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Abstract

We study the tautological classes of the Kontsevich-Manin moduli spaces of genus 0 stable
maps to SL flag varieties. We prove that the rational cohomology and rational Chow rings
of these spaces are isomorphic and that they are generated by tautological classes.

In the case when the target is a projective space, we present a second proof of this result
in the spirit of Gromov-Witten theory by making use of a suitable torus action. In addition,
we explicitly describe a Bialynicki-Birula stratification of the Kontsevich-Manin spaces in
terms of the Gathmann-Li spaces of relative stable morphisms.

Finally, we analyze the small codimension classes on the space of maps to arbitrary flag
varieties. We obtain an explicit description of the Picard groups. We formulate a conjecture
about relations between the tautological generators, which we check in low codimension.
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Chapter 1

Introduction

The Kontsevich-Manin moduli stacks of stable maps arise as generalizations of the classical
Deligne-Mumford spaces of stable curves Mg,n. Their intersection theory has been inten-
sively studied in the last decade in relation to enumerative geometry and string theory.

There has been a lot of interest in understanding the cohomology or the Chow groups of
the Deligne-Mumford spaces, and partial results are known in low codimension or low genus.
Higher genera are particularly difficult since, beginning in genus 1, non algebraic classes do
exist. There is a particular collection of cycles, called "tautological," which arise from the
built-in inductive structure of the Deligne-Mumford spaces. Nonetheless, the tautological
classes do not generate the algebraic cohomology; explicit constructions are known starting
in genus g = 2 [33].

Very little is known even about the tautological rings, but there is a conjectural descrip-
tion proposed by Faber [21]. The original conjectures concern the open moduli space Mg of
unmarked smooth curves of genus g > 1, giving generators and relations for the tautological
rings. There are partial extensions of the Faber conjectures for the compactified moduli
spaces Mg,n; these are explained in [53].

By contrast, the moduli space of genus 0 marked curves is well understood. Keel proved
that the cohomology is tautological, in fact, that it is additively generated by the boundary
classes of curves with fixed dual graph [38]. An easy Hodge theoretic proof of Keel's result
is outlined in [28]. All relations between the tautological generators have been found and
interpreted in terms of cross ratio. This result has implications, for instance, in the study
of the tree-level cohomological field theories [47].

As the moduli spaces of stable curves are examples of Kontsevich-Manin spaces, it
was suggested in [53] that it may be useful to push the investigation of the tautological
rings in the context of Gromov-Witten theory. A second reason for pursuing such a study
comes from the fact that some understanding of the tautological rings of Mg,n has been
obtained by considering tautological cohomology classes on the Kontsevich-Manin spaces.
The Getzler-Ionel vanishing [37], and the socle proof for the tautological rings [34] are such
examples.

In this thesis, we prove a generalization of Keel's theorem to the moduli space of genus
zero stable morphisms to flag varieties X. By analogy with the case of stable curves,
there are natural cohomology classes defined on the moduli spaces of stable maps; their
intersection numbers are the Gromov-Witten invariants of X. We show that these natural
classes generate the rational cohomology. This implies that the Gromov-Witten invariants
essentially capture the entire intersection theory of the Kontsevich-Manin moduli spaces.
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On a rather negative note, an informal restatement of our result is that no new Gromov-
Witten invariants can be defined.

Note that several types of Gromov-Witten invariants have already been studied: descen-
dant invariants, ancestor invariants, invariants twisted by arbitrary characteristic classes.
Explicit reconstruction results of these invariants are in fact available [13], [43], [5], [42].

We have arrived at the third reason for studying the tautological rings of the stable
map spaces. Relations between the tautological classes can be used in the computation
of certain intersection numbers. We conjecture that "non-trivial" relations between the
genus 0 tautological classes are essentially consequences of Keel's relations. We discuss this
speculation in the fourth chapter for the classes of low codimension. Our point of view fits
naturally with the aforementioned reconstruction theorems.

We present two proofs of our main result in chapters 2 and 3. One of these proofs
allows for partial analogues of Faber conjectures for the relevant open moduli spaces. The
other one only works for P, but has the advantage of giving an explicit description of the
torus stratification of the Kontsevich-Manin spaces in terms of the moduli spaces of relative
stable morphisms as defined by Gathmann and Li.

In the remainder of this chapter, we introduce the relevant definitions, state the results,
and briefly mention the ideas involved in their proofs.

1.1 The tautological systems

To set the stage, we let X be a convex complex projective manifold, typically, a flag variety.
The moduli stacks Mo,s(X, P) parametrize S-pointed genus zero stable maps to X in the
homology class /3 E H2(X,Z). We use the notation Mo,n(X,/3) when the marking set is
S = 1,2,...,n}.

Among the natural cohomology classes, we single out the boundary classes of maps
whose domain curve has a fixed dual graph. We may impose additional constraints making
the marked points or nodes map to certain Schubert subvarieties of X, and requiring that
the image of the map intersect various Schubert subvarieties. These classes are shown
diagrammatically in figure 1.1.

Figure 1-1: The tautological generators [r, t, f].

The geometric Schubert-type classes we just described are typical elements of the tau-
tological rings which we now define. To this end, we observe that the stable map spaces are
connected by a complicated system of natural morphisms, which we enumerate below:

* forgetful morphisms: 7r : Mo,s(X, 3) - MO,T(X, 3) defined whenever T C S;

10
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· gluing morphisms which produce maps with nodal domains,

gl : Mo,s,U{.} (X, 3)XxMo,{.}us 2 (X, 32) x x Mo,us 1 2 (X, 3 + P2);

* evaluation morphisms to the target space, evi : Mo,s(X,/3) --+ X for all i E S.

The classes pulled back from the target serve as the seed data for the tautological
systems. We get more classes making use of the forgetful and gluing morphisms. It is then
necessary to consider all the moduli spaces Mo,n(X, ) together.

Definition 1.1.1. The genus 0 tautological rings R*(Mo,n(X, /i)) are the smallest system
of subrings of the rational cohomology H*(Mo,n(X, )) such that:

* The system is closed under pushforwards by the gluing and forgetful morphisms.

* The evaluation classes evea where a E H*(X) are in the system.

We refer the reader to the appendix for a slightly different (though, in the relevant cases,
entirely equivalent) definition of the tautological systems in higher genus and non-convex
targets. In this thesis, the higher genus systems will be of secondary interest.

Remark 1.1.1. (i) Most stacks considered in this thesis will be smooth and of Deligne
Mumford type over C. This allows us to speak about their Chow rings as defined in
[59] and of their cohomology as defined in [2]. Here, rational coefficients will always
be understood.

(ii) Additionally, one can consider the rational cohomology or rational Chow rings of the
coarse moduli schemes. Pullback and pushforward by p: Mo,n(X, P) --* Mo,(X, 3)
induce inverse isomorphisms in cohomology [59], [2]. It is useful to observe that a
generic stable map has no automorphisms. This follows from the arguments of lemma
2.1.1 in [51]. There are two exceptions when X = P 1 or X = P2, n = 0, and the
degree is 2. We will ignore these cases here. The main theorem stated below still
holds in these cases by virtue of remark 2.5 in [3].

(iii) It is customary to include the ~p classes in the definition of the tautological rings of the
Deligne Mumford spaces. However, it is not necessary to include the p classes in the
genus 0 tautological system defined above. Indeed, lemma 2.2.2 in [51] expresses the
ip's in terms of evaluation classes, boundaries and the ti classes below. An alternative
explanation can be found in the introduction of [24]. Here, 'Pi = cl(£i), where the
fiber of the line bundle Li -+ Mo,n(X, 3) over a stable map with domain C and
markings 1l,... xn, is the cotangent line T iC.

We will consider a certain collection of tautological classes [r, , f] indexed by weighted
graphs.

Definition 1.1.2. A weighted graph (r, tv, f) consists of:

* a stable modular graph r of total degree 3, genus 0, and with n labeled legs. This
graph determines the boundary type.

* the weights are an assignment of cohomology classes on X to the half-edges and legs
of r keeping track of the incidence conditions with certain cycles in X. The weight of
an edge is then defined as the product of weights of its half-edges.

11



* the "forgetting" data f is a subset of the legs of r which remembers if the incidence
points with the fixed cycles determined by the weights come from markings of the
domain or not.

The tautological cohomology class [r, t, f] is a class on the moduli space of maps of
degree 3 and markings in Legs(r) \ f. It is defined by equations (A.1), (A.3) and (A.4)
in the appendix using the forgetful pushforward r induced by f, and the gluing map r
induced by the boundary graph r:

[r,] = 7r*r ( eI ( Uo evf o(f) C[ v(x,,av)])) (1.1)
v 1ertex flags f adjacent to v

It is a consequence of the tautological relations discussed below that the generators
[r, t, f] depend on the total weight of the legs and edges, not on the weights of the half-
edges. For instance, the generator below is dependent on the product cohomology class
v(e) = ([1) t(12) = Cl a2.

l) = al (12) =

The classes corresponding to the graphs below are (via gluing) the building blocks of our
system of tautological generators. They will appear frequently in our computations. Here r
is a one vertex graph with n +p legs such that p of them, carrying weights al, a2,..., cap E
H*(X), form the forgetting data f; there are no other non-trivial weights.

1 n n+l n+p

Figure 1-2: The graph corresponding to the K classes.

We write nC (al,... , ap) for the corresponding class:

n(al , .. .,ap) i= ,(evn+lal ... eVnc+pp n [ o,(X, P)]). (1.2)

1.2 Main result

As already announced above, the main result of this thesis is the following extension of
Keel's theorem from the case of rational marked curves to the case of rational stable maps
to SL flag varieties.

Theorem 1. Let X be any SL flag variety over the complex numbers. Then all rational
cohomology classes on Mo,n(X,l ) are tautological.

Corollary 1.2.1. The classes [r, t, f] additively generate the cohomology of the spaces
Mo,n(X )-

12
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Our proof of theorem 1 is given in chapter 2. As in [28], it relies on the Deligne
spectral sequence. Most commonly, this spectral sequence is used to define the mixed Hodge
structure on the cohomology of smooth open varieties. We will use the reverse procedure:
we will identify the lowest weight Hodge piece in the cohomology of the open stratum and
use it to derive information about the cohomology of the compactified moduli spaces. We
do need to rely on Hodge theoretic considerations in order to deal with subtleties coming
from the boundary cycles. Our argument is inductive, making use of the fact that the
open stratum is compactified by adding normal crossing divisors which are essentially lower
dimensional moduli spaces of stable maps.

Two observations are necessary in order to identify the relevant piece of the Hodge
structure. First, the morphism spaces are hard to understand cohomologically. For this
reason, we will appeal, as in [6], to the different compactification provided by the Hyper-
Quot scheme. It turns out that replacing morphisms by quotient sheaves is more suited for
understanding the cohomology of the relevant moduli spaces. Secondly, we use a technique
which goes back to Atiyah and Bott: when the number of markings is small, we express the
open stratum as a global quotient and carry out the computation in equivariant cohomology.
A similar program was partially pursued in [52] for unpointed maps to PIr. The general case
of a flag variety is more involved, essentially because the morphism spaces to flag varieties
are more difficult to describe. When X is a Grassmannian, we rely on Stromme's description
of the Quot scheme as the base of a principal bundle sitting in an affine space [57]. Combined
with the Atiyah-Bott technique we obtain enough information about the Hodge structure
of the open stratum to prove our main result. When X is any SL flag variety, the proof
above does not immediately carry over. We will make use of the already proved results
for Grassmannians combined with a general statement about the cohomology of the Hyper-
Quot scheme HQuot, which we obtain using a well known trick due to Ellingsrud-Stromme-
Beauville [20]. This will turn out to be sufficient to finish the proof.

Our result holds either in cohomology or in the Chow groups. We will write most of the
arguments in cohomology. Moreover, we will show in chapter 3 that as a consequence of
localization, rational cohomology and rational Chow groups are isomorphic. For the reader
interested in the Chow groups of the open strata, we indicate the necessary changes in our
proofs at the appropriate places. The only part of the argument which we do not carry out
in the Chow groups is the analysis of the boundary classes. It is conceivable that one can
write down an entirely algebraic proof of our main result, which would then work over any
field, possibly exploiting the torus action.

In addition, when X = PT, a rewriting of the above argument gives a better understand-
ing of the Chow groups of the open stratum. Just as in Pandharipande's result, we observe
that the final result is degree independent. We claim no originality for the ideas used to
prove the result stated below. We will briefly review the argument in chapter 2, simply be-
cause it agrees with the philosophy of Faber's conjectures and because it allows for a proof
of the first item in theorem 3. For now, we would like to remark that our computation is
indeed consistent with the recent announcement [31]. We believe that the statement below
should hold for a larger class of varieties (such as toric varieties and flag manifolds).

Proposition 1.2.1. The Chow rings of Mo,n(pr, d) can be described explicitly in terms of
the tautological classes in definition 1.1.1. They Chow rings behave like the cohomology of
certain degree independent projective manifolds of lower dimension.

13



1.3 Related work

All previous work on the topology of the stable map spaces considered the case when the
target is X = Pr. For general flags a generation result for the cohomology, although not
surprising, is only available via the results presented in this thesis.

The computation of the Betti numbers, controlling the size of the cohomology, has been
achieved only recently by Getzler and Pandharipande [31] by a clever summation trick. The
answer is highly recursive, so extracting the individual numbers is slightly involved. One
should be able to extend the formal part of their computation to arbitrary flags. Our main
theorem should be viewed as complementary to these results, as it provides generators for
the cohomology.

For projective spaces and in complex codimension 1, earlier work of Pandharipande [51]
implies the statement of the main theorem. We will repeatedly use, and reprove, some of
his results in this thesis. Of course, the degree 0 case had been solved by Keel, while the
degree 1 case follows from work of Fulton and MacPherson. Behrend and O'Halloran [3]
have a method of computing the cohomology ring in degrees 2 and 3 for maps to Pr without
markings, essentially using localization techniques - their result implies ours in degrees 2
and 3. These authors also observe that the cohomology stabilizes as r -, oo, and propose
a study of the stabilized rings. After we proved our results, Mustata and Mustata found
a presentation of the cohomology ring for one marking and arbitrary degree maps to Pr
[50]. Their result implies ours in the cases where both apply. However, it is not entirely
clear how to extend their approach to arbitrary flags or/and no markings. We also believe
our approach is more natural for the study of the tautological classes in the context of
Gromov-Witten theory, since it fits in better with the known results for Mo,n.

We should mention that the topologists have a good understanding of the spaces of
holomorphic maps to flag varieties Mapp (P1,X); work in this direction was initiated by
Segal. However, our results are of entirely different nature - by contrast with the spaces
studied in topology, the stable map spaces have only algebraic cohomology.

1.4 Localization

As it often happens, one attempts to apply localization techniques to understand the classes
on the Kontsevich-Manin moduli spaces. Such an approach is tempting in our case as
well, especially because the fixed point loci are known to be products of moduli spaces of
rational marked curves whose cohomology groups are indeed tautological. However, the
author could not obtain a full proof of the above theorem following this line of reasoning
unless the target is Pr, as we will explain shortly. Nonetheless, Rahul Pandharipande
argued that the localization theorem in [19] can be used to show that the equivariant Chow
rings of MO,n(P', d) are tautological after inverting the torus characters. However, such an
argument is not entirely straightforward and does not prove our main theorem.

Localization is a popular theme in Gromov-Witten theory, used extensively since the
early papers on the subject. In chapter 3 we show that this powerful technique can be used
to give a second proof of our main theorem for maps to Pr. Our approach is novel in two
ways. First, we make use of a non-generic torus action on Pr which fixes one point p and a
hyperplane H:

t.- [zo: Z... zr] = [zo: t:...: tzr].
Secondly, we completely determine the Bialynicki-Birula plus decomposition of the stack

14
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of stable maps which describes the flow of maps under this action. In addition, we show
that the decomposition is filterable. As a consequence, we build up the stack of stable
maps by adding cells in a well determined order. This is the algebraic analogue of the
Morse stratification, whose cells can be ordered by the levels of the critical sets. A filterable
decomposition also gives a way of computing the Poincare polynomials of the moduli spaces
of stable maps from those of the fixed loci. This method works quite well in low codimension,
as we will demonstrate in chapter 4.

Note that the Bialynicki-Birula decomposition has not been established for general
smooth Deligne-Mumford stacks with a torus action. Our approach for constructing the
plus cells applies whenever we have an equivariant etale affine atlas. In the present case, we
succeed to explicitly write it down in the context of Gathmann's stacks [25]. These stacks
compactify the locus of marked maps with contact orders al,..., cn with the hyperplane
H. They can be obtained as blowdowns of more general spaces of relative stable morphisms
defined by Jun Li.

Decorated graphs r will be used to bookkeep the fixed loci, henceforth denoted Fr.
Their vertices correspond to components or points of the domain mapped entirely to p
or H, and carry numbered legs for each of the markings, and degree labels. The edges,
also decorated by degrees, correspond to the remaining components. We repackage the
datum of a decorated graph r into an explicit fibered product Yr of Kontsevich-Manin
and Gathmann-Li spaces in equation (3.11). We summarize the properties of the plus
decomposition:

Theorem 2. The stack Mo,n(p, d) can be decomposed into disjoint locally closed substacks
Frt (the "plus" cells of maps "flowing" into Fr) such that:

(1) The fixed loci Fr are substacks of Fr . There are projection morphisms Ft -- .Fr. On
the level of coarse moduli schemes, we obtain the plus Bialynicki-Birula decomposition
of the coarse moduli scheme of Mo,n(PT , d).

(2) The decomposition is filterable. That is, there is a partial ordering of the graphs r
such that

or CU F1
r'<r

(3) The closures of rt+ are images of the fibered products Yr of Kontsevich-Manin and
Gathmann-Li spaces under the tautological morphisms.

(4) The codimension of tr+ can be explicitly computed from the graph r. If u is the number
of H-labeled vertices of degree 0, with no legs and s is the number of H-labeled vertices
which have positive degree or total valency at least 3, then the codimension is d +s-u.

(5) The rational cohomology and rational Chow groups of M 0,n(1Pr, d) are isomorphic.

(6) (There exists a collection of substacks which span the rational Chow groups of Fr
and) there exist closed substacks ,+ supported in .Tr (compactifying the locus of maps
flowing into ), which span the rational Chow groups of Mo,n(lP, d). The stacks +
are images of fibered products of Gathmann-Li spaces and tautological substacks of the
Kontsevich-Manin spaces to H.

(7) The cycles constructed in (6) are tautological.

15



1.5 Examples

In the case of general SL flags, we carefully analyze the low codimension strata by the
techniques afforded by theorems 1 and 2. First, we extend Pandharipande's computation
[51] to determine the divisors on the stable map spaces to general flags. We prove:

Proposition 1.5.1. Let X be any SL flag whose Betti numbers in dimension 2 and 4 are
h2 and h4. Let

V ® Ox o 1 - * ... Ql -- 0
be the tautological quotients and let 3 be a class with di = cl(Qi) > 0. The dimension of
the rational Picard group of Mo,n(X, /) is

[2n-1(d + 1) ...(dl+)+ 2]-1-(2) + h 4-( 2)
The generators of the Picard group are

* the boundary divisors,

* the classes Ic(a) where a is either cl(Qi)2 for 1 < i < I or the nonzero classes c2 (/Cj)
for O < j < 1. Here j is the kernel of Qj -, Qj +l.

* when n = 1 or n = 2, we add any one of the evaluation classes ev*cl(Qj).

The class

(c2 ))+ ( dil + di 1) (C(Q)2)

is supported on the boundary. All other relations between the boundary divisors come from
Mo,n by pullback.

Unfortunately, Pandharipande's argument does not carry over because, as already ob-
served above, the space of morphisms to arbitrary flags is harder to understand than the
morphism spaces to IPr. Instead, we use our theorem 1 to find generators. Localization
is used to determine the dimension of the Picard group. This requires a computation of
the symmetric group invariants on the cohomology of the moduli space of rational marked
curves similar to Getzler's [28]. To reconcile the count of generators with the dimension,
relations between the K classes are exhibited. The precise statements will be given at the
appropriate places.

1.6 Tautological relations

We now indicate how relations between the tautological classes are obtained via a very
simple algorithmic procedure. We start by succinctly reviewing what is known in degree 0 by
work of Keel. Relations between the additive generators (r)] of H*(Mo,,) are obtained
by cross ratio. For example, in codimension 1, we fix markings i, j, k, l and distribute
them on the branches of a nodal stable curve in two ways: (ij)(kl) and (ik)(jl). The
remaining markings are distributed arbitrarily on the branches. This yields two sums of
boundary divisors which are linearly equivalent. We pictorially show this relation below.
Moreover, it is easy to see how this generalizes to arbitrary codimension strata, by adding

16
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Figure 1-3: Keel's relations on Mo,n.

more branches. It is shown in [47] that these are all possible relations between the additive
generators [M(r)].

We propose a description of the additive structure of the tautological systems of the
stable map spaces. The only difference from the case studied by Keel is the presence of
the incidence conditions. This introduces additional complications in our analysis, mostly
coming from degree 0, evaluation at divisor classes, and from relations in the cohomology
of the target.

We regard the tautological systems as a sequence of abelian groups connected by forgetful
morphisms:

.. . R*(Mo,n(X ,3)) 7* R*(Mo,n (X, #)) --
The additive generators of these groups are symbols [r, to, f] indexed by weighted graphs
such that [r, to, f] lives on the moduli space of maps to X of degree the total degree of r
and whose markings are Legs (r) \ f. We require:

* (automorphisms) The class [r, t, f] only depends on the isomorphism class of the
triple [r, to, fi .

The forgetting maps r, are defined as follows:

* (coherence) Let r be a stable graph with cohomology weights to and forgetting data
f, and let [ f be a leg of r inducing a forgetful morphism r. Let f = f U ([) be new
forgetting data for r. Then:

ir, tv, f]= [roi].
Note that for now we do not worry about forgetting a destabilizing marking, we will
take care of this issue shortly. In the figure below, the legs which are forgotten are
indicated by dashed lines.

In addition, we have the following relations between our generators:

* (no incidences) Assume to(1) = 1 H°(X) for a leg of r which is part of the
forgetting data f, and which does not destabilize r by forgetting. Then:

[r, to, f = 0.

* (divisor) Let [ be a leg attached to a vertex of degree , which is part of the forgetting
data f. Assume t([) = a is a divisor with /3 a O. We let F be the graph obtained by
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Figure 1-4: The forgetting maps

forgetting the leg [, with weights fI = ro \ {}, and forgetting data f = f \ {[. Then:

I, m, f] (-0) [F, o, f]

· (forgetting destabilizing legs) Assume t (l) = 1 for a leg which is part of the forgetting
data f and which does destabilize r after forgetting. Let r be the graph obtained by
forgetting I and stabilizing: the graph F has one less vertex, and one less leg. Let is
be the induced weights (the weights of the new flags are defined by multiplying the
weights of the collapsed flags) and let f be forgetting data. Then:

[r,t,f]= [r]

1 l

Figure 1-5: Forgetting destabilizing legs

Figure 1-5: Forgetting destabilizing legs

· (mapping to a "point") Let r = (1rl, 7r2): X --+ Y1 x Y2 be the embedding of X into a
product of two flag varieties which is obtained by remembering complementary steps
in the flags of X (for example Y2 can be a point). Assume r contains two legs [1 and
[2 adjacent to a vertex whose degree #o E 7r2H*(Y2). Let tol and to2 be weights of r
which differ only in the assignment of the cohomology class 7ra, a E H*(Y 1) to the
legs 1 and 2 respectively, otherwise being identical. Then:

[r, to1,fl = [r, Wt2, f].

It is a consequence of this relation and gluing that for each degree 0 vertex in r,
the corresponding generator only depends on the product of weights incident to .
For instance, in the figure below, the corresponding generator depends on the product
wl · 2a 3.

· (pullbacks from X) Let to, ol, to 2 be weights of the graph r which agree everywhere

18
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except for a leg [ for which we have:

tM() = tD (1) + t2().

Then:
r, to, f] = [r, l, f] + [r, 2 , f

In addition, Keel's theorem gives another way of obtaining non-trivial relations. We first
fix a Keel relation on Mo0 ,, pull it back to the space of stable maps Mo,n(X, 3), intersect
it with a monomial in evaluation classes and use the forgetful pushforward. We chose to
split this procedure in several steps: at first we ignore the evaluation monomials, which we
can add in later by gluing degree 0 tripods and forgetting (see section 2.3.4). For the same
reason, we only need codimension 1 Keel relations:

* (Keel relations/WDVV) The pullback of a Keel relation under the stabilization map
st : Mo,n(X, 3) -+ Mo,,n is a relation between the classes [, 0, 0]. Here, we agree that
for each graph stable graph r of degree 0, we have

st* m(r)] = i [ 0, o]

the sum being taken over all possible ways of decorating r by degrees summing up to
3.

k I j I

Figure 1-6: The pullbacks of Keel relations.

We can get even more relations by gluing. To this end, we define:

* (gluing generators) Let (rl, r, fl) and (r2, t2, f2) be weighted graphs and let 1 E
Legs(rl) \ f and 2 E Legs(r 2 ) \ f2 be two unforgotten legs. The glued graph:

(rI, t1, fi) * (r2, 2, f2)
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is obtained by joining rl and 2 along an edge whose half edges are I1 and 12. The
weights and forgetting data are obtained by collecting the weights and forgetting data
of rl and rF2.

[1
' : '

. - B

2

Figure 1-7: Gluing graphs.

We can now define gluing of relations as follows:

(gluing relations) Let (i, rti, fi) be data indexing generators on the same moduli space;
that is, the total degree of ri is independent of i, and the marking sets Legs (ri) \ fi
are independent of i. Let [ E Legs (ri) \ fi. Let (r, to, f) be another weighted graph
and let E Legs (r) \ f. Assume we have a relation:

E [ri , fi, = 0.

Then, a new relation is obtained by gluing along [ and [:

Z r, , f] * [ trifi] = o.
i

We can now define the tautological relations.

Definition 1.6.1. The tautological relations are the smallest system of relations between
the generators [, to, f] with the following properties:

* All relations listed above are already in the system.

* The system of relations is closed under the morphisms 7r,.

* The system of relations is closed under gluing.

We believe the tautological systems are generally insensitive to the geometry of the
target space. More formally, we pose the following:

Question 1.6.1. Is it true that all relations between the additive generators [r, to, f] are
obtained from the tautological relations above?

It is remarkable that all relations we could find in the literature are of this nature [51],
[43], [5], [16], [14]. However, these relations are highly non-trivial since they are incarnations,
via pushforward, of relations on different moduli spaces and in higher codimension!!! We
have a similar universal way of producing relations involving the cotangent lines; these will
be briefly mentioned in the last chapter.
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We already made several checks of the above statement in low codimensions and low
degrees. We verified the cases when the target is X = PT , d = 1 and n arbitrary, d < 3 and
n < 1 in complex codimension up to 4, also X = P l, and all d < 5 and n < 1, codimension 2
for any flag X, n < 3. We conjecture the answer to question 1.6.1 is affirmative in general,
but we will investigate this question elsewhere.

We offer some more evidence in chapter 4 of this thesis:

Theorem 3. (1) All relations between the tautological generators of the open moduli
spaces Mo,n (Pr, d) are restrictions of the tautological relations.

(2) The statement in question 1.6.1 is true for all SL flags manifolds in codimension 1.
It also holds in codimension 2 for projective spaces.
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Chapter 2

Stable maps to flag varieties

In this chapter we indicate a Hodge theoretic proof of theorem 1. We organized this chapter
as follows. The following section contains generalities about the spaces of stable maps. We
collect there known results and we fix the notations. We discuss the stratification with
respect to the dual graphs and the associated Deligne spectral sequence. We will indicate
the proof of theorem 1 in the second section. An outline of the ideas involved in the proof
can be found in the introductory chapter. Finally, we will discuss in some detail the case of
maps to projective spaces, obtaining some improvements of earlier results of Pandharipande
[52]. As a consequence we obtain the first part of theorem 3.

2.1 Preliminaries

To begin, we let X = G/P be a projective algebraic homogeneous space, where G is a
semisimple algebraic group and P is a parabolic subgroup. We also fix E H2(X,Z) a
homology class.

We let Mo,n(X, /) be the coarse moduli scheme of n pointed stable maps to X in the
class . A construction of the moduli scheme in algebraic geometry was achieved by Fulton
and Pandharipande in [22]. It is shown there that the moduli scheme is a normal projective
variety with finite quotient singularities - an orbifold if we work in the analytic category.
In this section, we will discuss the coarse moduli schemes, but it should be clear how to
extend our conclusions to the moduli stacks.

2.1.1 The stratification by dual graphs.

To each stable map we associate the dual tree which carries degree labels and legs. We
agree that a vertex v has degree , and n(v) incident flags (i.e. edges and legs). The
moduli space Mo,n(X, /) is a union of strata consisting in maps with fixed dual graph r.
The closure M(F) of this stratum can be described as the image of a ramified covering of
degree Aut(r). The relevant morphism is:

Edge(r)

r:( Mon(,) (x /3v - Mo,n (X, /3).
vEV(r)

The left hand side is a fibered product along evaluation maps at the markings on the moduli
spaces determined by the edges of r.
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There is a dense open stratum of maps with irreducible domains. Its complement is a
union of divisors with normal crossings (up to a finite group action). However, this does
not mean that the components of the boundary divisors do not self-intersect; in fact they
always do for large degrees. We emphasize this point for later reference when we write down
the Deligne spectral sequence.

The boundary strata are indexed by stable trees with one edge and two vertices. Each
vertex has legs labeled by two sets A, B with A U B = {1, ... , n} and degrees 3 A, ,B adding
up to 3. Of course, stability means that if 3A = 0 then IAI > 2, and similarly if 3 B = 0
then IBI > 2. The corresponding boundary stratum:

: D(3A, 3 B, A, B) c- Mo,n(X, 3)

is the image of a gluing map:

C : M(A, B, PA, PB) = MO,AU{.}(X, /A)XXMO,(*}UB(X, 3B) -- M,n(X, ),

where * and * correspond to the double point of the domain curve. The following two cases
may occur:

* If the tree has no automorphisms, then is the normalization map of the boundary
stratum D(A,B, 3A, 3B). If both A,B 0 then C is an isomorphism. Observe
that if A = 0 (or if B = 0), then the corresponding divisor may self-intersect in a
codimension two stratum of maps with three components glued at two nodes, the
middle component containing all the marked points, the two external components
having the same degree.

* If A and B are both empty and A = B, then the corresponding dual tree has
a non-trivial automorphism. We need to factor out the Z/2Z symmetry to get the
normalization map of the corresponding boundary stratum.

2.1.2 The Deligne spectral sequence

In this subsection, we review the main ingredients of Deligne's spectral sequence. Then, we
apply the general theory to the case of the moduli space of stable maps.

To get started, we let Y be a smooth complex projective variety (or a projective orbifold
later), D be a divisor with normal crossings in Y; self-intersecting components are allowed.
Let U denote the complement of the divisor D in Y, and let j be the inclusion U ', Y. We
denote by D the subspace of Y consisting of points of multiplicity at least p, and we let
Dp be its normalization. Locally, D is union of smooth divisors, and DP collects the points
belonging to intersections of p of them. We agree that Do = Y. We will use cohomology
with coefficients in the "orientation" local system Ep. This local system is defined on DP as
follows. For points y belonging to p local components of D, we set Ep to be the determinant
of the space of the p local components (see [15j for a complete discussion). In the case when
D is union of smooth irreducible components without self-intersections, Ep can be trivialized
by choosing an ordering of the components. However, the case we will consider will involve
self-intersecting components.

The cohomology of the open stratum H*(U) carries a mixed Hodge structure which can
be described explicitly in terms of the deRham complex of logarithmic differentials. As a
consequence of this general construction, Hn(U) has a weight filtration 0 c Wn C W n+l C
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... C W 2n = Hn(U). We will mainly be interested in the lowest piece of the filtration which
can be computed as:

wn = j*Hn(y).

Additionally, there is another filtration whose role is to give the successive quotients Wi/Wi - 1

a pure Hodge structure of weight i.
There is a spectral sequence relating all the ingredients of the above discussion. Its E1

term is:
E1 P q = H-2p+q(Dp, Ep)

and the first differentials of the spectral sequence are a signed sum of Gysin inclusions. One
of the main results of Hodge theory is that the higher differentials are all zero, and then the
spectral sequence collapses to Eop q = E2P' q which is the piece of weight q on Hq-P(U).

It was shown by Grothendieck [36] that the definition of the lowest Hodge piece W n

is independent of the compactification Y of U: for the purposes of defining WnHn(U)
we can pick any smooth compactification Y, maybe without normal crossings complement,
and consider the restrictions of differential forms on Y to compute W n . It follows imme-
diately that if V c U have a common smooth compactification then the restriction map
WnHn(U) - WnHn(V) is surjective. For example, if V is Zariski open in a smooth vari-
ety U such a compactification can always be found by Nagata's theorem and resolution of
singularities.

A similar remark can be proved in equivariant cohomology, if both U and V are equipped
with compatible linearized actions of an algebraic group G. First, for any scheme X with a G
action, the Hodge structure on the equivariant cohomology H6(X) is constructed using the
simplicial schemes [X/G]. (see [15] for notation). The equivariant version of Grothendieck's
result is obtained as follows. It is proved in [18] that for each n, there exists an open subset
W of an affine G-space, equipped with a free G-action and whose complement has large
codimension compared to n. The morphism of simplicial schemes [W x X/G]. - [X/G].
induces a morphism of Hodge structures:

HG(X) = Hn([X/G].) - Hn([W x X/G].) = H3(W x X) = Hn(W XG X).

It is shown in [18] that the map above is an isomorphism. When X is smooth, the morphism
of schemes X XG W --, WIG is also smooth [18]. For our applications, the base can always
be chosen to be smooth, so X x c W is also smooth. We combine the isomorphism of Hodge
structures above with the non-equivariant Grothendieck remark for the schemes W XG X
when X is either U and V. We conclude that:

WnH3(U) -+ WnHG(V) is surjective. (2.1)

The similar statement about the Chow groups is evident by construction [18].

We want to apply these general considerations to the space of stable maps. Although
Mo,n(X, 3) is not a smooth variety, its singularities are mild: they are all finite quotient
singularities. There is an extension of Deligne's results to this setting which is worked out
in [56]. All the above results carry over without change.

In the context of stable maps, we will mainly be concerned with the differential:

dl : E ' k = EHk- 2 (Mo,AU{.)(X, PA)XXMO,(*}UB(X, tB)) EO'k = Hk(Mo,n(X , P)).
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The cokernel of this map is the weight k piece in Hk(Mo,n(X, o)) which we will proceed to
identify in the next section when X is a Grassmannian.

The superscript "-"on the cohomology groups of the boundary divisors comes from the
orientation systems Ep. If the boundary graph has no automorphisms we consider the whole
cohomology group. In the case of the Z/2Z symmetry of the boundary graph we need to
take fewer classes. In general, for any graph r, the boundary M(r) is dominated by a
product of smaller moduli spaces of stable maps. The cohomology of the product carries
a representation of Aut(r). Each automorphism has a sign given by its action on the one
dimensional space det(Edge(r)). The minus superscript indicates that we only look at
classes which are anti-invariant under the sign representation of Aut(r). For the boundary
divisors of nodal maps with equal degrees on the branches, these are the Z/2Z-invariant
classes.

In particular, this discussion implies that the sequence:

e Hk-2(M(A,B, PA, B)) -+ Hk(Mo,n(X,I3)) - WkHk(Mo,n(X, )) - 0 (2.2)

is exact (see also corollary 8.2.8 in [15]). The similar statement for the Chow groups is
obvious.

Once the exact sequence (2.2) is established, we can replace the coarse moduli schemes
by the corresponding moduli stacks. To make sense out of the lowest piece of the Hodge
structure on the smooth open stack Mo,n(X, /), we use the isomorphism with the coho-
mology of the coarse moduli scheme (remark 1.1.1). Alternatively, the construction of a
functorial mixed Hodge structure on the cohomology of algebraic stacks has been outlined
in [17].

2.2 Stable Maps to SL flags.

We proceed with the proof of the main result. We begin with the case when the target
space is a Grassmannian. We first identify the lowest piece of the Hodge structure on the
cohomology of the open stratum of irreducible maps. We start with the case of three marked
points, then move down to 0, 1 and 2 markings. We conclude the argument by showing that
the boundary classes are tautological. To this end, we prove a result about the cohomology
of fibered products, essentially using techniques of [15] and [9]. To complete the proof for
general SL flags, a discussion of the cohomology of the Hyper-Quot scheme is required.

2.2.1 Stromme's description of the Quot scheme.

Let X be the Grassmannian of r dimensional quotients of some N dimensional vector space
V. We will begin with a description of the smooth scheme of degree d > 1 morphisms to
X, which we denote by Mord(Pl,X). When X is the projective space, this discussion is
trivial, the space in question can be described as an open subvariety in a projective space.
However, for other flag varieties X such a convenient description is not as easy to come
across. It was obtained by Stromme for Grassmannians [57] and generalized by [39] for
arbitrary flags.

We will now explain Stromme's construction. To fix the notations, we let S and Q
denote the tautological subbundle and quotient bundle on the Grassmannian, sitting in the
exact sequence:

O0 -- V Ox - Q - O.
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To give a degree d rational map f : P1 -_ X is the same as giving a degree d, rank r quotient
vector bundle F = f*Q as follows:

V Opi - F -O.

Allowing quotients which may not be locally free, we obtain the smooth compactification
of Mord(P1 l,X) which is known as Grothendieck's Quot scheme. We will denote this by
Quot(N, r, d). The advantage of working with compactification will become clear below:
the cohomology of the Quot scheme is easier to understand than that of the Kontsevich-
Manin spaces. Incidentally, we note that this compactification was also used in [6] to
compute the "Gromov invariants" of Grassmannians.

We consider two natural vector bundles A_ 1 and ,Ao on the scheme Mord(lP, X). Their
fibers over a morphism f are HO(f*Q ® Op (-1)) and HO(f*Q) respectively. These vector
bundles extend over the Quot scheme compactification. Indeed, we let F be the universal
quotient of the trivial bundle on I1 x Quot, and we let r : P1 x Quot - Quot be the
projection on the second factor. The extensions are, for m > -1:

Am = r(F 0 Op(m)).

The relevance of these vector bundles for our discussion comes from the following con-
sequence of Beilinson's spectral sequence. The bundle F is the last term of the "monad":

0 > H°(F Op(-1)) Op(-1) - H°(F)( Op - F O.

If we pick bases for H°(F(-1)) and H°(F), we can identify these vector spaces with
W-1 = Cd and W = Cr+d respectively. We rewrite the above diagram as follows:

V®Op

0 >) 1 )O WOp(-1) > Wo(p > F --- 0.

It is evident now that the datum of the quotient V 0 Op - F can be encoded as an
element of the affine space:

H°(Hom(W_ 1 0 Op(-1), Wo 0 Op)) E Hom(V, Wo) = P H(Op(l)) ED Q

where P = Hom(W_1, Wo) and Q = Hom(V, Wo). Of course, not every element in this
affine space is allowed; we need to impose the condition that the quotient we obtain be
locally free and that the map from the trivial bundle V ® Op -- F be surjective. In fact
only an open subset of this affine space corresponds to morphisms f in Mord(Pl , X). We
also need to account for the GLd x GLr+d ambiguity coming from the action on the space
of bases of H0 (F(-1)) $ H°(F).

We carried out the above discussion on the level of closed points, but in fact Stromme's
construction takes care of the scheme structure as well. We obtain:

Fact 2.2.1 (Stromme, [57]). The total space T of the bundle of GLd x GLr+d frames of
the vector bundle A- 1 E)Ao over Mord(Pl , X) sits as an open subscheme in the affine space
P 0 H°(Op(1)) e Q. In fact, this description extends to the Quot scheme compactification
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of Mord(pl ,X).

As a consequence of equation (2.1) with trivial group, we conclude that the lowest piece
of the Hodge filtration W*H*(T) = 0.

To end the summary of Stromme's results, the following result of Grothendieck is needed.
Its proof is essentially an application of the splitting principle. It suffices to consider the
case when E is a line bundle. The Gysin sequence in cohomology, together with remark 2.1
to prove surjectivity, give the following:

Fact 2.2.2 (Grothendieck, [35]). Let E be any rank r vector bundle over a smooth
compact base X. If P denotes the bundle of GLr frames, then there is a surjective map:

H*(X) -- W*H*(P)

whose kernel is the ideal generated by the Chern classes ci(E). The same statement holds
equivarianly for an algebraic group action, and for the Chow rings.

Applying these two facts to our setting we obtain that H*(Quot) is generated by the
Chern classes ci(.Ao) and ci(A-1). Therefore, using (2.1), we obtain:

Fact 2.2.3 (Stromme, [57]). The lowest weight Hodge piece W*H*(Mord(Pl,X)) is
spanned by the Chern classes ci(Ao) and ci(A-1). The same result holds for the Chow
rings.

2.2.2 Many marked points.

Our goal is to prove the following statement about the open stratum Mo,n(X, d):

Lemma 2.2.1. The lowest piece of the Hodge structure W*H*(Mo,n(X, d)) is spanned by
restrictions of the tautological classes on Mo,n(X,d) of definition 1.1.1. The same result
holds for the Chow groups of Mo,n(X, d).

In this subsection, we will consider the case of the above lemma when n > 3. We use
the results proved above about the Quot scheme. It will be useful to consider the sheaves
on the stack Mo,n(X,,3) defined, for m > 0, as:

O = 7r*ev* (Q ® (det Q)®m) .

Here r and ev are the projection from the universal curve and the evaluation map respec-
tively. We will be interested in the restrictions j*5m to the open stratum j : Mo,n(X, d) --
Mo,n(X, d). We show that these generate the lowest Hodge piece of cohomology (or the
Chow groups).

We consider the fiber diagram, where Co,n(X, d) is the universal curve over Mo,n(X, d):

Co' (X, d) c- -P 1 x Mor(P ,X) ~' X

17r 1

Mo,n(X, d) q Mord(Pl, X)
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We let p: 1P x Mord(lPl, X) - PI be the projection. Since ev* det Q and p*Op (d) agree on
the fibers of *, there exists a line bundle £ on Mord(P l , X) for which the following equation
is satisfied:

ev* det Q = p*Opl (d) 0 *frC.

We compute:

j*Gm = r*ev* (Q X (det Q)®m ) = r*q* (ev*Q 0 p*Opl (dm) 0 **C®m) = (2.3)

= q*ir (ev*Q 0 p*Opi (dm) 0 f*C®m) = q*Adm q*C(m-

It is clear that the stabilization morphism and q together give an isomorphism between
the moduli schemes Mo,n(X, fl) = Mo,n x Mord(P l , X). Kunneth decomposition can be used
to understand the Hodge structure on the open stratum:

Hk(Mo,,(X,/ )) = E Hi(Mo,n) 0 HJ(Mord(lP, X)).
i+j=k

In [28], it is proved that the ith cohomology Hi(Mo,n) carries a pure Hodge structure of
weight 2i. Since Mord(Pl, X) is smooth, its jth cohomology carries weights between j and
2j. Hence to get the weight k piece WkHk(Mo,n(X, /)) we need i = 0, j = k. Thus, this
weight k piece is isomorphic to the the weight k piece WkHk(Mord(Pl, X)) via the pullback:

q*: W*H*(Mo,n(X, d)) + W*H*(Mord(Pl, X)).

It follows from fact 3 and the exact sequence [57]:

0 - Ak - A --+ Ak+2 0, for k > 0,

that W*H*(Mord(Pl,X)) is generated by the Chern classes of Ao and Ad. Better, we can
pick as generators the Chern classes of Ao and Ad 0 £. The isomorphism q* above and
equation (2.3) show that the Chern classes of j*Q0 and j*l 1 generate W*H*(Mo,n(X, d))
for n > 3.

Finally, to completely prove lemma 2.2.1 when n > 3, we need to show that the Chern
classes of 5m on Mo,n(X, d) are restrictions of the tautological classes of definition 1.1.1.
We repeat the argument of lemma 3.4.1 in the next chapter. There, we explain the required
Mumford-Grothendieck-Riemann-Roch computation. To conclude, we need to observe that
the Chern class of the relative dualizing sheaf cl(w,) is tautological. Here r is the forgetful
morphism. This is a consequence of proposition 4.1.1 in chapter 4. One can argue differently
by using the Plucker embedding to reduce the statement to the case of a projective space
PN in which the Grassmannian embeds. Then, we invoke [51]. It is shown there that all
codimension 1 classes on Mo,n(PN, d) are tautological.

The statement for the Chow groups follows in the same fashion. We need the observation
that for any scheme T, the map:

q*: A(T) - A*(Mo, x T)

is an isomorphism. This is well known. For example, it follows from comparing the exact
sequences:
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(i A,(Di) ® A.(T) A ) A,(T) - A(Mo,.) 0 A(T) A, (T) -- A(T)

e(i A,(Di x T) - A,(Mo,n x T) A*(Mo,n x T) - 0O
Here Di are the boundary divisors of MO,n, which are products of lower dimensional

moduli spaces of stable marked rational curves. The first two vertical arrows are isomor-
phisms as it is shown in section 2 of [38].

2.2.3 Fewer marked points.

We will now prove lemma 2.2.1 when the domain has fewer marked points. A case by
case analysis depending on the number of markings is required. In the case of one or two
markings, it will be satisfying to note the emergence of the 4' classes in the proof which
would justify their usual inclusion in the tautological systems.

No marked points.

To begin, we consider the case of no marked points. We let SL 2 act on C2 in the usual way.
In turn, we obtain an action on the scheme of morphisms Mord(P 1, X):

SL 2 x Mord(Pl, X) (g, f) - f o g-1 E Mord(Pl , X).

Since each morphism is finite onto its image, it is easy to derive that the action has finite
stabilizers. It is known that the PSL 2 quotient of Mord(P l , X) equals Mo,o(X, d) and since
the center in SL 2 acts trivially, we see that the space of SL 2 orbits of Mord(lPl, X) is the
topological space underlying Mo,o(X, d). A well known result, which is proved for example
in [10], gives an isomorphism between the cohomology of the orbit space and the equivariant
cohomology. In our case, this translates into an isomorphism:

H*(Mo,o(X, d)) = HL 2 (Mord(PI, X)). (2.4)

Even more, the right hand side can be given a Hodge structure using simplicial schemes
[15], which, by functoriality is compatible with the structure on the left hand side.

We now move the discussion to the algebraic category. It is easy to see using the
numerical criterion of stability that the action of SL2 on Mord(Pl, PN) pNd+N+d has
only stable points. The same statement then holds for Mord(Pl,X) using the Plucker
embedding. In turn, this implies the existence of a geometric quotient Mord(lEl ,X)/SL 2.
This quotient can be identified with Mo,o(X, d), since both schemes solve the same moduli
problem (see also the argument in [52]). We will make use of the isomorphism [18]:

Ak (Mo,o(X, d)) = AL 2(Mord(Pl,X)) = Ak(Mord(Pl,X) xSL2 W). (2.5)

In the topological category, we compute equivariant cohomology taking for W the con-
tractible space ESL 2. In the algebraic case, we let W = Wk be any a smooth open
subvariety of an affine SL2-space, which has large codimension compared to k and which
has a free SL 2 action.

Let us write, for now, G = SL 2; later, we will make use of other groups as well.
We will use the following standard notation. For any G scheme X, XG will denote the
equivariant Borel construction. In the algebraic setting, XG will stand for any of the
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mixed schemes X xG W (cf. [18]) where W is described in the previous paragraph. We
observed that all equivariant models XG can be chosen to be smooth. In fact, properties
of equivariant morphisms such as smoothness, or flatness and properness, still hold for
the induced morphisms between the mixed spaces [18]. Moreover, any G-linearized bundle
E -, X lifts to a bundle EG -- XG whose total space is E XG W.

We will compute the right hand side of (2.4) and (2.5) using arguments similar to
Stromme's. We will need to extend the SL 2 action to the Quot scheme and to lift it to
the bundles A- 1, Ao. For example, the SL 2 linearization of A-1 is essentially determined
by the usual SL 2 linearization of L = Opl (-1). To be precise, we consider the following
diagram:

SL 2 x P1

SL2 x P1 x Quot a 1 x Quot

1r 17r

SL 2 x Quot > Quot

Here, is the action, while the morphisms a, ir and p are projections. We have an
isomorphism : *COpl (-1) - a*Opi (-1). Writing F for the universal quotient sheaf on
Pl x Quot, the linearization of A- 1 is obtained as follows:

a*A_~ = a*7*(:F®p*Op(-1)) r*F*(:F®p*pl(-1) =
r*(a* s p**Opl (-1)) -*(a*F s p*a*Op (-1)) =

= ,*(: ® p*Op1(-)) = a*7r,(~ p*OPi(-1)) = *.i-1.

We will be concerned with the mixed space QuotSL 2 and the bundles ~AL2 which are
the lifts of the equivariant bundles Am, for m E {-1, 0}. A moment's thought shows that
the Stromme embedding described in fact 1 is SL 2 equivariant. It is immediate that taking
frames of a vector bundle commutes with the construction of the mixed spaces and of mixed
bundles over them. Then, the bundle of (split) frames of A AgL2 is the mixed space
TSL2 and moreover, it can be realized as a subscheme:

TSL2 L- (P H(P1, Op (1))) Q)SL2.

The latter space can be described explicitly. In the topological category, BGL 2 can be
realized as the infinite Grassmannian G of 2 dimensional planes endowed with a tautological
rank 2 bundle S. Its frame bundle serves as a model for EGL 2 = ESL 2. In the algebraic
category, we consider the truncated models of the infinite dimensional constructions. For
instance, W/GL 2 will be a finite dimensional Grassmannian of 2 dimensional planes. Then,
W will be the bundle of GL 2 frames of the tautological rank 2 bundle S over W/GL 2. W/SL 2
is the bundle of C* frames of the determinant det S -- W/GL 2. This is a consequence of
the fact that any frame of S, say w E W, gives rise to a frame det w of det S. We will also
denote by S the pullback to W/SL 2 of the tautological bundle on the Grassmannian.

It is then clear that the mixed space we are trying to describe can be realized as the
total space of the bundle:

P S* Sf O ® Q - W/SL 2.
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Therefore, its cohomology (or Chow rings) can be computed from that of the base. In turn,
this is easily seen to be (via fact 2):

W*HSL2 = HL 2/C1 (A2S) = C [C2 (S)]

Repeating the arguments of the previous subsection in the equivariant setting (making
use of fact 2 and equation (2.1)) we obtain two surjections:

W*HL2 ) W*HSL2 (), HSL,(Quot) - W*HSL2(T).

We have explicit generators for the kernel of the second map, namely the equivariant Chern
classes of the bundles A-l, Ao. We conclude the following:

Claim 2.2.1. The cohomology HsL2(Quot) is generated by the equivariant classes of Ao
and A- 1 together with the pullback of the Chern class 4c2(S) = c2(Sym2 S) from the model
W/SL 2 constructed above. Therefore, the same is true about the lowest piece of the Hodge
structure on HSL2 (Mord(P1, X)).

We are now ready for the proof of lemma 2.2.1. We consider the following diagram of
fiber squares:

P(S) = XSL 2 W (P1 x MOrd(P1, X)) XSL 2 W C e X

W/SL 2 q Mord(Pl, X) XSL2 W - > Mo,o(X, d) -P Mo,o(X, d)

In the above diagram, we start with the fat algebraic family * whose fibers are irre-
ducible genus 0 curves (which are not canonically identified to P 1 because we factored out
the SL 2-action). The classifying map to the moduli stack is denoted by e. In the same
diagram, C is the universal curve, and p: Mo,o(X, d) -- Mo,o(X, d) is the natural morphism
to the coarse moduli scheme.

We know that p and pe induce isomorphisms in rational cohomology [2], [18], hence
the same is true about E. It suffices to show that any class of lowest Hodge weight on the
smooth space Mord(Pl, X) x L2 W is the pullback from Mo,o(X, d) of restrictions of the
tautological classes of definition 1.1.1.

We will use the conclusions summarized in the claim above. It is clear that AoSL2
corresponds to the bundle o = 7r,(ev*Q) under the isomorphism (2.4) induced by e.

We argue that the Chern classes of the bundle AS2 also come as pullbacks under E of
tautological classes on Mo,o(X, d). Let L be the lift of the linearized bundle p*Opi (-1) on
P 1 x Mord(lPx, X) to the equivariant mixed space ( x Mord(P, X)) X L2 W. First we note
that AL2 = r*(?*ev*Q ® L). Since both sides are locally free, it suffices to check equality
after pullback by the smooth morphism g of the following fiber diagram:

X
v evj

pl x Mord(Pl, X) p p1' x Mord(Pl,X) x W k- > (P1 x Mord(P, X)) XSL2 W

Mo r d(, X) Mord, X) X W MOd( 1, X) XL2 W

Mord(Pl, X) Mord (P', X) x W > Mord(Pl, X) XSL2 W
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We have:

*ASL2prA-1 = *(ev*Q ( p*0l (-1)) = r*(i*ev*Q (® j*L) = ®* (ev*Q X L).

To compute the Chern classes of AS L we need to use Grothendieck-Riemann-Roch.
We need to explain that the class cl (L) is a pullback under of a tautological class on
Mo,o(X, d). To this end, we replace this class by a multiple of cl(wfr), which is tautological
as explained in section 2.2. This is justified since after pullback by the two line bundles
wu = *wr and L®2 agree.

Finally, we discuss c2(Sym 2S). We claim that on Mord(lPl, X) X SL2 W the following
equation holds true:

e*It*7r = q*Sym 2S*. (2.6)

The Chern classes of 7r w* are tautological by the usual argument involving Grothendieck-
Riemann-Roch (the explicit computation shows that the second Chern class we need is
0).

To establish the equation above, observe that we are in the particularly favorable situa-
tion when all relative dualizing sheaves involved are line bundles over smooth bases, hence
taking duals causes no problems. We have *7r,w* = * The following Euler sequence
on P(S):

0 -,0 -o fr*S Op(s)(l) , w -- 0

shows:
w* = det(i*S 0 O(s)(l)) = Op(s)(2).

Here we used that W/SL 2 is the space of frames for A2S, so the pullback of A2S - W/GL 2
is trivial. We immediately obtain r* w*r = Sym 2S*, thus establishing (2.6).

One marked point.

The remaining two cases are entirely similar. For the case of one marking, we will use the
action of the subgroup N of SL 2 of matrices:

N=( a l)IaEC*,bEC}.0 a- 1 ) 

We carry out the equivariant arguments of the previous section replacing SL 2 with the
group N.

We will identify EN and BN. To construct algebraic families, we will work with the
finite dimensional approximations of the topological models. As before, W/GL 2 will be a
Grassmannian of 2 dimensional planes of large, but finite, dimension. We identify W with
the bundle of GL 2 frames of the tautological bundle S. We have seen that W/SL 2 is the
bundle of C* frames in det S. Moreover, the space W/SL 2 comes equipped with the pullback
bundle, which we denote by S. The space W can be used to compute the N-equivariant
cohomology (or Chow groups). Then, W/N will be the projective bundle P(S) over W/SL 2.
In addition, letting - : W/N -+ W/GL 2 be the projection, we have Pl X N W = P(r*S).
The last two statements follow by observing the map:

{frames in a 2 dimensional vector space S}/N - PI(S), frame {e, f} -- line spanned by e.

The relevant diagram of fiber squares is:
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P(r*S) = P1 XN W - (P1 x Mord(P1, X)) X N W v X

fl* zlt ZIr
P(S) = WIN < q Mord(Pl , X) XN W Mo,I(Xd) P Mo,1(Xd)

We will denote by 5 the dual hyperplane bundle on WIN = P(S) and similarly will be
the dual hyperplane bundle on P(r*S). The morphism : P(r*S) -+ P(S) has a canonical
section such that i*E = ~. The flat algebraic family * also has a section z whose image
in each fiber is the N-invariant basepoint [1: 01] E P 1. We let e be the classifying map to
the moduli stack Mo,1 (X, d).

The above description of WIN as a projective bundle over W/SL 2 shows that:

W*HN = W*HsL2 [cl(S)]/(cl()2 + c2 (S)) = C[C1 (), c2(S)]/(1 () 2 + C2 (S)) = C[C1()].

To complete the proof of lemma 2.2.1, we use the arguments in the previous subsection. We
only have to write the class q*cl () on Mord(Pl, X) x N W as the pullback of a tautological
class on Mo, 1(X, d).

The Euler sequence on P(-r*S) shows that:

O --, O -- ,*r*S --, --* 0.

Taking determinants and recalling that r* det S is trivial, we obtain w = _®2. Therefore,

*cl(w*) = -2c(2i*E) = -2cl().

It is then clear that:

-2q*cl(i) = q*z*cl(u*) = i*C1(f) = E*(Z*C1(w)) = e*o.

The proof is now complete, since we explained in the introduction (cf. remark 1.1.1) the
tautology of the 4' classes.

Two marked points.

The argument is again similar to the case of one marked point. We let C* act on p 1 as
follows t [z : w] = [t-lz : tw]. We obtain the isomorphism:

H*(Mo,2 (X, d)) = Hc* (Mord(Pl, X)).

We compute the right hand side. W/C* will be a projective space and W the bundle of C*
frames of the tautological line S -, W/C*.

The following diagram of fiber squares will be useful in our computation:

P(S D S*) = P1 xc* W - (P x Mord(Pl, X)) xc* W C ev-- X

W/C* . q Mord(Pl, X) xc* W c , Mo,2(X,d) P M,2(X,d)
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The family r has two tautological sections i, z such that z*~ = S and &*~ = S*; here, is
the dual hyperplane bundle on (S E S*). The family ff also has two sections, their images
are the two C* invariant points of P' in each fiber.

We obtain generators for the lowest piece of the Hodge structure on H~, (Mord(P1 , X)).
In the light of the previous discussion, we will only need to explain that the class q*cl(S)
coming from W/C* is a pullback of a tautological class on Mo, 2(X, d). The argument is
identical to the one in the previous section. From the Euler sequence along the fibers of i*,
it follows that cl(we*) = -2cl(~). The computation below finishes the proof:

-2q*cl(S) = -2q*i*cl(~) = Z*q*cl(wfi) = ;Z*cl(f,) = c*Z*Cl(Wr) = * 1.

2.2.4 General SL flag varieties.

Let us now consider the case of a general SL flag variety X parameterizing I successive
quotients of dimensions rl,..., rl of some N dimensional vector space V.

Pulling back the tautological sequence on X:

0 - S ... -- S V Ox Q1 X ... * Ql -'--0. (2.7)

under a morphism f: p1 -_ X, we obtain a sequence of locally free quotients:

V Op, --+ F1 -- ... - F -+ 0

of rank ri and degree di. Allowing for arbitrary (not necessarily locally free) quotients,
we obtain the Hyper-Quot scheme compactification HQuot of the space of morphisms
Morp,(Pl , X). We will use the more explicit notation HQuot(N, r, d) when necessary.

Since HQuot is a fine moduli scheme, there is a universal sequence on P1 x HQuot:

0 -, - ... -- £ v El -- ... - ,+ F -- 0.
We seek to show that:

Lemma 2.2.2. The cohomology (and the Chow rings) of HQuot(N, r, d) is generated by
the Kunneth components of cj(Fi).

Unfortunately, the arguments of the previous subsections do not extend to the present
case. Even though a description of the Hyper-Quot scheme similar to the one in subsection
2.1 does exist [39], nonetheless we obtain an embedding of a principal bundle over HQuot
into a singular affine variety. The existence of singularities is a one (and not the only)
obstacle in extending the proofs in subsection 2.2 to our new setting.

Nevertheless, the proof of the lemma stated above should be well known, but we could
not find a suitable reference. To prove it, we will use a well-known trick of Beauville-
Ellingsrud-Stromme [20]. Some of the details appear in the next subsection. There are
difficulties in applying the same argument equivariantly. Instead, we will use a combination
of the Leray spectral sequence and the already established equivariant results for the Quot
scheme. We prove the following:

Lemma 2.2.3. For any flag variety X and any degree /3, the lowest piece of the Hodge
structure W*H*(Mo,n(X,/3)) is spanned by the restrictions of the tautological classes on
Mo,n(X, 3) of definition 1.1.1. The same results hold for the Chow groups.
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To see this, we will assume lemma 2.2.2. We consider the following product of forgetful
morphisms:

i= i : HQuotpi(N, r, d) -- fJ Quot(N, rj,dj).

We put together lemma 2.2.2, and the observation that the universal quotients on P 1 x
Quot(N, rj, dj) pull back to the universal sheaves Fj on p1 x HQuot. We conclude that the
pullback map:

i* : H*(l Quot(N, rj, dj)) -- H*(HQuot(N, r, d))

is surjective. The results of section 2.1 imply that in fact the cohomology of HQuot is
generated by the Chern classes ci(A,,m) for m E {-1,0}. Here Aj,m = Rr*Fj(m) for
m -1, and r : P1 x HQuot -- HQuot is the natural projection. Of course, this could
also be seen more directly.

When n > 3, the statement in lemma 2.2.3 follows by the same argument we used in
section 2.2 for Grassmannians.

To deal with fewer marked points, we will explain that the map i* is surjective in G-
equivariant cohomology. Here G denotes one of the groups SL 2, N or C* which we used
in section 2.3. Surjectivity is a consequence of the collapse of the Leray spectral sequence
in equivariant cohomology as proved for example in [30]. Strictly speaking, the group N
is not covered by the results of [30], but the argument in the algebraic category presented
below takes care of this case as well.

We obtain diagram:

EP' = HG H (lj Quot(N, rj, dj)) H+q (n, Quot(N, rj, dj))

E2 'q = H ® Hq(HQuot) - H+q(HQuot)

Surjectivity of the equivariant cohomology restriction map i follows now from the non-
equivariant statement. It suffices to observe that the collapse of the spectral sequence shows
that the equivariant groups admit filtrations such that i* induces surjections between their
associated graded algebras.

We dedicated the previous subsection to the computation of the equivariant cohomology
of the Quot schemes. From the above, we obtain a generation result of the equivariant
cohomology of HQuot in terms of the equivariant tautological Chern classes of the bundles
Aj,m. Now the arguments which occupy the rest of section 2.3 can be used to finish the
proof of lemma 2.2.3.

The argument in the Chow groups is slightly more involved, but we will include it here
for completeness. For simplicity, let us write X and Y for HQuot and rnj Quot(N, rj, dj)
respectively, and then i : X -, Y is the forgetful morphism. We know that the pullback:

i! : A(Y) - A*(Y) ) A*(X) _ A*(X) is surjective.

We want to derive the same statement equivariantly for the action of the groups SL 2, N, C*.
As before, let W be an open smooth subvariety of an affine space with a free action of G.
We claim that the map iv A,(Y x W) -- A*(X x W) is also surjective. This follows from
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the surjectivity of i! and of the following two maps:

A,(Y) 0 A,(W) A,(Y x W) and A,(X) 0 A,(W) A,(X x W).

To see that the exterior product maps are surjective, we make use of the fact that both
X and Y are smooth projective varieties admitting torus actions with isolated fixed points
[57]. Such torus actions are obtained from a generic torus action on p1 and on the fibers of
the sheaf Oj whose quotients give the Quot schemes. Therefore, the theorem of Bialynicki-
Birula shows that X and Y can be stratified by unions of affine spaces. For affine spaces
surjectivity is clear. Our claim follows inductively, by successively building X and Y from
their strata.

To finish the proof, it suffices to explain the surjectivity of the map:

i.: AG(Y) = A(Y XG W) A*(X XG W) = AG(X).

We have a fiber diagram:

iXrx W iW

WX L 7rY L

X xGW --- YXGW
where the vertical arrows are principal G bundles. Let a be any class in Ak(X XG W).
Then, our assumption and theorem 1 in [60] respectively show that there are classes / and
/ on Y x W and Y xG W such that:

7rX = i, and , = r3.

Therefore,
*XCIa = iWviy = Xi/3 .

We first assume G is either SLm or GLm and use theorem 2 in [60]. Then,

a = i + Ci nai
i

for some classes ai E Ak+i(X XG W) and for some operational classes ci on X XG W.
Moreover, we find classes cY operating on A.(Y XG W) with i* cY = q. Inductively on
codimension, we know ai = i3Oi. The following computation concludes the proof:

a = EiG,+ ciGCiY n i = i (P+ C n
i

There is one remaining case needed for our arguments, namely that of the group N. Let
E -+ X XGL2 W be the vector bundle associated to the principal GL2 bundle:

X X W - X XGL2 W

Then X x SL2 W is total space of the bundle of frames in det E. It is equipped with a
projection 77 : X XSL2 W --+ X XGL2 W. More importantly, X XN W is the projective
bundle P(t7*E) over X XSL2 W and comes equipped with a tautological bundle TX. Then
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A,(X X N W) is generated by the class cl(rx) and A,(X x SL2 W). The analogous discussion
holds for Y. From here, the surjectivity of i" follows from that of i!L 2 .

2.2.5 The Cohomology of the Hyper-Quot scheme.

In this section we will prove lemma 2.2.2 using the diagonal trick of Beauville-Ellingsrud-
Stromme [20]. We will express the class of the diagonal embedding A : HQuot -. HQuot x
HQuot as a combination of classes 7r*a 7r/, on HQuot x HQuot, where a and P/ are among
the tautological classes listed in lemma 2.2.2. Here 7rl, 2 are the two projections HQuot x
HQuot -, HQuot. This will establish lemma 2.2.2 completely. Since such arguments are
well known, we will only sketch some of the details.

Let KC be the kernel of the natural sheaf morphism on P1 x HQuot x HQuot:

1 1-1

Hom (l- , e2.i) n (DHom (7r*Ei, 7r2*i+l) 0.
i=l i=l

Let p: Pl x HQuot x HQuot -- HQuot x HQuot denote the natural projection. It can be
shown that p*C is a vector bundle whose rank equals the dimension of HQuot, essentially
by showing that there are no Hl's along the fibers of p. In turn, this can be observed via
the following argument borrowed from [12]. Assume we are given two geometric points of
HQuot:

O - E - V Op - F. -, 0, O -, E' -- V Opi - F. - .
These define a morphism Pl - P1 x HQuot x HQuot and we let K be the pullback of IC.
We have a natural map from a trivial bundle:

1 1-1

Hom (V, V) Opl - Hom (Ei, Fi') - Hom (Ei, Fi'+)
i=l i=l

which factors through K. One easily checks that the map Hom (V, V) ® Opi -- K is
generically surjective. Therefore H 1(P, K) = 0.

Moreover, a section of KC is canonically obtained from the natural morphisms:

We also obtain a section of the bundle p,/C on HQuot x HQuot. This section vanishes
precisely along the diagonal. Therefore [A] = ctop(p*K,). A Grothendieck Riemann Roch
computation expresses the Chern character/classes of p,K as combination of classes ir*a.r2*3
where a, are among the candidates we listed in lemma 2.2.2, as desired.

2.2.6 Cohomology of fibered products.

To finish the proof of theorem 1 we need to understand the cohomology of the boundary
strata. To this end, we will need to make use of the following result about the cohomology
of fibered products.

Lemma 2.2.4. Assume there is a fiber square where P1 and P2 are proper morphisms of
projective orbifolds with surjective orbifold differentials, and B simply connected:
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Z = X XB Y Y

X > B

The cohomology of H*(Z) is generated by the image of H*(X) ® H*(Y).

Proof. We reformulate the statement as follows. We have a fiber diagram:

i' ~ SS' S

1 7r{

T' , T
where T' = B,T = B x B,S' = Z,S = X x Y. We observe that i* : H*(T) H*(T') is
surjective. We want to prove that (i')*: H*(S) -- H*(S') is also surjective. This will follow
from a more general argument.

There are two Leray sequences corresponding to the maps 7r and 7r'. Their collapsing is a
well known result of Deligne. To apply it we need to know that the differentials of both maps
are surjective. Strictly speaking, Deligne works with smooth projective varieties, but his
result extends to projective orbifolds (the main ingredient in the proof is the Hard Lefschetz
theorem, which holds for orbifolds - see [56]). There are natural morphisms between these
spectral sequences:

HP(T, Rq7r*Q) : HP+q(S)
i* (i')* I

HP(T', Rq7r*Q) = HP+q(S')

We claim that the second vertical arrow (i')* is surjective. We first observe that the first
vertical arrow i* is surjective. Indeed, i* : H*(T) H*(T') is surjective. The two local
systems given by the direct images Rq7r*Q and Rq7r'*Q on T, T' are trivial, these spaces
being simply connected. Surjectivity of i* follows. Because the two spectral sequences
degenerate, there are suitable filtrations F' and F'' of HP+q(S) and HP+q(S'), compatible
with the map (i')* such that the map (i')* : Gr. - Gr, is surjective. It follows inductively
that (i')* restricted to the successive pieces of the filtrations is also surjective, hence (i')*:
H*(S) H*(S) is surjective. This completes the proof.

2.2.7 The main result.

Let X be an arbitrary SL flag variety. In this subsection we will conclude the cohomological
proof of our main result, theorem 1.

We will apply the lemma proved above to the evaluation maps ev : Mo,+l(X, /) 
X. Then, the cohomology of the fibered product MO,AU{.}(X, 3A) XX MO,BU{*}(X, fiB) is
generated by classes coming from each factor. To place ourselves in the context of the
lemma, we need to show that the (orbifold) differentials have maximal rank i.e. that these
differentials are surjective. Recall from [22] the construction of Mo,n+l(X,O ). First, one
rigidifies the moduli problem. Consider an embedding of X into an r dimensional projective
space P(V), and fix t = (to,..., tr) a basis of V*. We define a moduli space of t-rigid stable
maps to IP(V). This space parametrizes stable maps f: C - P(V) of degree d with n + 1
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markings; in addition to the n + 1 standard markings of the domain pi, we also fix d(r + 1)
markings qij (O < i < r and 1 < j < d) stabilizing the domain curve, such that we have an
equality of Cartier divisors f*ti = qi, + ... + qi,d.

We consider the closed subscheme of the scheme of t-rigid maps to P(V) which factor
through the inclusion of X in P(V). The moduli space of such t-rigid maps Mt is a smooth
variety. To get to the Kontsevich-Manin moduli space, we need to quotient out the action of
a finite group. It suffices to show that the map ev : Mt --* Pr which evaluates at the last point
has maximal rank. This is essentially explained in [22] and it is quite straightforward. Let
(f, Cpi, P ... Pn+l, qij) be a t-rigid map and let p = f(Pn+l). The differential of the evaluation
sends the deformation space of the rigid stable map, Def, to TpX. This map factors as the
composition of two surjections Def -- Def -- TpX. Here Def = HO(f*TX/Tc(-pn+I))
is the deformation space of the triple (f, C,pn+l). The second map is simply the fiber
evaluation. It is surjective because for any genus 0 stable map f, f*TX is generated by
global sections [22].

We are now ready to prove theorem 1. The statement is proved by double induction,
first on the degree /3, and then on the number of markings. In degree /3 = 0, the result
follows from Keel's theorem. Next, we consider the indecomposable classes /3 and n < 1.
When X = G(k, V), the result is a consequence of the description of the moduli space
Mo,o(X, 1) as the flag variety Fl(k - 1, k + 1, V) of two step flags in V of dimensions k - 1
and k + 1 respectively (this is explained for example in [55] lemma 3.2). For n = 1, there
is a similar description of the moduli space as the flag variety Fl(k - 1, k, k + 1, V). For
general flags X, the class P/ is Poincare dual to cl(Qi), for some i. There exists a flag variety
Y (obtained by skipping the ith quotient in X) and a projection morphism r : X -- Y such
that r,/3 = 0. All stable maps to X in the class 3 are entirely contained in the fibers of 7r
which are Grassmannians. Therefore, the moduli space Mo,o(X, 3) maps to Y, the fibers
being flag varieties as above. The main theorem follows immediately.

All other moduli spaces for higher values of n or 3 have nonempty boundary divisors
D(A, B, 3A, /B), where either 3A and B are both smaller than , or A, B have fewer
than n points. The cohomology of the fibered product scheme M(A, B, PA, PB) (and hence
of the fibered product stack) dominating the boundary is computed by lemma 2.2.4. It
is spanned by tautological classes in the light of the induction assumption. We apply
the Deligne spectral sequence, specifically the exact sequence (2.2). We start with an
arbitrary codimension k class a in Mo,n(X,3). Its restriction j*a on Mo,n(X, 3) has
Hodge weight k. By virtue of lemma 2.2.3, we derive that j*a is equal to the restriction
j*a' of some tautological class a'. Then Deligne's theorem shows that a - at is supported
on M(A, B,, A,,3B), hence inductively it is sum of tautological classes. This proves the
theorem.

2.3 Stable Maps to Projective Spaces.
In this section we revisit the computation of the Chow groups of the open stratum of
irreducible maps of degree d > 1 to prr. We will seek to prove the following analogue
of lemma 2.2.1. In addition, we prove a "Gorenstein" property of the tautological rings
reminiscent of Faber's conjecture.

Proposition 2.3.1. (1) The Chow rings of Mo,n(Pr, d) can be described explicitly in
terms of the tautological classes in definition 1.1.1 - the precise description is given
in lemmas 2.3.1 - 2.3.3. This description is independent of the degree d 1.
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The tautological rings behave like the cohomology of certain projective manifolds of
lower dimension (which do not depend on the degree).

(2) All relations between the tautological generators [r, iv, f] are tautological in the sense
of definition 1.6.1.

Our results hold equally well for Chow groups and the the lowest weight Hodge piece of
the cohomology. We only include here the proofs in the Chow groups; they carry over in
cohomology, almost verbatim, only replacing A* by W*H*.

Remark 2.3.1. When n = 0, Pandharipande proved the fact below [52]. Our goal here is
to obtain similar results for more markings.

Fact 2.3.1 (Pandharipande). The Chow ring of Mo,o(lr, d) is isomorphic to the Chow
ring of the Grassmannian G(IP1, Pr). The (restrictions of the) classes r(Hi+l, Hi+l), where
0 < i < j <r - 1, form a set of generators.

To prove the first item in proposition 2.3.1, we follow the same line of reasoning as the
original paper, claiming no new ideas. We include these computations because they fit quite
naturally with our earlier arguments, and because they are necessary in proving the second
part of the proposition. Moreover, we would like to point out consistency with the results
of [31] where the Betti numbers of the relevant spaces are determined.

2.3.1 Three marked points

Let us start with the case when n > 3. As in section 2, A*(Mo,n(Pr, d)) is isomorphic to
A*(Mapd(Pl, Pr)) via the natural projection p: Mo,n(P, d) -+ Mapd(Pl, PT ).

The last group can be computed from the image of any compactification of Mapd(P l , pr).
There is an obvious candidate for a compactification, namely the projective space P(V)
where V = ErH°(Pl, O(d)). We need to identify the image of the restriction map:

i : A(P(V)) -, Ak(Mapd(pl, p)).

We claim that the image is 1 dimensional for k < r - 1 and zero otherwise. If h is the
hyperplane class on P(V), it is enough to show that i*hr -l1 0 and i*hr = 0.

We use the different compactification of Mapd(Pl,PT r ) by the Kontsevich-Manin space
of maps Mo,3( PT, d), letting D be the disjoint union of the boundary divisors. We apply
the exact sequence (2.2):

Ak-l(D) - Ak(Mo,3(Pr, d)) -, Image i* - 0.

We define the following class on the Kontsevich-Manin space: Li = evi*H where H is
the hyperplane class in Pr. In lemma 2.3.2 we show that the class:

Lr + Lr-1L2 +... + LLr-- 1 + Lr

is supported on the boundary. We let j denote the inclusion of Mapd(P1,P r ) into the
Kontsevich-Manin space. Since j*L1 = j*L 2 = i*h we see that i*hr = 0.

It remains to show that i*hr- l # 0, or that i* is nonzero in degree r - 1. By the exact
sequence above, it suffices to show that the class L- is not supported on the boundary.
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To see this, we follow an idea of Pandharipande [52] to reduce to the case of maps of
degree 1. Let v be a self-morphism of Pr of degree d. Let C be the universal curve over
Mo,3(JPr, 1). We have a diagram:

C ev pr v pr

7r

Mo,3 (Pr, 1)

which induces a map r : Mo,3(IPr, 1) -- 0 Mo,3(Pr, d). Letting L1 be the evaluation class on
the space of degree 1 maps, we have:

r*L1 = 7*e4v*H = ev~v*H = d- ev*H = dL1.

Assuming that Lr- 1 is supported on the boundary of Mo,3(Pr, d) then we conclude that
the class L- 1 is supported on the boundary of Mo,3( 7, 1). Therefore, j*L-I = 0 on
Mo,3(lPr, 1). Here j denotes, just as for degree d, the inclusion Mo,3 (Pr, 1) --, Mo,3(P r, 1).

We will now derive the contradiction by looking at the space of degree 1 maps. Denote
again by i the inclusion of Mo,3(Pr, 1) into its "obvious" compactification P2r+l. In fact,
Mo,3(P r, 1) can be described as P2 r+l \ S, where S is the subvariety corresponding to r + 1-
tuples of polynomials of degree 1 with a common root. Then S is isomorphic to P1 x Pr.
The restriction map i* : Ar-l(p 2r+2) - Ar-I(Mo, 3(Pr, 1)) is an isomorphism. It is clear
that j*L, = i*h, where h is the hyperplane class on p2r+l. We obtain the contradiction
0 = j* = i*h r- # 0. Our claim is now proved.

Combining the claim with the observation opening this subsection, we obtain:

Lemma 2.3.1. When n > 3, A*(Mo,n(Pr, d)) is isomorphic to A*(Pr-l), and L1 = evH
is a multiplicative generator.

2.3.2 Two marked points

In this subsection, we will compute A*(Mo,2(Pr, d)) using the ideas of Pandharipande [52].
We let v be a degree d self-morphism of PT . As before, composition with v induces a

morphism r : Mo,2 (Pr , 1) -. Mo,2(Pr, d).
Observe that Mo,2 (Pr , 1) = Pr x Pr\A where A is the diagonal. Moreover, M0,2(Pr, 1) =

Bla (Pr x P'r) is the blowup along the diagonal. The two hyperplane classes on the two factors
of PIr x P, as well as on the blow up, will be denoted by hi and h2. The evaluation classes
L1 and L2 coincide with hi and h2 on Mo,2 (Pr, 1). Notice that r*Li = d hi.

Letting s, = Zi+j=r hh2, we see that A*(P r x pF \ A) = C[hl, h2]/(hr+l, hr+l,sr). It
is clear that r induces a homomorphism:

T* A*(Mo, 2(Pr, d)) -+ C[hl, h2]/(hr+l, hr+l, sr) = A*(Mo,2(Pr, 1)). (2.8)

The map -r* is surjective since we saw hi and h2 are contained in its image.
We seek to show that r* is an isomorphism. To this end, we will analyze Mo,2 (Pr, d)

differently, by exhibiting this space as a quotient. Let PI = P(V) where V ¢ C2 is a two
dimensional vector space with the natural action of the torus T = C* x C*. Let

U f f H(P', Opl (d)) = f Symd(V *)

0 0

42

_~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~...-.·--- -- �-



be the open subvariety corresponding to (r + 1)-tuples of degree d polynomials with no
common vanishing.

The torus T acts with finite stabilizers on U and the geometric quotient is M, 2 (I r , d)
[52]. There is an isomorphism:

A*(Mo,2(Pr, d)) = AT(U) = A*(UT).

Here UT = U XT ET is the Borel construction. In the topological category, we take BT =
P x P, where P is the infinite projective space, while ET -+ BT is the T-bundle whose
associated vector bundle is S = P1Op(-l) ® p*0p(-l). Here, we write P1 and P2 for
the two projections. In the algebraic category, for the purposes of finding classes of fixed
codimension, we will pass to projective spaces P of large, but finite, dimension.

Now, we observe that UT sits naturally as a subspace of the following bundle p : B -
P x P:

r r r
B = $SymdV* XT ET = S ym(pOp(l) plOp(l)) = ( p[Op(i) E3 pOp(j).

0 0 0 i+j=d

We let D be the complement of UT in this bundle. We let h and h2 denote the two
generators of A*(P x P). The pullbacks p*hl and p*h2 are the generators for B.

There is an exact sequence:

Adim-k(D) 4 A (B) Ak(UT) - 0 (2.9)

Therefore, A*(UT) is spanned by the restrictions j*p*hl and j*p*h2.
For the reader interested in the cohomological proofs, the first term in the sequence above

should be replaced by the Borel-Moore homology. The image of the map j is WkHk(UT).
This follows from (2.1) with trivial group, since the schemes B and UT have the common
compactification P(B E Op).

We consider the following element in the Chow group of P x P: sj = a+b=j hhb2. We
claim that the elements p*Sk+r are in the image of the inclusion map i so they are also in
the kernel of j* for all k > 0.

The proof of the claim is almost identical to Pandharipande's argument. We introduce
the following notation. We let r be the projection P(S) --, P x P. We look at the total
space Q of the bundle r*B which sits over P(S), and comes equipped with the pullback of
the tautological bundle p*Op(s) (1):

Q = v*BP P(S)

B - P x P.

Just as in [52] one arrives at the following diagram:

Q\D ev r

17r

B \ D = UT UT = Mo,2(Pr, d).
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Indeed, unwinding the definitions, we obtain a natural evaluation map ev : Q \ D -, Pr
undefined over the common vanishing D of r + 1 canonical sections of p*Op(s) (d). It is clear
that D maps birationally to D via r. The classifying map e to the coarse moduli scheme is
the natural quotient map.

We observed that [D] = cl (p*Op(s)(d)r+l). Hence, the class 7r, (cl(p*Op()(d))r+1a) is
supported on D, so it is in the image of i, for all classes a on Q. We apply this observation
to the class:

a = p*cl(op(s) (d))k

The following class is contained in the image of i:

7r* (p*cl (OP(s)(d))r+l+k) = dr+k+lp*7r (cl(Op(S)(1))r+k + l) = p*r( (cl(Op() (l))r+k+l )

__ __ __ p*Sr+k.
(c(s r+k (1 - hi)(1 -h2)r+k

Using what we just proved together with the exact sequence (2.9), we obtain a surjection:

j*: c[p*hi, p*h2 1/ (p*k+r)k>O - A*(M, 2(Pr, d))· (2.10)

The reader can check that there is an obvious isomorphism between the right hand side of
(2.8) and the left hand side of (2.10). Hence both (2.8) and (2.10) are isomorphisms.

We know that hh2 (0 < i,j < r) span the right hand side of (2.8) with the relation
sr = 0 and hlhJ2 = d-i-jr*j*(Li 2). Therefore,

Lemma 2.3.2. The map r* induces a ring isomorphism between A*(Mo,2 (Pr,d)) and
A*(Pr x pr \ A) = C[hl, h2 ]/(h+l, h2+ h. The class

Z ev*Hi . ev*Hj (2.11)
i+j=r

is supported on the boundary.

2.3.3 One marked point

The discussion for one marked point is similar. We first observe that Mo,o(Pr, 1) =
G(Pl,l Pr) and Mo0 1(JPr, 1) = P(S) where S is the tautological bundle over the Grassman-
nian.

We fix v a degree d self-morphism of pr, and as usual, we use composition with v to get
degree d maps from degree 1 maps. We obtain two morphisms:

r: G(lP', Pr) Mo,o(lPr, d) and r : P(S) -- Mo, (Pr, d).

We conclude that there is a diagram:

A* (Mo,o (Pr, d)) - -- A*(G((Pl,Pr))

r*( 1I*

A*(Mo,l(E(r, d)) f ) A*(P(S)).
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The lower horizontal arrow:

1r* : A*(M, l(Pr, d)) A*((P(S)) (2.12)

is surjective. Indeed, the Chow ring of the projective bundle P(S) is generated by the Chow
ring of the base G(P 1, r ) together with the additional class A = cl(Op(s)(1)). The class
A is in the image of r*. Indeed, pulling back under the two evaluation maps: ev : P(S) =
Mo,1 (Pr, 1) -- pr and ev : Mo,1(Pt, d) -, PrT it is clear that:

r*L1 = r*ev*H = ev*v*H = d . ev*H = dA.

We also know by fact 2.3.1 that the upper arrow r* is surjective. This proves the claim.
The next step involves the computation in equivariant Chow groups. We keep the

notation of the previous subsection. We observe that Mo,(lPI, d) = U/N, where N is the
group of 2 x 2 upper triangular matrices acting on V , C2. We obtain the isomorphism:

A*(Mo, l(Pr, d)) = A~*(U) = A*(UN) = A*(U XN EN).

We denote by G the infinite Grassmannian of 2 dimensional planes, and by S the tau-
tological rank 2 bundle. BN can be identified with the projective bundle P(S). We let
7r : P(S) -, G denote the projection. Also V XN EN = 7r*S. For our purposes, we will pass
to finite dimensional truncations of G by large dimensional Grassmannians.

We can view U XN EN as a subvariety of the bundle:

Symd (V *) X N EN = Symd7r*S*.
0 0

Let B denote this bundle and let D denote the complement of UN in B. We obtain an
exact sequence:

Adim-k(D) Ak ( Symd(r*S*)) =Ak(S)) Ak(Mo,(r, d)) -- 0. (2.13)

We denote by p: B -- P(S) and q : P(7r*S) - P(S) the two projections. We let Q be
the total space of the bundle q*B so that we obtain a commutative diagram:

Q = q*B P P(7r*S)

M,l(lPr , d) . .......E B P - (.) > G.

Just as before, the space P(r*S) comes equipped with a bundle O(d), which gives by pullback
the bundle p*O(d) over Q.

Unwinding the definitions, we obtain an evaluation morphism ev : Q\D -- ,P 'r undefined
over the common vanishing D of r + 1 sections of the line bundle p*O(d) on Q. Hence,
[D] = Cl1(p*O(d))r+l. Therefore, the image of i contains the classes:

q(cl(p*O(d))r+k+l ) = p*q*(Cl(O(d))r+k+l) = dr+k+lp**Sr+k(s), k > 0,
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where sr+k are the Segre classes. We use the exact sequence (2.13) to obtain a surjection:

A*(P(S))/ (r*sr+k(S))k>o -- A*(Mo,l(P, d)).

We recall the surjection (2.12) and the isomorphism:

A*(P(S))/(r*sr+k(S))k>o - A*(]P(S))-

This follows from the usual description of the Chow rings of projective bundles and the fact
that over the base we have the analogous isomorphism:

A*(G)/ (s,+k(S))k>O - A*(G(Pl,pr)).

This is enough to infer that the map * is an isomorphism. However, we push the
analysis further. We see that A*(P(S)) is generated by A*(G) together with the class
A = cl(Op(s) (1)) which satisfies the relation A2 + cl(S)A + c2 (S) = 0. We have:

A= 1T*L1, =*(H2) -C1(S), 1T*I(H2)2 - *r(H3) = C2(S).

The last two follow from a fact explained in [52], namely that the Chern classes of the
quotient bundles cl(Q) and c2(Q) are the pullbacks of 1 (H2) and rK(H3 ) under r. We
derive:

Lemma 2.3.3. A*(Mo,l(lPr, d)) is generated multiplicatively by L 1 = ev*H and the pullback
of A*(Mo,o(Pr, d)) as determined in 2.3.1. r* establishes an isomorphism with A*(P(S)),
where S is the tautological bundle over the Grassmannian G(P1,Ir). The codimension 2
class:

ev*H2 -dev*H * r(H2 ) + rI(H2)2 K(H3) (2.14)
d o{'

is supported on the boundary.

2.3.4 The tautological relations

In the remainder of this chapter we will show that all relations between the tautological
classes [r, t, f] on Mo,n(Pr, d) are tautological in the sense of definition 1.6.1. We will only
briefly indicate the ideas involved.

We make two preliminary observations. First, the Keel relations stated in the introduc-
tion did not involve assignining weights to the legs. However, this can be achieved via the
gluing and forgetting equations.

Indeed, assigning a class a to the leg [ is equivalent to gluing in a tripod of degree 0
along the leg , with weights (1, 1, a), and then forgetting one of the markings of the newly
added vertex (and stabilizing).

These Keel relations with weights assigned to the legs are therefore tautological. The
same argument shows that:

* multiplication of tautological relations by ev a still gives a tautological relation.

Secondly,

* the system of tautological relations between [r, tv, f] is closed under pullback by the
forgetful morphisms r.
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a

a

r

Figure 2-1: Adding in weights via gluing and forgetting.

We agree that:

*-[r,,l-E [rto,]

the sum being taken over all possible graphs F obtained from r by attaching a leg at any
of its vertices. This is again a consequence of gluing a tripod of degree 0 and forgetting a
destabilizing leg.

As a consequence, we can generalize Keel's relations accounting for n + 4 attached legs
with arbitrary weights, the last n of which are distributed arbitrarily among two vertices,
and the first 4 being distributed among the vertices as (ij)(kl) and (ik)(jl) (see the figure).

i k

= C /

J L1

k I j I

Figure 2-2: Generalized Keel relations.

We now prove proposition 2.3.1. We start our analysis starts with the case n = 0. All
tautological classes [r, to, f] on Mo,o(lPr, d) are restrictions of the classes c(Hil,..., Him).
According to fact 2.3.1, the two point classes c(H11, H1 2) are additive generators without
relations. It suffices to express (Hi1+l,..., Hi'+ l ) in terms of the two point classes by
means of the tautological relations. This can be thought of as an instance of Kontsevich-
Manin reconstruction, and it can be proved in the same manner.

We use the Keel relations on Mo,n+4(Pr, d) with cohomology weights Hil,... ,H i 4,
HiJ,... Hin assigned to the legs of the graph. Using invariance under the forgetful mor-
phisms, we conclude that the following equation on Mo,(Pr, d):

K(Hil+i4, Hi2, Hi3, Hji,. . ., Hjn ) + (Hil, Hi4, Hi2+i3, Hl ... Hjn) =

= (Hi+i, Hi2, Hi4, Hl,. . . Hjn ) + (Hi, Hi3,Hi2+i4,Hjl, ... , Hjn) (2.15)

47



is tautological. We have made use of the mapping to a point and forgetting destabilizing
legs relations. Setting i 4 = 1, and using the divisor equation, we express

K(Hil+l, Hi2, Hi3, H, . . ., Hin) _ (Hil H i2+1, Hi3, Hjl .., Hi)

in terms of classes with fewer insertions. This works as long as we have at least at least 3
insertions. This system of equations together determine uniquely the re classes with several
insertions in terms of the two point classes K(Hll, H2).

When n = 1, the same reasoning applies. We only need to write down tautological
equations expressing the classes L . (Hi, . ., Hi') in terms of the generators with e < 1
and I < 2. We can multiply (2.15) by ev*He to get tautological relations which reduce us
to the case I < 2.

The last step of the reduction consists in proving that the equation (2.14) is tautological.
In fact, we claim the following tautological equation on Mo, 1(P r, d):

ev~ac - devH c(a) + 1c(a, H)- dK(aH) =0. (2.16)

Indeed, consider the Keel relation on Mo, 4(Pr, d) with distribution of the markings (12)(34)
and (13)(24) among two vertices, such that the weights of the legs are 1, a, H, H respectively.
We then forget the the last three markings via the morphism Mo,4(Pr, d) - Mo,1(lPr,d),
and restrict to the open part Mo,(lpr, d). The statement then follows using the divisor
relation, and the contracting unstable tripods relations.

When n = 2, we need to prove that the generators

ev*H1 ev2H2 * K(Hl, .. ., Hi')

can be expressed in terms of the classes evlH' ev*Hi 2 via tautological equations. This is
a consequence of the above discussion and of equation (2.17). To include more insertions
in the classes we multiply (2.17) below by a monomial in the evaluation classes and
apply the forgetful morphisms. The identity (2.17) below also shows that equation (2.11)
is tautological; we specialize to k = 0 and I = r, also using the pullback from the target
relations.

We claim that the following equation on Mo, 2(Pr, d):

ev Hk+l- i ev2*Hk+i = d eviHk . evH . K(H+1 ) (2.17)
i=O

is tautological. It is clear that the case 1 = 0 is just the divisor equation. The case = 1
is a tautological equation since it is obtained by multiplication by evaluation classes of the
tautological equation:

evdH + ev*H = K(H2). (2.18)

In turn, this is obtained from the Keel equation on Mo,4(Per,d), splitting the legs in the
two configurations (12)(34) and (13)(24) among two vertices. The weights on the legs are
(1, 1, H, H). We then pushforward the relation by the forgetful morphism 7r : Mo,4((Pr, d) --
Mo,2(Pr, d), and use the divisor equation to obtain (2.18). Similarly, one proves that the
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equation:

evH ev*H = l(H2, H2)- 1(H3) (2.19)

is a tautological identity on Mo,2(P r , d).
As a corollary of (2.16) and (2.18) the following more general tautological equation on

Mo, 2(P r, d) holds true:

2 0)
evH1l + ev*H = dK(Hl1)- (H2+l), H) (2.20)

Finally, equation (2.17) for (k + 1, I - 2) and (2.19) imply the statement for (k, 1) if one
observes that:

E(H+) - d (H2 H1) + IK(H2, H2, H i) _ d (H, H-1) = 0.

This again is a tautological equation obtained from Keel's relation (2.15) with i = 1, i2 =
l - 1,13 = 1, i4 = 2 and the divisor equation.

Finally, let n > 3. The system of equations (2.20) and (2.17) for all pairs of indices (i, j)
now becomes solvable. We obtain the following tautological equation on Mo,n(P', d):

evrH ... = evH = d(l + 1)(H+) (2.21)

For k = 0, I = r, we obtain that
evlH = 0

is a tautological equation on the open part.
We have seen in the case n = 2 that all classes [r, to, f] can be expressed via tautological

equations in terms of the evaluation classes at the first 2 markings. In turn, these can
be expressed via the tautological relation (2.21) in terms of evaluation classes with one
marking. In the light of lemma (2.3.1), the proof of proposition 2.3.1 is complete.
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Chapter 3

The Bialynicki-Birula stratification

In this chapter we give another proof of our main theorem when the target is a projective
space, using a different point of view. In fact, we will prove the stronger version, the-
orem 2 stated in the introduction. This result explicitly describes the Bialynicki-Birula
stratification on the space of stable maps in terms of the Gathmann-Li spaces. The main
ingredient of the proof is an explicit description of the torus flow on the Kontsevich-Manin
spaces. To obtain the tautology of the Chow classes, we exploit the inductive structure of
the Gathmann and Kontsevich-Manin spaces.

This chapter is organized as follows. The first section contains preliminary observations
about localization on the moduli spaces of stable maps and about the Gathmann stacks.
Then, we construct the Bialynicki-Birula cells on a general smooth Deligne Mumford stack
with an equivariant atlas. We establish the "homology basis theorem" under a general
filterability assumption. The third section contains the main part of the argument. There,
we identify explicitly the torus decomposition for the stacks Mo,,n(, d), and show its
filterability. Filterability essentially entails to defining an ordering on the fixed loci which
allows us to build the moduli space by successively adding cells. Finally, the last section
proves the main results.

3.1 Preliminaries.

In this section we collect several useful facts about the fixed loci of the torus action on the
moduli spaces of stable maps. We also discuss the Gathmann compactification of the stack
of maps with prescribed contact orders to a fixed hyperplane.

3.1.1 Localization on the moduli spaces of stable maps.

The main theme of this chapter is a description of the flow of stable maps under the torus
action on Mo,(,,1Pr, d). This flow is obtained by translation of maps under the action on
the target Pr . Traditionally, actions with isolated fixed points have been used. As it will
become manifest in the next sections, it is better to consider the following action which in
homogeneous coordinates is given by:

t. · [o : z ] = [zo: tzl:...: tz], for t E C*. (3.1)
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There are two fixed sets: one of them is the isolated point p = [1 : 0: ... : 0] and the other
one is the hyperplane H given by the equation zo = 0. We observe that

if z E Pp _ H then lim t z =p. (3.2)
t--*0

The fixed stable maps f: (C, xl,... ,xn) -- pr are obtained as follows. The image of f
is an invariant curve in Pr , while the images of the marked points, contracted components,
nodes and ramification points are invariant i.e. they map to p or to H. The non-contracted
components are either entirely contained in H, or otherwise they map to invariant curves
in Pr joining p to a point qH in H. The restriction of the map f to these latter components
is totally ramified over p and qH. This requirement determines the map uniquely. To each
fixed stable map we associate a tree r such that:

* The edges correspond to the non-contracted components which are not contained in
H. These edges are decorated with degrees.

* The vertices of the tree correspond to the connected components of the set f- (p) U
f-l(H). These vertices come with labels p and H such that adjacent vertices have
distinct labels. Moreover, the vertices labeled H also come with degree labels, corre-
sponding to the degree of the stable map on the component mapped to H (which is
0 if these components are isolated points).

. r has n numbered legs coming from the marked points.

We introduce the following notation for the graph r.

* Typically, v stands for a vertex labeled p and we let n(v) be its total valency (total
number of incident flags i.e. legs and edges).

* Typically, w stands for a vertex labeled H and we let n(w) be its total valency. The
corresponding degree is dw.

* The set of vertices is denoted V(r). We write V and W for the number of vertices
labeled p and H respectively.

* The set of edges is denoted E(r), and the degree of the edge e is de. We write E for
the total number number of edges.

* For each vertex v, we write a, for the ordered collection of degrees of the incoming
flags. We agree that the degrees of the legs are 0. We use the notation dv = av, for
the sum of the incoming degrees.

* A vertex w labeled H of degree d, = 0 is called unstable if n(w) < 2 and very unstable
if n(w) = 1. The unstable vertices have the following interpretation:

* the very unstable vertices come from unmarked smooth points of the domain
mapping to H;

* the unstable vertices with one leg come from marked points of the domain map-
ping to H;

* the unstable vertices with two incoming edges come from nodes of the domain
mapping to H.
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The vertices w labeled H of positive degree or with n(w) > 3 are stable. Let s be the
number of stable vertices labeled H, and u be the number of very unstable vertices.

The fixed locus corresponding to the decorated graph r will be denoted by Fr. It can
be described as the image of a finite morphism:

Cr: II MO,n(v) x n Mo,n(w)(H, dw) - )M 0,n(Pr, d) (3.3)
v labeled p w labeled H

To get the fixed locus we need to factor out the action of a finite group Ar of au-
tomorphisms, which is determined by the exact sequence below whose last term is the
automorphism group of the decorated graph r:

1 - Z/deZ--Ar- Autr- 1
eEE(r)

The map Cr can be described as follows.

* For each vertex v labeled p pick a genus 0, n(v)-marked stable curve Cv .

* For each vertex w labeled H pick a genus 0 stable map f, to H of degree d, with
n(w) markings on the domain C,.

* When necessary, we need to interpret Cv or C, as points.

A fixed stable map f with n markings to P is obtained as follows.

* The component Cv will be mapped to p. The components C,. will be mapped to H
with degree dw under the map fw.

* We join any two curves Cv and Cw by a rational curve Ce whenever there is an edge
e of the graph r joining v and w. We map Ce to IP with degree de such that the map
is totally ramified over the special points.

* Finally, the marked points correspond to the legs of the graph rF.

3.1.2 Gathmann's moduli spaces.

Gathmann's moduli spaces are an important ingredient of our localization proof. We briefly
describe them below, referring the reader to [25] for the results quoted in this section.

We let a = (l, ... , an) be a n tuple of non-negative integers. We will usually assume
that:

IaI = E i = d.
-H

The substack M( (Pr, d) of MO,n(IPr, d) parametrizes stable maps f : (C, xl, ... X ) Pr
such that:

* f(xi) E H for all i such that ai > 0;

* f*H- Ei aixi is effective.
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Gathmann shows that this is an irreducible, reduced, proper substack of the expected
codimension acl = i ai of Mo,n((pr, d).

There are more general versions of the Gathmann stacks which were introduced by
Jun Li [44]. Jun Li's construction holds in any genus and for arbitrary target. It allows,
via a careful study of the virtual fundamental classes involved, for a proof a degeneration
formula of the Gromov-Witten invariants. The discussion in the next few paragraphs will
not be essential for our proofs. However, since Jun Li's relative stable morphism spaces have
become standard in Gromov-Witten theory, we will like to briefly explain their relationship
to Gathmann's stacks.

To define the relative stable morphisms, we need to consider higher degenerations Pr [k] of
X. The kth degeneration Pr [k] of Pr is obtained by gluing in k additional "levels" isomorphic
to the projective bundle P = P(OH(-H) E OH) --+ H to the initial level isomorphic to P.
The projective bundle P has two sections Ho and Ho corresponding to each of the two
summands. The new levels are attached identifying the section Hoo of the it h level with Ho
in the (i + 1)st level. The singular locus of PT [k] consists in the k copies of H where the
gluing occurs. The last copy Hoo of H in the kth level of lEP[kl will be of special importance
to us, as we will measure multiplicities with respect to this hypersurface. Also, observe the
fiberwise collapsing map 7r : Pr[k] -- P r .

A relative genus 0 stable morphism to Pr of degree d with multiplicities (ai,...,an)
along H consists in the following data:

* A usual stable map f: (C, xi,..., xn) -- lPT [k] of genus 0 to some degeneration Pr[k]
of P r satisfying the properties below;

*· 7*f[C= d;

f -Ho = c aii;
* no irreducible component maps to the singular locus of PrT [k];

* every point mapping to the singular locus is a node. Local branches around the node
map to H with same contact order on both levels;

* (stability) the restriction of the morphism f to the level i copy of P is not a union of
rational tails which are totally ramified over Ho and Hoo and which have no special
points away from Ho and Hoo.

The automorphism group of Pr[k] is, by definition, the torus (C*)k acting on the fibers
of each of the levels P. Note that we do not take into account the automorphisms of the
initial level isomorphic to Pr . Morphisms of relative stable maps have the usual meaning
in terms of commuting diagrams, allowing the above automorphisms act on Pr[k].

It can be shown that the relative stable morphisms are parametrized by a separated
and proper Deligne Mumford stack JoH ( r, d) of the same dimension as Gathamann's.
Moreover, the projection morphisms 7r : Pr [k] -- PI give rise to a natural morphism:

9OI (Pr, d) - Mo.,(lPr d).

It can be shown that the image of this morphism is the Gathmann stack MOn(Pr, d).
This particular description of the Gathmann stacks is useful is one pursues the study of

their boundary, as we will below. Informally, morphisms in (the boundary of) the Gathmann
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spaces which have components contained entirely in H, arise as collapsing maps to some
degeneration of the pair (P', H) in Jun Li's construction. For example, figure 3.1.2 shows
a map in the boundary of Gathmann space with only one marking mapping to H with
multiplicity a (which should equal the degree d). This map can be seen as the collapse
of the relative stable morphism depicted in figure below to the level 1 degeneration of pr .

The "internal" component Co mapped to H is the collapsed image of the relative morphism
restricted to the first level. The "teeth" are the components of the relative stable morphism
restricted on the initial level. The arrow along the level 1 part of the degeneration indicates
the presence of automorphisms.

Figure 3-1: A level 1 relative stable morphism.

We will show later that the Gathmann stacks define tautological classes on the moduli
spaces MO,n(Pr, d). To this end we will make use of the recursive structure of the Gathmann
stacks explained in the equations (3.4) and (3.5) below. We describe what happens if we
increase the multiplicities. We let ej be the elementary n-tuple with 1 in the jth position
and 0 otherwise. Then, we have the following relation in A,(Mo,n(r, d)):

[+ej ( 7 , d)] = -(ajPj + ev H) (P, d)] + [(, d)] + [j(r, d)] (3.4)

The correction terms Da,j(Pr, d) come from the boundary of the Gathmann stacks.
These boundary terms account for the stable maps f with one "internal" component Co
mapped to H with some degree do and with some multiplicity conditions a ° at the marked
points points of f lying on Co. Moreover, we require that the point xj lie on Co. There are
r (union of) components attached to the internal component at r points. On each of these
r components Ci the map has degree di and sends the intersection point with the internal
component to H with multiplicity mi. In addition, there are multiplicity conditions ai at
the marked points of f lying on Ci. We require that the di's sum up to d and that the ai 's
form a partition of the n-tuple a.

The boundary terms we described are fibered products of lower dimensional Kontsevich-
Manin and Gathmann stacks:

r
Mo,r+lol (H, do) x Hr i ( di).

i=1
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points mapping to H
with G61tiplicity a

a= do+ m + ... + m,

Figure 3-2: A map in the boundary of the Gathmann compactification.

Their multiplicities are found from the equation:

[j(m m d)] = [mM !,ao+lo(H, do) xHr I ,iUmi (Pr, di)] (3.5)
i=l

3.2 The decomposition on smooth stacks with a torus action.

In this section we will construct the Bialynicki-Birula cells of a smooth Deligne-Mumford
stack with a torus actions under the additional assumption that there exists an equivariant
affine etale atlas. We show that the plus decomposition on the atlas descends to the stack.
The existence of such an atlas should be a general fact, which we do not attempt to prove
here since in the case of Mo,,(Pr, d) it can be constructed explicitly by hand. Finally,
in lemma 3.2.3 we prove a "homology basis theorem" for such stacks. Most (but not all)
results presented in this section can in fact be proved from the corresponding statements
for the coarse moduli schemes.

3.2.1 The equivariant etale affine atlas.

In this subsection will construct an equivariant affine atlas for the moduli stack Mo,,(Pr, d).
Fix an arbitrary T-action on pr inducing an action by translation on Mo,n(P r, d).

We start with an identification T = C*. We may need to change this identification later.
For a scheme/stack X with a torus action, we denote the fixed locus by XT.

Lemma 3.2.1. Possibly after lifting the action, there exists a smooth etale affine C*-
equivariant surjective atlas S -- Mo,n (Pr, d).

As a first step, we will find for any invariant stable map f, an equivariant etale atlas
Sf - Mo,n(Pr, d). The construction in [22] shows that MO,n(Pr, d) is a global quotient
[J/PGL(W)], thus giving a smooth surjective morphism r: J -- Mo,n(Pr , d). Here, J is
a quasiprojective scheme which is smooth since 7r is smooth and MO,n (Pr, d) is smooth. In
fact, J can be explicitly constructed as a locally closed subscheme of a product of Hilbert
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schemes on P(W) x Pr for some vector space W. The starting point of the construction is
an embedding of the stable map domain in P(W) x jPr. It is clear that the T-action on the
second factor equips J with a T-action such that the morphism 7r: J -- Mo,n(Pr, d) is equiv-
ariant. Moreover, from the explicit construction, it follows that 7rT : jT MO,n(P r, d) is
surjective.

For any invariant f, there exists a T-invariant point jf of J whose image is f. It follows
from [56] that there exists an equivariant affine neighborhood J of j = jf in J. The map
on tangent spaces d7r: TjJ - Tf Mo,n(pr, d) is equivariantly surjective. We can pick an
equivariant subspace Vf Tj Jf which maps isomorphically to TfMo, n(?r , d). By theorem
2.1 in [7], we can construct a smooth equivariant affine subvariety Sf of Jf containing j
such that TjSf = Vf. The map 7rf : Sf -- Mo,(Pr, d) is etale at j. Replacing Sf to an
equivariant open subset, we may assume rf is etale everywhere. Shrinking further, we can
assume Sf is equivariant smooth affine [56].

We consider the case of non-invariant maps f. We let a : C* -, Mo,n(Pr, d) be the
equivariant nonconstant translation morphism:

C* t ft E MO,n (Pr, d).

Proposition 6 in [22] or corollary 3.3.1 below show that, after possibly a base-change C*
C*, we can extend this morphism across 0. The image of 0 E C under a is a T-invariant
map F so we can utilize the atlas SF constructed above. We claim that the image of the
atlas rF : SF -* MO,n(Pr, d) contains f. Indeed, we consider the equivariant fiber product
C = C xM S. Since the morphism C -, Mo,,n(Pr, d) is non-constant, the image of some
closed point j in M,n(Pr, d) is of the form ft for t $ 0. Then, f is the image of the closed
point t-lj.

We obtained equivariant smooth affine atlases Sf - Mo,n(lPr, d) whose images cover
MO,n(Pr, d). Only finitely many of them are necessary to cover Mo,n(Pr,d), and their
disjoint union gives an affine smooth etale surjective atlas S -, MO,n(lr, d).

Corollary 3.2.1. Let X be any convex smooth projective variety with a T-action. There
exists an equivariant smooth etale afine surjective atlas S -, Mo,n(X, 3) as in lemma 3.2.1.

We embed i : X -, Pr equivariantly, and base change the atlas S constructed in the
lemma under the closed immersion i : Mo,n(X, 3) -+, Mo,n(Pr, d). Convexity of X is used
to conclude that since Mo,n(X, 3) is smooth, the etale atlas S is also smooth.

3.2.2 The Bialynicki-Birula cells.

In this section we construct the Bialynicki-Birula cells for a smooth Deligne-Mumford stack
M with a T action which admits an equivariant atlas as in proposition 3.2.1. This presup-
poses the identification T = C* obtained in the lemma. We first establish:

Lemma 3.2.2. Let f : X -, Y be an equivariant etale surjective morphism of smooth
schemes (stacks) with torus actions. Let Z be any component of the fixed locus of Y. Then
f -l(Z) is union of components of XT all mapping onto Z.

It suffices to show that the torus action on f-l(Z) is trivial. The T-orbits in f-1(Z)
need to be contracted by f since Z has a trivial action. Since the differential df : TX -- TY
is an isomorphism, it follows that all orbits are 0 dimensional. They must be trivial since
they are also reduced and irreducible.
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Proposition 3.2.1. Let M be any smooth Deligne Mumford stack with a C*-action and
assume a C*-equivariant affine etale surjective atlas r : S --, M has been constructed. Let
F be the fixed substack and Fi be its components. Then M can be covered by locally closed
disjoint substacks .Fi+ which are vector bundles over i.

Let R = S xM S. The two etale surjective morphisms s, t: R - S together define
a morphism j: R --, S x S. It is clear that R has a torus action such that s, t are both
equivariant. Moreover, since M is Deligne-Mumford, j is quasi-finite, hence a composition
of an open immersion and an affine morphism. Since S is affine, it follows that R is quasi-
affine. As s is etale, we obtain that R is also smooth.

If F = S x MF then F - S is a closed immersion. Since S -, M is etale and equivariant,
by the above lemma, F coincides with ST. Similarly s-(F) and t-l(F) coincide with RT.
Fixing i, we let Fi = S xM 3.. Then Fi is union of components Fij of ST . Similarly,
s-l(Fi) = t- 1 (Fi) is a union of components Rik of RT. We will construct the substack i+
of M and the vector bundle projection ai : Fi -+ i on the atlas S. We will make use
of the results of [7], where a plus decomposition for quasi-affine schemes with a C*-action
was constructed. For each component Fij, we consider its plus scheme Fi+; similarly for the

Rik's we look at the cells R + . We claim that:

s-'(UjF4) = t-1 (UjFt) = UkR+

and we let Fi+ be the stack which F+ = UjFi -+ S defines in M. It suffices to show that
if Rik is mapped to Fij under s, then Ri+ is a component of s-'(Fi). Let r E Rik. Then,
using that s is etale and the construction in [7], we have the following equality of tangent
spaces:

Trs-l(Fi) = ds- (Ts(r)F;t) = ds-1 ((T(r)S)>O) = (TrR)>- = TRi+k.

Here V> ° denotes the subspace of the equivariant vector space V where the C*-action has
non-negative weights. The uniqueness result in corollary to theorem 2.2 in [7] finishes the
proof. Note that the argument here shows that the codimension of Yfi in M is given by
the number of negative weights on the tangent bundle TrM at a fixed point r.

To check that i+ -+ Fi is a vector bundle, we start with the observation that F - Fi
are vector bundles. We also need to check that the pullback bundles under s and t are
isomorphic:

The argument is identical to the one above, except that one needs to invoke corollary of
proposition 3.1 in [7] to identify the bundle structure.

3.2.3 The homology basis theorem.

In this subsection we will establish the "homology basis theorem" (lemma 3.2.3) extending
a result which is well known for smooth projective schemes [11], at least in the case of
isolated fixed points. The proof does not contain any new ingredients, but we include it
below, for completeness. We agree on the following conventions.

Let us consider a smooth Deligne Mumford stack M with a torus action whose fixed
loci Yi are indexed by a finite set I, and whose Bialynicki-Birula cells i+ were defined
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above. We furthermore assume that the decomposition is filterable. That is, there is a
partial (reflexive, transitive and anti-symmetric) ordering of the indices such that:

(a) We have t C Uj<ii;

(b) There is a unique maximal index m E I.

Filterability of the Bialynicki-Birula decomposition was shown in [8] for projective schemes.
For the stack Mo,n( r(PI, d), filterability follows from the similar statement on the coarse
moduli scheme. However, to prove the tautology of the Chow classes, we need the stronger
filterability condition (c), which we will demonstrate in the next section, and which does
not follow from the known arguments:

(c) There is a family E of cycles supported on the fixed loci such that:

* The cycles in span the rational Chow groups of the fixed loci.

* For all E supported on Fi, there is a plus substack + (flowing into ~)
supported on Fi+. We assume that + is contained in a closed substack ~+

supported on ./ (usually, but not necessarily, its closure) with the property:

j<i

Lemma 3.2.3. Assume that M is a smooth Deligne Mumford stack which satisfies the
assumptions (a) and (b) above.

(i) The Betti numbers hm (M) of M can be computed as:

h m (M) hm- 2n (i)
i

Here ni is the codimension of TiF which equals the number of negative weights on the
tangent bundle of M at a fixed point in ~i.

(ii) If the rational Chow rings and the rational cohomology of each fixed stack Fi are
isomorphic, then the same is true about M.

(iii) Additionally, if assumption (c) is satisfied, the cycles ,+ for E span the rational
Chow groups of M.

Thanks to item (b), we can define an integer valued function L(i) as the length of the
shortest descending path from m to i. Observe that i < j implies L(i) > L(j). Because of
(a), we observe that

Zk= U > U i
L(i)>k L(i)>k

is a closed substack of M. Letting Uk denote its complement, we conclude that

Uk - Uk and Uk \ Uk-1 is union of cells U /i+.
L(i)=k
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The Gysin sequence associated to the pair (Uk,Uk_l) is:

.> ( Hm- 2n ( ) = Hm -2n (Fi) - Hm(Uk) - Hm(Ukl) > ...
L(i)=k L(i)=k

One imitates the usual argument for smooth schemes in [1] to prove that the long exact
sequence splits. Item (i) follows by estimating the dimensions.

To prove (ii), we compare all short exact Gysin sequences to the Chow exact sequences
(for m even) and use the five lemma:

0 ; eL()=k Hm"-2 ;n (i) -- Hm (Uk) -- Hm (Uk-1) - (3.6)

eL()=k Am/2 -n- (i) - , Am/2(Uk) - Am/ 2 (Uk_-1) 0 0

Finally, for (iii), we use (3.6) to prove inductively that

the cycles + nUk for ~ E E supported on i with L(i) < k span A*(Uk).

Condition (c) is used to prove that the image of S in Uk is among the claimed generators:

f+ = +nuk.

3.3 The Bialynicki-Birula decomposition on Mo,(F, d).

In the previous section we constructed the Bialynicki-Birula plus cells on the stack of stable
maps Mo,n (lP,d). In this section, we identify the decomposition explicitly. We start
by analyzing the C*-flow of individual stable maps. We will relate the decomposition to
Gathmann's stacks in the next subsection. Finally, we will prove the filterability condition
(c) needed to apply lemma 3.2.3.

3.3.1 The flow of individual maps.

To fix the notation, we let f : (C, xi, .., n) , -- p be a degree d stable map to Pr. We look
at the sequence of translated maps:

ft : (C, Xl,..., x) -- Pr, ft(z) = tf(z).

By the "compactness theorem," this sequence will have a stable limit. We want to under-
stand this limit F = limt-o ft.

To construct F explicitly we need to lift the torus action t tD where D = d!. Hence-
forth, we will work with the lifted action:

t. [o: Z :...: Zr] = [: tDz: ... : tDr].

We seek to construct a family of stable maps G: X -+ 1r over C, whose fiber over t 0 0 is
ft and whose central fiber F : C -- Pr will be explicitly described below.
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C -- P(3.7)
O -C

First we assume that the domain C is an irreducible curve. In case f is mapped entirely
to H, the family (3.7) is trivial and F = f.

Otherwise, f intersects the hyperplane H at isolated points, some of them possibly being
among the marked points. We make a further simplifying assumption: we may assume that
all points in f-l(H) are marked points of the domain. If this is not the case, we mark
the remaining points in f- 1 (H) thus getting a new stable map f living in a moduli space
with more markings MO,n+k(Pr, d). We will have constructed a family (3.7) whose central

fiber is F = limt-o f t . A new family having ft as the t-fiber is obtained by forgetting the
markings. We use a multiple of the line bundle

w7.( xi) 0 G*Gp(3)
i

to contract the unstable components of the central fiber. Thus, we obtain the limit F from
F by forgetting the markings we added and stabilizing.

Henceforth we assume that all points in f-1(H) are among the markings of f, and f is
not a map to H. Let s8,..., sk be the markings which map to H, say with multiplicities
nl,...,nk such that Fni = d. We let tl,...,ti be the rest of the markings. We let
qi = f(si). The following lemma will be of crucial importance to us. The method of proof
is an explicit stable reduction, and it is similar to that of proposition 2 in [40].

Lemma 3.3.1. Let F be the following stable map with reducible domain:

* The domain has one component of degree 0 mapped to p. This component contains
markings T 1, ... , T.

* Additionally, there are k components Cl,..., Ck attached to the degree 0 component.
The restriction of F to Ci has degree ni, its image is the line joining p to qi = f(si)
and the map is totally ramified over p and qi.

* Moreover, if we let Si = F-l(qi), then S1,...,Sk, T1,...,T} are the marked points of
the domain of F.

Then, the stabilization of F is the limit limt-go ft.

It suffices to exhibit a family as in (3.7). We let fo,..., fr be the homogeneous com-
ponents of the map f. We let C be the domain curve with coordinates [z : w]. The
assumption about the contact orders of f with H shows that f vanishes at sl, ... ,sk of
orders nl,..., nk with Ei ni = d.

There is a well defined map Go : C* x C--Pr given by:

(t, [Z: w]) A- [f°(z : W) : tDfl(z : W): ... : tDfr( : W)].

The projection map r : C* x C -+ C* has constant sections sl,... , k, tl, ... , t. It is clear
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T,

Figure 3-3: The limit in lemma 3.3.1.

that Go can be extended to a map

Go: C x C \ U({} x S) -- Pr

A suitable sequence of blowups
maps G: X-+IP as in (3.7).

of C x C at the points {0} x {si} will give a family of stable

Figure 3-4: Obtaining the stable limit.

It is useful to understand these blowups individually. It suffices to work locally in quasi-
affine patches Ui near si and then glue. An affine change of coordinates will ensure si = 0.
For n = ni, we write fO = znh. We may assume that on Ui, h does not vanish and that
fi,..., fr do not all vanish. Let D = n e. We will perform e blowups to resolve the map
Go: Ui x l1 \ (0, [0: 1])} - Pr:

(t, [z: w]) -- [znh(z: w): tnefl(z: w) :...: tef(z: w)] .

The blowup at (0, [0 : 1]) gives a map:

G1 :X1 .......... -Pr
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In coordinates,
X1 = {(t, [z : w], [Al, B 1]) such that Alz = Bltw}

and
G1 = [B h(tB : A1 ) : tne-n f(Blt: Al) ... : tne-nfr(Blt Al)].

The map is still undefined at t = 0 and B1 = 0 so we will need to blow up again. After the
kth blowup, we will have obtained a map:

Gk : Xk .......... Iprt

which in coordinates becomes:

Xk = {(t, [z: w], [Al, B1],..., [Ak : Bk]) I Alz = Bltw, Ai+lBi = tAiBi+l, 1 < i < k - 1}

Gk = [Bnh(tkBk: Ak) : tne-nkf(tkBk: Ak): ... : tne-nkfr (tkB : Ak)]

After the eth blow up we obtain a well defined map. This map is constant on the first e - 1
exceptional divisors (hence they are unstable). On the eth exceptional divisor the map is
given by:

Ge = [Bn : Afi(O :1) ... : Aefr(0: 1)].

There, the map is totally ramified over two points in its image. It is easy to check that the
sections s1,..., Sk, tl, .. , t extend over t = 0 as claimed in the lemma.

We obtain a family G: X --,P r of maps parametrized by C as in (3.7). The profile of
the central fiber is the middle shape in figure 3- 4. There are unstable components coming
from the exceptional divisors which need to be contracted successively to obtain the final
limit we announced. This completes the proof.

We consider the case when the domain curve is not irreducible. Assume that the stable
map f is obtained by gluing maps fl and f2 with fewer irreducible components at markings
* and * on their domains with fl(*) = f2(®). Inductively, we will have constructed families
(3.7) of stable maps over C whose fibers over t # 0 are ff and f. We glue the two families
together at the sections * and * thus obtaining a family whose fiber over t is ft. The
argument above proves that the limit for reducible maps can be obtained by taking the
limits of each irreducible component and gluing the limits together along the corresponding
sections.

Example 3.3.1. Figure 3 - 5 shows the limit in the case of a node x mapping to H with
contact orders al and a2 on the two components C1 and C2 transversal to H. The node is
replaced by two rational components of degrees al and a2 joined at node. These components
are joined to the rest of the domain C1 U C2 at nodes mapping to p.

We obtain the following algorithm for computing the limit F:

(i) We consider each irreducible component of the domain individually. We mark the
nodes on each such component.

(ii) The map F leaves unaltered the irreducible components mapping to H.

(iii) The components which are transversal to H are replaced in the limit by reducible
maps. The reducible map has one back-bone component mapped to p. This compo-
nent contains all markings which are not mapped to H. Moreover, rational tails are
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al p

a,

~x~ -f(x) E H

a2

a2
C2

Figure 3-5: The limit of the C* flow when a node maps to H.

glued to the back-bone component at the points which map to H according to the
item below. The markings which map to H are replaced by markings on the rational
tails.

(iv) In the limit, each isolated point x of the domain curve which maps to f(x) E H with
multiplicity n is replaced by a rational tail glued at a node to the rest of the domain.
The node is mapped to p. The image under F of the rational tail is a curve in PI
joining p to f(x) E H. The map F is totally ramified over these two points with
order n. If the point x happens to be a section, we mark the point F-l(f(x)) on the
rational tail.

(v) The map F is obtained by gluing all maps in (ii) and (iii) along the markings we
added in (i) and then stabilizing.

Corollary 3.3.1. For each stable map f, there is a family of stable maps (3.7) over C,
whose fiber over t 0 is the translated map ft and whose central fiber F is obtained by the
algorithm above.

3.3.2 Relation to the Gathmann stacks

We will proceed to identify the Bialynicki Birula cells of Mo,n(P r, d). Recall that the
fixed loci for the torus action on Mo,n(P', d) are indexed by decorated graphs r. We will
identify the closed stacks YFt in terms of images of fibered products of Kontsevich-Manin
and Gathmann stacks under the tautological morphisms.

In this chapter, we will need the following versions of Gathmann's construction.

-H(i) The substacks MH f(Pr, d) of Mc (Pt , d) parametrize maps with the additional condi-
tion that the components of f are transversal to H. The maps in the open Gathmann
stack MH (Pr, d) satisfy this condition by definition [25], hence:

M(Pr , d) MH(Pr, d) - M. (Prp d) t Mon (Pr, d).

(ii-1) For each map f in MH(Pr, d), the dual graph A is obtained as follows:
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Figure 3-6: A family as in corollary 3.3.1.

* Vertices labeled by degrees correspond to the irreducible components of f. Ver-
tices of degree 0 satisfy the usual stability condition.

* The edges correspond to the nodes of f.

* Numbered legs correspond to the markings. The multiplicities a are distributed
among the legs of A.

* We write a, for the ordered collection of multiplicities of the legs incoming to the
vertex v to which we adjoin O's for all incoming edges (corresponding to the fact
that the nodes of a map in M (Pr, d) cannot be sent to H). The assignment of
the multiplicities to the incoming flags is part of the datum of a,.

* The degree d, of the vertex v is computed from the multiplicities: Iav I = d,.

For each graph A as above, we consider the stratum in MFH(Pr, d) of maps whose
dual graph is precisely A. This is the image of the fibered product M A'H(I r , d) of
open Gathmann spaces under the gluing maps:

M,,H (Pr d)= II M (r, dv)d)
(vEV(A)

The fibered product is computed along the evaluation maps on the corresponding
moduli spaces at the markings determined by the edges of A.

(ii-2) One also defines the stack M\,'H(r, d) by taking the analogous fiber product of spaces
fMHfv (Pr, d). Its image in MH (Pr(, d) are the maps transversal to H with domain type

at least A. We write Mo n for the closure of the stratum of marked stable curves whose
dual graph is the unlabeled graph underlying A. It follows that:

a,H(Pr d) = on XO M (br d) (3.8)
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(ii-3) The similar fibered product of closed Gathmann spaces is defined as:

) E(r)

Ma d) = (3.9)

-A,H oMHrWe will see later that MaX (Pr, d) is truly a compactification of AM' H(Pr, d).

(iii) We will need to deal with unmarked smooth points of the domain mapping to H.
This requires manipulations of a stack obtained from Gathmann's via the forgetful
morphisms. We fix a collection of non-negative integers 3 = (1,..., Pn) and a col-
lection of positive integers 6 = (61,..., 6m), satisfying the requirement d = 11 + 161.
The write MH 1 (Pr, d) for the image of the open Gathmann stack via the forgetful
morphism:

MHUb(P'r, d) . Mn+m(Pp, d) + Mo,n(lPr, d).

The open stack M, (Pr, d) parametrizes irreducible stable maps f : (C, xl ... , ) -,x

Pr such that:
f*H = Chixi + 6jj,

for some distinct unmarked points of the domain yj.

With these preliminaries under our belt, we repackage the datum carried by each of
the graphs r indexing a fixed locus, into a fibered product Xr of Kontsevich-Manin and
Gathmann spaces. Precisely, we define:

E(r)

Xr = (Mps, (pr, ) XH II|Mon(w) (H d))
v w

The set of integers av defined in section 1.1 is partitioned into two subsets Pv U 6v. 6v
collects the degrees of the incoming edges whose endpoint labeled w is very unstable. The
fibered product above is obtained as usual along the evaluation maps on the moduli spaces
determined by the edges of r.

A general point of Xr is obtained as follows.

* For each vertex w labeled (H, dw) we construct a stable map fw of degree dw, with n(w)
markings and rational domain curve Cw. For the unstable vertices w this construction
should be interpreted as points mapping to H.

* For each vertex v labeled p, we construct a stable map f with smooth domain C,
and n(v) marked points.

* We join the domain curves C, and C, at a node each time there is an edge incident
to both v and w. Each edge e which contains unstable w's gives a special point of
the domain. The special point should be a node mapping to H if w has two incoming
edges, or a marking if w has one incoming edge and an attached leg, or an unmarked
point mapping to H when w is very unstable.

* For each v labeled p, the map fv has degree dv = Ilvl + 16v, on the component Cv.
Moreover, each incident edge e corresponds to a point on Cv which maps to H and
we require that the contact order of the map with H at that point be de.
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It is clear that by corollary 3.3.1, the limit of the flow of the above map has dual graph r.
Even though the fibered product above is, modulo automorphisms, the Bialynicki-Birula

cell, we will carry out our discussion so that it only involves the stacks in (i) and (ii). To
this end, we mark all the smooth points of the domain mapping to H. Combinatorially, this
corresponds to eliminating the very unstable vertices in r. We let y be the graph obtained
from r by attaching legs to each terminal very unstable vertex w. Then Xr is the image of
the fibered product:

(X =) Yr = ( H v(Pr dv) xH I MOn(w, (H, dw) '
v zw

under the morphism:
MO~n+u(PrT d) Mo,n(lE, d)

which forgets the markings corresponding to the u newly added legs of y -r F. We analo-
gously define the companion stacks Yr and Yr (and their images Xr and Xr):

E(r)

Yr = .fM ,(Pr, dv) XH I Mo,n(w),(H, dw) (3.10)
v W

Yr = ( Hl (Par, d) XH II On(w)(H d) (3.11)
v W

There is a morphism Yr - MO,n+u+(Pr, d) --+ ~O,n(Pr, d) obtained as compositions of:

* gluing morphisms;

* forgetful morphisms;

* inclusions of Gathmann stacks M ( r, d) -, Mo,m(PT, d);

* inclusions of Kontsevich-Manin stacks Mo,m(H, d) - M,m(IP r, d).

Lemma 3.3.2. The stack Yr is smooth. Its image in Mo,n+u(Pr, d) has codimension d +
5 -u.

We observe that for any collection of weights a, the evaluation morphism:

evl: MHf(Pr, d) -, H (3.12)

is smooth. First, the source is smooth. This is proved in [25] for MH(Ipr, d) . To pass to the
nodal locus, an argument identical to that of lemma 10 in [22] is required. As a consequence,
there is a non-empty open set of the base over which the morphism is smooth. As PGL(H)
acts transitively on H, the claim follows.

To prove the lemma, we follow an idea of [40]. We will induct on the number of vertices
of the tree F, the case of one vertex being clear. We will look at the terminal vertices of r
with only one incident edge.

Pick a terminal stable vertex to labeled (H, dt,), if it exists. A new graph r' is obtained
by relabeling to by (H, 0) and removing all its legs. Inductively, Yr is smooth. It remains
to observe that the morphism:

Yr _- Yr,
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is smooth, as it is obtained by base change from the smooth morphism:

ev : Mo,n() (H, d) -- H.

We can now assume all terminal vertices are either labeled p or labeled H but unstable.
Removing all terminal H labeled vertices from r, we obtain a new tree whose terminal
vertices are all labeled p. Pick a terminal vertex t in the new tree. It is connected to (at
most) one vertex to. Assume was connected to the terminal vertices tol, ... , tk in the old
tree r. A new graph r' is obtained from r by removing all flags incident to , tol, ... , tk

and replacing them by a leg attached at to. The same argument as before applies. We base
change Yr, by the smooth morphism (3.12). In our case, a = a, is the collection of degrees
of the flags incoming to . The evaluation is taken along the marking corresponding to the
edge joining t and to.

To compute the dimension of Yr, we look at the contribution of each vertex w labeled
(H, dw), of each vertex v labeled p, and we subtract the contribution of each edge e. As-
suming all H labeled vertices are stable, we obtain the following formula for the dimension
of Yr:

E (rdw + (r - 1) + n(w) -3) + E ((r + 1)dv + r + n(v) - 3 - av) - (r -1) =
w v e

= r d+ ) + n d(w)+ n(z n(v) + n( ((r-4)W+(r-3)V-(r-1)E)=

= rd+(n+2E)+(-2E-W+r-3) = ((r+l)d+r+n-3)-d-W.

Thus the codimension of Yr in Mo,n(Pr, d) equals d + W. The formula needs to be ap-

pended accordingly for the unstable vertices. The final answer for the codimension of Yr
in MO,n+u(Pr, d) becomes d + 5 - u.

We constructed open immersions Yr -* Yr .- Yr. The following lemma clarifies the
relationship between these spaces.

Lemma 3.3.3. The image of Yr is dense in Yr. The stack Yr is reduced and irreducible.

Using the above discussion, the only thing we need to show is that Yr is irreducible. We
observe that the smooth stack Yr is irreducible. Indeed, we can prove Yr is connected by
analyzing the C* action. Using corollary 3.3.1 all maps in Yr flow to one connected fixed
locus which is the image of the connected stack:

I| M,n(v) X I MO,n(w)(H, dw).
V uW

To prove the irreducibility of Yr one uses the same arguments as in lemma 1.13 in [25].
By the previous paragraph, it is enough to show that any map f in Yr can be deformed
to a map with fewer nodes. Picking a map in Yr is tantamount to picking maps fv and

fw in MaV(P, dv) and in Mo,(w)(Pr, dw) with compatible gluing data. For each vertex v,
Gathmann constructed a deformation of fv over a smooth base curve such that the generic
fiber has fewer nodes. We attach the rest of f to the aforementioned deformation. To
glue in the remaining components, we match the images of the markings by acting with
automorphisms of pr which preserve H. The details are identical to those in [25].
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Lemma 3.3.4. There are d + s - u negative weights on the normal bundle of Fr.

The arguments used to prove this lemma are well known (see for example [32] for a
similar computation). In the computation below, we will repeatedly use the fact that the
tangent space TxiPr has C* weights D,..., D for x = p and weights 0, 0,..., -D if x E H.

Recall the description of the stable maps in Fr which was given in the discussion fol-
lowing equation (3.3). We let (f, C, xl, ... , n) be a generic stable map in Fr such that Cv
and Cw are irreducible. We will compute the weights on the normal bundle at this generic
point. These are the non-zero weights of the term Tf of the following exact sequence:

0 - Ext°(oc(Z xi), Oc) - HO(C, f*TPr) Tf --+ Ext'l(c( xi), Oc) -, 0 (3.13)
i i

We will count the negative weights on the first, second and fourth term above.

The first term gives the infinitesimal deformations of the marked domain. All contri-
butions come from deformation of the components of type Ce. An explicit computation
shows that the deformation space of such rational components with two special points,
which need to be fixed by the deformation, is one dimensional with trivial weight. There
is one exception in case the special points are not marked or nodes. This exceptional case
corresponds to very unstable vertices. We obtain one negative weight for each such vertex,
a total number of u.

Similarly, the fourth term corresponds to deformations of the marked domains. We
are interested in the smoothings of nodes x lying on two components D1 and D2. The
deformation space is TxD1 ®TD 2. The nodes lying on Ce and Cv give positive contributions.
We obtain negative weights for nodes joining components Ce and Cw for stable w, and also
for nodes lying on two components Cel and Ce2, which correspond to unstable w's with two
incoming edges. The number of such weights equals the number F of edges whose vertex
labeled w is stable plus the number of unstable w's with two incoming edges.

The weights on the second term will be computed from the exact sequence

O -+ H(C, f*TP) Ho (C,, f*ITPr) 0 H(CW, fTPT) e HT(Ce, fe*TPr) 
v w e

-+ (TfVPr TfW Pr 0
f. fu

Here f,, fw are flags of r labeled by their initial vertices v and w. They correspond to
nodes of the domain mapping to p and H, hence the terms Tf]? rP and TfwPr in the exact
sequence above. The last term of the exact sequence above receives one negative contribu-
tion for each of the flags f. We obtain the following contributions to the negative weights
of H°(C, f*TP r ) coming from the middle term. There are no negative contribution to
H°(CV, f*TP) = TpPT. The Euler sequence:

0 -- Op (1) Cr + -+ TPr -- 0o

and the arguments of [32] can be used to deal with the remaining two middle terms. Stable
vertices labeled w will contribute d + 1 negative weights on H°(CW, fTpr). Similarly
there will be de negative weights on H°(Ce, fe*TPr). We find that the number of negative
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weights of H°(C, f*TPlr) equals:

Ey(dw + 1)+Ede-F=d+s- F.
w e

Thus the combined contributions of the terms in (3.13) is d + s - u.

Proposition 3.3.1. The closed cell F,+ is the stack theoretic image of the fibered product Yr
of closed Gathmann and Konstevich-Manin spaces to H under the tautological morphisms.
Alternatively, it is the generically finite image of the stack Xr.

It is enough to show, by taking closures and using lemma 3.3.3, that the stack theoretic
image of Yr -- Mo,n(IF, d) is dense in r. We observe that the geometric points of the
image of Yr are contained in jt+ because of corollary 3.3.1. Moreover the dimensions match

by lemmas 3.3.2 and 3.3.4. rtr is reduced and irreducible because Fr clearly is, thanks to
equation (3.3). Same is true about Yr. These observations give our claim. The proof of
proposition 3.3.2 shows that maps in Yr \ Yr cannot flow to a map whose dual graph is r.
As an afterthought, we obtain that the stack theoretic image of Yr equals rt.

3.3.3 Filterability of the decomposition

We will now establish the filterability condition (c) of lemma 3.2.3 which will allow us to
prove the tautology of all Chow classes. In this subsection we define the partial ordering
on the set of graphs indexing the fixed loci.

For any two decorated graphs r and r' indexing the fixed loci, we decree that r > r if
there is a sequence of combinatorial surgeries called splits, joins and transfers changing the
graph F into r. Each one of these moves is shown in figure 3 - 7. Figure 3 - 8 explains
the intuition behind this ordering; we exhibit families of maps in a given Bialynicki-Birula
cell degenerating to a boundary map which belongs to a different cell. The new cell should
rank lower in our ordering. In figure 3 - 8, the non-negative integers a are degrees, and
the positive integers m are multiplicity orders with H. Components mapping to H are
represented by thick lines.

Explicitly,

* The split move takes an edge of degree m and cuts it into two (or several) edges with
positive degrees ml and m2. The vertex labeled (H, a) is relabeled (H, a+do) for some
do > 0, while the vertex labeled p is replaced by two vertices labeled p. The incoming
edges and legs to the vertex p are distributed between the newly created vertices.
We require that m = do + ml + m 2. The split move is obtained by degenerating a
sequence of maps containing a point mapping to H with multiplicity m. The central
fiber is a stable map in the boundary of the Gathmann space. There is an "internal"
component mapped to H of degree do, to which other components are attached, having
multiplicities ml,..., mk with H at the nodes. The figure also shows an additional
component mapped to H with degree a which is attached to the family.

* The join move takes two edges of degrees ml and m2 meeting in a vertex labeled p and
replaces them by a single edge whose degree is ml + m2, also collecting the two vertices
labeled H, their degrees and all their incoming flags to a single vertex. Locally, the
join move corresponds to a family of maps having two domain points mapping to H
with multiplicities ml and m2 (there may be additional components mapping to H
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transfer
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Figure 3-7: Split, joins and transfers

with degrees al and a2 attached at these points). Letting the two points collapse, we
obtain a boundary map with a point mapping to H with multiplicity ml + m2.

* The transfer move can be applied to edges whose vertex labeled p has an attached leg.
We move the leg to the other end of the edge, labeled H. This move can be realized
by a family of maps with one marking, and with domain points which map to H with
multiplicity m. In the limit, the marking and the point mapping to H collapse.

To check that we have indeed defined a partial ordering we introduce the following length
function:

i(r) = (e- 1) #{vertices labeled(H, e)} + #(labeled vertices labeled p} +

+ #{legs incident to H labeled vertices}.

The binary relation " > " is indeed anti-symmetric since if

r > r' then l(r) < (r').

Moreover, it is clear that condition (b) is satisfied; the unique maximal graph is shown in
figure 3 - 9.

3.3.4 The spanning cycles.

We will construct a family of cycles E satisfying the filterability condition (c) of lemma
3.2.3.

To begin with, we compare the cohomology and the Chow groups of the fixed loci,
assuming that the filterability condition is satisfied.

Lemma 3.3.5. The rational cohomology and rational Chow groups of JFr are isomorphic.
The rational cohomology and rational Chow groups of MO,n(Pr, d) are isomorphic.
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Figure 3-8: Models for the combinatorial moves

1 2 n-1 n

(H, 0) (H, 0) (H, 0) (H, 0)

Figure 3-9: The maximal graph.

We will use induction on r. There are two statements to be proved, we call them A, and
B r respectively. It is proved in [38] that Bo is true. Lemma 3.2.3 shows that Ar B.
We conclude the proof by showing Br-1 - Ar. Indeed, the cohomology of Fr can be
computed using equation (3.3):

H*(IIMO,n(v) x iMo,n(w)(H, d.))Ar = ((®vH*(iMo,(v)) ®w H*(io,.(w)((H, de)))Ar.
V u

It is remarkable that the same formula holds for the Chow groups. This follows from

theorem 2 in [38]. Our claim is established.

Corollary 3.3.2. Let X = G/P be any homogeneous space where G is semisimple algebraic
group and P is a parabolic subgroup and ,l E A 1(X). Then parts (i) and (ii) of lemma 3.2.3
are true for Mo,n(X, /).

We use a T-action on X with isolated fixed points. The fixed loci of the induced action
on Mo,n(X, 3) are, up to a finite group action, products of the Deligne Mumford spaces
Mo,n. The rational cohomology and Chow groups of the fixed loci are isomorphic. Us-
ing corollary 3.2.1 and proposition 3.2.1 we obtain a Bialynicki-Birula decomposition on
Mo,n(X, P). We need to verify the conditions (a) and (b) of lemma 3.2.3. We can check
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them on the closed points, hence we can pass to the coarse moduli schemes (considered in
the sense of Vistoli [59]). The two conditions are satisfied on the projective irreducible [40]
coarse moduli scheme Mo,n(X, 3) of Mo,n(X, /3) as shown in [8]. We conclude observing
that the image of Fi+ in Mo,n(X, P/) is the corresponding Bialynicki-Birula cell F+. In fact,
one can show that F+ is a coarse moduli scheme for /i. This is because .~ is reduced or
equivalently that Yi is reduced.

The proof of lemma 3.3.5 also suggests the family E. For each graph r, we will perform
the following construction:

* For each vertex v, pick a cycle class v,, on Mo,n(v).

* For each vertex w, pick a cycle class a, on Mo,n()(H, d).

* Assume that our choices define an Ar invariant collection of classes.

Henceforth, we will use explicit representatives for the above classes. Since A*(Mo,n(,))
is generated by the boundary classes, we may assume:

* a, is the closed cycle Mo0,n(, ) of curves with dual graph (at least) A,,. Here A, is a
stable graph with n(v) labeled legs.

In the following, will be any one of the cycles:

[ M0,n(v) X ]I a/Ar] (3.14)

Proposition 3.3.2. The filterability condition (c) is satisfied for the cycles ~ defined above.

By construction, it is clear that the cycles C span the Chow groups of the fixed loci.
We describe the maps in ~+ informally. The dual graphs Av determine the type of the

domain curves. We consider maps with such domains which are transversal to H; points
mapping to H (with multiplicities determined by the edge degrees de in r) are distributed
on the irreducible components. Then + will be a fibered product of smaller Gathmann
spaces and the cycles au,.

Formally, we begin by adding one leg at each very unstable vertex of r, thus obtaining
a graph y without very unstable vertices. Geometrically, this corresponds to marking all
the smooth points on the domain which map to H. There is a forgetful morphism:

Mo,n+(, d) - Mo,n(P r, d) (3.15)

corresponding to the collapsing map y -w- r.
A priori, the only decorations A, carries are the labeled legs. The legs are in one-to-

one correspondence to the incoming flags to v in the graph r. However, we have seen in
section 1.1 that all flags of r incident to v carry the degrees a,, which are the degrees of
the incident edges or 0 for the incident legs. In this manner, we enrich the decorations of
A, using these degrees as "multiplicities" associated to the legs. We denote by a(v) the
datum of the collection of multiplicities a, together with their distribution along the legs
of A,. We can then form the fibered product M() (Pr, do) as in section 3.3.2 (ii-2).
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We let + = x r Fr+. We showed in proposition 3.3.1 that there is a surjective

morphism r/Autr -- Fr+, inducing a surjective morphism Xyr [r/Autr] -- . By
equations (3.14), (3.3), (3.10) and (3.8), we derive that + is the image of:

+ = [( ,Hr d) xH /Autr
X ri (v) .

This is clear on the level of geometric points. An argument is required to match the stack
structures, and such an argument can be made. However, since we work in the Chow groups,
we get around by endowing the above stacks with their reduced structures.

We similarly define:

X = a(V) (, cd) XH fi ) E() /Autr . (3.16)

We let + be the its image under the forgetful map (3.15). We obtain morphisms:

X + X+ --+ Yr/Autr - -rt.

The first one is an open immersion and by flatness of (3.15) the same is true about the first
inclusion below:

S+ A 5+ t .Fr+
We do not know that + is the closure of + (we do not know ~+ is irreducible). However,
when formulating lemma 3.2.3 we were careful not to include this as a requirement in
condition (c).

Finally, we show that a map f contained in the boundary f+ \ l+ flows to a fixed locus
indexed by a graph r' with r ' < r. We first make a few reductions. Replacing r by y and
S+ by X+, we may assume r has no very unstable vertices. We want to show that the graph
of F = limto- ft is obtained from r by a sequence of the combinatorial moves which we
called joins, splits and transfers.

The datum of a map f is tantamount to giving maps fv and fw in the Gathmann spaces
Ma(v) (Pr, d) and the cycles aw, with compatible gluing conditions. As usual, the unstable
vertices w require special care as they only give points on the domain not actual maps.
We have seen that the limit F of ft is obtained from gluing the individual limits FV and
Fw = f, (for stable w's) of fv and f. The dual graphs are also obtained by gluing. Since
to compute the limit we consider each vertex at a time, we may further assume that r
consists in one vertex labeled v to which we attach legs and unstable vertices w. Thus, we
may take r to be the graph in figure 3 - 10.

Now recall that Av encodes the domain type of the nodal map f,. The markings of fv
are distributed on the components of the domain and come with multiplicities encoded by
the flags of Av. As we can treat the components individually, we may assume Av has only
one vertex. Moreover, the map fv has to be in the boundary of the Gathmann space

Changing notation slightly, we prove the following. We consider the multindex ( Changing notation slightly, we prove the following. We consider the multindex a=
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(al, ... ,a,0, ... , 0) with al = d and ai > 0. We will consider marked maps in the
"H

Gathmann space M a (P', d). For such a map (f, C, x , ... .. xn , ... ,Ym) we have f!H =
Ei aixi If f were an element in M (P, d), then its limit F would have the dual graph r

shown in figure 3 - 10. This graph has one vertex v labeled p, n edges labeled al,..., an
joining v to unstable vertices w labeled (H, 0).

(H, 0) (H, 0) (H, 0) (H, 0)

Figure 3-10: The graph r of a limit for a generic map in the Gathmann space.

Lemma 3.3.6. Let f be a map in the boundary of the Gathmann stack M ( r , d) \
MH (P, d). Let F be the limit of the flow of f. Then the dual graph rF of F can be
obtained from r by splits, joins and transfers.

The map f will have components which are not transversal to H and which are respon-
sible for the different dual graph. Let Co be a nontrivial connected component of f -(H)

on which the map has total degree do, and let C1,..., Ck be the irreducible components
joined to Co, having multiplicities ml,..., mk with H at the nodes. Figure 3.1.2 shows an
example of such a map. In any case, Co will contain some of the markings mapping to H,
say xi for i E I, and some of the remaining markings yj for j E J. The contribution of
the components Co U C1 ... U Ck to the dual graph rF, as computed by corollary 3.3.1, is
shown in figure 3 - 11. The figure also shows the moves we need to apply to this portion
of rF to obtain its corresponding contribution to r. The rest of the graph rF is attached
to the portion shown there and is carried along when performing the combinatorial moves.
Observe that existence of the join move is guaranteed by the equation do + E mi = iEI ai
which follows by considering intersection multiplicities with H. This completes the proof.

Zil

transfer x do + E mi 6
(H, O) p 

Yj Yj
i,

XZi

Xis

Figure 3-11: The combinatorial moves comparing r F to r.
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3.4 The tautology of the Chow classes

In this section we tie the loose ends and prove the main result, theorem 2. Items (1)-(5) are
contained in proposition 3.2.1, proposition 3.3.2, proposition 3.3.1, lemma 3.3.4 and lemma
3.3.5 respectively. Item (6) is a consequence of the proof of proposition 3.3.2 and equations
(3.9) and (3.16). The last item (7) follows from (6) combined with the following result.

Lemma 3.4.1. (i) Let i : H -- Pr be a hyperplane and let i : Mo,n(H, d) - Mo,n(PT , d)
denote the induced map. The pushforward map

i : A(Mo,n(H, d)) -, A.(Mo,n(P, d))

preserves the tautological classes.

(ii) For each n-multindex a, the class of the Gathmann space [MH (Pt, d)] is tautological.

Consider the bundle B = R7rev*Opr(1) where ev and r are the universal evaluation
and projection morphisms. This is a rank d + 1 vector bundle on Mo,n(Pr, d). As usual,
the equation of H gives a section of B which vanishes precisely on Mo,n(H, d).

We claim that
R*(Mo,n(H, d)) C i*R*(Mo,n(Pr, d)).

We need to check i*R*(Mo,n(IPr, d)) satisfies the two conditions of definition 1. For the first
one, invariance under pullbacks is obvious, while invariance under pushforwards follows from
standard manipulations of the projection formula. The second condition is immediate, as
all classes aH on H are obtained by restrictions of classes apr on Pr and

ev* H = ev*i* pr = i*ev* pr.

Any tautological class a on Mo,n(H, d) is the restriction of a tautological class B on
Mo,n(l, d). Therefore,

i*a = ii*3p = P- Cd+l(B3)-

It suffices to prove that cd+l(B) is tautological. A computation identical to Mumford's
[49] using Grothendieck-Riemann-Roch shows:

ch(B) = r(e* evH ( C1(w()- 1 + i*P(lp*,i,))). (3.17)

Here P is a universal polynomial whose coefficients can be explicitly written down in terms
of the Bernoulli numbers. The morphism i is the codimension 2 inclusion of the nodes of
the fibers of the universal curve 7r : Mo,nu{0 o(Pr,, d) -- Mo,n(Pr, d). Under the standard
identifications, this can be expressed as union of images of fibered products :

i : M,Slu{*} (Pr, dl) xpr MO',{,o,} (Pr, 0) xpr M0,{.}us2 (Pr, d2) -' Mo,slus2u{o} (I Pr , d)

for all partitions S1 U S2 = {1,..., n} and dl + d2 = d. The classes * and ,b. of equation
(3.17) are the cotangent lines at the markings * and * which are joined at a node.

To prove out claim, we need to argue that cl(w') and Ob are tautological. This follows
from the results of [51], where it is shown that all codimension 1 classes are tautological.

An argument may be required to justify the application of the Grothendieck-Riemann-
Roch theorem in our stacky context. There are several ways to go about this. For example,
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one can argue on the coarse moduli schemes using [59]. Alternatively, lemma 2.1.1 in [51]
shows that if r is large enough the locus of maps with automorphisms has codimension at
least d + 2. Its complement is a fine moduli scheme M* and we can apply GRR for the uni-
versal morphism over M*. Since we are only interested in cd+l(B) E Ad+l(Mon(Pr,d)) =
Ad+l(M*), the formula (3.17) holds up to codimension d + 1. To deal with the small values
of r, we pick N large enough and use the inclusion j: Mo,n(Pr, d) c- Mo,n(Pr+N, d). The
class in question can be expressed as a pullback of a class we already know to be tautological:

[;o,,n (H, d)] = j* [oi,n(17, d)] E j*Rd+l(Mo,n(pr+N, d)) = Rd+l(M,n(Pr, d)).

Here 71 -_+ pr+N is a hyperplane which intersects pr + pr+N along H. This proves the
claim.

Part (ii) is a consequence of equation (3.4), using induction on the multindex a. The
correction terms are pushforwards of classes on the boundary strata. These classes are
either lower dimensional Gathmann spaces or Kontsevich-Manin spaces to H which are
tautological by induction and by part (i) of the lemma respectively.
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Chapter 4

The low codimension classes

In this chapter we will consider some examples and applications of our main results. We
will focus on the low codimension tautological classes. We will determine the Picard group
of the moduli space of stable maps to flag varieties, generalizing results of Pandharipande
[51]. We will also prove that the relations between the low codimension tautological classes
are tautological in the sense of definition 1.6.1.

4.1 Generators for the codimension one Chow group.

To begin with, we review the relevant facts about homogeneous spaces and their Schubert
stratification which we will use. To set the stage, let X be the algebraic homogeneous space
G/P where G is a semisimple group and P is a parabolic subgroup. We pick T a maximal
torus, B a Borel subgroup such that T C B C P C G. Our convention is that the Lie
algebra b contains all the negative roots with respect to some choice of a Weyl chamber.
We let U+ denote the unipotent subgroup of G whose Lie algebra is the sum of all positive
root spaces. We let W be the Weyl group and WP be the Hesse diagram of p.

We consider the decomposition of X coming from the maximal torus action on X. This
action has isolated fixed points indexed by the elements of the Hasse diagram WP. The
corresponding plus Bialynicki-Birula stratification coincides with the more familiar Schubert
decomposition:

G/P = UwewPU+ (wP).

We let Xw be the orbit U+ (wP) and we let Yw be its closure. Yw is a subvariety of X whose
codimension equals the length l(w) of w. Yw can be written as union of lower dimensional
strata (where > refers to the Bruhat ordering):

Yw = UW'EWp ,w'>XXw'.

The codimension 1 cells Yw are important to us. They are in one to one correspondence
with the simple roots a of g not contained in p, the corresponding w being the reflection
sc, across the wall a. The cycle Xa corresponds to the points of X which flow to q, = sP
as t -- 0. The Y,'s can also be described by the zeros of holomorphic sections of some very
ample line bundles Lc,. We can write any class /3 E H2 (X, Z) in the form 3 = 'a d,
where fc, is the codimension 1 class [Y] = cl(Lc,) for each simple root a not in p.

In addition, each simple root a determines a rational curve in X joining P to qc, = sP.
The class of this rational curve is dual to the class of Y,. The rational curve can be
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parametrized as:

t --* exp(tv)P, where v is a vector in the root space of a.

Similarly, such T invariant curves in X can be generated for all positive (not necessarily
simple) roots a which are not in p; all T invariant curves passing through P are obtained
this way. More generally, a T-invariant rational curve joining two general fixed points wP
and w'P exists provided w' = wsa for some root a not in p.

After these preliminaries, we proceed to prove the following result about the generators
of the rational codimension 1 Chow group of Mo,n(X, 3). We obtain the same results on
the moduli stack, essentially because the locus of maps with non trivial automorphisms has
large codimension by an argument of [51]. As a corollary of localization and the rationality
of the moduli space of stable maps we easily see that the rational Picard group, the rational
codimension 1 Chow group and the complex codimension 1 rational cohomology all coin-
cide. This was explained for cohomology and Chow groups in the previous chapter. The
equality with the Picard group follows from the exponential sequence and the rationality
of the moduli spaces involved [40]. Henceforth, we will use Chow groups/cohomology in-
terchangeably, but in the proof of this proposition it is more convenient to make use of the
Chow group of M = Mo,(X, P).

Proposition 4.1.1. The codimension 1 Chow group with rational coefficients of Mo,n(X, 13)
(or Mo,n(X, 3)) is generated by the following classes:

* boundary divisors of nodal maps, the degrees and marked points being distributed ar-
bitrarily on the two components.

* evaluation classes evcl(La) for each 1 < i < n and each simple root a which is not
contained in p,

* kappa classes ri(Y,,) where l(w) = 2 (so that Yw has complex codimension 2 in X).

We let Y be the complement in X of all classes Yw with l(w) > 2. We also let U be the
open dense cell of the Schubert decomposition. It can be defined as follows:

U = {x E X such that lim t x - P.
t-4O

We consider the following subschemes of M:

(a) The codimension 1 boundary divisors.

(b) The subscheme of maps intersecting Yw for all w with l(w) = 2.

(c) The subscheme of maps with markings in Ya for all simple roots a.

(d) The subscheme of maps which cut Y with multiplicity higher than 1.

It is clear that the complement of all these subschemes is the locus X of maps f :
(C, l, ... , xn) -- X with the following properties:

* The domain curve is irreducible,

* the image of the map is contained in Y,
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· the markings of f map to U,

* f intersects Y transversally.

We claim that the Chow group A'(X) = 0. It follows then that the four types of classes
(a) - (d) span the space of divisors. To complete the proof it remains to show that the
classes in item (d) are indeed among the generators we enumerated in the proposition.

-Ya
The subscheme in item (d) can be described as the image of the cycle M( 0 0,., 2)(X, /3)

--on Mo,n+l(X, P) under the map 7r forgetting the last marking. Here, M(0,,02)(X,3 ) is
the Gathmann space of stable maps with contact order at least 2 with the very ample
hypersurface Y, (see [25] for the relevant definitions). Due to the fact that Y is a very
ample, there is an embedding 0: (X, Y ) (pN, pN-1). The following equation:

i [ (AX, 3)] = *kr*[M pN -1N )]

pN-1
holds in the Chow group of Mo,.(?N, 4f/) (see [25], theorem 2.6). Here M. (I N, 4*.f)
denotes the corresponding Gathmann space of maps to pN with contact order 2 at the hy-
perplane pN-1. Therefore, it suffices to show that on Mo,n(PN, ,/"3) the pushforward class

7r, [MoN l (pN, ,)] is in the span of the corresponding classes we claimed as generators.
That is, we need to show this class is a sum boundary divisors, /c classes and evaluation
classes ev*OpN(1), and then observe that these classes pullback to similar classes under
0. However, this statement is already proved by Pandharipande [51] who enumerated all
divisor classes for Mo,n(PN, ,Pf3).

To prove the vanishing of Al (X) we first consider the case when n + d_ > 4. We let
G = XacSd and

= M,n+E d,/, F = MO,n+E d/./6
In fact ; is the big fixed locus for the T action on M. The embedding j: ( - M (and
similarly j : F -- M) is obtained as follows:

* We consider a stable curve with n + Y,, d marked points. This will be a contracted
component of the stable map whose image is the origin P of X. We make the first n
marked points of the stable curve be the marked points of the stable map to X.

* At the da marked points we add Pl's of degree 1 mapping to the rational curve joining
P to q, constructed in the beginning of this section.

We let
= {f stable map in M such that t f -- F E F as t --* 0}.

Proposition 2 of [40] shows that X is an open subvariety of £. It is enough to show A 1( £ ) = 0.
Let r : M -- M be a T-equivariant resolution of singularities for M. The image of

restricted map j : F -- M lies in the smooth (automorphism-free) locus of M. Since 7r is
an isomorphism over the smooth locus, we obtain an inclusion 3 : F -- M.

Let £ be the subset of M of points flowing to F. Since, r is an isomorphism on F, we
have 7r-'E = E. Now, -r: £ -- E can be chosen to be a composition of blowups, so we
conclude that Al(&) -- A'(£) is surjective. It is enough to show A1(E) = 0. This follows
easily, since M is smooth and for smooth varieties, it is well known that £ is a bundle
over the fixed set F. Thus the claimed vanishing of A 1 (E) follows from the vanishing of
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A1(F) = A'(Mo,+E do,)®. This is well known, it can be derived, for example from Keel's
result that the boundary classes generate all codimension one classes on Mo,,+E, d.

To finish the proof we have to analyze each of the remaining cases when n + A- d < 3
individually. Then F is to be interpreted as a point, and as long as this point has no
automorphisms in the moduli space M we are done by the same arguments as before.
There are four cases to consider. We will briefly show the argument for n = 0, = 3/ .
The remaining cases can be obtained as in theorem 3 in [40], by adding more marked points
to place ourselves in the case we already discussed.

We let Y be the open subscheme of Mo,3(X, 3/3a) consisting in maps with image in Y
such that all 3 markings map to Y, with multiplicity 1. It follows that Y/S 3 = X. It is
therefore enough to show A l (Y) = 0. Now, let Y be an equivariant resolution of singularities
for the closure y of Y in Mo,3 (X, 3/3l). Since Y is smooth we can view it as a subscheme

of Y. The arguments of proposition 2 in [40] show that all f E Y flow to a unique map
/ E Y. This map it has an internal component of degree 0 mapping to P to which we
attach external components of degree fA, each of them having a marked point mapping to
q,. Therefore 1, sits in the smooth part of Y and we can therefore regard it as an element
in y. Let us look at the subvariety V of points of Y flowing to AL under the C* action. y
is contained in V by the above discussion. Now since Y is smooth, V is an affine space.
Therefore A l (y) = 0, as desired. This completes the proof of the proposition.

4.1.1 Divisors on the space of maps to Grassmannians.

This subsection will contain another way of finding divisor classes on the space of maps
to the Grassmannian X parameterizing k dimensional projective subspaces of lPr. The
method is quite ad-hoc and it involves decomposing the space of stable maps into pieces we
understand better. The author could not make this procedure work for other flag manifolds.
We seek to reprove the generation result of the previous subsection.

Let S and Q denote the tautological and quotient bundles on X. We let W be a copy
of pr-k-2 (given by the vanishing of the first k + 2 homogeneous coordinates). Then the
subvariety

V={A E X such that A n W 0}

has codimension 4. It is easy to observe that c1(Q)2 and [V] generate the complex codi-
mension 2 classes on X.

The complement of V parametrizes subspaces A in Pr \ rp-k-2. The key observation is
that Pr \ pr-k-2 can be understood as the total space of the bundle

r : Opk+l(1)(r - k- l) __ pk+l

Since the fibers of 7r are affine spaces, the k dimensional subspace A contained in X \ V
projects to a k dimensional subspace L = 7r(A) in pk+l i.e. L gives an element of the
projective space Pk+l of k dimensional subspaces of Pk+ l . We conclude that X \ V can be
described as a bundle E over Pk+ l whose fiber over a subspace L is H°(L, OL(1))D(r - k -l).

An easy argument, involving the Euler sequence identifies this bundle with TPk+l(-1).
The long exact sequence in cohomology induced by the Euler sequence shows that this
bundle is convex. That is, for any morphism g : P' --, pk+l we have H (P1 , g*E) = 0.

We define X to be the subscheme of Mo,n(X, d) parameterizing stable maps f whose
images intersect V. The open set Mo,,(X, d) \ X consists in maps whose images are con-
tained in the total space X \ V of the bundle E --, pk+l. Proposition 2.1 in [3] and the
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convexity of the bundle E imply that Mo,n(X, d) \ X is in fact a bundle over Mo,n(Pk+l, d).
Therefore, Al(Mo,,(X, d) \ X) = Al(Mo,(Qpk+l, d)). This last group is well known, it has
been computed by Pandharipande in [51]. For example, in the case when n > 3 or n = 0,
the generators are the boundary divisors and the class r,(evn+l Cl (Opk+l (1))2). This implies
that the boundary divisors and the class 7revn+lc1(Q)2 on Mo,n(X, /) restrict to generators
for Al(Mo,n(X, d) \ X). To get all divisors classes on Al(Mo,(X, ,3)) we need to add the
class [X] = 7r evn+1 [V]. A similar argument works for n = 1 or n = 2. We recover the
statement of proposition 4.1.1.

4.2 The classes on the moduli spaces of maps to SL flags.

In this section we will focus explicitly on the case of divisor classes on the space of maps to
SL flag varieties. We will start by restating the results of the previous section for SL flags,
then describe relations between the generators we found and finally prove their independence
by a dimension computation. We will show first:

Proposition 4.2.1. Let X be any SL flag whose Betti numbers in dimension 2 and 4 are
h2 and h4 . Let

V Ox = -o 0 1 -Ox ... -- Ql 0
be the tautological quotients and let/3 be a class with di = /3. cl(Qi) > O. The dimension of
the rational Picard group of Mo,n(X, /3) is

2n-l(dl + 1) ... (d + 1) + 2 - 1 - + h -

The generators of the Picard group are

* the boundary divisors,

* the classes rc(a) where a is either cl(Qi)2 for 1 < i < or the nonzero classes c(/Cj)
for O < j < . Here 1Cj is the kernel of Qj - Qj+l.

* when n = 1 or n = 2, we add any one of the evaluation classes ev cl(Qj).

The class

- r;(C2(]Ci))+ - ( di l + di+l _ 1) K(Cl(Q)2)
2di

is supported on the boundary. All other relations between these generators come from MO,n
by pullback.

4.2.1 Divisors on the moduli spaces of maps to SLn flags.

To set the stage, we let X be the flag variety parameterizing quotients of a vector space V
of fixed dimensions nl,..., nl, or equivalently of subspaces of V of dimensions ml,..., ml:

O -~ S1 -- ... -- S - V -Q Qt -+ 0.

There is a tautological sequence on X given by

O --S1 -- ... -+ S l -V- Ox ( -O 1 -+ ... Ql --+ 0. (4.1)
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We let Cj denote the kernel of the map Qj -, Qj+l for all 0 < j < I, where by convention

Qo = V ® Ox and Qi+1 = 0.
It is well known that the Chern classes cl(Qj) form a basis for H2(X, Z) for 1 < j < 1.

We let h2(X) denote the dimension of this vector space. Each stable map to X will have a
multi-degree (d1, ... , ,d) determined by the above generators of H2 (X). Similarly, H4(X, Z)
is generated by the classes cl(Qi)cl(Qj) together with the nonzero Chern classes c2();j).
There is only one relation between these generators:

E c2(Ci) - Cl(Qi)2 + E Cl(Qi)cl(Qi+l) = 0. (4.2)
i i i

We enumerate the generators we obtained in proposition 4.1.1:

(a) boundary classes. We have [2n-l(dl + 1) ... (di + 1)+ - 1 - n such boundaries.

(b) classes K(ci(Qi) ci(Qj)) and all classes KE(c2(1Ki)) when Ki has rank at least 2.

(c) evaluation classes ev*cl(Qj), for each 1 <i < n and 1 < j < .

Now, these generators turn out not to be independent. We exhibit relations between
them. We start with the boundary classes. The obvious way of getting relations is to pull
back relations from MO,n under the forgetful map:

Mon(X, ,) - MO,n.

There are 2n - 1 1- n boundary classes on Mo,n but there are n(3) independent rela-
tions between them. This cuts down the number of independent classes in (a) to at most
[2n-1(dl + 1) ... (di + 1)]+ - 1 - (), with equality when all relations come from Mo,n. All
these relations are tautological as defined in the introduction.

Next, we consider the classes of type (c). When n > 1, we pick H an ample generator
and pick m large enough such that the bundles Qj = det Qj(mH) are all very ample. We
will replace the bundles Qj in (c) by their very ample counterparts Qj. Note that the span
of the classes in (b) and (c) will be not be affected by this change.

When n > 3 and when X = pr all divisor classes, including the corresponding evaluation
classes of type (c), are spanned by boundaries and the K. class rc(cl(Op(1)) 2 ). This is the
contents of lemma 1.1.1 in [51]. Using the linear system IQj I we get an embedding of X into
a projective space. Pulling back under this map, we can therefore conclude that the class
ev*cl (Qj) is in the span of boundaries and of K classes, which will necessarily be on the list
(b). When n > 3 we will henceforth dispense with the classes (c).

However, the same conclusion can be reached in a slightly different way. An analogue
of equation (2.20), proved in the same way, is the following tautological equation:

evi*cl(Qk) + evcl(Qk) = Q) K(l(Qk) 2 ) + boundaries. (4.3)

When n > 3, this system can be solved to express the evaluation classes in terms of the K's
via the tautological relations.

When n = 1 a different discussion is needed. We use Lemma 2.2.2 in [51]. Pull back the
relation provided by the lemma for Mo,l(P, d) under the embedding given by the linear
system IQjl. Then, modulo boundary classes the following relation holds for some constants
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Dj = ci(Qj) 3:

1= l (c (Qj)2) -D ev*c (Q) (4.4)
3 3Dj

It follows that the span of the evaluation classes ev*cl(Qj) is exactly 1 dimensional modulo
boundaries and the ie classes in (b). For example b1 is a generator of the one dimensional
span. Intersecting with suitable curves or restricting to a copy of P1 L- X and invoking the
results of section 2.3, it can be shown this class is independent from the boundaries.

We remark that equation (4.4) can also be interpreted geometrically via the topological
recursion relations. The following equation on Mo, 3(X,, ) is obtained by pullback from
M0 ,3 :

(123), + (12),(3) + -(13),(2) = E (23) (= )
/1+P 2=P

Here A'"T2 is the boundary divisor with markings labeled S and T distributed on two
branches of degree f,1,/32, and r: Mo,3(X, /) - Mo,1(X, ) is the map forgetting the last
two points. We intersect the above equation with the class ev*cl(Qj) ev*cl(Qj) and then
use the pushforward by r to obtain (4.4).

For n = 2, a similar discussion as above shows that the span of the evaluation classes
in (c) is at most 2 dimensional modulo boundaries and the K classes in (b). The classes b1

and '2 can be chosen as generators for the two dimensional span (alternatively we can pick
pairs of evaluation classes). However, corollary 1 in [43] rewritten as equation

/1 +1/2 = A({1}, {2})

shows that the sum of these two classes is also in the span of the boundaries A({1}, {2})
where the markings are on two distinct branches. It follows that the span of the evaluation
classes (c) is exactly 1 dimensional modulo boundaries and tK classes. We immediately
conclude that for all values of n, the combined contribution of the classes in (a) and (c) is
at most [2"-l(dl + 1)... (d + 1)]+ -1- ().

Finally, the classes of type (b) are also connected by relations. Lemma 4.2.1 of the
next subsection shows that K(Cl(Qi)Cl(Qj)) can be expressed in terms of ((Qi) 2 ) and
K(Cl (Qj)2 ) modulo boundaries. In fact, applying this lemma to each pair (Qi, Qi+l) we
derive that the following equation is true modulo boundaries:

c(c(Q)c(= d+(c )2 ((Q+)2) (4.5)
2di 2di+l

Using (4.2), we easily arrive at the following relation:

E (c2(Ki)) + (di +2 di 1- ) (c(Qi) 2) = 0 modulo boundaries. (4.6)
i

The coefficients of the boundary terms can be written down explicitly, but they

To summarize, we obtain the following upper bound for the dimension of the space of
divisors on Mo,n(X, /):

[2n-l(dl + 1) ... (d + 1)] + - 1-(2) + h4(X-(2) (4. 7)
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In section 2.4, we will use localization to give a lower bound for the dimension of the
space of divisors. In fact, we will prove that the bound obtained above is sharp. This will
give the proof of theorem 1 stated in the introduction.

4.2.2 Relations between the nc classes.

We will now indicate the statement and proof of the lemma invoked in the previous sub-
section to find relations between the tK classes. We hope this lemma could also be of use
to understand divisors on product spaces. Similar results were obtained in [16] using com-
pletely different methods. We will indicate a third method later, which we discovered after
we originally wrote this chapter.

Lemma 4.2.1. Let L, M be two line bundles on a projective variety X. Then the following
K class on Mo,o(X, ,):

{ { cl (L) cl (M) A 

f13cl (L) fo cl (M)

is in the span of the boundary divisors.

We claim that it is enough to prove the statement for L and M very ample. Indeed,
assuming we proved the statement in this case, we pick a very ample divisor H on X. For
n large enough, L + nH, M + nH will both be very ample. We obtain that

cl (L) + nH cl (M) + nH

p cl (L) + nH * cl(M) + nH*3

is in the span of boundaries. Clearing denominators, and then looking at the term inde-
pendent of n, we derive that the K class in the statement of the lemma is also in the span
of boundaries.

Assume now L and M are very ample. We consider the embedding i: X -, p x pm
determined by the linear systems IL and IMI. We let d = fo c1(L) and e = f,3 cl(M). We
let -H1 and 7'2 be the two hyperplane bundles on the projective spaces Pn and Pm . Let Di,j
denote the boundary divisor of maps with nodal target such that the bidgree of the map on
one of the components is (i, j); then the bidgree on the other component is (d - i, e - j).

The lemma will follow pulling back under i the following relation on Mo,o(LPn x pr, (d, e)):

((cl( Cl() 2 i=1 j=1 d 

Claim 4.2.1. As a first step in establishing (4.8), we show that the codimension 1 classes
on Mo,o(P" x Pr, (d, e)) are in the span of the boundaries and of the two kappa classes
c(Cl (7-1)2 ) and n(c2(7-2)2).

The boundary in Mo0 o(pn x IFm, (d, e)) is a divisor with normal crossings. It follows
from the Deligne spectral sequence that the cokernel of the Gysin map

DH°(boundaries) -+ H2 (Mo,o(Pn x Pm , (d, e)))
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can be identified with the weight 2 piece of the Hodge structure on the cohomology of the
open stratum W 2H2 (Mo,o(P n x Pm , (d, e))). We will show this is at most two dimensional.

We will write the open stratum M = Mo,o(Pn x Ptm, (d, e)) as a global quotient and
make the computation in equivariant cohomology. Let V be a two dimensional space so
that P1 = IP(V) comes with the obvious PGL(V) action. The space of maps Map =
Map(d,e) (Pl, p n x Pm) of bidgree (d, e) is an open set in the product of two projective spaces

p( sEmV X (GSYmeV*).
i=O i=o

We need to factor out the action of PGL(V) on the two factors to obtain Mo,o(Pn x
p m, (d, e)). Equivalently, we can think of Mo,o(Pn x Pm , (d, e)) as sitting in a quotient of
the affine space

n m

A = ( SymdV* E e SymeV*
i=O i=O

by the action of the group GL(V) x C*. The action of GL(V) is the usual one on the
two factors, while C* acts in the usual way only on the second factor, and trivially on the
first. This action is easily seen to have finite stabilizers. It is well known that in such
cases we have an isomorphism between the cohomology of the orbit space and equivariant
cohomology:

H*(Mo,o(lPn x Pm , (d, e))) = H*(Map xGL2xC* (EGL 2 x EC*)).

Both sides have Hodge structures (for equivariant cohomology, we need to use finite dimen-
sional approximations of the equivariant models) compatible with the above isomorphism.
Moreover, Map XGL2xC* (EGL 2 x EC*) sits inside the space

n m

( SymdV* ~ SymeV*) XGL2XC* (EGL2 x EC*).
i=O i=O

This space is the total space of a bundle over the product of two classifying spaces BGL 2 x
BC*. The restriction map

H2 (BGL 2 x BC*) = HGL2 xC*(A) -+ W2HGL2XC*(Map) = W2H2 (M)

is surjective. Therefore W 2H2 (M) is at most 2 dimensional. The surjectivity of the map
can be explained by the usual arguments in the second chapter, using (Grothendieck's)
remark 2.1.

Our claim follows if we show that the two classes r(cl (T7l)2 ) and n(c2(H72)2) are not in
the linear span of the boundary divisors. This is done in [51], Lemma 1.2.1(i) by intersecting
with curves in the moduli space in the case of Pr, but the argument goes through without
change for PI x m .

The claim we just proved suffices to establish the results needed here. However for the
sake of completeness, we will also prove the precise relation (4.8). It follows from what we
proved above that a linear combination of the three classes:

K(Cl(1'1)cl(t2)) + A * n(cl('/1)2 ) + B . K(c1(-2)2 ) = sum of boundary classes (4.9)
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To identify the coefficients of this relation it is enough to intersect (4.9) with curves in
Mo,o(pn x Pm , (d, e)). A moment's thought shows that it is enough to check (4.8) for all
curves of M transversal to the boundary. Indeed, assuming this is the case, we show that
(4.9) and an appropriately scaled version of (4.8) coincide. Subtracting the two equations,
we get an expression involving only /(C1(1' 1)2 ), KE(Cl('12)2 ) and boundary classes. This
expression vanishes on each curve in M transversal to the boundary. We have seen already
in the proof of the claim that this implies that the coefficients of the 's must vanish. It is
not any harder to conclude the same about the coefficients of the boundary classes. 1

It remains to show (4.8) holds after intersecting with the smooth curves intersecting the
boundary divisors transversally. Let us now consider such a curve. This is the same as a
family of stable maps to IPn x Pm parametrized by a one dimensional base B:

S F=(f,g)) P X Pm

-1

B

It can be proved that S is the blow up of a projective bundle P = P(V) at the points
X1,..., x where B meets the boundary divisors.

We let Ei be the exceptional divisors of the blowups and we let h = cl((Op(v)(1)). We
assume that the map F has bidegree (di, ei) on each exceptional divisor Ei. It is then clear
that for some line bundles J, and J72 on B we have:

F*71- = 7r*J1 Op(V) (d) ® O(- diEi) (4.10)
i

F*'12 = r**J2 0 Op(v)(e) ® O(- eiEi). (4.11)
i

It is also obvious that B Dij = n(i, j) + n(d - i, e - j) where n(u, v) is the number
of points among xl,...,xs such that the bidegree of the map F on the corresponding
exceptional divisor is (u, v).

We now intersect both sides of the equation (4.8) with the curve B. We will need to
show that

ir ((cI(F* =i) - clI(F*72)) = n(i + n(d -, e -j)) d

i,j i

The proof of this equality involves equations (4.10) and (4.11). Indeed, the right hand

'Recall that as a consequence of localization, numerical and rational equivalence coincide, essentially
because the same is true for each of the fixed loci. One can perhaps conceive an argument which would
establish (4.8) without appealing to the claim above, simply by intersecting with the smooth curves of M.
We actually do this in the proof below for curves transversal to the boundary. The general argument should
not be more complicated.
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side of the expression above equals

1 1
7r*( (d(r*c1(,71 + dh - diEi) - (r*cl (i2) + eh - eiEi) )

e i

After a few cancellations, we finally arrive at the desired result. The proof of the lemma is
complete.

4.2.3 The computation of the symmetric group invariants.

Our next digression will be useful in the dimension computation needed to finish the proof
of theorem 1.5.1. We will prove a preliminary result about the S, action on the cohomology
of the moduli space of rational pointed curves Mo,n.

To fix notation, for each permutation a E Sn we write nj(a) for the number of cycles of
length j. We denote by c(a) the total number of cycles of a.

Lemma 4.2.2. For each a E Sn, the trace of a on H 2 (Mo,n) is given by

2c(1)- 1 -n2(') - (ni(f)) + (or)
where

5(a) f2C(@)-1 if has only cycles of even length
0G)=iO otherwise

The proof of this lemma makes use of the ideas of Getzler's paper ([28]). Getzler works
out the Deligne spectral sequence of the mixed Hodge structure on the open manifold Mo,n.
He shows that there is an exact sequence:

0 - H1(Mo,n) - rHO(Dr) - H2(Mo,n) ° 0. (4.12)

Here Dr are the boundary divisors of MO,n. They correspond to unordered partitions of
the n marked points into two subsets A and B such that AI, IBI > 2.

It is clear that the the middle term of the exact sequence (4.12) is a sum of one dimen-
sional spaces, one for each unordered partition of {1,..., n} into 2 subsets as above. If n is
odd, the trace of a on the middle term of the exact sequence (4.12) equals the number of
partitions {A, B} such that

a(A) = A, a(B) = B, JA, IBI > 2

This number is easily seen to be 2c( ) -1 - 1-n (oa). Indeed, both A and B have to be unions
of full cycles of a. The last two terms are the corrections corresponding to the non-stable
cases when A or B have 0 or 1 elements. In the case when n is even, we also need to consider
the partitions {A, B} such that

a(A) = B, a(B) = A, n > 4

Such partitions exist only if a has all cycles of even length and their number equals 2c(a ) -1.
The proof will be complete using the exact sequence (4.12), the remarks above and if
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we also show that:

TraH1(Mo,n) = n2(0r) + 'bll'J - 7I1kI (4.13)
2

To establish (4.13), we will use the following facts collected from [28].

(a) First, Getzler shows that as a consequence of the Serre spectral sequence, we have an
isomorphism H(Mo,n+l) = H(Mo,n x C \ {1, 2..., n}). It is then clear that

TrH(Mo,n+l) = TraH(Mo,n)+ TraH(C\{ 1,2... , n}) = TraH(Mo,n)+nl(a)- .

(b) Getzler also shows that if Fn denotes the configuration space of n pairwise distinct
points in C, then H°(Fn) = H(Mo,n+l x S1). Therefore,

raHl'(Mo,n+l) = TrH(Fn)- 1.

(c) Finally, it is a consequence of a formula of Lehrer and Solomon, also discussed in [29]
that TrH'(Fn) = n2(a) + (ni2)). These three items together prove equation (4.13),
thus completing the proof of the lemma.

Lemma 4.2.3. Let n, al,... al be positive integers. Consider the obvious action of Sal x
... X Sal on H2(Mn+ai+...+ai). The dimension of the invariant subspace is computed by the
formula:

dim H2(Mn+a +)slx...+ai X = [2nl(al + 1) ... (al + 1)]+-1-() -n- +1) +a.

Here a denotes the number of indices i such that ai = 1. We also write [x]+ = x if x is an
integer and [x]+ = x + if x is a half integer.

To prove this statement, we will average out the trace of each permutation a E Sal x... x
Sal on H2 (Mn+al+...+al). For this combinatorial computation we will need the following
identities which can be proved by induction on k.

E 2c(G) = (k + 1)! (4.14)
cr6S

Z ) if k is even
a~SkC 6(0) 2 (4.15)

)-S-k {O otherwise

E ni(a) = k! (4.16)
aESk

Z (n2 (o) + (n1i)) = k! for k > 2. (4.17)
aESk

Another induction, this time on 1, making use of equation (4.16) gives the following two
identities:

nl(a) = a,! ... al! (4.18)
aESal X ... xS. 1

90

- -t 2 - ace -f nd

-- -- -



(4.19)E E E nl(o)nl(aj) = 2 al!...al!
l<i<j<l iESai ajESaj

We can now compute the dimension of the invariant subspace. A permutation a E
Sal x ... x Sal is tantamount to permutations ai E Sai. Lemma 4.2.2 shows that

TraH2(Mn+al+...+al) = 2i C()+n-l -1-ln 2 _ n + nl(al) + ... + nl(al))
i=1

2Ei c(ai)-1 if n = 0 and the ai's have only even length cycles
•0 otherwise

We average out these traces to compute the dimension of the invariant subspace. First,
we assume n 5$ O.

dimH2(Mn+a++ai )SlX....XSal = ... 1
aESa1 x...xSl

I I

E E 2ic()+n-1 -En2(i) -

i=l aiESai i=l

i=l OaiESa, ai!
-1

TraH2 (Mn+al+...+al) = (4.20)

2(n tni('1)+... + nl+(eq)))

+ (ni(i))) -_ (n)-n2(i)i=l '

n I 1

al!...at E al . an! - nl(oi)nl(oj) =
i=l aiESa 1i<j<l

where in the last line we used equations (4.14), (4.17), (4.18) and (4.19) respectively.
In the case when n = 0, we have extra-terms corresponding to the case when all permu-

tations ai have even cycles. The contribution of these terms is

1

aiESaiwith only even cycles

2c(_l)+---+c(ol)-_ 1 1= ( ES
i aiESa

by virtue of equation (4.15). This completes the proof of the lemma.

4.2.4 The fixed loci contributions.

We will exhibit particular fixed point loci for the C* action on Mo,,n(X, ,) which comes from
a torus action on X. We will argue that the normal bundles of the fixed loci we exhibit have
at most 1 negative weight. We will employ the "homology basis theorem" to give a lower
bound for the dimension of the space of codimension 1 classes (according to lemma 3.2.3).
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The lower bound will match the upper bound (4.7), completing the proof of theorem 1.5.1.
Therefore, the argument will also give all fixed loci which contribute to the computation of
H2(]Mo,n(X, )).

We consider an action of C* on V with weights A1 < ... < AN and weight vectors
el,..., eN. In fact we will need assume that the weight Ai is much bigger than Ai-. This
assumption will be needed when evaluating the negative weights for the normal bundles to
the fixed loci below, especially when dealing with the vertices of valency 2. We write our
flag variety as a quotient X = SL(V)/P where P is the parabolic of upper triangular block
matrices of size ml, m2 - ml, ... , ml - ml-1, N - ml. We will frequently use the notation
W(i) for the vector subspace of V spanned by el,... , ei. We enumerate the following fixed
points of the C* action on X:
(a) the origin P. The tangent space TpX has no negative C* weights. Explicitly, this fixed
point is represented by the flag:

W(ml) C ... C W(ml) C V.

(b) There are h 2(X) fixed points ql,..., ql corresponding to the simple roots not in the
parabolic subalgebra. There is only one negative weight on the tangent spaces TqX. Each
qi can be joined to P by a rational curve Ri whose Poincare dual is the generator i of
H 2(X, Z). Explicitly qi is represented by a flag which differs from the one in the previous
item only at the i th step:

W(ml) C ... C W(mi- 1) E span (em,+l) C W(mi+l) c ... c W(ml) c V.

Additionally, the curve Ri can be parametrized as:

[t: s] -v the flag W(ml) C ... C W(mi- 1) ED (tem, + sem,,,i+l) C W(mi+l) C ... C W(ml)
(4.21)

(c) There are h4 (X) fixed points with 2 negative roots on their tangent spaces. There are
three types of such points which we now describe. Let mo = 0 and ml+l = n.

* for each pair 1 i < j < such that mj - mi > 2 we have a fixed point denoted qij.
It is obtained from the reference flag in (a) by modifying its ith and jth steps:

W(ml) C ... C W(mi-1)e(emi+l) C ... C W(mj-l)e(emj+l) C ... C W(ml) C V

It is clear that qij can be joined to both qi and qj by rational curves in the cohomology
classes dual to pj and i.

* For each 1 < i < I such that mi+l - mi 2 we obtain a fixed point ri which has the
property that it can be joined to P by a rational curve in the cohomology class dual
to /i. The ri's can be obtained from the reference flag in (a) by modifying its ith step

W(ml) C ... C W(mi -1) eD (emi+2) C W(mi+l) C ... C W(ml) C V.

In addition, for all 1 < i < such that mi - mi-1 > 2, we get the fixed points ri which
can be joined to the origin by a curve in the cohomology class dual to i. They can
be defined modifying the ith step of the reference flag in (a):

W(ml) C ... C W(mi- 2) D (emi,em,+l) c W(mi+l) c ... W(ml) C V.
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* For each mi+ - mi = 1, 1 < i < 1, we have a fixed point si which can be joined to
qi+l by a rational curve in the cohomology class dual to /i. Explicitly it is given by
changing the ith and (i + 1)st steps of the standard flag:

W(ml) c ... c W(mi - 1) · (emi+2) C W(mi) E (emi+2) C ... W(ml) C V.

Similarly, for all 1 < I < 1 such that mi - mi-1 = 1, we obtain the fixed point s which
can be joined to qi-i by a rational curve in the cohomology class dual to ,/i. Explicitly,
this point is obtained by modifying the (i - 1)st and ith steps of the reference flag

W(mi) c ... c W(mi - 2)2) (em,) W(em 2) G (em,, emi+) c ... c W(ml) c v.

Turning to the fixed loci on Mo,n(X, 3), we will employ the usual method of book-
keeping the fixed loci by means of decorated graphs F. The vertices of r are in one to
one correspondence with the components of f 1-(C* fixed points on X). The vertices come
with labels corresponding to the C* fixed points on X. The edges of the graph correspond
to non-contracted components of the map f and are decorated with the degree on that
component. The graph r has legs attached to its vertices. A flag f determines an edge e(f)
and thus a non contracted component Ce of the stable map. We let Re be the image of
this component. The flag f also determines a unique vertex v(f) which gives a point on the
curve Ce mapping to a fixed point of the C* action on X. We let wf denote the C* weight
on the fiber of the bundle f*TRe at the point v(f).

The weights on the normal bundles of each fixed locus were computed by Kontsevich-
Graber-Pandharipande (see [32]). The list of weights on the normal bundle of the fixed
locus indexed by r is generated by the following algorithm:

* flag contributions: for each flag f whose vertex v(f) has total valency > 3 we include
the weight Wf on our list of weights.

* vertex contributions: for each vertex v corresponding to a fixed point q of the C*
action on X, we include the C* weights on TqX.

* vertex contributions: the vertices v with valency 2 and no legs have two incident flags
f1 and f2. We include the weight Wf1 + wf2.

* edge contributions: for each edge e, we include the weights of the C* action on
H°(Ce, f*TX).

* flag contributions: for each flag f, the vertex v(f) maps to a fixed point q of the C*
action on X. We remove the weights on TqX from the list.

* vertex contributions: for each vertex v with valency 1 and no legs, i.e. those vertices
contained in only one flag f, we remove the weight wf from the list.

The graph in figure 4.2.4 corresponds to a fixed locus with no negative weights on its
normal bundle. Its plus cell is the big locus of the C* flow on Mo,n (X, 3). The corresponding
fixed locus is isomorphic to the quotient MO,n Eidi/Sdl X ... X Sdl. Its contribution to
H2(Mo,n(X,/)), as determined by the "homology basis theorem" (lemma 3.2.3) in the
previous chapter, equals the second Betti number. By lemma 4.2.3 this contribution is:

[2n-1(d + 1)... (d + 1)]+-1-ln- (l +l ) ( + a
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1 2 n-1 n

wt lr
dl di

Figure 4-1: The big locus of the C* flow on Mo,(X, 1)

where a is the number of indices such that dj = 1.
There are (at least) five types of graphs which correspond to fixed loci with only one

negative weight on their tangent bundle. To compute their contribution to H2 (Mio,n(X, 1)),
we only have to count all such graphs.

We will analyze each of the five types one by one. In drawing these graphs, we used
continuous lines for the edges representing the rational curves Ri in the cohomology class
dual to i, which join the origin P to the fixed points qi. We also indicated just below the
graph the number of such curves that we use.

The graphs of type A have one leg labeled i attached to a vertex labeled by qj. There
are n l such graphs. The graphs of type B have one thicker edge labeled 2,j. This edge
corresponds to components mapping to Rj with degree 2 with ramification only over P and
qj. These graphs only exist if dj 2, and their number equals I - a. For the graphs of
type C, one of the edges corresponding to the rational curve Rj is replaced by a rational
curve, still in the homology class pj which joins the origin to rj or rj. This new edge is
represented by a dotted line. For each 1 i < j < I we obtain a graph of type D. An edge
representing the curve Rj has been replaced by a rational curves with cohomology class /3j
joining qi to qij. The new edge is attached to one of the edges representing the curve Ri. We
used dotted lines for the two rational curves in question. Notice the apparent asymmetry
between i,j. Indeed, the corresponding graph obtained by switching i and j has one more
negative weight. This comes from the contribution of the vertex of valency 2. In our case,
that vertex contributes with positive weight as one immediately checks remembering that
the weight Aj+l is the dominant one among the weights which appear on the rational curves
coming into the valency 2 vertex in question. Finally, the graphs of type E are described
in the same manner. We have replaced two rational curves in the cohomology classes i
and i+l by two rational curves with the same cohomology classes, which are graphically
represented by dotted lines. There are h4 (X) such graphs of type C, D and E.

Adding up all these contributions from the graphs above, we find a lower bound for
the dimension of H2 (Mo,n(X,, )). As promised, this coincides with the number given by
equation (4.7). This completes the proof of theorem 1.5.1.

It remains to explain why the five types of fixed loci listed above have exactly one
negative weight on their normal bundles. Needless to say, the computation involves the
Konsevich-Graber-Pandharipande recipe for computing the weights. This is a straightfor-
ward argument for the most part. There are two ingredients which are important to the
count of the negative weights.
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type A

I i- i+l
type B

1n 2 n-i n

ql qI qj qj qj qj q
'_J k L J

di d;- 1 di

type C

1 2 n-I n

type D

1 2 n-i n

ql q1 qj qj qa q rj or r ql qi qqi q1 q qi q
d -I I - . .

dd - 1 di d- d-1 dj-1 di
type E

2 n-i n 2 n-I n

l ql qi qi q qj q q si q q qi qi q q q q sS+l

dl di - 1 di+l-1 di dl di - 1 di+l-1 di

Figure 4-2: Fixed loci with one negative weight on the normal bundle.

(a) For each curve R = Ri, the tangent space TpR at the fixed point P has one positive
weight, as all weights on TpX are positive. Therefore the tangent space TqiR has the
opposite/negative weight. When R is the curve joining qi to qij, the tangent space at
qi has one positive weight: there should be only one negative weight on TqiX which
we've seen occurs along the curve Ri. Therefore the tangent space of R at qij has the
opposite/negative weight. Moreover, an explicit computation of the weights shows
that each vertex of valency 2 in the graphs of type D, E contributes with the positive
weight wf1 + wf2.

(b) For each rational curve R = Rj joining P to qj and each map f : P1 - R of de-
gree d which is totally ramified over P and qj, the number of negative weights on
H° (IP1, f*TX) equals d. The case in hand can be checked rather easily recalling the
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following "Euler" sequence on X:

O -- TX -- - Hom(Si, Qi) - - Hom(Si, Qi+l) - 0. (4.22)
i i

It is enough to compute the weights on the virtual C* representation

Ho(f*(Si* 0 Q)) - ( H°(f*(Si* Q i+l)).
i i

We claim that when i - j, there are no negative weights on HO(f*(Si* Qi)). Indeed,
we observe that for i 0 j, we have the equivariant isomorphism

f*Si = W(mi) 0 Op

so the weights on HO(f*(Si* 0 Qi)) are the positive numbers Au, - Av for v < mi < u.

We claim d negative weights on Ho(f*(S* Qj)). Equation (4.21) shows that we have
an equivariant identification:

SjlRj = W(mj - 1) 0 Op ( Op(-l). (4.23)

In the above, the C* action on Op(-1) has the weight Amj at [1 : 0] and the weight
Amj+l at [0 : 1].

The exact sequence (4.1) tensored with f*Sj* shows that Ho(f*Sj* f*Qj) is equivalent
to the C* virtual representation

V 0 HO(f*S) - HO(f*Sj* 0 f*Sj) + Hl(f*Sj* 0 f*Sj). (4.24)

We can now consider each of the three terms in (4.24) individually. Using (4.23), we
rewrite the first term as

V 0 W(mj - 1)* · V 0 H°(O(p (d)).

The first summand has weights Au - Av for v < mj - 1 and all u. In addition, we also
have the weights Au - (aAm + bAmj+1) for all nonnegative a, b such that a + b = d.
The second term in (4.24) can be rewritten as

W(mj - 1)* ) W(mj - 1) H(Op(d)) ® W(mj - 1) C

with a trivial action on the last term. This has exactly the same non-zero weights as
the first term in (4.24), except that we need to require that u < mj - 1. Finally, the
third term in (4.24) equals

W(mj - 1)* 0 H'(p(-d))

aAm +bAm +1with positive weights -Au + --- d +--- for all u < mj -1 and a, b are positive
integers summing up to d. Summarizing, we find that the only negative weights in
the list above are the d values (Am - Amj+1) for 1 < a < d.

In the same way we verify that there are no negative weights on HO(f*(Si* 0 Qi+l)).
We leave the details to the reader since they are similar to the computations above.
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Our initial claim is now proved.

Similarly, one shows that the number of negative weights on H°(R, TX) is exactly
2 whenever R is a rational curve in the cohomology class dual to 3j of one of the
following types:

* the rational curve joining P to one of the points rj or r.
* the rational curve joining qi to qij.
* the rational curve joining qj+l to sj or the curve joining qj-1 to sj.

Remark 4.2.1. The author believes that the arguments of the last few subsections can
be repeated for X = G/P. The proofs should not be any more difficult. The count of
negative C* weights on various cohomology groups can be done in terms of the roots of
p. Moreover, the count of the negative weights on the various tangent spaces follows from
standard computations. We leave these arguments to the interested reader.

Proposition 4.2.2. All relations between the codimension 1 tautological classes [r, to, f] on
Mo,n(X, ) are tautological.

The discussion in section 4.2.1 essentially established this claim. We have seen that all
relations between the boundary divisors are Keel relations. It suffices to show all relations
between the r.'s and evaluation classes are tautological. When n > 3, it was observed already
in the proof of proposition 4.2.1 that the evaluation classes can be expressed in terms of
the K's via the tautological equations (see (4.3)). Similarly, (4.6) is tautological being a
linear combination of a pullback relation and (4.5), which we will show to be tautological.
It remains to make the following two observations.

* When n = 1 and n = 2, the fact that the span of ev Qj is one dimensional modulo
boundaries and c's also follows from the tautological equations. This is not entirely
clear from the discussion above since in equation (4.4) we made use of the i, classes.
We need to prove that the tautological equations express any evaluation class ev*H' in
terms of a fixed one, say evlH. Here H, H' are two divisors, such as the Chern classes
of the quotient bundles Qi and Qj on X. The tautological equation (4.3) reduces our
analysis to one marking i = 1.

We produce a tautological equation which expressed ev*H' in terms of X classes and
the evaluation ev*H. Such an equation is not so easy to come by, and in fact, we ob-
served this fact only after proving lemma 4.2.1. The reason is the fact that our relation
is an incarnation of a Keel relation in codimension 5 on the space Mo, 5(X, 3). The
legs are split as (15)(23) and (12)(53) among two vertices, and the weights assigned
to the legs are (1, H', H, H', H) respectively. After forgetting the first 4 markings,
using the divisor equation, the no incidence equation, the unstable tripod equation,
we obtain the following tautological relation:

1 1 i 1
1 HevH- eV (13 H)2(H2) nH,(HH') + boundaries.

* Equation (4.5) is tautological. This can be seen by adding the above equations when
H, H' are interchanged. As a consequence, we obtain the desired equation (4.5):

1 2 1 2 1
'/ (H ) + ')2 K(H 2 ) 2(3 H)(13 .H)K(HH ')+ boundaries(13. H)2KP H(H) ( + - + HI)
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This completes the proof of the proposition.

4.3 The codimension 2 classes.

In this section, we will prove the remaining part of theorem 3. We seek to show:

Proposition 4.3.1. All relations between the codimension 2 tautological generators [r, to, f
on MO,n (Pr, d) are tautological.

To begin with, we consider the case of maps without markings Mo,o(P r, d). There are
several cases to consider: r = 1, r = 2 and r > 3. We will consider X = pl first. In the
previous chapters, we saw that the whole cohomology of the moduli space of stable maps to
P1 is generated by the tautological classes. The search for the codimension 2 tautological
classes gives the following results:

1. boundary classes of nodal maps with three irreducible components,

2. classes of nodal stable maps whose node maps to a fixed point in pI.

It turns out the classes in (1) and (2) are in fact linearly independent. To see this it
is enough to match their number with the dimension of H4(M 0,0(Pl, d)). This dimension
count can be done in several ways - either using Deligne's spectral sequence or localization.

Let us briefly indicate how the localization argument works, then turning to the compu-
tation by Deligne's spectral sequence. We will use a C* action on P1 with two fixed points
which we call 0,1 such that the tangent bundle at 0 has a positive weight, while the tangent
bundle at 1 has a negative weight. As before, we index the fixed point loci on Mo,o(P1, d)
by decorated graphs r.

We count the negative weighs on the normal bundles of the fixed loci. More precisely,
we let s denote the number of vertices of r labeled by 1 with at least three incident flags and
let u denote the number of vertices of r labeled by 1 with one incident flag. The number of
negative weights on the normal bundle of the fixed locus indexed by r is d - u + s. An easy
argument shows that there are 4 types of graphs indexing fixed loci with at most 2 negative
weights on their normal bundle. These graphs are shown in the figure 4.3. The number of
negative weights is indicated in a box to the left of each graph and the degrees of the edges
are written below the graphs.

0 0 0 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

(1,1...1) (1,1...1,2) (1 ..., 1, 2, 2)or (1 ... 1,3) (1,1 ... 1,1)

Figure 4-3: The fixed loci for the C* action on Mo,o (Pl , d).
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The first graph gives the fixed locus Mo,d/Sd with no negative weights on the normal
bundle, while the second graph gives the fixed locus Mo,d-1/Sd-2 with one negative weight.
There are 2 + [d/2] graphs with 2 negative weights. We find that the dimension of H4 equals

h4 (Mo,d)Sd + h2 (Mo,d-1)S d- 2 + 2 + [d/2] = h4 (Mo,d)Sd + d- 2 + [d/2]

where we also used lemma 4.2.3 to evaluate the second term of the sum.
It remains to compute the first term. We already know that the generators of H4 (M,d)Sd

are the boundary classes of curves with at least 3 irreducible components. These boundary
classes Bijl are indexed by triples (i,j, 1) such that i + j + I = d, j > 1, 2 < i < I, these
integers corresponding to the number of marked points on each component.

Claim 4.3.1. The classes Bijl form a basis of H4 (Mo,d)Sd.

We show these classes are linearly independent by matching their number with the
actual dimension of H4(Mo,d)Sd. The dimension computation is identical to that in lemma
4.2.3 by averaging out the traces of all a E Sd on H4 (Mo,d). We will omit the details. An
alternate proof will be established by the arguments below. This proof has the advantage
of extending to arbitrary markings.

We will now redo the same computation making use of Deligne's spectral sequence.
There are two cases to consider depending on the parity of d. Let us show the details for
d = 2k. An identical argument also works for odd d's - the numerical details are slightly
different. We make use of the fact that the boundary divisors in the space of stable maps
have normal crossings. However, these boundary divisors have self-intersections and writing
down the Deligne spectral sequence with the right system of coefficients is delicate, as we
have to account for automorphisms and self-intersections. This is essentially done in chapter
2 in a similar context.

In our case, the k boundary divisors D, ... Dk correspond to nodal maps whose degrees
on the components are (1, 2k - 1), ... (k, k). The codimension two strata are denoted by
Dijl for 1 < i < 1 and 1 < j with i + j + = d; they correspond to stable maps with three
components, the degree on the middle component being j. For 1 < i < k, the stratum
Di,2k-2i,i is the self intersection of Di,2ki; there are no anti invariant classes in its zeroth
cohomology group because of the Z/2Z symmetry which switches the edges. Therefore, this
term does not appear in the Deligne spectral sequence. We obtain the following complex:

k-1

H°(Dijl) -- ( H2 (Di) E H2 (Dk)- H4 (M0,0(P, d)). (4.25)
l <i<l,l<j,i+j+l=d i=1

Here the minus superscript on H2 (Dk)- stands for the anti invariant part of the cohomology
under the sign representation of Aut(r). Recall that each automorphism has a sign, given
by the action it induces on the determinant det( Edge (r)). The minus sign refers to
cohomology classes which are invariant under this sign representation. Since the edge of
the dual graph indexing Dk is preserved under the Z/2Z symmetry of the graph, H2 (Dk)-

is the same as the Z/2Z invariant part of H2 (Mo,1 (P 1, k) Xpi Mo,1((Pl, k)). We use the
computation of lemma 4.2.3 to conclude that the dimension of the middle term of the
complex (4.25) is 2k2 - 2k + 1. The first term is easily seen to be k2 - 2k + 1 dimensional.

We claim the dimension of H4 is k2, which also turns out to be the number of generators
we have exhibited for H4. It suffices to show that the alternating sum of dimensions of the
terms in the complex (4.25) is 0. This alternating sum equals the coefficient of q2 dim -4 in
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the virtual Poincare polynomial of M = Mo,o(Pl, d). By definition, the Poincare polynomial
can be computed from the associated graded of the Hodge weight filtration:

P(M) = E(-l)i+Jdim GrW(Hc(M))q (4.26)
i,j

In [46], it is proved that P(M) = q 4 d- 4. The claim follows from these observations.
The argument above is no more complicated when we deal with general projective spaces.

We will pick a C* action with weights Ao,...,..., Ar such that Ai is much bigger than Ai-l.
We denote by 0,1, ... , r the isolated fixed points of this action. To find the dimension of
H4 we use localization. In addition to the fixed loci listed above for P1 we have 4 more
types of graphs when r = 2 and one additional graph for r = 3. There are no new graphs
added for r > 3. This is an aspect of the "stabilization of cohomology" theorem proved in
[3]. Our computation shows that when r = 2 we gain d dimensions (we will need to invoke
lemma 4.2.3 again to compute the contribution of the first graph). For r > 3 we gain d + 1
dimensions.

~r ~=2 n~ - r=3
_ n n n U

2 1 1 1 2 2 1 1 2 1 1 1 2 1 1 1 3 1 1 1

(1, 1.1, ) (1, 1.1, ) (2,1. 1) (1,2, 1 .. ,1) (1, 1..... 1,1)

Figure 4-4: The fixed loci for the C* action on Mo,o(Pr, d).

We find generators for H4 by enumerating all tautological classes and matching their
number with the dimension we just computed. We obtain the following classes:

(A.1) the boundary classes of maps whose domain has at least three components. These
correspond to graphs with three vertices and no legs, no weights, and no forgetting
data.

(A.2.1) the nodal classes of maps whose node is mapped to a codimension 1 subspace; these
classes correspond to graphs with two vertices, and the weight of the edge is H.

(A.2.2) (when r > 2) classes of nodal maps, one component passing through a fixed codimen-
sion 2 subspace; these correspond to graphs with two vertices, and a forgotten leg
with weight H2.

(A.3.1) (when r > 2) classes of maps whose images pass through two general codimension two
subspaces; these correspond to graphs with one vertex with two forgotten legs with
weight H2.

(A.3.2) (when r > 3) the class of maps intersecting a codimension 3 subspace; these correspond
to graphs with one vertex and one forgotten leg with weight H3 .
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H2

H

Figure 4-5: The codimension 2 tautological generators for graphs with two vertices.

Lemma 4.3.1. The collections of codimension 2 classes on Mo,o(Pr, d) form a basis for
the codimension 2 Chow group.

We will omit the case when n = 1 and n = 2. The essential part of the proof of
proposition 4.3.1 consists in checking the case n > 3. We will do so only in the case r > 3.

(i) First, the proposition 2.3.1 expresses all generators [r, t, f] where r has only one
vertex of degree d as a sum of ev*H2 with boundary classes via the tautological
equations. Therefore, we retain only one generator of this form.

(ii) The codimension 2 classes [r, t, f] for which r has two vertices are obtained when:

(a) an edge of r is decorated with the weight H, there are no other weights or
forgotten legs;

(b) a leg of r is decorated with the weight H, there are no other weights or forgotten
legs;

(c) a forgotten leg of r is decorated with the weight H2 , there are no additional
weights or forgotten legs.

Moreover, the tautological equations (2.18) and (2.21) show (via gluing) that we only
need to consider the classes in (a) and the classes in (c) when the forgotten leg is
incident to a vertex with at most 2 unforgotten legs. A simple count count gives

2n + (d- 1)(2n - 1 + n + 1) (4.27)

generators as above. In addition, there are

n(n - 3) (4.28)
2

independent Keel relations between them.

(iii) Finally, we consider the classes for which r has two vertices. We will first discuss the
case d = 1. An easy count gives

3n + l + 3 n(n + 3)+ 2 -2(n + 3) (4.29)2 2
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boundary terms. We will exhibit

22(n2 - n- 8) + 2 - n(3n3 - 10n2 + 21n - 86)
24

independent relations between them.

Indeed, we think of the graph r as a vertex v with k + 1 legs (one of them is distinguished)
glued to a graph with 2 vertices and n - k + 1 legs (one of them is distinguished). Once v
and its incident flags are fixed, we obtain

(n- k + 1)2 - 3(n- k + 1)
2

Keel relations coming from the n-k + 1 legs distributed between the remaining two vertices.
This is however not entirely correct since the resulting relations may not be independent.
We count the relations differently: first, there are relations obtained when v has degree
1. Secondly, there are relations obtained when v has degree 0, but these may not be
independent from those exhibited before. Instead, a second set of relations are pulled
back from Mo,n. These can be expressed in terms of Keel's relations. Moreover, they are
independent from the relations of the first kind. Indeed, linear combinations of the first set
of relations do not involve graphs whose middle vertex has degree 1, while any non-trivial
combination of an independent set of relations of the second kind would. We count relations
of the first type. We must have k < n - 3, because the remaining two degree 0 vertices are
stable. We obtain

(n) (n - k + 1)2 - 3(n - k + 1) (4.31)
2k<n-3

independent relations. The relations coming from MO,n are counted next. There are

3" + 1 -2 (n+3)+ (n+ l)(n+2)
2 2

codimension 2 boundaries in Mo,n. The recursions in [47] give

3h4 = + 1 2n-3(2 + 3n +4) + n(n - 1)(3n2 - 7n + 26)
2 24

Therefore, we obtain

(n + 1)(n + 2) _ n(n - 1)(3n2 - 7n + 26) (4.32)
2 24

independent relations between these boundaries. Equation (4.30) follows from (4.31) and
(4.32).

Finally, we match the number of generators modulo the number of relations obtained in
items (i) - (iii) above to the actual dimension of H4(Mo,n(]P, 1)). This proves that there
are no other relations we need to account for.

The Betti number in question is computed via localization. We use a torus action as
in chapter 3 fixing a point p and a hyperplane H. The number of negative weights on the
normal bundle is obtained from equation (3.3.4). We sum the following three contributions
of the following fixed loci shown in figure 4.3:
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p

(H, 1)

- 11 X IU

Figure 4-6: The fixed loci on Mo,n(lPr, 1).

* The fixed locus Mo,n+l x H with no negative weights on the normal bundle. It
corresponds to the graph with one edge labeled 1, all the n legs being attached to the
vertex labeled p. The contribution of this locus to the Betti number is

h4(Mo,n+l x H) = h4(Mo,n+l ) + h2(Mo,n+l) + 1 =

3n+1 + 1 2(n2 + 4) + n(n + 1)(3n2 - n + 10)
- 2 2(n2 + 5n + 4) + (4.33)

2 24

* There are n loci corresponding to graphs with one edge, the vertex labeled (H, 0)
supporting an attached leg. These fixed loci have 1 negative weight on their normal
bundle and are isomorphic to MO,n x H. Their contribution to the Betti number is

n h2(. ,n x H) = n (2n-1 _ n(n- 1) )(4.34)

* There are 2n - 1 - n fixed loci corresponding to graphs with an edge of degree 1
and the vertex labeled (H, 0) supporting at least two legs. There is an additional
fixed locus corresponding to the graph with one vertex labeled (H, 1) with n legs
attached. All these fixed loci have 2 negative weights on their normal bundle. Their
total contribution to the Betti number is

2n - n. (4.35)

Now, the computation for d arbitrary is similar, and we will not reproduce it here
entirely. The count obtained in items (i) - (iii) needs to be modified in two places. First,
the total number of boundary graphs with two edges is:

(d + 1)(d + 2) 3n+ 1 2n ( n + )(d + ) d+2]
2 2 2 2 2
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Secondly, there are

(d-i-(_ (-) (n-k+l)2-3(n-k+l))

independent relations between these classes in addition to (4.30).
The count of generators modulo relations is then matched to the Betti number. The

dimension of the cohomology H4 (Mo,n(r, d)) is computed via localization, or better via
the Deligne spectral sequence. We obtain complexes:

O - ( H(D (2)) - ) H2(D( )) - H4(Mo,(P, d)) - 0. (4.38)

Here, D(2) are the codimension 2 boundary strata corresponding to dual graphs without
automorphisms. Their number is obtained from formula (4.36) subtracting [d]. The middle
terms are isomorphic to fibered products

MO,AU{* (P, dA) XPr MO,BU{* (Pr, dB)

for all possible splittings of the markings and degrees such that the corresponding graphs
are stable. The dimensions of the middle terms are computed as using proposition 1.5.1.
The alternating sums of the dimensions of the terms in (4.38) can be read off from the
virtual Poincare polynomial P(Mo,,(P r, d)) defined in (4.26). The expression in [31] proves
that the alternating sums of dimensions is 1. We conclude that

h4(o,(r, d)) =(d )(d + 4) - 2-3(d - 1)(n2 + 6n + 9)+
2 2

+ [d_ ] [d + [2] 1 + (4.33) + (4.34) + (4.35).

Putting everything together, we find the claimed result.

Remark 4.3.1. The method of computing the Betti numbers via localization shown here
works very well in degrees 0 and 1, recovering the results of [47] precisely. In higher degrees
a complete computation has been recently achieved in [31], but the answer is still highly
recursive. We plan to investigate the extension of our method to arbitrary degrees elsewhere.
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Chapter 5

Further discussion

In this short chapter we discuss several conjectures and open questions. First, the results
discussed in this thesis should hold for general flag varieties over any field. We conjecture:

Conjecture 5.0.1. If X = G/P is a general flag variety, where G is a semisimple al-
gebraic group and P a parabolic subgroup, then all rational Chow classes of Mo,n(X,3)
are tautological. What are other examples where this holds (e.g. toric varieties, cellular
varieties)?

The results of section 2.3, certain localization computations, and also a combination of
the results of [46] and [31] lead us to the following statement:

Conjecture 5.0.2. If X is any flag variety, (the dimensions of) the Chow rings of the open
part Mo,n(X, 3) are independent on the degree A, provided that /3 is a linear combination
of the indecomposable classes with positive coefficients.

We believe a similar statement could be true for toric varieties. When X is a convex
toric variety, the scheme of rational morphisms into X is a rational smooth variety which
admits a description similar to the one for PT: it is obtained as a base of a torus bundle
whose total space sits in an affine space [54]; similar arguments as in chapter 2 can be
applied. We mention this fact also because it is known that SL flags admit degenerations
into toric, though singular, varieties. We will leave this investigation for a future project. A
positive answer will be useful, via vanishing of high codimension classes on the open part,
to obtain reconstruction theorems for a certain class of varieties.

Question 5.0.1. If X is any SL flag, is it true that the cohomology/tautological classes on
the open moduli spaces satisfy Poincare duality? Does this hold for other classes of varieties
(e.g. toric) ?

On a similar note, is would be interesting to investigate if the tautological systems of
the compactified spaced (in higher genus, for non-convex targets, including the bp classes)
have any special structure e.g. if they satisfy Poincare duality.

Since the number of tautological classes is huge compared to the dimension, it would
be interesting to find a universal way of producing relations. For instance, relations can be
obtained using Mumford's method: one exploits the vanishing of higher Chern classes of
tautological bundles which can otherwise be computed by Grothendieck-Riemann-Roch. It
is not clear that this method produces new relations other than the ones proposed in the
introduction. We believe it does not, and we checked this in a number of examples in low
degrees; in arbitrary degrees, we checked this fact up to the boundary terms.
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Question 5.0.2. Is it true that all relations between the tautological classes (or better,
stabilized cohomology classes in the sense of [3]) are tautological as in definition 1.6.1?

In chapter 4 we showed that in codimension 1 and 2, all relations are essentially conse-
quences of Keel's relations. We also observed in chapter 2 that the same is true on the open
part of the moduli space in any codimension when X = pr . This question can perhaps be
approached when the target is P1 by a naive count of generators which should then be com-
pared to the computation of the Betti numbers in [31]. We will consider this investigation
in a future project. We have already checked this in particular cases.

Of course, the presentation of the ring announced in [50] would in principle solve this
question in the case when the target is pr and one marking; there is yet no written account
for more markings, and no claims have been made for zero markings. Nonetheless, even
in this special case, the geometric interpretation of the proposed relations is not entirely
clear. Even better, it would be more interesting if we could find a concrete description of
the moduli spaces of stable maps similar to Keel's blowup construction.

Question 5.0.3. Find a universal way of obtaining relations in the tautological rings. Find
a concrete "geometric" description of the cohomology rings for any target.

Our point of view ties in with certain reconstruction theorems of the Gromov-Witten
invariants [42], [43], [5]: all recursions between the Gromov-Witten invariants considered
by these authors are consequences of a general procedure of obtaining relations between
the tautological generators which include the cotangent insertions. This procedure can
be formalized in the language presented in the introduction. It replicates all equations
contained in [51]. We will explain this in more detail elsewhere.

In [5] and [43], the authors prove reconstruction of descendant Gromov-Witten invariants
of ]1 (or of any smooth manifold whose cohomology is generated by divisor classes) from
the J function encoding the 1 point invariants; this function can be explicitly computed in
several examples. It is defined as:

sx [M-0 (X, d)] viTd = ev, ] ) E H*(X).

The recursions in [5] are obtained in a complicated fashion using virtual localization on
the graph space. However these recursions can be immediately obtained via the equation
below which can be used to reduce the number of markings when evaluating Gromov-Witten
invariants:

ev*H = ev*H + dbli + E boundary divisors. (5.1)

This is also proved in [43] by intersecting both sides with curves. We rederive this equation
in a more geometric fashion. A similar procedure was applied in chapter 4. The follow-
ing topological recursion relation on Mo,3(X, /) follows by pullback from Mo,3, and was
essentially known to Witten:

7r *,0 + -'(),) - a,b (5.2)7r*yb + A(13),(2) = E \(1),(23) 
a,b

Here r : Mo,3 (Pr , d) -Mo, 2 (p1r , d) forgets the third point, and ST denotes the divisor of
nodal maps with markings labeled S and T distributed on the two branches of degrees a, b.
Intersecting (5.2) with ev*H and pushing forward via r we obtain (5.1).
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Finally, we observe that virtual fundamental classes [Mo,n(X, /)] vir for all projective
manifolds i : X -- Pr define classes in H*(Mo,,n(Pr,d)), which are tautological by our
main result. Even more generally, the virtual classes of all relative stable morphism spaces
[9y,(X,/)] r are tautological. For computational purposes, it would be interesting to
find an efficient way or expressing such classes.

For example, when n = 1, and X is a Fano hypersurface of degree I < r, then the
virtual class in question can be expressed as c+l(7r*ev*C0pr(l)). Grothendieck Riemann
Roch combined with topological relations as above show that on the open part of the moduli
space we have:

dl

ch(7r*ev*Oir (l)) = Eel I
k=O

If no boundary contributions existed, then this computation would show that:

dl

[Mol (X, d)] i r = I(l evH + kli).
k=O

In turn, this would give the following formula for the J function of X:

dl

i*Jd = f (H + k)Jd.
k=O

Specializing to I = 1, we inductively determine the J function of the projective space:

Jpr = 1

d rl = (H + k)r+l

It can be shown that all boundary contributions vanish in the Fano case by a dimension
counting argument [26], so the above computation is indeed correct.

It is then of interest to obtain complete formulas of the virtual classes [4o,n(X, /)]vir,
including the boundary contributions, in terms of tautological classes. For example, it would
be interesting to study the case when X is a cut out by the zero locus of a section of an
indecomposable bundle.

As far as the higher genera are concerned, there is by now a large body of work aiming
to understand the tautological rings of the stable curve spaces by making use of versions
of Kontesevich-Manin spaces. In a different direction, one can define the higher genus
tautological Gromov-Witten systems, as we will in the appendix. It is beyond the scope of
this thesis to discuss this case, but its study in the context of Gromov-Witten theory will
be of interest. For example, it would be interesting to have results about the structure of
these systems or, say, about their dimensions.

As a first check that our definition is the correct one, the following question needs to
be answered. An affirmative result is easily obtained in the presence of a torus action via
virtual localization. A similar question was studied in [24]: the authors prove that the
moduli space of Hurwitz covers yield tautological classes.

Question 5.0.4. Is it true that the pushforwards of the tautological classes on Mg,n(X, /3)
under the stabilization map st : Mg,n(X, /) Mg,n are tautological? Is the same statement
true for the tautological classes on the space of relative stable morphisms ~9Ya(X,/3) for
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any pair (X, Y) ?

Moreover, it would be interesting to have a way of obtaining relations between the
tautological classes. Already in degree 0, that is for moduli spaces of curves, the higher genus
tautological systems seem to be very complicated. Ionel's vanishing (generalizing Getzler's
vanishing low genus) provides examples of nontrivial relations between the tautological
classes in degree 0 [37]. These relations can be pulled back to any moduli space of stable
maps to obtain relations between the tautological classes in any degree. Unfortunately the
number of terms in such relations grows very fast and a concrete study is difficult even in
low genus.

It is not yet clear if these degree 0 ideas can be extended to Gromov-Witten theory.
One possible application concerns reconstruction of Gromov-Witten invariants with the aid
of the possible relations between the tautological classes. A genus 0 example was explained
above, but higher genus examples are undoubtedly more interesting.

In higher genus all work that has been done started from the degree 0 relations. The
reason behind is the belief that, at least in the case of targets with semisimple quantum
cohomology such as Pr, the degree 0 universal equations determine all higher genus invari-
ants. This has been checked for g < 2 [45]. For example, in genus 0, all that is needed are
the WDVV equations. A related observation of Gathmann shows the Virasoro constraints
together with one additional degree 0 equation determine all genus g invariants of Pl [27]. It
would perhaps be interesting to obtain relations between the tautological classes in higher
degrees.
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Appendix A

The tautological systems in higher
genus.

To define the tautological systems R for non-convex targets or higher genera we need
to make use of the virtual fundamental classes. As the moduli spaces involved are not
necessarily smooth, we will ignore any possible ring structure R may have.

We let 1R C A,(Mo,n(X,, )) be the minimal system satisfying the requirements:

· 1 evaq.. e *a.' ,..... na n [Mg,n(X, )]vir E ., for all ai E A*(X), ai 0;

* The system is closed under pushforward by the forgetful morphisms;

* The system is closed under the gluing maps (r.

To define the gluing maps (r, we fix a stable dual graph r of genus g, degree fl, with n
legs. For each vertex v, we write g, fl, nv for the corresponding genus, degree and total
valency (half edges and legs). The boundary stratum of maps with fixed dual graph r is
obtained from the fibered diagram below, where E(r) and H(r) stand for the set of edges
and half edges of r:

M,n(X ,) C X M(r) I--- Mgvv (x )

xE(r) XH(r)

The gluing map Cr is obtained as composition of the gluing pushforward, the Gysin mor-
phism and the exterior product (which we will omit from the notation):

Cr : A (8 ,* (X, ,3)) - A* (,Mg(X, 3)), r = (gr)*.r- (A.1)

Lemma A.0.2. In genus 0 and for convex targets, we recover the definition proposed in
the introduction.

To begin, we define the K classes using the forgetful pushforward:

/~n(n+l,..., an+p) = 7r*(evn+1en+1 -...- e+pan+p n [MO,n+p(X, )] vir)
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More generally, we can define the operational classes ;n(.n +l,... , an+p) as the operational
proper fiat pushforward [49] of monomials in the evaluation classes. Then:

n(n+l, * - *, an+p) n [Mo0,n(X, 3)]Vi = K/n(an+l . n+p)

We let Sd = Sd C A,(Mo,n(X, 3)) be the following collection of descendant classes:

= e *... evn*a. ... nan n in(a+l, ..., an+) E A*(Mo,n(X, O)). (A.2)

We let Sd be the collection of classes:

(r(Or), where Or = T O, and , E Sdv,n
v

for all stable dual graphs r. We define the similar collections of primary classes SP and SP
only allowing al = ... = an = 0 in equation (A.2).

The lemma will follow from the facts below:

(1) For all targets X, SP is preserved by the natural pushforwards.

(2) For convex targets X, Sd is closed under the multiplication in the Chow ring.

(3) For all targets X, Sd = Sp; consequently, both collections give additive generators for
the tautological systems.

To prove (1), we first observe that closure of SP under the gluing pushforwards is obvious.
We check closure under the forgetful morphism r Mo,n(X, 3) -- Mo,n-l(X,/ ). Letting
r' be the graph obtained from r by forgetting the nth leg, we obtain:

7r*(r(Or) = (r*(glr)*ArIr = (glr,)*7r*rOr = (lr)*Arj(ir*r) = (r(7rOr).

Special care must be taken when the graph r' is unstable. At any rate, we reduce our check
to classes in sP. Then, let be a class as in (A.2), with al = ... a = 0. The projection
formula shows:

r*,O = eval * .. . -evnlan- n ,,n- (an --, n+p) E SP.

To check (2), we follow an idea of [33]. We fix two classes r(Or) and (r,(Or) supported
on M(r) and M(r'). Their product is computed by the excess intersection formula. The
excess bundle will be distributed over the components M(r") of the stack theoretic inter-
section of M(r) and (r'). These are indexed by dual graphs which are given additional
structure. The graph r" is endowed with two collapsing maps r - r and r" - r' which
replace whole subgraphs of rF with vertices of either r or r', also collecting the incident
legs and the degree labels. Moreover, we require that each half-edge of r" correspond to
a half edge in either r or in r'. Just as in equation (11) in [33], we derive that the excess
normal bundle splits as sum of line bundles which are expressed in terms of the cotangent
lines. The top Chern class of the excess bundle equals:

h(-V - sow
e

where v, w are vertices lying on an edge e which "comes" from both r and F'. Therefore,
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the excess intersection formula shows that:

(r(Or) (r,(Or,) = E r(8r,,).
r"

We argue that Or,, is an exterior product of classes in Sd. To this end, we observe that:

(i) Pullback under the gluing morphisms glr preserves the evaluation classes ev*a and
the b classes.

(ii) The pullback of a /c class is sum of K classes. Product of X classes is a K class.

Finally, for the last item on our list, it suffices to check that Sd C SP, since jP is
invariant under the gluing morphisms. This will follow if we show that:

1 n _ sP -- sP.

Using the projection formula for the boundary maps, observation (i) and the compatibility
of Chern classes with the Gysin morphisms, it suffices to prove that:

1 -: SP - SP.

Let 0 be given by (A.2). The projection formula for the morphism r : Mo,n+p(X,3) -

Mo,n(X, 3) shows that ii n 8 is the pushforward of the class:

*ir eval .- evn+pLn+p n [MO,n+p(x, p)] ir

Using the invariance of 8P under the forgetful pushforward by 7r established above, it suffices
to prove that this class belongs to SP. It is an immediate consequence of the commutation
between Gysin morphisms and flat pullbacks that:

evi*ain'P P.

It remains to prove that:

7r*1 n [On+p(X, )]Vir E P.

When X = Pr, this is a consequence of the equation VI 6.17 in [49] and lemma 2.2.2 in
[51]. The general case follows pulling back under the closed embedding i : Mo,n+p(X, ) 
Mo,n+p(P', i*3) induced by a projective embedding of X. We only need to observe that
the operational classes on the space of maps to rT pullback to the similar classes for X.
Then, to finish, we cap with the virtual fundamental class.

As a corollary of the proof we obtain a system of generators for the genus 0 tautological
systems. Recall the definition of weighted graphs given in the introduction. For each
weighted graph [r, , f] and each vertex v of r we obtain a monomial in evaluation classes:

O = I ev (f) n [Mo,n(x, Pv)] , (A.3)
f

where the product is taken over flags f incident to v. The "forgetting" data f determines
a morphism r by discarding the legs in f. Therefore, each triple [r, t, f] determines a
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cohomology class:

[r, tu,f] = *r.r 1( I| O , E n.- (A.4)
vUEv(r)

Corollary A.0.1. For all targets X, the classes [r, i, f] form a system of additive genera-
tors for the genus 0 tautological systems.
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