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Preface

The Energy Laboratory of the Mass. Inst. of Tech. was retained by

the Central Maine Power Company to evaluate several technologies

as possible alternatives to the construction of Sears Island #1

(a 600 MWe coal fired generating plant scheduled for startup in

1986). This is an appendix to Report MIT-EL 77-010 which presents

the results of the study for one of the technologies.

The assessments were made for the Central Maine Power Company on

the basis that a technology should be:

1) an alternative to a base-load electric

power generation facility. Base-load is

defined as ability to furnish upto a rated

capacity output for 6 5 7 0 hrs. per year.

2) not restricted to a single plant. It

may be several plants within the state of

Maine. The combined output, when viewed

in isolation, must be a separate, "stand-

alone", source of power.

3) available to deliver energy by 1 9 8 5.
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1.0 INTRODUCTION

One of the most difficult aspects of assembling data on the environmental impacts of alternative

technologies is the uncertainty associated with their eventual commercial form. This uncertainty

gives rise to numerous assumptions which unfortunatelyare not consistent across all the technologies.

As a result, comparisons drawn directly from individual assessments are at best confused and at worst

completely misleading. This appendix presents the results of several large research efforts which

have attempted to assess environmental impacts using a common set of assumptions.

The reader will find more specific discussions in each of the appendices on individual techno-

logies.

The environmental impacts of alternative energy sources are, in general, difficult to assess

because of the lack of operational scale systems. Before systems of a size appropriate to environ-

mental evaluations can be built, a number of non-environmental barriers must be overcome, such as:

(1) resource limitations,

(2) underdeveloped technology, and

(3) economic disadvantages

Another generalization that can be made about alternative energy sources is that they all have

environmental impacts (see Table 1.1). Many of these impacts occur in a very visible way, associ-

ated with plant operations. The other impacts are those implicit in the materials and construction

of the facilities. Some of the alternative sources generally considered to be free of environmental

impacts actually cause significant pollution from the cement, steel, transportation, and other sup-

porting industries that have a part in making up these facilities. Data on these invested impacts are

not currently available for these sources, and thus, operational impacts generally dominate

in discussions of consequences of exotic energy sources. Perhaps, in the early 1980's, these invested

impacts will be identified and quantified.

One mechanism under construction to perform the quantification of invested impacts, and other

tasks, is the SEAS, Strategic Environmental Assessment System, at EPA. This SEAS program contains

input/output modeling of the entire U.S. economy and can thus be used to calculate major and minor

perturbations in all industries from unit demands of, say, steel or cement. Emissions information

is to be tabulated in a separate, but coupled, module. In the absence of these kinds of data now, a

crude measure of these indirect effects can be found in the capital expense of a facility. The

field of economics offers some standard procedures that can be useful in comparing these investment

environmental costs and operating environmental costs.

The most attractive feature of the so-called alternative energy sources is their more or less

renewable character. Table 1.2 shows fractional resource depletions from lifetimes of 1000 MWe

facilities.

Land use for transmission needs is surprising large, about 26,85 square miles per 1000 MWe dis-

tribution (CEQ, 1973). This number has been calculated by summing the entire transmission line land use

in the U.S. and dividing by number of 1000 MWe of capacity in the U.S. (other computations show

about 20% decrease in this figure.) Fuel cells, if they are small and distributed in nature, would

gain some advantage over this number, but, on the whole, transmission line land use would be the same

for the alternative sources. Excluding these transmission requirements, land use required by the

exotic sources is shown in Figure 1.1.
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Table 1.1

Some Environmental Aspects of Alternative Energy Sources

Energy 1
Source

Geothermal
Energy

Solar Energy

Biomass

Solid Waste

Ocean

Wind

Waves and

Major
Resource
Impacted

Stored Heat.

Land.

Land.

None.

Sea.

Land.

Sea.

Characteristics

Major
Environmental

Impacts

Land use, noise,
and release of
heat, dissolved
gases, and brines.

Land use,
invested impacts,
thermal effects
(for solar ther-
mal), aesthetic
intrusion.

Land use, sludge,
ecological dis-
ruption, air
pollution.

Air pollution,
odors, wastes.

Potential mas-
sive marine dis-
ruption, invested
impacts.

Land use, inves-
ted impacts,
aesthetics.

Siltation, in-
vested impacts,
aquatic dis-
ruption.

Fuel extraction,
trace pollutants,
invested impacts.

Possible
Disasters

Land subsidence,
earthquakes,
uncontrolled
blowouts.

None.

Explosions,
fires.

None.

Shipping colli-
sion, working
fluid release.

Aircraft colli-
sion, structure
failure, broken
blade pieces.

None.

None.
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Table 1.2

Consumption of Resources by Alternative Sources

[(Beall, et al., 1974, p. 118) and other refs.)]

Energy Source

National

Resource
Availability

Amount of Resource for
30 yrs of 1000 MW plant

Geothermal (range)

Steam

Brine

Rocks

SQ1 ar

Thermal

Photovol taic

Biomass

Solid Waste

Ocean

Wind

Waves and Currents

Fuel Cell

(2 to

5x

50 x

50 x

132

103

103

103

Land limil

Land limit

x 103MW)a

MW

MW

MW

ted

ted

Arable land

109 tons per year

Site limited

100 x 103 MW

U*

Fossil fuel limited

(190 - 50%)

20%

2%

2%

15 sq. miles

10 sq. miles

500 sq. miles

0.9%b

1%

nilc

aFrom several available estimates of potential by the year 2000.

bAssumes a heat content of 4000 Btu/lb as received (wet) waste and an
annual consumption of 9 x 106 tons per 1000 MWe.

CWith 2.24 x 1013 Btu = 1000 MW yr., 50% conversion efficiency, and
2 x 1019 Btu of fossil fuels.

*unknown
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(350-2000 sq. miles wood plantation + power plant)

(200 sq. miles algae methane plantation + power plant)

otovoltaic, Arizona

rsion, Hydrogen
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Time after

Figure 1.1 Comparison of
and Fuel

Waves, Currents
Start of Operation, Years

Total Land Disturbed from 1000 MWe power plants
Extraction (Excluding Transmission)
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Across-the-board comparison of the emissions from the alternative sources is shown in Table 1.3.

This type of method of comparative evaluation is, of course, of limited use. It does, however,

highlight some of the major differences and similarities among these energy sources. Backup infor-

mation about further breakdowns of categories such as "Air, tons" is given in the following sections

dealing with each of the various alternative sources.

Table 1.3 Annual Environmental Impacts from Operation of 1000 MWe

Various Types of Power Plants with Load Factor of 0.75

Impact Geothermal Solar Thermal Solar Biomass Solid Waste Ocean Thermal
Photovolt.

Land, sq. mi 72 62 37 530 t 28 27

Water, tons Nil 60 u 7.9x104 1 810 u

curies Nil 0 0 0 0 0

Btu .5x10 14 0 3.1xO1 3 + 4 5.3x101 3 0

Air, tons 1.65x105 0 0 4.5x105 3.2x105 0

curies ua 0 0 0 ' 0 0

Solid or
Liquid 
Waste,tons u 0 0 2.0xlO5 3.5x104 

Occupational

Deaths .042+ .009+ .009+ .009+ | 2.3 + u

Injuries 2.13+ 1.09+ 1.09+ 1 .09+ 24.8+ u

Work-
days lost 3 03+ 120+ 120+ 120+ 2500+ u

+ = summation included inknown item(s)

u = unknown

aRadioactive noble gases have been noted at some installations.

(continued)
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Table 1.3 (continued) Annual Environmental Impacts from Operation of 1000 MWe

Various Types of Power Plants with Load Factor of 0 .75 a

Impact ! Wind Waves and Fuel Cell Coal-Deep Coal-Surface Nuclear (LWR)
Currents

! -

| Land, sq. mi. 38 u 45 46 54 1 29

I Water, tons 0 u 2.6x04 7.3x10 4.0x10 2.lx104

curiesi 0 0 O Nil Nil 2.7x103

Btu 0 Nil 2.0x101 3 3.05x101 3 3.05x101 3 5.29x1013

|Air, tons 0 O 2.2x104+ 3.83x105+ 3.83x105+ 6.2x103

' O .2b b 5
curies 0 0 0 0 2 4 .0 4.89xl05

Solid or

Waste, tons Liquid u 2.1xlO 6.02x105 327xl6 2.62x106

Waste, tons 0 u __________ 6.02x1i i 06!
curies 0 0 0 i Nil Nil 1.4x108

Occupational

Deaths . .009+ u 1 1.76+ i 4.00+ 1 2.64+ 1 0.153+

Injuries 1.09+ u 27.7+ 112.3+ i 41.2+ 5.37+

Workdays
lost 120+ u 2080+ 15,300+ 3090+ 271+

+ = summation includes unknown items

u = unknown

a
Numbers from (CEQ, 1973) or documented

bSome Dakota coals are known to have as

in separate appendixes.

much as 3% uranium (Gruhl, et al., 1976).
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The uncertainty that exists in our present knowledge of the environmental impacts of alterna-

tive sources makes the state-of-the-art of this information only a little better than subjective.

Good judgment would thus necessarily require that a combination of different, small-sized, alter-

native sources be built rather than a single, large, alternative energy source. Other than that

one generalization, there are no easy conclusions that can be made. Once all of the known data are

in hand, a decision about which energy alternative is environmentally most attractive becomes a

subjective judgment. Feelings about future constraints to be faced by a region and attitudes about

risk-aversion are major components of this decision-making process. There have been a number of

attempts to assign severity weightings to different types of pollution: (Babcock, 1972),

(Beall, et al., 1974), (Shupe, et al., 1975), (Reiquam, 1972), (Shultz and Beauchamp, 1973),

(Elsinghorst, 1975), and (Hall, Choi, and Kropp, 1974), and in this way produce rankings of energy

technologies on overall environmental attractiveness. One of these subjective rankings, unfortunate-

ly based on comparatively little data, is shown in Table 1,4. Such rankings are of limited useful-

ness because decisions should never be based solely on environmental effects information. Economics

should always be the primary focus because, even from a strictly environmental viewpoint, there

are often far better opportunities for use of capital.

Table 1.4 Survey of Environmental Impacts of Alternate Energy Sources

Alternate source

Solid Bioconversion = : ) Coal 
waste -l m -

0 =1 ('l ( CD -. - CD
m '-4 u: -1l: 0 'I 0 Ci = D D . i 0

0 0'i rI -- I = - 1

Impact x m C D A 
.+ C+ CD

Total 28 27 40 25 38 28 28 34 19 26 38 26 28 28 39 35 33 37

Energy resource depletion 1 1 2 3 4 1 1 2 1 1 3 1 2 _ 4. 4. 4 2

Area committed for conversion 3 3 3 2 4 1 1 4 O 3 3 4 3 4 3 2 2 3

Area committed for transmission 1 1 2 1 2 1 1 1 3 3 3 3 3 3 2 2 2 2

Water consumption 2 3 4 2 2 3 3 3 1 1 3 1 3 1 2 3 2 4

Use of air space 1 1 2 1 23 1 1 1 3 2 3 1 2 1 1 1 1

Air pollution 1 2_4 2 _ 3 3 1_ 3 1

Water pollution 2 1 3 1 2 2 2 2 1 1 3 1 2 1 4 4 3 2

Construction activity 3 2 2 3 3 3 3 3 3 3 4 3 314 3 1 3 4

Heavy metals or toxic substance 3 1 3 1 1 1 1 1 1 1 2 1 1 1 21 1 1 1 2

Thermal discharge 2 2 4 3 4 4..... 41 1 3 .... 1 2 2 2 3.. 4 4

Solid waste 2 2 2 1 2 2 2 2 1 1 2 1 1 1 3 3 2 2

Visual intrusion 2 2 3 1 4 2 2 4 2 3 32 23 1 

Noise generation 3 33 2 4 2 2 2 1_2 2 1 1 1 3 2 1 1

Public health 1 2 2 1 1 1 1 1 1 1 2 1 2 1 1 3

Transportation hazard 1 11 1 1 1 1 1 1 1 1 1 2 3 2 4

Impact severity rating: 1 - negligible, 2 - slight, 3 - moderate, and 4 - severe.

OTEC = ocean thermal energy conversion, PUROX and Garrett are specific solid waste util-
ization schemes.

Source: (Shupe, et al., 1975, p. K-4)
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2.0 BIOMASS PLANTATIONS - ENVIRONMENTAL IMPACTS

Unfortunately, no comparative environmental studies have considered the biomass potential of

the unused parts of the forest. Our discussion must be limited, therefore, to plantation techno-

logies. Conversion-related impacts are similar regardless of the biomass source.

Crops grown specifically for energy purposes can be converted to any of a number of usable fuels

(oil, methane, ethyl alcohol, hydrogen, gas, and others) or they can be combusted directly. Impacts

will be peculiar to the specific processes being considered.

Fermentation of crops to alcohol could conceivably be accomplished on 100 million acres of

U.S. cultivated land, which could produce 18 billion gallons of alcohol or 12 billion gallons of gaso-

line equivalent (Bureau of Land Management, 1973). The environmental consequences of using crops

to make alcohol are likely to be beneficial in the reduced potential for soil erosion.

The production of hydrogen directly from photosynthetic mechanisms in green plants and blue-

green algae is being investigated. Hydrogen would have to be piped or transported from these re-

mote facilities and there would be hazards to humans in this task. Otherwise, solar plantation en-

vironmental consequences are supposed (Beall, et al., 1974, p. 68) to be about the same as those

experienced in large-scale thermoelectric plants. Lower energy efficiencies would increase land

use considerably over the land required for a solar thermal facility, requiring at least 100 square

miles per 1000 MWe for a tropical location.

Plantations specifically designed for growing wood as fuel would have considerable environmen-

tal problems. Runoff of silt and fertilizers from the tree plantation and thermal pollution (equivalent

to a nuclear facility) would be the major water impacts. Air pollution would be minimal: wood is

low (about 0.1%) sulfur; combustion is at low temperature (reducing NOx), and ash and CO2 would be

useful to the plantation. Land use of between 300 and 800 square miles would be required for a

1000 MWe unit (Beall, et al,, 1974, pp. 62-67). Soil control, wildlife protection, and recreation

would be benefited by such an operation. Fresh-cut areas could cause small, temporary eco-

logical setbacks and aesthetic eyesores.

Existing emissions data for biomass plantation facilities are contained in Tables 2.1 and 2.2.

L-8



Table 2.1 Annual Environmental Impacts from Operation of 1000 MWe

Biomass Plantation Power plant with Load Factor of 0 .7 5a

Impact Extraction Processing Transport Conversion Transmission Total

1Land, sq. mil 500 0 0 .3 26.8 530

,'ater, tns u O 0 7 .9x10O 7.9xlO +

curies 0 0 0 0 0 0

Btu 0 I 0 , 0 3.05x10+ 0 3.1xl1 O+

3i2 5
Air, tons | 4.6x103 1 0 3.Ox102 4.5x10o O 4.5x105

curies 0 0 0 0 0 0

!Solid or Liquid 
i :aste, tons 0 0 2. 0x 0 2.0x5 0

curies 0 0 0 0 0 0

[Occupational 0 0 0

| Deaths u | O | u .009 u .009+

Injuries i u I 0 u 1.09 u 1.09+

Workdays lost 0 u i 120 u 120+

+ = Summation includes unknown item

u = unknown

acultivation of wood as fuel driving

(Teknekron, 1977).

an intermediate Btu gas to electric facility. Data from (CEQ, 1973) and

L-9



Table 2.2

Solar Plantation Emissions (including transportation

of fuels) per 1012 Btu Input Solar Energy

(All values in Cultivation Direct Intermediate Conversion
tons unless noted) (output is fuel) Combustion Btu Gas to

Conversion Methane

Primary Eff. (fraction)

Acids

Bases

Phosphates

Nitrates

Other Dis Solids

Total Dis Solids

Suspended Solids

Non-Degrad Organics

BOD

COD

Thermal (Btus)

Total Solids + Organics

Particulates

NOx

SOx
HC

H2S

CO

Aldehydes, etc.

Total Air

Solid Wastes

Land (acres)

Water (acre ft)

3.4E-01

0

u

6.0 E-3*

0

0

O

1.47E-02

u

u

u

u

O

O

O

u

3. OE-02

1.9E-01

2.OE-02

3.OE-02

7.OE-02

7.OE-03

3.5E-Ol

0

4.84E+01

6. OE+Ol

7.5E-01

0O

O

O
0
O

7.8E+02

0

0

1.OE+3

4.14E+O1 O

u O0

1.7E+02 0 O

0

- 1.65E-02

u u

u

2.1E+02 5.56E+03

2.54E+03i 2.59E+03

1.7E+01 2.OE+OO

1.4E+04 I -

u

u

u

8.6E+01

u

2.6E+04

0

7.8E00

2.1E+02

Source: (Teknekron, 1977). Note that cultivation must precede any of the
conversion processes and direct comparison of conversion processes
requires attention to efficiencies.

u = unknown

- = unlisted

*6.OE3 6,0 x 10'3 = 0.006
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3.0 SOLAR-ENVIRONMENTAL IMPACTS

3.1 Solar Thermal-Central Power

Unless dry cooling towers are used, consumptive use of water in a solar thermal plant would

be about double that used in a conventional power plant. Water contamination from leaks of the

thermodynamic fluid could be dangerous (for sodium or dissolved salts) or harmless (for inert, pres-

surized gas or steam.) Concentrated updrafts of hot air and the possible large release of evapora-

ted water would be the only air pollutant problems.

Land use of a 1000 MWe facility would be about 15 to 20 square miles in Arizona (Alexander,

et al., 1973) or twice this in less-than-optimal areas such as New England (Meyer, Jones, and

Kessler, 1975). When compared with a coal-fired facility (see Figure 3.1), land use would be

comparable or less for the solar facility after 30 years. The large network of access roads would

not add appreciable amounts to those land requirements. In the area underneath the collectors,

winds would be slightly cooler, but predictions of the type of new ecosystem balance that would re-

sult must await experimental facilities (Beall, et al., 1974, p. 51).

The collectors, large power plants, cooling towers, and overhead transmission systems would all

be aesthetically displeasing.

Significant amounts of resources would be required to build these facilities. These have

their implicit environmental consequences which, outside of land use, would be the primary adverse

consequence of solar thermal power.

Data on emissions from solar thermal plants are contained in Tables 3.1, 3.2, and 3.3.

3.2 Solar Photovoltaic - Central Power

Manufacture, use, and disposal of either cadmium sulfide or gallium arsenide cells would be

dangerous unless strict measures were taken to prevent releases of these toxic substances to the

environment. Careful planning might also help to alleviate the significant aesthetic problem posed

by solar panels and their transmission equipment.

A solar-cell plant of 1000 MWe capacity would require between 7.5 square miles (FEA, 1974)

and 30 square miles (CEQ, 1975) of land (1.4 square miles for a satellite facility's collector).

Physical and ecological effects would be similar to those of the solar thermal facility, except

water runoff could be a greater problem and defoliants might be necessary to keep vegetation from

growing large enough to shade the solar panels,

Here again, the high capital cost of these solar-cell power plants indicates that there is a

great deal of pollution implicit in the building of these facilities, including resource upgrading,

fabrication, transportation, and so on,

Microwave transmission of power from satellite photovoltaic systems to earth could pose a

hazard to human health. Man's tolerance of microwaves has been estimated at between 100 mW/cm2

(in the U.S.) and 0.01 mW/cm2 (in the U.S.S.R.) with present conceptual designs for the satellite-

to-earth power beam at 30 mW/cm2 (Michaelson, 1971).

Some data about the effects of photovoltaic systems are contained in Table 3.4

3.3 Solar Heating and Cooling - Single Users

The principal impact of the collectors required by a solar heating and cooling system would be

aesthetic, and this tends to be very type- and site-specific. Redistribution of heat would be

small. Accidental release of toxic cadmium during a home fire where CdS-Cu2S cells are in use might

be a problem with about 12,4 kilograms of cadmium being released from such an incident (FEA,

1974, Solar Report, p. VII-20).
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Figure 3.1
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Table 3.1 Annual Environmental Impacts from Operation of 1000 MWe

Solar Thermal Power Plant with Load Factor of 0.75a

+ = Summation includes

u = unknown

unknown item

aFigures are from (Beall, et al., 1974, 115) unless otherwise noted.

bFor New England, see text.

CAssumed amounts of anti-fouling and anticorrosion materials from cooling towers.

L-13

Impact Extraction Processing Transport Conversion Transmission Total

Land, sq. miles 0 0 0 35 26.8 62

Water, tons 0 0 0 60C O 60

curies 0 0 0 0 O O

13 13
Btu 0 0 0 0lOxO1 0 lOxO1

Air, tons 0 0 0 0 O 0

curies 0 0 0 0 0 0

Solid or Liquid
Waste, tons 0 0 0 0 0 0

curies ! 0 0 0 0 0

Occupational

Deaths 0 0 0 0.009 u 0.009+

Injuries 0 0 0 1.09 u 1.09+

Workdays lost 0 0 0 120.4 u 120.4+



Table 3.2

Solar Thermal Heat Conversion Using a

Central Receiver

(per 1012 Btu Input of Solar Energy)

(All values in tons unless noted)

Primary Efficiency (fraction)

Total Air

Acid

Base

Phosphates

Nitrates

Other Dissolved Solids

Total Dissolved Solids

Non-Degradable Organics

BOD

COD

Thermal (Btu)

Total Solids + Organics

Anti-Biofouling Agent

Solid Wastes

Land (acres)

Water (acre-ft)

u = unknown

- = unlisted

Source: (Teknekron, 1977,

1.76 E-O1

0

u

O

u

0

u

u

u

u

O

0

0

1.8E+02

0

9.6E+O1

1.lE+04

p. 217)
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Table 3.3

Yearly Quantity of Solar Thermal Emissions

for 1000 MWe Facility (Boiler Blowdown)

(Teknekron, March 1975)

Suspended solids

Organics

BOD

H2 S04

Cl2

Phosphates

Boron

Chromates

Tons

2490

331

12

413

132

209

1656

12

Table 3.4 Annual Environmental Impacts from Operation of 1000 MWe

Terrestrial Solar Photovoltaic Power Plant with Load Factor of 0.75

Impact Extraction I Processing Transport Conversion Transmission Total i

Land, sq. mil 0 0 0 10 26.8 37

Water, tons 0 0 0 u 0 u 1

curies 0 0 0 0 0 0

Btu 0 0 0 0 0 0

Air, tons 0 0 0 0 0 0

curies O 0 0 0 0 0 

Solid or Liquid
Waste, tons 0 0 0 0 0 0

curies 0O O O O Ocuries 0 I 0 0 0 0 0

Occupational

Deaths 0 0i 0 .0 0 9a u .009+

Injuries 0 I 0 0 1.09+

Workdays lost 0 0 0 1 20 4a u 120.4+0 ~ u 120.4+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+ = Summation includes

u = unknown

unknown item.

aAssumed same as solar thermal.
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4.0 WIND ENERGY - ENVIRONMENTAL IMPACTS

The quest for very high, multiple locations for large windmills that are near population

centers makes wind energy a potentially aesthetically displeasing power source. Turbine blades

would be visible for miles (Beall, et al., 1974, p. 78). Although there are no studies to con-

firm it, it is generally felt that a single, very large power facility is aesthetically more

pleasing than hundreds of smaller sources (Bornke, 1974). This goes directly contrary to the

economics which generally show that smaller-sized (about 10 MWe) windmills would be optimal.

Transmission lines, unless they are put underground, are also considered quite unsightly.

The environmental problems associated with the structure itself would be very small. Al-

though there might be considerable human risks in building and maintaining a structure in a windy

environment, these would be occupational hazards. It is unlikely that these structures would be

built closely enough to buildings or thoroughfares to endanger the general public. If properly

sited, hazards to aircraft, both from local air turbulence and collision with the structure, should

be of very low probability. Some concern has been expressed (Beall, et al., 1974) that location

of windmills too close together could alter prevailing wind patterns, but again careful siting would

avoid this problem.' Rotating-windmill blades interfere with television and navigational radio frequency energy.

No studies have been performed concerning the pollution implicit inthe fabrication and transport

of these structures. These effects would not be negligible judging from the high, materials-intensive

capital costs of windmills. Concrete and steel used per KW would be greater than fossil or nuclear

facilities (Beall, et al., 1974, p. 79).

The land use by 1000 MWe of wind facilities would be a minimum of 2.0 square miles. This is

exclusion area, to protect the public from broken blades and fallen towers, and is calculated

assuming a 750 ft. by 750 ft. plot at the very least would be required for a 10 MWe windmill of

250 ft. height (Meyer, Jones, and Kessler, 1975). For an 850-ft. structure (Beall, et al., 1974)

with a proportionately larger exclusion area and similar 10 MWe windmills, the 1000 MWe land

requirement would be 5.8 square miles. (Some structures of 1200 ft. have been proposed [REA, 1975,

p. 1636].) Additional land use would result from the network of roads required for maintenance

access, for heavy guying that might be needed, and by the transmission rights-of-way. No estimates

have been found of these requirements. There is likely, at any rate, to be heavy dependence upon

already available road and transmission systems.

Although there is no basis for assessing the magnitude of the effect, the large, rotating

blades may be potentially hazardous to birds, particularly during migration.

A summary of some of these effects is contained in Table 4.1. Primary efficiency is estimated

at 31% conversion of wind motion (Teknekron, 1977, p. 224).
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Table 4.1 Annual Environmental Impacts from Operation of 1000 MWe

Wind Power Plant with Load Factor of 0.75

Impact Extraction Processing Transport Conversion Transmission Total

ILand, sq. mil 0 0 i 0 5,8 3 2 ,6 a 38

Later, tons 0 0i 0 o 0 O

curies i0 0 ° 0 0 0 

Btu | t o 0 .0 0 0 0

ir, tons 0 o 0 o 0 

curies 0 0 0 0 0

Soid or Liquid 0 0 0 
Waste, tons 0 0 I 0 0

curies O' 0 0 0 0 0

Occupational 

Deaths O O | O ,00 9 b u .009+

Injuries 0 | 0 | Ob | u || 1.09+

Workdays losti 0 0 0 120.4b u 120.4+
I n j u r i e s 0 0 0 _ _ _ _ _ _ _ _ _ _ _,;_)_,

+ = Summation includes

u = unknown

unknown item

ausing 17,188 acres for transmission as from conventional
transmission within grid (CEQ, 1973). A value of 14,700

bAssumed same as solar thermal station.

facility plus amount equal to exclusion area for
acres is computed in (Teknekron, March 1975).
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5.0 SOLID WASTES - ENVIRONMENTAL IMPACTS

The various proposals for the use of solid wastes as fuel have very different environmental con-

sequences. The direct combustion of urban solid wastes has been accomplished at several locations.

For a 1000 MWe power plant, the wastes of a population the size of New York City would be required

(Beall, et al., 1974, p. 64). Collection, transport, and public acceptance in such a project are

considered to be immense problems, environmentally and socially. Organic wastes, particulates and

NOx would be the same as for coal plants, SOx would be decreased due to 0.23 pounds sulfur per 106

Btu in waste (CEQ, 1975, pp. 10-16). The St. Louis experiment in waste and coal co-combustion resul-

ted in air emissions as shown in Table 5.1. Ash accumulation was four to seven times that for

straight coal-fired ash levels, even though only 15% of the heat input was from waste. Particulate

emissions increased significantly and most water effluents increased, some probably requiring addi-

tional control equipment (BOD, dissolved oxygen, and suspended solid levels). Preprocessing of the

urban wastes caused noise levels in excess of OSHA standards, and caused large amounts of dust con-

taining significant levels of bacteria and viruses (Kilgroe, Shannon, and Gorman, 1976).

Table 5.1

Stack Gas Emissions from Coal-Refuse Co-Combustion System

Component Coal(a) Coal RDF(b)

H20, percent 6.8 8.6

S02, ppm 943 1067(C )

S03, ppm 9 8

NO, ppm 298 285

C1-, mg/m3 335 402

(a)Average for 3 coal tests

(b)Average for 10 coal-refuse

(C)13% increase in SO emissions during coal-RDF tests
resulted from a 24i increase in coal sulfur content.

RDF = refuse-derived fuel

Source: (Kilgroe, Shannon, and Gorman, 1976).

A facility fueled by waste products from lumber harvests offers some environmental advantages.

Additional land use would be small, only that necessary for the power plant itself and for storage

areas. The additional runoff of silt and the removal of wildlife shelters would probably be less

significant than the environmental gain from removal of diseased wood. Lower efficiencies of such

facilities would produce thermal pollution comparable to nuclear power plants. Air pollution

would be minimal: wood is low in sulfur (about 0.1%) and combustion at this lower temperature would

reduce NOx formation (but might increase HC emissions). Ash, although in greater amounts, could be

returned to the land. Emissions from additional efforts of collection and transportation might be

significant.

Organic wastes conversion into oil or gas could amount, using the 1971 collectible agricultural

residues of 130 million tons, to 2000 trillion Btu (Bureau of Land Management, 1973), or enough to

service about thirty-five 1000 MWe plants. Sulfur contents of various oils produced from organic

wastes would all comply with federal standards (Bureau of Land Management, 1973)(Table 5.2):
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Table 5.2

Sulfur Contents of Synthetic Oils from Solid Wastes

Percent Sulfur

Pine needes and twigs 0.10

Sewage Sludge 0.64

Municipal refuse 0.13

Cow manure 0.37

Cellulose 0.003 to 0.2

Transport of these wastes could result in significant pollution from the operation of the vehicles.

Conversion of solar energy by organic materials into methane could yield about 1015 Btu/year

(Beall, et al., 1974) or enough to fuel about twenty 1000 MWe plants. Again, where organic materials

are widely dispersed, collection and transport would involve significant environmental impacts. Ex-

plosions and fires from leaks would impose risks on the public but these are believed to be over-

shadowed by the general good resulting from proper waste disposal (Locke, 1970). Annual water con-

sumption per 1000 MWe could be about 560,000 acre-ft (Oswald and Golenske, 1968) which could be a

problem in a semi-arid land of the type that receives optimal quantities of sunlight. Water and

sludge wastes could be a major barrier to process commercialization. As much as 40% of the starting

material would require eventual disposal (CEQ, 1975, p. 10-8). Air pollutants would be in the form

of C0 2, H20, H2S, and NH3. The production of methane also includes odors from the transport and

storage of the necessary wastes; similar operations at sewage facilities frequently generate com-

plaints from the nearby populace. Land use would be small.

Available information on solid waste emissions is shown in Tables 5.3, 5.4, 5.5, and 5.6.
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Table 5.3 Annual Environmental Impacts from Operation of 1000 MWe

Urban Solid Waste Fueled Power Plant with Load Factor of 0 .75 a

impact Extraction Processing Transport Conversion Transmission Total

Lnd, sq. mil 0 0 0 1.1 26.8 28

..:ter, tons O | 810 0 810

curies 0 0 T 0 0 0 0

tul13 3
B Stu 0 0 0 O 5.29x10 0 5.29x10

,r, tons I 0 0 2.6x104l 2.9x105lO O 3.2x105lO

curies 0 0 0 0 0 0
I , I !

IS-lid or Liquid 4 l A 4

Dats 0 0 2.30 .012 u 2.3+

injuries 0 0 23.4 1.38 u 24.8+

Workdays lost; 0 0 2340 153 0 u 2500+

+ = Sumration includes unknown

u = unkno:i;n

item

aData from (CEQ, 1973) coal facility and (Teknekron, 1977) data on co-combustion.
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Table 5.4

Urban Solid Waste as Fuel for Power Plants

(per 1012 Btu Input Energy)

(All values in tons unless noted) Co-Combustion with Coal

Primary Eff.(fraction)

Acids

Bases

Phosphates

Nitrates

Other Dis Solids

Total Dis Solids

Suspended Solids

Non-Degrad Organics

BOD

COD

Thermal (Btus)

Total Solids + Organics

Particualtes

NOx

SO
x

HC

H2 S

CO

Aldehydes, etc.

Total Air

Solid Wastes

Land (acres)

Water (acre-ft)

3.4E-01

1.34E00

0

6.78E-01

0

5.84E00O

7.86E00

8.08E00

1.08EOO

3.9E-02

0

1.3E09

1.70EO1

1.60E02

1.50E02

1.92E02

u

u

u

u

5.02E02

0

5.8E-01

1.52E04

u = unknown

Source: (Teknekron, 1977)
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Table 5.5

Bioconversion of Wastes into Methane (per 1012 Btu Input Energy)

(All values in tons unless noted)

Primary Efficiency (fraction)

Thermal (Btu)

Water (acre-ft)

Total Solids + Organics

Particulates

CO

CO2

Total Air

H2S

NH3

Solid Wastes

Land (acres)

SOx

NOx

HC

Aldehydes, etc.

Transport of Wastes

equivalent to phy-
sical loss of 10%

7.3E-02

1.3E+00

3.8E+00

0

2.3E+00

1.5E-O1l

2.1 E00

2.1E-01

1.7E-02

Conversion Qf
Agricultural
Wastes to Methane

1.8E-O1

0

1 .5E+02

u

u

8.4E+02

l.1E+03

2.6E+02

u

0

3.2E+00

u = unknown; - = unlisted. Source: (Teknekron, 1977, p. 230 and p. 236).

Anaerobic Conversion
of Urban Wastes to

Methane

3.8E-01

0

0

0

u

2.5E4

2.5E4

u

7.0E4

3.0E1

u
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Table 5.6

Bioconversion of Urban Wastes into Clean Fuel

(per 1012 Btu Input Energy)

(All values in tons
unless noted)

Primary Eff. (fraction

Acids

Bases

Phosphates

Nitrates

Other Dis Solids

Total Dis Solids

Suspended Solids

Non-Degrad Organics

BOD

COD

Thermal (Btu)

Total Solids + Organics

Patriculates

NOx

SOx

HC

H2S

CO

Aldehydes, etc.

Total Air

Solid Waste

Land (acres)

Water (acre-ft)

Pyrolysis with Air

8.OE-Ol

u

u

u

u

u

u

u

u

u

u

u

u

3.33E01

u

u

0

u

u

u

u

0

9.OEOO

6.8E04

Pvrolvsis with n,

7.5E-01l

3.22E2

0

0

3.22E2

0

1.O1E3

0

0

u

1.32E3

0

0

0

2.2E-02

u

5.56E03

0

2.OEOO

2.5E05

u = unknown

- = unlisted

Source: (Teknekron, 1977)
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6.0 GEOTHERMAL-ENVIRONMENTAL IMPACTS

The different types and the different sites for geothermal energy present significantly dif-

fe. nt environmental problems. In general, however, effects will be limited to the area above the

primary thermal cells (about 20 by 15 miles) and, more specifically, above the local thermal cells

(about 5 by 6 miles) (Beall, et al., 1974, p. 22).

Utilization of hot rocks has not been investigated sufficiently to enable comment on environ-

mental effects. For the other types of geothermal energy, the impacts begin with reconnaissance

roads, blasting, and drilling. Water impacts include siltation, contamination from spills and

blowouts, and degradation of springs and aquifers. Boron, fluorides, arsenic, chloride salts, car-

bonates, and other dissolved minerals in the water can either be reinjected or possibly recovered

in ponds. Land use and possible gaseous releases from such ponds would require careful study. Be-

cause geothermal facilities operate on small temperature differences, thermal efficiency can range

from 22,000 to 25,000 Btu/KWhr, or 1/2 to 1/3 the efficiency of conventional systems (Beall, et al.,

1974, p. 29). With wet cooling towers at a 1000 MWe facility, this would result in the consumptive

use of 60 million gallons of water per day. There may be beneficial uses for the waste heat, such

as desalination of water where brines are the local fluid.

Air pollutants can include damaging amounts of H2S, NH3, methane, fog-producing humidity, mercury,

and radioactive noble gases (mainly argon) (see Table 6.1). For a 1000 MWe plant, about 10 to

45 square miles of land would be needed for steam lines and installations, with about 12 more

square miles necessary eventually (Beall, et al., 1974) for replacement wells (and this does not

include the land use demands that would be made by access roads and transmission). These lands

would be completely lost to recreation and partially lost to the land wildlife communities, although

the major impact to wildlife would be to the aquatic communities exposed to toxic and heated effluents.

Noise levels have been known to reach 65 dB at 1500 feet (Beall, et al., 1974, p. 25)(see Table 6.2).

Potential hazards of these facilities include: during development -- blowouts, brush fires,

landslides and brine flow; during operation -- seismic activity from fluid withdrawal or reinjec-

tion, and ground subsidence, Some data on emissions follow in Tables 6.3, 6,4, and 6.5.
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Table 6.1

Yearly Quantity of Geothermal Emissions for 1000 MWe Facility

(Teknekron, March 1975)

Water emissions: Tons

Akalinity as HC03

Ammonia

Sulfide

Sulfate

Free Sulfur

Nitrate

Chloride

Calcium

Magnesium

Silica

Boron

Total Solids by Evaporation

Organics and Volatile Solids

Air emissions:

CO2 487,000

NH3 43,900

CH4 36,300

H2S 12,100

NI,, A 21,800

H2 7,250

5070

1750

23.6

1549

98.6

1.18

41.3

62.6

11.8

44.2

202

2190

2440
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Table 6.2

Noise from Geothermal Operations

Operations Distance Measured Noise Levela

(feet) (decibels)

During air dilling of a well t 25 125

1,500 55

Muffled testing well 25 100

1,500 65

aFor comparison: jet aircraft takeoff noise is approximately 125 decibels
(dB) at 200 feet.

Source: (CEQ, 1975, pp. 8-10)

Table 6.3 Annual Environmental Impacts from Operation of 1000 MWe

Geothermal Power Plant with Load Factor of 0 .7 5 a

Impact Extraction Processing Transport Conversion Transmission[ Total

Land, sq. mil 12 0 0 33 26.8 i 72

Water, tons Nil 0 0 Nil 0 Nil

curies Nil 0 0 Nil 0 Nil

Btu : 0 0 0 15xlO 1 3 0 15xlO13

Air, tonsb 0 I 0 0 1.65x10 0 1.65x105O

curies 0 0 0 u 0 u

Solid or Liquid
Wastes,

tons u 0 0 returned 0 u
to reser-

i]~ _ _ _ _ _ _ __~~~ ~voir

curies 0 0 0 Nil 0 Nil

Occupational

Deaths 0.04 0 0 0.002 u .042+

Injuries ' 2 0 O 0.13 u 2.13+

Workdays lost 286 0 0 17 u 303+

aSource is (Beall et al., 1974) unless otherwise noted.

bExcluding water and CO2 (Finney, 1972).
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Table 6.4

Geothermal Extraction

(per 1012 Btu Input

Steam-Dominated
Hard Rock

(All values tons unless noted)

Primary Efficiency (fraction)

Thermal (Btus)

Total Solids + Organics

Total Air

Solid Waste

Land (acres)

Water (acre-ft)

Occupational Deaths

" Injuries

Man-days lost

1.5E-01

0

0

0

1.5E+00

0

Liquid-Dominated
Hard Rock

u

0

0

0

1.5E+00

0

u

u

u

u = unknown

- = unlisted

Source: (Teknekron, 1977, pp. 30-37)
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Hot Dry
Rock

u

0
0

2.4E+O1

3.3E-O1

3.1E+02

u

u
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Table 6.5

Geothermal Power Plant Conversion

(per 1012 Btu Input Energy)

Steam-Dominated
Hard Rock

Liquid, Binary
System

- = unlisted

Source: (Teknekron, 1977)
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(All values tons unless noted)

Primary Efficiency (fraction) 1.4E-O1 1.2E-O1

Thermal (Btus) 0 0

Total Solids + Organics 0 0

Particulates 0 0

NOx 0 0

SOx 0 0

HC 6.7E+01 0

H2S 7.7E+01 -

CO 0 0

NH3 6.7E+01 -

Total Air 1.34E+03

Solid Wastes 0

Land (acres) 2.36E-01 2.4E-01

Water (acre-ft) 0 3.0E+04
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7.0 FUEL CELLS - ENVIRONMENTAL IMPACTS

Because of the efficiencies in the range of 50-55% (Meyer, Jones, and Kessler, 1975),

fuel cells would consume about two-thirds of the fossil fuel of a conventional facility, thus con-

sumptive use of land for extraction purposes would be less. Thermal pollution is thus propor-

tionately less than at a coal facility and air pollutants are limited to CO2 and small fractions

of other pollutants (see Table 7.1).

Table 7.1

Comparative Air Pollutant Levels of 1000 MWe Power

Plants at 0.75 Load Factor (Schurr, 1971)

Gas-fired station Fuel cells

Sulfur dioxide (lbs) 1970 2

Nitrogen oxides (lbs) 26300 1600

Hydrocarbons (lbs) 18400 1500

Particulates (lbs) 660 .2

The fuel cell power plant was originally conceived to be the answer for a "non-polluting" electric

power plant. At that time a hydrogen/oxygen fuel cell was envisaged. The production and handling of hydrogen

and oxygen cells presents very serious problems which are expensive to solve.

Next, fuel cells operating on natural gas and very light distillates (alcohols, naptha, etc.) were

anticipated. Since the embargo of 1973/74 and the natural gas shortage of 1976/77 this type of fuel cell

plant has had to be discarded.

The present thinking is that fuel cells can be made to operate satisfactorily from fuels derived

from coal. The reforming of coal into a suitable fuel cell fuel means that all of the problems of mining,

distribution, gasification and disposal of the solid wastes associated with the use of coal will still

exist.

Other beneficial effects of fuel cells result from a quietness, size, and low waste level

which enable small installations to be sited locally, reducing transmission needs to one-third or

less of conventional needs.

Table 7.2 presents a general fuel cycle view of important pollutants; Tables 7.3 and 7.4

show lists of specific concerns and chemicals emitted, and Tables 7.5, 7.6, and 7.7 show quanti-

fication of effluents (Kalfadelis, et al., 1976) from a large fuel cell facility that includes

a coal gasification plant.
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Table 7.2 Annual Environmental Impacts from Operation of 1000 MWe

Coal-Fired Fuel Cell Power Plant with Load Factor of 0 .75 a

Impact Extraction Processing . Transport Conversion Transmission Total

Land, sq mil32.9 .2 2.3 .6 9 45

'.ater, tons 23900 j 2570 0 . 813 0 26300

curies ! 0 0 0 o 

B tu ! 0 0 1 0 2.OxlO' 0 2. 0x1

A.r, tons u t 3200 j 1.8x104 870 0 2.2x104+

curies 0 0 0 0 0 0

Sclid or Liquid 5 2.

liaste, tons 1.82xl0 3.0x1 0 2.1x

curies 0 0 0 0 O

-, - , ' ' i ..
lccupational 1j6

Deathis .206 .016 j 1.53 .009 u 1.76+

Injuries I 9.3 1.7 15.6 1.09 u 27.7+

Workdays 1 ost 330 66 i 1560 120 u 2080+

i _ ... I _ _ , ,

+ = Sunmation includes unknown item

u = unknown

aAssumed similar to a gas-fired facility in conversion aspects and to a coal
and transport aspects.

facility in extraction
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Table 7.3

EMISSIONS AND EFFLUENTS FROM FUEL CELL POWERPLANT

Emissions to Atmosphere

Wind action on coal storage and handling

Wind action on ash

Water vapor from coal grinding

Cleaned flue gas

Vacuum pump on steam condenser

Air and mist from cooling tower

Possible fugitive dust from area and
iron oxide preparation

Transients due to upsets, cleaning, etc.

Potential noise and odors

Effluents - Liquids and Solids

Rain runoff - coal and waste areas

Ash slurry

Slurry of waste from sulfur recovery
cleanup

Sludge and chemicals from water treating

Waste electrolyte

Trace Elements

Leaching associated with disposal of ash

Fate of volatile toxic elements in coal
feed

Emissions as gas and P.M. and P.O.M.
with stack gas

Potential Concerns

Dust, fire, odors

Dust

Dust, H2S

NOx , plume dispersion, dust, SOx, P.O.M.

Minor

Plume, mist deposition, trace chemicals

Dust nuisance

Dust, smoke, fumes

Machinery, maintenance

Suspended and dissolved matter

Ground water contamination

Ground water contamination and land use

Minor

Ground water contamination

Soluble toxic elements

Contamination of local air and water;
effect on fuel cell life

Hazards to life

Source: (Kalfadelis, et al., 1976)
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Table 7.4

CHEMICALS USED IN REClRCULATIVE
COOLING WATER SYSTEMS

Use

Corrosion inhibition or scale prevention
in cooling towers

Biocides in cooling towers

pH control in cooling towers

Dispersing agents in cooling towers

Biocides in condenser cooling'water systems

Chemical

Organic phosphates
Sodium phosphates
Chromates
Zinc salts
Synthetic organics

Chlorine
Hydrochlorous acid
Sodium hypochlorite
Calcium hypochlorite
Organic chromates
Organic zinc compounds
Chlorophenates
Thiocyanates
Organic sulfurs

Sulfuric acid
Hydrochloric acid

Lignins
Tannins
Polyacrylonitrile
Polyacrylamide
Polyacrylic acids
Polyacrylic acid salts

Chlorine
Hypochlorites
Sodium pentachlorophenate

Source: (Kalfadelis, et al., 1976)
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Table 7.5

POWERPLANT PERFORMANCE SUMMARY
GASEOUS AND THERMAL EMISSIONS

Plant Effluent

so2, g/J

NOx , g/J

HC, pg/J

CO, g/J

Particulate, Vg/J

0.32

<.013

Negligible

6.8

<0.039

Solid
Fuel Standards

0.52

0.30

0.043

Thermal Pollution

Heat Rejected -

Heat Rejected -

Heat Rejected -

Cooling Towers

Stack

Total (1)

1.830 MJ/kWh

0.30 MJ/kWh

3.62 MJ/kWh

(1) Includes total plant losses

Source: (Kalfadelis, et al., 1976)
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Table 7.6

BASE CASE ESTIMATE OF POTENTIAL TRACE ELEMENTS
DISCHARGED TO ATMOSPHERE WITHOUT SCRUBBER

ppm in Coal

(Dry Basis)

0.5a

8 - 45

0.6 - 7.6

13 - 198

14.2 a

0. l4a

400 - 1000a

50 - 167

8 - 14

.04 - .49

0.6 - .49

2.2a

8.7 - 67

0 - 53

Average %
Emitted

25

25

25

25

100

35

100

100

35

90

25

70

30

25

Emittedb
kg/d

0.81

13,- 73

1.0 - 12

21 - 320

92.0

0.32

2600 - 6500

320 - 1100

18 - 32

0.2 - 2.9

1.0 - 14

10.0

17 - 130

0 - 86

3094 - 8373

a. Not given in ECAS basis and therefore estimated

b. Based on a feed rate 6891 t/d of Illinois No. 6 coal

Source: (Kalfadelis, et al., 1976)
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Element

Antimony

Arsenic

Beryllium

Boron

Bromine

Cadmiun

Chlorine

Fluorine

Lead

Mercury

Molybdenum

Selenium

Vanadium

Zinc

TOTAL



Table 7.7

POWERPLANT PERFORMANCE SUMMARY
LIQUID AND SOLID WASTE

Liquid

Blowdown

Gasifier Boiler

Steamplant Boiler

Cooling Tower

Sulfur

Solid (Ash)

152 m3 /h

5.9

21.1

125.0

5.1 t/h

20 t/h

0.23 dm3/kWh

9.1 g/kWh

32 g/kWh

Source: (Kalfadelis, et al., 1976)
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8.0 OCEAN THERMAL - ENVIRONMENTAL IMPACTS

An ocean thermal power plant would cause a significant warming of deep water and cooling of

surface water. Although the temperature change would only be a few degrees, this kind of magnitude

is currently of great concern for shoreline power plants; in addition, ocean fauna are generally

more sensitive than estuarine fauna (Paskausky, 1974).

The upwelling of deep waters rich in nitrate and phosphate nutrients might lead to significant

increases in useless blue-green algae populations. Algae growth could lead to unexpected events

such as Crown of Thorns invasions as on Pacific reefs. Growth of reefs and reef animal populations

would likely be inhibited.

On a positive side, natural upwellings occur in a few places around the world, and fish produc-

tion is improved as a result (Beall et al., 1974, p. 72). Experiments (Gerard and Roels, 1970) have

shown significant increases in phytoplankton production in raised water with potential mariculture

of marketable products such as shrimp.

Air pollution could result from the accidental release of the inventory of working fluids. For

some fluids(freon), evaporation could cause significant local contamination of the atmosphere; for

other fluids (propane), explosion and fire hazards would exist, Other soluble fluids (ammonia) could

be very disruptive to local aquatic life.

Experience with offshore oil rigs has demonstrated that with sufficient care, navigational

hazards posed by these large, floating facilities would be minimal. Climatic and aesthetic impacts

(avoiding nearshore sites in Hawaii, Puerto Rico, Florida, and California) would be minimal

(Beall, et al., 1974, p. 73). About 60 square miles of ocean would support a 1000 MWe facility

(Meyer, Jones, Kessler, 1975).

The arguments about the positive or negative nature of ocean thermal plant environmental impacts

will persist until pilot plants are operated at the various different site types (FEA, 1974). Sites

close to shores and estuaries will require particularly careful study.

Some data on environmental effects of ocean thermal plants are collected in Table 8.1.
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Table 8.1 Annual Environmental Impacts from Operation of 1000 MWe

Ocean Thermal Power Plant with Load Factor of 0 .7 5 a

Impact Extraction Processing Transport Conversion Transmission Total

Land, sq. nil 0 1b 0 O 60(at sea) 26.8 87

.:a ter, tons 0 i 0 0 u 0 u

curies 0 0 0 0 0 0

Bt 0 0 0 0 0

i! r , t on s 0 0 0 0 0
Etu ! 0 ° 0 0 0 

isir, tons 0 0 0 0 0 o 

curies 0 0 0 0 0

2,)cupatiai
Daths 0 0 0o u i u u

0~aste, tons 0 0
Injuries O u u

De ork days lostj 0 0 0 O u
!~~~~~~~~~~~~~~~~~~~~~ 

u = unknown

aMost values from (Teknekron, 1977, p. 200).

b(Perrigo and Jensen, 1976, p. 23).

L-37



9.0 WAVES AND CURRENTS - ENVIRONMENTAL IMPACTS

Wave power technology and ocean and riverine current technology have not been evaluated by any of the

studies on comparative environmental impacts. The modification of normal wave action and current flows

by these devices may have an effect on the ecosystems in the near shore areas and in the rivers.

With sufficient design it would be possible to locate these devices so as to cause minimal naviga-

tion hazards. There may be advantages to wave energy extractors which serve as breakwaters. About 40

to 160 nautical miles of wave energy devices, or 500 to 1000 current devices of 300 m
2 turbine area would

be required for 1000 MWe of generation.

Some data have been generated on the environmental effects of wave energy and riverine current

energy devices, as shown in Tables 9.1 and 9.2.

Table 9.1 Annual Environmental Impacts from Operation of 1000 MWe

Wave Energy Device with Load Factor of 0.75

Impact Extraction Processing Transport Conversion Transmission Total

Land, sq. il o .1 0 25-100(at sea) 26.8 52-127

!;!ater, tons { 0 0 u 0 u

curies 0 I0 0 0

Btu o 0 0 0 0 0 o

Ai r, tons i 0 0 0 0 0

curves i O 0 0 0 0 0

Solid or Liquid

I' aste, . tons _ O i O 00 0 0

Oi 0 0 0 0 0

Occupational I 
D'~aths i 0 u u

Injuries 0 0 u u u

Iorkdays losti 0 0 o u uu 

u = unknown
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Table 9.2 Annual Environmental Impacts from Operation of 1000 MWe

Riverine Current Device with Load Factor of 0.16

+ = Summation includes unknown

u = unknown

item
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Impact Extraction Processing . Transport Conversion Transmission Total

Land, sq. mil 0 .1 O 600+ 26.8 627+

'.later, tons 0 0 0. u 0 u

curies °O -O _

Btu | O 4 ° 0 0 0 

Air, tons 0 0 0 0 0 O

curies 0 O i 0 0 0 0.

ISolid or Liquid
WIlaste, tons ! 0 0 K ! o o 0 0

curies 0 0 0 0 0 0

loccupational 
D2?at~hs 0 0 o u U u

Injuries 0 o i 0 ! _ _ U u . u

uorkdays lost! 0 0 0 u u u I __________ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _I~~~~~~~~~~~0 
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