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Optimal Search for the Best Alternative

Summary

This paper completely characterizes the solution to the problem of

searching for the best outcome from alternative sources with different

properties. The optimal strategy is an elementary reservation price rule,

where the reservation prices are easy to calculate and have an intuitive

economic interpretation.

Introduction

A broad class of economic search problems can be cast in the following

form. There are a number of different opportunities or sources, each

yielding an unknown reward. The uncertainty about the reward from a source

can be eliminated, at a fee, by searching or sampling. Each source has

its own: independent probability distribution for the reward; search

cost; search time. Sources are sampled sequentially, in whatever order

is desired. When it has been decided to stop searching, only one opportunity

is accepted, the maximum sampled reward. Under this formulation, what

sequential search strategy maximizes expected present discounted value?

A powerful solution concept applies to the above model. Each source

is assigned a reservation price -- an invarient critical number analogous

to an internal rate of return. The reservation price of a source is easily

computed, depends only on the features of that source, and has an intuitive

economic interpretation.

The selection rule is to search next that unsampled source with high-

est reservation price. The stopping rule is to terminate search whenever

the maximum sampled reward is above the reservation price of every un-
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sampled source. This simple characterization of an optimal policy is the

basic result of the present paper. Fundamental properties are derived and

interpreted.

An Example

The following example conveys the flavor of the basic problem analyzed

in this paper.

Suppose the research department of a certain large organization

has been assigned the task of finding a new and cheaper way to produce

some commodity. Two substitute technologies are being considered, the

benefits of which are uncertain and would not be known until development

work is completed. Because they produce the same commodity, no more

than one technology would actually be used even if both were developed.

It is estimated that a production process based on the so-called alpha

technology might yield a total savings of 100 with probability .5 and of

55 with probability .5. The alternative omega process with probability .2

might deliver a possible savings of 240 but it would not offer any im-

provement at all with probability .8. R&D, which must be done to remove

the uncertainty, costs 15 for the alpha process and takes one period,

whereas it costs 20 for omega and takes two periods. The interest rate

is 10% per period. Table 1 summarizes the relevant information.

project a 

cost 15 20

duration 1 2

reward 100 55 240 0

probability .5 .5 .2 .8

Table 1



-3-

The problem is to find a sequential search strategy which maximizes

expected present discounted value.

It is easy to show that developing only alpha or only omega is better

than not researching either project. The expected value of researching

alpha is

-15 + (i.l)[.5(100) + .5(55)] = 55.5,

whereas for omega it is

-20 + (1l)2[.2(240) + .8(0)] = 19.7.

Thus, at least one project should be developed.

The next logical question is: which alternative should be researched

first?

By any of the standard economic criteria, alpha dominates omega.

Alpha has lower research cost, shorter development lag, higher expected

reward, greater minimum reward, less variance.

Most economists or engineers might guess that alpha should be developed

first. They would probably be reacting to the fact that the expected

value of alpha is so much higher than omega.

However, there is a crucial difference between the value of a project

and the order in which it should be researched. Alpha is worth more in

the sense that the expected value of an optimal program without it is lower

than without omega. Nevertheless, and somewhat paradoxically, it turns

out that the optimal sequential strategy is to develop omega first.

This can be shown as follows. Suppose alpha is developed first.

If the payoff turns out to be 55, it would then be worthwhile to develop

omega, because the expected value of that strategy would be
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-20 + (1)2[.2(240) + .8(55)] = 56

which is greater than the value at that point of not developing omega,

55. However, since

-20 + {(1 )-2[.2(240) + .8(100)] = 85.8,

it would not be economical to develop omega if alpha had a 100 payoff.

So the expected value of an optimal policy beginning with developing

alpha is

-15 + (- )[.5(100) + .5-20 + (1) 2 [.2(240) + .8(55)]] = 55.9.

A similar calculation shows the expected value of an optimal policy

which starts by developing omega is

-20+ ( )2[.2(240) + .8[-15 + (l)[.5(l00) + .5(55)] = 56.3.

Thus, the optimal policy for this example has the counter-intuitive

property that omega is researched first.

The remainder of thelpaper is devoted to placing this kind of problem

in a more general context, deriving a simple decision rule, and explaining

its properties.

Pandora's Problem1

There are n closed boxes at the beginning of our scenario. Box i,

1 < i < n, contains a potential reward of x with probability distribution

function Fi(xi), independent of the other rewards. It costs c to open

box i and learn its contents, which become known only after a time lag

of ti.. Instantaneous learning is the special case ti = 0.
1 1

1With apologies to connoisseurs of Greek mythology.
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An initial amount x is available, representing a fallback reward

that could always be collected if no sampling were undertaken or if

every sampled reward happened to be less than x. In many applications

it is natural to set x = 0. All costs and benefits are converted to

present values by the discount rate r.

At each stage Pandora must decide whether or not to open a box.

If she chooses to stop searching, Pandora collects at that time the

maximum reward she has thus far uncovered. Should Pandora wish to continue

sampling, she must select the next box to be opened, pay at that time

the fee for opening it, and wait for the outcome. Then will come the

next decision stage. Note a characteristic asymmetry: the sum of search

costs is paid during search, whereas the maximum reward is collected after

search has been terminated.

Pandora worships maximized expected present discounted value. She

needs to know what she should do to be consistent with this fundamental

conviction. Pandora wants a sequential decision rule that will tell her

at each stage whether or not to continue searching, and if so, which box

to open next.

Pandora's problem can be formally posed in dynamic programming format.

Let the collection of n boxes, denoted I, be partitioned into any set S of

sampled boxes and its complement S of closed boxes. That is,

SV S = I, S S = 

where

I = {l,2,...,n}

The variable y will represent the maximum sampled reward (from the

opened boxes and the initial fallback reward)

y = max xi . (1)
ieSu{o}
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It is intuitively obvious (and easily verified) that all relevant

information about the previously opened boxes is summarized by y; knowing

the individual values of x for iSu{o} is superfluous to making a correct

decision because all probability distributions are independent.

The state of the system at any time is given by the statistic (S,y).

Define Y(S,y) as the expected present discounted value of following an

optimal policy from this time on when the set of closed boxes is S and

the maximum sampled reward is y.

For each subset S of I and every y, the state valuation functions 

must satisfy the fundamental recursive relation

T=(S,y) max y, mdax -Ci + c(S-{iy)+ di(i) + (-{i, dFi(xi)J} (2)
-is y

where2

T(q,x) = x (3)

-rt.

f3i =e (4)

Equation (2) is just the principle of optimality for dynamic programming.

At stage (S,y) Pandora could terminate search, collecting reward y. Or,

she might open box i, for each iS, which results in expected discounted

net gain

y 00-C + (§{iy)f di( i ) + f (S-{i},xi) dFi(xi )
_co Y

The value of an optimal policy at (S,y) is the maximum of these alternatives.

2For some applications it may be appropriate to interpret 1-Bi as
the probability that investigating source i results in a catastrophic
accident, nullifying rewards and terminating search. Note that nothing
formally prevents ci from being negative; in such situations -ci would
be interpreted as a component of gain additive across sources.
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In principle, the state valuation functions {(S,y)} could be recursively

built up by systematic induction on the number of closed boxes. Using

(2), (3), state valuation functions could be constructed first for all

sets consisting of one closed box, then for all sets of two boxes, of three,

four, etc. The actual computation is likely to be a combinatoric task of

unwieldy proportions unless the number of boxes is very small.

At any stage (S,y), Pandora's optimal decision is that policy which

maximizes the right hand side of (2). If two or more policies tie, it makes

no difference how the tie is broken. Note that although an optimal strategy

is implicitly contained in equation (2), the form of that strategy is little

more than a complete enumeration of what to do in all possible situations.

The economic search literature has dealt extensively with the situa-

tion where, in effect, all boxes are identical. For this special case the

issue of choosing which box to open does not arise. The essential question

is when to stop. The answer is: search continues until a reward greater

than some "reservation price" is discovered. The reservation price for

sampling with recall is that hypothetical cutoff value of the maximum

reward which would make it just equal to the expected net gain of opening

exactly one more box.3

The contribution of the present paper is to show that with alternative

search opportunities the optimal policy is a straightforward analogue

of the above idea. Each (different) box is assigned a (different) reserva-

tion price, calculated by the same formula as before, which now serves as a

basis for the optimal stopping and selection rule. The reservation price

of a box determines its ordinal ranking, prescribing when it should be

3This stopping rule is well known and appears in many places. See,
for example, Lippman and McCall [1976] or Landsberger and Peled [1977].
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opened relative to the other boxes. Thus, all the advantages of a simple

rate of return criterion apply in a search context.

Some Interpretations

The formulation presented in this paper is general enough to cover,

at a high level of abstraction, economic search models from a variety

of settings.



-8-

Take for example the standard job search model with wage offers

retained. The current framework allows the situation where the job searcher

may choose to sample from various firms having different characteristics.

The lump sum reward is most appropriately interpreted as the discounted

present value of all future wages. Search costs, which presumably include

a psychic component, are net of any side compensation (unemployment benefits

or wages from a currently held job). The possibility of reaccepting current

work while searching on-the-job is accommodated by making the fallback

reward x equal to the present discounted value of the current wage.

Other modifications are also possible.

Searching for the lowest price on some commodity available from

different stores is also an example amenable to the analysis developed

in this paper. Let the good have some intrinsic utility measured in

dollar terms. The reward available from a store is the difference between

the utility of the commodity and its price. Search costs should include

the opportunity loss of forgoing the item in question while search continues,

as well as the more orthodox cost of visiting a store to obtain a price

quotation. The option of not buying the good at all can be represented by

setting the fallback reward equal to the (dis)utility of henceforth doing

without the item altogether, which can be normalized to zero.

Another area of application concerns the optimal sequential research

strategy for developing various uncertain technologies to meet the same or

a similar purpose. The reward is the potential cost saving of the new

technology, unknown until after it has been developed. Search fees are

research and development expenditures. Search time is the anticipated

length of the R&D process. The option of choosing to continue with the

current known technology is represented by having a zero fallback reward.
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There are several other possible interpretations of the model.

Two of them are described in the section on applications.

The Optimal Strategy

Any closed box is characterized by: a fee for opening it; a time lag

for discovering its contents; a probability distribution for the reward

it contains. Suppose all this information must somehow be compressed into

a single index number, a kind of internal rate of return. One heuristic

procedure would be to evaluate the intrinsic search value of a closed box

by assigning it the hypothetical reward of that opened box to which it

is in some sense equivalent.

Suppose for the moment there are just two boxes. One is the closed

box i. The other is an already opened hypothetical box offering reward

z.. If the searcher elects not to open box i, she receives the "sure
1

thing"

z.i (5)1

If she opens box i, the searcher can expect a net benefit

Zi .

-ci + i Zi I dFi(xi) + x i dFi(i) (6)

Zi

The closed and opened boxes are heuristically "equivalent" if the

searcher is just indifferent between opening box i and not opening it.

This will occur if (5) and (6) are equal to each other, a condition which

can be rewritten

o00

ci = , f (xi-zi) dFi(xi) - (l-Si)zi (7)
Zi1
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The critical number z. which satisfies (7) is called the reservation
1

price of box i.

Although the definition (7) has been motivated by heuristic considera-

tions, it turns out there is a rigorous sense in which all relevant informa-

tion about box i is summarized by its reservation price z.

The following decision strategy, called Pandora's Rule, completely

characterizes an optimal policy.

Selection Rule: If a box is to be opened, it should be that

closed box with highest reservation price.

Stopping Rule: Terminate search whenever the maximum sampled

reward exceeds the reservation price of every closed box.

What is remarkable about this rule is that the entire structure of

an optimal policy has been reduced to a simple statement about reservation

prices. Furthermore, the reservation price of each box is calculated by

equating a hypothetical gain of stopping (5) not with the full gain of

opening the box and continuing on in an optimal manner, but rather with

the myopic gain of opening the box and terminating (6). In other words,

the reservation price of a box depends only on the properties of that

box and is independent of all other search opportunities.

Note that if Pandora samples from n identical boxes, the optimal

policy is to continue search until she uncovers a reward greater than

the common reservation price of each box. In this special case, it is

comparatively simple to prove optimality.

The proof of Pandora's rule, which is quite technical, is relegated

to the final section.
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Properties of Reservation Prices

From (7), the reservation price of a box is completely insensitive

to the probability distribution of rewards at the lower end of the tail.

Any rearrangement of the probability mass located below zi leaves zi

unaltered. It is important to understand this feature. Considering that

a box could be opened at any time, the only rationale for opening it

now is the possibility of terminating further search by drawing a relatively

high reward. That is why the lower end of its reward distribution is

irrelevant to the order in which box i should be sampled even though it

may well influence the value of an optimal policy by altering the likelihood

that x.i will end up being the largest reward drawn.

On the other hand, as rewards become more dispersed at the upper

end of the distribution, the reservation price increases and so does the

net benefit of search. Other things being equal, it is optimal to sample

first from distributions which are more spread out or riskier in hopes

of striking it rich early and ending the search. This is a major result

of the present paper. Low-probability high-payoff situations should

be prime candidates for early investigation even though they may have

a smaller chance of ending up as the source ultimately yielding the maximum

reward when search ends.

The standard comparative statics exercises performed on (7) yield

anticipated results. Reservation price decreases with: greater search

cost, increased search time, or a higher interest rate. Moving the prob-

ability mass of rewards to the right (i.e., changing the distribution

function Fi(xi) to Gi(xi) < Fi(xi)) makes z.i larger. Thus, although

there is no necessary connection between the mean reward and the reserva-

tion price, there is a well-defined sense in which higher rewards increase

the reservation price. Similarly, performing a mean preserving spread
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on the distribution function Fi(xi) makes Zi bigger. In this sense a

riskier distribution of rewards implies a higher reservation price.4

Note that acceptance levels decline with the duration of search, as

the best opportunities are sampled first and the poorer ones later.

Because it is so easy to calculate reservation prices, sensitivity

analysis is made especially simple. The effect on project ranking (and

hence on an optimal policy) of changing such parameters as search costs,

the probability distribution of rewards, search time, or the interest rate

is easily determined. It is also easy to say how an optimal search strategy

changes when certain opportunities are added to or deleted from the list of

prospective candidates.

Applications

To illustrate the nature of the solution concept and indicate what it

depends on, two explicit examples are calculated for interesting special

cases.

In the first example, suppose that box i contains one of two outcomes:

either zero reward ("failure") with probability 1-pi, or positive reward Ri

("success") with probability Pi. To keep things simple there is no dis-

counting (Bi = 1) and the expected net gain piRi - ci is positive.

Applying (7) to this special case yields the closed form expression

Pii i
z = (8)
1 P.

The reservation price of a box is the expected net gain divided by

the probability of success. For the same expected net gain, that box

is opened first which offers a smaller probability of success.

4This feature has been analyzed by Kohn and Shavell [1974] for
the case of identical boxes.
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After ranking boxes to be opened in order of decreasing zi, the

searcher moves down the list until a success is encountered. At that

point search ends because R. > z..

Suppose, as a further restriction, search is for the same object,

for example a new product with certain well-defined characteristics. Then

all rewards R are identical. In that case (8) reduces to

C.

Z = R--- .
1 Pi

The next opportunity sampled is the one offering the highest probability of

success per dollar of search cost. This is also a well-known characteriza-

tion of the best way to locate a lost or hidden object.5

A second example is the so-called "gold mining problem".6 Suppose

there is a movable gold mining machine. Mine i contains amount G. of

gold, but after digging it out the machine is liable to break down with

probability qi, preventing all further mining. In what order should the

mines be exploited to maximize total expected gold?

Problems like this are a special (almost degenerate) case of Pandora's

problem. Equation (2) is a valid dynamic programming formulation of

the gold mining problem under the special assumptions x = 0, xi = 0

(each box contains zero reward with probability one), ci = -Gi, i = l-qi.

Applying (7) to this special case, the integral vanishes when z.i > 0,

yielding as a solution the closed form expression

5See, for example, De Groot 11970], Kadane and Simon 1977], or
Stone [1975].

6There are several variants of this problem, having essentially
the same underlying structure. Other names are the quiz show problem,
the obstacle course problem, the least cost testing sequence problem.
See, for example, Bellman [1957], or Kadane [1969]. With only minor
changes in interpretation, the present framework can incorporate such
features as possible breakdown before receiving the prize, waiting times,
consolation prizes, etc.
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G.1
z = -= 

qi

The optimal policy is to exploit next that unopened mine with maximum

gold per probability of machine breakdown, a classic result.

Some Limitations

The purpose of the model formulated in this paper is to sharply

characterize optimal search among alternative sources with different

characteristics. Naturally certain "other" aspects of the optimal search

problem have been abstracted away.

Many of the underlying assumptions of the present formulation are

unrealistic. There has been no provision made for: adaptive learning

about correlated probability distributions; pay-as-you-go research (with

the possibility of backing out of a project if prospects start looking

unfavorable); parallel search activity; risk aversion; incomplete or no

recall; collecting some reward before search is terminated; randomly generated

new opportunities; a binding time horizon; uncertain search costs or search

time; etc.7 Yet the model as a whole captures enough essential aspects

of reality that it should be useful in providing project rankings which

might serve as a rough planning guide of sorts, a kind of pre-investment

screening device, or a reference point for the numerical analysis of a

more comprehensive dynamic programming type formulation.

The fact that it is possible to explicitly construct an optimal solu-

tion makes the problem analyzed here a natural preliminary to more general

formulations. And the present model may even be a reasonable description

of some situations.

7Some of these topics have been treated in the literature, most
typically for the symmetric case where all boxes are identical. See the
bibliography cited at the end of this paper.
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That such an elementary decision strategy as Pandora's rule is optimal

depends more crucially than might be supposed on the simplifying assumptions

of the model. There does not seem to be available a sharp characterization

of an optimal solution when certain features of the present model are

changed. Pandora's rule does not readily generalize.

For example, Pandora's rule does not determine an optimal ordering

if she may only open m of the n boxes available to her. An example of this

was provided in the second section, where alpha was preferable when only

one opportunity could be searched, whereas omega was the better starting

choice with the possibility of sequential sampling from both sources. In

the general case n > m > 2, an involved permutational exercise would be

required to determine which m boxes should be potentially sampled.

However, once given the list of m boxes, Pandora's rule applied to this

subset would be the optimal decision strategy.

If reward distributions were not independent, the optimal search

strategy could be very complicated. When a box is opened, the searcher

would learn not only about its contents, but also about the reward dis-

tributions of alternative boxes.8 It appears plausible that other things

being equal it would be better to open a box whose reward is highly correlated

with other rewards because this adds a positive informational externality.

But translating such an effect into a simple search rule seems difficult

except in the most elementary cases.

Parallel search efforts and pay-as-you-go research with the option

of backing out are important features of the R&D scene omitted from the

current formulation. They seem to be very hard to model well.9 Perhaps

8Rothschild [1974] contains an illuminating analysis of adaptive
search policies for the case of identical boxes.

9See, for example, Marshak et al. [1967].
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it is wishful thinking, but my feeling is that the results of this paper

might still constitute a useful guide here. Even though modified by more

complicated and realistic considerations, something like Pandora's rule

should remain part of any optimal sequential search policy.

If some fraction of its reward can be collected from a research proj-

ect before the sequential search procedure as a whole is terminated, that

could negate Pandora's rule in extreme cases. It might be optimal to start

off with a cheap low-risk research project which promises to supply modest

benefits throughout the period of sequential search for the best alterna-

tive. Such a project is unlikely to be chosen at the end of the search,

but it is developed at the beginning because it can provide a stream of

interim rewards while the results of further sampling are awaited.

The cases of sampling without recall, risk aversion, and randomly

generated new opportunities have been treated to some extent in the

10
literature. An optimal policy is typically complicated, especially when

there are different kinds of boxes. What to do next will depend in an

intricate way on past results and future possibilities.

A binding time horizon is somewhat like a restriction on the number

of boxes that can be opened. To some extent the intended effect may be

captured by naming an appropriately high discount rate. As in the case

of a curved utility function, an optimal policy will move toward sampling

less risky distributions.

If search costs or discount factors are randomly distributed inde-

pendently of everything else, no changes in formulation are necessary so

long as ci and Hi are interpreted as mean values.

1 0See especially Salop 11973] who treats thoroughly the no recall
case. The other two cases are briefly surveyed for a situation with
identical boxes in Lippman and McCall [1976].
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Proof of Optimality

First it must be shown that the formula for determining the reservation

price of a box is well defined.

Let

00

Hi(z) = i (xi-z) dFi( i ) - (1-i )z (9)
z

It is easily verified that the function Hi(z) is continuous and monotonic.

By taking the appropriate limits, H(-oo) = A, Hi(O) = -a (=O if i=l). Thus,

so long as c > 0 or S i < 1, there exists a solution z. to the equation

Ci Hi(zi)

which is unique.

The proof of the main proposition is by induction on the number of

closed boxes. Suppose Pandora's rule is optimal with m closed boxes re-

maining and any value of y (representing the maximum return from the pre-

viously opened boxes and the initial fallback reward). For m = 1, the

optimality of Pandora's rule is easily demonstrated just by-directly

applying the definition of reservation price.

Henceforth we will be considering a situation with m+l closed boxes

(the set S) and any value of y.

Let j be a box with biggest reservation price in the collection of

m+l closed boxes



-17-

j max z (10)

z = max z. . (10)J i-1

If y > z, it is simple to demonstrate the optimality of not opening

any boxes. (After one box is opened, by Pandora's rule applied to m closed

boxes it will be optimal to stop. Hence the question is whether opening

exactly one box is better than not opening any, which is easily answered

in the negative.) The stopping criterion of Pandora's rule is thus proved

for m+l closed boxes.

If y < z, it is straightforward to show the nonoptimality of no further

search. (Just opening box j and then stopping would yield a higher expected

present discounted value.) Thus, at least one box should be opened.

Suppose (by contradiction with Pandora's rule) it is optimal to open

box k first, where k is any box in S having a lower reservation price

than j

kcS

zk < z.. (11)
Zk (J

If box k is opened first, by the induction assumption on Pandora's

rule for m closed boxes there is an exact prescription of what to do in

an optimal policy thereafter. Let the expected discounted present value

of opening box k and following Pandora's rule thereafter, which is alleged

to constitute the best strategy, be B.

Consider the following alternative. Open box j first. Let h be a

box with second biggest reservation price in the collection of m+l closed

boxes

hS-{j }

z = max z. . (12)
h i-{j) 1
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If xj > Zh' terminate. Otherwise, open box k next. From then on proceed

by Pandora's rule. Let the expected present discounted value of this

alternative policy be A.

The rest of the proof, although technical in its details, essentially

consists of showing that A > B. From this it follows that the originally

proposed policy of first opening box k cannot in fact be best. It must be

optimal to first open the box with biggest implicit worth in S and then,

from the induction assumption, to proceed by Pandora's rule for the remaining

m closed boxes. But this is just Pandora's selection rule for m+l closed

boxes, completing the induction step.

The following notation is employed (Figure 1 may be useful in providing

a sort of mnemonic device).

fj = prob(xj>zj) wj = E[xj Ixj>zj]

Wk = prob(xk>Zj) Wk = E[Xklxk>Zj]

= prob(zh<xj<z) vj = E[xjzh<Xj<zJ] h- = E[max(xj,y)zh<xj<Zj]

k = prb(Zh<xk<zj) vk = Emklah<xk<zx(] k = Ema(xk)h<k<j]

Ik = prob(zk <xk<Zh) uk = Exklzk<xk<zh]

variable: Xk xj xk x. xk

probability: Ik Ij Xk ; k

value(s): uk v. vk w; wk
J J

v vk

Zk Zh Zj

Figure 1
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d = E[max(xj,xk,Yy)I zh<x j<z; ZhXk<zj] (13)

= E[T(S-{j}-{k},max(xj,xk,y)) Ixj<zh; Xk<zh] (14)

The expected present discounted value of opening box k and then pro-

ceeding by Pandora's rule is

B = -ck + kkWk + Xkk[-C j+ j + X d + (l-j-j) v k ]

+ (1-7k-Xk)k-Cj + jBjj + jYjj] + (l-7k-Xk)(l-j--j)kBj) . (15)

The proposed alternative is: open box j; if x > Zh terminate;

if xj < zh, next open box k and then proceed by Pandora's rule. The ex-

pected present discounted value of such a policy is

A = -j + j.jw + Xjfjvj + (l-T.-Xj) j[-ck + kkWk + XkBkvk]

+ (1-Tj-kj) (l-.fk-lk)Bj i kD (16)

Subtracting (15) from (16), cancelling some terms and grouping others,

A - B = Ic -rjBjwj)((1-rk) k - 1) + (Ck-7kBkWk)(l - (1-ij- j)Bj)

+ Ajjj - Xk kXjjd - (l-rk-Xk)kijBji . (17)

From (7),

cj = jrj(wj-zj) - (1-j)zj , (18)

Ck = k[fk(Wk-Zk) + Xk(Vk-zk) + k(Uk-Zk)] - (1-k)Zk . (19)

Substituting in (17) for cj and ck from the above expressions yields

something that can be manipulated into the form

A -B = (zj-zk) (jSi+l-ji) (kSk+l-k)] + (VkZk)[kk(1-j+j j) 

+ (j-Z k) [Bjij (1-Bk+ k k)] + (UkZk) [Pkok(1- j+jj+j j) i

+ (j+Vvk-zk-d) [AkBkXjSj] I (20)
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From the definition (13),

d = Zh + Emax(max(xj ,y)-zh,xk-zh)Izh< X j<z j;zh<Xk<j

< zh + E(max(xj ,Y)-zh+Xk-zh)/Zh<-X< zj ;Zh-Xk<Zj

= vj + vk - Zh

< vj + vk - Zk · (21)

Using the above inequality and the fact that O<j <l, O<Sk<l, every

term of expression (20) is seen to be non-negative, with the first term

strictly positive. Thus,

A > B . (22)

This concludes our proof of the form of an optimal policy.

Strictly speaking, we have proved the necessity of Pandora's rule.

That rule specifies a unique strategy for each state (except when there

is a tie for the maximum reservation price of a closed box, in which case

it can be shown, along the lines of the current proof, that how the tie

is broken makes no difference to the value of the objective function).

Thus, since an optimum policy exists, sufficiency of Pandora's rule has

also been demonstrated.
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