
THE GMIS 2 ARCHITECTURE

Jerry Lamb, Robert Selinger, & Chat Yu Lam

Enerqy Laboratorv Workina Paner MIT-EL 77-014WP

June 1977

Abstract
0

This document describes the software details of GMIS 2
as it is implemented on the VM/370 system.

Table of Contents

I. Introduction

II. Overview of the GMIS 2 Configuration and Virtual Machine Functions

III. The Virtual Machine Communication Facility as Used by GMIS 2

IV. Functional Operation of GMIS 2

V. Communication Module Descriptions

VI. Virtual Machine Module Descriptions

. . ,

I. INTRODUCTION

.This document is a detailed description of the GMIS 2 communication

and system operation routines. It is intended for the programmer who desires

an in-depth description of procedures used for multiple virtual machine

communication among the GMIS 2 virtual machines. Readers should be familiar

with basic GMIS operation and additional reading material is listed in the

bibliography.

Section II presents an overview of the GMIS configuration and describes

the various functions of the different virtual machines. These virtual machines

are: the manager virtual machine, user virtual machines, communication

virtual machines, and the data-base virtual machines. Section III presents

a summary of the Virtual Machine Communication Facility (VMCF) as utilized by

the GMIS routines. Section IV presents a detailed view of the GMIS System

including a functional flow diagram of the system operation. Section V describes

the various utility routines used by all GMIS 2 virtual machines. These

routines are either used for inter-virtual machine communications or for

performing special tasks. Section VI describes the special GMIS system programs

unique to each type of virtual machine.

In describing each program we emphasize the associated data structures

and mechanics of its operation, rather than elaborate on its logic which can

be obtained from the program listing. This document is intended to provide a

guide for the GMIS system programmer to update, maintain, and change the software

as the need arises.

2

II. OVERVIEW OF THE GMIS CONFIGURATION

The configuration of virtual machines used in the present GMIS is

depicted in Figure 2.1, where each box denotes a separate virtual machine.

The blocks across the top of the page represent different user-oriented

programs (modeling and analytical systems, editors, etc.) and the blocks

across the bottom of the page denote different data management systems,

each running on its own virtual machine (DBVM). A user may access any

modeling system and request a connection to any virtual machine. A com-

munications virtual machine (CVM) associated with the user's machine (UVM)

provides the necessary communications interface between the user's analy-

tical capability and the desired database system. With this configuration,

it is possible for a user to access the modeling or analytical capability

with which he is most familiar, even though it may be running under an

operating system different from the other available modeling or analytical

capabilities. Thus, the user is not required to learn new analytical capa-

bilities.

In addition, since each virtual machine may run any existing model or

program under its normal operating system, such a configuration eliminates

the need to devote resources to translating application packages and pro-

grams between operating systems.

Furthermore, the GMIS configuration permits interaction between ap-

lication languages and programs not originally envisioned by their developers.

For example, an analytical package is greatly enhanced by having its data

management capabilities extended. Hence, a user of the APL/EPLAN analytical

capabilities, for example, may request data that is stored and managed by

SEQUEL database management capabilities.

Fai
LHIN

(Activotazz ma
mot tort
Comrualscate
Urtua hLw~i

S

Uram

PnIIIES

(Possiblt
Comar icatilOi

DATADS:E

VfItUAL

IClQEs

- Gx Ot b ram1ple

FIGURE 2.1 GMIS Architecture

C(Gathers are ,tatLitc.
ard cosets f row U3ser d
Dotaba&* Virt ult Mar-him)

I

/

trpcL

L

4

Functions of the Virtual Machines

Functions of the Manager Virtual Machine

The primary function of the manager virtual machine (MVM) is to

respond to user requests to create the connections between the virtual

machines servicing that user by activating the necessary CVM's. The other

function of the manager is to disconnect and automatically log out the ap-

propriate CVM's once the user has finished using GMIS.

To accomplish these functions, several procedures were added to the

user VM's and the manager VM. When a user logs into his user VM by

sending a message to the manager VM (MGR) the message sending procedure

uses the VM/370 Virtual Machine Communications Facility (VCMF).

1. He may request a communications VM

2. When the manager VM receives a message from a user, it:

a. checks the VM ID of the send for authorization and,

b. looks at the message sent by the sending VM.

If the message is to log in a CVM, then it will check to see if such a VM

already running. If not, it automatically logs one in (note that the manager

VM has Operator privileges, which permit it to log in other virtual machines).

The manager also periodically checks all CVM's to see if they have "owners,"

i.e., if the user VM's are currently logged in. If a communications VM does

not have an owner, the manager VM automatically logs off the user's CVM.

Functions of Communications Virtual Machines (CVM's)

The communications VM's provide mechanisms for user VM's to communicate

with database VM's. Since each interface routine is custom-built to permit

communications between a specific user environment and a specific database

system, each user environment (e.g., PL/I, TROLL, APL) has a single standard

communications interface written that uses the most efficient communication

5

capabilities available in that environment. Likewise, each database system

has a standard communications front end built for it which receives trans-

actions in a format that requires a minimal amount of preprocessing on the

part of the database machine. Any reformatting of transactions from the user

or replies from the database system is handled by the interface routine which

resides in the user's communications VM.

Functions of the Database Virtual Machines

GMIS provides users with access to an interaction relational database

management system called SEQUEL, which has developed at the IBM San Jose

Research Laboratory. In the near future, we will also offer the Query by

Examply relational database system, which is being developed at the IBM

Yorktown Heights Research Laboratory. TheSe relational systems llot - -

database transactions to be entered on line, and prepare replies to these

transactions in the form of single valued results or tabular reports.

A database VM, regardless of the database management system running

on it, receives transactions from the communications virtual machines belonging

to different users, and stacks these requests in the order that they are

received. Each request is processed (one at a time) by the database management

facility, and the reply is passed back to the communications VM which sent the

transaction request. After each reply is sent, the database machine selects

the next request from the stack, identifies the sending communications VM, and

processes the transaction.

6

III. Virtual Machine Communication Facility

This section contains a brief explanation of what VMCF does and a

description of its use by GMIS 2. For GMIS 2, an assembly language

program was written to interface PL/I to VMCF. The protocols for each entry

point are independent of the messages or data that are being transferred

and its interpretation. Unless there is an error in VMCF, the actual assembly

language implmentation is invisible to the calling program.

For user environments and database systems which can be interfaced through

communication modules written in PL/I or FORTRAN, the VMCF inter-machine communi-

cations mechanism is used for highly efficient signalling and message sending.

Some of the user environments, such as TROLL and APL, do not normally permit

the user to directly call external routines, and thus one must use a spooling

mechanism utilizing virtual card readers and punches for sending and

receiving messages.

VMCF Overview

The Virtual Machine Communication Facility (VMCF) is part of the CP

component of VM/370. VCMF provides virtual machines with the ability to

send data to and receive data from any other virtual machine.

Messages and data are directed to ther virtual machines logically

via the userid. The amount of data that can be moved in a single transfer

is limited only by the sizes of virtual machine storage of the respective

virtua 1 machines.

VMCF is implemented by means of subfunctions invoked using the DIAGNOSE

instruction with a code of X'68' and a special parameter list called VMCPARM.

A VMCF subfunction is indicated by a particular subfunction code in the VMCFUNC

field in the parameter list. A virtual machine must invoke the AUTHORIZE sub-

function before it is allowed to use any of the other subfunctions. Once this

7

is done it can send and receive data to and from other virtual machines

which have also authorized VMCF.

A special external interrupt (code X'4001') is used to notify one vir-

tual machine of a pending transfer of data. This interrupt is also used to

synchronize sending and receiving of data. Along with this interrupt, the

virtual machine receives a message header that is logged into a preassigned

virtual storage area. This message header is used to define the type of

request and to provide data transfer information, such as length of data. The

message header is also used to notify the originator of a transaction of the

success or failure of the transaction. In this case, the message header

includes such information as residual counts and data transfer return codes.

Figure 3.1 lists the VMCF subfunctions and gives a brief description

of each.

IXEVMC

To facilitate data transfer and signalling, the VMCF functions used by

GMIS 2 are invoked via a high-level interface, IXEVMC. This interface is

written in assembly language and communicates directly with CP and VMC via the

Diagnose instruction, and contains the external interrupt handlers. (For a

description of the parameters required by CP for VMCF (VMCPARM), see the

VM/370 System Programmer's Guide.) The entry points in IXEVMC are callable from

PL/I programs, require only a few parameters, and are described in Section V.

VMCF messages for GMIS 2 are composed of two parts, a header indicating

type of message and a text section. The header consists of a message type and

a code. The code is presently used to indicate to the CVM which module is

desired. The text portion is used to pass instructions, queries, and data

between VM's (Future plans call for the header to be included as an integral part

of the VMCF's communication parameters.)

7A

I--

Co-wment s

I LUTHoI IZ

I

j SE fDX

RECEIVE

CA CELI

REPLYI

I QUIBSCE

RESUME

IThe

I SEDreaC

Figur c4..1

1?

v

jControi Ilnitial zes IYCF Io, I qivn vrtui) achi,,. I
I i[" A .Ol,:, ;Jl : ' J. :. 'J.:,: H'' :I ,. f] , th VJ. I. tL .I1 I
I I ri .:c, i. . (C:I %x7 , t. ot II:): V. 1:.' :';uiIlfII rct j:on:. I
I' I it, l CCC 'I.v,:L VC ;i; j(9!; o 1. . eq 1 z; ts f roln other I
i

i
I Con trol

I I)ita

.1

I

(DataI ,ttra

II
!
I Dat a
I
I

I

IDataiI

I Control

II Control

I --I

I
I Data

I

I
lControl
I
I
I
i control

i
I
I
IlControl

I
I
Control

i
I
I

i
Icr-rj.-.atu:; V.CF activity.
I I
I Dnirc t a miessage or block of data to anotherl
I virtual i.achine. I

IDirects a nesage or lock of data to anotherl
I virtual achine, 'and requcts notification I
I of a reply. I
I I
I P ir:c:s data to another virtual achine on a I
I faste(!r ut ore restrictive protocol than 1
I the SEND subfunction. i
I
IAlJ.ows you to accept selective messages or
I data -e 1't via a END or SND/IR;CV
I subfunction.

I . I

!Cancels a essaue or data transfer'directed I
I to aother user but not yet accepted by thati
I user. I

I
IA.ows you to direct data back to the
I originator of a SEI;D/nRECV subfunction,

simulating full duplex comunication.

ITemporarily rejects further SE SED SE:IDX,
I SEND/RIECV, or IDENTIFY requests from other

I users.

IResets the status set by the QUIESCE
I subfunction and allows execution of

I subsequent reguests from other users.
i I

iotifies another user tt your virtual
i machine is available for VICF communication.1

IAllows you to reject specific SEND or
I SEND/RECV requests pending for your virtual I
I aclhine. I
/I

I
I
1
I

I
I
I

I
I'
I
I
I
I

I P u'Ic f ' oni

-~- - - - L--- - -- ---- --- I-
"Data" i this colu:i1 indictes a ata transfer subfunction I

the wor:d "Control" indicates a V2CF contro subfunction. I
Vi-tu l ach-in CoL:unication .'acilit (iCl) Subfu - ctionsVir'k.UdlMa~hllQ CL%;tU~liC,-1tO~j -a~ij~ty(VhC1) S funlct io ns

I (:ode I . . I I

I .. ,
I

I

I i

I
I
I
I

I I

8

There are three message types:

M = message text follows

Z = log off associated CVM (manager specific)

X = switch to indicated interface module (CVM specific)

9

IV FUNCTIONAL DESCRIPTION OF GMIS

Each GMIS virtual machine communicates with other VM's through the

VMCF interfaces described in Section III. Several routines, common to all

GMIS VM's, are used to accomplish the sending and receiving of messages.

Figure 4.1 shows the routines and data areas associated with this software.

In addition,. each machine has GMIS system programs specific to its functions.

Figure 4.2 shows the entire GMIS communication configuration. (Note: All

possible programs are shown, not core configuration at any specific time.)

The basic functions of each communication module are:

VMCINIT - Initialize the VM for VMCF communications

VMCTIME - Initialize timer interrupt - done only once

VMCWAIT - Place machine in a wait state for external communication or

timer interrupt

VMCSEND - Send a message through VMCF

VMCRECE - Process a message received from VMCF after a call to VMCWAIT

VMCTERM - Terminate VMCF communications

IXEUVM - Returns a UVM ID to a calling CVM. The ID is read from disk as

shown in Figure 4.1. The CVM needs UVMID for communication.

IXECVM - Analogous routine for a UVM to get a CMVID.

The basic functions of the programs specific to certain VM's are:

Manager VM VMMGR - logon on CVM when requested by UVM; terminate any unused CVM

User VM GMISINT - get special GMIS message for user and print it, get the ID

of the CVM and request the MGR to initialize it, request CVM to

load desired interface module (APL - SEQ or P1/I-SEQ)

Communications VM CVMINIT - load appropriate interface module after initializing

CVM

MODULES

USER DATA AREAS

CMS

IXEVMC

VMCINIT

VMCWAIT

VMCWAIT

VMCRECE

VMCTIME

VMCTERM

IXEUVM

IXECVM

External Interrupt ECB

Time Interrupt ECB

Message Buffer

Message ID

Message Length

Interrupting Machine ID

Return Code

System Disk

C ai
IDPar

_ _

- - -

PLI UVM

CMS
USER PROG
PLI-SEQ

P

I
PLI CVM I

L __ __

MANAGER

UJn VlVl

CMS
MUI
SEQUEL
VMC

FIGURE 4.2'GMIS Configuration

Non VCF
-- -- VCF

GMIS INIT
VMC

CMS
PLI SEQ

CVMINIT
VMC'

l.

I

I

I

- - - -- i

12

Figure 4.3 shows the sequence of oerations, routines called, and

messages passed to start up a PL/I UVM - CVM - DBVM link. PL/I was chosen

because it is the general case that will be used for future expansion. The

figure shows messages as

type, code TEXT

Routines are assumed to perform the functions above unless specific functions

are noted. Time flows generally from top to bottom in Figure 4.3.

MGR UVM

LOGGED IN AT
IPL
VMMGR

read triplet
VMCINIT
VMCTIME
VMCWAIT

VMRECE
,autolog cvm

LOGGED IN
MANUALLY
DBEXEC
VMCINIT
VMCWAIT

-LOG IN
GMISINIT
print msg
IXECVM
VMCSEND (MGR)
m,O,'initial z'
CP SL 5 SEC

CP QUERY CVM
fail=stop

PUNCH SWITCH *
VMCSEND(CVM)

X,2

USER PROG QUERY
VMCSEND (CVM)
M,B,'DBVMID QUERY
VMCWAIT

LOGGED
CVMEXEC
CVMINIT
VMCWAIT

PUR RDR ALL
VMCRECE
load PLI-SEQ
CP MSG CVM 'ready'
VMCWAIT

VMCRECE
VMCSEND (DBVM)
M,B,' QUERY'
VMCWAIT VMCRECE

process query
VMCSEND (CVM)
M,B, 'result'
VMCWAIT

* Both are sent in case CVM is in APL mode

FIGURE 4.3 Example of a GMIS Communication

CVM DBVM

14

V.. Detailed Module Description of GMIS 2 Communication Routines

Communication Routines

Most system programs in GMIS are coded in PL1. The purpose of the

Kernal routines is to provide efficient functions for interfaces to

PL1 and basic VM system functions. All Virtual Machine communication

routines are contained in one program - IXEVMC. These entry points

are callable from PL1 programs to perform initialization of the

communication environment and for the sending and receiving messages, etc.

The detailed mechanics of each routine are described below.

VMCINIT

The function of VMCINIT is to initialize the virtual machine communication

environment. It involves invoking the authorize subfunction of the VMCF; and

setting up the external interrupt handler for intercepting virtual machine

communication external interrupts. A timer interrupt handler may also be set up

so that the virtual machine will get interrupted every t seconds, where t is a

constant in the data area of the IXEVMC program. For virtual machines that do not

require this facility, one can simply set the timer off, masking any timer

interrupt.

The following example will illustrate the usage of VMCINIT:

DCL VMCINIT EXT ENTRY;

CALL VMCINIT (MYVMID);

EXTERNAL INTERRUPT HANDLER

As a result of an external interrupt, the external interrupt handler

receives control. If the external interrupt code is X'4001' indicating

a VMC external interrupt, the resultant action of the interrupt

handler is to post an event control block (a 4 byte storage area for

synchronizing events). Since the ECB is the same one that VMCWAIT (see below)

uses in putting the virtual machine in a wait state pending an

15

external interrupt, the effect of the posting is a wake up of the

waiting process. The ECB is in the data area of IXEVMC which both

VMCWAIT and the external interrupt handler share.

The result of timer interrupt is similar. In this case, a different

ECB is used which is adjacent to the ECB used for external interrupts.

The waiting process gets awakened resulting from either an external

interrupt or a timer interrupt. Therefore, VMCWAIT will have to

check the cause of the interrupt and perform the appropriate function.

VMCWAIT

This entry point can be used to put the current process into an enabled

wait state pending either a VMC external interrupt, or if the timer is set

on, a timer interrupt. The caller of this routine can also specify which

virtual machine interrupt is to be acted on by setting appropriate

arguments. VMCWAIT will wait until it is woken up whereupon it checks to

see which type of interrupt caused the wake-up. The type of interrupt is

indicated to the called process or routine by the return code in one of the

calling parameters. For a timer wake-up, there turn code is set to a negative

number; for VMC external interrupt, it is set to the return code from VMC, which

is a positvie number. In the case of a VMC external interrupt, the VMID of the

interrupting virtual machine as well as the source message ID and message

length are copied from the data area of IXEVMC and returned via VMCWAIT.

Usage of VMCWAIT is illuastrated below:

DCL VMID CHAR (8) INIT ('GMISCZ')

DCL MSGID fixed bin (31);

DCL MSGLEN fixed bin (31);

DCL CODE fixed bin (31);

16

Call VMCWAIT (VMID, MSGID, MSGLEN, CODE);

if code- O0 go to Handle-timer

VMCSEND

This routine decodes the parameters, fills in the control information in a

data area in IXEVMC used to request VMC functions and calls the VMC facility.

The purpose of VMCSEND is to send a message to a specfic virtual machine.

Each message has a unique message ID and this uniqueness must mb maintained.

The following sequence illustrates how to send a message to another virtual

machine called GMISCH.

del sendvm char (8) init ('gmisch');

del msg char (8) init ('HL WOOPZ');

del msgadd pointer;

del msgid fixed bin (31) init (1);

del msglen fixed bin (31) init (8);

del code fixed bin (31);

msgadd = addr (msg);

call VMCSEND (SENDVM, MSGADD, MSGLEN, MSGID, Code);

If Code logical not = O, then call ERR-RTN;

The user should check the return code. If it is not zero, then an error may

have occured.

VMCRECE

This is simply the counterpart of VMCSEND. The usual sequence is to call VMCWAIT

to wait for a particular virtual machine and on return , the arguements of

VMCWAIT will contain the necessary information to invoke VMCRECE to receive a

message. This information includes: the VMID, message id and message length.

17

The caller of VMCRECE has to provide a buffer with enough length into which

the message received will be placed. The following will illustrate the

usage of VMCRECE:

Call VMCWAIT (vmid, msgid, msglen, code);

allocate msg char (sglen);

msgadd : addr (msg);

call VMCRECE (vmid, msgadd, msglen, msgid, code);

VMCTERM

This routine is to clean up the inter virtual machine communications environment

it is invoked by:

call VMCTERM;

The routine stops the VM from receiving or sending messages via VMCF.

A standard communication convention is used in decoding messages. Each message

always consists of a 4-byte message header and a message text. The message header

begins with a one byte message type, which can be the character M, indicating

the message text is purely message text; or z, indicating to the VMMGR to log off

the senders CVM; or X, indicating to a CVM to switch load to another interface

module.

Following the message type byte is one currently unused byte, then there is a

2-byte message code. Currently the code can be fixed binary 1 indicating

APLSEQ module is requested or fixed binary 2 indicating the PL1SEQ moduel is

requested. Note that this code has meaning only when the message type byte

has a 'X' character. The interpretation of message text will depend on the

communicating agents and the communication environment. For example, VMMGR

will only accept the character string M initial z in the message text from a

UVM.

18

Utility Routines

These routines are efficient subroutines to perform very special functions.

These functions include reading from a particular file, getting the time stamp.

IXEUVM

This routine is called by a CVM to obtain the VMID of the corresponding UVM. It

reads a file which contains 16 byte records consisting of one UVMID -CVMID pair

and returns the corresponding UVMID for the calling CVM.

IXECVM

This routine is very similar to IXEUVM. It returns the CVMID of the corresponding

calling UVM. Both entry points have the same calling sequence. The accept as

the first parameter, a pointer to an 8-byte area into which the resulting VMID

will be placed on return.

Examples:

del vmid char (8);
when used by a CVM

del ixeuvm entry external;

Call ixeuvm (vmid);

or:

del vmid char (8);

when used by a UVM
del ixecvm entry external;

call ixecvm (vmid);

19

VI. GMIS 2 SPECIFIC VIRTUAL MACHINE MODULE DESCRIPTION

A. The Manager Virtual Machine

There are two main functions that the MGR must perform: autolog on

user's CVM, and force off a CVM when the UVM which requested it is no longer

using it. These are both provided in the PL/I routine, VMMGR, which is autologged

when the CP system is ipled.

In order to know the CVM-UVM association and their account passwords,

VMMGR when first logged on, reads from a file called 'UVMCVMID MAINT Al' which

contians 24-bytes records, each of which is a UVMID -CVMID -CVM account password

triplet. The file is encrypted and the-manager reads it (decoded) from a second

file and then destroys the second file. The only decoded version kept is in core.

The end of the file is indicated by the terminating triplet; logon-logon-logon.

Currently VMMGR can accommodate 100 triplets.

After reading the content of the 'UVMCVMID MAINT Al' file into its storage,

VMMGR will then wait for any UVM to send him a message. The 'initialz' character

string in the message text and 'M' in message type indicates to VMMGR to autolog

a CVM.

When woken up by a timer interrupt, VMMGR will perform the second task

(force off an idle CVM) by querying the list of CVMs and forcing off any CVM

without an attached active UVM.

VMMGR should be on the logon list of VM/370 and is never logged off unless the

system is brought down.

B. USER VIRTUAL MACHINE

The user virtual machine software-consists of an initialization module - GMISINT

and the various language dependent user virtual machine interface moduels,

e.g. APL, TRANSACT, TROLL, etc.

20

GMISINT

This module provides a standardized user entry point to GMIS. It prints

the GMIS message of the day and communicates with VMMGR to autolog its CVM before

communications with the CVM begins. Basically, it performs the following functions

in sequence.

1. read 'GMIS MSG Cl' and prints it to terminal

2. obtain the MGR VM ID and the CVM interface module name from the

parameters provided by its EXEC profile.

3. call IXECVM to obtain the CVMid

4. log on the CVII by requesting the MGR via VMCF to autolog it.

5. sleep 5 seconds to allow for the CVM to be autologged.

6. check via CP to see if CVM is logged.

7. spool and tag a punch file to CVM from UVM (in case the communication

mechanism is via punch files).

8. punch a card to CVM and send a message to CVM via VMCF to ensure that

the CVM gets the message to switch to the desired interface module.

(Both are required since the CVM may already be in either mode.)

APL User Interface

The APL user interface is contained in an APL work space called SEQUEL. It

performs 3 major functions: 1. initializes the communication environment, and

2. sends a query and 3. receives the result of the query and translates it into

APL.

Initialization is performed by the APL function SEQOPEN. It basically does

the following:

1. call getid to obtain the UVMid

2. read 'file CVMid C1; to obtain CVMid

3. read 'DBVM id B1' to obtain dbvmid

A cnnnl and taa unch file to CVM

21

Query is sent by using the APL function QUERY which actually consists of SEQPUT

(sends a query) and SEQGET (obtains the results of the query). The b disk is

used for communication with the CVM. Query results are stored on files by the

CVM on the b disk in APL variable formats.

C. Communication Virtual Machine

The communication virtual machine software consists of a standardized

initialization routine and the interface modules. For each user machine

environment and data base machine combination, a unique interface module is

coded, for example, APL - SEQUEL, PLl - SEQUEL etc. The purpose of an interface

module is to handle the data transfer and conversion functions of a user machine-

data base machine communication.

CVMINIT

This standardized initialization routine is given control when the CVM is first

logged on. It will wait for a message from its corresponding UVM which will

indicate a switch in environments (an 'X' in the first byte of the message).

The code in the message header is used to set a P/l return code indicating the

specific interface module to be loaded in place of CVMINIT. The EXEC that

contains the call to CVMINIT will interpret this return code from CVMINIT and

load the appropriate interface modeule.

APLSEQ

This routine handles the data formating and data transfer between the APL

user machine and the SEQUEL data base machine. It is loaded into the CVM as

a result of the CVMINIT module. APLSEQ communicates with SEQUEL via the

VMC facility but it communicates with APL via punch files and shared disks.

The first category of communication is achieved using the IXEVMC module and

its entry points. The latter communication category is achieved using the

RDRINIT, XWTAPL, RDRTERM modules. The dbvmid is obtained by reading the

22

'DBVM id bl' file and the UVMid is obtained, as usual, by calling IXEUVM. APLSEQ

has to interpret the type of message from UVM. A UVM can request that another

CVM module be loaded so that it can access a different data base. Thus APLSEQ,

like other CVM modules, has to be able to detect the signal for switching modules

In the case of a VMC message, the message header will contain this important

information. In the case of using punch cards as means of communication, the

one character returned by XWTAPL is used as the equivalent of the message type

character in the message header of a VMC message. This character can be

discriminately changed by the UVM simply by issuing a CP command.

APLSEQ receives blocks of messages from the data base VM and manipulate these

blocks into APL variables which are written onto the disk shared by the

CVM and UVM. Currently APLSEQ decodes each block as they arrive but a simple

modification can be made so that decoding will be performed after all the

blocks are received. This is not crucial to the operation of the CVM,

besides, a 1 block message can usually accommodate all the results of a normal

query.

PL/I Interface

The PL/I multi-user interface consists of a duplicate set of sequel entry

points and a cum module, PLISEQ. These control all the functions of initialization,

switching and query processing. All communication paths utilize VMCF and it's

entry points as previously described. (A prior knowledge of the PL/I

programming interface is assumed - see GMIS user's guide appendex F).

In the User's Virtual Machine, the duplicate set of SEQUEL entry points

(TRANSIN, SEQUEL, GETROWS, AND WINAUP) is contained in the procedure TRIFUFI

(similar to the GMIS I version). Operationally then, the user must first invoke

GMISINT with the "PLlSEQ" parameter, to set up a C VM. Then using a P/I program

(such as TRANSFER) a call is made to TRANSIN which performs some simple initalization

(in the UVM only). Next, when the query is ready for processing and placed

23

in the external variable QSTRING, a call should be made to SEQUE1. Now, instead

of a full copy of SEQUEL, XRAM, RAM etc., the SEQUEL entry in TRIFUFI is called

which transmits the query to the CVM via VMCF, and then goes into a VMCWAIT for

an interrupt from the CVM. The CVM receives the query and extracts the

database VM id from it and then sends the query to that VM, and waits for an

interrupt from the database VM. The database performs the query and returns

its results via VMCF. The only processing the CVM does is to write any table

data on the user's 340 desk and then return the rest of the result (column

names, cordinality, format descriptors etc) to the UVM via VMCF. This serves

as a wake-up to the UVM, and completes the processing done by the CVM, which

goes back to an initial wait state. The UVM stores the information in the

appropriate external variables and returns to the caller.

To retreve the rows of a table after a successful SEQUEL call (Code = 2)

calls should be made to the entry point GETROWS, which re-accesses the 340 disk

and then calculates the necessary blocks # and then performs the direct access

read. It extracts the row indicated by DISPROW and fills in QSTRING appropriately.

To terminate the communications, a call to WINDUP should be made, to

release the CVM and stop VMCF communcations.

