct proportionality between the exchange velocity, k, and the
total shear, AU. The vertical bars represent the 90% confidence intervals of each
point, based on the uncertainty of the exponential fit through each data set.

the layer (AU), as this dictates the vortical velocity of the structures. From (3.12),

k*hU,

( + (hU, )1+(H-h)U, 
(3.14)

As shown in Figure 3-10 (in which the data are no longer grouped), this expectation

is very closely met (k - AU/40). Therefore, for a given mean flow, the exchange

coefficient will increase with canopy density.

3.3.2 Flux-gradient model

While a two-box model is convenient for describing vertical transport, it fails to

encapsulate any vertical variability, revealing little of the structure of mass transport.

Consequently, a profile of vertical turbulent diffusivity (Dtz(z)) throughout the shear

layer was sought. Similarly to the eddy viscosity, the turbulent diffusivity is expected

to scale upon the size of the vortices (tmn) and their rotational speed (which in turn
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scales upon AU). Although a flux-gradient model is not strictly valid in these flows

(refer to Corrsin [11]), it provides a simple means of characterizing vertical transport.

The mass balance for the control volume shown in Figure 3-8 is

wf (j UCdz) = Wf ( UCdz) -WfAx (Dtz a (3.15)

The terms represent, respectively, the inward and outward advective fluxes and the

vertical diffusive flux. The angular brackets denote a longitudinal average between A

and B. Experimental values of Dtz(z) were evaluated by considering (3.15) between

adjacent measurement locations, i.e.

A (fo UCdz)
Dt(z) = - (C/z) Ax (3.16)

We assume that the longitudinally-averaged gradient can be approximated by the

mean of the gradients at the two measurement locations (i.e. (C/az) (C/azA +

aC/l9ZB)/2). This assumption is best adhered to in the slowly-varying far-field, so

only measurement locations in the range xl > 92 cm were used in the evaluation.

Furthermore, the determination of Dtz was restricted to heights at which C/laz

changed by less than a factor of 3 between adjacent measurement locations. The

vertical profiles of aC/Oz were smoothed with a 2 cm moving window before finding

the mean of the concentration gradients at adjacent locations. To minimize the

uncertainty in Dtz, only heights with significant concentration gradients (C/&z >

0.05 max(0C/oz)z= 9 2cm) were considered. This meant that the diffusivity was not

evaluated near the (no-flux) boundaries, where the vertical concentration gradient

approaches zero.

Figure 3-11(a) shows the collapse of Dt, when normalized by AUtml, across the

range of plant densities. Data of equal plant density have been grouped, with hor-

izontal bars representing the standard uncertainty in each point. The vertical axis

of Figure 3-11(a) (z* = (z - z) /tm,) represents the dimensionless height above the

shear layer bottom. The collapse of the diffusivity data throughout the entire shear

layer is good, confirming that the coherent vortices dominate transport throughout
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Figure 3-11: (a) The collapse of Dtz, when normalized by AUtm, across the range
of plant densities. Data of equal plant density have been grouped, with horizontal
bars representing the inter-run variability in each point. The vertical axis (z* =
(z - zl) /tm) represents the dimensionless height above the shear layer bottom. The
thick grey bars show the average location of canopy height in z* space for each plant
density; the greater the density, the darker the bar. For each density, the turbulent
diffusivity peaks near the top of the canopy. (b) The vertical profile of the turbulent
Schmidt number (Sct = vtz/Dtz) in the shear layer. Sct has an average value of
approximately 0.47 in the shear layer and reaches a minimum just below the top of
the canopy.

the layer. There is significant vertical variability in Dtz, which peaks at the top of the

canopy (Dtz(h) 0.032AUtml). In contrast, the eddy viscosity peaks in the middle

of the shear layer, which lies above the canopy (Ghisalberti and Nepf [23]). Note that

in the mass balance used to evaluate Dtz (3.15), an absence of vertical advective mass

transport was assumed. The secondary circulation presumed to exist above the shear

layer (Ghisalberti and Nepf [23]) may drive a small advective flux in the uppermost

20% of the shear layer. In this region, the calculated value of Dtz, which would incor-

porate this advective transport, does not decrease with height as the eddy viscosity
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does. Rather, it takes an approximately uniform value (Dtz 0.013AUtmI).

The relationship between the eddy viscosity and turbulent diffusivity is shown

in Figure 3-11(b), which details the form of the turbulent Schmidt number (Sct =

vtz/Dtz). There is significant uncertainty in Sct in the uppermost 20% of the shear

layer, due to both the spread of the Dtz data in this region and the possible incorpora-

tion of a vertical advective flux into this data. This uncertainty notwithstanding, the

average observed turbulent Schmidt number in the range 0.1 < z* < 0.9 is approx-

imately 0.47, with the minimum value occurring just below top of the canopy. This

indicates that the transport of mass is more than twice as efficient as the transport

of momentum in vegetated shear layers. The observed turbulent Schmidt number is

lower than those in boundary layers (0.8 ± 0.1, Launder [36]; Hassid [28]; Koeltzsch

[32]) and planar mixing layers ( 0.54, from data in Raupach et al. [52]). The differ-

ence between vegetated shear layers and unobstructed mixing layers may be explained

by numerical results discussed in Fitzmaurice et al. [19]. Ensemble averages of the

velocity and pressure fields around major sweep events in vegetated flows reveal that

when the sweep approaches the canopy, the encounter with the region of high drag

generates regions of high dynamic pressure. So, while the sweep event carries mo-

mentum and scalars downward via identical motions, the transfer of momentum may

be offset by the pressure field induced by the motion at the canopy boundary.

3.3.3 Similarity of plume behavior

Within the shear layer, the coherent vortices dominate vertical transport. Thus,

we anticipate that the timescales of plume advection (x/Uh) and vortex rotation

(tml/AU) govern the growth of a scalar plume. The ratio of these timescales defines

a dimensionless distance,

X =mU' (3.17)
tml Uh

that scales upon the number of vortex rotations experienced by the plume. We

expect that the concentration profiles will be similar across all runs at a given value

of X. That is, a given number of vortex rotations are expected to have a similar
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Figure 3-12: The collapse of the decay curves of in-canopy concentration when plot-
ted against a dimensionless distance, X. This suggests a strong similarity of plume
structure in X, which scales upon the number of vortex rotations experienced by the
plume.

effect on scalar plumes, irrespective of the canopy density. For example, consider

the exponential decay curves of in-canopy concentration as a function of x (Figure

3-9) and as a function of X (Figure 3-12). Whilst the behavior of C*(x) is strongly

dependent upon ad, the values of C*(X) collapse to a single curve. We therefore

expect plume spread and structure, within the shear layer at least, to depend primarily

on a single variable, X.

3.4 Particle tracking model

Due to the difficulty of determining vertical diffusivity in the near-field, where the

concentration profile changes rapidly, the longitudinal dependence of Dtz was not

directly calculated. As diffusivity in oceans and lakes is known to increase with

the size of dye patches (see, e.g., Okubo [48], Lawrence et al. [37]), it was thought
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that Dtz would increase with distance from the dye source. Additionally, we sought

to determine the accuracy of a simple model that assumes a diffusivity (D) that is

constant in the vertical above z = zl. Below this point, vertical transport is assumed

to be dominated by wake turbulence, with a diffusivity (De) given by Figure 7 in

Nepf et al. [45] (Table 3.1). Accordingly, we employed a Lagrangian particle tracking

model (LPTM, developed by Peter Israelsson, Massachusetts Institute of Technology)

to evaluate the longitudinal dependence of D.

The LPTM was employed as a two-dimensional (x and z) particle tracking model

in which particles are advected by the mean velocity field (U(z)) and diffused ver-

tically by a random walk process. Longitudinal diffusion is neglected with respect

to advection; assuming that Dtx - O(Dtz), the lowest Peclet number in this system

is 0(10). The model released 3000 particles/s at x = 0, z = h and tracked their

position for 1000 s over the domain 0 < x < 380 cm. The cell size in the model

was 2 cm (in x) x 1 cm (z); the number of particles in each cell was divided by the

cell area to yield an areal concentration (ML-2 ). Once a steady-state was reached at

each x1, vertical concentration profiles (sampled at 0.1 Hz) were temporally averaged

to provide the steady-state profile. In flows with inhomogeneous diffusivity, particle

tracking models often suffer from the over-prediction of concentration in regions of

low diffusivity (Weitbrecht et al. [64]). In this study, the order of magnitude between

D and De had the potential to result in an unrealistic build-up of concentration be-

low z = zl. However, this was not observed in the LPTM, which predicts a uniform

steady-state concentration to within 1% as x - oo.

The LPTM was used to determine the values of D that best replicated the exper-

imental concentration profiles of each run (i.e. the value that maximized r2 between

the model result and experimental profile). For each measurement location (xl),

D was assumed spatially invariant, both vertically and longitudinally in the range

0 < x < xl. That is, the best-fit value of D best describes the rate of plume growth

between the source and the measurement location. Based on the collapse of data in

Figure 3-11(a), it was prescribed that D = yAUtml where 'y is a constant. From the

best-fit values of D at each measurement location, y(X) was determined for each run,
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Figure 3-13: The longitudinal variation of normalized best-fit diffusivity, y =
D/AUtmi). Near the source, the diffusivity is low compared to that in the far-field.
The darkness of each point is proportional to the goodness of fit (r 2) between the
experimental and model concentration profiles. A model that assumes a vertically
uniform diffusivity above zi generally predicts the shape of the concentration profile
well (r2 > 0.98).

as shown in Figure 3-13. This figure clearly shows that the diffusivity near the source

is much less than that in the far-field. However, the plume's 'memory' of the reduced

near-field diffusivities is erased by X ; 8. The mean values of D in the far-field (i.e.

X > 8) for each run are detailed in Table 3.1. The rapid rate of mixing associated

with the vortices is highlighted by the ratio of D to De, which ranges from 15 - 32

in this study.

In a flow with vertically uniform velocity and diffusivity, it can be easily shown

that the relationship between D(x) (the effective constant diffusivity between the

source and position x) and D(x) (the local diffusivity at x) is given by

D(x) = -(D) . (3.18)

The velocity shear and step-profile of diffusivity in these flows were shown by model



runs not to impact this relationship. Application of (3.18) to the data in Figure 3-13

shows that the local diffusivity is constant (0O019AUtml, 15%) beyond X - 2.5.

The experimental concentration profiles reveal that X , 2.5 is almost exactly the

location at which the plume has grown to encompass the entire shear layer. For

example, Position 2 in Run E (Figure 3-14) is located at X = 2.2; at this position,

the plume extends almost completely to the top of the shear layer (Z2 _ 38 cm).

These observations lend weight to the concept of a diffusivity that is dependent upon

the plume size. In the near-field (X < 2.5), the plume is smaller than the mixing

(vortex) structures and the diffusivity is low. Once the plume reaches the size of the

vortices, the diffusivity is maintained at a constant, maximum value.

In Figure 3-13, the darkness of the markers is proportional to the goodness of

fit (r2) of the modeled concentration profile to that observed. To focus upon the

accuracy of the assumption of a uniform diffusivity above z = z, the goodness of

fit was evaluated in the range z < z < H (which comprised 42 - 45 data points).

The mean value of r2 was more than 0.98, indicating that a constant diffusivity above

z = z is a suitable approximation. This is further demonstrated in Figure 3-14, which

compares the experimental and modeled concentration profiles of Run E. The shape

of the profile is predicted well at all locations. Interestingly, the model overpredicts

the concentration gradients below zl in the far-field. This suggests that at the same

flow speed, the diffusivity below the shear layer is greater than that in equally dense

emergent arrays. The apparently enhanced diffusivity in this region is due possibly

to secondary vertical flow behind individual canopy elements in the small boundary

layer near the bed (Nepf and Koch [43]). The measurements of Nepf et al. [45] were

centered at mid-depth and therefore affected little by this vertical flow.

3.5 Conclusion

Through the absorbance-concentration relationship of the Beer-Lambert Law, digi-

tal imaging has been used to provide high-resolution concentration profiles of scalar

plumes in vegetated flows. It has been clearly shown that the coherent vortices of
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a vegetated shear layer dominate vertical transport, such that transport is easily

characterized by properties of the shear layer. Firstly, using a two-box model, the

exchange velocity between the canopy and overlying water is shown to scale upon the

total shear (k AU). Secondly, using a flux-gradient model, the vertical turbulent

diffusivity scales upon the shear and size of the layer (Dt, - AUtmi). Our results

suggest that plume size is dictated predominantly by X, a dimensionless distance

that scales upon the number of vortex rotations experienced by the plume. The tur-

bulent diffusivity depends upon the size of the plume (and thus X), such that the

rate of plume growth is lower near the source. In the far-field (X > 8), mass is

mixed more than twice as rapidly as momentum. Finally, images of dye injection

demonstrate the lateral variability of the vortex structure, which causes transport to

be instantaneously nonuniform in the lateral direction.
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Chapter 4

The impact of vegetation on

transport in open channels

To fully describe the impact of submerged vegetation on the flow and transport in

an open channel, a direct comparison between vegetated and unvegetated shear flows

is required. Consider two uniform, infinitely-wide channels, both with a flow depth

(H) of 46.7 cm. The bed of one channel is unvegetated, whilst the other contains

a vegetation canopy that is 13.9 cm tall and occupies a volumetric fraction (P) of

4% (i.e. the canopy of Run H (Table 2.1)). In this section, I contrast the vertical

profiles of mean velocity (U) and vertical diffusivity (Dtz) as well as the coefficients

of longitudinal dispersion (K) in the two channels. Conditions in the unvegetated

channel will be varied to match, separately, the depth-averaged velocity ((U) = 8.8

cm/s) and surface slope (S = -dH/dx = 1.0 x 10- 4 ) of the vegetated channel.

4.1 Vertical profiles of velocity and diffusivity

The flow in an archetypal unvegetated channel is that of a turbulent boundary layer.

Such a flow has been comprehensively studied, such that the vertical profiles of ve-

locity and turbulent diffusivity, required elements in the evaluation of K, are well
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known. Firstly, in the logarithmic region of a turbulent boundary layer

U() = -i + uC , (4.1)

where C is a constant equal to 8.5 for fully rough turbulent flow (i.e. for u,k,/v > 70,

Nezu and Nakagawa [47], p. 27). In (4.1), ni (= 0.41) is the von Karman constant, k,

is the equivalent sand grain (Nikuradse) roughness and u, (=-V7Lg ) is the friction

velocity. The Nikuradse roughness in this channel is given a typical value of 0.5 cm.

By integration of (4.1), the mean channel velocity is given by

(U) = I U(z)dz= -- (n ( )-1) +u*C. (4.2)

Secondly, in this logarithmic region, the vertical eddy viscosity has the form

tz = - (4.3)

(Fischer et al. [17], p. 106). In a boundary layer, not only is the vertical mass dif-

fusivity not equal to the vertical eddy viscosity, but the turbulent Schmidt number

(Sct = vtl/Dt) exhibits considerable vertical variability. This ratio takes its max-

imum value (close to unity) at z/H - 0.3, and tends towards zero as the bed is

approached (Koeltzsch [32]). However, to broadly compare diffusivity in vegetated

and unvegetated channels, I will assume that Sct uniformly takes its mean value of

0.8, which (to within 25%) is valid for 0.1 < z/H < 0.9. Under this assumption,

Dt, 0.5u*z (1- ) (44)

in the unvegetated channel. In this analysis, I have assumed that the logarithmic layer

extends throughout the entire flow depth; real profiles of U(z) and vtz(z) deviate very

slightly from the expressions in (4.1) and (4.3) (refer to Nezu and Nakagawa [47], pp.

27, 66).

The profiles of velocity and vertical diffusivity in the two archetypal channels are
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Figure 4-1: Comparison of the profiles of velocity and vertical diffusivity in the two
archetypal channels. In the unvegetated channel, two conditions have been simulated.
In the first, the mean velocity, (U), of the vegetated channel is matched. In the second,
the slope, S, is matched. As the free surface is approached, the diffusivity above the
vegetated shear layer is expected to decrease. However, as the form of Dtz is unknown
in this region, a constant value (equal to that seen in the uppermost 20% of the shear
layer) is assumed for simplicity.

compared in Figure 4-1. The flow conditions in the vegetated channel are exactly

that of Run H. In the wake zone of the vegetated channel (i.e. z < zl), the diffusivity

(Dw) is assumed to be the same as that in an equally dense emergent cylinder array

(De from Table 3.1). In the shear layer, the best-fit profile of the vertical diffusivity

data (Dtz = f(AUtml, z*)) was taken from Figure 3-11. Above the shear layer, the

diffusivity is assumed to be constant, taking the value seen in the uppermost 20%

of the shear layer (i.e. Dtz = 0.013AUtml). The free surface will undoubtedly begin

to influence turbulent length scales and diffusivity as it is approached. However, the

interplay between the free surface and the secondary circulation presumed to exist

above vegetated shear layers (§2.3) is unknown. For simplicity, therefore, I will assume

that the diffusivity above the shear layer (Da) is uniform. In fact, the region above

the shear layer contributes little to dispersion in the experimental flows; a 20% change

in Da causes only a 0.2 - 2% change in K,. As seen in Figure 4-1(a), the baffling

effect of submerged vegetation is such that the mean flow in the unvegetated channel
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(with matched slope) is more than four times that in its vegetated counterpart. In

Figure 4-1(b), the efficiency of vertical transport by the coherent vortex structures

is highlighted. For the same mean flow, the vertical diffusivity in the mixing layer

of the vegetated channel is roughly three times that in the boundary layer of the

unvegetated channel.

4.2 Longitudinal dispersion

The coefficient of longitudinal dispersion (Kx) in a flow dominated by vertical shear

is given by

e et . [] u "dz dz dz (4.5)

(Fischer et al. [17], p. 91), where u" represents the spatial deviation from the mean

channel velocity. In this section, I evaluate the dispersion coefficients of the exper-

imental flows, deduce some simple scaling relationships for dispersion in vegetated

shear flows and contrast dispersion in vegetated and unvegetated channels.

4.2.1 Unvegetated channels

Under the assumption that Sct = 1 (i.e. vtz = Dtz), substitution of (4.1) and (4.3) into

(4.5) yields Elder's famous result of K, = 5.93u.H (Fischer et al. [17], p. 92). How-

ever, as shown by Chatwin [9], Elder's method suffers from two limitations. Firstly,

the eddy diffusivity in a turbulent boundary layer is, on average, approximately 20%

greater than the eddy viscosity (Koeltzsch [321). Secondly, omission of the effect of

the viscous sublayer on dispersion results in roughly a 20% underprediction of K

(Chatwin [9]). These two effects approximately cancel each other such that it is

reasonable to say that in an infinitely wide channel,

K, - 6u*H. (4.6)

This value is comparable to dispersion coefficients observed in very wide (wf/H - 0(10)),

rough-bottomed laboratory channels (Fischer [18]).
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Figure 4-2: The two limiting regimes of longitudinal dispersion in vegetated shear
flows. In Regime 1, dispersion is dictated by the shear layer. In Regime 2, detention
within the wake zone (z < z1) dominates dispersion.

4.2.2 Vegetated channels

I propose that there are two limiting regimes of longitudinal dispersion in vegetated

shear flows. In the first regime, dispersion is dominated by velocity gradients across

the shear layer (Figure 4-2). In the second regime, dispersion is dominated by de-

tention in the wake zone, a region with high u" and low diffusivity. In Regime 1,

u"- AU and Dtz AUtml such that from (4.5),

AUH2

tml (4.7)

In Regime 2, the triple integral in (4.5) is significant only in the range 0 < z < z. In

this zone, u" = (U) - U1 and Dtz = D. Thus, evaluation of (4.5) in the limit of the

second regime exactly yields

2= Z((U) - U)2

3D H
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The transition between these two regimes will depend upon the scaled ratio of their

dispersion coefficients,

Z =i)3 [A Utm] { (U)U 1 }2(4.9)

The third bracketed term in (4.9) is a shape factor of the velocity profile, similar

to that in the expression for the stability parameter, &Q (2.9). For flows in which

tml > z, this factor will be approximately 1/4. Under the assumption that the

scaling coefficient in (4.7) is of 0(1), the second dispersion regime will dominate if

4 >> 0(1). Conversely, if O << 0(1), shear layer dispersion will dominate. Note that

this analysis is valid only for flows in which the shear layer and wake zone comprise

the majority of the flow depth; in these experiments, 0.6 < z 2 /H < 0.8.

For the eleven flow scenarios detailed in Table 2.1, the velocity profile, U(z), and

the profile of vertical diffusivity, Dt,(z), were employed to evaluate K. from (4.5).

The best-fit profile of the vertical diffusivity data in Figure 3-11 was used for each

run, as it was in Figure 4-1(b). As in Elder's analysis, I do not consider the viscous

sublayer (nor the small, modified boundary layer) near the bed. The calculated values

of K. are shown in Figure 4-3 as a function of 4. The values of K_ are normalized

by AUH 2I/t,, according to the scaling of the dispersion coefficient in the first regime

(4.7). The collapse of this data is good, and shows that

AUH 2

lim K. , 0.5 (15%). (4.10)
'0- O t.l

This approximation holds true for <' < 0.1. The spread of the data (±15%) at low 4
equates roughly with the uncertainty in the values of K~, estimated by considering

the lateral nonuniformity of the velocity profile (see, e.g., Figure 2-3) and the spread

of the vertical diffusivity data (Figure 3-11). Above 4 - 0.1, detention in the wake

zone appears to augment dispersion.

To examine the behavior of K, as a function of 4', the values of both Dw and

z1 were manipulated numerically in Run H. In the manipulation of the latter, the

location of the bed was artificially shifted downwards/upwards to increase/decrease
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Figure 4-3: The values of the dispersion coefficient (K), calculated by considering
vertical shear only, as a function of 4, for the eleven experimental runs. The dispersion
coefficient is normalized by AUH 2 /tmi, the appropriate scaling in the first dispersion
regime. The collapse of the data as 4' -+ 0 is good, validating this scaling relationship.
The estimated uncertainty in the values of K, is roughly 15%.

wake zone depth. Figure 4-4 shows the resultant curves of K.(O) = Kx/(AUH 2 /tml)

(the appropriate normalization in the first regime) and K**(4') = Kx/(z((U)-

U1)2 /DH) (the appropriate normalization in the second regime). In this figure, the

solid markers represent the manipulation of D,, while the unfilled markers represent

the manipulation of z1. The limit of the second dispersion regime is approached to

within 15% by 4 - 10. Within the range 0.1 < 4' < 10, therefore, both the shear

layer and wake zone detention contribute to longitudinal dispersion. Furthermore,

Figure 4-4 demonstrates that K, is a unique function of 4', as the behaviour of K.(,)

is independent of whether D, or zl is varied.

For these experimental flows, ,,max - 0.5, meaning that detention in the wake zone

is not expected to dominate dispersion. However, real vegetated shear flows may have

4 - 0(10) such that the limit of the second dispersion regime is approached. This

is likely to be the case for flows with a low degree of submergence (H/h), in which
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Figure 4-4: The behavior of K*(4b) = Kx/(AUH 2 /tmi) and K*(ib) = K/(zz((U) -

U1)2 /DH) in Run H as Dw (solid markers) and z (unfilled markers) are varied
numerically. The agreement between the solid and unfilled markers indicates that Kx
is a unique function of 0b. Over the range 0.1 < p < 10, both the shear layer and the
wake zone contribute to dispersion.

the free surface may restrict the size of the shear layer. For example, consider the

estuarine eelgrass meadow studied by Grizzle et al. [27]. Assuming a typical value

of eelgrass meadow density (P = 2%, Chandler et al. [8]) and that D = De below

the shear layer, I estimate from the presented velocity profile that i is as high as

40- 50 an hour after low tide (Figure lB in that paper). Note that as H/h - 1, the

shear across the top of the canopy ceases to be the dominant feature of the flow and

dispersion is driven by stem-scale heterogeneity. For Red - 0(100), this wake-driven

dispersion is of the order of Uld (White and Nepf [65]), typically several orders of

magnitude lower than the dispersion coefficients in Regimes 1 and 2.

As discussed previously, the conventional scaling of longitudinal dispersion in un-

vegetated channels is on the flow depth and friction velocity (Kz/uH 6, (4.6)).
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Indeed, the dispersion coefficients in these experiments are of a comparable magnitude

when normalized in this fashion (3.1 < Kx/uH < 7.6). This analysis demonstrates,

however, that this is not the appropriate scaling of K. in vegetated channels. To

verify this, let us consider the limit of the first dispersion regime (i.e. negligible trap-

ping in the wake zone). For a traditional scaling of K,, uH to be robust, there

must be an approximately constant relationship between uH and AUH 2 /tml (the

true scaling of dispersion in the first regime of vegetated shear flows). That is, the

ratio

UX ti 1 (4.11)XAU H

should be relatively independent of canopy and flow variables. Although u,/AU is

remarkably constant (0.21 ± 0.02), the ratio tml/H is not necessarily so. This ratio

can range from unity down to (at least) 0.5, the lowest value observed in these exper-

iments, while still maintaining the inflectional shear layer as the dominant dynamic

feature of the flow. Significant trapping in the wake zone will cause the u*H scaling

to become even less robust. Thus, there cannot be a general comparison of dispersion

in vegetated and unvegetated channels. For our archetypal channels, the values of

K. are 470 cm2 s- 1 (vegetated), 610 cm2 s-l (unvegetated, same S) and 140 cm2 s-1

(unvegetated, same (U)). Despite the baffled flow of the vegetated channel relative to

the unvegetated channel of the same slope, the strong shear generated by the canopy

elevates the dispersion to a level comparable to that in the bare channel.

It is important to note that this dispersion analysis considers only the vertical

velocity shear. Even in an infinitely wide channel, the lateral heterogeneity of vege-

tated shear flows on the scales of both the vortex (as demonstrated in §3.3) and the

stem wake may augment longitudinal dispersion. Further experiments are required

to determine the contribution of this inherent lateral shear to dispersion. Further-

more, it has been shown that Elder's result is not quantitatively applicable to real

streams. Lateral nonuniformities such as bends and dead zones can dramatically in-

crease dispersion (Fischer [18]). The relative impacts of nonuniformities in vegetated

and unvegetated channels remains unexplored.
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4.3 Conclusion

Submerged vegetation has a pronounced impact on the structure of mixing in open

channels. The traditional uH scaling of both the vertical turbulent diffusivity and

longitudinal dispersion is shown to be invalid in vegetated channels, as these processes

depend heavily upon characteristics of the vegetated shear layer. The extent of vortex

penetration into the canopy is critically important, as it divides the canopy into an

upper zone with rapid, vortex-driven vertical transport and a lower zone where mixing

occurs on the much smaller scale of the stem wakes. In shear flows over sufficiently

dense canopies, the depth of this lower zone will dictate both the timescale for vertical

mixing and the rate of longitudinal dispersion.
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Chapter 5

The effect of plant flexibility on

vertical transport

In response to steady currents, flexible submerged aquatic vegetation may exhibit a,

pIrogressive, synchronous, large-aInl)litud(l waving (ternled rmounami by Ackerman,ll and

Okubo [1]). Tle monrarni is a response to the strong oscillations in streamwise velocity

associated with the passage of the coherent vortex structures of the vegetated shear

layer (Ghisalberti and Nepf [24]). The monami is triggered when the flow velocity

increases above a threshold value. This threshold increases with decreasing fow

diepth and increasing plant. rigidity (Ghisalberti [25]). To ((lt(crnine thll impaI.t- of

plant. flexibility on vegetated shear flows. several exI),erilnents were conducted witll 

flexible canopy in the laboratory flume.

5.1 Experimental methods

The experinlienta configuration from Chapter 2 (see Figure 2-2), including the (co11-

stant flow (Ide(tll of 46.7 c, was retained for thes exleriircllts, withll a fexible mode]

Ianopy sl)stitulted for te rigi (I owels (Figmlv 5-] (a)). The flexible 1lodel vegetatiolm

wa.s desigiled to n) liic eelgrass (Zosteru lmarina). Eaclh miodel plaIlt. consisted o[ a.

stem region adllcl six thin blades. based oll the typical niorphllolo: of Ma.ssachusett s

Bav e-lgra.ss (Clhandler c. al. [8]). \oodeln dowels (().6:3 cl in diiamet-cr. 1.5 c il

( 5



(a) The flexible model canopy, colored after the experiments to highlight
the lateral subchannels in the flow.

(b) The experimental configuration used to simultaneously measure the
flow velocity and plant motion. The heights of three colored blades on
one plant were monitored through the capture of digital video and sub-
sequent image analysis. The ADV probe was positioned approximately 3
cm upstream from the front of the plant. The corresponding time in the
velocity record (505 s in this case) was clearly visible in each frame.

Figure 5-1: The flexible model vegetation of this study.



height) were used to mimic the eelgrass stem. Model blades were cut from low-density

polyethylene film (p, = 920 kgm-3 ) with a modulus of elasticity, E, of 3.0x 108 Pa.

The height of the blades was 20.3 cm, their width (Wb) 3.8 mm, and their thickness

(t) 0.20 mm. This blade thickness was specifically chosen to ensure that the waving

of the model plants accurately mimicked the motion of real seagrass. As described in

Ghisalberti [25], the motion of the plants is dictated by the ratio of blade buoyancy

to blade rigidity. A scaled form of this ratio is given by the parameter

(Pp " - Pa) h3

Et2 (5.1)

From my observations in Ghisalberti [25], model vegetation exhibits the most realistic

motion when A 0.055 s2 m- 1, the value taken by these model plants. The total

canopy length was 6.5 m and the density of the meadow was fixed at 230 plants/m 2 .

Assuming that each blade orients itself normal to the flow, the (theoretical) density

of the canopy was a = 0.052 cm-l. The average undeflected height of the plants

was 20.5 ± 1.0 cm, the variability arising from differing degrees of vertical extension

of each blade. Note that this nonuniformity, which mimics the variability of real

seagrass meadows, is desired. The spatial and temporal variability in the height of

a flexible canopy, through both this nonuniformity and the monami, distinguishes

flexible canopies from the ideal, rigid model canopies examined in Chapter 2.

Similarly to the rigid canopy experiments, vertical profiles of ten-minute velocity

(u, v, w) records were taken by four 3-D' acoustic Doppler velocimeters (ADV) in each

of six flow scenarios. Velocity statistics from the four probes, which were separated

laterally by 6 cm, were averaged to obtain the spatial mean, as discussed in §2.2. As

in the experiments of Chapter 2, all velocity profiles were measured at x = 6.0 m, by

which point fully-developed conditions had been established. To allow probe access,

a 12-cm-long (= 1.8AS) slice of plants was removed across the channel. Digital video

camera footage was used to determine the maximum plant height (hma:) and monami

amplitude (A,) for all runs. The waving amplitude, estimated from the footage as the

average vertical excursion of blades during a monami cycle, was as large as 0.28 hmax,
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Table 5.1: Key parameters of the six experimental flows with flexible vegetation.
Run F1 F2 F3 F4 F5 F6
Q (X10 - 2 cm 3 s- 1) 28 47 66 87 114 148
AU (cms- 1) 2.9 4.6 6.2 7.8 9.7 12.3

AU/Uhma 1.7 1.6 1.7 1.8 1.7 1.6
U1 (cms-1) 0.31 0.55 0.72 0.95 1.4 2.2
hma (0.2 cm) 21.5 21.3 20.0 18.6 17.0 15.5
A, (cm, 25%)t - - 2.7 3.5 4.1 4.4

t Dashes indicate the absence of an observable monami at low flow speeds.

as reported in Table 5.1.

To begin to characterize the impact of plant flexibility on the flow, the oscillatory

nature of both the velocity field and the plant height must be considered. Time se-

ries of u'w' in vegetated flows show strong sweeps and weak ejections that are brief

and strongly periodic (Figure 1-1). That is, the regions of active vertical transport

within the vortex are quite localized. Therefore, during moments of rapid transport,

the canopy geometry may be significantly different to its temporally averaged condi-

tion. As a preliminary investigation of this coupled oscillation, the flow velocity and

plant motion were measured simultaneously. Three blades on one plant, placed in the

middle of the flume in the flow conditions of Run F6 (Table 5.1), were colored red,

green and blue (respectively). A digital video camera captured the motion of each

of these three blades, as shown in Figure 5-1(b). While the plant motion was filmed,

15-minute velocity records (at heights separated by 2 cm) were taken by a Sontek

MicroADV aligned laterally with the plant but displaced 3 cm upstream. Synchro-

nization of the video footage and velocity records was achieved by placing the monitor

of the computer used to record the ADV data directly across the flume from the cam-

era. The timing of the velocity record was thereby made visible to the video camera

(Figure 5-1(b)). Frames were taken from the digital footage at 1 Hz. Velocity data

in a half-second window (i.e. ±0.25 s) around the time of each frame were averaged

to provide the instantaneous flow conditions. The height of each blade was detected

manually using MATLAB's Image Processing Toolbox. Note that MATLAB's edge

detection algorithm was initially configured to determine blade height but mistakenly
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identified the blades in roughly 2-5% of the frames, distorting the results.

5.2 Mixing layer analogy

The results of these experiments suggest that flow over flexible, waving vegetation

more closely resembles a mixing layer than flow over rigid vegetation. To demonstrate

this, Figure 5-2 compares the profiles of mean velocity and Reynolds stress in (i) a

imixing layer, (ii) shear flow over a rigid canopy, (iii) shear flow over a still, flexible

canopy and (iv) shear flow over a waving, flexible canopy. The vertical colored bars

in this figure represent the average height ranges of each canopy, considering both

the loronaali and( inherent spatial nonuniformity of the flexible canop)y. To facilitate

comparison, all variables have been normalized as follows:

z'- zl U -U RS* '
U= U ' RS*= (5.2)

where U = 0.5(U1 + U2). The classical hyperbolic tangent velocity profile of a mixing

layer has the form

U* = 0.5 tanh(3.85(z* - 0.5)) (5.3)

(G-hisalberti and Nepf [24]), where the ratio of the mixing layer thickness (t,,l) to

the momentum thickness (0) is assumed to be 7.7 (the mean value for the rigid

canopy profiles in Chapter 2). The Reynolds stress profile in a mixing layer is taken

from Rogers and Moser [53]. The rigid canopy data represent an average of the flow

statistics of Runs H, I and J (Table 2.1, a = 8.0 m-1, AU/Uh 1.8). Likewise, the

profiles for flow over a still, flexible canopy are taken from Runs F1 and F2 (Table 5.1,

a == 5.2 n-l, AU/Uh ; 1.6) and the waving canopy data from Runs F3, F4, F5 and

F (a = 5.2 m -l, AU/U, , 1.7). The velocity profiles of the three vegetated shear

layers display a similar level of asymmetry, with the zero-crossing of U* occurring

at 0.4 in all cases. However, for a given shear, the layer-averaged momentum

transport (i.e.. [--u'w'/(A U)2 ] dz*) depends heavily upon the temporal and spatial

variability of the canopy height. With increasing canopy height variability, the layer-
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Figure 5-2: Profiles of mean velocity and Reynolds stress in (i) a mixing layer (Rogers
and Moser [53]), (ii) shear flow over a rigid canopy (Runs H, I and J in Table 2.1),
(iii) shear flow over a still, flexible canopy (Runs F1 and F2) and (iv) shear flow over
a waving canopy (Runs F3, F4, F5 and F6). All variables have been normalized as in
(5.2). The colored vertical bars represent the average height ranges of each canopy.
The inflection point (I) for the flows over the rigid and waving canopies lies just below
the top of the vegetation. The horizontal bars represent the variability between runs.
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averaged transport increases from 0.0045 for the waving canopy to 0.0063 for the

still, flexible canopy to 0.0077 for the rigid canopy. In mixing layers, this parameter

takes a value ( 0.005) similar to that seen in the experimental flows over a waving

canopy. In contrast to the rigidly obstructed shear layers (for which the canopy top

is located at z* = 0.3), the shear layers generated by a waving canopy have a region

of approximately constant stress that spans the zone over which the canopy height

oscillates (z* - 0.26- 0.38). That is, as the variability in the canopy height increases,

both the normalized momentum transport and the sharpness of the stress peak near

the top of the canopy decrease.

In the passage frequency of the vortices, unobstructed mixing layers (St = 0.032)

and shear layers generated by waving vegetation (St - 0.032) further distinguish

themselves from rigidly obstructed shear layers (St - 0.037). The importance of

plant flexibility is also suggested by the difference in the observed ratios of turbulent

velocities in rigidly (Urms/Wrms = 1.4) and flexibly obstructed shear layers (1.7). This

dependence upon plant flexibility may relate to the anisotropic dissipation of vortex

energy by rigid canopies. Due to the geometry of the rigid canopies, it is expected

that horizontal turbulent fluctuations are dissipated more effectively than vertical

fluctuations. The deflected flexible canopy offers significantly more frontal area to

vertical flow, thereby decreasing Wrms relative to Urms. This isotropy, or lack thereof,

impacts the observed Strouhal number. The nominal (observed) Strouhal number

(St = f0/U, where 0 is the momentum thickness of the shear layer) is simply a scaled

version of the more pertinent form (St' = fA/Uv = 1) that relates the frequency of

vortex passage (fv) to their convective speed (U,) and longitudinal spacing (A). The

relationship between these two forms of the Strouhal number is given by

St = a = Ste ( ( . (5.4)

H esri ents the aspect ratio of the vortex street ( = t.4), I will ), where that the roughly

describes the height of the vortices. To simplify (5.4), I will assume that the ratio of

the momentum thickness to the shear layer thickness is a constant. This assumption
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is supported by the fact that /tml appears to be independent of canopy density or

flexibility, taking a value of 0.13 ± 0.01 across all rigid canopy runs in Chapter 2

and the three vegetated velocity profiles in Figure 5-2. Furthermore, for the model

canopy of Ghisalberti and Nepf [24], the relationship between the vortex velocity and

the mean shear layer velocity is a function of the ratio of the mixing layer thickness

to the plant height (i.e. U/U = f(tm,/h) ~ 1 + [tml/9h]). With these simplifications,

(5.4) becomes

St - 0.13of (tm/h). (5.5)

This relationship is consistent with the observation of higher values of St in rigidly

obstructed shear layers. By dissipating (relatively) less vertical turbulent energy, rigid

canopies generate vortices with a greater aspect ratio, and thus a greater nominal

Strouhal number. Consider Runs H (rigid) and F5 (flexible), for which (ti,/h) - 2.4.

From (5.5), the aspect ratio of the vortex street is approximately 0.22 in Run H and

0.19 in Run F5, demonstrating the elongated geometry of the vortices in vegetated

shear flows.

5.3 Correlation between the flow field and plant

motion

When placed in the flow, the three colored blades of the test plant (Figure 5-1(b))

splayed out, with an estimated lateral separation of roughly 7 cm between adjacent

tips. As a result of this splay and the lateral subchannels that are generated in the

flow, the motions of the blades were not perfectly correlated. The heights of the outer

blades (blue, green) correlated mildly with the height of the inner, red blade (r2 = 0.51

and 0.39, respectively) but not at all with each other (r2 = 0.10). Midway during

the experiment, the blades aligned themselves so as to be one above the other during

five velocity records. During this period, these correlations increased dramatically to

0.84, 0.83 and 0.97, respectively, further highlighting the lateral nonuniformity in the

flow. In this analysis, the plant height is taken as the mean of the heights of the three
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individual blades.

To best evaluate the oscillatory relationship between the flow field (u(t), v(t), w(t))

and the height of the colored plant (h(t)), the collected data was divided into eight

phase bins. Each data point in h(t) was classified according to its magnitude and

the direction of plant motion (i.e. upwards or downwards). Then, each data point

(along with the corresponding velocity information) was binned according to, firstly,

the direction of plant motion and, secondly, the plant height. That is, there were four

bins of descending plant height (from the maximum of 14.8 cm to the minimum of 9.4

cm) followed by four bins of ascending height. Each bin contained exactly the same

number of data points. This sequence of phase bins represents one monami cycle,

beginning from the time of maximum canopy elevation. The mean monami period

was approximately 16 s, such that each phase bin represents approximately 2 s of this

cycle. As the ADV and plant were not colocated, a lag existed between the recording

of the flow field and the plant's response to that field. Firstly, Taylor's "frozen

turbulence" hypothesis was invoked between the probe and the plant. Secondly, the

lag was taken as 1.7 s, equal to the separation between the probe and the tips of the

blades in their mean position (14 cm) divided by U for Run F6 (8.3 cms-l). When

synchronizing the video footage and ADV data, this lag was subtracted from the time

of the velocity record observed in each frame. The uncertainty in the lag, due to the

horizontal excursion of the blade tips, was estimated at 0.5 s, which corresponds to

one-quarter of a phase bin.

The coupled oscillation of the vertical velocity profile, [U](z) (where the square

brackets are used to denote the intra-bin mean), and the plant height, [h], is demon-

strated in Figure 5-3. In Figure 5-3(a), the inverse correlation between streamwise

velocity and plant height is shown. The plant took time to respond to rapidly chang-

ing flow, such that [h] lags slightly behind [Uh]. Allowing for a plant response time of

approximately 1 s yields the maximum correlation between [h] and [U,]. As shown in

Figure 5-3(b), there is a clear, wave-like oscillation of the velocity profile. However,

this oscillation does not extend throughout the shear layer, rather it is confined to a

region (5 < z < 24 cm) around the top of the canopy. The excursion of this oscillation
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(a) The oscillation of bin-averaged values of the plant height and stream-
wise velocity during the monami cycle. The labels indicate the height of
each streamwise velocity record.

[U] (cm/s)
(b) The oscillation of the velocity profile, which is significant only in a
confined region around the top of the canopy. The legend denotes the
phase bin of each profile.

Figure 5-3: The oscillation of the velocity profile and plant height during the monami
cycle.



i: pro1o(Ilced: the velocity at - = 9.4 cm (the mininmull plant height) varies :.)- a.

factor of tllree, through the cycle ([[l]mi-, = 2.4 cms- 1. [U]mra.X = 7.0 c'ms- 1). Bcca.use

Iplant helighllt a.d flow velocity are inversely correlated, however, the variai)ilitv ill the

ilstantanelous velocity at the toI) of the plant is much lower ([U,] = 5.2 - 7.0 cins- ).

The fluctuation of the two-dimensional flow field ([U], [T]) as a. function of phase

bin is highliglted in Figures 5-4(a) and 5-4(b). The former is in the reference friame

of U and highlights the vortical motion in the flow, whose significance is limited to

the( same(' r(-g:io) as the oscillation of the velocity I)rofile. I the latt(er. the ( melIan

velocity profile (U( z), I-(z)) has l)eel sullbtracted to highlight (leviatiolls frolll local

mean velocities. I both figures, the vertical velocity has been exaggerated by a. factor

of 10 (since AU >> "u.rr,,,). The bin-averaged Reynolds stress is plotted ill false color

and shows the cvycle of a strong sweep at the front. of the vortex followed by a. weak

ejec(tion a.t tlhe rear of the vortex. That. is, the most active period(s of t.raLnst)ort occur

whenl the plant. is at its iiIull1m a(nd miaximium h(?ights (biins 4 andl 8, respectively).

To predict vortex penetration into a flexible canopy, a. detailecl understanding of

the dissipative effect of a. waving canopy is essential. To that end, a numerical ilodel

that. couples the flow and plant motion (such as in Ikeda et al. [30]) is required. In. the

derivation of thc stability parameter (2) for rigid canopies. it was assunlled that the

area. exi)osed(? t(o vertical flow was negligible with respIect t that exposed( to lioriz(ntal

flow (refer to (2.3)). Ill waviing canoI)ies, this assumlI)tion is invalil. such. that Q (l)does

not take the constant value seen in rigid canopies (8.7). irrespective of how the calloy

height is defined. ()f specific interest, therefore, is the distrilbution of horizontal andl

vertical. fontal area, over the mona.mi ccle. Furthermore. a. greater understaldillg

of the 1:u1lk drag c(oefficielt of clano()i('s t hat oscillate synchronously with t f is

m'uich nle-ede(d.

5.4 Conclusion

The vortex st:leet in. a. vegetated sheal laver crcates a. pronloulll(ed oscillation i the

vel-city profile, -lhicll in turn drives the coherent wav-inc of flexibl) ca.lnop)ies. Rela.tive
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(a) The structure of the flow field in the reference frame of U, the mean of
the maximum and minimum shear layer velocities. The vortical motion,
whose significance is limited to the same region as the velocity oscillation,
is clearly demonstrated.

6 7 8 1 2
Phase bin

3 4 5

(b) Deviation of the bin-averaged flow field from the temporally-averaged
mean profiles (U(z), W(z)). The strong sweep at the front of the vortex
is followed by a weak ejection at the rear.

Figure 5-4: The fluctuation of the two-dimensional flow field as a function of phase
bin. The bin-averaged Reynolds stress is plotted in false color.
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to flows over rigid vegetation, this oscillation in canopy geometry has the effect of

decreasing the turbulent stress at the top of the obstruction. To fully describe vortex

penetration into a waving canopy, a model that couples the motion of the fluid and the

canopy is required. As a preliminary description of this codependence, each vortex

is shown to consist of a strong sweep at its front (during which the canopy is most

deflected), followed by a weak ejection at its rear (when the canopy height is at a

maximum).
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Appendix A

Profiles of mean velocity and

Reynolds stress

This appendix presents the vertical profiles of mean velocity and Reynolds stress for

all runs with both rigid (Chapter 2) and flexible (Chapter 5) canopies. The velocity

profiles (Figures A-1 and A-3) are nondimensionalized by subtracting the velocity at

the bottom of the shear layer (U1 ) and normalizing by the total shear (AU). Likewise,

the Reynolds stress profiles (Figures A-2 and A-4) are normalized by the square of

the total shear. Absolute values of U and u'w' can be extracted using the values of

AU and U1 tabulated in Table A.1. In all figures, the horizontal bars represent the

observed lateral variability.

Table A.1: Values of AU and U1 for all runs with rigid (A-K) and flexible (F1-F6)
canopies.

Run AU (cms- 1 ) U (cms-l) Run AU (cms-1 ) U1 (cms- 1)
A 3.2 1.3 J 3.9 0.77
B 1.3 0.50 K 1.7 0.27
C 4.9 1.7
D 3.5 1.1 F1 2.9 0.31
E 9.5 3.5 F2 4.6 0.55
F 6.0 2.4 F3 6.2 0.72
G 3.3 1.1 F4 7.8 0.95
H 11 2.7 F5 9.7 1.4
I 7.4 1.7 F6 12 2.2
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Figure A-1: Vertical profiles of mean velocity with rigid canopies.
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Figure A-3: Vertical profiles of mean velocity with flexible canopies.
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Figure A-4: Vertical profiles of Reynolds stress with flexible canopies.
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Appendix B

The drag coefficient of submerged

arrays as compared to individual

cylinders

Figure B-1 compares the form of r7(z) for the model arrays (Figure 2-7) with those for

(i) a single cylinder with an aspect ratio similar to that used in this study (h/d = 19,

Fox and West [20]), (ii) a single cylinder with a much smaller aspect ratio (h/d = 2,

Sin and So [60]) and (iii) the downstream cylinder of a pair in tandem (h/d = 8, Luo

et al. [40]). The parameter r (refer to (2.17)) describes the effects of the free end

on the drag coefficient of submerged cylinders. Specifically, r represents the ratio of

the observed drag coefficient to that of an infinitely long single cylinder (for (i) and

(ii)) or emergent array (for (iii) and the model arrays) at the same Reynolds number

(Red). It is important to note that the inter-cylinder spacing used by Luo et al. [40]

is similar to that of the model arrays of this study. In an array, a = d/ (AS)2 , where

AS is the mean spacing between cylinders. Therefore, a spacing of 5d (as used by the

authors) corresponds to ad = 0.04, which lies within the range of this study. Using

this representative value of ad, and given Red, CDA for the downstream cylinder was

estimated from (2.15). As shown in Figure B-l, none of the three r7 profiles from the

literature closely resemble that of the experimental arrays. However, there is moderate

agreement with the downstream cylinder of a pair in tandem; indeed, as shown, we
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Figure B-1: The comparison between the vertical profile of 'r in the experimental
arrays and those for (i) a single cylinder with hid = 19 (Fox and West [20]), (ii) a
single cylinder with hid = 2 (Sin and So [60]) and (iii) the downstream cylinder of a
pair in tandem with AS = 5d (Luo et al. [40]).

expect greater drag suppression on a cylinder that is immediately downstream of

its nearest neighbor (unlike in a random array). As in the model arrays, rl for the

paired cylinder increases away from the bed, taking values greater than unity above

z/h _ 0.7. However, a dramatic reduction in near the free end is not observed, this

phenomenon occurring only for the cylinder with a low aspect ratio. That the array,

but not the paired cylinder, exhibits strong drag suppression near the free end is

indicative of the complexity of the interaction between free-end effects and the wakes

of upstream cylinders.
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Appendix C

Extension of hydrodynamic model

outside the experimental range

In the numerical hydrodynamic model presented in §2.5, a key modeling equation is

the dependence of the normalized shear (AU/Uh) on the dimensionless plant density

(ad). Although the relationship between these two parameters in this study is best

described by (2.11), this expression is expected to be invalid outside the experimental

range of 0.016 < ad < 0.081. Specifically, it is expected that AU/Uh 0 as ad -- 0,

for as long as an inflectional velocity profile is maintained. This is confirmed through

the analysis of data from the comparatively sparse canopies of Dunn et al. [13] and

Poggi et al. [51], as shown in Figure C-1. This figure includes data for vegetated

shear layers that do not penetrate to the bed (unbounded) as well as for those that

do (bounded). In all cases, however, the canopy generates an inflectional velocity

profile. Figure C-1 demonstrates the power relationship that exists between AU/Uh

and ad.
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Figure C-1: The power dependence of AU/Uh on ad. Vertical bars represent the
uncertainty in AU/Uh, due to either lateral variability or the extrapolation of velocity
profiles in the literature (Dunn et al. [13], Poggi et al. [51]).
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Appendix D

Behavior of the Strouhal number

along the canopy

As discussed in §3.3, the nominal Strouhal number of the vortices (St = fO/U)

in a fully-developed vegetated shear layer varies slightly depending on whether the

canopy is rigid (St - 0.037) or flexible (St - 0.032). Furthermore, neither the vortex

frequency (f,) nor the Strouhal number remain constant as the shear layer develops

along the canopy. This is shown in Figure D-1, which charts St and f along the

flexible canopy described in §5.1 (with H = 44 cm and Q = 13800 cm 3 s-l). At

each location, the mean passage frequency of the vortices was determined through

observation of the monami. The vortex frequency decreases along the canopy as

the structures grow through either entrainment of the surrounding fluid or merging.

Although vortex growth drives shear layer growth (i.e. an increase in 0), the Strouhal

number also decreases along the canopy. This is consistent with the evolution of

coherent structures in a shallow-water shear layer (Brian White, MIT, pers. comm.,

2004).
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Appendix E

Concentration profiles

This appendix presents the vertical profiles of concentration at each measurement

location for each run (Figures E-1-E-6). To allow comparison of the data across all

flow scenarios, the concentration is normalized by the ratio of the mass injection rate

(rhi) to the flowrate (Q). As Pe > 1, hmi is equal to the total streamwise advective

mass flux at each location (= w foH' UCdz), such that

C*=Qo Udz (E. 1)
mi f fH UCdz

The biggest source of uncertainty in the profiles of C*(z) arises from my estimation

of steady-state conditions from a finite number of snapshots of the plume over a finite

number of vortex cycles. While this uncertainty is intangible, it is worth noting that

each piece of digital footage taken in these experiments captured an estimated 12-15

vortex cycles.
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Figure E-1: Vertical profiles of C* at measurement location 1.
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Figure E-2: Vertical profiles of C* at measurement location 2.
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Figure E-3: Vertical profiles of C* at measurement location 3.
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Figure E-4: Vertical profiles of C* at measurement location 4.
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Figure E-5: Vertical profiles of C* at measurement location 5.
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Figure E-6: Vertical profiles of C* at measurement location 6.
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