
LIDS-P-1861

To appear in IEEE Transactions on Automatic Control

OBSERVABILITY OF

DISCRETE EVENT DYNAMIC SYSTEMS i

Ciineyt M. Ozveren 2

Alan S. Willsky 2

October 27, 1989

(revised version)

Abstract

A finite state automaton is adopted as a model for Discrete Event Dynamic Sys-

tems (DEDS). Observations are assumed to be a subset of the event alphabet. Ob-

servability is defined as having perfect knowledge of the current state at points in

time seperated by bounded numbers of transitions. A polynomial test for observabil-

ity is given. It is shown that an observer may be constructed and implemented in

polynomial time and space. A bound on the cardinality of the observer state space

is also presented. A notion of resiliency is defined for observers, and a test for re-

silient observability and a procedure for the construction of a resilient observer are

presented.

1 Research supported by the Air Force Office of Scientific Research under Grant AFOSR-88-0032
and by the Army Research Office under Grant DAAL03-86-K0171. This research was partially done
during our stay at Institut de Recherche en Informatique et Systemes Aleatoires (IRISA), Rennes,
France, and the second author was also supported by IRISA during this time.

2 Laboratory for Information and Decision Systems, MIT, Cambridge, MA 02139.

1 INTRODUCTION 1

1 Introduction

Discrete Event Dynamic Systems (DEDS) have received considerable attention in the

control literature recently. Many large scale dynamic systems seem to have a DEDS

structure, at least at some level of description. Some examples are manufactur-

ing systems [7,17], communication systems (such as data networks, and distributed

systems) [1], and expert systems (such as CPU design, or air-traffic management)

[2,3,18].

The notion of the control of a DEDS was, to our knowledge, first explicitly intro-

duced in the work of Wonham, Ramadge, et al. [5,8,15,14,20]. In this work, it is

assumed that certain events in the system can be enabled or disabled. The control

of the system is achieved by choice of control inputs that enable or disable these

events. The objective is to have a closed loop system, so that the event trajectory in

this system is always in a given set of desired strings of events. This approach is

generally classified as a linguistic approach, since the objective is defined in terms of

the language generated by the closed-loop system, i.e., the set of possible strings of

events.

This work has prompted a considerable response by other researchers in the field,

and one of the principal characteristics of this research has been the exploration

of alternate formulations and paradigms that provide the opportunity for new and

important developments building on the foundations of both computer science (for

example, building on the concepts in [4]) and control. The work presented here is

very much in that spirit with, perhaps, closer ties to more standard control concepts.

In particular, in our work, we have had in mind the development of the elements

needed for a regulator theory for DEDS. In another paper, [12], we develop notions of

1 INTRODUCTION 2

stability and stabilizability for DEDS which might, more correctly, be thought of as

properties of resiliency or error-recovery. In this paper, we focus on the output side

of the problem, namely on the questions of observability and state reconstruction.

Partial observation problems have been the subject of several investigations in

the literature. In particular, Cieslak, et al. [1], and Lin and Wonham [6] formulate a

supervisor control problem that can be thought of as a dynamic output compensation

problem. Ramadge [13], on the other hand, explicitly addresses the observability

problem. In particular, as in this paper, Ramadge addresses the problem of deter-

mining the current state of the system. In his framework, partial observations may

be available concerning both the system state and events. In this paper, we assume

what might be thought of as an intermittent observation model: no direct measure-

ments of the state are made, and we only observe a specified subset of possible events,

i.e., if an event outside this subset occurs, we will not observe it and indeed will not

even know that an event has occurred. The more substantive difference between [13]

and the present paper is in the notion of observability that is adopted. In partic-

ular, Ramadge requires exact reconstruction of the current state after each system

event, while in our work, we allow state ambiguities to develop (as they must if some

events are unobserved) but require that these be resolvable after a bounded interval

of events. While this difference in formulations is quite fundamental, we will see

that the concept of indistinguishability introduced by Ramadge plays an important

role in our work as well.

In addition to characterizing observability and constructing observers, we also

introduce a notion of stability that we feel is of some importance more generally in

characterizing desirable behavior in a DEDS. In particular, we introduce the notion

2 OBSERVABILITY 3

of resiliency for an observer, corresponding to its ability to recover from a finite burst

of errors.

In the next section, we introduce the mathematical framework considered in this

paper and address the problem of observability. In particular, we characterize observ-

ability and related notions of always observability and observability with a delay. We

provide polynomial tests for these notions and algorithms to construct appropriate

observers. In Section 3, we turn our attention to complexity issues. We show that

an observer may have an exponential number of states. Since the observer itself can

be implemented in polynomial time, complexity is only important for stabilization by

output feedback. In Section 4, we characterize resilient observability, and construct a

resilient observer. Finally, in Section 5, we summarize our results and discuss several

directions for further work.

2 Observability

2.1 Background and Preliminaries

The class of systems we consider are nondeterministic finite-state automata with

intermittent event observations. The basic object of interest is the triple:

G= (X, , r) (2.1)

where X is the finite set of states, with n = IX j, £ is the finite set of possible

events, and r C E is the set of observable events. The dynamics of the system are

characterized by two functions f and d:

x[k-+ 1] E f(x[k],a[k+ 1]) (2.2)

ao[k+l] E d(x[k]) (2.3)

2 OBSERVABILITY 4

Here, x[k] E X is the state after the kth event, and a[k + 1] E E is the (k + 1)st

event. The function d : X -+ 2
r is a set-valued function that specifies the set of

possible events defined at each state (so that, in general, not all events are possible

from each state), and the function f: X x E --. 2X is also set-valued, so that the state

following a particular event is not necessarily known with certainty. Note that f can

be extended to act on strings over v by f (x, oal ... o,) = .f .(f.. f (x, al), a ,- X), a,).

In calculating the complexity of algorithms that we present in this paper, we will

assume that the number of transitions defined at each state, If(x, E) I for each x E X,

is small. It is otherwise straightforward to recompute the complexity of algorithms in

order to account for If(x, E)I. In the investigations of control of DEDS, one typically

introduces control by allowing it to influence the set of possible events specified by d.

We do not introduce it here as it is not needed for the present investigation.

Our model of the output process is quite simple: whenever an event in F occurs,

we observe it; otherwise, we see nothing. Specifically, we define the output function

h --+ r U {c}, where e is the "null transition", by

a ifc E r
h(a)= if (2.4)

t otherwise

Then, our output equation is

7[k + 11 = h(a[k + 1]) (2.5)

Note that h can be thought of as a map from E* to r*, where r' denotes the set

of all strings of finite length with elements in r, including the empty string c. In

particular, h(a1 ... a,) = h(al) * h(a,). The quadruple A = (G, f, d, h) representing

our system can also be visualized graphically as in Figure 2.1. Here, circles denote

states, and events are represented by arcs. The first symbol in each arc label denotes

2 OBSERVABILITY 5

'Y / £

gc / a /e

Figure 2.1: A Simple Example

the event, while the symbol following " denotes the corresponding output. Thus, in

this example, X = {O, 12, 3, 4, 5}, Z = {ea,, , , }, and r = {ac, }.

There are several basic notions that we will need in our investigation. The first is

the notion of liveness. Intuitively, a system is alive if it cannot reach a point at which

no event is possible. That is, A is alive if Vx E X, d(x) 4 0. We will assume that

this is the case. A second notion that we need is the composition of two automata,

Ai = (Gi, fi, d;, hi) which share some common events. Specifically, let S = _1 n E2

and, for simplicity, assume that Frl S = r 2 n S (i.e., any shared event observable

in one system is also observable in the other). The dynamics of the composition

are specified by allowing each automaton to operate as it would in isolation except

that when a shared event occurs, it must occur in both systems. Mathematically, we

denote the composition by A1 2 = Al [| A 2 = (G12 , f12, d1 2, h12), where

G12 = (X 1 x X2 , l U E2 , rI U 2) (2.6)

2 OBSERVABILITY 6

fi 2(x,a) = fi(x1,) x f 2 (x 2 ,a) (2.7)

d12(x) = (d] (x) n F) u(d 2(X2) nS) U(d(xi) n d2(z 2)) (2.8)

hl(a) if a EF

hl 2(°) =- h2 (o) if Er 2 (2.9)

1.e otherwise

Here we have extended each fi to all of Ei in the trivial way, namely, .fi(xi, a) = xi if

a Ei. Note also that h12 given by (2.9) is well-defined.

Two issues often studied in computer science in the context of such compositions

is liveness (i.e., the absence of deadlocks) and fairness. Such a composition is fair

if it is impossible for an infinite number of transitions to occur in one system alone

without any transitions occurring in the other. In our present context, in which we

will be composing systems and observers, liveness will not be an issue and fairness

will be guaranteed by assumption on our DEDS.

Another property we would like the DEDS under investigation to have is that

observations occur with some regularity. Specifically, since we are only observing

events in r in our automaton A, we will not want it to be possible for our DEDS

to generate arbitrarily long sequences of unobservable events, i.e., events in r, the

complement of r. A necessary condition for this is that if we remove the observable

events, the resulting automaton AIF = (G, f, dnF, h) must not be alive. However, we

actually want more than this, namely that every trajectory in A IT is killed in finite

time by being forced into a state x for which d(x) nf = 0. This condition can be stated

in terms of the notion of stability introduced in [12] which we will also use in the

next section to characterize the notion of observability introduced in this paper: Our

notion of stability is a notion of recovery from any possible error in a finite number

2 OBSERVABILITY 7

of transitions. Specifically, we assume that we have identified a set of "good" states

(the set E in the following definition), and we define this notion of recovery in two

stages as follows:

Definition 2.1 Let E be a specified subset of X. A state a E X is E-pre-stable if

every trajectory starting from x passes through E in a finite number of transitions.

The state x E X is E-stable if every state reachable from x is E-pre-stable. The

DEDS is E-stable if every x E X' is E-stable.

Note that if x is E-stable, then every trajectory from x visits E infinitely often and

indeed at intervals separated by at most n events [12]. Also, as shown in [12], a

necessary and sufficient condition for E-stability of A is the absence of cycles that

do not pass through E. Here, a cycle is a finite sequence of states x 1 , x2, 2 .. . k, with

xk = x1, so that there exists an event sequence s that allows the system to follow

this sequence of states. We refer the reader to [12] for a more complete discussion of

this subject and for an O(n2) test for E-stability of a DEDS.

It is not difficult to see that an equivalent condition to our DEDS being unable

to generate arbitrarily long sequences of unobservable events is that if we remove

the observable events, the resulting automaton AFI = (G, f, d n F, h) must be D-

stable, where D is the set of states that only have observable transitions defined, i.e.,

D = {xa E Xld(x) n r = 0)}. This is not difficult to check and will be assumed.

Finally, let us introduce some notations that we will find useful:

* Let x -"S y denote the statement that state y is reached from x via the oc-

currence of event sequence s. Also, let xz - y denote that x reaches y in any
1In [12], we have defined stability for live systems. Although, Air is not alive, its trajectories

can only die in D, and thus, our results on stability will carry to this case.

2 OBSERVABILITY 8

number of transitions, including none. We also define the reach of x in A as:

R(A,x) = {y E Xjx -- ' y) (2.10)

Finally, given X' C X, we let R(A, X') = Uxex, R(A, x).

* Let

lo = {x e XA y e X,y E E, such that x e f(y,)} (2.11)

¾Y = {x e X13y E X,-y E r, such that x E f(y, Y)} (2.12)

Y = MA U 1 (2.1_3)

Thus, Y is the set of states x such that either there exists an observable tran-

sition defined from some state y to x (as captured in ¾Y) or x has no transitions

defined to it (as captured in lo). Let q = 1)'1.

* Let L(A, x) denote the language generated by A, from the state x E X, i.e.,

L(A, x) is the set of all possible event trajectories of finite length that can be

generated if the system is started from the state x. Given s C L(A, x) for some

x, let sf denote the final event in s and let

Lf(A, x) = Is E L(A, x) and sf e r) (2.14)

be the set of strings in L(A, x) that have an observable event as its final event.

Similarly, L 1(A, x) denotes the set of strings of Lf(A, x) that contain one ob-

servable event, and given some y E r, L,(A, x) denotes the set of strings of

L 1 (A, x) that have y as the observable event.

* Given s E L(A, x) such that s = pr, p is termed a prefix of s and we use s/p to

denote the corresponding suffix r, i.e., the remaining part of s after p is taken

out.

2 OBSERVABILITY 9

* i "- 'O Output String

Perfect state knowledge

Figure 2.2: Notion of Observability: The state is known perfectly only at the indicated
instants. Ambiguity may develop between these but is resolved in a bounded number
of steps.

2.2 State Observability

As mentioned in the Introduction and as illustrated in Figure 2.2, we term a system

observable if we can use the observation sequence -y[k] to determine the current

state exactly at intermittent (but not necessarily fixed) points in time separated by a

bounded number of events. The precise definition is as follows:

Definition 2.2 A is observable if there exists some integer no such that Vx E X,

Vs E L(A,x) such that Is r> no, there exists a prefix of s, p E Lf(A,x), such that

IS/pI n,, f(x,p) is single valued, and Vy E X,t E Lf(A,y): h(t) = h(p)

f(y,t) = f(x,p).

This definition states the following: Take any sufficiently long string, s, that can

be generated from any initial state x. For an observable system, we can then find a

prefix p of s such that p takes x to a unique state and the length of the remaining

suffix is bounded by some integer no. Also, for any other string t, from some initial

state y, such that t has the same output string as p, we require that t takes y to the

same, unique state to which p takes x.

2 OBSERVABILITY 10

Let us note some very important implications of this definition. First, the string p

need not be of length one. Thus, while from the definition we will know the state after

p is observed, we may not know it at earlier points. Furthermore, since p E Lf(A, x),

when we do know the state, that state will necessarily lie in Y. That is, since we

only observe events in r, the only possible times at which we might know the state

is at points at which events in F occur, i.e., points at which x[k] E Y. Observability

is in fact weaker, since in particular, in an observable system, we need not know the

state every time it enters Y or even every time it visits a particular state in Y: all

we can be assured is that we will know the state at points separated by n or fewer

events, and that when we know the state, it will be in 7Y.

This suggests a straightforward design of an observer that produces "estimates"

of the state of the system after each observation -'[k] E r. Each such estimate is a

subset of Y corresponding to the set of possible states into which A transitioned when

the last observable event occurred. The state space for the observer is a subset Z of

2', and the events and observable events are both F. What this observer must do is

the following: Suppose that the present observer estimate is i[k] E 21' and that the

next output is '[k + 1]. The observer must then account for the possible occurrence of

one or more unobservable events prior to -4k + 1] and then the occurrence of ?[k + 1]:

X[k + 1] = w(i[k], y[k + 1]) -U.ER(AIrF [k]) f (X, 7y[k + 1]) (2.15)

y[k+ 1] v(i[k]) h(UxER(Alri[k]) d(x)) (2.16)

The set Z is then in the reach of {Y} using these dynamics. Note that once the first

observable transition occurs, the state i[k] is in fact a subset of Y1. However, before

this point, we have no knowledge of the state. Thus the choice of initial state is an

issue that must be resolved. Note first that taking Y1 as the initial state does not

2 OBSERVABILITY 11

0,1,2

Figure 2.3: Observer for the system in Figure 2.1

work in general, as there may be states in)l which can be reached by observable

transitions only from transient states. Thus we must augment Y1 in order for the

dynamics (2.15) and (2.16) to determine the correct state estimate sequence. It is

easily shown that Y, as we have defined it is the smallest subset of X that contains

I' and which, when used as the initial state of the observer, allows (2.15) and (2.16)

to produce the correct estimate sequence.

Our observer then is the DEDS O = (F, w, v, i), where F = (Z. r, r) and i is the

identity output function. The observer for the example in Figure 2.1 is illustrated in

Figure 2.3. Note that the set of allowable events v(i[k]) defined in (2.16) characterizes

all possibilities for the next observable event given the set of possible states &[k]. In

general, v(i[k]) ¢ r for all i[k], i.e., not all sequences in r* can actually occur in

our system A. If such an unallowable sequence is observed, an error has obviously

occurred. In Section 4, we will deal with this in order to define the composition of A

2 OBSERVABILITY 12

and O in our treatment of resiliency. Observability, however, can be considered by

examining 0 by itself. Specifically, let E = (U,,y {x}) n Z be the singleton states of

0. The following result ties observability with stability:

Proposition 2.3 A is observable iff E is nonempty and O is E-stable.

Proof: Note first that E must necessarily be nonempty for the system to be observable.

Thus we assume that this is true and focus then on necessity and sufficiency of E-

stability. Tb prove necessity, assume the contrary. Then [12] there exists a cycle

xlx2 *. k = ii in 0 for which Ii]I > I for all i. Let s denote the output sequence

producing this cycle. Then, an arbitrarily long repetition of this sequence is a feasible

output sequence for A. If this occurs, we will never know the current state exactly.

Now suppose that 0 is E-stable, and let no, = nIlZI. Thanks to E-stability, the

trajectories from all observer states go through E in at most IZ observations. Since

we also assumed that A cannot generate arbitrarily long sequences of unobservable

events, for any output that the system can generate, the observer goes through sin-

gleton states at intervals of at most no, events. Let us now show that Definition 2.2

is satisfied: Given x E X and s E L(A,x) such that Is > n,, let p E Lf(A,x) be a

prefix of s such that Is/pI < no and w({Y), h(p)) _ x E E. The existence of such a

p is guaranteed thanks to E-stability. Furthermore, since x is a singleton, f(x, p) is

clearly single valued. Finally, to show that

Vy E X, t E Lf(A, y) : h(t) = h(p) = f(y, t) = f(x, p),

let us assume the contrary, i.e., let us assume that there exists some y E X and

t E Lf(A, y) such that h(t) = h(p) and f(y, t) - f(x, p). However, this implies that

x cannot be a singleton, and we achieve a contradiction. Therefore, Definition 2.2 is

satisfied and A is observable. E

2 OBSERVABILIT Y 13

Later in this section, we show that a generally tight upper bound on the interval

between observer visits to singleton states is nq2 in the worst case, and [9] illustrates

a class of systems for which this bound is in fact tight. Note that the observer DEDS

in Figure 2.3 is stable with respect to {0,2) so that the system in Figure 2.1 is

observable.

It is interesting to contrast our notion of observability with that used in [13]. In

particular, in [13] it is required that the state is known at all times. Therefore, it

must be that E = X and that once the observer enters E, it is trapped there forever.

In contrast, we may have E substantially smaller than X and furthermore, we allow

the observer state to leave E, as long as it returns in the future.

Let us also make a first few comments about computational complexity. Note that

the cardinality of Z, the observer state space is bounded by 2q. Thus, using the sta-

bility test in [12] we immediately have an 0(2 2q) test for observability. In Section 3,

we will provide tighter bounds on the size of Z. Independently of this, however, we

can devise an observability test that is polynomial in q. In particular, the reason for

the apparent complexity of the test for observability is the size of the observer state

space. An important point to note is that the observer is a deterministic automaton,

i.e., it tells us exactly the set of possible current states given the observed output. To

test for observability, however, all we really want to know is if there are recurring

points in time at which all ambiguity in the current state vanishes. Fortunately, it

is possible to construct a nondeterministic automaton that captures this with a dra-

matically smaller state space. Specifically, given A, construct A', a nondeterministic

automaton with state space Y and event set r such that A' generates the same out-

put language as A (see Figure 2.4 for A' corresponding to the example in Figure 2.1).

2 OBSERVABILITY 14

Figure 2.4: A' Corrsponding to the Example in Figure 2.1

Figure 2.4: A' Corresponding to the Example in Figure 2.1

Let P = ¥Y x Y" and construct an automaton Op with state space P and event set F

such that

fop(pv) = (f'(x, Uf'(y, ^) x (f'(, y) U f(y,)) (2.17)

do,(p) = d'(x) Ud'(y) (2.18)

where f' is the transition map of A', p = (x, y) E P, -y E , 'and we define f'(x, y) as

0 if a-y d'(x). Note that since it is nondeterministic, Op is certainly not an observer

for A. However, if its state ever evolves deterministically to a state of the form (x, x),

the automaton A must be in state x. Thus, we have:

Proposition 2.4 A is observable iff Op is Ep-stable where Ep = {(x, x)x E Y}

Proof: Straightforward by assuming contrary in each direction. 3

Since IPI = q2, this gives us a test for observability that has complexity O(q4). This

also leads to an upper bound on the maximum number of transitions it takes to reach

a singleton state, no (see Definition 2.2):

Corollary 2.5 If A is observable, then no < nq2.

Proof: If A is observable, then all trajectories from an observer state reach a singleton

2 OBSERVABILITY 15

state in at most q2 transitions, since otherwise Op is not Ep-stable. In addition,

betweenmeach observable transition, there can be at most n unobservable transitions.

Therefore, an upper bound for no is nq2. 0

2.3 Persistent States and Always-Observability

In this section, we address a problem of finding a set of always-observable states, in

the sense that, except perhaps for a finite number of transitions in the beginning,

the observer has perfect knowledge of the current state every time the system goes

through always-observable states. We characterize this notion as follows:

Definition 2.6 A state x E X is always-observable iff there exists an integer na

such that for all y E X and s E L(A,y) such that x E f(ys) and isl > n,,

w({Y}, h(s)) = {x} .

Note that an always-observable state has to be a singleton state in the observer. Fur-

thermore, it should not be an element of any other persistent state of the observer

which is not a singleton, where a persistent state is one that may be visited after an

arbitrarily long string of events. States that are on a cycle are certainly persistent.

The following definition also characterizes as persistent those states that are in be-

tween cycles, since these states, although they may be visited at most once, may have

this visit occur after an arbitrarily long sequence of transitions. For this reason, they

must also be accounted for in characterizing always-observability:

Definition 2.7 A state x E X is a persistent state if there exists some y E X, s E

L(A, y), IsI > n, such that x E f(y,s). A subset Q of X is termed a persistent set if

all x E Q are persistent states.

2 OBSERVABILITY 16

Clearly, the class of persistent sets are closed under unions and intersections. Thus,

a maximal persistent set exists and let XR denote this set. In order to compute XR,

we compute XR which, by the following result, is the maximal set of states stable (in

fact, just pre-stable, [12]) with respect to the dead states in A- 1, where A-` denotes

A with the transitions reversed, i.e., A - 1 = (G, f-l, d-l) where:

f-(x,ac) = {y E XIx E f(y,u)3 (2.19)

d-'(x) = {o E [3y E X' such that x e f(y,a)) (2.20)

and the dead states in A -1 , Di, are those states x such that d-l(x) = 0:

Proposition 2.8 XR is the maximal D;-stable set.

Proof: (C) Straightforward since all trajectories from XR in A -1 are killed in a finite

number of transitions.

(D) Suppose x is Di-stable, then all trajectories from x in A -1 are killed in a finite

number of transitions. Therefore x E XR- R.

The following proposition provides a mathematical characterization of always-

observability:

Proposition 2.9 A persistent state x E X is an always-observable state iff

* x only has observable transitions defined to it, i.e., d-'(x) C F, and

* for all y E X, s E Lf(A, y) such that IsI > nq2 and x E f(y, s), any string with

the same output as s only goes to x, i.e., for all z E X, t E Lf(A, z) such that

h(t) = h(s), f(z,t) = x

A subset Q of X is termed an always observable set if all x E Q are always-observable

states. A system A is termed a-observable if all trajectories in A visit always-

observable states infinitely often. Note that this notion of a-observability is stronger

2 OBSERVABILITY 17

than our notion of observability, but still weaker than the usual system-theoretic no-

tion of observability which corresponds to requiring all persistent states to be always-

observable.

Clearly, the class of always-observable sets are closed under unions and intersec-

tions. Thus, a maximal always-observable set, XA exists. As explained above, an

always-observable state x should only have observable transitions defined to it, and

the only persistent state of the observer that x is in should be the singleton state

{x}:

Corollary 2.10 A persistent state x is always-observable iff d-'(x) c F and if i is a

persistent observer state and x E i then i is the singleton state {x}.

Proof: (-+) The proof for the first statement is obvious. To prove the second statement

just assume the contrary.

(+-) Straightforward.

As we did before, we can use Op to check if a state is always observable:

Proposition 2.1 1 A persistent state x is always-observable iff d- (x) C r and if (x, y)

for some y is a persistent state of Op, then y = x.

Proof: Straightforward by assuming the contrary in each direction. Q

Thus, XA can simply be computed by performing this O(q4) test for each persistent

state x such that d-'(x) C F. Then, a test for a-observability is just a test for

XA-stability:

Proposition 2.12 A system A is a-observable iff it is XA-stable.

Proof: Straightforward. °

2 OBSERVABILITY 18

2.4 Indistinguishability

Ramadge, in [13], introduces a notion of indistinguishability which he refers to as

"possible indistinguishability". This turns out to be an extremely useful notion in our

context as well. In this section, we reformulate his definition, present an algorithm

for it in our framework, and use it, in Section 2.5 to study observability with delay

and in Section 3 in analyzing the complexity of the observer O.

A pair of states (x, y) is termed to be an indistinguishable pair if they share an

infinite length output sequence. Since the observer uses the states in Y, for notational

simplicity, we will define indistinguishability for states in)Y.

Definition 2.13 Given x E X, let L (A,x) denote the set of infinite length event

trajectories generated from x, and h(Lo(A, x)) the corresponding set of output

trajectories. The pair (x.y) E Y x 1Y is an indistinguishable pair if h(Lo(A. x)) n

h(Lo(A,y)) - 0, i.e., if there is an infinite length output sequence that could

have been generated starting from either x or y.

As an example, note that in Figure 2.1, (0,2) is an indistinguishable pair since an

infinite string of c's is a possible output sequence from either state. Since we have

seen that this system is observable, we now see that the absence of indistinguishable

pairs is not required for observability. 2

The following lemma establishes a recursion for indistinguishable pairs:

Lemma 2.14 (x,y) is an indistinguishable pair iff there exists s E LI(A,x), and

t E L 1(A, y) such that h(s) = h(t) and there exists an indistinguishable pair (z, w) E

2In general, if there are indistinguishable states, we will not always be able to determine which
of these states we were in at some point in the past, but this does not rule out the possibility that
we may occasionally know the current state.

2 OBSERVABILITY 19

f(x,s) x f(y,t).

Proof: (-+) Assume contrary, then for all (z, w) e f(x, s) x f(y, t) all output sequences

differ in a finite number of transitions. Therefore, (x, y) cannot be indistinguishable

and we establish a contradiction.

(+-) Straightforward.

A subset Ip of)' x Y is called an indistinguishable pair set if every element (x, y)

of Ir is an indistinguishable pair. Obviously, indistinguishable pair sets are closed

under arbitrary unions and intersections. Thanks to the preceding lemma, we have

the following for the computation of the maximal indistinguishable pair set:

Proposition 2.15 The following algorithm computes the maximal set of indistin-

guishable pairs, IAn, and it has complexity O(q4):

Algorithm Let lo = Y x " and iterate:

k+l = {(x, y) E Ik fo((x. y),) Ik = 0 for some y}

Terminate when Jk+i = Ik. Then IM = Ik.

Proof: The correctness of the algorithm is easily verified by using the definition of

the automaton Op and Lemma 2.14. To obtain a bound on computational complexity,

note that Io has q2 elements and that the sequence of sets Ik is strictly decreasing up

to some step at which the algorithm terminates. Thus, this algorithm terminates in

at most q2 steps. Since also at most q2 states are visited at each step, the complexity

of this algorithm is O(q4). °

2.5 Observability with a Delay

For observability with a delay, we require that we have perfect knowledge of the state

some finite number of transitions into the past (as opposed to the current state) at

2 OBSERVABILITY 20

Output String

Current Time Current Time

Perfect state knowledge

Figure 2.5: Observability with a Delay: The state, a finite number of transitions into
the past, is known perfectly at intermittent (but not necessarily fixed) points in time.

System Observer

f a 1,2

Figure 2.6: Example for WD Observability

intermittent (but not necessarily fixed) points in time (see Figure 2.5).3 For example,

in Figure 2.6, where all events are assumed to be observable, we have a system

which is not observable. When a or /3 occurs, we do not have perfect knowledge of

the current state but if a (respectively, 3) occurs, we know that the previous state is
3 This is a concept which is of use in studying other aspects of DEDS such as invertibility, [11].

In addition, delay in the knowledge of the state may not be of concern in the hierarchical study of
DEDS where we represent strings of lower level events by a single event at the higher level, [10].

2 OBSERVABILITY 21

state 2 (respectively, state 1). Our formulation of this weak notion of observability is

based on Definition 2.2, in which the prefix p of s characterized the point at which

the current state is known perfectly. In the following definition, we use a prefix pi

of s and a prefix P2 of pi, where h(pl) characterizes the information required to have

perfect knowledge of the state at the time in the past just after the occurrence of p2.

For example, in Figure 2.6, for a string s = a/caaa, Pi = s and P2 = aa. Perfect

knowledge of the state is insured by the third item below which (similar to Definition

2.2) states that for all strings t1 which produce the same output as pl, the state after

t2 is the same as the state after P2 where 12 is the prefix of t, that produces the same

output as p2.

Definition 2.16 A is observable with a delay (WD observable) if Vx E X, s E L(A, x)

such that Isl > nq2 , there exists prefixes pi E Lf (A. x) of s and P2 E Lf (A x) of pi

such that

· Is/p21 < nq2 ,

* f(x,p 2) is single valued,

* Vy E X and t, E Lf(A,y): h(tl) = h(pl) ' f(y, t2) = f(xp 2) where t2 is the

prefix of t1 such that h(t2) = h(p 2).

A test for WD observability can be constructed based on the following: If at any

time the observer estimate, x, is such that all pairs in i are distinguishable, then by

using future outputs we can distinguish between the states in x in a finite number

of transitions. For example, in Figure 2.6, since (1,2) is not an indistinguishable

pair, in a finite number of transitions, just one transition in this case, we can dis-

tinguish between 1 and 2. In general, a necessary and sufficient condition for WD

2 OBSERVABILITY 22

observability is that the observer is stable with respect to the states that only include

distinguishable pairs:

Proposition 2.17 A is WD observable iff 0 is Es,-stable where

Ew4 = {x E Z I there exists no x,y E x, x y such that (x: y) E IMN)

Proof: (-*) Assume contrary, thbn there exists a cycle 1:... xkl1 in O such that

xi D {xi, yi) where xi ~ y, and (x,,yi) is an indistinguishable pair for all i. Let uw

be a string such that xl E f(xl, w) and the event sequence h(w) drives 0 precisely

through the cycle i,...., k.xl. Referring to Definition 2.16, let x = zl, s = w l

for some large enough I such that is I > nq2. Also pick y = yl. For any prefix

P1 E Lf(A,x) of s, there exists some tl E Lf(A,y) such that h(t1) = h(pl). On

the other hand, for all prefixes P2 of Pi and corresponding prefix t 2 of tl such that

h(t 2) = h(p 2), we have that xi E f(xp 2) and yi E f(y, t2) for some i. Since xi; yi

for all i, f(x, p2) f f(y, t 2) and we establish a contradiction with the third item in

Definition 2.16, and A cannot be W1D observable. Therefore, O must be Ew,-stable.

(a-) Straightforward L

As we did with observability, we use the automaton Op to construct a polynomial

test for WD observability. It is necessary and sufficient to check stability of Op with

respect to the distinguishable pairs:

Proposition 2.18 A is WD observable iff Op is EDp-stable where EDP = {(xY) '

IM }.

Proof: Straightforward by assuming the contrary in each direction. O

Figure 2.6 is a very simple example that illustrates this result.

3 OBSERVER IMPLEMENTATION AND COMPLEXITY 23

3 Observer Implementation and Complexity

Recall that the next state of the observer is expressed as a function of the current

state and the next event as follows (Equation 2.15):

*[Ak + 1] = U.ER(AIr,[k]) f(x,)i[k + 1]) (3.1)

which can also be expressed as:

i[k + 1] = UrEr[k] r(x, k[k + 1]) (3.2)

where

(x, f) = f(R(AIJ, x), y) (3.3)

Clearly, r can be computed beforehand for all x E Y and -y E F. This computation

has O([F q2) complexity and the result occupies 0(Flq2) memory. Thus, computation

of the next state of the observer simply becomes taking the union of r(x, y[k + 1])

for all x E x, which has O(q2) complexity. Since also, observability can be tested in

polynomial time, computational complexity associated with the observability problem

by itself is polynomial.

While testing observability and the implementation of the observer do not require

the complete enumeration of the observer state space, this enumeration is needed for

other design and analysis problems. This is the case, for example, in the study of

stabilization by output feedback which we will address in a subsequent paper. Thus,

it is of interest to characterize the cardinality of the observer. Unfortunately, even

if A is observable (or, for the same matter, a-observable), the observer may have an

exponential number of states. As an example, consider the following class of systems

which is a slightly modified version of Figure 1 in [19]:

3 OBSERVER IMPLEMENTATION AND COMPLEXITY 24

/ ' I

1/ y

53

Figure 3.7: Example for Exponential Observer State Space

We index this class by an integer i. The system corresponding to i = 3 is illus-

trated in Figure 3.7, where all events are observable. The set of events for this class

consists of ca, , %, and 61 through &6. There are 2i(i + 1) + 1 states and one of them

is state 0, whereas the rest is indexed by pairs of integers (j, 1) for j ranging from

1 to i + 1 and I ranging from 1 to 2i. It is not difficult to check that this system

is observable and that 0 is an always-observable state. One can also show that the

number of states in the observer is 0(2 1). To see why, suppose that the system is in

3 OBSERVER IMPLEMENTATION AND COMPLEXITY 25

state 0. If a (respectively, /) occurs, then the next state is in the set {11, 13,... 16}

(respectively, {12,...16). With the next event, the ambiguity in the current state is

reduced to four states, then three states, etc. Furthermore, due to the particular way

the transitions ca and / are defined, the estimates corresponding to each sequence

consisting of events a and : are different. It is this fact that leads to the exponential

growth in the observer state space.

While the observer state space is exponential for the preceding example, there

are many cases in which the cardinality of the state space is much smaller. Thus,

it is of interest to characterize structure and characteristics of DEDS that may lead

to significantly smaller observer state spaces. In the remainder of this section, we

develop a bound on the size of the observer state space which, for certain DEDS,

yields a much smaller number than 2 . First of all, we restrict ourselves to put a

bound on ZR, the persistent part of the observer state space Z. For any problem such

as stabilization, focusing on long-term behavior such as stability, it is only ZR that

is of concern (for example, in output feedback design we can simply let the system

evolve without active control during the start-up period-until O enters ZR-and at

that point we can begin to apply feedback).

We begin our analysis by noting that two states x and y are elements of the same

persistent observer state iff the pair (x. y) is indistinguishable in .4 -'. For example,

in Figure 3.7, states 32 and 35 are indistinguishable if we reverse all the transi-

tions in this automaton (since these two states then share the string, for example,

Qc/3('761yia)'). Therefore, the observer estimate after observing (c>aifly)*ic0ca is

the set {32, 33, 35} which includes the states 32 and 35. We use I 1' to denote the

maximal set of indistinguishable pairs in A -1 and this set will play a central role in

3 OBSERVER IMPLEMENTATION AND COMPLEXITY 26

the computation of our bound.

Let YR denote the persistent part of Y in our original automaton A (i.e., these are

elements of Y that may be visited after arbitrarily long sequences of events). For any

subset S C }, we let 7(S) denote the number of persistent observer states which

include different subsets of S:

771(S) = I{Q C SiS n i = Q for some i E ZR}I (3.4)

Then, clearly IZRI = 71(Y). Tolb compute a bound, we first find a collection of dis-

joint subsets of YR such that each persistent observer state is a subset of exactly

one element of this collection: First of all, we term a collection = {B1,..., Bk } of

disjoint subsets Bi of YR a YR-partition if Ui Bi = YR. A YR-partition B is termed a

R}'-distinguishability-partition if each pair indistinguishable in the inverse automa-

ton is in some element of this partition, i.e., for all (x,y) E] x, {x,y} C Bi E B.

Since all pairs in an observer state are indistinguishable in the inverse automaton,

they all must be in the same element of B. For calculating a tight bound, we need to

have the elements of 3 as small as possible. Thus, a YR-distinguishability-partition

B is termed fine if for each Bi E B, the only Bi-distinguishability-partition is Bi

itself. Clearly, there is only one Y)-distinguishability-partition that is also fine, and

we denote this partition by BZ.Note that E s is the quotient of '§R by the transitive

closure of indistinguishability in the inverse automaton, and there are well-known

polynomial algorithms for computing BF (see, for example [16]). For Figure 3.7, B/3

consists of the sets {O}, {11,...,16}, {21,...,26}, {31,...,36}, {41},..., {46}. We

then have the following result:

Proposition 3.1 For all ~ E ZR, x C Bi E B :- for some i.

Proof: Straightforward. °

3 OBSERVER IMPLEMENTATION AND COMPLEXITY 27

The following result immediately follows from the above proposition:

Corollary 3.2 Given S C R,, and B J = {BI}, v(S) =], r/(B, n S). Therefore,

IZRI = 7 1(Bt)

Corollary 3.3 We have the following first bound on the cardinality of the persistent

part of the observer state space:

IZRI •< E(21BI_ - 1) 3

The "minus 1" in this equation corresponds to the fact that we can omit the empty

set.

While this bound is exponential, it may be much tighter than 21t I - 1 if the

partition B13 is quite fine. Furthermore, if Bi is large, in many cases DA(B+) will be

much smaller than 2 IBil - 1. Now, we proceed with showing that by exploiting the

structure of the system we may compute a possibly tighter bound for ZR and we use

Corollary 3.2 for this. For any S C YR, let o(S, a) be the set of states that can reach

a state in S with a string that has a as its last and only observable event, i.e.,

(S, a) = R(A- I, f- (S. a)) (3.5)

Thus, given a, there are 7(O6(S. a)) observer states that may make a transition, with

a', to an observer state which is a subset of S. Thus, if we add these for all such

events a, we get an upper bound for 71(S):

71(S) <' E 7((S, a)) (3.6)
aEr

But, by using Corollary 3.2, we can decompose 4(S, a) using the partition B F and

compute r for each part. We thus have the following result, where we assume that

S C Bi E]3 ' since otherwise we can decompose S itself using the partition:

3 OBSERVER IMPLEMENTATION AND COMPLEXITY 28

Proposition 3.4 Given S c Bi E BA,

2r(S) < min(2 1SI - 1, E 7?(Bi n H(S, a)))
cHEr i

Proof: Straightforward.

We can apply this to]Y and thus get the following:

Corollary 3.5 Given BL,

ZRI = = (i)= (Bi) < EZmin(21 B l-l,,Erj'r7(Bj n ,(Ba))) i

Now, a recursive application of Proposition 3.4 will give us a bound that gets pro-

gressively tighter with each application. If at any time 21s l - 1 is a better bound

for some set S, then clearly, there is no reason to apply the proposition further after

that step. However, this algorithm may in general require an exponential amount of

computation if iterated to the fullest. For example, this is the case for the example

in Figure 3.7. On the other hand, the algorithm may be terminated at any step by

using the bound 2151 - 1. Alternatively, the following approximation can be used to

compute a bound using less computation.

We now replace the summation over ' in Proposition 3.4 by an approximation as

follows: Given S, Q C Y, let p(S. Q) denote the number of observable events that

take states in R(AiF, Q) to states in S:

p(S, Q) = fI(a d(R(AIT, Q)) n rlf(R(AI, Q), a) n S #7 0}1 (3.7)

First of all, note that

E 2I(Bi n q(S, a)) < p(S, BS n 6(S, r)) max r(Bi n (S. a)) (3.8)
c-Er

3 OBSERVER IMPLEMENTATION AND COMPLEXITY 29

Since computing the maximization requires computing r(Bi n o(S, a)) for each a, we

replace it with y(Bi n oq(S, r)) instead. Then,

E 7(B, n $(S, a)) < p(S, B, n $(S. r)),(B, n f(S, r)) (3.9)
aEr

We thus have the following result:

Proposition 3.6 Given S C Bi EC P,

v(S) < min(2 1Sl - l,p(S, ri(S))r(ri(S)))

where

Ti(S) = B, n 6(S. r)

Proof: Straightforward. 3

We can apply this result to YR and we get:

Corollary 3.7 Given BP,

IZRI = q(YR) < Ei min(2lBIJ - 1; j p(Bi, 7j (Bi))77(7j(Bi)))

As before, Proposition 3.6 can be applied recursively. Alternately, one can terminate

this algorithm at any step by using the bound 21SI - 1. It is not known in general

if the full iteration of the algorithm requires a polynomial or exponential number of

steps. However, as the following example shows, it requires a linear number of steps

for the system of Figure 3.7 and in fact yields IZR I exactly:

Example 3.8 For the system in Figure 3.7, B3 consists of B 1 = {O}, B 2 = {11,..., 16},

B3 = {21,...,26}, B4 = {31,...,36}, B 5 = {41}, B6 = {42}, B 7 = {43, B 8 = {44},

B9 = {45}, and Blo = {46}. Let us use vi as a shorthand for rl(Bi). Then,

3 OBSERVER IMPLEMENTATION AND COMPLEXITY 30

clearly, 71h = 77 = -- = rl = 1. On the other hand, since 71 (B 2) = {0} and

p(B 2, 1 (B 2)) = 2, 772 < 2r71 = 2. Similarly, r73 < 272 = 4 and 714 < 2713 = 8. Therefore,

for this example,

IZRI< 1 + 2 + 4 + 8 +1 +1 +1 + +1 +1 =21

and in fact, this is the exact value of IZRn. ,

We conclude this section by presenting the following class of systems for which the

cardinality of the observer state space is linear in r1i and our algorithm for computing

a bound for IZRI also yields IZRI exactly:

Example 3.9 Consider the following class of systems, indexed by i (see Figure 3.8

for i = 4): The set of events for this class consists of a, 9, 6 and 7, where all of them

are observable. There are 2(i + 1) + 1 states and one of them is state 0. The event

a (respectively, 3) defines a transition from 0 to the odd numbered (respectively,

even numbered) states. The event 6 defines transitions from all other states to

state 0. The event 7 defines a transition from state I to 4, from 2 to 3, and for

all other states j with j > 3, -y defines a transition from j to j + 2. These systems

are all observable (in fact a-observable), and ZR is linear in i. For i = 4, Zn

consists of B1 = {0} and B 2 = {1,... , 10}. Clearly, 77, = 1. On the other hand, to

calculate 7r2, we need to know 7({ 1,..., 8}), which we denote by 773. Similarly, to

calculate 73, we need to know r7({1,...,6}), which we denote by r/4. Denoting

77({1,...,4}) by 7s5, and 77({1,2}) by /76, and arguing as above, we see that we

need to calculate 776 first. Since r/6 < min(22 , 2771) = 2, /5 < min(24, 2 1 + 776) = 4.

Similarly, 774 < 6, etc., and thus 772 < 10. Therefore, IZR!I < 1 + 10 = 11, and in fact,

this is the exact value of ZR.

3 OBSERVER IMPLEMENTATION AND COMPLEXITY 31

7

¶7

37AL

3

O~~~~~~~0 /5

27

4

6

'y

8

'y

10

Figure 3.8: Example for Linear Observer State Space

4 RESILIENT OBSERVERS 32

4 Resilient Observers

In this section, we introduce the possibility of measurement error in our model and ad-

dress a problem of resilient observability. Specifically, suppose that the output string

that we observe contains errors. Then a major question is how this measurement

error affects the behavior of the observer. In particular, does it lead to catastrophic

error propagation, or does the observer resume desired, correct behavior in a finite

number of transitions. Let us consider three types of measurement errors:

* Although the system did not have any transitions, a transition has been mis-

takenly inserted.

* A transition has been mistaken for another.

* An observable transition has been totally missed in the output string.

An output corrupted with a burst of such measurement errors can be modelled by

taking out a finite length string from the output string and replacing it with an

arbitrary finite length string over r. Our goal here is to design resilient observers so

that after a burst of measurement errors, the observer resumes correct behavior in a

finite number of transitions, i.e., the actual state of the system is an element of the

observer estimate. This is illustrated in Figure 4.9.

Since we allow the burst to be any string in F, the corrupted output is not neces-

sarily an output string that can be generated by a state in X, and thus the response

of 0, as we have specified it so far, is undefined for this erroneous string. Thus, we

must extend the observer so that it is defined for all such strings:

Definition 4.1 An observer is a map B: Pr - 2y' so that for those strings that can

occur in A, B yields the same behavior as 0, i.e., for any x E X and s E Lf(A, x),

4 RESILIENT OBSERVERS 33

Burst
Accurate 3Wron g AccurateetM t _ Output Stringestimates estimates estimates

Figure 4.9: Resilient Observability: Following a burst of measurement errors, ob-
server estimates can only be wrong for a finite number of transitions.

we require that

B(h(s)) = {y E Y13z E Y,r E L(A, z) such that y E f(z,r) and h(r) = h(s))}

There is one special observer that will deserve particular attention. Specifically,

not all events - may be defined at certain states of O. For any such state and

event, we then define a transition, back to the "know nothing" state {Y)-i.e., the

observer is simply reset if an inconsistent event occurs. We denote this observer by

OR = (F, WR, VR), and mathematically, it is obtained from O as follows:

w(.,A) if y E v(x)
WR(, 7) (i (4.1)

{Y} otherwise

vR(:) = r (4.2)

As before, the initial state of OR is the state {Y}. Note that OR does define a map

from r* to 2Y and thus, by a mild abuse of terminology, we refer to the system or

the map as an observer. Note also that Op is not stable with respect to its singleton

states, but A ll OR is stable with respect to the composite states at which the observer

is at a singleton state and the system is also at that state:

Proposition 4.2 A 11 OR is stable with respect to {(x, {x})xl E Y}.

Proof: Straightforward. °

4 RESILIENT OBSERVERS 34

In order to define what we mean by a resilient observer, we also need to define

a notion to represent the discrepancy between two strings. There are many ways

to define this, all of which depend on the reference point for comparing two strings.

Since the actual point that the burst ends is important for our definition of resiliency,

we compare two strings from their beginning and we represent their discrepancy by

how much they differ at the end. In particular, we say that the discrepancy between

two strings s and t is of length at most i, denoted by

((r t.) _< i (4.3)

if there exists a prefix, p, of both s and t such that [s/pf < i and Jt/P1- < i. Now we

can precisely define what we mean by a resilient observer B:

Definition 4.3 B is a resilient observer if for all strings s that can be generated by

A, i.e.,

* VxEX,

* Vs E Lf(A, x),

for all possible output strings t which can be generated by corrupting h(s) with a

finite length burst, i.e.,

* V positive integers i,

* Vt E r* such that ~(t. h(s)) < i,

and for all possible completions r of s with a suffix of length at least nq2 (so that

the observer has enough time to recover), i.e.,

* Vr E Lf(A, x) such that Irl > IsI + nq2 and s is a prefix of r,

4 RESILIENT OBSERVERS 35

the observer estimate, in response to the corrupted output th(r/s), includes the

current state of the system:

*f(x, r) C B(th(r/s))

Note that in case of a number of finite bursts that are spaced far enough apart, the

estimates of a resilient observer are guaranteed to be correct starting from a finite

number of transitions following each burst, up to the occurrence of the next burst.

On the other hand, if the number of correct measurements between each burst is less

than q2, then we cannot guarantee any correct state estimates.

Existence of a resilient observer does not necessarily imply that the system is

observable. That is, all we require is that resilient observers resume correct estimates

in a finite number of transitions following a burst.

Proposition 4.4 A resilient observer B, for A, exists iff A 11 OR is El-stable, where

El = {(x.)j x E i E Z}

Proof: (-+) Straightforward by assuming the contrary.

(a) Obvious, since then OR is a resilient observer. Q

What this proposition implies is that we only need to look at OR to check re-

siliency. The stability condition on OR simply states that after a finite number of

steps following an error, the composite A II OR returns to a state so that the esti-

mate provided by the state x of O does indeed include the true state, x, of A. In

general, since the observer state space may be exponential in q, checking stability

4 RESILIENT OBSERVERS 36

may be computationally difficult. However, if we have WD observability-which can

be checked by a test of polynomial complexity-resiliency is guaranteed:

Lemma 4.5 If A is WD observable then A 11 O is El-stable.

Proof: Straightforward by assuming the contrary, since if A Ij OR is not El-stable,

there exists a cycle (xI,4l),...,(Xk, k), (XZ.Il) in]" x Z such that x, ' i, for all

i. Thus, there exists a cycle (xl,yl),... (k, Yk)i (x,y]) in] x)] such that yi E x;

and (xi, yi) is an indistinguishable pair, for all i. By Proposition 2.18, A is not WD

observable, and we establish a contradiction. Therefore, A 11 OR is El-stable. 53

When we have observability or WD observability, OR actually has a much stronger

property. We need the following definition:

Definition 4.6 A system is resiliently observable (respectively, resiliently WD observ-

able) if the system is observable (respectively, WD observable) and a resilient

o)server exists, -

Consider the observer OR and its composition, A 11 OR, with A. Let E2 be the set

of composite states where the observer makes the precise and correct estimate, i.e.,

E2 = -{(. {x))x C X}. Then, we have the following:

Proposition 4.7 A is resiliently observable iff A j1 OR is E 2-stable.

Proof: Straightforward by using Lemma 4.5.

Finally, the following result shows that we do not need any test for resilient observ-

ability, since observability itself is necessary and sufficient for resilient observability:

Proposition 4.8 A is resiliently observable (respectively resiliently WD observable)

and OR is a resilient observer iff A is observable (respectively WD observable).

5 CONCLUSIONS 37

Proof: (--) Obvious.

(a-) Straightforward using Lemma 4.5. D

5 Conclusions

In this paper, we have introduced notions of observability, and resiliency for discrete-

event systems described by finite-state automata, and we have developed polynomial

algorithms to test for observability, resiliency, and to construct resilient observers.

We showed that a central element in these concepts is the notion of stability that

we considered in a previous paper [12]. We have also shown that an observer may

be implemented in polynomial time, but the cardinality of its state space may be

exponential. Although, this issue is not of practical importance for the problems

discussed in this paper, it is of central importance for problems of stabilization by

output feedback that will be addressed in a forthcoming paper.

As we have seen, if a system is observable, the canonic observer OR is always

resilient, i.e., catastrophic error propagation will never occur. In a subsequent paper,

we address the problem of invertibility, i.e., of deducing the entire event string from

the output string, and we also introduce the notion of error recovery or resiliency in

that context. In that case, invertibility is not enough to guarantee the existence of

a resilient inverter, and further conditions are required to ensure resiliency and the

absence of catastrophic error propagation. These notions would seem to be of value

in trying to characterize the coordinated behavior of interconnections of DEDS and

the ability of the composite to recover from a loss of coordination.

REFERENCES 38

References

[1] R. Cieslak, C. Desclaux, A. Fawaz, and P. Varaiya. Supervisory control of

discrete-event processes with partial observations. IEEE Trans. on Automatic

Control, March 1988.

[2] G. A. Frank, D. L. Franke, and W.F. Ingogly. An architecture design and and assess-

ment system. VLSI Design, August 1985.

[31 W B. Gevarter. Expert systems: Limited but powerful. IEEE Spectrum, August

1983.

[4] W. M. L. Holcombe. Algebraic Automata Theory. Cambridge University Press,

1982.

[5] F. Lin and W. M. Wonham. Decentralized supervisory control of discrete event

systems. Systems Control Group Report 8612, University of Toronto, July 1986.

[6] F. Lin and W. M. Wonham. On observability of discrete event systems. Infor-

mation Sciences, 44(3), 1988.

[7] M. E. Merchant. Production: A dynamic challenge. IEEE Spectrum, May 1983.

[8] J. S. Ostroff and W. M. Wonham. A temporal logic approach to real time control.

In Proceedings of CDC, December 1985.

[9] C. M. Ozveren. Analysis and Control of Discrete Event Dynamic Systems: A State

Space Approach. PhD thesis, MIT, Cambridge, MA, August 1989. Laboratory

for Information and Decision Systems Report, LIDS-TH-1907.

REFERENCES 39

[10] C. M. Ozveren and A. S. Willsky. Aggregation and multi-level control in dis-

crete event dynamic systems. Laboratory for Information and Decision Systems

Report LIDS-P-1902, MIT, Cambridge, MA, August 1989. Submitted to Auto-

matica.

[11] C. M. Ozveren and A. S. Willsky. Invertibility of discrete event dynamic systems.

Laboratory for Information and Decision Systems Report LIDS-P-1895, MIT,

Cambridge, MA, July 1989. Submitted to MCSS.

[12] C. M. Ozveren, A. S. Willsky, and P. J. Antsaklis. Stability and stabilizability

of discrete event dynamic systems. Laboratory for Information and Decision

Systems Report LIDS-P-1853, MIT, Cambridge, MA, February 1989. Submitted

to the Journal of the ACM.

[13] P. J. Ramadge. Observability of discrete event systems. In Proceedings of CDC,

December 1986.

[14] P. J. Ramadge and W. M. Wonham. Modular feedback logic for discrete event

systems. SIAM J. of Cont. and Opt., September 1987.

[15] P. J. Ramadge and W. M. Wonham. Supervisory control of a class of discrete

event processes. SLAM J. of Cont. and Opt., January 1987.

[16] M. N. S. Swamy and K. Thulasiraman. Graphs, Networks, and Algorithms. John

Wiley and Sons, Inc., 1981.

[17] G. Tadmor and 0. Z. Maimon. Control of large discrete event systems: Con-

structive algorithms. LIDS Publication LIDS-P-1627, MIT, December 1986.

REFERENCES 40

[18] L. Tobias and J. L. Scoggins. Time-based air-traffic management using expert

systems. IEEE Control Systems Magazine, April 1987.

[19] J. N. Tsitsildis. On the control of discrete event dynamical systems. Math. C.

S. S., 1989.

[20] A. F. Vaz and W. M. Wonham. On supervisor reduction in discrete event systems.

International Journal of Control, 1986.

