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Abstract

This thesis begins with the study of a class of symmetric functions {x} which are generating
functions for ribbon tableaux (hereon called ribbon functions), first defined by Lascoux,
Leclerc and Thibon. Following work of Fomin and Greene, I introduce a set of operators
called ribbon Schur operators on the space of partitions. I develop the theory of ribbon
functions using these operators in an elementary manner. In particular, I deduce their
symmetry and recover a theorem of Kashiwara, Miwa and Stern concerning the Fock space
F of the quantum affine algebras Uq(sI).

Using these results, I study the functions E in analogy with Schur functions, giving:

* a Pieri and dual-Pieri formula for ribbon functions,

* a ribbon Murnaghan-Nakayama formula,

* ribbon Cauchy and dual Cauchy identities,

* and a C-algebra isomorphism w,n: A(q) -- A(q) which sends each Gx to g,.

The study of the functions .x\ will be connected to the Fock space representation F of Uq(sn)
via a linear map 4 : F -- A(q) which sends the standard basis of F to the ribbon functions.
Kashiwara, Miwa and Stern [29] have shown that a copy of the Heisenberg algebra H acts
on F commuting with the action of Uq(srn). Identifying the Fock Space of H with the
ring of symmetric functions A(q) I will show that · is in fact a map of H-modules with
remarkable properties.

In the second part of the thesis, I give a combinatorial generalisation of the classical
Boson-Fermion correspondence and explain how the map $ is an example of this more
general phenomena. I show how certain properties of many families of symmetric functions
arise naturally from representations of Heisenberg algebras. The main properties I consider
are a tableaux-like definition, a Pieri-style rule and a Cauchy-style identity. Families of
symmetric functions which can be viewed in this manner include Schur functions, Hall-
Littlewood functions, Macdonald polynomials and the ribbon functions. Using work of
Kashiwara, Miwa, Petersen and Yung, I define generalised ribbon functions for certain
affine root systems 1 of classical type. I prove a theorem relating these generalised ribbon
functions to a speculative global basis of level 1 q-deformed Fock spaces.

Thesis Supervisor: Richard P. Stanley
Title: Levinson Professor of Applied Mathematics
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Chapter 1

Introduction

The study of symmetric functions has grown enormously since Girard and Newton first
studied the subject in the seventeenth century. In the last century, symmetric function
theory has developed at the crossroads of combinatorics, algebraic geometry and represen-
tation theory. The ring of symmetric functions A = AQ contains a distinguished basis {(s)
known as the Schur functions. Schur functions simultaneously represent the characters of
the symmetric group Sn, the characters of the general linear group GL(N), the Schubert
classes of the Grassmannian Grkn and the weight generating functions of Young tableaux.

In recent years, there has been an explosion of interest in q- and q, t-analogues of sym-
metric functions; see for example [48, 37, 55, 64]. With each such family of symmetric
functions, the initial aim is both to connect the functions with representation theory, al-
gebraic geometry or some other field; and to generalise the numerous properties of Schur
functions to the new family of symmetric functions. The first part of this thesis is concerned
with the latter task for a family of symmetric functions which we call ribbon functions, de-
fined by Lascoux, Leclerc and Thibon [39]. The second part of this thesis tries to explain
the results of the first part in the wider context of representations of Heisenberg algebras
and the Boson-Fermion correspondence.

Ribbon functions are defined combinatorially as the spin-weight generating functions of
ribbon tableaux:

(n) (X; q) = E qspin(T)xw(T)
T

where the sum is over all semistandard n-ribbon tableaux (see Figure 1-1) of shape A, and
spin(T) and w(T) are the spin and weight of T respectively. The spin of a ribbon is the
number of rows in the ribbon, minus 1. The definition of a semistandard ribbon tableau
is analagous to the definition of a semistandard Young tableau, with boxes replaced by
ribbons (or border strips) of length n. When n = 1, ribbon functions reduce to the Schur
functions. When q = 1, we obtain products of n Schur functions. The definition of ribbon
functions can be extended naturally to skew shapes A/tt.

To prove that the functions g(n)(X; q) were symmetric Lascoux, Leclerc and Thibon
connected them to the (level 1) Fock space representation F of the quantum affine algebra
Uq(s[n). The crucial property of F is that it affords an action of a Heisenberg algebra H,
commuting with the action of Uq(srn), discovered by Kashiwara, Miwa and Stern [29]. In
particular, they showed that as a Uq(s[n) x H-module, F decomposes as

F - VA0o Q(q)[H_]

11



Figure 1-1: A 3-ribbon tableau with shape (7, 6, 4, 3, 1), weight (2, 1, 3, 1) and spin 7.

where VAo is the highest weight representation of U~(s[r) with highest weight A0 and
Q(q)[H_] is the usual Fock space representation of the Heisenberg algebra.

The initial investigations of ribbon functions were focused on the q-Littlewood Richard-
son coefficients c(q) of the expansion of G(n)(X; q) in the Schur basis:

G(n)(X;q) = cE c(q) s(X).

These polynomials c\(q) are q-analogues of Littlewood Richardson coefficients. Leclerc
and Thibon [411 showed that the c(q) are coefficients of global bases of the Fock Space
F. Results of Varagnolo and Vasserot [62] then imply that they are parabolic Kazhdan-
Lusztig polynomials of type A. Finally, geometric results of Kashiwara and Tanisaki [30]
show that they are polynomials in q with non-negative coefficients. Much interest has
also developed in connecting ribbon tableaux and the q-Littlewood Richardson coefficients
to rigged configurations and the generalised Kostka polynomials defined by Kirillov and
Shimozono [31], Shimozono and Weyman [54] and Schilling and Warnaar [52].

In a mysterious development, Haglund et. al. [17] have conjectured connections between
diagonal harmonics and ribbon functions. More recently, Haglund, Haiman and Loehr [16]
have found an expression for Macdonald polynomials in terms of the skew ribbon functions
G(/ Unfortunately, the positivity of the skew q-Littlewood Richardson coefficients does
not follow from the representation theory, so a proof of the Macdonald positivity conjecture
is yet to result from this approach.

The Fock space F can be viewed as the vector space over Q(q) spanned by partitions
with a natural inner product (., .) : F x F -¢ Q(q) given by (A, ) = d,. Our study of ribbon

functions begins in Chapter 3 with the definition of combinatorial operators un) i E Z},
called ribbon Schur operators, on F:

(n)A qspin(//A)/ if p/A is a n-ribbon with head lying on the i-th diagonal,

0 otherwise.

Following work of Fomin and Greene [12], many properties of ribbon functions can be
phrased in terms of ribbon Schur operators. In particular, we identify a commutative
subalgebra A(u) C Q(q)[..., ul, uo, u l,...] abstractly isomorphic to the ring of symmetric
functions. This algebra should be thought of as the (Hopf)-dual of the symmetric function
algebra in which ribbon functions are defined. We give explicit formulae for certain "non-
commutative Schur functions" s(u) E A(u) which are related to ribbon functions by the
formula

(sA(u) , ) = l (q).

12
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Our results thus imply some new positivity results for skew q-Littlewood Richardson coef-
ficients.

Making computations involving A(u) and the adjoint algebra A-(u) c EndQ(q)(F), we
obtain a non-commutative "Cauchy identity" for the operators ui. In this way we recover
using just linear algebra and combinatorics of ribbons the action of the Heisenberg algebra
on F due to Kashiwara, Miwa and Stern mentioned above. In particular, we obtain an
elementary proof of the symmetry of ribbon functions.

In Chapter 4, we use the action of the Heisenberg algebra on F to deduce properties of
ribbon functions in analogy with Schur functions:

* A ribbon Pieri formula (Theorem 4.12):

hk[(1 + q2 +... + q2(n-1)) X]gv(X; q) = E qs(/iV)g (X; q)

where the sum is over all i such that l/v is a horizontal ribbon strip of size k. The
notation hk[(l + q2 + ... + q2(n-1)) X] denotes a plethysm.

* A ribbon Murnaghan-Nakayama-rule (Theorem 4.22):

(1 + q2k + .. + q2k(n-1)) pkgv(X; q) = j X/v(q)u,(X; q)

where Xk/,(q) can be expressed as an alternating sum of spins over certain "border
n-ribbon strips" of size k.

* A ribbon Cauchy (and dual Cauchy) identity (Theorem 4.28):

n-1
1z, gA/6(X; q) g/6(Y; q) = II ]I 1 - xiyjq 2k

X i,j k=O

where the sum is over all partitions A with a fixed n-core 6. A combinatorial proof of
this identity was given recently by van Leeuwen [44].

* A Q-algebra isomorphism wn: A(q) -- A(q) (Theorem 4.26) satisfying

Wn(g(X; q)) = gx,(X; q).

Even the existence of a linear map with such a property is not obvious as the functions
G\ are not linearly independent.

One should expect these formulae to be important properties. For example, the Pieri
formula for Schur functions calculates the intersection of an arbitrary Schubert variety with
a special Schubert variety in the Grassmannian. The Murnaghan-Nakayama rule calculates
the irreducible characters of the symmetric group.

The connection between ribbon functions and the action of the Heisenberg algebra is
made explicit by showing that the map 4,: F - A(q) defined by

A, , (1.1)

13



is a map of H-modules, after identifying Q(q)[H_] with the ring of symmetric functions
A(q) in the usual way. The map -i has the further remarkable property that it changes
certain linear maps into algebra maps, as follows.

Lascoux, Leclerc and Thibon [38] have constructed a global basis of F which extends
Kashiwara's global crystal basis of VAO. They used a bar involution - F - F which
extends Kashiwara's involution on VAo. Another semi-linear involution, denoted v - v' was
also introduced and further studied in [41] which satisfied the property (, v) = (u', ) for
u, v E F. We shall see that if we restrict 4o to the space of highest weight vectors of F for
the Uq(s[,) action, then both involutions become algebra isomorphisms under the map .
In particular the "image" of the involution v - v is simply w,.

In Chapter 5, we explain how (1.1) should be thought of as a generalisation of the Boson-
Fermion correspondence. The classical Boson-Fermion correspondence identifies the image
of semi-infinite wedges in the Fermionic Fock space as the Schur functions in the Bosonic
Fock space. Our investigations are motivated by the observation that many classical families
of symmetric functions possess a trio of properties: a combinatorial tableaux-like definition,
a Pieri-style rule and a Cauchy-style identity. Such families of symmetric functions include
Schur functions, Hall Littlewood functions, Macdonald polynomials and ribbon functions.
We shall explain these phenomena using representations of Heisenberg algebras.

Our aim is to generalise the Boson-Fermion correspondence to any representation of a
Heisenberg algebra H with "parameters" ai. A Heisenberg algebra is generated by {Bk:
k E Z\{0}} satisfying

[Bk, B] = I al $ k,-I

for some non-zero parameters al satisfying al = -a-l. Given a representation V of H with
a distinguished basis {(v I s E S} for some indexing set S and a highest weight vector in
V, we define two families {Fs I s E S} and {G I s E S} of symmetric functions. These
definitions are combinatorial and tableaux-like in the sense that they give the expansion of
Fs or Gs in terms of monomials. The map v, -÷ Gs turns out to be a map of H-modules for
a suitable action of H on A. The sum Es Fs(X)Gs(Y) satisfies a Cauchy identity: it has
an explicit product formula involving only the parameters ai. Lastly, we find symmetric
functions hk[ai] E A so that both hk[ai]Fs and hk[ai]Gs have Pieri-like expressions.

There is another part of the Boson-Fermion correspondence involving vertex operators
which we have chosen to largely ignore. This point of view has been studied by Jing and
Macdonald [19, 20, 48].

In the last part of the thesis, we use our generalisation of the Boson-Fermion corre-
spondence to define ribbon functions for other Fock space representations. Our definition
uses a construction of the Fock space representations for quantum affine algebras due to
Kashiwara, Miwa, Petersen and Yung [28]. They define Fock space representations F for
the quantum affine algebras of types A(2) B (2) A(2 D1) and D(2) The main theorem
of [28], for our purposes, is that F decomposes as V ® Q[H_] as a Uq(g) ® H module.
Another construction of F is given by Kang and Kwon [24] in terms of Young walls, though
they do not consider the action of the Heisenberg algebra.

The construction of these Fock spaces in [28] relies on a choice of a (level 1) perfect crystal
B for the quantum affine algebra. The Fock space representation is indexed by certain
"normally-ordered" elements bl ® b2 ® ... in a semi-infinite tensor product B ® B ® ...
of this crystal. In the notation above, this will be our indexing set S. The action of a
Heisenberg algebra on the Fock space is also given explicitly in [28], and we use it to define

14
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generalised ribbon functions F? E A(q). In the case T) = A( 1), we explain how one recovers
Lascoux-Leclerc-Thibon ribbon functions. We also give examples of ribbons and ribbon
functions for = A(2)

These generalised ribbon functions are likely to be interesting from both the combinato-
rial and representation theoretic points of view, though the calculation of ribbon functions
is considerably harder. We generalise a result of Leclerc and Thibon to show that the gen-
eralised q-Littlewood Richardson coefficients ced E Q(q) given by Ft = - x c= .sx are also
coefficients of a speculative "global basis" of F.
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Chapter 2

Ribbon tableaux and ribbon
functions

In this chapter we give the definitions for tableaux and symmetric functions needed through-
out this thesis, and define the ribbon tableaux generating functions of Lascoux, Leclerc and
Thibon.

2.1 Ribbon tableaux

2.1.1 Partitions and Tableaux

A partition A = (A1 > A2 >_ .-. > A1 > 0) is a finite sequence of non-increasing positive
integers. We will call the length of A, and denote it by l(A). We will say that A is a
partition of A1 + A2 + ... + A1 = IAI and write A - A1. A composition a = (al, a2, ... , l)
is an ordered list of non-negative integers. As above, we will say that a is a composition
of lal = al + a2 + .-- + al. We use the usual notation concerning partitions and do not
distinguish between a partition and its Young diagram. Let mk(A) denote the number of
parts of A equal to k. Let A' denote the partition conjugate to A, given by Ai = #j I Aj > i}.
We shall write P for the set of partitions. We shall always draw our partitions in the English
notation, so that the parts are top left justified.

The edge sequence p(A) = (... ,p-2,p-l,po,Pl,P2, ... ) of a partitions A is the doubly
infinite bit sequence obtained by drawing the partition in the English notation and reading
the "edge" of the partition from bottom left to top right - writing a 1 if you go up and
writing a 0 if you go to the right (see Figure 2-1). We shall normalise our notation for edge
sequences by requiring that the empty partition 0 has edge sequence p(O)i = 1 for i < 0
and p(0)i = 0 for i > 1. Adding a box to a partition corresponds to changing two adjacent
entries of the edge sequence (i, Pi+l) from (0, 1) to (1, 0). This box will then lie on diagonal
i.

If A and p are partitions we say that A contains p if Ai > pi for each i, and write p c A.
A skew shape is a pair of partitions A, such that p, C A, denoted A/j. The skew shape
A/p is a horizontal strip if it contains at most one square in each column. A skew shape
A//p is a border strip if it is connected, and does not contain any 2 x 2 square. The height
h(b) E N of a border strip b is the number of rows in it, minus 1. A border strip tableau T
of shape A/p is a chain of partitions

= 0o C /u1 C .. C r = 

17
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Figure 2-1: The edge sequence p(31) = (... ., 1, 1, 0, 1, 0, 0, 1, 0, 0,...).

such that each pi+l/pi is a border strip. The height of a border strip tableau T is the sum
of the heights of its border strips.

The square or box (i, j) on row i and column j is said to lie on diagonal j - i. A
semistandard tableau T of shape A/u is a filling of each square (i, j) E A/zu with a positive
integer such that the rows are non-decreasing and the columns are increasing. We write
sh(T) = A/p. The weight w(T) of such a tableau T is the composition ac such that ai is the
number of occurrences of i in T. The tableau is standard if the numbers which occur are
exactly those of [m] = {1, 2,..., m} for some integer m. A semistandard tableau of shape
A/p can be thought of as a chain of partitions pu = A0 C A1 C ... C Al = A such that each
Ai/Ai-l is a horizontal strip.

2.1.2 Cores and ribbons

Let n > 1 be a fixed positive integer. When a border strip has n squares for the distinguished
integer n, we will call it a n-ribbon or just a ribbon. The height of the ribbon r will then
be called its spin spin(r). The reader should be cautioned that in the literature the spin is
often defined as half of this. The head of a ribbon is its top-right most square.

Let A be a partition. Its n-core A is obtained from A by removing n-ribbons until it is
no longer possible to do so, and does not depend on how the ribbons are removed. Adding
a n-ribbon to a partition A corresponds to finding an index i E Z such that pi(A) = 1 and
pi+n(A) = O, then changing those two bits to pi(A) = 0 and Pi+n(A) = 1.

Let A be an n-core with edge sequence p(A) = (... ,P-2P-,P,P2l,P2, ... ). Then there
is no index i so that pi(A) = 0 and pi+n(A) = 1. Equivalently, the subsequences

p(i) () = (..., Pi-2n, Pi-n Pi, Pi+n, Pi+2n ,.. .)

all look like (..., 1,1,1,1,0,0,0,0,0,...) with a suitable shift. Define the offset sequence
(do, dl, ... , dn_1) E Zn by requiring that Pi+ndi = 0 and Pi+n(di-l) = 1. The offsets satisfy
di-n = di + 1 and dl + d2 + . - + dn = 0 and completely determine the n-core.

The n-quotient of A a n-tuple of partitions denoted by (A(), ... , A(n- 1)) and are defined
by requiring that pi(A( )) = P(i+dj)n+j(A) where dj = dj(A). The n-quotient and n-core of
A completely define A. They satisfy AI = 1A1 + n(lA(O)I + * + A(n-l)).

Let P6 to denote the set of partitions A such that A = for an n-core = 3. A ribbon
tableau T of shape A/p is a tiling of A//u by n-ribbons and a filling of each ribbon with a
positive integer (see Figure 1-1). If these numbers are exactly those of [m], for some m, then
the tableau is called standard. We will use the convention that a ribbon tableau of shape A

18
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where A $: 0 is simply a ribbon tableau of shape A/A. A ribbon tableau is semistandard if
for each i

1. removing all ribbons labelled j for j > i gives a valid skew shape A<i/p and,

2. the subtableau containing only the ribbons labelled i form a horizontal n-ribbon strip.

A tiling of a skew shape A/tt by n-ribbons is a horizontal ribbon strip if the topright-most
square of every ribbon touches the northern edge of the shape (see Figure 2-2). Abusing
notation, we will also call the skew shape A/p a horizontal ribbon strip A// if such a tiling
exists (which is necessarily unique). Similarly, one has the notion of a vertical ribbon strip.
If A//g is a horizontal ribbon strip then A'/i' is a vertical ribbon strip. If A//s has k ribbons
then we have spin(A/I) + spin(A'/') = k(n - 1), where in one case we are taking the spin
of the tiling as a horizontal ribbon strip and in the second case we are taking the spin of
the tiling as a vertical ribbon strip.

Figure 2-2: A horizontal 4-ribbon strip with spin 5.

We will often think of a ribbon tableau as a chain of partitions

= PO C /1 C ... C /r = 

where each /gi+l-1 /i is a horizontal ribbon strip. The spin spin(T) of a ribbon tableau T
is the sum of the spins of its ribbons. If A/p is a horizontal ribbon strip then spin(A/p)
denotes the spin of the unique tiling of A/p as a horizontal ribbon strip. The weight w(T)
of a tableau is the composition counting the occurrences of each value in T.

Littlewood's n-quotient map ([45], see also [59]) gives a weight preserving bijection
between semistandard ribbon tableaux T of shape A and n-tuples of semistandard Young
tableau T(),...,T( n - l)} of shapes (A(°),..., (n- l)) respectively. The n-quotient map
for tableaux can be defined by treating a tableau as a chain of partitions and applying
the n-quotient operation for each partition in the chain. Abusing language, we shall also
refer to {T(°), ... , T(n - 1) } as the n-quotient of T. Schilling, Shimozono and White [53] and
separately Haglund et. al. [17] have described the spin of a ribbon tableau in terms of an
inversion number of the n-quotient. Note that a shape A/p is a horizontal ribbon strip if
and only if its n-quotient is a n-tuple of horizontal strips.

2.2 Ribbon functions

2.2.1 Symmetric functions

We review some standard notation and results in symmetric function theory (see [48] for
details).
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Let A = Aq denote the ring of symmetric functions over Q. We will write A(q) for the
ring of symmetric functions over Q(q). If K is any field of characteristic 0, we write AK for
the algebra of symmetric functions over K. It is well known that the Schur functions sA E A
are orthogonal with respect to the Hall inner product (.,.) on A. If f E A then fl denotes
the adjoint to multiplication by f with respect to (.,.), so that (fg, h) = (g, fl . h). We
will denote the homogeneous, elementary, monomial and power sum symmetric functions
by hA, e, max and px respectively. Recall that we have (hx, ml) = , and (px,p,) =
zA6 .I where z = ml(A)ml(A)!2m2(\)m 2 (A)! .'". Each of the sets {Pi }, {ei} and {hi} are
algebraically independent and generate A. We will write X to mean (l, X2,...). Thus
S (X) = SA(X1,X2, -- )-

The Schur functions can be defined combinatorially in terms of Young tableaux:

s = E xw(T)
T

where the sum is over all semistandard tableaux T of shape A and xa = x?1x12 .-.. Recall
that the Kostka numbers K~A, are defined by sx = A, Kx,m,. Thus K,, is equal to the
number of semistandard tableaux of shape A and weight .

The ring of symmetric functions has an algebra involution w : A -, A defined by w(hi) =
ei. It satisfies w(sx) = s and is an isometry with respect to (.,.). The Cauchy kernel
fQ(X, Y) := i,j 1 satisfies

Q(X,Y) = E h(X)mx(Y) = , s(X)s,(Y) = zz lp(X)px(Y).

The Pieri rule allows one to calculate the product of a Schur function by a homogeneous
symmetric function:

hAsx = s,

where the sum is over all p such that /A is a horizontal strip. Let A = (A1, A2, Ak).
The Jacobi-Trudi formula expresses Schur function s as a determinant of homogeneous
symmetric functions:

hA1 ha+l *-- hl+k-2 h+k-1l
hA 2 -1 hA2 ... hA2 +k_3 h 2+k-2

sx = det ... .

hAk-k+l hAk-k+2 .."' hAk- hAk

Here we take ho = 1 and hi = 0 for i < 0.

Let f E A. We recall the definition of the plethysm g - g[f]. Write g = A, cApA. Then
we have

1(A)

g[r =ECA f li xAi .
A i=l

Thus the plethysm by f is the (unique) algebra endomorphism of A which sends pk -

f(xk, 2k,...). When f(x, 2,... ;q) E A(q) for a distinguished element q, we define the
plethysm as pk -+ f (X, x2,... ; qk). Note that plethysm does not commute with specialising
q to a complex number.
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f [(1 + q)p].

2.2.2 Lascoux, Leclerc and Thibon's ribbon functions

We now define the central objects of this thesis as introduced by Lascoux, Leclerc and
Thibon. An integer n > 1 is fixed throughout and will often be suppressed in the notation.

Definition 2.1 ([39]). Let A/ be a skew partition, tileable by n-ribbons. Define the
symmetric functions (n) (X; q) =x/,(X; q) E A(q) as:

g/, (X; q) = EqSpin(T)x(T)
T

where the sum is over all semistandard ribbon tableaux T of shape A//L. These functions
will be loosely called ribbon functions.

When = 0 we will write g(X; q) in place of g,/ 0 (X; q). The fact that the functions
9g/ (X; q) are symmetric is not obvious from the combinatorial definition, and was first
shown by in [39] using representation theoretic results in [29]. We shall give an elementary
proof of the symmetry in Theorem 3.12.

Example 2.2. Let n = 2 and A = (3, 3). Then we have

(2))(X1, 2 ; q) = q3 (x + X2X2 + X1X + 3) + q(X2 + X2X1),

corresponding to the domino tableaux in Figure 2-3. In fact,

5(32) (X; q) = qs2,1(X) + q3 s3(X).

The symmetry of g?(2) (X; q) is already non-obvious. Note also that g(2)) (X; 1) = S12
(3,3 (3,3

Let A/z be a skew shape tileable by n-ribbons. Then define

KCA/a(q) = Eqspin(T)
T

the spin generating function of all semistandard ribbon tableaux T of shape A//L and weight
a. Thus / (X; q) = , / ,~(q)xc. Also define the q-Littlewood Richardson coefficients
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c/,,(q) by

Gx/,(X;q) := C/,(q)v(X)
V

When q = 1, the ribbon functions become products of Schur functions (see [39]):

\/, (X; 1) = S(o)S:A(1) ... S(n-1). (2.1)

This is a consequence of Littlewood's n-quotient map. In fact, up to sign, g(X;1) is
essentially qn(sA) where On is the adjoint operator to taking the plethysm by pn ([39]).
More generally, g/,,(X; q) reduces to a product of skew Schur functions at q = 1.

When n = 1, we have x(X; q) = s(X) and we just obtain the usual Schur functions.
One of the main aims of this thesis is to generalise some of the properties of Schur functions
described in Section 2.2.1 to arbitrary ribbon functions.

Remark 2.3. In [39], another set of symmetric functions 7Ht(X; q) defined by 7/x (X; q) =
gnx(X;q) is studied. It is not hard to see that 'H7(X; 1) = s(X) + d,, s d ,s,(X)
for some d,, E Z where -< denotes the usual dominance order on partitions. Thus the
functions -t(X; q) form a basis of A(q) over Q(q). In [39] it is shown that the "cospin"
version 17(X; q) generalise the modified Hall-Littlewood functions Q (X; q); see [48].
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Chapter 3

Ribbon Schur operators

This chapter contains material from the paper [36], with some minor changes.

3.1 The algebra of ribbon Schur operators

Let K denote the field Q(q). Let F denote a vector space over K spanned by a countable
basis {A I A E P} indexed by partitions. We shall call F the Fock space. Define linear
operators u(n): F -- F for i E Z which we call ribbon Schur operators by:

u(n) ,), A qspin(~/)/ if ps/A is a n-ribbon with head lying on the i-th diagonal,

Ai {qtflI0 otherwise.

We will usually suppress the integer n in the notation, even though ui depends on n. If
we need to emphasize this dependence, we write un). We say that a partition A has an
i-addable ribbon if a n-ribbon can be added to A with head on the i-th diagonal. Similarly,
A has an i-removable ribbon if a n-ribbon can be removed from A with head on the i-th
diagonal. Suppose the core A of A has offset sequence (do, di,... , dnl). Then the operator
u j(n)+n acts on the j-th partition A() of the n-quotient by adding a square on the k-th(dj+k)n+j
diagonal, and multiplying by a suitable power of q.

Observe that a skew shape A/p is a horizontal ribbon strip if there exists i < i2 < ... <
ik so that UikUik_l ... ui2uil · p = qaA for some integer a = spin(A/p).

Let U = Un C EndK(F) denote the algebra generated by the operators {u)} over K.

Proposition 3.1. The operators ui satisfy the following commutation relations:

uiuj = ujui for i - j n + 1, (3.1)
ui = 0 for i E Z, (3.2)

Ui+nUiUi+n = 0 for i E Z, (3.3)
UiUi+nUi = 0 for i E Z, (3.4)

uiuj = q2ujui for n > i - j > 0. (3.5)

Furthermore, these relations generate all the relations that the ui satisfy. The subalgebra
generated by {ujii}ln has dimension (Ck)n where Ck = 2+ (k) is the k-th Catalan number.
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4-4

Figure 3-1: Calculating relation (3.5) of Proposition 3.1.

Proof. Relations (3.1-3.4) follow from the description of ribbon tableaux in terms of the

n-quotient and the usual relations for the operators ui') (see for example [12]). Relation
(3.5) is a quick calculation (see Figure 3-1), and also follows from the inversion statistics of
[53, 17] which give the spin in terms of the n-quotient.

Now we show that these are the only relations. The usual Young tableau case with
n = 1 was shown by Billey, Jockush and Stanley in [2]. However, when q = 1, we are
reduced to a direct product of n copies of this action as described earlier. The operators
{ui i = k mod n} act on the k-th tableau of the n-quotient independently.

Let f = auu + avv + -.. E U and suppose f acts identically as 0 on F. First suppose
that some monomial u acts identically as 0. Then by the earlier remarks, the subword of u
consisting only of {u i i = k mod n} must act identically as 0 for some k. Using relation
(3.5), we see that we can deduce u = 0, using the result of [2].

Now suppose that a monomial v does not act identically as 0, so that v l p = qtA for
some t E Z and p, A E P. Collect all other monomials v' such that v' I = qb(v')+tA for some
b(v) E Z. By Lemma 3.2 below, v = qb(v')v. Since f Il = 0 we must have ,,v a,,v' = 0
and by Lemma 3.2 this can be deduced from the relations (3.1-3.5). This shows that we
can deduce f = 0 from the relations.

For the last statement of the theorem, relation (3.5) reduces the statement to the case
n = 1. When n = 1, we think of the ui as the Coxeter generators si of Sk+l. A basis of the
algebra generated by i( l}i=l is given by picking a reduced decomposition for each 321-
avoiding permutation - these are exactly the permutations with no occurrences of sisi+lsi
in any reduced decomposition. It is well known that the number of these permutations is
equal to a Catalan number. 0

Lemma 3.2. Suppose u = Uiuik_l ... uil and v = uj1uj,_ ... ujj . If u-. I = qtv . 1p O0 for
some t E Z and i E P then u = qtv as operators on F, and this can be deduced from the
relations of Proposition 3.1.

Proof. Using relation (3.5) and the n-quotient bijection, we can reduce the claim to the
case n = 1 which we now assume. So suppose u I = v = A. Then the multiset of
indices {il,i 2, ... , ik) and jl,j2,... ,jl} are identical, since these are the diagonals of A/p.
In particular we have k = I.

We need only show that using relations (3.1-3.4) we can reduce to the case where uil =
uj,, and the result will follow by induction on k. Let a = min b I b = i where we set
i = i. We can move uja to the right of v unless for some c < a, we have j = i i 1. But l
has an i-addable corner, and so v = uj._Iuj_ 2 ... ujl also has an i-addable corner. This
implies that ui±l v = O so no such c can exist. ]
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3.2 Homogeneous symmetric functions in ribbon Schur op-
erators

Let hk(U) := Eil<i2<...<ik Uik ... uil be the "homogeneous" symmetric functions in the
operators ui (the name makes sense since u = 0). Since the ui do not commute, the
ordering of the variables is important in the definition. The action of hk(u) on F is well
defined even though hk(u) does not lie in U but in some completion. Alternatively, we may
write

i=-o0 00

If (1 + xu,) = E xkhk(u)
i=0o i=O

where if i < j then (1 + xui) appears to the right of (1+ zuj) in the product. By the remarks
in Section 3.1, the operator hk(u) adds a horizontal ribbon strip of size k to a partition, so
that

hk(U) X = E qspin(/X)L)

where the sum is over all horizontal ribbon strips /A of size k.
The following proposition was shown in [39] using representation theoretic results in [29]

(see Chapter 4). Our new proof imitates [12, 11].

Theorem 3.3. The elements {hk(u)}k=l 1 commute and generate an algebra isomorphic to
the algebra of symmetric functions.

Proof. Given any fixed partition only finitely many ui do not annihilate it. Since we are
adding only a finite number of ribbons, it suffices to prove that hk (Ua, Ua+l,..., ub) commute
for every two integers b > a. First suppose that n > b - a. We may assume without loss of
generality that a = 1 and b = n+ 1. We expand both hk(Ua, Ua+1,..., ub)hl(ua, Ua+l, * Ub)

and hl(ua, ua+l,...ub)hk(ua, ua+l,...,ub) and collect monomials with the same set of
indices I = {il < i2 < ... < ik+l}. By Proposition 3.1, any operator ui can occur at
most once in any such monomial. Suppose the collection of indices I does not con-
tain both 1 and n + 1. Then by Proposition 3.1 we may reorder any such monomial
u = uj 1uj2 ... ujk+. into the form qtuiu 2 ... Ui+-- I = qtuI. The integer t is given by
twice the number of inversions in the word jlj2 ... jk+l. That the coefficient of ui is the
same in hk(Ua, Ua+l1,..., ub)hl(ua, Ua+1,. .., ub) and hi (ua, Ua+l, .. ., Ub)hk(ua, a+l,... , Ub)
is equivalent to the following generating function identity for permutations (alternatively,
symmetry of a Gaussian polynomial).

Let Dm,k be the set of permutations of Sm with a single ascent at the k-th position and
let dm,k(q) = EwEDm,k qinv(w) where inv(w) denotes the number of inversions in w. Then
we need the identity

dk+l,k(q) = dk+l,l(q).

This identity follows immediately from the involution on Sm given by w = Wl ... wm v =
v · · ·vm where vi = m + 1 - wm+1-i.

When I contains both 1 and n + 1 then we must split further into cases depending on
the locations of these two indices: (a) un+l ... ul ; (b) ... ulun+l .. ; (c) ... un+1 ... Ul;
(d) un+ ... Ul. We pair case (a) of hk(ua, Ua+l,... ub)hi(ua, ua+l,... ub) with case (c) of
hl(ua, Ua+, ... , Ub)hk(Ua, Ua+l, . . , Ub) and vice versa; and also cases (b) and (d) with itself.
After this pairing, and using relation (3.5) of Proposition 3.1, the argument goes as before.
For example, in cases (a) and (c), we move un+1 to the front and ul to the end.
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Now we consider hk(Ua, . ,ub) for b-a > n. Let Eb,a(x) = (1 + XUb)(1 + XUb) . ." (1 +
XUa). Note that Eb,a() - l = (1 - xua)(1 - XUa+l) (1 - XUb) is a valid element of U[x].
The commuting of the hk(ua, Ua+l, ... , Ub) is equivalent to the following identity:

Eb,a(Z)Eb,a(Y) = Eb,a(Y)Eb,a(X)

as power series in x and y with coefficients in U which we assume to be known for all (b, a)
satisfying b - a <1 I for some > n. Now let b = a + . In the following we use the fact that
ua and ub commute.

Eb,a(X)Eb,a(Y)

= Eb,a+l() (1 + xua)(1 + YUb)Eb-l,a(Y)

= Eb,a+l(Y)Eb,a+l(X) (Eb,a+l(Y))-1 (1 + yUb)(1 + XUa) (Eb-l,a(X)) 1Eb-l ,a(Y)Eb- l,a(X)

= Eb,a+l (y)Eb,a+l (X) (Eb-l,a+l (X)Eb-l,a+l (Y))-1 Eb-l,a(Y)Eb-l,a(X)

= Eb,a+l(Y)(1 + XUb)(l + yUa)Eb-l,a(X)

= Eb,a(Y)Eb,a ()

This proves the inductive step and thus also that the hk(u) commute. To see that they
are algebraically independent, we may restrict our attention to an infinite subset of the
operators {ui} which all mutually commute, in which case the hk(u) are exactly the classical
elementary symmetric functions in those variables. 0

Theorem 3.3 allows us to make the following definition, following [12].

Definition 3.4. The non-commutative (skew) Schur functions s/,(u) are given by the
Jacobi-Trudi formula:

S,/(u) = det (hAi_i+j_-j(U))ij=1

Similarly, using Theorem 3.3 one may define the non-commutative symmetric function f(u)
for any symmetric function f.

It is not clear at the moment how to write sA(u), or even just ek(u) = slk(U), in terms
of monomials in the ui like in the definition of hk(u). One can check, for example, that
p2(u) cannot be written as a non-negative sum of monomials.

3.3 The Cauchy identity for ribbon Schur operators

The vector space F comes with a natural inner product (., .) such that (A, p) = l,. Let di
denote the adjoint operators to the ui with respect to this inner product. They are given
by

diA · qspin(A/P)u if A//i is a n-ribbon with head lying on the i-th diagonal,0di otherwise.
The following lemma is a straightforward computation.

Lemma 3.5. Let i A j be integers. Then uidj = djui.
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Define U(x) and D(x) by

U(x) = (1+ xu2)(1 + xul)(1 + XUo)(1 + xu-1) 

and
D(x) = (1 + xd- 2)(1 + xd-1)(1 + xdo)(1 + xdl) .

So U(x) = Ek xkhk(u) and we similarly define h (u) by D(x) = SZk xkh(u). The operator
h (u) acts by removing a horizontal ribbon strip of length k from a partition.

The main result of this section is the following identity.

Theorem 3.6. The following "Cauchy Identity" holds:

n-1 1

U(x)D(y) II 1 q2y D(y)U(x). (3.6)
i=

A combinatorial proof of this identity was given by Marc van Leeuwen [44] via an explicit
shape datum for a Schensted-correspondence. Our proof is suggested by ideas in [11] but
considerably different from the techniques there. The following Corollary is immediate after
equating coefficients of xayb in Theorem 3.6.

Corollary 3.7. Let a, b > 1 and m = min(a, b). Then

m

hbl(U)ha(u) = E hil, q2, . . l-)h_. , 2nlai(u)hb'i(u).
i=O

Define the operators h ) = (idi) j - (diui)j for i,j E Z and j > 1. The operators hi )

act as follows:

[-q2 jSPin(A/X)A if A has an i-addable ribbon i//A,

hi) : A - q2ijspin(/v)A if A has an i-removable ribbon A/v,

0 otherwise.

Since h?) acts diagonally on F in the natural basis, they all commute with each other.
We will need the following proposition, due to van Leeuwen [44].

Proposition 3.8. Let A be a partition and suppose ribbons Ri and Rj can be added or
removed on diagonals i < j such that no ribbons can be added or removed on a diagonal
d E (i, j). Then one of the following holds:

1. Both Ri and Rj can be added and spin(Rj ) = spin(R) - 1.

2. Both Ri and Rj can be removed and spin(Rj) = spin(R) + 1.

3. One of Ri and Rj can be added and the other can be removed and spin(Rj) = spin(Ri).

For example, writing down, from bottom left to top right, the spins of the ribbons that
can be added and removed from the partition in Figure 1-1 gives 2, 1, -1, 1, -1, 1, 0 where
positive numbers denote addable ribbons and negative numbers denote removable ribbons.

27



Lemma 3.9. Let A be a partition, i E Z and j > 1 be an integer. Suppose that A has an
i-addable ribbon with spin s. Then

(::hk1 ) A = -(1 + q2j + ... +q( )
k=i+l

Suppose that a A has an i-removable ribbon with spin s.. Then

(E h:1) A = -(1 + q2j + ... + q2sj)A
k=i+l

Also, if i is sufficiently small so that no ribbons can be added to A before the i-th diagonal,
then

k=oo \
E°hk') A =-(1+ q2j + ... + q2(n-l)j).

Proof. This follows from Proposition 3.8 and the fact that the furthest ribbon to the right
(respectively, left) that can be added to any partition always has spin 0 (respectively,
n-l). 0

Lemma 3.10. Let i, j E Z and j > 1. Then

/ k=oo \ k=oo \

k=i+l k=i

Similarly we have,
k=oo k=oo

di hk') = (:: hj) d.
\ k=i k=i+l

Proof. We consider applying the first statement to a partition A. The expression vanishes
unless A has an i-addable ribbon y/A, which we assume has spin s. Then we can compute
both sides using Lemma 3.9. The second statement follows similarly. 0

We may rewrite equation (3.6) as

n-1
U(x)D(y) = D(y) I (1 - qixy)U(x).

i=0

Now
n-1 n-1
H (1 -q 2 ixy) = E(-)iei(,q2. 2(n-1))(xy)
i=O i=O

and hioohi) acts as the scalar -p(1l, q2, .,q 2(n-l)) = (1+ 2 + + q2 +2(n-l)j) by

Lemma 3.9. Let us use the notation pj(hi) = - =i h(j), for i E Z U {oo. We also write

en(hi) = E pz , lpp(hi)
pFn
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where pp(hi) = p,, (hi)pp2 (hi) ... and p = (-1)IP I- (P) and zp is as defined earlier. As scalar
operators on F we have,

n-1 n 00

H (1 - q2'xy) -= (-1)jej(h.o)(xy)j = (-)ej(ho )(xy) j.
j=o j=o j=o

Lemma 3.11. Let i E Z. Then

(1 + ydi) (-1)kek(hi)(xy)k (1 + xui) = (1 + xui) (-1)kek(hi+l)(xyk)) (1 + ydi).

Proof. First we consider the coefficient of xk+lyk. We need to show that ek(hi)ui =
uiek(h i+l) which just follows immediately from the definition of ek(hi) and Lemma 3.10.
The equality for the coefficient of xkyk+l follows in a similar manner.

Now consider the coefficient of (xy)k. We need to show that

diek-l(hi)ui - ek(hi) - uiekl(hi+l)di + ek(hi+l) = 0.

By Lemma 3.10, this is equivalent to

((uidi - hi)ek-l(hi+l) - ek(hi) - uidekl(hi) + ek(hi+l)) = 0 (3.7)

for every partition A. We now split into three cases depending on A.

1. Suppose that that A has a i-addable ribbon with spin s. Then di .A = 0 so (3.7) reduces
to (ek(hi+l) + q2 ekl(hi+l) - ek(hi)) A = 0. Using Lemma 3.9, this becomes

ek(l, q2, ... , q2(S-1)) + q2sek_(1, q2 ,... q2 (s- 1)) = ek(1, q2 ,... q2 S)

which is an easy symmetric function identity.

2. Suppose that that A has a i-removable ribbon with spin s. Then uidi · A = hi · A so
we are reduced to showing

ek(hi+l) - ek(hi) - q9ek-1 (hi) = 0

which by Lemma 3.9 becomes the same symmetric function identity as above.

3. Suppose that A has neither a i-addable or i-removable ribbon. Then (3.7) becomes
ek(hi) · A = ek(hi+l) · A so the result is immediate.

Theorem 3.6 now follows easily.

Proof of Theorem 3.6. We need to show that U(x)D (y) A =(1 - q2iXy)U(x) * A
for each partition A. But if we focus on a fixed coefficient xayb, then for some integers s < t
depending on A, a and b, we may assume that ui = di = 0 for i < s and i > t for all our
computations. Thus it suffices to show that

(1 + xus) . . (1 + xut)(l + ydt) ... (1 + yds) =
(1 + ydt) ... (1 + yds) (lk=o(-l)kek(hs)(xy)k) (1 + xus) ... (1 + xut).
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Since by Lemma 3.5, (1 + xua) and (1 + ydb) commute unless a = b, this follows by applying
Lemma 3.11 repeatedly. El

3.4 Ribbon functions and q-Littlewood Richardson Coeffi-
cients

In this section we connect the non-commutative Schur functions sv(u) with the q-Littlewood
Richardson coefficients c/,(q). The set up here is actually a special case of work of Fomin

and Greene [12], though not all of their assumptions and results apply in our context.
Let xl, x2, ... be commutative variables. Consider the Cauchy product in the commuta-

tive variables {x}i and non-commutative variables {ui} (not to be confused with the Cauchy
identity in Section 3.3):

Q(x, u) = II p (1 + ju)
j=l i=o

where the product is multiplied so that terms with smaller j are to the right and for the
same j, terms with smaller i are to the right. We have

Q(x,u) = ii (xhk(U)) = Es(X)sA(u)= EmA(x)hA(u)
j=l k A 

where we have used Theorem 3.3 and the classical Cauchy identity for symmetric functions.
Since each hk(u) adds a horizontal ribbon strip, we see that

gx/,(X; q) = E xa (ha(u) , A) = E mv(x) (h,(u) A· , A) = ((x, u) -., A)
a! v

where the sum is over all compositions a or all partitions v. In the language of Fomin
and Greene [12], these functions were denoted Fg/h. The symmetry of the ribbon functions
follows from the fact that ha(u) = hp(u) if the compositions a and 3 are rearrangements
of each other.

Theorem 3.12. The power series {x/(X; q) are symmetric functions in the (commuting)
variables {x1, X2,...} with coefficients in K.

Other elementary proofs of Theorem 3.12 appear in [16, 35].
Let (., )x be the (Hall) inner product in the X variables. The action of the noncom-

mutative Schur functions in ribbon Schur operators s,(u) calculate the skew q-Littlewood
Richardson coefficients.

Lemma 3.13. The q-Littlewood coefficients are given by c'/ (q) = (sv(u) , A).

Proof. We can write

c/,(q) = (9,/v(X; q), s,(X)) x

= ((Q(x, u) , A) , s,(X))x

= E (sp(X) (Sp(u) , ), s (X))x
P

= (s,,(u) A· , A)
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Proposition 3.14. The noncommutative Schur function s(u) can be written as a non-
negative sum of monomials if and only if the skew q-Littlewood Richardson coefficients
c/1(q) E N[q] are non-negative polynomials for all skew shapes A/p.

Proof. The only if direction is trivial since (u ,, A) is always a non-negative polynomial
in q for any monomial u in the ui. Suppose cl,(q) are non-negative polynomials for all
skew shapes A/p. Write s(u) as an alternating sum of monomials. Let u and v be two
monomials occurring in s,(u). If u = v -* M 5 0 for some partition then by Lemma 3.2,
u = v. Now collect all terms v in s(u) such that u = qa()v. . Collecting all monomials
v with a fixed a(v), we see that we must be able to cancel out any negative terms since all
coefficients in c 1 (q) = (sv(u) , A) are non-negative. El

To our knowledge, a combinatorial proof of the non-negativity of the skew q-Littlewood
Richardson coefficients is only known for the case n = 2 via the Yamanouchi domino
tableaux of Carr6 and Leclerc [5]. When p = 0, Leclerc and Thibon [41] have shown
using results of [62], that the q-Littlewood Richardson coefficients c(q) are non-negative
polynomials in q; see also Section 4.1.3.

3.5 Non-commutative Schur functions in ribbon Schur oper-
ators

This section is logically independent of the remainder of the thesis. Based on Proposi-
tion 3.14, we suggest the following problem, which is the main problem of this Chapter.

Conjecture 3.15. We have:

1. The non-commutative Schur functions s(u) can be written as a non-negative sum of
monomials.

2. A canonical such expression for s(u) can be given by picking some monomials oc-
curring in hA(u). That is, s(u) is a positive sum of monomials u = uikuik_1 ... Ul
where ix > il- 1 > ... > i and iA1+A2 > iA+A2_-1 > ... > i+ and so on, where
k=I 1AI.

By the usual Littlewood-Richardson rule, Conjecture 3.15 also implies that the skew
Schur functions s/, (u) can be written as a non-negative sum of monomials. If Conjecture
3.15 is true, we propose the following definition.

Conjectural Definition 3.16. Let A/p be a skew shape and v a partition so that nlvl =
JA/pI . Let u = UikUik_l ... Uil be a monomial occurring in (a canonical expression of) s(u)
so that u.tt = qaA for some integer a. If Conjecture 3.15.(2) holds, then the action of u
on t naturally corresponds to a ribbon tableau of shape A/p and weight v. We call such a
tableau a Yamanouchi ribbon tableau.

In their work, Fomin and Greene [12] show that if the ui satisfy certain relations then
s\(u) can be written in terms of the reading words of semistandard tableaux of shape A.
These relations do not hold for our ribbon Schur operators. We shall see that a similar
description holds for our s(u) when A is a hook shape, but appears to fail for other shapes.
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The following theorem holds for any variables ui satisfying Theorem 3.3. The commu-
tation relations of Proposition 3.1 are not needed at all. Let T be a tableau (not necessarily
semistandard). The reading word reading(T) is obtained by reading beginning in the top
row from right to left and then going downwards. If w = wxw2 ... wk is a word, then we set

UW = UW lU w 2 '' Uk -

Theorem 3.17. Let A = (a, Ib) be a hook shape. Then

sx(u) = E'Ureading(T) (3.8)
T

where the summation is over all semistandard tableaux T of shape A. For our purposes, the
semistandard tableaux can be filled with any integers not just positive ones, and the row and
columns both satisfy strict inequalities (otherwise Ureading(T) = 0).

Proof. The theorem is true by definition when b = 0. We proceed by induction on b,
supposing that the theorem holds for partitions of the form (a, lb-l). Let A = (a, lb). The
Jacobi-Trudi formula gives

ha(u) +l(u) ha+b_ (u) ha+b(U)
1 hl(u) ... hb-1 () hb(u)

sA(u) = det O 1 ... hb- 2 (u) hb-i(U) 

0 0 ... 1 h (u)

Expanding the determinant beginning from the bottom row we obtain

j=b

s,(u) = E ((-l)j+s(alb-j)(u)hj()) + (-1)bha+b(U).
j=l

Using the inductive hypothesis, s(a,lb-j)(u)hj(u) is the sum over all the monomials u =
ilui2... Uia+b satisfying il > i2 > ... > ia < ia+l < ... < ia+bj and ia+bj+l >

ia+b-j+2 > ... > ia+b. Let Aj be the sum of those monomials also satisfying ia+b-j <
ia+b-j+1 and Bj be the sum of those such that ia+b_j > ia+b-j+1 so that s(a,lb-j)(u)hj(u) =
Aj + Bj. Observe that Bj = Aj+l for j $ b and that Bb = ha+b(U). Cancelling these terms
we obtain s(u) = Al which completes the inductive step and the proof. D

In particular, when A is a column we obtain the following theorem.

Theorem 3.18. Let k > 1. The operator ek(u) acts on F by adding vertical ribbon strips,
so that

ek(u) - -E qspin(l/A))I

where the sum is over all vertical ribbon strips jI/A of size k and spin(p/A) denotes the spin
of the tiling of /u/A as a vertical ribbon strip.

We speculate that when n > 2, the formula (3.8) of Theorem 3.17 holds if and only if A
is a hook shape. Combining Theorem 3.17 with the results of [16] one can obtain Macdonald
positivity for coefficients of Schur functions labelled by hook shapes.
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Figure 3-2: The bottom row contains some 3-commuting tableaux and the top row contains
some tableaux which are not 3-commuting.

We now describe s(u) for shapes A of the form (s, 2). We will only need the following
definition for these shapes, but we make the general definition in the hope it may be useful
for other shapes.

Definition 3.19. Let T: {(x, y) E A} -+ Z be a filling of the squares of A, where x is the
row index, y is the column index and the numbering for x and y begins at 1. Then T is a
n-commuting tableau if the following conditions hold:

1. All rows are increasing, that is, T(x, y) < T(x, y + 1) for (x, y), (x, y + 1) E A.

2. If (x,y), (x + l,y) E A and y > 1 then T(x,y) T(x + 1,y). Also if y = 1 and
(x + 1, 2) ¢ A then T(x, 1) < T(x + 1, 1).

3. Suppose the two-by-two square (x, 1), (x, 2), (x + 1, 1), (x + 1, 2) lies in A for some y.
Then if T(x, 1) > T(x + 1,1) we must have T(x + 1, 2) - T(x + 1,1) < n. Otherwise
T(x, 1) < T(x + 1, 1) and either we have T(x, 2) T(x + 1, 1) or we have both
T(x, 2) > T(x + 1,1) and T(x + 1, 2) - T(x, 1) < n.

We give some examples of commuting and non-commuting tableaux of shape (2, 2) in
Figure 3-2.

Let us now note that the operators ui satisfy the following Knuth-like relations, using
Proposition 3.1. Let i, j, k satisfy either i < j < k or i > j > k, then depending on whether
ui and uk commute, we have

1. Either uiukuj = ukuiuj or uiukuj = ujuiuk.

2. Either UjUkUi = UjUiuk or ujUkUi = ukuiuj.

Note that the statement of these relations do not explicitly depend on n.

Theorem 3.20. Let A = (s, 2). Then

SA(U) = Ureading (T)
T

where the summation is over all n-commuting tableaux T of shape A.
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Proof. By definition s(u) = hs(u)h2(u)- h+li(u)hi(u). We have that hs+l(u)hl(u) is
equal to the sum over monomials u = uil ' uis+uis+2 such that ii > i2 > ... > i,+l. We
will show how to use the Knuth-like relations (1) and (2) to transform each such monomial
into one that occurs in hs(u)h 2(u), in an injective fashion.

Let a = i_l, b = i, c = i+l and d = i+2 so that a > b > c. We may assume that
a, b, c, d are all different for otherwise u = 0 by Prop 3.1. If c > d then u is already a
monomial occurring in h(u)h 2(u). So suppose c < d. Now if d > b > c we apply the
Knuth-like relations to transform v = UaUbUcUd to either v' = UaUbUdUc or v = UaUcUdUb,

where we always pick the former if Ud and uc commute. If b > d > c we may transform
v = UaUbUcUd to either v' = uaucUbUd or v' = UaUdUbUc again picking the former if Ub and
uC commute. In all cases the resulting monomial occurs in hs(u)h 2(u) and the map v - v
is injective if the information of whether uc commutes with both Ub and ud is fixed. Writing

{jo < jl < j2 < j3} for {a, b, c, d} to indicate the relative order we may tabulate the possible
resulting monomials v' as reading words of the following "tableaux":

a > b > c > d : 2 3 (jo < l < j 2 < j3 E Z);j j
a>b>d>c: jo 3 (Ujo and uj,2 commute)jil j2

jo 2 (ujo and uj2 do not commute);
jo j2

a > d > b > c: jl j (ujo and uj2 commute)
jO j2

jo j3 (ujo and uj2 do not commute);jd j2
d > a > b > c : j j2 (Ujo and uj, commute)

jo j2 (ujo and Uj3 do not commute).
i j3

Finally, cancelling these monomials from hs(u)h 2(u), we see that the monomials in s(u)
are of the form uil U is-3Ui-_ 2 Ureading(T) for a tableau T of the following form, (satisfying
is- 2 > t where t is the value in the top right hand corner):

.2 ii with no extra conditions,j2j 
tl j2 if uj3 and ujo do not commute,

jO j3

jo j2 if uj 3 and ujo commute,
jl js

where in the first case jo < jl < j2 < j3 and in the remaining cases jo < jl < j2 < j3.
We may allow more equalities to be weak, but the additional monomials Ureading(T) that we
obtain turn out all to be 0. One immediately checks that these monomials are the reading
words of n-commuting tableaux of shape (s, 2). O

By Theorem 3.17, ek(u) = il<i2<...<ik Uil ... uik. Thus using the dual Jacobi-Trudi
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T= S=

Figure 3-3: The 3-commuting tableaux with shape (2, 2) and squares filled with {0, 1, 2, 3}.

1 

Figure 3-4: The Yamanouchi ribbon tableau corresponding to c(444) (q) = q4

formula, we can get a description for sx,(u) whenever we have one for sx(u) by reversing
the order "<" on Z. This for example leads to a combinatorial interpretation for sx(u) of
the form A = (2, 2, 1a ) which we will not write out explicitly.

One can also obtain different combinatorial interpretations for sx(u) by for example
changing ha(u)h2(u) to h2 (u)ha(u) in the proof of Theorem 3.20. This leads to the re-
versed reading order on tableaux which also has the order "<" reversed. In the case n = 2,
the n-commuting tableaux are nearly the same as usual semistandard tableaux where row
and column inequalities are strict. The reversed reading order on order-reversed semistan-
dard tableaux would lead to the same combinatorial interpretation as Carrg and Leclerc's
Yamanouchi domino tableaux [5].

It seems likely that Theorem 3.17 and Theorem 3.20 may be combined to give a descrip-
tion of sx(u) for A = (a, 2, lb) but so far we have been unable to make progress on the case
A = (3, 3).

We end this section with an example.

Example 3.21. Let n = 3 and A = (4,4,4). Let us calculate the coefficient of 822 in
%(X; q). The shape A has ribbons on the diagonals {0, 1, 2, 3}, so we are concerned with
3-commuting tableaux of shape (2, 2) filled with the numbers {0, 1, 2, 3}. There are only
two such tableaux S and T given in Figure 3-3. It is easy to see that reading(T).0 = 0 SO
the coefficient of s22 in Gx(X; q) is given by the spin of the ribbon tableau corresponding to

Ureading(S) .0 = u 2 U1U3U0.0. This tableau has spin 4, so that c(244) (q) = q4 (see Figure 3-4).
We may check directly that in fact

gA(X; q) = q2s21 + q4 (s31 + S22) + q6s31 + q4.

3.6 Final remarks on ribbon Schur operators

3.6.1 Maps involving U,

The algebra U, has many automorphisms. The map sending ui -* ui+l is an algebra
isomorphism of Un and the map sending ui -+ u-i a semi-linear algebra involution.
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Proposition 3.22. There are commuting injections

U1 - U2 c- U3 ...

and surjections
" U3 -*U2 -U1.

Proof. The injection Un-1 - U,n can be given by sending Uk(n-l)+i to Ukn+i where i E
{0, 1,... , n - 2}, though there are other choices. The surjection Un - Un- 1 is given by
sending Ukn+i to Uk(n-l)+i for i E {0, 1, .. ., n - 2} and sending ukn+n-1 to 0 for all k E
Z. O

3.6.2 The algebra U,

Picking compatible injections as above, the inductive limit U, of the algebras Un has a
countable set of generators ui, (the image of ui)) where i E N and j E Z. The generators
are totally ordered by the relation (i, j) < (k, 1) if either j < , or j = I and i < k. The
generators satisfy the following relations:

Ui,jUk, = Uk,lUi,j if j - I > 2 or if j = l ± 1 and i k,

u2 = O for any i, j E Z,

uijUi,jl1uij = 0 for any i, j E Z,
Ui,jUk,j = q 2 kjui,J for i, j, k E Z satisfying i > k,

Ui,j+lUk,j = q2UkjUij+ 1 for i, j, k E Z satisfying i < k.

Many of the results of this paper can be phrased in terms of U,o. For example, one can
define oo-commuting tableaux which are maps T: A --. N x Z.

3.6.3 Another description of Un

There is an alternative way of looking at the algebras Un C End(F). Let u = uo be the
operator adding a n-ribbon on the O-th diagonal. As explained in Section 2.1 we may view
a partition A in terms of its {0, 1}-edge sequence {Pi(A)}i,=_o. Let t be the operator which
shifts a bit sequence pi}i= _O one-step to the right, so that (t p)i = Pi-l. Note that t does
not send a partition to a partition so we need to consider it as a linear operator on a larger
space (spanned by doubly-infinite bit sequences, for example). It is clear that ui = tiut -

and we may consider Un as sitting inside an enlarged algebra Un = K[u, t, t-1].

3.6.4 Connection with work of van Leeuwen and Fomin

Van Leeuwen [44] has given a spin-preserving Robinson-Schensted-Knuth correspondence
for ribbon tableaux. The calculations in Section 3.3 are essentially an algebraic version of
van Leeuwen's correspondence, in a manner similar to the construction of the generalised
Schensted correspondences in [11]. It would be interesting to make these relationships
precise. This should, for example, yield purely bijective proofs of the ribbon Pieri rule
(Theorem 4.12) and the symmetry of ribbon functions.
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Chapter 4

Ribbon Pieri and Cauchy Formulae

In this chapter we will use the results of Chapter 3 concerning the operators hk(u) and
hk (u) to deduce properties of the ribbon functions ,\/, (X; q). The operators ui I i E Z}
will no longer be used in our computations. The results in this chapter will appear in [34]
in a different form.

Let K denote the field Q(q) as before. Define a representation ' A(q) - EndK(F) of
the symmetric functions on the Fock space by

0: hk , hk(U)-

By Proposition 3.3 and the fact that {hk} generate A(q), this definition extends to a rep-
resentation of A(q). Now let : A - EndK(F) be the adjoint representation of A(q) on F,
with respect to the inner product (.,.). It is defined by (hk) = h'(u).

For convenience we shall define Sx := 4(s,) = s(u).

4.1 Ribbon functions and the Fock space

4.1.1 The action of the Heisenberg algebra on F

The Heisenberg Algebra H is the associative algebra with 1 generated over K by a countable
set of generators {Bk : k E Z\ {O} } satisfying

[Bk, Bl] = 1 . al(q) k,-1 (4.1)

for some elements al(q) E K satisfying al(q) = al(q). (Often the element 1 is called the
central element and denoted c, but we will not need this generality). The Bosonic Fock

space representation K[H_] of H is the polynomial algebra

K[H_] := K[B_ 1, B-2, .. ].

The elements Bk for k > 1 act by multiplication on K[H_]. The action of Bk for k > 1 is
given by (4.1) and the relation Bk 1 = 0 for k > 1.

An explicit construction of K[H_] is given by A(q). We may identify Bk as the following
operators:

f a_k(q)k p_.f for k < 
k f f k f for k > 0.
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Under this identification, the operators Bk have degree -k.
A standard lemma that we shall need later is

Lemma 4.1. Let k > 1 be an integer and A be a partition. Then

BkB-_ = kak(q)mk(A)B_ + B_xBk

where mk(A) is the number of parts of A equal to k and pu is A with one less part equal to k.
If mk (A) = 0 to begin with then the first term is just 0.

Proof. We may commute Bk with B-_x immediately for parts Ai - k. For each part equal
to k, using the relation [B-k, Bk] = kak(q) introduces one term of the form kak(q)B_,. 

Combining Theorem 3.6 with Theorem 3.3 we obtain the following Theorem, first proved
in [29] (the connection with ribbon tableaux was first shown in [39]):

Theorem 4.2. The maps and 0b generate and action of the Heisenberg algebra H with
parameters al(q) = 1 + q21 + ... + q2(n-1)l for I > 0 on F. The representation e : H
EndK(F) is given by

: Bk i(p-k) if k < 
? , (Pk) if k > 0.

Thus we have
1- q2.k

[q(Pk),2/(Pl)] = k_ 2k k,L- (4.2)

Proof. When k and I have the same sign, the commutation relation follows from Theo-
rem 3.3. For the other case, we first write (see [48, 57])

ha () = E z, lpA(u),
A-a

where zx = lm(')2 m2(' ) -ml(A)!m 2(A)! ... and mi(A) denotes the number of parts of A
equal to i. We first show that (4.2) implies Corollary 3.7. Thus we need to show that (4.2)
implies

= hi(1q2 ... ,q 2(n-1)) z1lpA(U) z( P -1 ()
i=O a-i b-i

Note that pk(1, q,... q 2 (n-1)) = 1 -nk Let p and v be partitions such that m = IvI =

Ipl. One checks that the coefficient of pp(u)pl(u) on the right hand side is equal to
zv-lz A- m z lp A(l, q2, ... ,q 2(n - 1)). Let p = x U 1/ and 7r = A U v. We claim that
the summand zv lzlz lpx(1, q2, .... q2(n-1)) is the coefficient of p,(u)pj (u) when apply-
ing (4.2) repeatedly to z;lzp lp(u)pp(u). This is a straightforward computation, counting
the number of ways of picking parts from p and 7r to make the partition A.

Thus (4.2) implies Corollary 3.7, and since both the homogeneous and power sum sym-
metric functions generate the algebra of symmetric functions, Corollary 3.7 must be equiv-
alent to (4.2).
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Note that this action of the Heisenberg algebra differs from the one in the literature by
the change of variables q -* -q-1. The operators B-k = (Pk) and Bk = '(Pk) are known
as Bosonic operators. For the remainder of this chapter, the Heisenberg algebra will always
refer to the algebra with parameters al(q) = 1 + q21 + ... + q2 (n-1)l for I > 0.

For later use, we also define X/A,(q) Q[q] by B-k = E XA/I(q) A for k > 0.

Since Bk is adjoint to B-k with respect to (.,.), we also have Bk A = Ex X/(q) i for
k > 0. We will show in Section 4.4.3 that the coefficients X/,(q) can be described in terms
of "border ribbon strips".

4.1.2 The action of the quantum affine algebra Uq(sn)

In this section we introduce the quantum affine algebra Uq(S[n) and describe its action on
the Fock Space F. The connection with Uq(sfn) was the original motivation for the study
of the action of H on F. We will not use the details of this description but we include the
details for completeness. A concise introduction to the material of this section can be found
in [40]. Throughout q can be thought of as either a formal parameter of as a generic complex
number (not equal to a root of unity). We also assume familiarity with root systems.

We denote by the Cartan subalgebra of sln which is spanned over C by the basis
{ho hl,...,hnl, D. The dual basis is denoted by {A, A 1,..., An-l1 6 . We set ai =
2Ai - Ai-1 -Ai+l for i E 1, 2,..., n- 2}, and ao = Ao - An1 - A1 + and an-1 =
-An- 2 + An-1 - Ao. The generalised Cartan matrix [(ai, hj)] will be denoted aij. Set
pv = (EDn-l Zhi) zD.

The algebra Uq(5sn) is the associative algebra over K generated by elements ei, fi for
O < i < n - 1, and qh for h E pv satisfying the following relations:

qhqh' = qh+h'

qhiejq-hi = qaijej, qhifjq-hi = q-aijfj,

qDeiq-D = ioq-leo, qD fiq-D = ioqfo,
qhi - q-hi

[ei,fj] = ij q -

1-aij
E 1(j ik ai( .el eei = O (i j),

k=O

1-aij
E (_l)k -aij ] l-aij-kfjfk = (i j).

k=O

We have used the standard notation

qk - q-k
[k] = q q , [k]!= [k][k-1] -[1],

and Ek [I - [n]!

Lk [n -k]! [k]!-
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The slightly smaller quantized enveloping algebra Uq(sn) is defined by the same genera-

tors and relations as Uq(;'n) except that the Cartan part is replaced by qh for h E PV/ZD.
In other words U(s'[) is the subalgebra of Uq(5tn) missing the generator qD.

There is an action of the quantum affine algebra Uq(s[n) on F due to Hayashi [181 which
was formulated essentially as follows by Misra and Miwa [50].

Recall that a cell (i,j) has content given by c(i,j) = i- j. Its residue p(i,j) E
{0,1, ... , n- 1 is then i - j mod n. We call (i,j) an indent k-node of A if p(i,j) = k
and A U (i, j) is a valid Young diagram. We make the analogous definition for a removable
i-node.

Let i E 0, 1,..., n - 1}) and / = A U 6 for an indent i-node 6 of A. Now set
Ni(A) = #{indent i-nodes of A} - #{removable i-nodes of A}.
Ni(A, ) = #{indent i-nodes of A to the left of 6 (not counting )} - #{removable

i-nodes of A to the left of 6}.
Nr(A, p) = #{indent i-nodes of A to the right of 6 (not counting )} - #{removable

i-nodes of A to the left of 6}.
NO(A) = #{O nodes of A}.

Then we have the following theorem.

Theorem 4.3. The following formulae define an action of the quantum aine algebra
Uq(s[n) on F:

qhi. A = qNi(d)A, for each i E {0, 1,...,n - 1},

qD . = qN°(X)X,

fi A = qNir(X,)pL, summed over all IM such that 1i/ has residue i,

ei A = a q-Ni(A',) Ip, summed over all s such that A/u has residue i.

The Uq('n)-submodule of F generated by the vector 0 can be seen to be the irreducible
highest weight module with highest weight A0, which we will denote VAO.

Kashiwara, Miwa and Stern [29] have defined an action of the the affine Hecke algebra
HN on the tensor product V(z)®N of evaluation modules for the vector representation V
of Uq(s,). As N -- oo, it is shown in [29] that one obtains an action of the center Z(HN)

as a copy of the Heisenberg algebra H on F, commuting with the action of Uq(S)

Theorem 4.4 ([29]). The representation e of H commutes with the action of the quantum
afine algebra Uq(S[n). The Fock space F, regarded as a representation of Uq(sln) ® H
decomposes as the tensor product

F VAo 0 K[H_]

where K[H_] is the Fock space of the Heisenberg algebra H and VAO is the highest weight
representation with highest weight A0o.

We will return to quantum affine algebras in Chapter 5.
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4.1.3 Relation to upper global bases of F

Recall that Kashiwara [25] and Lusztig [47] have shown that irreducible representations of
quantum groups possess distinguished bases known as global crystal bases. The Fock space
F is not an irreducible representation of Uq(s[n) but nevertheless, Lascoux, Leclerc and
Thibon [38, 41, 42] have defined and studied two global bases in F, which agree with the
global crystal bases when we restrict to an irreducible component of F under the action of
Uq(srn). We will only be interested in the upper global basis. Note that throughout this
section, our notation differs from that of the literature by the change of variables q -+ -q-

The map v -+ - of the following Proposition is known as the bar involution and was
defined by Leclerc and Thibon [41, 42].

Proposition 4.5. There exists a unique semi-linear map - F -- F satisfying for each
v E F,

qv = q- v,

i v = i v,
ei ·v = ei ' v,

B_k ·v = Bk · ,

Bk v = _q- 2(n-l)kBk .

This involution restricted to VA^ (the Uq(s[n) submodule with highest weight vector
indexed by the empty partition) agrees with Kashiwara's involution [25].

Theorem 4.6 ([41]). There exist unique vectors G, E F for A E P satisfying:

G = G and G =_ A mod q-

where L- is the Z[q] submodule of F spanned by {A I A E P}.

When we restrict this to VAO C F, the GA is essentially the global upper crystal basis
of VAO (see [38, 26]). The following result connects the upper global basis with ribbon
functions.

Theorem 4.7 ([41]). The upper global basis element Gn, is given by

Gn = S 0.

It follows immediately that {Gnx I A E P} form a basis of the space of highest weight
vectors of the action of Uq([n) on F. By Lemma 3.13, we have Gnx = E, c(q)p and so the

(non-skew) q-Littlewood Richardson coefficients c(q) are certain coefficients of the upper
global basis.

Remark 4.8. Let
G, = E I,(q),

for some polynomials l,,(q) E Q[q]. Varagnolo and Vasserot [62] have shown that l,,,(q)
is a parabolic Kazhdan-Lusztig polynomial for the affine Hecke algebra of type A. These
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polynomials were introduced by Deodhar [6] and were shown to have non-negative coeffi-
cients by Kashiwara and Tanisaki [30], using the geometry of affine Schubert varieties. This
implies that the q-Littlewood Richardson coefficients c(q) E N[q] are polynomials with
non-negative coefficients; see [41].

4.2 The map 4b: F - A(q)

Define a representation 19O* H - EndK(A(q)) by

pk . for k > 0

1q2- q)pk for k <O.

Definition 4.9. Let A :F -- A(q) be the Q(q)-linear map defined by

A, ),\/I(X;q).

The map c has remarkable properties. It converts linear properties in F into algebraic
properties in A(q). In [39], the Fock space F was identified with A and 4 called "the adjoint
of the q-plethysm operator", though its properties were not studied there.

The following theorem shows that 4, can be thought of as a projection of F onto the
Fock space K[H_] of H. It is a generalisation of the Boson-Fermion correspondence; see
Chapter 5.

Theorem 4.10. The map 4 is a map of H-modules. More precisely,

'o0 = * o 

as maps from H to HomK(F, A(q)).

Proof. We will check that o E(Bk) = O*(Bk) o 4' for each k. Abusing notation, we do
not distinguish Bk and (Bk) from now on.

Let 6 be an n-core which we fix throughout and suppose k > 1. We will calculate the
expression BkS · 5 in two ways. By Lemma 3.13 we can write

BkSA 6 = E c/q6(q)Bk = E (E c(q)X/(q) v.

On the other hand, we can compute BkSA within H. We note that Bk · 6 = 0, which
follows from the definition Bk = py(u) and the fact we cannot remove any ribbons from
the shape 6. Thus by Lemma 4.1, we have

BkSA 6 (l q2nk) Xk/ whe -c n ar q2k A 1A

where the coefficients are given by Pks1 A I- V. x/,s in A. By Lemma 3.13 again, we
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find that this is equal to

1 - q2 k XV
A vE~~~~~~~s v~~E7:',

Equating coefficients of v we obtain

1 q2 nk k

A k

We now calculate

1 - q2nk
1- q2k) PkLv/6(X; q) =

1 _ q2nk 
\ 1-q2k j E c (q)pksi

IzET

-1 -q2k )E c/,(q) X
-= E - c'/(q)Xk/v(q) sx

A OE)Ps

using Equation (4.3)

= Z Xk/(q)Gl/(X; q),
pEP.

which is equivalent to O*(B_k) · (z) = P(E(B_k) · v). This is true for all v and proves
the claim for k < 0. The other case follows similarly.

We have proved Theorem 4.10 by a calculation expressing ribbon functions in the Schur
basis. A similar calculation using other bases is certainly possible; see Section 5.2.2. Theo-
rem 4.10 gives the following Corollary.

Corollary 4.11. Let A be a partition and 6 an n-core. The following identity holds in A(q).

sA[(1 + q2 + ... + q2(n-1 ))X] = E c/ 6(q)g/,6(X; q) =
/EP5 E c/a(q)c/1a(q)sv(X).

ttEP,, VEP

Proof. These are immediate consequences of Theorem 4.10 and Lemma 3.13 as (6) = 1
for an n-core 6. a

Note that by Theorem 4.7, we can identify the image of the global basis element GnA
under :

'D(Gn.) = s[(l + q2 + ... + q2(n-1))X]

4.3 Ribbon Pieri formulae

Define the formal power series

n-1 n-1
(t) = I 1q(t)= (1i: + xiqkt).H11)= n( 1 - xiq2kt)

i>l k= il k=O
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These power series are completely natural in the context of Robinson-Schensted ribbon
insertion where they are spin-weight generating functions for sets of ribbons; see Section 4.9.
Suppressing the notation for n, we define symmetric functions hk and ek by

H(t) = Ehktk ; E(t) = Z ektk .
k k

In plethystic notation, hk = hk[(l+q2 +.. .+q2(n-1 ))X] and ek = ek[(l+q2+.. .+q2(n-1))XI.
The following theorem is an immediate consequence Theorem 4.10, the definition of the
plethysm hk[(l + q2 + ... + q2(n-1))X] and Theorem 3.18.

Theorem 4.12 (Ribbon Pieri Rule). Let A be a partition with n-core 6. Then

hkg/(X; q) = >j qSPinO(/)u 6/(X; q) (4.4)

where the sum is over all partitions lz such that Ip/A is a horizontal n-ribbon strip with k
ribbons. Also

ekgx/,(X; q) = E qpin(/) /,(X; q)

where the sum is over all partitions pI such that tu/A is a vertical n-ribbon strip with k
ribbons.

When n = 1, we recover the classical Pieri rule for Schur functions. We can obtain the
two statements of Theorem 4.12 from each other via the involution wn of Section 4.5. Let
mspin(A) denote the maximum spin of a ribbon tableau of shape A. By Theorem 4.12, we
have

hk = E qmspin() (X; q) (4.5)
A

where the sum is over all A with no n-core such that IXA = kn with no more than n rows.

Example 4.13. Let n = 3, k = 2 and A = (3,1). Then

h2 (3 ,1) = (9 ,1) + qg(6,2,2 ) + q2(4,4,2) + q2g(6,1,1,1, 1) + q3 (3,3,2,1,1) + q4 ( 3 2,2 ,2 ,2,)

Setting q = 1 in H(t) we see that hk(X; 1) = Ea ha where the sum is over all compo-
sitions a = (ao,. .. , an-l) satisfying ao + -* + an-1 = k. We may thus interpret Theorem
4.12 at q = 1 in terms of the n-quotient as the following formula:

( hZ S(O) ... S(n- ) = haO() ) ...ho )* (han 15,(n-1)) (4.6)

where the sum is over the same set of compositions as above. Note that the right hand side
of (4.6) is indeed equal to the right hand side of (4.4) at q = 1 since a horizontal ribbon
strip of size k is just a union of horizontal strips with total size k in the n-quotient.

We also obtain lowering versions of the Pieri rules. By Theorem 4.10 again, we have

Proposition 4.14 (Ribbon Pieri Rule - Dual Version). Let A be a partition with
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n-core 5 and k > 1 be an integer. Then

h'A/b 6 (X; q) = E qspin(A/) ,/6(X; q)

where the sum is over all 1L such that A/1I is a horizontal ribbon strip. Similarly,

ek' A/6 (X; q) = E qpin(A/) L/6 (X; q)

where the sum is over all ts such that A/ti is a vertical ribbon strip.

This is a spin version of a branching formula first observed by Schilling, Shimozono and
White [53] (see Section 4.7).

4.4 The ribbon Murnaghan-Nakayama rule

4.4.1 Border ribbon strip tableaux
Let

s5(X)= E -1 XA

be the expansion of the Schur functions in the power sum basis. When = (k) has only
one part then we will write x: for X>. The coefficients X are the values of the character of
Slxl indexed by A on the conjugacy class indexed by . The classical Murnaghan-Nakayama
rule gives a combinatorial interpretation of these numbers:

A = E(_)h(T)
T

where the sum is over all border-strip tableaux of shape A and type IL. The numbers XA
are in fact the characters of the irreducible representation labelled by A of the symmetric
group Slxl, where /i is the type of the conjugacy class. See for example [57, Ch 7.18].

More generally, we have (see [57, 48])

Proposition 4.15. Let A be a partition and a be a composition. Expand

pasA(X) = EX/As,(X).

Then X/A is given by

XA = (_l)h(T)
T

where the sum is over all border strip tableaux T of shape p/A and type a.

Note that the border strip tableaux here should not be confused with ribbon tableaux.
A border strip tableau may have border strips of different sizes. A ribbon tableau has all
ribbons of length n. Proposition 4.15 is usually shown algebraically using the expression
of the Schur function as a bialternant s = a+6/a6. Theorem 4.20 will imply that it can
also be derived formally from the Pieri formula. We now generalise border strip tableaux
to border ribbon strip tableaux.
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Definition 4.16. A border ribbon strip S is a connected skew shape A/Pt with a distin-
guished tiling by disjoint non-empty horizontal ribbon strips S1, . .., Sa such that the dia-
gram S+i = Uj<iSj is a valid skew shape for every i and for each connected component C
of Si we have

1. The set of ribbons C U Sil do not form a horizontal ribbon strip. Thus C has to
"touch" Si-1 "from below".

2. No sub horizontal ribbon strip C' of C which can be added to Si-1 satisfies the above
property. Since C is connected, this is equivalent to saying that only the rightmost
ribbon of C touches Si-1.

We further require that S is connected. The height h(Si) of the horizontal ribbon strip
Si is the number of its components (two squares are connected if they share a side, but
not if they only share a corner). The height h(S) of the border ribbon strip is defined as
h(S) = (i h(Si)) - 1. The size of the border ribbon strip S is then the total number of
ribbons in UiSi. A border ribbon strip tableau is a chain T = Ao C A1 ... C A of shapes
together with a structure of a border ribbon strip for each skew shape Ai/Ai-1. The type
of T = A0 C A1-... C Ar is then the composition ar with ai equal to the size of Ai/Ai- 1.
The height h(T) is the sum of the heights of the composite border ribbon strips. Define
X/~(q) E Z[q] by

X/X (q) = (_-l)h(T)qPin (T)
T

summed over all border ribbon strip tableaux of shape /A and type v. We will show in
Section 4.4.2 that X/x(q) = X,/x(q).

Note that this definition reduces to the usual definition of a border strip and border
strip tableau when n = 1, in which case all the horizontal strips Ti of a border ribbon strip
must be connected.

Example 4.17. Let n = 2 and A = (4,2,2,1). Suppose S is a border ribbon strip such
that S1 has shape (7,5,2, 1)/(4,2,2, 1), and thus it has size 3 and spin 1. We will now
determine all the possible horizontal ribbon strips which may form S2. It suffices to find
the possible connected components that may be added. The domino (9,5,2, 1)/(7,5,2, 1)
may not be added since its union with SI is a horizontal ribbon strip, violating the conditions
of the definition. The domino strip (8,8,2, 1)/(7, 5,2, 1) is not allowed since the domino
(8, 8, 2,1)/(7, 7, 2, 1) can be removed and we still obtain a strip which touches S1.

The connected horizontal ribbon strips C which can be added are (7, 7,2, 1)/(7, 5,2, 1),
(7,5,3,3,2, 1)/(7,5,2, 1) and (7,5,4,1)/(7,5,2, 1) as shown in Figure 4-1. Thus assum-
ing S2 is non-empty, there are 5 choices for S2, corresponding to taking some compatible
combination of the three connected horizontal ribbon strips above.

Example 4.18. Let n = 2. We will calculate X,(q) for A = (5,5,2) and /t = (2). The
relevant border ribbon strips S are (successive differences of the following chains denote the
Si)

* (2) C (5, 5, 2) with height 0 and spin 5,

* (2) C (5, 3, 2) C (5, 5, 2) with height 1 and spin 3,

46



Figure 4-1: Calculation of the connected horizontal strips C which can be added to the
shape S1 = (7, 5, 2, 1)/(4, 2, 2, 1) to form a border ribbon strip. The resulting border ribbon
strips all have height 1.

* (2) C (5, 5) C (5, 5, 2) with height 1 and spin 3,

* (2) C (5,3) C (5, 5, 2) with height 2 and spin 1.

Thus X/1 (q) = q5 - 2q3 + q.

The condition on a horizontal ribbon strip to be connected can be described in terms
of the n-quotient as follows. Let T be a ribbon tableau with n-quotient T(°), ... , T(n - l ) }.
Let {(di, pi)} be the set of diagonals which are nonempty in the n-quotient of the horizontal
ribbon strip R: thus diagonal diagd, of T(pi) contains a square corresponding to some ribbon
in the horizontal ribbon strip R. Then the horizontal ribbon strip R is connected if and
only if the set of integers di} is an interval (connected) in Z. Thus border ribbon strips
may be characterised in terms of the n-quotient.

4.4.2 Formal relationship between Murnaghan-Nakayama and Pieri rules

Let V be a vector space over K and {v}XEp be a set of vectors in V labelled by partitions.
Suppose {Pk} are commuting linear operators satisfying

Pkvx = X /(q)vl for all k, (4.7)

then we will say that the ribbon Murnaghan-Nakayama rule holds for {Pk}. Suppose {Hk}
are commuting linear operators on V satisfying

HkVA = E KCI/X,k(q)vp for all k, (4.8)

then we will say that the ribbon Pieri formula holds for Hk}.
If the skew shapes jp/A are replaced by A// in the above formulae, we get adjoint versions

of these formulae which can be thought of as lowering operator formulae. Thus if a set of
commuting linear operators {(Pk* satisfies

Pkvx = y :X/l(q)va for all k,

then we will say the lowering ribbon Murnaghan-Nakayama rule holds, and similarly for the
lowering ribbon Pieri rule. We begin by observing the following easy lemma.
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Lemma 4.19. The power sum and homogeneous symmetric functions satisfy:

mhm = Pm- hi + Pm-2h2 + * + Pm.

Proof. See Chapter I, (2.10) in [48]. O

Theorem 4.20. Fix n > 1 as usual. Let {Hk} and {Pk} be commuting sets of linear
operators, acting on a K-vector space V, satisfying the relations of Lemma 4.19 between
hk and Pk in A. Then the ribbon Murnaghan-Nakayama rule (4.7) holds for {Pk} if and
only if the ribbon Pieri rule (4.8) holds for {Hk} (with respect to the same set of vectors
{(vX},jp). An analogous statement holds for the lowering versions of the respective rules.

Proof. Let us suppose that (4.7) holds. We will proceed by induction on k. Since H1 = P1

and a border ribbon strip of size 1 is exactly the same as a horizontal ribbon strip of size 1,
the starting condition is clear. Now suppose the proposition has been shown up to k - 1.
By assumption, kHk acts on V in the same way that Hk-lP1 + Hk-2P2 + .. + Pk does.

We first consider the coefficient of v, in (Hk-_P1 + Hk-2P2 + * + Pk) vx by formally
applying the rules (4.7) and (4.8). We obtain one term for each pair (S, T) where S is a
border ribbon strip of size between 1 and k satisfying sh(S) = v/A (for some v) and T is a
horizontal ribbon strip of size k - size(S) satisfying sh(T) = I/v. Denote by (S1,... , Sa)
the distinguished decomposition of S into horizontal ribbon strips.

Construct a directed graph GXl,,k with vertices labelled by such pairs S = {(S, T)}. We
have an edge

(S,T) , (S-S, ,TUS) (4.9)

for every pair (S, T) such that a > 1 and T U Sa is a horizontal strip (with the induced
tiling). We claim that every non isolated connected component W of Gx,,,k is an inward
pointing star. Indeed, every vertex must have outdegree or indegree equal to 0, and the
maximum outdegree is 1, since by Condition 1 of Definition 4.16 the right hand vertex of
(4.9) has outdegree 0.

Let us consider a vertex (S', T') (where S' = {S, ... , Sa}) with non-zero indegree. Now
let C be a component of T' such that C U S' is not a horizontal ribbon strip. Then there
is a unique sub-horizontal ribbon strip C' of C which can be added to S' to form a border
ribbon strip, by Condition 2 of Definition 4.16. This C' may be described as follows. Order
the ribbons of C from left to right cl, c2,..., cl. Find the smallest i such that ci touches
the bottom of S' and we set C' = {c1, c2, ... , ci}. We call such a horizontal ribbon strip C'
an addable strip of T' (with respect to S').

A non-isolated connected component W(S,T') of G,,,,k contains exactly of such a vertex
(S', T') together with the pairs (S, T) such that S = {S,..., Sa, Sa+l}, and Sa+l is the
union of some (arbitrary) subset of the set of addable strips of T'. It is immediate from
the construction that (S, T) will be a valid pair in S. The contribution of W(S',T) to the
coefficient of v, in (Hk_P1 + Hk-2P2 + '.. + Pk) v is

E (_)h(S)qspi n(SUT) = (_l)h(S')qspin(S'UT') (L-1){C'}
(S,T)EW(s$,T) {('c

where on the right hand side, {C'} varies over arbitrary subsets of addable strips of T' (we
have used the fact that the tiling never changes so the spin is constant, together with the
definition of height). This contribution is 0, corresponding to the identity (1 - 1)C = 0
where c is the number of addable strips of T'.
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It remains to consider the contribution of the isolated vertices: these are pairs (S, T)
where S = (S1) is a connected horizontal ribbon strip such that S U T is also a horizontal
ribbon strip. Since S is connected we can recover it from S U T by specifying its rightmost
ribbon, by Condition 1 of Definition 4.16. Thus such pairs occur exactly k times for each
horizontal ribbon strip of shape /A, and hence the ribbon Pieri rule (4.8) is satisfied for
the operator Hk.

The converse and dual claims follow from the same argument. O

4.4.3 Application to ribbon functions

It is now clear that the action of the bosonic operators Bk on F can be described in terms
of border ribbon strips.

Theorem 4.21. We have X,,A/(q)= = k/,(q).

Proof. The operators hk(u) commute and satisfy the ribbon Pieri rule (4.8) with respect
to the basis {A I A E P}, by definition. The claim follows from Theorem 4.20 applied to
V = F and vA = A. [

The next theorem is a ribbon analogue of the classical Murnaghan-Nakayama rule which
calculates the characters of the symmetric group.

Theorem 4.22 (Ribbon Murnaghan-Nakayama Rule). Let k > 1 be an integer and
v be a partition with n-core 6. Then

(1 + q2k + + q2k(n-1)) pkg/ 6(X;q) q= E /(q)/, 6(X; q). (4.10)

Also

k-g 9/1 6(X; Q)=E Xk/(q)/6(X; q).

Proof. The theorem follows from Theorems 4.20 and 4.12, where V = A(q) and v =

g6/(X; q). l

It is rather difficult to interpret Theorem 4.22 in terms of the n-quotient at q = 1. When
q = 1 the product (1 + q2k + ---+ q2k(n-1)) pkgX/5(X; q) becomes npks(o)S(1) ... sx(,-1)
which may be written as the sum of n usual Murnaghan-Nakayama rules as

n-1
S, (O) ... (PkS(,) ... SA(n-1).

i=O

Thus we might expect that border ribbon strips of size k correspond to adding a usual
ribbon strip of size k to one partition in the n-quotient. However, the following example
shows that this cannot work.

Example 4.23. By the ribbon Murnaghan-Nakyama rule (Theorem 4.22) with k = n = 2
and v = 0,

(1 + q4 )p2 1 = g(4) + q( 3 ,1l) + (q2 - 1)g( 2,2 ) - q( 2,1,1 ) - q2g(1,1,1,1)
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We can compute directly that

g(4) = h2, (3,1) = qh2 , (2,1,1) = qe2

=(2,2) = q2h2 + e2, 6(1,1,1,1) = q2e2,

verifying Theorem 4.22 directly. On the other hand, the shapes which correspond to a single
border strip in one partition of the 2-quotient are {(4), (3, 1), (2, 1, 1), (1, 1, 1, 1)} and the
corresponding x, terms do not give (1 + q4 )p2.

It seems possible that the ribbon Murnaghan-Nakayama rule may have some relationship
with the representation theory of the wreath products SwrCp, or even more likely to the
cyclotomic Hecke algebras associated to these wreath products (see for example [49]).

4.5 The ribbon involution wn

Define a semi-linear involution v -, v' on F by q - q' = q-1 and

Proposition 4.24 ([41, Proposition 7.10]). For all w E F and compositions satisfying
131 = k we have

(h,(u) w)' q-(n-l)kep(u) w', (h (u) w)' - q-(n-l)ke (u)w'.

Proof. We use the descriptions of the action of hk(u) and ek(u) in terms of horizontal and
vertical ribbon strips, together with the calculation spin(T) + spin(T') = (n - 1) · r for a
ribbon tableau T and its conjugate T' which contain r ribbons. 0

Now we will define an involution wn on A(q) which is essentially the image of the
involution v -, v' on the Fock space F. However, this involution will turn out to be not
just a semi-linear involution, but also a Q-algebra isomorphism of A(q).

Definition 4.25. Define the ribbon involution wn: A(q) -- A(q) as the semi-linear map
satisfying wn(q) = q-l1 and

W,(Sx) = q(,-l)l)l s),,

Theorem 4.26. The map wn is a Q-algebra homomorphism which is an involution. It
maps A,/, into /(/,) for every skew shape A/Ip.

Proof. The fact that wn is an algebra homomorphism follows from the fact that if sassL =
Z c(sv then s,s, = cs,,, and that the grading is preserved by multiplication. That
wn is an involution is a quick calculation.

For the last statement, we use Proposition 4.24 and the fact that the involution w(hn) =
e, satisfies w(sx) = s to obtain (Sv . i)' = q-(n-l)kSv, . ul'. By Lemma 3.13 this implies
that

cV1,(q-)) = - (n-l)k A cV' (q)A
A A
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Here k = v. Equating coefficients of A' we obtain cv/l(q-l) = q-(n-l)kc 1 /I,(q). ThusAlqj=q Clq.Tu

Wn(,/8) = Ewn (c/,(q)s,,) = (c/,,(q)q - ( n- 1) lvl) q(n-1)lvls '/,
V V

Let Tq,n denote the map A(q) - A(q) given by the plethysm f f[(1 + q2 + ... +
q2(n-1))X]. Note that pk[(1 + q2 + .. + q2(n-1))X] = (1 + q2k + ... + q2k(n-l))pk(X)
Proposition 4.27. Let f E A(q) have degree k. Then we have

q2(n-l)kWn (Tq,n(f)) = Tq,n (Wn(f)) 

In particular, if A I- k we have

wn (sA[(1 + q2+ ... + q2(n-1))X]) = q-(n-)ks[(1 + q2+ ... q2(n-1]

Proof. Since both wn and Tq,n(f) are Q-algebra homomorphisms we need only check this
for the elements Pk and for q, for which the computation is straightforward. O

4.6 The ribbon Cauchy identity

Define the formal power series gn(XY; q) and ln(XY; q) by

n-1 n-1

Qn(XY; q) = H I - xyjq 2k ; (XY; q) = H H (l + xiyjq2k)
i,j k=O ij =O

A combinatorial proof via ribbon insertion of the following identity was given by van
Leeuwen [44].

Theorem 4.28 (Ribbon Cauchy Identity). Fix n as usual and a n-core . Then

£n(XY; q) = E v/6(X; q):/6 (Y; q)

where the sum is over all A such that A = 6.

Unlike for the Schur functions, this does not imply that the {j/6 form an orthonormal
basis under a certain inner product, as they are not linearly independent.

Proof. By Corollary 4.11 we have

[(1 + + + ... + q2(n-1))X] = E c1/6(q)T1/ 6(X; q).
pEP5

Thus

s[(1 + q2 + ** + q2(l))X](Y) = E ( c/6(q)s,(Y)) g6(X; q)

= : /g,6(X; q)gt6(Y; q)
tgE'P.
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Let Tq,n(X) denote the algebra automorphism of A[X](q) ®K A[Y](q) given by applying

Tq,n to the X variables only. Applying Tq,n(X) to log (Ii,j l-yj) = Zk pk(X)Pk(Y)

gives log (1,j k lnxjq2k) which is exactly log(n). Thus applying Tq,n(X) to the
usual Cauchy identity for Schur functions (Iij = TE s,(X)s,(Y)) gives

Qn(XY; q) = , sA[(l + q2 + ... + q2(n-1))X]sX(y)
A

from which the Theorem follows. O

Theorem 4.28 can also be deduced directly from Theorem 3.6. See Section 5.2.3.
Now let us compute wn() where we let w: A[X](q) ®K A[Y](q) - A[X](q) (K A[Y](q)

act on the X variables by

wn(f(X; q) ® g(Y; q)) wn(f(X; q)) ® g(Y; q-1).

One checks immediately that this is indeed an algebra involution. We have (fixing an
n-core 6)

n(2n) = E a/ 6,(x;X;q)9gA/(Y;q-l).
AEI'8

Also,

n-1
wn(Qn) q( n-1)XIsx(X)sx[(1 + q2 + ... + q-2(n-l))y] = J(1 + xiyjq-l-2k).

A i,j k=O

Thus
n-1

gA,/ 6,(X; q)MA/,(Y; q- ) = H (1 + iyjqn--2k).
E~Pa i,j k=O

If we multiply the dth graded piece of each side by q(n-1)d we obtain the following result.

Proposition 4.29 (Dual Ribbon Cauchy Identity). Fix an n-core 6. We have

Qn(XY; q) = E q(n-1)Il/Ig/ 6,(X; q)g/(Y; q-1 ).
AEP6

4.7 Skew and super ribbon functions

We now describe some properties of the skew ribbon functions x/, (X; q). Unfortunately,
we have been unable to describe them in analogy with the formula sx/, = sl s~. However,
we do have the following skew ribbon Cauchy identity.

Proposition 4.30. Let it be any partition. Then

,u/u(X; q)fn(XY; q) = E ~A/(X; q)/p(Y; q)

where the sum is over all A satisfying A = i.
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Proof. Lemma 3.13 and Theorem 4.10 imply that

sv[(1 + q2 +... + q2(n-1))X]g/p(X; q) = E cv/(q)gx/\((X;q).

Now multiply both sides by sv(Y) and sum over v. Finally use Theorem 4.28. [l

Alternatively, one can prove Proposition 4.30 using Theorem 3.6 directly.
Schilling, Shimozono and White [53] have also used skew ribbon functions, as follows

(their original result used cospin rather than spin). By the combinatorial definition of gx we
immediately have the coproduct expansion Qx(X + Y; q) = , ,(X; q)g/,,(Y; q). Since
(see [48]), Af = If] slf 0 s1 we get immediately that

s (X; q) = g, g(X; q) (,/ (Y; q), s,) .

Setting v = (k) we obtain the lowering version of the Pieri rule (Proposition 4.14).

Another related generalisation of the usual ribbon functions are super ribbon functions.
Fix a total order -< on two alphabets A = 1 < 2 < 3 < .· } and A' = {1' < 2' < 3' < ... }
(which we assume to be compatible with each of their natural orders). For example, one
could pick 1 -< 1' -< 2 -< 2' - .-.

Definition 4.31. A super ribbon tableau T of shape A/p is a ribbon tableau of the same
shape with ribbons labelled by the two alphabets such that the ribbons labelled by a for
a E A form a horizontal ribbon strip and those labelled by a' for a' E A' form a vertical
ribbon strip. These strips are required to be compatible with the chosen total order. Thus
the shape obtained by removing ribbons labelled by elements >- i must be a skew shape
A<i/y, for each i E A U A'.

Define the super ribbon function gI/,(X/Y; q) as the following generating function:

A/ (X/Y; q) = E qpin(T)xw(T)((_y)W'(T)
T

where the sum is over all super ribbon tableaux T of shape A/p and w(T) is the weight in
the first alphabet A while w'(T) is the weight in the second alphabet A'. For a composition
a, we use (-y)a to stand for (-yl)l (-y 2)a2 ... (-yl) a l .

Proposition 4.32. The super ribbon function \/,1(X/Y; q) is a symmetric function in the
X and Y variables, separately. It does not depend on the total order on the alphabets A and
A'.

Proof. If we pick the total order on A U A' to be so that a > a' for any a E A and
a' E A' then we have [xa(-y)P]g\/,(X/Y; q) = (ha(u)en(u),u, A) for any compositions a
and ,. The proof of symmetry is completely analogous to that of Theorem 3.12, using the
commutativity of both the operators {hk(u)} and {ek(u)}. The last statement requires the
fact that hk(u)} commutes with {ek(u)}. El
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4.8 The ribbon inner product and the bar involution on A(q)

Definition 4.33. Let (., .)n A(q) x A(q) -* K be the K-bilinear map defined by

p[(1 + q2 +... + q2(n-1))X]I,,p p) = z

It is clear that (., )n is non-degenerate. The inner product (., )n is related to Qn in the
same way as the usual inner product is related to the usual Cauchy kernel - the following
claim is immediate.

Proposition 4.34. Two bases {vA} and {wA} of A(q) are dual with respect to (., .)n if and
only if

EZvv(X)wxA(Y) = Qn.

In particular, {sx [(1 + q2 + ... + q2 (n-1))X]} is dual to ({s}.

Lemma 4.35. The inner product (., .)n is symmetric.

Proof. This is clear from the definition as we can just check this on the basis pr, of A(q). 

Recall that for f E A, fl denotes its adjoint with respect to the Hall inner product.

Lemma 4.36. The operator fl is adjoint to multiplication by Tq,n(f) E A(q).

Proof. This is a consequence of (f, g) = (Tq,n(f), g)n. E]

The inner product (., )n is compatible with the inner product (A,, ) = 5xA on F when
we restrict our attention to the space of highest weight vectors of Uq([n).

Proposition 4.37. Let u, v E F be highest weight vectors for the action of Uq(s[n). Then

((u), (v ))n = (, V).

Proof. We check the claim for the basis {B_x 0} of the space of highest weight vectors in
F. El

The bar involution - F -x F of Section 4.1.3 also has an image under 4.

Definition 4.38. Define the Q-algebra involution - A(q) -- A(q) by = q-1 and

Pk! q2(n-l)kpk

It is clear that - is indeed an involution. We have the following basic properties of -,
imitating similar properties of the bar involution of F ([41, Theorem 7.11]).

Proposition 4.39. Let u, v E A(q). The involution - A(q) -- A(q) has the following
properties:

(Gna) = (Gna),

Tq,n(Pk) = Tq,n(Pk),

(U, V)n = (Wn(u), Wn(v))
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Proof. As - is an algebra homomorphism, the first statement follows from the second state-
ment and Theorem 4.10. The second statement is a straightforward computation. For the
last statement, we compute explicitly both sides for the basis pr, of A(q). O

Proposition 4.39 and Theorem 4.6 show that (v) = 4P(U) for all u, v in the subspace
of highest weight vectors in F. However this is not true in general. For example, (3, 1) +
q(2, 2) + q2(2, 1, 1) is bar invariant in F but its image under X is not.

4.9 Ribbon insertion

In this section we put the ribbon Pieri formula (Theorem 4.12) and ribbon Cauchy iden-
tity (Theorem 4.28) in the context of ribbon Robinson-Schensted-Knuth (RSK) insertion
(following partly [56, 33]). We will give a complete proof of both for the case n = 2. Van
Leeuwen [44] has recently described a spin-preserving RSK correspondence which gives a
combinatorial proof of the ribbon Cauchy identity for general n. Unfortunately, the cor-
respondence does not involve insertion and hence does not seem to lead to a proof of the
ribbon Pieri rule.

4.9.1 General ribbon insertion

In what follows, we assume familiarity with the usual RSK insertion and use the usual
language of the subject (see [57]). We will assume that all ribbon tableaux have shapes
with empty n-core for simplicity, though everything can be generalised to the general case.
A biletter is a triple (ck, ik, jk) where ci is the color taking values in {0,..., n - 1} and the
ik, jk are positive integers. Define the weight of a biletter (ck, ik, jk) to be w((ck,ik, jk)) =

q2ckyikxzj. The weight w(w) of a multiset of biletters w is then the sum of the weights of
the biletters. The weight generating function for multisets of biletters is

n-1
1

Ew(w) = H 1I -xiyjqk (4.11)
w i,j k=O

A ribbon Schensted bijection r: w -4 (P (w), Qr(w)) is a bijection between multisets of
biletters and pairs of ribbon tableaux of the same shape which is weight preserving, where
the weight of a P-tableau is qspin(P)xw(P) and the weight of a Q-tableau is qpin(Q)yw(Q).
Van Leeuwen [44] has given exactly such a bijection. By (4.11), a ribbon Schensted bijection
results immediately in a proof of the ribbon Cauchy identity (Theorem 4.28).

Suppose now that the bijection r is defined recursively via insertion of ribbons (c, j) (a
ribbon labelled j of spin c) into a tableau T:

Pr(W) = (( ...((0 (cl,jl)) i- (c2,j2)) " ) ( (cm,jm)).

Given a tableau T, the tableau T' = T - (c,j) should satisfy (a) the tableau T' has one
more ribbon than T, labelled j, (b) sh(T')/sh(T) is a skew shape which is a ribbon, and (c)
spin(T') + spin(sh(T')/sh(T)) = spin(T) + 2c. Let

T' = T - (c,j) ; T" = T' (c',j').

We will say that the insertion T - (c, j) has the ribbon increasing property if the ribbon
sh(T')/sh(T) lies to the left of sh(T")/sh(T') if and only if (c,j) < (c',j'). Here < should

55



be some total order on labelled ribbons (c, j).
Fix a ribbon tableau T. Then we can construct a (weight-preserving) bijection between

multisets of ribbons (ci,j i )} of size k and ribbon tableaux T' such that sh(T')/sh(T) is a
horizontal ribbon strip of length k, as follows:

T ' = (( ... ((T (cl,jl)) - (C2,j2 )) ') i- (Ck,jk)).

The ribbons (ci, ji) are inserted according to the order < thus ensuring the resulting shape
changes by a horizontal ribbon strip. Thus:

Observation 4.40. Suppose r : w -+ (Pr(w), Qr(w)) is a ribbon Schensted bijection de-
fined by the insertion "- ", satisfying a ribbon increasing property. Then r leads to a
combinatorial proof of the ribbon Pieri formula (Theorem 4.12).

The generating function H(t) of Section 4.3 can be interpreted as the weight generating
function of ribbons (c, j) with weight w(c, j) = q2kxj. For the k = 1 case of the ribbon
Pieri rule, no ribbon increasing property is required, only that the bijection r is given by
some kind of insertion algorithm. Shimozono and White have such an insertion algorithm
without a ribbon increasing property.

Proposition 4.41. Shimozono and White's spin-preserving ribbon insertion leads to a com-
binatorial proof that

(1 + q2 + ... + q2(n-l))hl(X)(x;q) = qspin(/A)g (X; q)

where the sum is over all Ip such that is/A is a n-ribbon.

We will not give the details of Shimozono and White's ribbon insertion here but refer
the reader to the paper [56]. They give an "insertion" algorithm which inserts a ribbon
(c, j) with particular spin into a semistandard ribbon tableau T. Roughly speaking, this
ribbon insertion is determined by forcing all ribbons to bump by rows to another ribbon
of the same spin. It is possible however to insist that all ribbons with certain spins bump
by columns instead. Unfortunately, it appears that none of these algorithms have a ribbon
increasing property.

4.9.2 Domino insertion

Observation 4.40 becomes a proof for the case n = 2, where a ribbon is in fact a domino.
In [55], Shimozono and White, extending work of Garfinkle [13] and Barbasch and Vogan
[1], gave a domino Schensted bijection. This was extended to the case of non-empty 2-core
in [33]:

Theorem 4.42. Fix a 2-core 6. There is a bijection between colored biwords w of length m
with two colors {0, 1} and pairs (Pd(w), Qd(w)) of semistandard domino tableaux with the
same shape A E Pa and AI = 2m + 161 which is weight-preserving.

We will describe this bijection for the standard case. In brief, domino insertion is
determined by insisting that horizontal dominoes bump by rows and vertical dominoes
bump by columns. More precisely, let S be a domino tableau with no value repeated (but
still semistandard), and i some number not used in S. We will describe (S - (0,i)) and
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(S - (1, i)) which correspond to the insertion of a horizontal (color 0) and vertical domino
(color 1) labelled i respectively.

Let T<i be the sub-tableau of S consisting of all dominoes labelled with numbers less
than i. Then set T<i to be T<i union a horizontal domino at the end of the first row labelled
i or a vertical domino in the first column labelled i depending on what we are inserting.
Now for j > i we will recursively define T<j given T<j-1. If there is no domino labelled
j in T then T<j = T<j-_. Otherwise let yj denote the domino labelled j in S and set
A = sh(T<j_l). We distinguish four cases.

1. If yj n A = 0 then set T<j = T<j_i U j.

2. If yj n A = 7j is a horizontal domino in row k then T<j is obtained from T<j by
adding a horizontal domino labelled j to row k + 1.

3. If yj n A = yj is a vertical domino in column k then T<j is obtained from T<jl by
adding a vertical domino labelled j to column k + 1.

4. If 'j n A = (1, m) is a single square then T<j is obtained from T<j-l by adding a
domino labelled j so that the total shape of T<j is A U ( + 1, m + 1).

The resulting tableau T<ce = (S - (c, i)). Figure 4-2 gives an example of domino insertion.

EJ3 4EF1

Figure 4-2: The result of the insertion ((((0 +- (1, 3)) +- (0, 4)) - (0, 2)) +- (1, 1)).

It turns out that domino insertion has a domino increasing property. This was first
shown by Shimozono and White [56] by connecting domino insertion with mixed insertion.
[33] gives a different proof using growth diagrams. The domino increasing property can be
described by specifying an order < on dominoes as follows ('yi denotes a domino labelled i)

1. If -i is horizontal and yj vertical then -Yi > Yj.

2. If yi and yj are both horizontal then 7yi > yj if and only if i > j.

3. If -yi and -yj are both vertical then yji > yj if and only if i < j.

Under this order, domino insertion has a ribbon increasing property, as described in Section
4.9.1.

Lemma 4.43 ([55, 33]). Let T be a domino tableaux without the labels i and j. Set
T' = (T - Pyi) and T" = (T' +- yj) for some dominoes yi and yj. Then sh(T'/T) lies to
the left of sh(T"/T') if and only if i < yj.

This increasing property is retained when the bijection is extended to the semistandard
case. Using Observation 4.40, we obtain:

Proposition 4.44. Semistandard domino insertion proves the domino Pieri rule (Theorem
4.12 for n = 2).
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4.10 Final Remarks

Cospin vs. spin. Recall that cosp(T) = mspin(T) - spin(T) for a ribbon tableau T where
mspin is the maximum spin for a ribbon tableau with of the same shape. It is easy to see
that cosp(T) is always even. In many situations it appears that the cospin statistic is more
natural than the statistic spin. For example, Lascoux, Leclerc and Thibon [39] have shown
that the cospin h(X; q) functions are generalisations of Hall-Littlewood functions. Cospin
also appears to be the natural statistic when finding connections between ribbon tableaux
and rigged configurations (see for example [51]).

All the formulae in this Chapter can be phrased in terms of cospin if suitable powers of
q are inserted. However, it is clear that the formulae presented in terms of spin is the more
natural form.

Jacobi-Trudi and alternant formulae. The ribbon Pieri rule (Theorem 4.12) we
have given stops short of giving a closed formula for the functions gx(X; q). It is well

known that the Schur functions can be written as s = ax+6 and as s = det(h~_i+j)/l(>)
Most algebraic treatments (see [481) of the theory of symmetric functions use these formulae
as the basis of all the algebraic computations for Schur functions. It would be nice to have
a similar closed formula for the ribbon functions.

Other "Pieri" and "Littlewood-Richardson" rules. In [32], a "half"-Pieri rule was
given for the case n = 2 which described the product hk(X)(2) (X; q) for certain partitions
A. It would be interesting to give rules for the products hk(X)g (X; q), s,(X)gA (X; q) and
g(X; q)g(X; q) for all n.

Enumerative problems. Stanley [57] has given a "hook content formula" for the
specialisation sx(1, t, t2 ,... ,t r) of the Schur functions. In particular this gives the hook
length formula for the number of standard Young tableaux of a particular shape. At q = 1
the corresponding problem for ribbon tableaux is trivial due to Littlewood's n-quotient
map. However, can anything be done for arbitrary q?

When n = 2, the specialisation q2 = -1 relates domino tableaux to the study of enu-
merative study of sign-imbalance [58, 63, 33]. It is not clear whether this can be generalised
to arbitrary n.

Graded Sn representations and hk. The non-negativity of the q-Littlewood Richard-
son coefficients (q) would follow from the existence of a graded Sn representation with
Frobenius character , (X; q) (where the coefficient of powers of q correspond to the graded
parts).

Such a graded Sn representation can be easily described for the ribbon homogeneous
function hk (see [57, Ex. 7.75]). Let Sk act on the multiset M = { ln-l, 2n-1, ... , kn - l } in
the natural way. Then the representation corresponding to hk is given by the action of Sk

on the subsets of M with the grading given by the size of such a subset. This suggests that
one might seek subrepresentations of this representation which correspond to the gx(X; q)
for (A) < n (see Equation (4.5)).

Generating series for ribbon functions. In [32], Kirillov, Lascoux, Leclerc and
Thibon gave a number of generating functions for domino functions which were subsequently
generalised in [33]. As a special case, we have the following product expansion for n = 2:

Z92) g~(X; q) H2i(1 + qxi)

A Hi(l - i) Hi(l - q2 X) ,2 <j(1 - xixj) Hni<j(l - q2xixj)

Can this be generalised to other values of n?
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Other incarnations of A. Often the Fock space F is identified with A via

This gives F the extra structure of an algebra. In this context, our map TX can be considered
to be an operator from A(q) to A(q). In the notation of [39], · would be the adjoint (q of
the operator p which sends ha to hat(u) · 1.

Leclerc [40] has studied another embedding : A -+ F given by pa - B-x · 0. Altering
this slightly, we may define a K-linear embedding q : A(q) - F given by Tq,n(px) -+ B-_ 0.
By Theorem 4.10, we see that the composition · o q : A(q) - A(q) is the identity. Leclerc
has connected with the Macdonald polynomials and it is likely that our setup can be
connected with many other aspects of symmetric function theory in this way.
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Chapter 5

Combinatorial generalization of the
Boson-Fermion correspondence

Let {Fx(X) E AK : A E S} be a family of symmetric functions with coefficients in a field
K (usually Q, Q(q) or Q(q, t)), where S is some indexing set. Many important families of
symmetric functions have the following trio of properties.

1. They can be expressed as the generating functions for a "tableaux"-like set of objects:

F,(X) = E wtTT
T

where the sum is over tableaux T with "shape" A and we have weights WtT E K and xT
is a monomial in the xi. Often the set S has a poset structure (S, <) where each pair
(A, IL) such that A < has been given a weighting wt(A, /) E K. Then the tableaux are
chains T = (A(°) < A( 1) < .. < A(r)) in S with weighting wtT = lrl wt(A(i-1 ), A(i)).

2. Together with a dual family {Gx(X) : A E S} of symmetric functions, they satisfy a
"Cauchy"-style identity:

oo

E F,(X)G,(Y) = J (bo + bxiyj + b2 (Xyj) 2 +...)
AXES ij=l

where the coefficients bi E K.

3. They satisfy a "Pieri"-style formula:

hk(X)F(X) = E bX,,F,(X)
-- kA

where k E Z is a positive integer, {h, h2,...} E AK is a sequence of symmetric
functions and bx,, E K are coefficients for each pair A, p satisfying some condition

-k A. The condition -k A often involves the same structure as for the tableaux
definition. For example, often one has -k A for some k E Z if and only if A < 
and wt(A, ) 4 0. In fact one often has the equality wt(A, ps) = b,.

The simplest case is F, = s, the family of Schur functions. The indexing set S = P
is the set of partitions. The tableaux are usual semi-standard Young tableaux; that is,
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chains of partitions. The dual family {Gx = sx} is equal to the Schur functions again and
in the Cauchy formula, all the coefficients ai = 1. In the Pieri formula, hk = hk are the
homogeneous symmetric functions. The condition -k A is that /A is a horizontal strip
of size k and all the coefficients b,, = 1.

Other examples include the shifted Schur functions, Hall-Littlewood functions, Macdon-
ald polynomials, and LLT's ribbon functions studied earlier in the thesis. In all these cases
the indexing set S is in addition graded, and all three properties are compatible with this
grading.

We shall give an explanation of this phenomenon by relating these symmetric functions
to representations of Heisenberg algebras. As we shall see, our work can be considered a
combinatorial generalisation of the classical Boson-Fermion correspondence.

5.1 The classical Boson-Fermion correspondence

Let K be a field with characteristic 0. In this chapter, the Heisenberg algebra H is the
associative algebra over K with 1 generated by {Bk : k E Z\{0}} satisfying

[Bk, Bl] = I * al * 6 k,-i

for some non-zero parameters al E K satisfying al = -a-l. As an abstract algebra, H does
not depend on the choice of the elements al, since the generators Bk can be re-scaled to
force al = 1. However, we shall be concerned with representations of H, and some choices
of the generators Bk will be more natural. Let K[B- 1, B- 2, .. .] denote the Bosonic Fock
space representation of H, as in Section 4.1.1. One can identify K[H_] = K[B_ 1, B 2, ... ]
with the algebra AK of symmetric functions over K by identifying Bk with akpk for k > 0.

If V is a representation of H, then a vector v E V is called a highest weight vector if
Bk V = 0 for k > 0. The following result is well known. See for example [21, Proposition
2.1].

Proposition 5.1. Let V be an irreducible representation of H with non-zero highest weight
vector v E V. Then there exists a unique isomorphism of H-modules V -- K[B_1, B- 2, .. .]
sending v - 1.

For the remainder of this section we assume that H is given by the parameters al = 1 for
I > 1 and al = -1 for I < -1. Let W = $jEzKvj be an infinite-dimensional vector space
with basis (vj : j E Z}. Let F(0) denote the vector space with basis given by semi-infinite
monomials of the form vio A vi_l A ... where the indices satisfy:

(i) i > i-1 > i-2 > ."

(ii) ik = k for k sufficiently small.

We will call F( 0) the Fermionic Fock space. Note that usually F(0) is considered a subspace
of a larger space F = E)mEz ' (). The spaces F(m) are defined as for F(o) with the condition
(ii) replaced by the condition (ii(m)): ik = k - m for k sufficiently small. Define an action
of H on F(O) by

Bk (vi A vi_ A ... ) = E vio A vi_ A ... A vi_l A ij-k A vij+l A -- - (5.1)
j<o
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The monomials are to be reordered according to the usual exterior algebra commutation
rules so that vio A ... A vij A vij+ A . .. = - -io A ... A vi, A vi A- - . Thus the sum on the
right hand side of (5.1) is actually finite so the action is well defined. One can check that
we indeed do obtain an action of H.

It is not hard to see that the representation of H on F(0) is irreducible. The space F(0)
can be identified with F earlier in the thesis by (vio A vi_1 A .. ) *- (io, i-1 + 1,...).

The vector v = v0 A v-1 A ... E () is a highest weight vector for this action of H. By
Proposition 5.1, there exists an isomorphism a : F(0) - AK sending v '- 1. An algebraic
version of the Boson-Fermion correspondence identifies the image of vio A vi_l A ... under
the isomorphism a.

Theorem 5.2 ([21, Lecture 6]). Let Ak = i-k + k. Then a(vio A vi_1 A ... ) = sx.

In [21], this is called the "second" part of the boson-fermion correspondence. It is impor-
tant in the study of a family of non-linear differential equations known as the Kadomtzev-
Petviashvili (KP) Hierarchy. The "first" part consists of identifying the image of certain
vertex operators under o. The relationship between vertex operators and symmetric func-
tion theory have been studied previously in [19, 20, 48].

Our aim will be to generalise Theorem 5.2 to representations of Heisenberg algebras
with arbitrary parameters ai E K. We will see that the symmetric functions that one
obtains in this manner will always have a tableaux-like definition and satisfy Pieri and
Cauchy identities. In our approach, we have ignored the vertex operators, but it would be
interesting to see how they are related to our results.

5.2 The main theorem

5.2.1 Symmetric functions from representations of Heisenberg algebras

Let H be a Heisenberg algebra with parameters ai E K. Define Bx := BA1Bx2 ... Bl(A) and
let Dk := AFk z'xlBA where z is as defined in Section 2.2.1. The elements B, Dk E
H are related in the same way as the elements p, hk E A. Similarly define B_ :
B_lB_A 2 ... B_l(A) and Uk := -_kz 1B_. Also let S E H be given by S :
El, z;l1xB_, where the coefficients X are the characters of the symmetric group given by
S = E z lX~p.

Let V be a representation of H with distinguished basis {v, : s E S} for some indexing
set S. For simplicity we will assume that both V and S are Z-graded so that v E V
are homogeneous elements and deg(vs) = deg(s), and that each graded component of V is
finite-dimensional. We will also assume that the action of H is graded in the sense that
deg(Bk) = -mk for some m E Z\{0}. Define an inner product (.,.) : V x V -- K on V by
requiring that {v I s E S} forms an orthonormal basis, so that (vs, v') = 65,,.

Let s, t E S. Define the generating functions

FV(X) = F81t(X) := a (UalUQl1 * U. 1 . t s)

where the sum is over all compositions a = (al, a2,..., al). Similarly define

Gs/t (X) = Gs/,(X) = Z x (Da Dal_ Da1 s, t) .
O

63



Note that Ft and Gt are homogeneous with degree degs)-deg(t) So in particular if
deg(s)-deg(t) is negative or non-integral then the generating functions are 0. For convenience
we let U := U Uc,_, .. Uct and DQ := Da,,D,,_ 1 Da.

The following Proposition is immediate from the definition, since Uk commutes with U
and Dk commutes with D1 for all k, E N.

Proposition 5.3. The generating functions F/t and Gs/t are symmetric functions.

As before, let K[H_] C H denote the subalgebra of H generated by Bk I k < 0 and
similarly define K[H+] c H. The definitions of Fslt and Gs/t can be rephrased in terms of
the Heisenberg-Cauchy elements IQ(H_, X) and fQ(H+, X) which lie in the completed tensor
products K[H_]AK(X) and K[H+]6AK(X) respectively:

Q(H_, X) := U, z m(X) = ®P z'B p A = p- , SX ®s(X).

The last two equalities follow from the classical Cauchy identity. Also define fQ(H+, X) E
K[H+]6AK(X) by n(H+, X) = ® D ® m>(X).

Thus for example, one has

FIt(X) = (fa(H_, X) vt, v)

and
G,/t(X) = (n(H+, X). ,, vt) .

For example, one has in particular

G,/t(X) = ZA PA (BA v,, vt) . (5.2)

Now let b E S be such that Vb is a highest weight vector for H. We will write Fs := F/b
and Gs := Gs/b. The element Q(H_, X) Vb E V6AK(X) depends only on the choice of Vb.
The symmetric functions Fs are the coefficients of 0 (H_, X) Vb when it is written in the
basis {vs I s E S}:

Q(H_, X) V = E vs X F(X).

5.2.2 Generalisation of Boson-Fermion correspondence

Let us suppose that b E S has been picked so that vb E V is a highest weight vector for H.
By Proposition 5.1, there is a canonical map of H-modules H b --, AK sending Vb 1.
Our choice of inner product for V allows us to give a map V --, AK.

Theorem 5.4 (Generalised Boson-Fermion correspondence). The map A : V -- AK
given by v, -s Gs(X) is a map of H-modules.

Recall that B-k acts on AK by multiplication by akpk and Bk acts as k, for k > 1.

Proof. Let us calculate Bl · Gs and compare with (BI · vs). Suppose first that < 0
and let k = -. Let A be a partition and let be A with one less part equal to k. If
A has no part equal to k, then IL can be any partition in the following formulae. First
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write (BxBl vs,, Vb) = kakmk(A) (BVs, Vb), using a slight variation of Lemma 4.1 for our
H. Alternatively, one can also compute

BxBI l vs = BAX (B1 v., vc) vc = - (B1 v., vc) (BAx vc, Vd) vd
C c,d

so that taking the coefficient of vb we obtain

kakmk(A) (B, v, Vb) = E (B v, vc) (BA . Vc, Vb) . (5.3)
c

Now,

B Gs = akpkGs

= ak Z. zlPkP (B * vs, Vb) by Equation (5.2),

Z z-pA ( (BI v,, vc) (BA . vc, Vb) using (5.3)
A

= E (B. v.,vC) (Zz 1 (B Vc, Vb)

= E (B v,, vc)Gc .
c

This shows that I(BI vs) = Bl ' (v,) for I < 0.
Now suppose k > 0, and let A and be related as before. Then

Bk. GS = k E z p1 aPA (B vs,, Vb)

= k A z1 mk(A)p, (B~Bk *Vs, Vb)

A

= E (Bk vs, c) Z, y 1P (Bp vc, Vb))

= (Bk v vc) Gc.
C

This completes the proof. 0

When V is irreducible, this map of H-modules does not depend on the choice of basis,
but does depend on Vb. Since the degree deg(vb) part of V is one dimensional, the image of
v E V is given by the coefficient of the degree deg(vb) part of Q(H+, X) -v.

If V is not irreducible then the map depends on the inner product (.,.) (or equivalently,
the choice of orthonormal basis).

Note that a different action of H on AK will allow us to replace the family Gs in
Theorem 5.4 by Fs. More precisely, one can define the adjoint action 9 of H on V by letting
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the generators Bk satisfy ((Bk) v,', vs) = (vs, Bk v). With this new representation of
H on V, the roles of Gs and Fs are reversed.

5.2.3 Pieri and Cauchy identities

Let hk[ai] denote the image of hk under the map A -, AK given by Pk -* akpk. Let h be
the linear operator on AK which is adjoint to multiplication by hk with respect to the Hall
inner product.

Theorem 5.5 (Generalised Pieri Rule). Let k > 1. The following identities hold in
AK:

hk [ailGs = (Uk s, t) Gt
t

and
hk[ai]F =E (Dk t, S) Ft.

t

The dual identities are:
hGs = (Dk s, t) Gt

t

and
hk F = E (Uk t, s) Ft.

t

Proof. Follows immediately from the definitions of Uk, Dk and hk[ai] together with Theo-
rem 5.4 and the comments immediately after it. aJ

Define a map A - K by pk - ak.

Theorem 5.6 (Generalised Cauchy Identity). We have the following identity in the
completion of AK (X) ® AK (Y):

Z FS(X)G.(Y) = 1 (1 + (hl)xiyj + r(h2)(Xiyj)2 + *).
S i,j

More generally, let r, t E S. Then we have

Fs/t(X)Gs/r(Y) = J (1 + (hl)xiyj + K(h2)(xiy3)2 + *.) ZFrs(x)Gt/s(Y). (5.4)
~~s ij s

Proof. We know [Bk, Bl] = kak6k,-l. An argument similar to the proof of Theorem 4.2 gives
the identity

m

DbUa = E K(hi)Ua-iDb-i
i=O

where m = min(a, b). Let U(x) := 1 + Ei>O Uixi and similarly D(x) := 1 + Ei>o Dixi. The
above identity is equivalent to

D(y)U(x) = U(x)D(y) (1 + K(hl)xy + (h2)(xy)2 +... ).

Now notice that by definition we have Fslt = (... U(x 3)U(X2)xU(xI) Vt, vs) and Gs/t =
(... D(x 3)D(x 2)D(xi) vs, vt). The infinite products make sense since in most factors we
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are picking the term equal to 1. Thus

E Fst (X)Gs/r(Y)
s

= ( D(y3)D(y2)D(yl) ... U(x3)U(x2)U(xl) Vt, Vr)
00

= J1J (1 hl)iyj + (hl (h2)(Xiyj)2 + )
i,j>l

(... U(x 3)U(X2 )xU(x) ... D(y 3 )D(y 2 )D(yi) vt, vr)
00

= J (1 + (hl)xiyj + I(h2)(xiyj)2 + * ) EGt/s(Y)FI,(X).
i,j>l s

These manipulations of infinite generating functions make sense since they are well defined
when restricted to a finite subset of the variables {xl, X2, x2 , Y, Y2, Y, ..}- 

The results of this Section are related to results of Fomin [11, 9, 10] and of Bergeron
and Sottile [3]. Fomin studies combinatorial operators on posets and recovers Cauchy style
identities similar to ours. His approach is more combinatorial and he focuses on generalising
Schensted style algorithms to these more general situations. Bergeron and Sottile have also
made definitions similar to our Fs/t. Their interests have been towards aspects related to
Hopf algebras and non-commutative symmetric functions; see also [8, 4].

In fact, a converse to Theorem 5.6 exists. Suppose that {B: k E Z\{0}} are operators
acting on a vector space V with a distinguished basis {vs: s e S}. Suppose {B' I k > 0}
and {(B I k < 0 are both commuting sets of operators, and define Uk and DI as with Uk

and Dk. Then we can define F/t(X) := x U t, and similarly for
GIsit,

Suppose first that the Generalised Cauchy identities (5.4) hold for F' and G' and some
coefficients bi in place of rz(hi). Then by the argument in the proof of Theorem 5.6, we
must have

((D'(y)U'(x) - U'(x)D'(y) (1 + blxy + b2(xy)2 + ... )) t, vr) = 0

for every t, r E S. This implies that D'(y)U'(x) = U'(x)D'(y) (1 + blxy + b2(xy)2 +... ).
Now using the argument in Theorem 4.2 again, we deduce that [Bk, B] = kakSk,-l where
ak = i'(pk) for the map ': A -- K given by nI'(hk) = bk.

Now suppose instead of the Generalised Cauchy identity we assume that the Generalised
Pieri rules of Theorem 5.5 hold for the family G' E AK} and some non-zero parameters
ai. If in addition the family G'S) is linearly independent in AK then the action of (Uk, DI}
on V is isomorphic to the action of hk[ai], h} on spanK{G'} under the isomorphism
v, * G. Thus the Generalised Pieri rules together with the fact that the family {(G' is
a basis implies that the operators {B'} generate a copy of the Heisenberg algebra H with
parameters a.

In conclusion we have the following theorem.

Theorem 5.7. Suppose {B : k E Z\{0}} are a sequence of operators acting on V, with
distinguished basis {v, : s E S, so that B and B commute if k and I have the same
sign. Let {ak E K} be a sequence of non-zero parameters. Define Fs't, Gs/t, Uk and D as
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before. Suppose in addition that {(G I s E S) are linearly independent. Then the following
are equivalent:

1. The operators {(B} generate an action of the Heisenberg algebra with parameters ai.

2. The family {(Gs} satisfies the conclusions of Theorem 5.5.

3. The families {G's/t and {(F/t} satisfy the conclusions of Theorem 5.6.

5.3 Examples

5.3.1 Schur functions

If V = (O0) and HSchur = H acts as in Section 5.1, then Theorem 5.4 is just Theorem 5.2,
where the indexing set S can be identified with the set of partitions P. In this case,
the operators Bk and B-k are adjoint with respect to (.,.) and so F = GA = s, for
every A. The definition of sx/ = Fx/, in terms of the operators Uk is exactly the usual
combinatorial definition of skew Schur functions in terms of semistandard Young tableaux.
The symmetric function hk[ai] = hk is the usual homogeneous symmetric function and the
coefficients (Uk A, p) are equal to 1 if p/A is a horizontal strip of size k and equal to 0
otherwise. The coefficients K(hi) are all equal to 1 and Theorem 5.6 reduces to the usual
Cauchy identity.

5.3.2 Direct sums

Let V and V2 be two representations of H with distinguished bases v,, : s E S1) and
(v82 : S2 E S2} respectively. Then V = V V2 is a representation of H with distinguished
basis v, I s E S 1 II S2}. If s, t E Si for some i then FVt = Fyst otherwise if for example

s E S and t E S2 we have FV/t = 0. Thus the family of symmetric functions that we obtain
from V is the union of the families of symmetric functions we obtain from V and V2.

5.3.3 Tensor products

Let V1 and V 2 be two representations of H with distinguished bases {vs : sl E S1) and
{v 2 : 2 E S2} respectively, as before. Then V1 ® V2 has a distinguished basis {v,, ® vs2 

sl E Si and s2 E S2}. Let a Heisenberg algebra H(2) = H act on V ® V2 by defining the
action of Bk by

Bk Vl ® V2 = (Bk' Vl) ® V2 + V1 (Bk v2).

This action is natural when one views A as a Hopf algebra. If the original Heisenberg
algebra H had parameters ai then one can check that the new Heisenberg algebra fH has
parameters &i = 2ai. The action of Uk = AF-k z BA- is given by

k

Uk I ® V2 = (Ui V s ® (Uk-i V2)
i=O

and similarly for Dk. By definition, one sees that Fs1 ls2/tl®t2 = Fs811 1F 8 /t2 and similarly
for the G-functions. Thus the family of symmetric functions we obtain from V = V1 0 V2

are pairwise products of the symmetric functions we obtain from V1 and V2.
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More generally, the tensor products V1 ... Vn leads to generating functions which are
products Fs,,/t, Fs,,t, of n original generating functions. We will denote the Heisenberg
algebra acting on this tensor product by H(n). It has parameters an ) = nai.

5.3.4 Macdonald polynomials

Let K = Q(q, t) and Px(X; q, t) and Qx(X; q, t) be the Macdonald polynomials introduced
in [48]. Let A = (Al1,A2,...) be a partition and s = (i,j) E A be a square. Then the
arm-length of s is given by a,(s) = Aj - j and the leg-length of s is given by l(s) = A - i.
Now let s be any square. Define ([48, Chapter VI, (6.20)])

1-qaAx()tAx()+ if
bA(s)= b(s;q,t)= 1-qaa ( )+l t iA(a) if E A,

1 otherwise.

Now let A/p be a horizontal strip. Let Cx/,, (respectively RX/x) denote the union of columns
(respectively rows) that intersect A - . Define ([48, Chapter VI, (6.24)])

8ECA/\

and

b\(s)
sERx/,-C/,1

Let VMac = FK be the vector space over K with distinguished basis labelled by parti-
tions. Define operators Uk, Dk: k E Z>o} by:

Uk*A =- SA 1 , Dk A = A/p,

where the sums are over horizontal strips of size Ikl. Then Qt, = F, and Px/, = G,I,, so
in particular the operators {Uk I k E Z>o} commute and so do the operators {Dk I k E Z>0}.
Now we have ([48, Ex.7.6])

Qp/X(X; q, t)Pp/ (Y; q, t) = Q,/af(X; q, t)P/ (Y; q, t)) II 1 - tiyJqr
p ij r=0 1- xiyjq r

The product [=0 o-.:y can be written as .n>o gn(1, 0O, 0... ; q, t)y n where gn is given by
([48, Chapter VI, (2.9~1)

gn(X; q, t) = zx(q, t)-lpx(X)

where zx(q, t) = z-- Thus b : gn(1, O, O,...; q, t) = n xnZx(q, t)- 1. Using
Theorem 5.7, we see that the operators Uk, Dk I k E Z>o generate a copy of a Heisenberg
algebra HMac. A short calculation shows that the parameters a E Q(q, t) are given by

1l-tk
ak = 1--q '

In fact Theorem 5.7 shows that the Pieri (and dual Pieri) rule for Macdonald polynomials
is equivalent to the (generalised) Cauchy identity for Macdonald polynomials.
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5.3.5 Ribbon functions

The actions of B-k = pk(u) and Bk = pk(u) of Chapter 4 are adjoint. Theorem 5.4 is a
generalisation of Theorem 4.10. Theorems 5.6 and 5.5 are generalisations of Theorems 4.28
and 4.12.

At q = 1, the Fock space F for Uq(sn) should be thought of as a sum of tensor products:

F ())®f (5.5)
n-cores

where ( 0) is the Fock space which leads to Schur functions. Combinatorially, the decom-
position (5.5) is given by writing a partition in terms of its n-core and its n-quotient; see
Section 2.1. As shown in Section 5.3.3, the F functions we obtain in this way are products
of n of the F functions for (), that is, (skew) Schur functions. This is simply the formula
gA(X; 1) = s,(o)s,(l) ... ,(n-) observed in Section 2.2. In fact, the q = 1 specialisation
corresponds to action of the Heisenberg algebra commuting with the action of sin on F.
In the following sections we will try to generalise ribbon functions to other quantum affine
algebras. However, it will not be possible in general to specialise q = 1 to obtain a classical
Fock space representation since in some cases the parameters ai may have a pole at q = 1.

It would be interesting to see whether ribbon functions and Macdonald polynomials can
be combined by finding a deformation of the action of (HMac)(n) on Va c.

5.4 Ribbon functions of classical type

5.4.1 KMPY

In [28], Kashiwara, Miwa, Petersen and Yung give a general construction of q-deformed
Fock spaces using perfect crystals. These Fock spaces are generalisations of the Fock space
constructed in [29J which correspond to the quantum affine algebra A(' ) . The Fock spaces
constructed in [28] correspond to the level 1 basic representations of the quantum affine
algebras of types A(2), ( 2) n D( 1) and (2)1 A more combinatorial description of
these Fock spaces was given by Kang and Kwon [24] in terms of objects known as Young
walls. However, the description of the action of the Heisenberg algebra is not available in
terms of Young walls so we will only use the description in [28].

A huge amount of notation and machinery is developed for the construction in [28],
so we will not be able to give all the details of the theory but will emphasize the parts
important for our work.

Let g be an affine Lie algebra. Let ai E *} for i E I denote the set of simple roots and
let hi E )} denote the set of simple coroots. Let P C * denote the weight lattice and let
Q c * denote the root lattice. Let 6 E Q be an element such that Z6 = A E Q I (hi, A) =
0O where (.,.) is the coupling x * -- C. Let Pl = P/ZJ denote the classical part of P.
Let c E 'i Z>ohi be an element such that Zc = h E Ei Zhi (h, ai) = 0}). The level of
A E P is given by (c, A). Let P0 and P,01 denote the level 0 parts of the weight lattice and
classical weight lattice. Let W denote the Weyl group of g.

Let Uq(g) denote the quantized enveloping algebra with qh I h E P} as its Cartan
part. Let Uq(g) denote the quantized enveloping algebra with {qh I h E Pc1} as its Cartan
part. Thus Uq(g) is a subalgebra of Uq(g). The algebra Uq(g) is generated over Q(q) by the
generators qh I h E P} and ei, fi for i E I. We will not write down the relations here, but
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they are nearly identical to the description for type A(1) in Section 4.1.2. Also the choice
of a coproduct for Uq(g) will affect all the definitions in the following sections, but we have
decided to hide this dependence; see [28, Section 2.2] for details.

We briefly sketch the idea behind the construction. We begin with a representation Va
of Uq(g). The aim is to define a representation "A°Vff". To begin with one wants to define
A2Vaff by taking Vaf2 and quotienting by relations of the form vl ® v2 = -v2 0 vl. This
definition fails since Uq(g) is not a cocommutative Hopf algebra. So instead one defines the
subspace

N = Uq()[z z, z-1 z- 1, z 1+1 z](u u)
for an extremal vector u E Vaff. We then let A2Vf := V 2 /N and define A°°Vff similarly.
However, even given a nice basis of Vaff it is not clear how to write down a basis for Ao°°Vff.
This is where the use of perfect crystals, global crystal bases and energy functions will be
essential.

5.4.2 Crystal bases, perfect crystals and energy functions

Crystals

Crystal bases were first introduced by Kashiwara [25]. Let A denote the set of all functions
f E Q(q) which are regular at q = 0. Let ei, fi denote the Kashiwara operators introduced
in [25]. A crystal lattice L is a free A-submodule of V, compatible with the weight decom-
position of V, such that V = Q(q) ®A L and such that iL C L and iL C L for each
i E I. A crystal basis (L, B) of V consists of a crystal lattice L of V and a Q-basis B of
L/qL. The set B is compatible with the weight decomposition, satisfies iB C B U 0} and
fiB c B U 0{} for each i E I and satisfies fi(b) = b' -i(b') = b for any b, b' E B. The
main theorem concerning crystal bases is that a unique (up to isomorphism) crystal basis
exists for the highest weight irreducible representation Vx of Uq(g).

The set B, together with its additional structure is called a crystal. It can be thought of
as a directed graph with edges labelled by the index set I. One can define crystals abstractly
as follows.

A Uq(g)-crystal is a nonempty set B together with maps wt: B -, P and ei, fi : B -

B U {0} for all i E I and ei : B - Z and i i: B - Z satisfying:

fi(b) = b' 4- i(b') = b for b, b' E B,

wt(fi(b)) = wt(b) - ai if fi(b) E B,
(hi,wt(b)) = (b) - ei(b) for i E I and b E B,

Ei(b) = max(n > 0 I ei(b) 0} for i E I and b E B,

qi(b) = maxn > O fin(b) 0} for i E I and b E B.

The most important combinatorial operation for a crystal is the tensor product opera-
tion, which corresponds exactly to taking tensor products of the associated representations.

Perfect crystals

Perfect crystals were first introduced in [22, 23] to compute one-point functions of the vertex
models in 2-dimensional lattice statistical models. Let B be the crystal corresponding to a
crystal base (L, B) of an integrable finite-dimensional Uq(g)-module of level 0. The crystal
B is perfect of level 1 > 0 if:
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1. The crystal B 0 B is connected;

2. There exists A E Poq such that #(Bx) = 1 and all weights of V are contained in the
convex hull of W A.

3. Let e(b) := eiEIei(b)A0l E Pcl and (b) := -jEzi(b)A c l E Pcl, where Acl is the
classical part of Ai. Then for any b E B, we have (c, e(b)) 1.

4. The maps e and b from Bmin to (Pc+)l are bijective. Here Bmin := {b E B I (c, e(b)) =
l} and (Pj+)l := {A E P (c, A) = I and (hi, A) > 0 for every i E I}.

Energy function

Let V be an integrable finite-dimensional representation of Uq(g). One can define a repre-
sentation Vaff of Uq(g), which may be identified with V 0 C[z, z- 1] (where z has "weight"
d). Assume that

(P): V has a perfect crystal base (L, B).

If (L, B) is a crystal base for V, then we have a crystal base (Laff, Bff) for Vaff. The
elements of Baff are labelled znb where n E Z and b E B. The level 1 of the perfect crystal
B will determine the level of the Fock space we end up constructing. However, some of the
assumptions in the following were only verified for certain crystals, case by case, in [28].

Also assume that

(G): V has a lower global base {G(b)}beB.

A lower global base ([26]), see also Section 4.1.3, is a "lifting" of the crystal basis to V. The
lower global base of Vaff satisfies G(znb) = znG(b) for n E Z and b E Baff.

An energy function H: Baff Bff -- Z satisfies:

1. H(zbl 0 b2) = H(bl 0 b2)- 1.

2. H(bl zb 2 ) = H(bl b2) + 1.

3. H is constant on every component of the crystal graph Baff 0 Baff.

The above conditions determine H up to a constant. We normalise H by requiring that
H(b 0 b) = 0 for any element b E Baff of extremal weight.

The existence of an energy function is shown using the R-matrix; see [22]. The R-matrix
is a Uq(g)-linear map from Vaff 0 Vaff to its completion VaffVaff such that

R o (z 1) = (1 z) o R

Ro(1 z) = (z01) o R.

The energy function and the R-matrix are related by

R(G(bl) 0 G(b2)) - G(zH(bl®b2)bl) 0 G(z-H(bl®b2)b2) mod qLaffLa

for every bl, b2 E Baff. It is known that R has finitely many poles. This means that there
is a E Q(q)[z 0 z-, z- 1 0 z] such that OR sends Vaff 0 Vaff into itself. Assume that

(D): E A[z 0 z-1 ] and $ = 1 at q = 0.
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Let s: P - Q be a linear form such that s(ai) = 1 for all i E I. Let 1: Bff - Z be
defined by l(b) = s(wt(b)) + c, where c is chosen so that I is Z-valued. The construction
of [28] depends on the assumption that

(L): If H(bl 0 b2) < 0 then (bl) > l(b2).

Let u E Vaff be an extremal vector and let

N = Uq(g)[z z, z- 1® z,z 1 + 1 z](u u).

In [28] one also assumes that

(R): For every bl, b2 E Bag such that H(bl X b2) = 0, we have Cbl,b2 E N of the
form

Cbl,b2 = G(bl) ® G(b2) - E ab,b G(bl) ® G(b2)
bl ,b2

where abl,b E Z[q, q-l] and the sum is over all b1 and b2 such that H(bl b'2) > O
and (b2) < (b) < l(bi) and (b2) < (b2) • (bl).

It is conjectured that the existence of the perfect crystal (P) and lower global base (G)
is sufficient to imply the other conditions (D), (L) and (R).

5.4.3 The Fock space and the action of the bosons

Under the assumptions (P), (G), (D), (L) and (R) Kashiwara, Miwa, Petersen and Yung
define a Fock space .Fm. These assumptions are verified for level 1 perfect crystals of types
A(1) A22 B ( 2) , A(2)_ D (1) and Dn2) One first defines

A2Va = V2/N

and shows that A2Vff is spanned by {G(bl) ® G(b2) H(bl ® b2) > O} which are called
normally ordered tensors. Informally, the relations (R) allows an arbitrary tensor to be
written as a sum of normally ordered tensors.

The Fock space Fm is then a suitable inductive limit as k oo of AkVaf. Suppose our
perfect crystal B has level 1. A sequence {bn}mEZ in Baff is called a ground state sequence
if

(c, e(b)) = 1; (b) = 4(bn+l); H(bm 0 bn+l) = 1.

Define weights Am E P of level I by Am = wt(b;) + Am+l and cl(Am) = 0(bo) = e(bm_l)
where cl : P -+ Pc. Set vm := G(b).

A sequence (bm, bm+l,...) in Bag such that bk = b for sufficiently large k is called
normally ordered if H(bi 0 bi+l) > 0 for all i > m. The main property of the Fock space
.Fm is that the normally ordered wedges G(bm) A G(bm+l) A ' -. form a base of Fm. In [28]
the action of the corresponding quantized affine algebra Uq(g) on Fm is given. We will
not explain the details here, trusting that Section 4.1.2 gives a flavour of what one might
expect.

We should remark that the Fock space Fm is endowed with a q-adic topology. All
formulae should be shown to be convergent in this topology since a priori some of the
formulae below may involve an infinite number of terms. We will however, ignore this
technicality in the subsequent discussion.
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Let urn, um+l,... E Vaff satisfy uk = vk for k sufficiently large. Define the action of Bn
for n 0 0 by

Bn.um A m+l A - -= (ZnUm A Um+l A Um+2 A ) + (m A znm+1 Am+2 A ) + · (5.6)

Theorem 5.8 ([28]). The definition above extends to an action of a Heisenberg algebra H
on .Fm. As a Uq(g) ® H module, we have

.Fm v Vx, C Q[H_],

where VAm is the irreducible U.(g)-module with highest weight Am.

The parameters ai of the Heisenberg algebra H = He are calculated case by case in [28].

5.4.4 Generalised ribbons, ribbon strips and ribbon functions

Let -( be one of the affine Dynkin types A(1), (2) (2) D(1) and (2)+1 Fix a
ground state sequence (b, b in+l,...) and let F := Fm denote the q-deformed Fock space
described above.

Let S denote the set of normally ordered sequences (bin, bm+l,...)}. For an element
s = (bin, bm+l,...) E S let G(s) denote the normally ordered wedge G(bm) A G(bm+l) A .- - .
As usual, define an inner product (., .) on F by requiring that the normally ordered wedges
form an orthonormal basis. Give S and thus F a Z-grading by defining

00

deg(bm, bm+l,...) = El(b) -l(bi).
i=m

It is clear from [281 that G(bm) A G(bm) A ... is a highest weight vector for the action of H
on F. Let s = (b, b +..).

Proposition 5.9. The action of H on F is Z-graded.

Proof. The function 1: Baff - Z satisfies l(zb) = l(b) + a for some positive integer a not
depending on b; see [28, p.14]. The subspace N c Vaff2 is a homogeneous subspace with
grading given by deg(G(b) ® G(b')) = (b) + I(b). Thus the normal ordering relations are
compatible with the Z-grading of F. So the action of Bk has degree -ka. O

A ribbon of type is a pair (b, b') E S (also written b'l/b) such that

(U1 G(b), G(b')) # 0.

More generally, a horizontal ribbon strip of type -b and size k is a pair (b, b') E S (also
written b'/b) such that (Uk G(b), G(b')) O. It is not always the case that the coefficients
(Uk G(b), G(b')) are pure powers of q but it seems reasonable to formally define qspin(b'/b) :=
(Uk G(b), G(b')). By Proposition 5.9, a horizontal ribbon strip b'/b has a well-defined size.

Define the symmetric functions Fst, G,t E AK = A(q) for each s,t E S as in Sec-
tion 5.2.1, which we call (skew) ribbon functions of type q). We have Fs := Fs/so and
Gs := Gs/so. I do not know whether the symmetric functions F and G are the same or not.

This is the case for · = A( l) and for = A(' ) it would be a consequence of the conjecture
on p.74 of [28]. By Theorems 5.4, 5.5 and 5.6 we know that the symmetric functions Fs and
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G, satisfy Cauchy and Pieri rules and are also images of a Boson-Fermion correspondence.
This suggests that ribbon functions of type D should be of independent interest.

In particular, what can one say about the q-Littlewood Richardson coefficients cs,8, (q) E
K of type ? They are given by either

Fs/, (X) = E cs/s (q)sA(X)

or
SA * G(s')= E (q)G(s).

S

We speculate that these coefficients c/s,(q) can be expressed as power series in q with
integer coefficients. We shall return to the element SA G(s') later. When s' = s, we set
csA (q) := cs/s(q )

For the affine Dynkin types Z E {A2n) B (1) A(2) D(1)}, the parameters {ai} for the
Heisenberg algebra H" acting on F are given by

1 + i
i 1 p2i

where C and p are given below.

_I) A(2) SBn 1) A(2) D n1)

P qq q q
I_q2(2n+l) q 2(2n-1) _q2n q2n-2

The Cauchy identity of Theorem 5.6 thus takes the form

000 1
F8 (X)GS(Y) = 11(1 - p2kiyj)(l p- P2 xiyj)

8 i,j=1 k=o

For · = 0D2)1, the parameters {ai} are given by

2qq4n for m E 2Z,
for m E 2Z+ 1.

5.4.5 The case I = A()

When -( = A()1 we recover the theory of n-ribbon functions studied in Chapter 4. We
take B to be the perfect crystal with n elements {bj}jE[o,n-l]. For our purposes, the crystal
structure will not be important. The affine crystal Baff has elements

{bnk+j' := kbj, I k E Z and j' E [0, n - 1]}.

Set vj := G(bj). The energy function H: Bf Bff --, Z is given on B B by

H(bi ®)bj ) ={1 for i > j,
0 for i< j.
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We shall take the ground state sequence to be (bo, bl, b2, ...). There is a bijection
between normally ordered sequences (bio, bi,...) and partitions A = (A1, A2 ,...) by setting
Aj = j - 1 - ij- 1. The notation here differs somewhat from Section 5.1. The definition of
ribbon tableaux and ribbon functions can be recovered from Equation (5.6) and the normal
ordering relations Ci,j } C N where:

Cii = vi ® vi for i E [0, n - 1],

ij = vi ® zH(ij)vj + qzH(i)vj) vi for (i,j) E [0, n- 1] 2\{(k, k)}.

Here H(i, j) := H(bi 0 bj). We have followed the notation in [28] and it differs from that in
the earlier chapters by the change of variables q -+ -q. Using the relations K[z ® z, z- 1 ®
z- , z 1 + 1 z] Ci,j one can reorder any wedge into a normally ordered one.

For example, the n ribbons which can be added to the empty partition correspond to
the n terms in

B1i (vo A vl A.. ) = (z-lvo A vl A... ) + (vo A z-lvl A ...) + + (vo A... A z-lvnl A. ).

The other places where one may multiply by z - 1 all vanish.

5.4.6 The case =- A(2)

Similar analysis may be applicable to the case 4 = D(2).

Preliminaries

We will work through this example following the notation of Section 5.3 in [28]. Begin with
a (2n + l)-dimensional Uq(A(2)-module V with level 1 perfect crystal B := bi}ie[-n,n. Set
vi := G(bi) E V. Let : Baff - Z be given by

(2n+)m+n+ 1 - j for j E [1, n],
l(zmbj) = (2n + 1)m for j = 0,

(2n + 1)m- (n + 1 + j) for jE [-n,-1].

The map 1 gives a total ordering of Baf. Define the ordering >- on [-n, n] by

1 2 n O -- n - 1-n . . -1.

Define the energy functions H on B 0 B by

H(ij) := H(bi b) : { a otherwise 

Since H(O, 0) = 1, the ground state sequence can be taken to be vo A vo A - . There is an
injection from normally ordered wedges G(bo) A G(bl) A . to the set of partitions given by

G(bo) A G(bl) A... --, (-(bo), -1(bl),...).

The image of this injection is the set of partitions whose parts are only allowed to repeat if
they are multiples of (2n + 1).
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Normal order relations

The following normal order relations Ci,j E N can be used to reorder wedges to make them
normally ordered. Recall that [2] = q + q-l1 was defined in Section 4.1.2. In the following
we assume i E [-n, n].

Ci,i := vi 0 vi for i 0,

Ci,-i := Vi Z-H(i-i)v-i + q2Vi+l ®9 Z-H(i,-i)v-i-1

+ q2 z -H(i,-i)v__i-1 vi+l + q4z-H(i,-i)-_i Vi for i 1 {-1, 0, n},

Ci,j := vi z-H(iJ)vj + q2 z-H(ij)vj vi for i / ±tj,
Co,o := vo 0 z-lvo + q2 [2]v-n Z-lvn

+ q2[2]z-ln 0 V-n + q2-1lvo ® VO,

Cn,-n := Vn v -n + qvo ( vo + q4 v-n 0 Vn,

C-ll := v-1 0 z-v 1 + q4z-1 1 0 v- 1.

Using the relations K[z 0 z, z- 1 0 z-, z 0 1 + 1 z] · Cij one can reorder any wedge into
a normally ordered one.

Let us rewrite these relations in terms of integer sequences and partitions. First identify
G(bo)A G(bl) A... with -1(bo), -1(bi),...) even if (bo, b, .. .) is not normally ordered. Then
we have the following relations in F, where i < j always lie in [-n, n] and r = hm is an
arbitrary non-negative multiple of h := (2n + 1).

I... k, .... = O if k hm,

... ,r- i,r + i...)=-q2...,r-i + , r+i-1 ,...)
- q2 ..., r + i- 1, -i- 1,...)
- q4 ]. .. r+i- i, . ... .) for i > 1,

...,r +i,r + h-i,....) = -q2 ... ,r+i+1,r+h-i- 1,...)
-q 2 r...,+i+ 1,r+h-i- 1,...)

-q 4 ... ,r +i,r +h-i,...) for i > 1,
,r + i, r + j,.../= ) -q2.... , r +j,r + i,...) if i j,

I .,r +j,r + h +i, ....) =-q2 1...r + h +i,r + j,...) if i ± j,
...,r,r + h,...) = q2[2] I...,r + 1, r + h- 1,...)

- q2[2]1 .,r + h. -r1, r + 1,...)
-_ q2 .. r + h, r, ... )

... ,r- 1, r + 1, ... ,r,r,...)- q4 ... ,r+ 1,r- 1,...)
I...,r+n,r+h-n,...) =-q41...,r+h-n,r+n,...) .

These relations only allow one to swap entries which do not differ by too much. For entries
further apart, we have to apply the element (1 z c + zc 0 1) to Ci,j. In other words we can
replace each term I..., a, b,...) by ... , a+r,b,...) + ... , a, b + r,...) for some r = hm in
the relations above.
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Ribbons for n = 1

Let n = 1 so that h = 3. We calculate

B-1 10, 0,... ) = 13,0,0,... ) +0,3, 0,... ) + -- -

The term 13, 0,...) is already a partition. Using the normal order relations, we also have

[.. ,0,3,...). = -q2[2] 1...,2, 1,...) - q2[2] 1...,1,2,...) - q2 1...,3,0,...)
= (q6 _ q2)[21 ... ,2, 1,...) - q2 2...,3,0,...).

...,0, 2, 1,...) =-q2 )=q4...,2,1, 0, ... ).

So,

1 0 (_l)_ _ .)
B-1 -10, 0...) 1+ q2 q1-q_ 4)1 + ( -1) )21 |0 +q2)

k=1 

Setting t = _q2, we compute that

00 00

(-q 2)k(1 + (_1)k+lq2k)(1 _ q2) = tk( -tk)( + t)
k=l1 k=l

= 1-t 1-t2 )(l+t)

t
1-t

Thus
1 -q 2[2]

+ q2 1.+ q2

So for example, there are the two ribbons (3) and (2, 1) which have qSpin equal to 1/(1 + q2)
and -q2[2]/(1 + q2) respectively. The ribbon function F(2,1)(X) is equal to -q2[2]/(1 +
q2)sl (X).

One would like to speculate that the spins of arbitrary ribbons also have a factor of
(1 + q2) in the denominator. At the moment, these brute force computations are not
particularly illuminating, but they may become more so if one describes the action of the
Bosonic operators in terms of the Young walls in [24]. Also the computation above shows
that one cannot naively specialise q = 1 in the computation of the action of the Bosonic

operators. For related work on the q-deformed Fock space of A( 2), see [431.

5.4.7 Global bases

Let F := Fm be any of the q-deformed Fock spaces described in [28]. Kashiwara [27] has
constructed global bases for F in a uniform manner, generalising the work of Lascoux,
Leclerc and Thibon for Uq(sn). These global bases are defined with the help of a bar
involution on F. As before we fix a ground state sequence s = (bm, b° l, ... ) and let S
denote the set of normally ordered sequences. For s E S let G(s) denote the corresponding
normally ordered wedge.
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Define a semi-linear involution v -+ T on F by requiring that for any v E F

qv = q v,

fi ' = fi ' for each i E I,
Bk · v = Bk V for k < 0,

and requiring that the vacuum vector satisfies G(s °) = G(s°). The fact that such an invo-
lution exists and is unique follows from Theorem 5.8, and we shall call it the bar involution.
When we restrict the bar involution to Vxm = Uq(g) G(s° ) we recover Kashiwara's invo-
lution [25] from which global crystal bases are usually defined. Our main result will be a
weaker analogue of Theorem 4.7, connecting our generalised ribbon functions with coeffi-
cients of a certain bar-invariant vector. Unfortunately, we are not sure whether this vector
is in fact a member of the global basis.

Let L(.F) denote the free A-module with basis given by the normally ordered wedges
{G(s) I s E S}; see [28, Section 4].

Let A be a partition. Define s(A) E S by s(A) := (z-xlbm, z-X2bm+1,...).

Theorem 5.10. Let A be a partition. Then

S G(s) G(s(A)) mod qL(Y).

By definition Gs(X) := Sx G(s °) is also bar-invariant, so that it is satisfies two of the
main properties of a global basis vector. However, we are unsure whether these properties
are sufficient to conclude that Gs is a global basis element in our generality. Our generalised
q-Littlewood Richardson coefficients are again given by coefficients of this vector: c(q) =
(Gs(A), G(s)).

Proof. The operator SA is a Q-linear combination of the Bosonic operators B_. The action
of the B-k on a wedge does not involve any powers of q except when applying the normal
ordering relations. By Lemma 3.3.2 in [28], the coefficients ab, ,b of condition (R) lie in
qZ[q]. Thus reordering wedges can only involve positive powers of q and so in particular
S ' G(s°) E L;(). To calculate SA x G(s°) mod qL(.F) we can set q = 0.

Then by condition (R) the only relations that we need to reorder wedges are of the form

Z[z®z,z - l z - l,z® 1 + 1 ®z] (G(b) G(b')) E (N mod qL(.))

for b, b' satisfying H(b 0 b') = 0. Thus for example modulo N + qL(F) we have

(Z 1 1) G(Z'bi) C) G(za-o+l) (-1 z-l) G(zabo) ® G(za-lbo) (5.7)

G(za-lb ) 0 G(za-lbi+) -G(Zab°) 0 G(za-2bo+l). (5.8)

The only wedges that occur in Sx · G(s°) at q = 0 are of the form

G(zam b) A G(zam+lb^+) A.

for some parameters ai EC . Using H(b' 0® b°+ ) = 1, and repeatedly applying (1 0 z- 1 +
z-1 0 1) to the relation (5.8) one can prove by induction that we have

(. . G(zaib?) /\ G(zai+lb+l) A ... ) . .-(. G(Zai+l+lbi) G(zai-bil) A ... ) mod qL(),
(5.9)
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whenever ai+l < ai - 2.
The reordering relation (5.9) is identical to that of Schur functions s indexed by a

non-negative integer sequence a = (al, a2,..., an). Here one defines s by (see [57])

aj+j-1, mdet(xi )i,j=l
sa(X) -

det(x-')` 

Using this definition of the Schur functions, we see that if Pkx = . S xk/iA, for k > 0
then

B-k G(s(A))--E Xk/xG(s()) mod qL(:).

So modulo qL(.F) the action of the Bosonic operators B-k on normally ordered wedges is
the same as multiplication by the power sums Pk on the Schur basis in the ring of symmetric
functions. Thus S. i G(s° = s(0)) _ G(s(A)) mod qL(F).

[O

Let s = (bin, bm+l,...) be any normally ordered sequence satisfying H(bi ® bi+l) = 1 for
all i and define (A) := (z-lbm, Z-A2bm+l,.. .). The above proof generalises easily to give

Sx G _- G((A)) mod qL(F) (5.10)

for a vector satisfying GA G(s) mod qL(F). This is a direct generalisation of Theorem 6.9
of [41]. The condition for the partition A(°) in Theorem 6.9 of [41] to be n-restricted
corresponds to our condition for s to satisfy H(bi ® bi+l) = 1. As a consequence of (5.10),
one would have the equality c /(q) = (SAx GA, G(s)).

5.5 Ribbon functions of higher level

Kashiwara, Miwa, Petersen and Yung also give constructions of higher level q-deformed Fock
spaces for the quantized affine algebra Uq(sl2). This is generalised in the work of Takemura
and Uglov [60] who construct higher level q-deformed Fock spaces for all the affine algebras
Uq(s[n), using semi-infinite wedges. These Fock spaces are equipped with a representation
of the Heisenberg algebra but the Heisenberg algebra is no longer the full commutator of
the action of a quantum algebra, as follows.

Let N > 1 and L > 1 be two integers. Takemura and Uglov define an action of
H®U U(5[N) ® Uq(t IL) on a Fock space F. The action of Uq(sN) is of level L and the action

of Uq(S[L) if of level N. This double action of quantized affine algebras is an example of
level-rank duality. When L = 1, we obtain the Fock space representation of [29]. Hence
the higher level ribbon functions {Fs} defined using this action of H on F are natural
generalisations of ribbon functions.

The parameters of this action of the Heisenberg algebra have not been computed fully,
but it is conjectured that ([60, Conjecture 4.6])

1 - q2Ni 1 - q2 Li
ai =

1a -q2i 1 q q 2 i

The double action of quantum affine algebras should be thought of as part of the action
of a quantum toroidal algebra; see [15]. This quantum toroidal algebra is the "Schur-dual"
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to Cherednik's double affine Hecke algebra ([61]), so this may eventually give a representa-
tion theoretic: explaination of the connection between Macdonald polynomials and ribbon
functions in [16].
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