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Abstract:

Following earlier work on Pade' approximants to matrix Stieltjes series

and their network theoretic relevance it is shown that certain

paradiagonal sequences of matrix Pade' approximants to the series under

consideration always converge. Interpretation of this result in terms

of representation of impedances of RC distributed multiport networks

are given. Matricial generalizations of the classical Hamburger and

Stieltjes moment problems are discussed in this context. Matrix

polynomials of the second kind orthogonal on the real line, which fall

out as numerators of the matrix Pade' approximants of certain orders

are singled out and their properties are studied.
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1. Introduction

Consider a formal power series as in (1.1) where

00 k
T(s) = E Tk s (1.1)

k=O

each T is a real symmetric matrix of size (pxp). The rational matrix

QL(S)PM (s) (or PM (S)QL(s)), where QL(S) and PM(s) are (pxp)
polynomial matrices of respective formal degrees L and Mlis said to be

a right matrix Pade' approximant (or left matrix Pade' approximant) to

T(s) if the first (L+M+1) terms of the Maclaurin's series expansion of

QL(S)PM (S) (or PM (s)QL(S)) matches with those of T(s) in (1.1). In
addition, the formal power series T(s) in (1.1) is said to be a matrix

Stieltjes series [1] if for each n the block Hankel matrices Hn(T) and

H'(T) as given in (1.2) are positive definite and negative definiten
respectively.

Hn(T) O T H (T) T1 T 2... Tn

T1 T 2 T 2 T3

Tn T2 Tn T2n-1 (1.2a,b)

Note that for matrix Stieltjes series the right and left matrix Pade'

approximants uniquely exist and are necessarily identical [1],[3].

Thus, the term matrix Pade' approximant (MPA) of order [L/M] will

henceforth be used to denote [L/M](s)=Q( ()=Q(S) (s) (S)QL(s). The fact

that the paradiagonal sequences of MPA's of order [m-1/m] and [m-1/m-l]

for m = 1,2,...etc. to a matrix Stieltjes series can be identified as

the impedances or admittances of multiport electrical networks

containing two types of elements (e.g., RC or RL) has been established

in [1] via utilization of recently developed tools of matrix continued

1 The formal degree of a polynomial matrix is defined as the largest

degree of its polynomial entries.
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fraction expansion and the Cauchy index of a rational matrix. Also,

the Pade' approximation problem can be cast in terms of the partial

realization problem as occurring in linear system theory [13], [19].

The positive definiteness of the block Hankel matrices Hn(T) for all n

then imply, in particular, that every point in the partial realization

data is a 'jump point' with jump size equal to 1 [13]. Thus, as has

been shown via the tools of matrix continued fraction expansion

[1],[15] as well as the Cauchy index of a rational matrix [1], that the

positive definiteness of Hn(T) and H'(T) can be viewed as the

conditions which the partial realization data needs to satisfy so that

the realized transfer function matrix is an impedance or admittance of

an RC multiport (similar formulations for RL or LC impedances or

admittances are also possible).

The question of convergence of the equences [m-1/m] or [m-1/m-1], m =

1,2,....etc. of MPA's, when T(s) is matrix Stieltjes series, however,

has not been addressed in the li erature. Although a discussion of

this issue in the scalar (i.e., p= ) case is available in [3], system

theoretic interpretation of the restlts are not readily available. In

the present paper it is shown ly exploiting the network theoretic

interpretations developed in [1] that the sequences of [m-1/m] and

[m-1/m-1], m = 1,2,...etc. MPA' s to a matrix Stieltjes series do

indeed converge uniformly in an open (bounded) region of the complex

s-plane excluding the negative real axis.

Furthermore, since the sequences of [m-i/m] and [m-1/m-l] MPA's can be

viewed as the successive convergents of certain special types of matrix

continued fractions [1], the convergence of the paradiagonal sequences

of MPA's can also be interpreted as the convergence property of the

related matrix continued fraction expansions. Since the continued

fraction expansion just mentioned is, in fact, associated with a ladder

realizable RC multiport (cf. fig. L for p=l),we essentially have the

result that the sequence of RC nultiport ladder impedances (or

admittances) so derived from a m trix Stieltjes series is always

convergent (even if the formal p wer series T(s) in (1.1) is not).

Thus, this latter result can be int rpreted in terms of the important

fact that the matrix Stieltjes s ries in (1.1), which may not

necessarily converge (cf. [3] for examples in p=1 case), can be
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meaningfully used to represent a nonrational impedance or admittance

matrix associated with a multiport RC distributed transmission line

[17].

It is next shown that, as in the scalar case the positive definiteness

of Hn(T) in (1.2a) for all n guarantees the existence of a bounded

non-decreasing real symmetric matrix valued measure a(x), -- < x < a,

such that each of the Tk's in (1.2) can be viewed as the k-th order

moment associated with a(x). This result provides a direct matricial

generalization of the classical Hamburger moment problem [6],[10]. If,

in addition to (1.2a), the negative definiteness of Hn(T) in (1.2b) is

also imposed then the support of a(x) is shown to be restricted to the

semi-infinite interval 0 < x < a, thus providing a solution to the

matrix version of classical Stieltjes moment problem (6],[10].

Furthermore, if the power series T(s) in (1.1) is assumed to converge

in a disc of radius R then we show that the sequences of MPA's

[m-1/m](s) and [m-1/m-1](s) indeed converge to T(s). An integral

representation of T(s) in terms of the matrix valued measure :(x),

which coincides with the Cauer's representation [19] of RC (multiport)

impedances, or in the scalar case with the closely related class of

classical Stieltjes functions [3], is also derived in this context.

On the otherhand, the 'denominator' polynomial matrices associated with

MPA's of order [m-1/m] and [m-1/m-l] have been shown in [1] to form

sequences of polynomial matrices orthogonal on the real line. Various

properties of these polynomials such as the three term recurrence

relation followed by them, properties of location their zeros and their

relationship to the matricial Gauss quadrature formula were also

derived in [1]. In the present paper it is shown that while in [1] the

orthogonality of the matrix polynomials was viewed in terms of certain

vector space representions, by using the measure a(x) the orthogonality

relationship can be seen more transparently, in terms of an inner

product in standard form.

More importantly, this approach also establishes the interesting fact

that the sequences of 'numerator' polynomial matrices of the [m-1/m](s)

and [m-1/m-1](s) sequences of MPA's also satisfy certain orthogonality
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properties similar to those satisfied by the 'denominators' of the

paradiagonal sequences of MPA's in question. From a system theoretic

standpoint this result is to be expected in view of the fact that the

property of RC, RL or LC impedance (or admittance) realizability remain

invariant under the operation of inversion of the rational matrix

concerned. The sequence of matrix orthogonal polynomials corresponding

to the 'numerator' sequences of MPA's are thus also found to provide

matricial generalization of the orthogonal polynomials of the second

kind discussed in the classical literature [6],[9].

In the rest of this section related previous research on specific

aspects of the problem considered in the present paper will be briefly

reviewed and comparisions to our approach to the problem will be made.

The study of matrix Pade' approximants, their relationships to

continued fractions, various moment problems and issues of convergence

were initiated in [23],[24]. Both convergence of sequences of Pade'

type approximants to Stieltjes series [22] as well as the related

moment problems [25] have been discussed in the mathematical literature

in an (infinite dimensional) operator theoretic setting by assuming

that the T's in (1.1) are not just matrices but infinite dimensional

operators in Hilbert space. Convergence of Pade' approximants to a

formal power series of the matrix Stieltjes type has been previously

considered in [21].

The present paper deviates from those mentioned above in the following

respects. First, our prooofs are simpler, more degant and makes use of

elementary tools from linear algebra and complex function theory. This

is so because it makes full use of the finite dimensional (i.e.,

matrix) nature of the problem considered. In fact, although the major

results on the moment problems in [25] is known to be in error [26] in

the infinite dimensional case, a correct elementary discussion for the

finite dimensional problem is not known.

The convergence proof of [21] starts from a slightly different (albeit

equivalent) definition of matrix Stieltjes series, where T's are

assumed to be the moments associated with a nondecreasing symmetric

matrix valued measure at the very outset. This already amounts to

assuming a solution to the corresponding moment problem referred to
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above, which is worked out in the present framework in section 3 of our

paper. Furthermore, although the final results in [21] hold only for

the finite dimensional ease, their proofs hinge on powerful operator

theoretic results (e.g., Naimakar's theorem linking method of moments

for selfadjoint operators in Hilbert space). While our definition of

matrix Stieltjes series is via the algebraic constraints imposed on the

sign definiteness of Hn(T) and H'(T), our proof is more direct,n
elementary and does not make use of a solution to the moment problem at

all.

Finally, the most contrasting aspect of the present contribution is

that our discussions including the details of proofs are guided

throughout by system theoretic intuition -- an approach not adopted by

earlier authors in the area.
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2. Convergence Proof of Sequence of MPA's to Matrix Stieltjes Series:

The major content of this section is the proof of the fact that the

[m-1/m](s) and [m-1/m-1](s) sequences of MPA's converge uniformly to an

analytic function in the domain D(A) where D(A) is any bounded domain

of the complex plane at least at a distance A away from the negative

real axis: -D < Res < 0, Ims = 0 (cf. fig 3). The strategy of our proof

is to first show that the required convergence is attained for all

fixed real positive values of s. This is achieved by establishing

certain monotonicity and boundedness properties of the approximants

which fall out as consequences of RC Realizability of [m-1/m](s) and

[m-1/m-1](s) as shown in [1]. Uniform convergence in D(A) is then

proved by essentially exploiting standard arguments on convergence

continuation [5]. A mathematically equivalent procedure has been

pursued in [3] for the scalar (p=l) case without the use of network

theoretic arguments.

The following notations will be used in the rest of the paper. If A is

a real symmetric positive definite matrix then we will write A > 0.

Also, the notations A > B and A > B will be taken to mean that the real

symmetric matrix A-B is positive definite or non-negative definite

respectively. Obvious variations of this notation with the symbols >

and > replaced by < and < will also be used.

We first need the following theorem:

Theorem 2.1: The sequences of [m-1/m](s) and [m-1/m-1](s) approximants

to a matrix Stieltjes series each respectively form an increasing and

decreasing sequence of symmetric matrix fraction descriptions on the

positive real axis, i.e., for all m = 1,2,3,...etc. and for all s with

Res > 0 and Ims = 0 we have

[m/m+l](s)-[m-1/m](s)>0, [m/m](s)-[m-1/m-1](s)<0 (2.1),(2.1')

Proof: The proof relies on the result [1, p.211] that [m-1/m] and

[m-1/m-l] approximants to the matrix Stieltjes series (1.1) can be

obtained by truncating the matrix continued fraction expansion
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-1 -1 -11 1 1
T(s) = [B1 + [S B2 + + Tk(s) ] ] (2.2)1 s 2 k+1

where Xk = 0 for k odd and Xk = 1 for k even, the B i, i = 1,2,... are

constant real symmetric positive definite matrices and Tk(s) is a

matrix Stieltjes series. In particular, it is shown in [1] that for m

= 1,2,....etc. (2.3) and (2.3') hold true.

-1 -1 -1
[m-1/m](s) = [B1 + [1 B2 +...+ 1 2m ] (2.3)

~1 ~-1 -1 -1
[m-1/m-1](s) = [B1 + ([ 82 +...+ [B2ml] i ] (2.3')

We shall prove (2.1) only, the proof for (2.1') being analogous. Note

first that due to (2.3), the approximant of order [m/m+l] can be

written as in (2.4).

1~-1 1 -1 -1 - -1 -1
[m/m+l](s)=[B + I +..+ B [B +[] B ] ]m/m1s B+ 2 +-+ [s 2m+ [ 2 m++[s B2m+ 2]

(2.4)

Obviously, for Res > 0 and Ims = 0 we have s B i > 0 for all i. Since

the sum as well as inverse of real symmetric positive definite matrices

is also real symmetric positive definite, we have:

r1 n-1 -1 1 -1-11
([B~m+1 2m+2] ] > 0; consequently, sB +[B +[1B > 2mL2m+1l LI2m+2 Is 2m 2m+l s 2m+2 s 2m
for Res > 0 and Ims = 0. By using the result that if A and B are two

real symmetric positive definite matrices such that A > B, then A 1 <B - 1

([2], p.86) it then follows that

1 1 -1 -1 - 1 1 -11 B + [B +[ B F 1F1 1<( B F (2.5)[s 2 2m+1 +[2m+2 ] ] - < [s 2m

Repeating the process of adding the matrices 1X Bi and subsequently

s

considering the inverses of the resulting matrices in the left and

right hand sides of (2.5) for i = 2m-1, 2m-2,...., 1, where X i = 0 when

i is odd and Xk = 1 when i is even, it follows from (2.3) and (2.4)

that [m/m+l](s) > [m-1/m](s) for Res > 0, Ims = 0.

The physical implication of the above theorem is obviously clear in

electrical network theoretic terms, when the [m-1/m](s) and
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[m-1/m-l1(s) approximants to a Stieltjes series are interpreted as

being the input impedance of RC ladder network, as depicted for the

scalar case p = 1, in fig. la and fig. lb respectively. The

monotonicity property of the sequences of approximants then trivially

follow from the fact that for all real and positive values of s, the

input impedances can be computed by replacing the capacitors by

positive resistances.

The norm I xli of a vector x will be defined as the well known

Euclidean norm, whereas the norm I. of a matrix A will be defined as

the spectral norm IIA1I1 max [IiAxll;lIxlI=l]. We recall the following

properties of the spectral norm I| .Ii of a matrix A.

Property 2.1[4]: HAIl is equal to the largest singular value of A.

In particular, if A is real then I A I = /(X (AtA)), where A t is the

transpose of the matrix A, and X (A A) denotes the largest eigenvalue
of AtA.

Property 2.2: For any real symmetric matrix A, IIAI = IX (A) I, where

Xm(A) is the eigenvalue of A having largest absolute value. Thus, in

particular, AlotAl = lxl·. I IAII, where a is any real number.

Proof: Follows from the fact that X(AtA) = X(A2 ) = X2 (A) where X(A)

is an eigenvalue (necessarily real) of A.

Property 2.3: If A, B, C are real symmetric positive (non-negative)

definite matrices such that A = B+C then hIAi > |IBI (IAIl > I IBII).

Proof: Since C is positive (non-negative) definite from Courant-Fisher

min-max theorem (e.g., [2] p. 73) it follows that Xm(A) = Xm(B+C) >

Xm(B) (or Xm(B+C) > Xm(B)). The result then follows from Property 2.2

via the observation that eigenvalues of A and B are positive

(nonnegative). !

Property 2.4: If A and B are two real symmetric positive

(non-negative) definite matrices, and a and b are two real numbers such

that 0 < a < 1 and 0 < b < 1 then hlaA + bBIl < hIA + BlI.
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Proof: Since 0 < (1-a) < 1 and 0 < (1-b) < 0, the matrices (1-a)A and

(1-b)B, and thus {(1-a)A+(1-b)B} are real symmetric positive

(non-negative) definite. Thus, I IA + BI = I (aA + bB) + {(1-a)A +

(1-b)BI}I > 1laA + bBll (or > jlaA + bBhI correspondingly). The last

step follows by the use of Property 2.3 above.

Corollary 2.1.1: The MPA's to a matrix Stieltjes series satisfy:

1I[m/m+l](s)Hl > tt[m-1/m](s)lI, for m = 1,2,... and 11[m/mi(s)lI <

1I[m-1/m-1](s)lI for m = 1,2,3,... for all real positive values of s.

Proof: We first note that the MPA's to the matrix series of Stieltjes

(1.1) are necessarily symmetric rational matrices. To substantiate
-1

this, note that if QL(S)P M (s) is a right MPA of order [L/M] to the
-t t 2

series T(s), then PM (s)QL(s) is also a left MPA of order [L/M] to

the matrix series T (s) = T(s). The last equality follows from the

fact that in (1.1) T.t= T. for all i = 0,1,2,...etc. However, this1 1
proves that both right and left approximants of order [L/M] to the

series T(s) exist, and hence they must be equal [3], i.e., QL(S)P M i(s)
=t tPM (S)QL(S). Thus the approximant of order [L/M] is symmetric.

(Alternatively, this result also follows from the representations (2.3)

and (2.3') of the sequences [m-1/m](s), m = 1,2,...etc. and

[m-1/m-1](s), m = 1,2,...etc. of the approximants.) Also, it follows

from Theorem 2.1 that if [m/m+l](s) - [m-1/m](s) = Pml(s) and

Em-1/m-1l(s) - [m/m](s) = Pm2(s), then for all real positive values of

s and for all m = 1,2,...etc., Pml(s) and Pm2(s) are real symmetric

positive definite matrices. Since due to (2.3) and (2.4) the MPA's in

the last two equalities are themselves real symmetric positive definite

for all real and positive values of s, the required result follows from

Property 2.3 of spectral norm.

Next, we consider the matrix continued fraction expansions of the MPA's

[m-1/m](s) and [m-1/m-l](s) to the matrix Stieltjes series T(s). Since

the MPA's just mentioned are known to be the impedance matrices of

electrical networks consisting of positive resistors and capacitors

superscript t denotes the transpose of a real matrix
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only, the continued fraction expansions, due to results discussed in

[1], can be expressed as the matrix partial fraction expansion:

r 1
[m-1/m](s) = + A (2.6)

v=1l+yrs V

r'
[m-1/m-1](s) = A 6 + 1E i+s A (2.6')

where in (2.6) and (2.6'), the constant matrices A , A' are all real

symmetric non-negative definite, and the constants r¥ and ry are real

and positive. Note that in the scalar case (i.e., if p=l) (2.6) or

(2.6') can thus be interpreted as the input impedance of a circuit as

shown in fig. 2, where Ai=R i and ri=RiCi . Similar interpretations are

possible for p>1. Expanding the right hand side of (2.6) and (2.6') in

a power series around s=O, and recalling the fact that the first 2m

terms of the expansion for [m-1/m](s) and the first (2m-1) terms in the

expansion for [m-1/m-1](s) must be identical with the given power

series T(s) in (1.1) it respectively follows that:

Tk= E (-YV) A for k = 0,1,...2m-1 (2.7)
v=1

r' r'
T =0 A'; Tk = (-)k Al for k = 1,2,...2(m-1) (2.7'a,b)0 v= v V V

We next state the following theorem, which follows from the

representations (2.6) and (2.6') associated with the MPA's of

respective orders [m-1/m](s) and [m-1/m-1](s) to a matrix Stieltjes

series.

If only Hn(T) (but not -H'(T)) is positive definite for all n then

representations (2.6) and (2.6'), and thus (2.7) and (2.7'), still hold

true. However, ¥.'s may then assume positive as well as negative real

values.

Theorem 2.2: For all s with Res > 0 and Ims = 0, the sequences of

norms I [m-1/m](s)ll I and I [m-1/m-1](s) I, m = 1,2,...etc. of MPA's to
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a matrix Stieltjes series each posseses an uniform upper bound.

Proof: Since y > 0 and y' > 0, we have 1(1 + y s) l < 1 and
-1 v V 

1(1 + ¥rs) I < 1 for all real and positive values of s. Therefore, it

follows from (2.6), (2.6'), Property 2.4 of spectral norm 11.11 and the

triangle inequality for the spectral norm [4] that (2.8) and (2.8')

respectively hold true for all real and positive values of s, and for

each m = 1,2,...etc.

r
II[m-1/m](s)iI < 1 E Av Il (2.8)

v=1
r'

j [m-1/m-1](s)jj < 11 E A'l (2.8')

Furthermore, by considering (2.7) and (2.7') with k = 0 it immediately

follows from (2.8) and (2.8') that for Res > 0, Ims = 0 and each m =

1,2,..., etc. (2.9) and (2.9') in the following hold:

II[m-1/m](s)ll < 11To11 (2.9)

II[m-1/m-1](s)lI < IToll0 (2.9')

The fact that the sequences jI[m-1/m](s)jl and Ij[m-1/m-l](s)[[ for

m=1,2,...etc. each has uniform upper bounds for real positive s has,

therefore, been established.

In the scalar case i.e., if p=l Theorem 2.2 admits of an obvious

physical intepretation when [m-1/m](s) or [m-l/m-l](s) is viewed as an

impedance of the RC circuit as in fig. 2 (for p=l), or equivalently, as

in (2.6) or (2.6'). The uniform upper bound on the approximants is

then provided by the sum of all resistors in the network. Similar

interpretations are also possible when p>l.

Theorem 2.3: For all real positive value of s the sequences [m-1/m](s)

m= 1,2,...etc, as well as [m-1/m-l](s), m = 1,2,...etc., of MPA's to a

matrix Stieltjes series converge pointwise.

Proof: Since a (strictly) monotone (increasing or decreasing), bounded

sequence of real numbers necessarily converge, it follows from
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Corollary 2.1.1 and Theorem 2.2 that the sequences 11[m-1/m](s)II, m =

1,2,...etc., and II[m-1/m-1l(s)lII, m = 1,2,...etc. are convergent for

all real positive values of s. The required result then follows by

noting [4] that convergence of the sequence of norms 11[m-1/mi(s)ll, m

= 1,2,...etc. is a sufficient condition for the matrix sequence

[m-1/m](s), m = 1,2,...etc. to converge. Similar arguments hold for

[m-1/m-1](s), m = 1,2,...etc.

Corollary 2.3.1: For any i, j with 1 < i,j < p and for any real

positive value of s the sequences [m-1/m]ij(s) and [m-1/m-1]ij(s)

m=1,2,...etc of ij-th entries of MPA's of respective orders [m/m-l] and

[m-1/m-l] to a matrix Stieltjes series converge pointwise.

Our next objective is to enlarge the domain of convergence of the

sequence of approximants under consideration to a region D(A) larger

than the positive real axis, where D(a) is any bounded region of the

complex plane, which is at least at a distance a away from the negative

real axis. The region D(A) is shown in fig. 3.

We first need the following lemma:

Lemma 2.4: Assuming T(s) to be a matrix Stieltjes series, if A (ij)

A,(ij) are the respective ij-th elements of the matrices A , A' and ,

v' are positive numbers as appearing in (2.6) and (2.6'), then the

following inequalities hold true:

r r
Z JA ( j) l < _(T0(i) )T0( ji) E |AV( j) mIrv < V(Tl (ii) T (j]j)

(i ) ( <(T (ii) (jj) r (iJ¥ < J(T1 T1 )Z Ia (iJ~l ~ (T 0 0); Zl

~V=O~~~~~ -V=O ~~~~~(2.10a,b)

Proof: Only proofs for (2.10a) and (2.10b) will be given. Analogous

proofs hold for (2.10'a) and (2.10'b). Consider the case i = j first.

Since the A are real symmetric non-negative definite matrices the

diagonal elements A (i) are necessarily non-negative. Furthermore,

considering the ii-th elements of the matrices in (2.7) with k = 0, and

k = 1, one obtains respectively (2.11a) and (2.11b).
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r r r r
~=1 I a (ii) = T (ii) (ii) (ii) a

'v = v=1 ' V=. v=s=1 I V I v-l V ¥=V-1 V V = -1 V v 1

(2.11a,b)

Next, when i # j, the (2x2) principal minor of A obtained by

considering the i-th row and j-th column of A are also non-negative

definite. Thus, it follows that JA 'j)k < /(A (ii)A (ij)). The last

inequality, along with an application of the well known Cauchy-Schwartz

inequality, yields (2.12a) and (2.12b):

r (ij) < {(A (ii)a (JJ) < r[( (ii))( A (2.12a)
vl IA L < E /(AV A < H V E A H
'v=i -- =1 -=1 v

sides of(i (ii)a () 2 (ii (JJ) (

0 0sides of (2.12a) and (2.12b) are respectively equal to /(T(ii)T
and /(T 1 (ii)Tl(jj)). The inequalities (2.10a) and (2.10b) are thus

established.

Theorem 2.5: Each element of the sequences of MPA's [m-1/m](s) and

[m-1/m-1](s) for m = 1,2,...etc. to a matrix Stieltjes series is

uniformly bounded in D(A).

Proof: We first prove the result for the region {s; Res > 0, soD(a)}.

Consider the ij-th element [m-1/m]ij(s) and [m-l/m-l]ij(s) of

[m-1/m](s) and [m-1/m-1](s) respectively. From (2.6) and (2.6') it

respectively follows that:

r 1 (ij)

[m-1/m-l]ij(s) = A (iJ)+ (2.13+)

= 15 V
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Clearly, since ¥r, v' > 0, we have for Res > 0 and arbitrary Ims that:

Il+Yrsl > 1, Il+rysl > 1 for all v. By making use of the last

inequalities along with (2.13) and (2.13'), (2.14) and (2.14')

respectively are obtained via the use of triangle inequality.

r 1 r

I[m-l/m]ij(S) I < E 1+s A < Z A') (2.14)
-v=1 -v v=1 '

_ (ij) r' 1 (ij) r' A
Im-1/m-]ij(s)I < IA0 i + E +A I= E a (iJ )li j - 0 1 11+Y SI 'V 'V

'V=1 'V V=O ~ (2.14')

It then follows from (2.14) and (2.14') via the use of (2.10a) and

(2.10'a) in Lemma 2.4 that for Res > 0 and for each m = 1,2,...etc.

I[m-1/ml]i(s)i</(T0 (i)T (ii)) and I[m-1/m-1]ij (s)l </(T0 iTo()
Ilm-l- 00ij </ (ii)T (JJ))*

The theorem has been thus proved, in particular, for all s in {s; Res >

0, seD(A)}.

In the following we consider values of s in the region {s; Res <

0, ssD(a)}. Note first that since the identity Isl11+rsl -Imsl =

(YIsI2+Res)2 holds for any real y, we have Il1+rsl > IImsI/IsI<1 and

Il+y'sl>IImsI/Isl<1 for each v. Consequently, (2.15) and (2.15')

respectively follow from (2.6) and (2.6') for each i,j = 1,2,...p.

r r
r 1 j~(ij) r

{[m-1/m]ij(S)I < Z 1I < (sl E Ia (i){)/2Imsl
-=, l+¥vsl - =1v

(2.15)

r'
(ij) 1

I[m-1/m-1]ij(s) < IA i l + I( II

< (sl (i)l)/lIms (2.15')
v=0

Again invoking (2.10a) and (2.10'a) of Lemma 2.4 along with (2.15) and

(2.15') respectively it follows that for all s with Res < 0 we have

that
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I[m-1/m]ij(s)l < Isl/(TO(ii)T (iJ))/IImsI (2.16)

I[m-1/m-1](ijs)l < ISI/(T (ii)T 0 (ij))/lImSl (2.16')

If RM < - is the radius of a circle, which completely encloses D(A) in

the complex plane then (2.16) and (2.16') establishes an uniform upper

bound of (RM/(T0 (ii)T 0 (iJ))/6) for the sequences J[m-1/m]ij(s)J and

I[m-1/m-1]ij(s)l, m = 1,2,...etc. in {s; Res < 0, seD(A)}. If M =

Max(R /A, 1) then due to the result proved in the last paragraph,

M/(TTOii)T 0 (ij)) serves as an uniform upper bound on each of the

sequences I[m-1/m]ij(s)I and j[m-1/m-1]ij(s)l, m = 1,2,...etc. in D(A).

The theorem is thus proved. :

We are now in a position to prove the convergence of the sequences of

rational matrices [m-1/ml(s) and [m-1/m-1l(s), m = 1,2,...etc., by

using standard techniques from complex function theory [5]. The result

is summarized in the following theorem.

Theorem 2.6: The sequences of MPA's of order [m-1/m](s), m =

1,2,...etc. and [m-1/m-l](s), m = 1,2,...etc. to a matrix Stieltjes

series converge uniformly in the region D(a) of the complex plane.

Furthermore, the matrix valued functions G(s) and G'(s) to which the

two sequences respectively converge are both real symmetric (i.e., G(s)

= G(s), G'(s) = G'(s))3 and analytic in D(A).

Proof: The following discussion will be only in terms of the sequence

[m-1/ml(s), m = 1,2,...etc. Analogous arguments hold for the sequence

[m-1/m-l](s), m = 1,2,...etc. We shall establish the convergence of

[m-1/m](s), m = 1,2,...etc. by showing that the sequence of ij-th

elements [m-1/m]ij(s), m = 1,2,...etc. of [m-1/m](s) converge.

Let D(A') be a region similar to D(A) but slightly larger and

containing the closure of D(A). Then since [m-1/m]ij(s) is uniformly

bounded in the closure of D(A'), each subsequence of [m-1/m]ij(s) is

normal in D(A'), and thus contains another subsequence converging

3the bar '-' denotes complex conjugate
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locally uniformly to some analytic function D(A'). Since all these

limit functions are the same on positive real axis, they are identical

in D(A') due to analytic continuation. Hence, [m-1/m]ij(s) converges

locally uniformly in D(A') to a limit function analytic on D(A'), and

in particular converges uniformly on D(a).

Finally, since G(s) is holomorphic in D(A), which is symmetric with

respect to the real axis, and the property of realness of G(s) is

inherited by the property of realness of [m-1/m]ij(s) for real values

of s, it follows from the well known Schwartz reflection principle that

G(s) is real symmetric i.e., G(s) = G(s).

Note that if T(s) is a Hamburger series i.e., if only Hn(T) (but not

-H'(T)) is positive definite for arbitrary n then properties of uniform
n

boundedness and equicontinuity, as proved in Theorem 2.5 and Lemma 2.6,

still hold true when D(A) is replaced by the bounded, disconnected,

two-component domain DI(A) = {s; jImsj>A, IsI<R<I}. Consequently, the

first paragraph in the proof of Theorem 2.7 applies and we may assert

that there exists a subsequence of the sequence of MPA's which converge

uniformly everywhere in DI(A) to a real symmetric function analytic in

Di(A). However, since in this case ¥ 's are not necessarily positive,

Theorems 2.2 and 2.3 do not apply and consequently, the pointwise

convergence of the sequence of MPA'S for real positive values of s

cannot be established, thus making Vitali's theorem inapplicable.
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3. Matricial Hamburger and Stieltjes Moment Problem and related

results:

In this section we undertake the solution of the matricial version of

the classical Hamburger or Stieltjes moment problem. More

specifically, the following result stated in Theorem 3.1 will be

proved. An integral representation of the functions G(s) and G'(s) of

Theorem 2.7, when the Stieltjes series (1.1) has a nonzero radius of

convergence is also derived in this connection.

We first need the following definition.

Definition: A real symmetric matrix valued function a(x) of a real

variable x will be said to be non-decreasing (increasing) if the matrix

a(X1)-a(x2) is non-negative (positive) definite, whenever x 1 > x 2.

Theorem 3.1: (a) If the block Hankel matrices H (T) in (1.2a) are

positive definite for all non-negative integer values of n then there

exists a non-decreasing matrix measure a(x) such that the matricial

Stieltjes integral representation (3.1) for Tk hold true.

(-1)k Tk = I xkda(x) , k = 0,1,2,... (3.1)

(b) Furthermore, if in addition to the conditions stated in part (a)

the block Hankel matrices H n(T) in (1.2b) are negative definite for all

non-negative integer values of n i.e., if T(s) as in (1.1) is a matrix

Stieltjes series then the lower limit of the integral in (3.1) can be

replaced by zero.

Note that the Riemann-Stieltjes integral over a matrix measure, as

appearing in (3.1), was first introduced and their properties studied

by Wiener and Masani in [7] in the context of multivariate stochastic

process.

Before embarking on a proof of Theorem 3.1, the matrical version of

Gauss quadrature formula proved in [1, Theorem 3.3] will be recalled in

a notation compatible with the present discussion.
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Theorem 3.2 [1]: If Hn(T) is positive definite for all non-negative

integer values of n then for any fixed integer m > 0, there exist real

symmetric non-negative definite (pxp) matrices A and real numbers r¥

each depending on m, such that

k r k
(-1) Tk kA= r for k = 0,1,...(2m-1) (3.2)

v=l

where r = mp. Furthermore, if Hn(T) is negative definite for all n,

then the yr s are necessarily positive.

Note that when both H (T) and (-H'(T)) are positive definite, (3.2)n n k
follows from (2.6) and then by observing that the coefficient of s in

the power series expansion of [m-1/m](s) around s = 0 is Tk for k =

0,l,...(2m-1), thus establishing the matricial Gauss quadrature formula

(3.2) via electrical network theoretic arguments (in fact, (3.2) is

identical to (2.7)). However, when only Hn(T) but not (-H'(T)) is

positive definite the network interpretations of [m-1/m](s) in (2.6)

cannot be given and a detailed proof of (3.2) as worked out in [1] is

called for.

Definition [7]: A matrix valued function a(x) will be said to be of

k
bounded variation in [a,b] if £ Ila(x )-a(x _l1)1 is bounded for any

partition a = xO < x1 ... < Xk lb of the interval [a,b].

Lemma 3.3: If a(x) is a non-decreasing real symmetric matrix valued

function such that M > a(x) > 0 for all x e[a,b] then each element of

a(x) is bounded for all xc[a,b]. Furthermore, a(x) as well as each of

its entries are of bounded variation in [a,b].

Proof: Let a(iJ)(x) denote the ij-th entry of the matrix a(x). Since

M>a(x)>O it follows from Property 2.3 of spectral norm that J a(x)J <

I IMI for all xe[a,b]p If e. denotes the j-th column of the (pxp)

identity matrix then /( E Ja(ij)(x) 2 ))=I a(x)e. < • Ia(x)II < JIMI.
i=l j

4To avoid clutter in notation this dependence is not reflected

explicitly in (3.2)
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Consequently, (a j)(x)1<lIMII for all i=l,2,...p. Since j is chosen

arbitrarily each element of the matrix a(x) is bounded by I MI . This

result along with the non-decreasing character of a(x) imply that [7,

lemma 4.2(b)] the functions a(ij)(x), i # j are each functions of

bounded variation. However, for all j, ao(J)(x) is non-decreasing since

a(x) is so, and furthermore 0 < a(Jj)(x) < [IMIj (the first inequality

follows from non-negativeness of a(x)). Thus, ao(J)(x) is also of

bounded variation in [a,b]. Consequently, each entry of a(x) is of

bounded variation in [a,b], which is a necessary and sufficient

condition for a(x) to be of bounded variation in [a,b] (cf. [7, Lemma

4.2(a)]). :

Remark: We note that if a(x) is a real symmetric matrix valued function

of bounded variation in [a,b] then due to Lemma 4.2(a) of [7] a(ij)(x)

is of bounded variation for all i, A. Consequently, if f(x) is any

continuous function in [a,b] then S f(x)da(ii)(x) exists [9] and

consequently, due to [7, Lemma 4.8] the matricial Riemann-Stieltjes

integral I f(x)da(x) also exists.
a

Lemma 3.4: If a(x) is any real symmetric non-decreasing matrix valued

function of bounded variation in [a,b] then

b b
[f f(x) da(x) ll>1 g(x)do(x)ll (3.3)
a a

where f(x) and g(x) are continuous scalar functions such that f(x) >

g(x) > 0 for all x in the interval of integration.

Proof: Consider the function h(x)=f(x)-g(x) defiBed in [a,b]. The

existence of the integrals in (3.3) and of I h(x)da(x) then

immediately follow from the remark preceeding tle present lemma.

Furthermore, we also have:

b b b

S h(x)da(x) = f f(x)da(x) - f g(x)da(x) (3.4)
a a a

Since f(x) 2 g(x) 2 0 the functions f(x), g(x) and h(x) are all

non-negative in [a,b]. Cosequently, due to the non-decreasing character

of the matrix valued measure a(x) it trivially follows from the
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definition of the matricial Riemann-Stieltjes integrals that each of

the integrals in (3.4) is real symmetric non-negative definite. The

present Lemma then follows from Property 2.3 of spectral norm.

Our strategy for proof of Theorem 3.1 is, in fact, a matricial

generalization of a technique elaborated in [6] in the scalar context.

Proof of Theorem 3.1: Let 1 2 ' ¥ r be an ordering of the r's

in (3.2) and consider the real symmetric non-negative definite matrix

valued function a m(x) defined over - X < x < + - as in (3.5).

am(x) = 0 for x < y1

A for 'y < x < + (3.5)
v=1l
r
- A for x > ¥r

v=1 

Then the following properties of am(x) are clear.

(P1) am(x) is real symmetric non-negative definite for all real x.

Furthermore, if x1 > x 2 then am(xl) > am(X2) i.e., am(x) is a

non-decreasing matrix valued function of x.

(P2) From (3.2) with k=0 and (3.5) it follows that (TO- m(x)) is real

symmetric non-negative definite for all real x and for all m > 0.

(P3) Since due to (P1), (P2) and Lemma 3.3, ~a(x) is of bounded

variation, the matrical Riemann-Stielt es integral xk dam(x) exists
k whicS0 due to (3;2) iselement wise [9] and is equal to whic due to (32), is

equal to (-1) Tk for k = 0,1,...(2m-1).=

It thus follows from (P1) and (P2) above and from Theorem Al in the

appendix that a subsequence am (x); i = 1,2,...etc. of the sequence

am(x), m = 1,2,...etc. converges to a real symmetric non-negative
definite matrix valued function a(x), which is also non-decreasing.

Therefore, it follows from (P3) above that
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k k 1
(-1)k Tk = I x damm (x) for all m i > (k + 1) (3.6)

The following considerations then hold for any choice of finite

real numbers a, b with a < -1, 1 < b and mi > k + 1.

Thus, from (3.6) and triangle inequality for spectral norm [4]:

k bk +k bk
I (-1) Tk - f x da(x)ll = 11 J xkdam (x) - f x da(x)l(

a -c 1 a
a k b k b k

< I I x dam( (x)ll+llf xk dm. (x) - S xkdc(x) I

+ I I xkda m(x) I I
b i1

(3.7)

a k
= lit dxl dam(x) l

1 a 2k+2
I I k+2 I X dam (x) I I

lal 1o 

1 2k+2
- k+2' 1 I x dam (x) I
lal -c 1

- k+2 lIT 2k+ 2 11 (3.8)
lal

where in (3.8) the first equality follows from the fact that for x<O,

xk=(-1) k xlk; the second equality from Property 2.2 of 11.11 with

a=-1; whereas the first inequality follows from the fact that if x < a

< -1 then x 2 k+2/al k+2 > Ixlk > 0 in conjunction with Lemma 3.4; the

second inequality from Properties 2.2 and 2.3 of spectral norm 1. II;
and the last equality from (3.6) above as a consequence of the choice

mi>k+l. It can also be shown in an analogous fashion that:

k 1
11 x da M((x)lI < k+2 ITT2 k+ 2 1 (3.9)

b 1 Ibi

Thus, from (3.7) it is possible to assert that (3.10) in the following

holds for a < -1, 1 < b , and mi > (k+1).

k I Ik
Ml-1) Tk-fx da(x)ll<

a
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b k b
x dm (x)-f xkd(x)ll+lT2k+21(lal-(k+2) b(k+2 )) (3.10)

a 1 a

From Theorem A2 in the appendix it follows that the first terms in the

right hand side of (3.10) goes to zero as mi 4 1 . Thus, for all k =

0,1,2,...etc.

II(-)kTk - xkda(x)II < IIT2 k+2 11(al
- (k+2 + lb-(k+ 2 )) (3.11)

a

k k
Furthermore, as a 4 -a and b 4 X (3.11) yields II(-l) Tk-f x da(x)l1=0,
thus [4] proving that (3.1) holds for all k = 0,1,2,...etc.

Part (b) of the theorem follows by observing that in Theorem 3.2 if

Hn(T) is negative definite for all n then y 's are necessarily

positive, which in turn implies that am(x), as defined in (3.5), and

thus a(x), is zero for all negative x.

Note that if Uk = (-1)kTk and Hn(U) and H'(U) are the Hankel matrices

obtained by replacing the Tk's in (1.2a,b) by the corresponding Uk's

then it follows via straightforward algebraic manipulation that Hn(T)>0

if and only if Hn(U) > 0, whereas H'(T) < 0 if and only if H'(U)>0.

The solutions to matricial versions of Hamburger and Stieltjes moment

problems then follow in a more conventional form as stated in [10] in

the scalar case from this observation.

Note that the following result can be viewed as a matricial

generalization of the well known scalar result [10] that the

non-decreasing Stieltjes measure a(x) must, in fact, have infinitely

many points of increase.

Property 3.5: :For: any non-zero (lxp) real constant vector v the

function vt a(x)v of x must have infinite number of points of increase.

Proof: Assume that the result is false i.e., there exists some v such

that vta(x)v can be viewed as a linear combination of a finite number N

of step functions, occurring at, say, a1,a2,...a N. Consider the

polynomial p(x) as in (3.12a). Then (3.12b) follows from (3.1) and

(1.2a).
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N N k 2
p(x)= n (x-ai)= E akx ; p (x)da(x)=ANHN+1(T)A N (3.12a,b)

i=l k=O -cb

where At is the block row matrix (a0 I, alI,...aNI) and I is the (pxp)

identity matrix. Since not all ai's are zero, AN is of rank p, thus

implying, in view of positive definiteness of HN+1(T), that

v t(f p2(x)da(x))v > 0 (3.13)

However, by recalling the definition of Riemann-Stieltjes integrals

over a matrix measure, it follows from the fact that vta(x)v is a

linear combination of step functions that the left hand side of (3.13)

is exactly equal to zero, which is a contradiction.

We next assume that the matrix Stieltjes series T(s) in (1.1), which

was so far considered only as a formal power series, to have a radius

of convergence R. Then by using the representation (3.1) we can

further prove the following.

Theorem 3.6: If T(s) in (1.1) has a nonzero radius of convergence R

and the associated Hankel matrix Hn(T) satisfies Hn(T)>0 for all n then

(i) :(x) = constant for Ixl>R- (ii) for all s in Isl<R we may write:

-11o R
T(s) = I d+SX(x) = --- d o(x) (3.14)T-) S-(+sx = 1l+sx

-R

(iii) The sequences of MPA's [m-1/m](s) and [m-1/m-1](s); m=1,2,...etc.

converge uniformly to the expression (3.14). In particular, if T(s) is

a matrix Stieltjes series then the limit functions G(s) and G'(s) of

Theorem 2.7 are both given by (3.14).

(iv) If, in addition, Hn(T)<0 for all n i.e., T(s) is a matrix

Stieltjes series then the lower limits in the integrals in (3.11) can

be replaced by zero.

Note that in the last case (3.14) coincides with the integral

representation of RC impedances known as Cauer's representation in

classical network theory [20].
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Proof of Theorem 3.6 uses Proposition 4.1, which, however, has been

included in Section 4 for an improved categorization of results of

similar nature.

Proof: (i) Let Pm(S) be the denominator polynomial matrix associated

with the right MPA of order [m-1/m] to T(s), and Pm(s) be the

corresponding 'inverse' polynomial matrix as defined in (4.1). Define
1 ^ A ^ ^

rm via rm = max(laml, , ml), where am and Em are as described in

Proposition 4.1 from which it also follows that rm+1 < rm for all

m=l,2,...etc. Then [m-1/m](s) is analytic in Isl<rm and thus, its power

series expansion around s=O converges in Isl<r m. Furthermore, as m m -

this latter expansion coincides with T(s) in (1.1), which is assumed to
-1

have a radius of convergence R. Consequently, R<rm and thus, kaml<R ,
-1

IBml<R for m=1,2...etc. Next, since for any fixed m, the r¥'s in

(2.6) are (a subset of) the zeros of detPm(s), the latter.. conclusion

yields that lryI<R 1 for all v and m. Thus, it follows from (3.5) that
-I

for all m am(x)=constant if Ixl>R , which in turn imply that

a(x)=constant if Ixl>R .

(ii) The following considerations hold for real valued s with Isl<R.

n ,
Define *n(x)= E (-sx)k and *(x)=(1-1sxl) 1. Clearly then for all x in

k=O

-1 -1 -1-R < x < R we have jIn(x)l<*(x) and n(x) (.l+sx) as n 4 c.

Furthermore, since +(x) is continuous and a(x) is of bounded variation

(cf. proof of Theorem 3.1) in -R < x < R , it follows from [7] that

the matricial Riemann-Stieltjes integral of. (x) with respect to da(x)

over the interval -R 1 < x < R 1 exists. By applying the dominated

convergence theorem of the theory of functions of a real variable to

the sequences formed from the respective entries of matrices it then

follows that:

-1 -1

I ~n(x)da(x) fI (l+sx) 1da(x) as n I c.4
-1 -1-R --R

Thus, the proof of (3.14) for real values of s follows from (1.1) and

(3.15) in which use of (3.1) along with the fact that a(x)=constant for

{xl>R 1 have been made.
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n n k R-
k k

Z Tks s= S (-sx) da) = f fn(x)da(x) (3.15)
k=O k=O _R-1 R-1

The validity of (3.14) for complex values of s then follows from the

principle of analytic continution by noting that both T(s) in (1.1) and

the extreme right hand side of (3.14) are analytic in Isl<R.

(iii) Follows from the fact that the limit functions to which the

sequences [m-1/m](s) and [m-1/m-l](s) of MPA's converge and T(s) are

each holomorphic in Isl<R, in which they have identical power series

expansion, namely, (1.1).

(iv) Finally, if T(s) is a matrix Stieltjes series then all r 's are

positive; thus due to (3.5) a(x)=constant for x<O. Consequently, the

lower limit of the integrals in (3.14) can be replaced by zero.

The following comment is in order with respect to item (iii) of the

above theorem. In the scalar case it has been shown that even if R=O,

the integral representation (3.14) for the limit functions remains

valid if the coefficients of the power series further satisfies the so

called 'Carleman criterion' [3]. An extension of this result in the

matrix case is not pursued here (see e.g.,[21] and references therein).
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4. Matrix Orthogonal polynomials of the second kind

The fact that the sequence of inverse polynomial matrices, constituting

the 'denominators' of MPA's to a matrix Stieltjes series form a

sequence of matrix orthogonal polynomials has already been pointed out

in [1]. However, in [1] the orthogonality relation was viewed as an

algebraic relation i.e., in terms of orthogonality of vector spaces.

Presently, it will be shown that this relation can be interpreted as an

orthogonality relation with respect to the matrix valued measure a(x)

developed in the previous section. Certain other results as natural

generalizations of the scalar theory such as the orthogonal polynomials

of the second kind and their properties follow as consequences of this

discussion.

Consider the set of 'inverse' polynomial matrix Pm(s) as in (4.1),

where Pm(s) is the 'denominator' polynomial matrix associated with the

[m-1/m](s) MPA's for T(s), and Hn(T) in (1.2a) for each n is positive

definite. (For the purpose of present section no restriction is imposed

on H'(T)).

Pm(s) = sm Pm(s ) for all m. (4.1)

Then the following results hold true.

Proposition 4.1: If &m and Em are respectively the largest and smallest

zeros of detPm(s) then &m+l>a&m, m+l•Om for all m=l,2,...etc.

Proof: As shown in [1] the zeros of detPm(s) are the eigenvalues of the

block tridiagonal matrix in (4.2a), where Ck=D kKkDk Co=DO T1,
-1 KkDk C0=0 T

Xk=DkllDk, and Dk's are real symmetric positive definite, whereas the

KkDk's are real symmetric matrices.

k O k 1Co X1 T D 2

IC D\ K1 DZm-1 - - (42ab)
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Thus, the zeros of detPm(s) are also eigenvalues of the real symmetric

block tridiagonal matrix Z in (4.2b), where D½ stands for them-1 k
Hermitian square root of Dk. It then follows from the Courant-Fisher

[2] theorem that

am maxx t Zmlx; IxlJlll}; m+1 = max{y Zmy; IyJJ=l1} (4.3a,b)

where x and y are column vectors of size mp and (m+l)p respectively.

Since from (4.2b) we have that

Zm -= [---D-- (4.4)

Lm m mJ

it follows from (4.3a) that am can also be considered as the maximum

value of ytZmy subject to the restriction that I lyl =1 and that the

last p elements of y are zero. Thus, m*l 1 > am. The result Om+1 < fm

also follows from similar arguments if $m and Bm+l are expressed as

the minimum values of the quadratic forms in (4.3). :

Note that in the scalar case i.e., if p=1 the above argument also leads

to the interlacing property of zeros of Pm(s)=detPm(s) and Pm+1(s) =

detPm+1(s), whereas in the matrix case interlacing properties of this

type are not known to hold.

Proposition 4.2: If Hn(T) as given in (1.2a) is positive definite for

all n then the matrical Stieltjes integral

S P (x) da(x) P(x) P (4.5)

is positive definite when p = v and is a zero matrix when p g v, where

a(x) is the real symmetric non-decreasing matrix valued function of the

real variable x as appearing in Theorem 3.1.

m (m) k m (m) k
Proof: Let Pm(s) = pk s and consequently, Pm(s) = Pm-k s ,

k=O k=O

where p(m)'s are real (pxp) matrices. Also, note that since a(x) is

real symmetric and P (x) as well as P (x) are real valued matrices for
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real x, it is enough to prove the result for v>,u. The case of v<#Q then

aollows by considering the transpose of (4.5). It follows via the use

of (3.1) in a straightforward manner that

v-A

t ̂  Adx^ = t
f P t(x)da(x)P (x) = [Mt101... lO]H (T)M. (4.6)

where HV(T) is as defined in (2.1a) and MV is defined as the px(v+l)p
( Y)t (V)t (v)t tmatrix M, = [p )t p_ 1 I..---. IP1 II] However, it also follows from

the normal equations (equation (3.1) in [1]) defining the right MPA's

that H (T)MV = [0101...0OIDt]t, where D is a real symmetric positive

definite matrix of size (pxp). Therefore, due to (4.6) we have that

^ t ^
f P (x)da(x)P (x) is equal to Dy when v=# and is equal to 0 when via.

The proposition is thus proved.

Proposition 4.3: If P(s) is any (pxp) polynomial matrix such that each

of its elements are of degree strictly less than m then

S P(x) da(x) Pm(x) = 0 ; f Pm(x) da(x)P(x) = 0 (4.7a,b)
-co -co

Proof: Since implicit in the defintion of right MPA [1] is the fact

that pm) = Pm(0) = I i.e., P (x) is monic for all m, it follows that

P (s) can be written as:

pt(s) = amlPm_l (s) + am_ 2 Pm_2 ((s ) + ... +aP(s)

where a i's are constant (pxp) matrices. Then (4.7a) follows from

Proposition 4.2. Analogous arguments hold for (4.7b).

Next, for all m=0,1,...etc. define the matrix polynomial Qm 1(s) of

degree (m-1) (where P(s) is the inverse polynomial matrix corresponding

to Pm(s) as given in ((4.1)) via the relation:

Qm l(S) = S da(x)[(Pm(s) - Pm(x))/(s-x)] (4.8)
_co

The following properties of Qml (s) are then imminent.
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Proposition 4.4: For any m=1,2,...etc. if Pm(s) is the denominator

polynomial matrix associated with the right MPA of order [m-1/m] to the

series T(s), which satisfies the condition H (T)>O for all n then

Qm (s) defined via Qm (s)=sm 1Qm (s 1) is, in fact, the numerator

polynomial matrix of the right MPA of order [m-1/m] to T(s).

Furthermore, the identity (4.9) holds true for all m=1,2,...etc.

S da(x) [sPm(s)-xPm(x))/(s-x)] = SQml(s) (4.9)
-o0

^ m (m)k
Proof: It follows from Pm(s) = E p s and (4.8) that

k=0 m-k

^ o m k k (m)
Qm 1(s) = S d:(x) Z [(s -x )/(s-k)] p

-a k=O m-k

~o n k-1 i k-l-i (m) m k-1 (m) k-l-i
f= da(x) ( Z x s )Pm-k -= T p s
-0 k=i i=0 k- k=l i=O m-k (4.10)

where the last equality follows via the use of equation (3.1).

Furthermore, we then also have:

m-A -i m k-i (m) m -k+i m-1 j (m)
Qmnl (s)=s ( )s )= T i p s = Z ( E Th p )s

k=l i=0 m-k j=0 h=0 j-h

(4.11)

where the last equality follows by a straightforward rearrangement of

the indices of the double sum. Since from (4.11) it follows that

Qm 1(s)-T(s)Pm(s)= o(s 2 m ) i.e., the coefficients of sk for k=0,1,...

(2m-1) are all zero, the polynomial matrix Qml(s) is indeed the

'numerator' associated with the right MPA of order [m-1/m]

corresponding to the formal powes series T(s).

By following a sequence of steps analogous that used in the derivation'

of (4.11) above it can also be shown that

X ^ ^ m kco0~~ A11~ A m k ~k-i_(m)
S d:(x) [sPm(s)-xPm(x))/(s-x)] = Z Tis Pm-k
-co k=O i=0
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m j (m)
= E ( E ThP )sm - (4.12)

j=O h=O j-h

where the first equality follows from straightforward algebraic

manipulation and a use of (3.1), whereas the second equality involves a

rearrangement of indices of the double sum. The result in (4.9) then

follows by noting that due to the normal equations [1] defining the

m (m) = 0
right MPA's the term in (4.12) with j = m is zero i.e., E Th Pm-h =

h=0

and from (4.11) sQm_1(s) = Z T hPj-hs
j=0 h=0 -

Note that in view of the properties elaborated upon in the following

the sequence of matrix polynomials Qm _l(s), m = 1,2,...etc. can be

regarded as the natural generalization of sequence of scalar

polynomials of the second kind treated in the classical literature

[10].

The fact that the sequence of matrix polynomials Pm(s), m =

0,1,2...etc. satisfies the recurrence relation (4.13) has been shown in

[1] i.e., (4.13) holds for m = 1,2,...etc.

Pm+l(S) = Pm(S) (sI-C m) - Pm-1()Xm (4.13)

where Cm and Xm are real (pxp) matrices such that Cm = Dim KmDm and Xm

Dm 1Dm with Dm for all m are real symmetric positive definite, and

KmDm for all m are real symmetric matrices.

Proposition 4.5: The sequence of polynomials Qm(s), m = 0,1,2,...etc.

satisfies the same recurrence relations as Pm(s). More specifically,

following three term recurrence relation holds true.

Qm+l(s) = Qm(s)(sI - Cm) - Qm-l(S)Xm, m=0,l,...etc. (4.14)

with Q 1(s)=O, QO(s)=T0 , and Cm and Xm as in the context of (4.13).

Proof: We substract equation (4.13) with s = s from equation (4.13)

with s=x. By considering the (left) Stieltjes integral of the resulting
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equation with respect to the matrix measure da(x) the recurrence
relation (4.14) follows by observing equations (4.8) and (4.9).
Finally, the facts that Ql(s)=O and Q0(s) = TO follow obviously from
(4.8) and that P0(s) is monic.

The following result shows that the zeros of Qm 1( s) ' enjoy properties
similar to those of the zeros of Pm(s) as discussed in [1].

Proposition 4.6: If H (T) > 0 for all n, then (i) all zeros of
detQm_1(s) are real (ii) if aj is a zero of det Qm(s) of multiplicity n
there exists a set of exactly n linearly independent sets of (1 x p)

1 2 nvectors {vj , vj ,...vjn} such that vj Qm(s) = 0, i = 1,2,...n.

(iii) any zero of det Qml(s) cannot be of multiplicity larger than p
(iv) invariant factors in the Smith cannonical form for Qm l(s) cannot
have zeros of multiple order.

Since the proof of the above proposition is essentially a consequence
of the recurrence relation (4.13) and follows in exactly the same way
as that of the corresponding properties of the sequence of matrix
polynomials Pm(s), as elaborated in [1, Theorem 3.1, Corollaries 3.1,
3.2], it will be ommitted for the sake of brevity.

The three term recurrence relation (4.14) connecting successive members
of the 'denominator' sequence of matrix polynomials, when coupled with
the corresponding recurrence relation for the 'numerator' sequence
(4.13) discussed in [1] provides a fast recursive algorithm for
computing the paradiagonal sequence of MPA's to a matrix Stieltjes
series. We note that similar recursion for the problem of computing
matrix Pade! approximants in general has been discussed in [14]. If, in
addition to H (T)>O, we also have H'(T)<0O for all n i.e., T(s) is a
matrix Stieltjes series then it follows from the impedance or
admittance interpretation of [m-1/m](s) that zeros of detQmi (s) are
also negative.
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5. Conclusion:

The present work can be viewed as a continuation of [1]. While

algebraic properties of the sequences of matrix Pade' approximants of

certain orders to a matrix Stieltjes series were investigated in [1],

the present work is concerned with the relevant analytic and

convergence properties of paradiagonal sequences of MPA's. Although,

our exposition has been in terms of the sequences [m-1/m] and [m/m] of

MPA's it is in general possible to derive analogous results for any

paradiagonal sequence [m+j/m]; j>-I. However, the network theoretic

interpretations of the results are then lost.

By using network theoretic interpretations of Pade' approximants to a

matrix Stieltjes of certain orders it has been shown that the sequences

of these MPA's always converge uniformly in a open bounded region of

the complex plane excluding the negative real axis. Thus, a formal

matrix Stieltjes series can be used to meaningfully represent a class

of RC-distrubuted multiports in terms of an equivalent circuit. This

result, which to the best of our knowledge has not appeared anywhere,

is indeed interesting in view of the fact that the criteria for

realizability of non-rational positive functions in terms of

interconnections of (infinite number of) conventional lumped elements

is not known [17].

Solutions to the Matricial versions of classical Hamburger and

Stieltjes moments problems are obtained, and as a consequence of this

discussion an integral representation for the RC-distributed multiport

impedance, which in fact is closely. related to the Cauer's

representation for RC-impedances, is obtained when the associated

Stieltjes series is assumed to be convergent in a disc of finite

radius. This representation is also found to be a direct matricial

generalization of the well known Stieltjes function in classical scalar

literature [10].

The sequence of 'numerator' polynomial matrices of MPA's of certain

orders to a Stieltjes series are shown to be natural generalization of

scalar orthogonal polynomials of second kind, and their properties

studied by making reference to the corresponding results for
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'denominator' sequences i.e., the matrix polynomials of the first kind

elaborated in [1]. Thus, the present discussions along with those in

[1] is believed to provide a more complete theory of orthogonal

polynomial matrices on the real line, analogous to the theory of

orthogonal polynomial matrices on the unit circle discussed in [11],

[12]. Finally, the relevance of orthogonal polynomials of the former

kind in the context of scattering theory is also noted in [18].

It must be noted that under the present framework all results of

sections 2 and 3 (except Property 3.5) including their proofs remain

valid of Hn(T) and -Hn(T) in (1.2) are assumed nonnegative definite.

This is so primarily due to the fact that the MPA's of order [m/m-l]

and [m-I/m-1] can still be interpreted as impedance or admittance

matrices of RC networks even under this broader assumption [15] (the

"McMillan degree" of [m-1/m](s), which is the number of capacitors in a

minimal realization in such a case can be less than (m-l)p, while under

the restricted assumption adopted throughout this paper it is exactly

(m-l)p; but this is of no consequence to our presentation.) However,

the orthogonality properties of Pm(s) and Qm(s)discussed in section 4,

and Proposition 4.2 in particular, are affected if the strict positive

definiteness of Hn(T) and -Hn(T) are relaxed.

From the standpoint of applications it may be mentioned that although

the present work primarily deals with connections of Pade'

approximations to matrix Stieltjes series and their intepretations in

terms of distributed RC multiport networks, in view of their

relationship with problems such as inverse scattering [18], AR

modelling of stationary stochastic processes [16] etc. the potential

for utilizing the results developed here in other areas of signal and

system theory cannot be ruled out.
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Appendix

In this appendix we prove the matricial version of two classical scalar

theorems known as Helly's theorems [9]. We note that similar results

have been derived via alternate techniques in [8] in a different

context.

Theorem Al: let am(x), m = 1,2,...etc. be a sequence of non-decreasing

real symmetric non-negative definite matrix valued functions defined

for real values of x. If there exists a constant real symmetric

non-negative definite matrix M0 such that M0 -am(x) is non-negative

definite for real x and for all m = 0,1,...etc. then there is a

subsequence of the sequence am(x), m = 1,2,...etc., which converges to

a real symmetric non-negative definite matrix valued function a(x),

which is non-decreasing.

Proof: Let fm(x) = Ila m(x)lI, , where 11.11 denotes the spectral norm of

a matrix. Since am(x) is non-decreasing, if x1 > x2 then am(x1)-am(x2)

iS non-negative definite. Thus, due to non-negative definiteness of

am(x) and Property 2.3, Ila (xl)lI > Ilam(x2)hI i.e., f (x 1) fm(x 2).

Consequently, fm(x) is a non-decreasing scalar function of x.

Furthermore, since MO-Om(x) is nonnegative definite it follows

from Property 2.3 that f (x) = Ilam(x)ll < IIMoll for real x and all

m. Thus, the scalar sequence f (x), m = 1,2,...etc. is uniformly

bounded. Therefore, by invoking a weak version of (scalar) Helley's

theorem (see e.g.[6]) it follows that a subsequence of the sequence

fm(x) = Il m(x)lI, m = 1,2,...etc. converges to a bounded

non-decreasing function f(x). However, since the convergence of the

sequence of norms I1 . of a matrix sequence implies the convergence of

the matrix sequence itself [4], it follows that the corresponding

subsequence of the sequence am(x), m = 1,2,...etc. converges to a(x)

with Ila(x)II = f(x). The rest of the desired properties of a(x) follow,

from the corresponding properties of am(X).

Theorem A2: Let a (x), m = 1,2,...etc. be a sequence of non-decreasing

real symmetric non-negative definite matrix valued functions defined

for all x in the compact interval [a,b] of the real axis such that
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MOgrm(x) for all m where M0 is a constant real symmetric non-negative

define matrix. Let a(x) be the limit function to which the above

sequence converges for all x in [a,b]. Then for a continuous scalar

valued function g(x) defined over [a,b], (Al) holds true

Limb b
LMi I g(x)dam(x) = S g(x)da(x) (Al)

a a

Furthermore, an extension of the result holds when a - -a and b - X as

in the scalar case [9].

Proof: First, since 0 < am(X) < M0 for all x e [a,b] and for all m =

1,2,...etc., and am(x) is non-decreasing, the matrix valued functions

am(x) as well as the scalar functions a (ij)(x), where a (ij)(x) is them m m
ij-th element of am(x), due to Lemma 3.3, are of bounded variation in

[a,b]. Consequently, a(x) is also of bounded variation in [a,b]. Since

g(x) is continuous in [a,b] it is uniformly continuous in [a,b].

Therefore, for any e > 0 it is possible to consider a partition

[xO,x1,...xk} of [a,b] such that

lg(x') - g(x")l < e for all x',x" e [xv_l,xV], 1 <v< k

(A2)

If V e [Xvl ,xV], then by using mean value theorem of scalar Stieltjes

integrals [9]

x
fV g(x)da()(x) - g()a(ij)(xi ) = [g(') - g() ]A(ij)(x)

Xv-l

(A3)

for some s [X1,X], where A(iJ)(x) =a(i) (x) - a(i)(x1)

a 3J(x) being the ij-th element of the matrix a(x). Note that the

existence of the integrals in the left hand side is guaranteed since

a(x) is a function of bounded variation (cf. remark preceeding Lemma,

3.4).
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Summing (A3) over v we obtain via the use of triangle inequality:

b (ij) k(ij) k(ij)
If g(x)da (x)- Z g(C)A i (X) < g I- g() g()la (x ) I
a v=1 v- 

k (ij)
< C A(ia (xV ) < eV (A4)

where V < is the tctal variation of the function a(ij)(x) over the

interval [f,b]. Proceeding similarity as above with I g(x) da m(i)(x)

instead of I g(x) da(ij)(x) it follows that a
a

b (ij) k
If g(x)da( i)(x) - g( ) a(ij)(x )l < cV (A5)
a v- 1 v m V

where Aa~(iJ)() m (ij) (x )-.(ii)( ) Thus, from (A4), (A5) and
m 'V m V m x -i

triangle inequality it follows that

Ig(x)da(iJ)(x)- g(x)dam(iJ)(x)l<2cV+ Ig(V)Id(iJ)(x V)-a(iJ)(x V)
a a v=1

(A6)

Since the second term in the right hand side of (A6) goes to zero as

me* we have essentially proved that:

Ib ()do(ij) Lim b (ij)
g(x)da )(x) = m g(x)da (x)m-+= m

a a

Extension of the proof when a * -- and b e - is identical to the scalar

case [9] and is not repeated for brevity.
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