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Abstract

This paper considers time-varying compensation for linear time-invariant discrete-time plants
subject to persistent bounded disturbances. In the context of certain feedback objectives, it is
shown that time-varying compensation offers no advantage over time-invariant compensation.
These results complement similar existing results for feedback systems subject to finite-energy
disturbances.

First, it is shown that time-varying compensation does not improve the optimal rejection
of persistent bounded disturbances. This result is obtained by exploiting a key observation that
any time-varying compensator which yields a given degree of disturbance rejection must do so
uniformly over time, thereby removing any advantage of time-variation. This key observation
is further exploited to show that time-varying compensation does not improve the optimal
rejection of disturbances regardless of the norm used to measure the disturbances. Thus,
absolutely summable, finite-energy, or persistent bounded disturbances may be treated in the
same manner.

It is then shown that time-varying compensation does not help in the bounded-input
bounded-output robust stabilization of time-invariant plants with unstructured uncertainty.
In doing so, it is also shown that the small-gain theorem is both necessary and sufficient for
the bounded-input bounded-output stability of certain linear time-varying plants subject to
unstructured linear time-varying perturbations.
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1. Introduction

This paper addresses the possible advantage of time-varying compensation for time invari-

ant plants in order to achieve certain feedback objectives, namely, optimal disturbance

rejection and robust stabilization with unstructured uncertainty. These objectives are

informally summarized as follows.

The problem of optimal disturbance rejection is to find some compensator which

stabilizes a given linear time-invariant feedback control system and also minimizes the

maximum response of certain "error signals" to possible exogenous disturbances. In the

case where the disturbances are assumed to have finite energy, and the quantity to be

made small is the energy of the resulting error signals, the optimal disturbance rejection

problem is also known as ?7°H-optimal control (cf. [7]). In the case where the disturbances

are persistent and bounded, and the quantity to be made small is the maximum value

of the resulting error signals, the optimal disturbance rejection problem is also known as

E£-optimal control (cf. [1, 15]). Further background and motivation to optimal disturbance

rejection problems may be found in [1, 7, 15] and references contained therein.

In [6, 10] it was shown that in the context of optimal rejection of finite-energy distur-

bances, time-varying compensation offers no advantages over time-invariant compensation.

That is, time-varying compensators cannot do better than time-invariant compensators in

uniformly reducing the energy of the resulting error responses to exogenous finite-energy

disturbances. In [9], this result was strengthened to encompass nonlinear time-varying

compensators.

The question of time-varying compensation for minimizing the maximum response to

persistent bounded disturbances was addressed in [12], where it was shown that under

certain very restrictive assumptions, time-varying compensation offers no advantages over

time-invariant compensation.

In this paper, the general problem of time-varying vs. time-invariant compensation
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for minimizing the maximum response to persistent bounded disturbances is addressed.

As in the case of finite-energy disturbances, it is shown that time-varying compensators

cannot do better than time-invariant compensators in uniformly reducing the maximum

error responses.

This result is obtained by exploiting a key observation that any time-varying compen-

sator which yields a given degree of disturbance rejection must do so uniformly over time,

thereby removing any advantage of time-variation.

This key observation is then further exploited to show that time-varying compensation

does not improve the rejection of disturbances regardless of the norm used to measure

the disturbances. Thus, finite-energy, persistent bounded, and even absolutely summable

disturbances may be treated in the same manner. Given this independence of norms, it is

only the time-varying vs. time-invariant aspect of the problem which is isolated to lead to

the desired results.

The second objective addresed in this paper is the bounded-input/bounded-output

robust stabilization of a time-invariant plant with unstructured uncertainty.

One example of unstructured uncertainty is that of "additive plant uncertainty." More

precisely, consider the family of plants Padd = {Po + VA/}) where Po is a known linear time-

invariant plant; A, the unstructured uncertainty, is an arbitrary nonlinear time-varying

system which is known only to be stable and to satisfy a given norm bound; and MT is a

known linear time-invariant system which "shapes and normalizes" the effect of A (e.g.,

[4, 5]). Another example of unstructured uncertainty is "multiplicative plant uncertainty,"

where the family of plants takes the form 'Pmul = {Po(I + TWA)}.

The problem of robust stabilization is then to find a single compensator which not

only stabilizes the nominal plant, Po, but also stabilizes the entire family of plants, Padd

or P'mul. In this case, the compensator is said to robustly stabilize the family n Tadd or Pmul,

respectively.

Now depending of the nature of the exogenous disturbances to the perturbed feedback
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system, the notion of "stabilization" may take on different interpretations (e.g., [3]). For

example, stabilization may mean that finite-energy disturbances lead to finite-energy sig-

nals in the feedback loop. Alternatively, one may wish that exogenous disturbances which

are bounded in magnitude lead to signals in the feedback loop which are also bounded in

magnitude.

In [8, 13], it was shown that in the context of robust stabilization of time-invariant

plants with unstructured uncertainty and finite-energy disturbances, nonlinear time-vary-

ing compensation offers no advantage over time-invariant compensation. That is, given

a nonlinear time-varying compensator which robustly stabilizes a plant with a given un-

structured uncertainty (such as either family Padd or 'Pmul), then there exists a linear

time-invariant compensator which robustly stabilizes the same family of plants.

In this paper, the issue of time-varying compensation for bounded-input/bounded-

output robust stabilization of time-invariant plants with unstructured uncertainty is ad-

dressed. More precisely, it is shown that given a linear time-varying compensator which

robustly stabilizes a plant with a given unstructured uncertainty, then there exists a linear

time-invariant compensator which robustly stabilizes the same family of plants. How-

ever, the notion of stability used here is bounded-input/bounded-output stability rather

than finite-energy input/output stability. Thus, time-varying compensation again offers

no advantage over time-invariant compensation in achieving this objective of robust stabi-

lization.

This result is obtained by first showing that the small-gain theorem is both neces-

sary and sufficient for the bounded-input/bounded-output stability of certain linear time-

varying plants subject to unstructured linear time-varying perturbations. One then ex-

ploits the results regarding time-varying compensation for disturbance rejection to lead to

the desired conclusion.

The remainder of this paper is organized as follows. Section 2 establishes the notation

and definitions used throughout the paper and presents some preliminary facts regard-

4



ing time-varying operators. Sections 3 and 4 contain the precise problem statements and

present the main results. Section 3.1 addresses time-varying compensation for optimal

rejection of persistent bounded disturbances, while Section 3.2 extends these results to

arbitrary disturbances. Section 4 addresses time-varying compensation for robust stabi-

lization with unstructured uncertainty. Finally, concluding remarks are given in Section

5.

2. Mathematical Preliminaries

First, some notation regarding standard concepts for input/ouptput feedback systems (e.g.,

[3, 16]) is established.

R denotes the field of real numbers, R n the set of n x 1 vectors with elements in R,

and R n Xm the set of all n x m matrices with elements in R.

Let x E Rn and A E R n Xm . Then x(i) denotes the i 'd element of x, A(i,j) denotes

the ijth element of A, and A(.,j) denotes the jth column of A. The following norms are

defined:

[. o Al 2 cldef-- o max - max~0 lX Ii

def a a IA.o j)I~·

For A E Rnxn, tr(A) denotes max A(i, i).

£oo0 denotes the extended space of sequences in Rn, f = (fo, fi,f2, } b} y denotes

the set of all f E efe such that

l llA = R" sup Ifdiel < oo.

£ne\£eo denotes the set {f : f E £ne and f t e£}. tP,p E [1, oo), denotes the set of alln~\ n n~e



sequences, f = {fo, f, f 2 ,...} in R such that

del f )I fi 
lifll i<

Given f = {fo,fi,f 2,f } E e °, the support of f, denoted supp(f), is defined as

supp(f) =e {: .f # 0}

Sk denotes the kth-shift operator on £oc .

{0,... ,0,fo,fl,f2,...}, if k > 0;

Sk' { X fi of f2 X.... } ) < k times

{f-k,f-k+l,f-k+2, .. }, if k < 0.

In the special case where k = 1, S1 is simply denoted as S and is called the shift operator.

Pk denotes the k1th-truncation operator on oeo:

Pk: {fo,, f 2 ,... } - , { 0,...,fk,0,...}

Let H: -° e En be a nonlinear operator. H is called causal if

PkIHf = PkHPkf, Vk = 0, 12,..

H is called strictly causal if

Pk.Hf = PkHPk.-lf, Vk = 0, 1,2,...

H is called time-invariant if it commutes with the shift operator:

HS = SH.

Finally, H is called stable if

def IIPkHfIleto
IIHII = sup sup p< fo.
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The quantity IIHII is called the induced operator norm over t£o.

Cxm denotes the set of all linear causal stable operators, T:£ t Ce LP Xm

denotes the set of all T e ft"Xm which are time-invariant.

The remainder of this section is devoted to showing that LCV ma be viewed as the

dual space of a certain normed space, CLox, to be defined.

First, given any T E £jxm, it is straightforward to show that its action on any f E fm

mayr be given the kernel representation
n

(Tf), = ZTnjfj, n=0,1,2,...
j=o

where the Tnj are a collection of matrices in Rnxm uniquely defined by T. It then follows

that

JIT[I = sup I[ To ... Tii ]oo

Using this kernel representation, L-TVm may be identified as the set of all infinite

lower-triangular block matrices,

Too 0 ...

Tio T,, 0 .
T = T21 T22

with elements in R`Xm whose rows have uniformly bounded I*Ioo norms, i.e.

supl[Tio ... Tii]loo < 00.

The normed space £omXn is now defined as the set of all infinite upper-triangular block

matrices,
0Goo Go, G0 2

C0 Gl G12 .--
0 0 G 22 1

with elements in RmXn whose columns have * m,,, norms which are summable, i.e.

IGII 0c, def oo [ < 0.

i=O Gi I

'~~~~ -~~~ 1~~-·111·_ 11_-_·1(·-·--·---· 1111-- 1~~~~~~~~1_ ~ ~ _1 ~ ~Fi



Let (Lo xn) denote the dual space of Lo xn. It is now shown that (Ln xn) T = Lx m

Proposition 2.1 Let T E LTxm Then T defines a linear functional on £y xn whose

value at G, denoted (T, G), is defined as

/T.0 0 0 ... Goo Go G0 2

def oTlo Tll O .0 O Gll G12
(T, G) =e tr T20 T21 T22 0 0 G22 

Conversely; anyi element of (Lc xn ) takes the form of (T, G) with T E m Furthermore,

one has that

sup (T,G) = IIT11

Proof The proof of Proposition 2.1 involves straightforward arguments, hence the details

are ommitted here. First note that by the summability of the columns of G, the "infinite

trace" present in the definition of (T, G) is well defined. It is then easy to see that any

T E L£xm defines an element of (r- x "n)*. To see that (£ x n)* is precisely "TX m , oneTV E 0 TV

simply exploits that the summability of the columns of any element of Lo" implies that

L xn has a Schauder basis (e.g., [11]). Thus, any element of (£sxn)* is uniquely defined

by evaluating the functional on the basis elements. This evaluation process in turn uniquely

defines an element of 'CXm -

Finally, the following proposition regarding a composition of operators as a linear

functional is presented.

Proposition 2.2 Let T1 E TXm T2 E L'TP, T3 E LPTX, and G E L Let G be the

upper block trianOgular portion of (T 3 GT1 ) viewed as a product of infinite-matrices. Then

(1) C E Cp xm

(i) 8 ~-o ,~~~~~~~



(2) (T 1T 2T 3 , G) = (T 2,G).

Proof As in Proposition 2.1, the proof of Proposition 2.2 involves straightforward argu-

ments, hence the details are ommitted here. First, the summability of the columns of G

guarantees that G is well-defined and belongs to L pXm. To see (2), note that any G CE CXn

can be approximated arbitrarily closely by a G' E £ qx" which has a finite number of non-

zero elements. Thus, replacing G by G' above makes all products of infinite-matrices a

finite-matrix product. Statement (2) then follows since tr(AB) = tr(BA) for finite matri-

ces A, B. I

Notational Convention In order to avoid a proliferation of notation, the following

convention is adopted. In Section 3.1, all operators are assumed to be multi-input/multi-

output without explicit reference to the dimension of the inputs and outputs, and in Sec-

tions 3.2 and 4, all operators are assumed to be single-input/single-output. Furthermore,

all subscripts on norms will be dropped throughout. This informality results in no loss of

clarity.

3. Optimal Disturbance Rejection

The standard block diagram for the optimal disturbance rejection problem (e.g., [7]) is

shown in Fig. 3.1. In this figure, P denotes some fixed time-invariant discrete-time plant, Is

denotes a possibly time-varying compensator, and the signals w, z, y, and u are defined as

follows: w, exogenous disturbances; z, signals to be regulated; y, measured plant outputs;

and u, control inputs to the plant. For technical simplicity, it is assumed that the transfer

function from u to y is strictly causal.
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Fig. 3.1 Block Diagram for Disturbance Rejection

Let Tzw,, (K) denote the resulting closed-loop dynamics from w to z for a given compen-

sator Ii. The objective of optimal disturbance rejection can then be stated as minimizing

over all admissible compensators the resulting input/output norm of Tw(IK).

3.1 io° Disturbance Rejection

In the case where the disturbances w are persistent and bounded, the pertinent input/out-

put norm of T,w(K) is its induced operator norm over f ° .

The cost resulting from such a minimization can be stated more precisely as follows:

def
tLTV = inf {IIT.w(IK)I K is any stabilizing linear time-varying controller}.

It is stressed here that the phrase "time-varying" should be interpreted as meaning "not

necessarily time-invariant." If one indeed wishes to restrict the compensation to be time-

invariant, then the class of admissible compensators is reduced, and the following cost is

defined:

def
TI = inf {IIT.(Tw)(I)J : K is any stabilizing linear time-invariant controller} .

The main result is now stated:

Theorem 3.1 MITV = PTIr.
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Clearly, one has that UTV !< PTJ. The remainder of this section is devoted to proving the

reverse inequality, yTI r< TV-

The first step is to employ a parameterization of all stabilizing and possibly time-

varying compensators [13, 14, 17]. Then it can be shown (e.g., [7]) that

PTV- inf ITE -T1- 2 QT311
QE£Tv

and

/Tr = inf I1T1-T 2QT3 11,
QE£TJ

where T1, T2, and T3 are stable linear time-invariant operators which belong to L£T and

depend only on the plant P, and T1 - T 2 QT3 is the resulting closed-loop dynamics from

w to z. Thus in proving Theorem 3.1, it suffices to show that

inf IT1 - T2QT3 11 < inf IIT - T QT3I .
QELTTI QELTV

First, some preliminary lemmas are presented.

Lemma 3.1 Let T 1, T2 , and T3 E LTI and Q E LTV satisfy

lIT 1 - T2 QT3II = w

Then

liT1 - T2(S-nQSn)T3 l < •=, Vn = , 1,2,...

Proof By definition of the induced operator norm,

I[T1 -T 2QT3 11 d__f sup l (T 1 -T 2 QT3 ).fI
II T2 sup 1 -T 2 QT3 )S f 1j0

[ICTU - T2QT3 )Sfll

= II(T - ZT QT3 )S |II

= I|S-(T - T2 QT3 )Sn .11 ·



Using the time-invariance of T1, T 2, and T3 ,

IIS-.(Tl - T 2QT3 )S.n 1 = [IT1 - T 2(S-. QS.)T3 11 ,

which yields the desired result.

Lemma 3.1 essentially states that, given anyr Q E LTI which yields some closed-loop

induced norm, one can find a family of operators in LTV, namely {S-,, QS,, which field

at most the same closed-loop induced norm. However, a closer inspection shows that this

family is simply "delayed versions" of the original Q. This fact becomes clear using the

matrix identification of Q. More precisely, if

(Qoo 0 0 .
Qlo Q11 0 *-

Q= Q20 Q21 Q22

then
Qnn O o ...

Q(nil)n Q(n+l)(n+i) .

Q(n+2)n Q(n+2)(n+1) Q(n+ 2 )(n+2)

It is this uniformity in time of the closed-loop norm which will ultimately remove the

advantage of time-variation in Q.

Lemma 3.2 Let T 1, T 2, T3, and Q be as in Lemma 3.1, and define the following sequence

of averages
- def 1
Qn - ZS-k.QSk, n = 0.1,2,...

k=O

Then

|T1 - T2 Qn7 T 31 < pi, VRn = 0, 1 2,...

Furthermore, one has that

+ 



Proof The first inequality follows from Lemma 3.1 and the convexity of jIT 1 - T 2 QT31[

in Q. The second inequality follows from the easily obtained identity

SQ.- QS = - s (Q - .(n+l)Qs.+i)

As in Lemma 3.1, Lemma 3.2 states that given any Q E £TV, one can find a family of

operators in £rv, namely {Qn}, which yield at most the same closed-loop induced norm

as Q. A major difference between these two lemmas is that the sequence of operators {Qn}

asymptotically approaches commuting with the shift operator S. Thus, the operators {QI }

become asymptotically close to being time-invariant, in some sense.

Now suppose that there exists a Q E LTV such that the {Q},) converge to Q in norm,

i.e., in the uniform operator topology. Then

II-Q, 01 o.

From Lemma 3.2, it follows that Q is time-invariant, i.e., Q E f£TI, and achieves the same

closed-loop induced norm as Q. Given this time-invariant Q, the proof of Theorem 3.1 is

then complete.

Now in the special case where Q is periodically time-varying (i.e., SkQ = QSk for some

k > 0), it is easy to show that the sequence of averages {Q } does converge. Unfortunately,

however, this sequence {Q,) need not converge for a general Q E LTV.

It turns out that this condition of {Qn} converging in norm is unnecessarily demand-

ing. Using the identification of CTV as the dual space of Lo, the weaker condition of the

{Q,} converging in the weak* topology (e.g., [11]) on LTV is sufficient. This is captured

in the following lemma.

Lemma 3.3 Let T 1, T2, T3, and Q be as in Lemma 3.1, and let {Qn} form a sequence

of operators as defined in Lemma 3.2. Since the sequence {Qn} is bounded, it has a weak*
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convergent subsequence, say {Qn^ }. Let Q be the weak-* limit of fn } i.e. {Q(n } k* Q.
Then

(1) QE LTI,

(2) (T1 - T 2 QnkT3 ) (TI - T2 QT3)

(3) 11Z -T2 QT3 < L.

Proof (1) Let E,, = -Qnk. Then

SQ = SQn, + SEnk

and

QS =Qnk S + Enk S.

Thus for any G E Lo,

(sQ - QS, G) = (Snk - ,, S, G) + (SEk, G) - (En, S, G).

Since nk is arbitrary, it follows from Lemma 3.2, Proposition 2.2, and En, wk- 0 that

(SQ-QS, G) = , VG E Lo

Thus SQ = QS which proves (1).

(2) Since -Q nk -, it follows from Proposition 2.2 that T 2 (Q - Qnk )T3 O: 0

which proves (2).

(3) Using jIT 1 -T2QnkT31 j ,u and (T1 -T 2 n T 3) (T1 -T2 QT3 ), statement

(3) then follows from a standard result on weak* convergent sequences. See [11, Sec. 4.9,

problem 9]. 1

'W~ith Lemma 3.3 in hand, the proof of Theorem 3.1 is now complete. In words,

Lemma 3.3 states that given any Q E £TV which yields some closed-loop induced norm,

14



one can find a time-invariant operator, namely Q E £TI, which yields the same closed-loop

induced norm, which is the desired result.

3.2 tr Disturbance Rejection

In this section, it is shown how to exploit Lemma 3.1 and Lemma 3.2 to show that time-

varying compensation does not improve the optimal rejection of general £r-disturbances,

p [1, oo], with the operator norms induced over eP. Thus, both finite-energy and

persistent bounded disturbances may be treated in the same manner. Since the multi-

input/multi-output case is rather cumbersome, only the single-input/single-output case is

discussed.

First, some specialized notation for this purpose is established. X* denotes any one

of the spaces tIP,p E [1, oo], and X denotes the space such that X* is its dual (e.g., [11]).

ej, j = 0, 1,2,..., denotes the jth standard coordinate vector of AX*, i.e.

j O's

j = {O. . ., 0,1,0,. .O...}.

LTV(X*) denotes the set of all linear causal operators T: X'* - X* such that

i IIP-Tff 
||TJ 'II sup sup I < o.

k Ex-' iPkf li
P*k f 0

LCTI(X*) denotes the set of all T E £Tv(X*) which are time-invariant. Given any T E

LTV(X*), T, denotes the bounded linear operator T: X --- X such that T is its adjoint,

i.e., (T,)' = T. (It is easy to see that T. is well-defined using a matrix representation of

T.)

The main result is now stated as follows:

Theorem 3.2 Let T 1,T 2,T 3 E LTI(Xr*) and Q E Trv(X*) be such that

JIT1 - T2QT3 aI = 
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Then, there exists a Q E CTI(X*) such that

|T -T2 QT3 || <1

Proof Following Lemma 3.1 and Lemma 3.2, define

Q -f 1 Z S-kQSk, n=0,1,2,...
k=O

Then using the same arguments as in Lemma 3.1 and Lemma 3.2, one has that

lT 1-T 2Qn7T 3 j- •<, Vn = 0,2,...

and

[I -S sOn|[ < + IIQII vn = o,1 ..

Since it is unclear whether LTV(-o¥*) is the dual of some vector space (as is the case for

LrT), one cannot follow the same route as Lemma 3.3.

Given this predicament, consider the sequence in X' given by {Qneo). Since it is a

bounded sequence, it has a weakl;* convergent subsequence. Thus, let

wk*
Qnk eo i VO.

Then

Qnk el = Qnk Seo = SQnk eo + (nk, S - SQnk) eO w Svo.

Similarly, for any finite integer N,

/ N N
Qnk, | j ejej EajSjvO.

\j=O ) j=o

This motivates the definition of Q as

P dief.PNQf = weak* lim nkpNf, fX* ,N=O ...
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The above expression clearly defines a unique causal time-invariant linear operator on X*.

Using a standard result on weak* convergent sequences [11], one has that

|IPNQf][ < liminf IIQnkPNf, I
which then implies Q is also bounded, hence Q E LTI(X').

Thus, it remains to be shown that -T1-T 2QT3I 5< !. First, let (f, x) denote the

value of f E X* acting on x E X. Then for any integer NA < oo, f E X*, and z E X,

(PNT2 QnkT 3.f, X) = (Qnk PNT3 f, (T 2 ) * (PAT)wX)

, (QPNT3f,(T 2 )*(PN),x)

= (PNT2 QPNT3 f, X)

= (PNT2 QT3 f,X).

Thus, for any integer N < oo and f E X*,

PN(T1-T 2QnkT3)f -T 2TQT 3 )f

which implies

||PN(Tl-T 2QT 3 )f < IIPN(T - T2 Qnk T 3)f 11

which completes the proof. [

4. Robust Stabilization

To set up the problem of robust stabilization, consider the block diagram of Fig. 4.1.

~Ups eU 2

Fig. 4.1 Block Diagram for Robust Stabilization
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In this figure, the plant, P, and compensator, K, are viewed as single-input/single-

output causal operators on fe. This feedback system is said to be well-posed (e.g., [16]) if

given any (ul, U 2 ) E fe x f, there exist unique (el,e 2) E £t x £e which satisfy

el = Ul + /e 2

e2 = U2 + Pel.

such that the mapping (ul, u 2) 4 (e 1, e 2) is causal. Assuming well-posedness, the com-

pensator, IL, is then said to stabilize the plant, P, if the mapping (ul,u2) (e 1 ,e2 ) is

stable.

Now, define the following families of plants:

Tadd de { p = Po + W'A}

w-here

(1) P0o: - £b is linear and strictly causal,

(2) A : . > £ is strictly causal and stable with 11Ail < 1,

(3) WTJ : -f° £ e is linear, causal, and stable,

and

DPmul =e {P: P = Po(I + .4-rA)}

where

(1) Po0' , : is linear and strictly causal,

(2) A ': ° , is causal and stable with 11Al1 < 1,

(3) TilV e: - ce is linear, causal, and stable.

The assumptions of strict-causality simply assure that any causal compensator results in

a well-posed feedback system for every P E 7Padd or TPmul [16].

The problems of robust stabilization addressed in this paper can now be stated as

follows:

(1) Find a single compensator, IK, which stabilizes every P E Padd,



or

(2) Find a single compensator, IK, which stabilizes every P E 'mu1.

In either case, the compensator, K, is said to robustly stabilize the family Tadd or T'mul,

respectively.

In this section, it is shown that there exists a linear time-varying robustly stabi-

lizing compensator if and only if there exists a linear time-invariant robustly stabilizing

compensator. Thus, time-varying compensation offers no advantage over time-invariant

compensation for these particular objectives of robust stabilization.

First, some preliminary lemmas which generalize the results of [2] are presented.

Lemnlma 4.1 Let H L£TV satisfy

inf IIS-kHSkII= 6 > 1.

Then there exist an n' > 0O m > 1, and f E £e\O£O such that

WIIPEiHf 1> m, Vn > n*.
iiPnf ll

Proof Choose constants m, .M, and 'y such that

1 < r < m. < 6,

1 < 7 < AI/rn,

and set

E = (M - rm)y,

M' = max(gM, 6- s/2).

Now using arguments as in Lemma 3.1, one can show that for some NA > 0,

IIS-NHSNII < 6 + E/2.
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Setting H = S-NIHSN, it follows that

1 << 1 S-kHSk || < + 2, Vk= 0,l,2...

Given this inequality, there exists an e° E e00 and n0 > 0 such that

(1) supp(e° ) C [O, no]

(2) 11jOII = 1

(3) I(He°O)O _> A,

Similarly, there exists an el E £oo and nl > no + 1 such that

(1) supp(el) C [no + 1,nl]

(2) l11 e= M'/rm

(3) I(Hel), | > (M')2/M

Now since A' > 6- E/2 and S S-.kHSk < b + e/2 for all k, it follows that

[(a°),, I_<, EII||£1 .

Thus,

((eO )) (M) 2.

In general, the above construction of el based on e0 may be given the following

recursive form. Let al (k) denote the lower bound

Al ej >·).. L a,&(k),

and let

a2(k) = 1ek || .

Then given signals ° , ... ,e¢k- and constants no,...,nk-_, there exists an ek E e and

nk > nk-l + 1 such that

(1) SUpp(cE) C [n-l + 1, nk]

(2) JjekI[ = Ce2 (k) = al(k - l)/m
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(3) |(Hek),,l I > M''o 2 (k).

Again, since M' _> - e/2, it follows that

fr ,j_--~ d _< - l)
nk

provided that the ca2(k) are non-decreasing. If so, then

f(H ej) Ž Ml'a 2 (k) - ea2(k - 1) = '1(47)

Thus, it is seen that the variables ca and aC2 satisfy the recursion equation

a,1(k+1)1 = [MI'/m -e a,1 [a'(O) 1 [= A]
a2(k+1 + 1) I/m ° a2(2)') aL2(0)S) I= L

Furthermore, using the selection of MA' and e, it is straightforward to show that if for some

k,

a,(k) > ymrc 2(k)

then

al(k + 1) > ymr2(k + 1),

a1 (k + 1) > -ya 1 (k),

a 2 (k + 1) > 7 a 2 (k).

Since ca1(O) > 7yma 2 (0), it follows by induction that the sequences al(k) and ca2 (k) are

exponentially increasing.

Now, let g = j eJ. Since the sequence ca2 (k) is exponentially increasing, g E 6 \/ o.

Furthermore, for any n E [nk + 1, n-+l],

-I-Jig> (fig) n al(k) = ma 2 (k + 1) = m lP| ,,Pgl | | jPg1

Thus,

> m) n > no.
1P -gll 2 -
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Similarly,

IPN+.-1tHSNg11 > m, Vn > no + N
IIPN+$SNgl -

which completes the proof with f = SNg. I

It is noted that [2] proved a less general version of Lemma 4.1 in which the operator

H is restricted to be time-invariant. Since [2] used the time-invariance of H extensively,

the methods cannot be directly applied to Lemma 4.1.

Lemma 4.2 Let H E LTV be as in Lemma 4.1. Then there exists a strictly causal

A e LTV such that IIAll <1 and the operator (I + AH) - ' is not stable.

Proof The proof essentially follows the example in [2]. First, choose f and n* as in

Lemma 4.1 and define the integer function O(n) for n > n* as follows: O(n) ef= an integer

less than n such that j(Hf)(n>)l = IIP,_-Hfll. Now define the strictly causal operator

A E £TV by

(a0 0<n<n*;

(Hf)O() n > n*.

By the construction of f, it is clear that 11l11 < 1.

To see that (I + AH)-l is not stable, let

= (I + H)f = {fo,..., fn-, ,...}.

Now the strict causality of A guarantees the invertibility of (I + AH) [16]. Thus, one has

that v E £o0 while f = (I + AH)-1 v E £ e£°°, which proves the lack of stability. I

In words, Lemma 4.2 may be given the interpretation that the small-gain theorem (e.g.,

[3]) is actually necessary for the linear time-varying operators considered in Lemma. 4.1.
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It is noted that [2, 13] show how to construct a nonlinear time-invariant A which is

destabilizing.

The next theorem give a necessary and sufficient conditions for the existence of a

linear compensator to robustly stabilize either family Padd or T'mul.

Theorem 4.1 Let S(Po) denote the set of all linear, possibly time-varying, compensators

which stabilize the plant Po. Then there exists a IK E S(Po) which robustly stabilizes Tadd

if and only if

inf JIK(Z - POI>)-] TWj < 1.
A' S(PO)

Similarly3 there exists a IK E S(Po) which robustly stabilizes ,,mul if and only if

inf IIPI) jPo(I - KPo)-I T < 1.
KES(Po)

Proof First consider the family Padd. To prove necessity, let H(K) = IK(I- Pl)-3TTW,

and suppose

inf IIH(IK)II > 6 1.
KE S(P )

Then for any KI E S(Po),

IIS-kH(Ki)SkI = |jS_-kiSk(I- PoS_-kKiSk)-1' WM > 6 > 1

where it is used that IK E S(Po) implies Skil-Sk E S(Po). (This fact is easily shown using

arguments similar to those found in Lemma 3.1.)

Thus, for any KI E S(Po), H(IK) satisfies the hypothesis of Lemma 4.2. However,

writing the feedback equations for Fig. 4.1 with u2 = 0, one has that

= (I- H1(K) A)-' (I--Po )-l u.

Since H(IK) satisfies the hypothesis of Lemma 4.2, it follows that one can construct an

admissible A which makes (I - AH(K))-l unstable, hence (I - H(KI()A) - 1 is unstable

[18, Proposition 2.1].
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The proof of necessity for TPmul essentially follows the same line of reasoning. Namely,

redefine H(K) = KPo(I - KPo)-W. Again, for any K E S(Po), H(Ki) satisfies the

hypothesis of Lemma 4.2. Then with u2 = 0, one has that

el = (I- H(OK))-'(I-- KPo)-'ul,

which, via Lemma 4.2, leads to the desired result.

The proofs of sufficiency are straightforward, hence omitted. Briefly, they simply

involve choosing a IK such that either IIK(I - PoK))-lr 1Wll < 1 or IIlP,(I - ICPo)-lTl <

1 and performing standard manipulations of the feedback equations of Fig. 4.1 along with

an application of the small-gain theorem. I

The main results regarding robust stabilization are now presented.

Theorem 4.2 There exists a linear time-varying compensator which robustly stabilizes

the family Padd (resp., DPmu 1) if and only if there exists a. linear time-invariant robustly

stabilizing compensator for Padd (resp., 'Pmul).

Proof With Theorem 4.1 in hand, the proof of Theorem 4.2 is essentially complete.

More precisely, it is easy to show that either optimization

inf K(I - PI )- Tw
K ES(P.)

or

inf )11Po(I- KP 0 )'WJJ
KES(Po)

is equivalent to an optimal disturbance rejection problem.

Thus from Theorem 3.1, there exists a stabilizing time-varying compensator satisfying

either IIK(I - PoI)- 1 TII < 1 or ]JJKPo(I - iPo)-'ill < 1 if and only if a stabilizing

time-invariant compensator satisfies the same bound. I
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It is noted that the methods in this section do not seem to be restricted to the classes

Padd and Pmul. Rather, they should apply to any class of unstructured uncertainty for

which a necessary and sufficient condition for the existence of a robustly stabilizing com-

pensator takes a form equivalent to some optimal disturbance rejection problem (cf. The-

orem 4.1).

5. Concluding Remarks

This paper has considered linear time-varying compensation for linear time-invariant dis-

crete time plants subject to persistent bounded disturbances. For both objectives of

optimal disturbance rejection and robust stabilization, it was shown that time-varying

compensation offers no advantage over time-invariant compensation.

In the analysis of optimal disturbance rejection, the key observations are really those

of Lemma 3.1 and Lemma 3.2. It is these lemmas which exploit the original time-invariance

of the plant to intuitively show why time-varying compensation does not improve optimal

disturbance rejection. Furthermore, as used in Section 3.2, their proofs are really indepen-

dent of the norms used to measure the signals and operators. Given this independence of

norms, it is only the time-varying vs. time-invariant aspect of the problem which is isolated

to lead to the desired results.

In the discussion of robust stabilization, the key observation was Lemma 4.2 which

essentially stated that the small-gain theorem is also necessary for the stability of certain

classes of time-varying plants. However, it is still unknown whether time-varying compen-

sation improves multi-objective robust stabilization problems (e.g.. robust performance).

As mentioned earlier, these results complement existing results regarding time-varying

compensation for time-invariant plants subject to finite-energy disturbances. Since induced

operator norms over £o disturbances are more closely related to time-domain feedback

specifications (e.g., overshoot), it is interesting that these results remain true.
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