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ABSTRACT

This report summarizes the result. of studies concerning the range of
applicability of two subchannel codes for a variety of thermal-hydraulic
analyses. The subchannel codes used include COBRA IIIC/MIT and the
newly developed code, COBRA IV-I which is considered the benchmark
code for the purpose of this report. Hence, through the comparisons
of the two codes, the applicability of COBRA IIIC/MIT is assessed
with respect to COBRA IV-I.

A variety of LWR thermal-hydraulic analyses are examined. Results
of both codes for steady-state and transient analyses are compared.
The types of analysis include BWR bundle-wide analysis, a simulated rod
ejection and loss of flow transients for a PWR. The system parameters
were changed drastically to reach extreme coolant conditions, thereby
establishing upper limits.

In addition to these cases, both codes are compared to experimental
data including measured coolant exit temperatures in a core, interbundle
mixing for inlet flow upset cases and two-subchannel flow blockage
measurements,

The comparisons showed that, overall, COBRA IIIC/MIT predicts most
thermal-hydraulic parameters quite satisfactorily. However, the clad
temperature predictions differ from those calculated by COBRA IV-I and
appear to be in error. These incorrect predictions are caused by the
discontinuity in the heat transfer coefficient at the start of boiling.
Hence, if the heat transfer package is corrected, then COBRA ITIC/MIT
should be just as applicable as the implicit option of COBRA IV-I.
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EXECUTIVE SUMMARY

This report summarizes the research work performed under the
project,
"LWR Core Thermal-Hydraulic Analysis -- Assessment and
Comparison of the Range of Applicability of the Codes
COBRA IIIC/MIT and COBRA IV-I",
whose scope of work has been outlined in the Attachment I of the letter
dated November 21, 1977 to the sponsors by Dr. W. Hinkle.¥*
Due to the fact that the report discusses various research topics
in a different order, a step-by-step discussion of the goals achieved

under the various points in the order of appearance in the aforementioned

reference seems to be in order:

I. PWR Analysis

1) Available information about the range of applicability of COBRA
ITIC/MIT for steady-state and transient analyses has been collected
and assessed. During this study it became obvious that the code has
never been consistently benchmarked against another code and/or
experimental evidence. Furthermore, it could be concluded that major
emphasis had been put into the DNBR analysis in the past without
studying other thermal-hydraulic parameters with the same intensity.

This assessment set the overall framework for the research work.

2a) Using Maine Yankee data, rod ejection transient and loss of flow
transients were studied extensively. Dropped rod, loss of feedwater

and excess load listed under 2b through 2d were dropped after an

agreement was reached with the sponsors that the power and flow transients

constitute an upper envelope for the other types of tramsients, too.

*Managing Director of MIT Energy Laboratory Electric Utility Program.



With respect to the power transients, three significant conclu-

sions can be drawn:

A) Oscillations occurred at the inception of boiling when very
small time steps were used. Both COBRA codes failed to con-
verge at the point where subcooled boiling starts. This
failure has been corrected successfully and hence, the ability
to apply either code to severe power transients is at least
not limited by the use of very small time steps.

B) The comparisons with both the implicit and explicit options of
COBRA IV-I reveal discrepancies in the void fraction, density
and clad temperature predictions, which can be explained in
terms of the oversimplified heat transfer logic in COBRA IIIC/MIT.
A change in this code's heat transfer logic should improve
the validity of the results.

C) As expected, COBRA IIIC/MIT fails when the flow reverses, while
the explicit method of COBRA IV-I does not. However, it is
worth mentioning that the results of both codes are similar up
to the point where COBRA IIIC/MIT fails. But the conditions for
this occurrence are, indeed, very severe. It can be concluded,
then, that the code seems to perform satisfactorily for most

severe power transients. (Compare Point 4 of Statement of Work.)

With respect to the loss of flow transients, the following research
has been done. Four different transients were analyzed, covering a
broad spectrum. The first case, which is the least severe, produced no

boiling at any time during the transient. The second and fourth cases



produced boiling in steady-state as well as throughout the transient

whereas the third one generates boiling only in the transient. These

transients are considered to constitute an envelope of various other

possible cases, arid the following conclusions can be drawn:

A)

B)

0

Throughout the comparisons, the clad temperature predictions of
the two codes are significantly different. The differences
increase both as the power is increased and as the transient
progresses. The major source for the observed discrepancies is
again the heat transfer logic in COBRA IIIC/MIT.

Despite the differences in the clad temperature predictions, the
DNBR predictions are in very good agreement, which simply states
the insensitivity of this design parameter. This results because
the heat flux predictions of the two codes are close, though the
clad temperatures are different. Only the third test case is
slightly affected by the different clad temperature predictions
because in this case also different heat fluxes are calculated.
However, in general, the DNBR predictions of both codes agree
extremely well with one another.

Fluid variables such as density and enthalpy are predicted to be
nearly the same by both codes. Therefore, it is believed that
the improved implicit energy equation in COBRA IV-I has no
significant effect on the predictions during the transients.
This, together with the broad spectrum of transients considered,
ensures the adequacy of the COBRA IIIC/MIT density and enthalpy

predictions.



D) The use of COBRA ITIC/MIT for DNBR analysis should be

satisfactory.as compared to COBRA IV-I.

3) No additional work has been done for fuel assembly designs other
than for the Maine Yankee reactor because no additional data were

provided.

4a) This point is covered by the study of overly severe power
transients as discussed in Point 2. Rather than reducing the flow
beyond the specified limits, the power and the coolant conditions
were increased such as to force flow reversal in order to employ

the implicit option in COBRA IV-I.

4b) The results of the study of flow blockages will be reported below.

5) No blowdown calculations were performed with the explicit version
of COBRA IV-I in the context of this research, because the method
employs a pure homogeneous model which is questionable to use under
these circumstances. Furthermore, it is thought that the THERMIT
two-fluid code developed at MIT offers more for the money. In
addition, independent study was performed with COBRA IV-BEEST for
blowdown calculations which employs a best-estimate heat transfer
package rather than the common RELAP41MOD5 package. Substantial
differences have been observed between these two packages. These

results are available to the utilities upon request.

6) No special criteria have been formulated for the upper limit of

transients safely handled by COBRA IIIC/MIT because the experience



with the code indicates that it can handle safely about all of the
transients to be encountered, unless they are made overly severe

and unrealistic.

7) Transients which have definitely to be analyzed by COBRA IV-I
are of the type which lead to flow reversal or where it is mandatory

to obtain reliable clad temperatures and heat fluxes.

This concludes the statement of work. However, on top of the
research reported above and in due regard of the finding that COBRA IIIC/MIT
has not been assessed with respect to experimental evidence thus far,
several comparisons were performed.

The first one concerns the comparison between the measured steady-
state Maine Yankee core exit temperatures and the calculated results of
both COBRA IIIC/MIT and COBRA IV-I. The codes predict the measured
values extremely well. Most of the measured temperatures are predicted
to within 5°F by either code. Both codes agree to within 0.1°F of each
other.

The second experiment involves interbundle mixing data for inlet
flow upset cases. Two cases of 25% and 5% are considered where the axial
flow distribution is satisfactorily predicted by each code. Despite
minor discrepancies, neither code appears to be any better than the other
one in predicting the other hydraulic parameters. Both codes, however,
show a substantial sensitivity to the crossflow results upon the selection
of the axial mesh size whose correct value is naturally not known in

advance. THERMIT, with a complete treatment of the Navier-Stokes Equationms,



does not show this type of sensitivity and, furthermore, shows better
agreement with the data spectrum of transients even without accounting
for turbulent mixing.

The third experiment concerns the EIR two-subchannel flow blockage
tests. COBRA IIIC/MIT does not predict this case very well because it
simulates geometric changes via an artificially high kgrid factor which
must be filled; On the other hand; COBRA IV-I, which models directly
geometric changes, is quite successful, although changes in gap geometry
call for a new set of parameters; Therefore, it is recommended that

COBRA IV-I is used for flow blockage calculations as long as COBRA IIIC/MIT

does not contain a better blockage simulation method.

II. BWR Analysis

1) The BWR option of COBRA IIIC/MIT has been made fully operational
for steady-state and transient analysis which now can account for
Levy's subcooled boiling model. Inconsistencies had to be removed

in the void fraction; the flow rate and the pressure drop calculatioms.
Other changes involved the calculation of q' on each iteration and

the implementation of a physical constraint concerning Po' During
this research, it was discovered that COBRA IV-I could only be used
for steady-state BWR analyses, not for transiemnt ones. It is

believed now that the BWR option works for all transients of interest.

2) The heat transfer calculations in COBRA IIIC/MIT are not adequate
for the subcooled boiling regime. The differences result from both

a questionable logic in the heat transfer package and an explicit



energy equation. Both items must be changed to improve the calcula-
tions. The built-in correlations have been assessed and compared

to those of COBRA IV-I. No actions have been taken, however, to
implement new correlations or a new methodology for the evaluation
of critical power. The results obtained for the BWR cases under
consideration indicate that in fact subcooled boiling should be
taken into account especially when neutronic feedback calculations
are involved. The effects on void fraction and density are sub-

stantial just in the core region where usually the power peaks.

3) With:whatever little information was available from SAI, the
Peach Bottom test of turbine trip without bypass has been simulated
after the failure of the code for small time step sizes and
inclusion of the Levy subcooled boiling model had been overcome.
This pressurization transient was handled by COBRA IIIC/MIT quite
satisfactorily although clad temperature rises in some nodes seem
to be unrealistic and must again be attributed to the wrong heat

transfer logic.

4) No BWR loss of flow transient has been studied. COBRA IV-I
cannot be used for transient bundle-wide BWR analysis the way

COBRA IIIC/MIT is set up.

5) Assessment and recommendations are given for future work in

the area of BWR analyses.



Finally, it should be pointed out that with the efforts undertaken
during this project, the confidence in the performance of COBRA IIIC/MIT
has been remarkably increased, and the areas of questionable performance
have been nailed down and their remedies are known. Thus, it is believed

that with some additional efforts the latter can be quite easily removed.



CHAPTER 1

INTRODUCTION

1.1 Background

The thermal-hydraulic analysis of a Light Water Reactor core is
frequently performed using subchannel computer codes. These codes are
used to calculate the various thermal—hydraulic parameters (e.g., temperature,
density, velocity, etc.) for either amn entire core or some section thereof.
The one common characteristic of all these codes is their lumping of the
geometry into a manageable number of channels. A channel consists of a
finite fraction of the total cross-sectional area of the core section
under consideration. The size of these channels can be chosen arbitrarily,
but the smallest possible channel would be the size of a subchannel. Each
channel is then axially divided into a specified number of nodes. One node
in any channel represents the smallest control volume for which the various
conservation equations would be applied. Since each node is formed by
lumping the geometry, the value for each parameter in the node represents
an average over the entire volume of the node. However, if the channels
are chosen appropriately then an accurate analysis of the core can be made.
Consequently, subchannel codes are very important tools for the thermal-
hydraulic analysis of Light Water Reactors.

However, in order to be useful tools, the range of applicability and
reliability of the results of these codes must be determined for both
steady-state and transient conditions. Although the ultimate validation

of a code is by comparison to experiment, most experiments measure the
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various thermal-hydraulic parameters only for steady-state conditions
making transient comparisons very difficult to obtain. Furthermore,
the experiments would usually measure discrete values for the parameters and
not node average values which are what the subchannel codes predict. In
view of these difficulties, the primary method for determining the range
of applicability has been to compare the results of one code to those of
another. This comparison can only be meaningful if the two codes use either
different solution methods or different physical models. Therefore, in
order to clearly identify the range of applicability of a code, comparisons
of this code should be made with another code which satisfies one of the
above two criteria.

Until recently, there has been no publicly available code which would
satisfy either of these criteria. Most subchannel codes are based, more
or less, on the same type of solution method and use the physical concept
of crossflow. Although comparisons have been made among these codes, the
range of applicability could not be clearly defined since these codes would
be subject to the same limitations. For example, these codes would not be
able to consider flow reversal, since this phenomenon would violate the
assumption that the axial flow rate must be positive at all locatioms.
However, with the development of the new code, COBRA IV-I (1, 2), useful
comparisons can be made since this code does satisfy one of the above
criteria. This code contains a solution scheme which is quite different
from that used in other subchannel codes. In fact, COBRA IV-I is able to
consider both flow reversal and natural circulation flow. Therefore, COBRA IV-I

can be used to assess the range of applicability of other subchannel codes.
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1.2 Comparison of COBRA IIIC/MIT and COBRA IV-I

Since both COBRA IIIC/MIT (3, 4) and COBRA IV-I are employed in the
analyses discussed in this report, it is instructive to identify the major
differences between these two codes. For example, both codes solve
essentially the same equations, but the solution methods are not the same.
In fact, COBRA IV-T contains two independent solution methods -- referred to
as the implicit and explicit methods. Besides these differences, there are
also differences in the heat transfer calculations of the two codes which
dramatically affect the clad temperature predictions. Consequently, the

main differences between the two codes are identified below.

1.2.1 Comparison of Solution Methods

The first important difference between the two codes concerns their
respective solution methods. COBRA IIIC/MIT uses a marching type method
which solves the temporal finite difference equations implicitly. One
requirement of this method is that the axial flow rate be positive throughout
the core. COBRA IV-I contains two distinet solution methods. The first
method, called the implicit method, is very similar to the method found in
COBRA IIIC/MIT. The implicit method is also a marching type method which
solves the temporal finite difference equations implicitly. Once again,
this method requires that the flow rate be always positive. The second
method, termed the explicit method, is a temporally explicit pressure-
velocity solution procedure. This method eliminates the positive flow
requirement which then allows a wider range of flow conditions to be
considered. However, the explicit method does have some limitations
and, consequently, the solution methods are compared to clearly illustrate

these methods.
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The implicit method of COBRA IV-I employs essentially the same
solution procedure as that in COBRA IIIC/MIT. The only significant differences
between the two methods are the treatment of the energy equation and the
procedure for inverting the crossflow matrix. In the implicit method the energy
equation is solved implicitly (both spatially and temporally) which means that
all enthalpies at a particular axial level are calculated simultaneously. This
implicit treatment of the energy equation differs from the spatially explicit
energy equation in COBRA IIIC/MIT. The primary advantage of using an implicit
energy equation is that a consistent set of enthalpies and temperatures are
calculated at each axial level.

The other significant difference between the implicit method of COBRA IV-I
and COBRA IIIC/MIT is the way the crossflow matrix is inverted. In COBRA IIIC/MIT
the matrix is inverted using a Gaussian elimination procedure. On the other
hand, the implicit method of COBRA IV~I employs a Gauss-Siedel method for
the inversion. The difference in these inversion procedures is only technical
and should not affect the accuracy of any results.

In spite of these differences, the implicit method of COBRA IV-I and
COBRA IIIC/MIT are very similar in many respects. Both methods solve the
same conservation equations and, with the exception of the energy equation,
these equations are solved in the same manner. Besides the similarity of
solution procedures, both codes can be used to solve similar problems.

COBRA IIIC/MIT and the implicit method can solve steady-state as well as
transient problems. For transient problems there is no restriction on the
time step size, since the temporal derivatives are solved implicitly

Both the implicit method and COBRA IIIC/MIT also use the same two-phase
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modeling as well as the same subcooled void fraction modeling. Hence, the
implicit method of COBRA IV-I and COBRA IIIC/MIT share similar solution
methods and the same hydraulic modeling.

On the other hand, the explicit method of COBRA IV~I is quite different
from either COBRA IIIC/MIT or the implicit method. The explicit method uses
a different solution procedure as well as treating the temporal derivatives
explicitly. With explicit temporal derivatives, very small time step sizes
(<0.01 seconds) are required. Furthermore, the explicit method is used
exclusively for transient calculations. Hence, the explicit method would
not be employed to calculate a steady-state solution. Besides having a
different solution method, the explicit method also employs different
hydraulic models. Only homogeneous two-phase flow is allowed which
prohibits the use of any slip or two-phase frictiom correlation.
Additionally, the homogeneous equilibrium model precludes the use of the
Levy subcooled void fraction correlation. Hence, the two-phase flow
modeling is limited as compared to either COBRA IIIC/MIT or the implicit
method.

However, the explicit method can analyze a wide variety of problems
which cannot be analyzed by either COBRA IIIC/MIT or the implicit method.
For example, since there is no restriction on the axial flow direction, flow
reversals and recirculation problems can be handled. However, these
hydraulic conditions would only occur for severe reactor accidents (e.g.,
blowdown). Nevertheless, the explicit method also allows pressure drop
boundary conditions which are not found in the implicit method. Consequently,

more realistic core conditions can be studied. Therefore, although the
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explicit method has both time step size restrictions and limited two-phase

flow modeling, it does contain a more general solution method.

1.2.2 Heat Transfer Calculations

The second major area in which COBRA IIIC/MIT and COBRA IV-I differ is
in their heat tramnsfer calculations. These calculations include the
prediction of the heat transfer coefficient and the heat flux. There are
three main improvements in COBRA IV-I which lead to these>differences. The
first is the use of a new fuel-pin model. This model allows for both axial
and radial conduction and, additionally, temperature dependent thermal con-
ductivity can be considered. The second improvement is that a consistent set
of heat fluxes, heat transfer coefficients and clad temperatures are cal-
culated at each axial level. This consistent treatment is not obtained in
COBRA IIIC/MIT, since the heat transfer coefficient is calculated using
information from the preceding axial level. Of course, in order to obtain
this consistent set, an iterative solution procedure is required at each axial
level. The third improvement in COBRA IV-I is the use of a new heat transfer
package. A RELAP-4 type heat transfer package is contained in COBRA IV-I.
This package contains a complete steady-state boiling curve which consists
of heat transfer correlations and a method for applying these correlatiomns.
The method which determines when to use the appropriate correlation depends
on many parameters and is referred to as the heat transfer logic in this
report. This third improvement is the most significant of the three as it has
the greatest impact on the clad temperature predictions.

A comparison of the COBRA ITIC/MIT and COBRA IV-I heat transfer packages

yields the following information. The COBRA IIIC/MIT package only contains
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two heat transfer correlations. The Thom forced convection correlation (5)
is used for single-phase heat transfer and the Thom nucleate boiling correlation
(5) is applied for all two-phase conditions. The criterion for the switching
correlations depends only on the quality. If the quality is greater than
zero, then the nucleate boiling correlation is applied. Otherwise the

forced convection correlation is used. On the other hand, COBRA IV-I has
correlations for the entire boiling curve. These include the Thom forced
convection correlation in single-phase flow, the Thom nucleate boiling
correlation in the subcooled and nucleate boiling regimes, the Schrock and
Grossman correlation (6) in the forced convection vaporization regime, and

a number of other correlations in the post-CHF regime. Besides having the
additional correlations, COBRA IV-I also has a different logic system for
switching from the forced convection correlation to the nucleate boiling
correlation. In COBRA IV-I, the criterion for switching correlations

depends on the clad temperature. If the clad temperature is greater than

the fluid saturation temperature, then the nucleate boiling correlation is
used. Otherwise, the forced convection correlation is employed. As will

be seen later, this difference in heat transfer logic leads to significant

differences in the clad temperature predictions.

1.2.3 Summary

This section has highlighted the primary differences between COBRA IIIC/MIT
and COBRA IV-I. These include the differences in solution procedures, modeling
capabilities and heat transfer packages. The differences in solution methods
stem from the fact that COBRA IV-T contains two solution procedures. The

implicit method is very similar to COBRA IIIC/MIT with the exception that the
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energy equation is spatially implicit. It should be noted that by using

an implicit energy equation the execution time of the implicit method will
be greater than that of COBRA IIIC/MIT. The other method in COBRA IV-I,
the explicit method, is quite different from COBRA IIIC/MIT. This method
allows for more general problems to be considered, but small time step
sizes are required which will also lead to increased execution time.
Additionally, the explicit method can only consider homogeneous two-phase
flow. The two-phase flow modeling in the implicit method is the same as
that found in COBRA IIIC/MIT. The final difference between COBRA IV-I and
COBRA IIIC/MIT is in their heat transfer packages. In COBRA IV-I a wide
range of correlations and a different heat transfer logic are employed. This
heat transfer package is used in both the implicit and explicit methods and

has a significant effect on the clad temperature predictions.
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1.3 Review of Past Research with COBRA IIIC/MIT

Research with and on COBRA IIIC/MIT spans a period of about three
years now, and includes a variety of different facets, some of which
will be discussed in what follows.

In order to understand the various facets of research with this code
at MIT, it must be recalled that COBRA IIIC/MIT is a spin-off from the
MEKIN code ( 7 ). Research for the thermal-hydraulic part of this code
as well as some pioneering work by Herbin ( 8 ) with an extended version
of COBRA ITIC laid the groundwork for the development of COBRA IIIC/MIT
( 3,4 ). Since then further research developed along two different tracks,
somewhat parallel. One path of research is concerned about the improvement,
assessment and validation of the core-wide analysis tool on a bundle-wide
basis which has been primarily supported by EPRI, whereas the improvement
of the single-pass mixed-lattice version, COBRA IIIC/MIT has been and is
sponsored by a group of New England utilities under the MIT Energy
Laboratory Research Project. Naturally, each project benefits to some
extent from the other, although their goals are in fact somewhat different.
All research efforts within the framework of these projects are summarized
in Table 1.1.

Work in the MEKIN area must be divided into two different aspects.

The first is concerned about the thermal-hydraulic part alone, whereas
the second one focuses upon the coupled neutronic-thermal-hydraulic,
Work in the first area comprises the pioneering work by Bowring and
coworkers ( 7 ), that by Rodack ( 9 ) who researched specific RIA type

transients in PWRs and related topics as well as the steady-state sensitivity
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study performed by Emami ( 10 ) which was concerned about both PWR and BWR
systems. The latter research looked into the effect of parametric changes

of the parameters on the final results and checked thoroughly the impact of
the various correlations built into the code. Work in the second area

was done by Valente ( 11 ) who studied specifically BWR control rod drop
transients. More recent research with MEKIN has been reported by Cook ( 12 )
who had implemented corrections into MEKIN developed by the other researchers
and brought the code into a shape in which it should have been two years

ago. In the meantime, researchers outside MIT such as SAI ( 13 ) and BNL are
currently using the code. Most of these activities required special needs
thereby leading automatically to improvements in the thermal-hydraulic part,
some of which are reported in this research report. Due to the special
requirements of a coupled neutronic-thermal-hydraulic code the importance of
various parameters are different from those which are vital from a pure
thermal-hydraulic design point of view. Thus, not all of the recommenda-
tions formulated during the research of this project entered the improvement
of COBRA IIIC/MIT and vice versa. On the other hand, it must be emphasized
that the MEKIN studies were indeed very helpful to detect weak points and
forgotten as well as untested areas of the thermal-hydraulic solution.

Unlike the MEKIN research, most of the efforts in the COBRA IIIC/MIT
research concentrated mainly on one parameter of interest, namely, DNBR, as
the most important design parameters for licensing purposes. Of primary
importance in the early phases of the research was the assessment and
validation of the single—pass method. Notably, the research by Moreno

( 14 ) and Liu ( 15 ) formed the basis for justification of this approach
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for steady-state and transient analyses as compared to the multi-pass
methods used by the vendors. In a second step, Chiu ( 16 ) examined the
applicability of two-dimensional transport coefficients to improve the
lumped energy transfer models. All these research efforts are summarized
in ( 17 ) which, together with ( 15 ) and ( 18 ), comprised the
state-of~the-art of the single-pass method and the status of COBRA IIIC/MIT
as of September 1977, i.e., the start of the present research.

In addition, the research done by Masterson ( 19,20 ) is worth
mentioning as a direct consequence of certain mathematical shortcomings
ipherent in the crossflow solution method of COBRA IIIC. This led to the
development of COBRA IIIP/MIT which is numerically more efficient by
allowing the use of iterative solution methods for sets of linear equations.
This code generates converged crossflow distributions for decreasing
axial mesh sizes and time increments.

Finally, it should be pointed out, for instamnce, that recommendations
given by Rodack ( 9 ) have already been studied individually such as the

comparison of various fuel pin models by Mehrabian ( 21 ).
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1.4 Current Status of COBRA IIIC/MIT and COBRA IV-I

Both COBRA IIIC/MIT and COBRA IV-I were modified during this
investigation. The COBRA ITIC/MIT modifications were made in order to
eliminate various inconsistencies and failures. The elimination of
these problems allows the code to perform successfully for both PWR and
BWR analysis. These corrections are discussed in detail later in this
report and a listing of the modified subroutines can be found in Appendix C.
The corrections implemented in COBRA IV~I were made in order to eliminate
a failure which occurred during the analysis. A discussion of this
correction is found later in this report, and the modified subroutines are
found in Appendix D. Besides these corrections, it should also be noted
that COBRA IV-I has been updated through Fix 12 which includes all the
changes made by Battelle Northwest Laboratories through June 1978. Hence,

COBRA IV-I is available in its most current version.

1.5 Scope of Research

The primary objective of this research is to evaluate the applicability
of COBRA IIIC/MIT for the thermal-hydraulic analysis of various Boiling
Water Reactor (BWR) and Pressurized Water Reactor (PWR) cases. These
evaluations are accomplished by making comparisons between COBRA IIIC/MIT
and COBRA IV-I. Since COBRA IV-I represents an improved code, its
results are assumed to reflect the best estimate of the actual behavior
of the cases which are analyzed. Consequently, if the COBRA IIIC/MIT
results agree with those of COBRA IV-I, then it can be concluded that
COBRA IIIC/MIT is applicable. Likewise, when the results differ between

the two codes, then the applicability of COBRA ITIC/MIT is considered
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to be questionable. Therefore, comparisons between COBRA IIIC/MIT and
COBRA IV-I are used as a basis for determining the applicability of
COBRA IIIC/MIT.

The cases which are investigated involve some facet of thermal-hydraulic
analysis for which COBRA IIIC/MIT would normally be applied. Since
COBRA ITIC/MIT is widely used, the comparisons are aimed at verifying the
applicability of this code for cases of practical interest. For example,
COBRA IIIC/MIT is employed as part of a coupled neutronic-thermal-
hydraulic analysis for both BWR and PWR cases. Consequently, the
thermal-hydraulic performance of COBRA IIIC/MIT is assessed for both of
these type situations. Another application of COBRA IIIC/MIT is the
analysis of the Departure from Nucleate Boiling Ratio (DNBR) for a PWR.
Hence, this mode of analysis is also investigated. Some comparisons
with experimental results are also performed in order to further verify
the applicability of COBRA IIIC/MIT. Therefore, the cases, for which
comparisons were made, represent practical situations where COBRA IIIC/MIT
could be applied.

Since COBRA IV-I contains two solution methods, comparisons have
been made using both of these methods. The explicit method is used
exclusively for severe transient cases in which the applicability of
the implicit method is questionable. Since the explicit method cannot be
used to calculate the steady-state solution, all steady-state comparisons
are performed using the implicit method. The implicit method is also
employed in transient problems which are not too severe (e.g., no flow
reversal). In summary, the explicit method is only used for severe

transient cases while the implicit method is applied for steady-state and
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some transient cases which are representative of Anticipated Transients
Without Scram (ATWS).

Each of the following chapters discusses the results of the comparisons
between the two codes for one type of thermal-hydraulic analysis. These
discussions focus on the applicability of COBRA IIIC/MIT for the
particular type of analysis under consideration. For situations in
which the two codes do not agree, the discussion is then directed towards
identifying the cause of the discrepancy. The type of thermal-hydraulic
analysis which is discussed in each chapter is summarized as follows.

Chapter 2 discusses the investigation of BWR bundle-wide analysis.
This chapter includes both steady-state comparisons and the results of
a pressurization transient.

Chapter 3 discusses the investigation of a severe power transient
in a PWR. This transient simulates a rod ejection accident and can be
analyzed using COBRA IIIC/MIT coupled to a neutronic solution method.
However, the investigation here is limited to the thermal-hydraulic
analysis only.

Chapter 4 discusses the investigation of various PWR loss of flow
transients. These transients are examples of ATWS in which the minimum
DNBR is the design limit for the operation of the reactor. Therefore,
DNBR analysis is considered in this chapter.

Chapter 5 discusses the results of comparing the two codes with three
different sets of experimental data. The first case consists of a comparison
between the predictions of the codes and the measured coolant temperatures
at the core exit of the Maine Yankee reactor. These exit temperatures
have been measured and, hence, comparisons with the codes could be

performed. The second case is a comparison of pressure and velocity
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measurements, as well as the inferred crossflow distribution, with the
predictions of the two codes. These measurements were made by B&W for

a two-assembly set-up in which the inlet flows for each assembly differed
from each other. The third case is a comparison of the two codes with

flow blockage data. This data consists of pressure measurements as obtained
by EIR. The results of this comparison and the above two are found in

this chapter.

After discussing the investigations in Chapters 2 through 5, the
conclusions and recommendations of this research are discussed in
Chapter 6.

Four appendices are also included in this paper. Appendix A
discusses the iterative procedure in COBRA IIIC/MIT which is used to
calculate the correct flow-splitting when the BWR option is used.
Appendix B summarizes the input data which was used in the various cases.
Appendix C summarizes the modifications which were implemented into
COBRA IIIC/MIT. And, finally, Appendix D summarizes the changes which

were made in COBRA IV-I.
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CHAPTER 2
BWR BUNDLE ANALYSIS

2.1 Background

The thermal-hydraulic analysis of a Boiling Water Reactor (BWR) core
involves the determination of various parameters which are important for
the design and operation of the reactor. For exainple, coolant density,
coolant temperature and fuel temperature are important for their influence
on the neutronic behavior of the core. Similarily, parameters such as
coolant flpw rate, heat flux, clad temperature, and quality are used to
determine whether or not a crifica.l heat flux condition is attained.

The determination of the above quantities can be performed with a subchannel
analysis, with a bundle average analysis, or with a cbmbina.tion of the two,
A subchannel analysis would employ a detailed geometry which would use
subcmels as the smallest flow channels, Typlcally a subchannel would
have a flow area of approximatey 0.23 inz. Due to computer limitations

it is prohibitive to model an entire core on a subchannel basis,
Consequently, at most one bundle would be modeled on a subchapnel basis.

(In this discussion a bundle is meant to be a typical BWR 7x7 or 8x8 array
of fuel elements.)

On the other hand, a "bundl;a analysis" of a core would typically use
an entire bundle as the smallest channel in the analysis. Typically, one
would model a group of four bundles as a single channel (10). In modeling
a channel, the individual subchannels are lumped together to give a flow
area equal to the sum of all the individual subchannel flow areas. Hence,
if four 7x7 BWR bundles were modeled as a single channel, the flow area of

the clannel would be approximately 63 in%., The fuel rods are modeled by
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using a single rod to represent the average behavior of all the rods in
each channel., Hence, bundle analysis can only give average values for
the quantitlies of interest in a channel, but an entire core can be analyzed
if proper modeling is used. This type of analysis is well-suited as part
of a coupled neutronic-thermal-hydraulic analysis, However, for more
detailed investigations a subchanm_al analysis is usually required.

A third method of analysis is to use a combination of bundle and
subchannel analyses. For example, one could use the bundle analysis
coupled with a neturonic analysis to identify the hot assembly. A
detalled analysis of the hot assembly would then be performed using a
subchannel analysis. In this manner, the limiting conditions in the core

can be determined.

2.2 Description of Modeling Technigues

The discussion in this chapter is limited to “bundle analysis” .-
Investigations performed include using both COBRA IIIC/MIT and COBRA IV-I
for steady-state analyses of typical 7x7 BWR assemblies. Transient
analysis is also performed for a simulated pressurization transient using
COBRA IIIC/MIT. Before discussing the results of these investigations it

is useful to review the modeling approaches of the above two codes.

2.2.1 Description of COBRA ITIC/MIT Modeling

The modeling of BWR bundles with COBRA IIIC/MIT is simplified using
the BWR option in this code. When this option is applied the transverse
momentum equation is eliminated and, hence, no crossflow calculations are
performed., The elimination of the transverse momentum equation is appropriate
for BWR bundle analysis, since the bundles are ducted and, therefore, there
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is no flow from one tundle to its'neighbor. However, since there is no
crossflow, boundary conditions, which are different from those used in
non-BWR analysis, are required. The modeling and boundary conditions

used in the BWR option are discussed below.
| When the BWR option is employed the user has the ability to model any
sectioh of a BWR core. Normally.an integer number of BWR assemblies are
lumped together to form a single channel. Each channel need not represent
the same number of assemblies. Hence, some channels could cansist of two
bundles while others could consist of four bundles. Typically a quarter
core could be modeled using 40 channeis with mést channels representing
four bundles. The exact modeling of the various channels is left to the
discretion of the user.

Once the channels have been modeled, they are axially divided into
a user-specified number of nodes. Each node represents a control volume
for which the conseriation equations are applied. Various thermal and
hydraulic parameters (eg. enthalpy, density) are calculated in each node,
but it must be remembered that values of these parameters are averaged
over the node. .

In each channel anly oné fuel rod is modeled. This rod represents
the average of all the rods in the channel. If four 7x7 bundles are
modeled as one channel, then thié one rod represents the average behavior
of 196 rods. Consistent power input to the channel is maintained by
‘muitiplying the power input of the one rod by the number of rods it
represents. This single rod is axially divided into the same number of
nodes as the channel. |

With the channels and rods modeled, the conservatlon equations are

applied in each node. The equations which are solved are the conservation
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of mass, the conservation of energy, and the conservation of axial momentum,
Since there is no crossflow between channels, the transverse momentum
equation is not needed but is replaced by an additional boundary condition
in order to have a closed system. The conservation equations are solved
for each node with appropriate boundary conditions and constitutive
equations,

The boundary conditionskused with the BWR optlion are as follows. The
first condition is that the inlet coolant temperature and system reference
pressure must be specified. This condition is similar to that used in the
AR solutign option. A second condition is that the total flow rate into
the core nmust be specified by the user and is not allowed to change during
the iterative procedure. Once again, this condition is always required
when using COBRA ITIC/MIT. The third condition, which is employed only
with the BWR option, 1s that equal pressure drops occur across all channels.
This boundary condition is based on the assumption that the pressure in
both the upper plenum and lower plenum is uniform, although not equal, and,
consequently, the pressure difference across each channel is the same.

In order to satisfy this condition, the total inlet flow is divided
among the channels, Individual channel inlet flows will not be the same,
but their pressure drops will be equal.

In order to generate the correct flow-splitting, an iterative
procedure was developed and incorporated into COBRA IIIC/MIT (3). Basically,
this procedure is a Newton-Raphson type method for solving a system of
non-linear equations. (A detailed description of this method is included
in Appendix A.) For eacﬁ channel an equation is written in which it is
assumed that the channel pressure drop is a non-linear function of the

inlet flow rate. The candition that equal pressure drops occur across all
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channels 1s then used to write a set of homogeneous non-linear equations.
These equations are linearized and then solved. ';"he solution to these
equations ylelds updated S.nletlflows for each channel. These inlet flows
represent the flow-splitting necessary to generate equal pressure drops.

Of course, since the equations have been linearized, a number of iterations
is usually required before a converged solution is attained. This
procedure 1s assumed to be independent of time siep size and, hence, is
valid in both steady-state and transient analyses.

This trief discussion of the BWR option illustrates the modeling
capability of COBRA IIIC/MIT. For BW‘Rl bundle éxﬂysis. this code offers
a very convenient modeling approach. The user needs only to specify the
appropriate value for one variable in order to invoke the BWR option. The
option automatically takes into account the ducted nature of the BWR
assembllies which eliminates the need for the transverse momentum equation.
The elimination of this equation does result, however, in the need for a
-pressure drop boundary condition. Although the value for the pressure
drop cannot be specified as a boundary condition, the condition which
requires equal pressure drops across al]l. channels is very plausible when
one considers the pressure equalizing effect of the upper and lowe: plenums.,
Hence, the BWR option in COBRA IIIC/MIT is well-suited for BWR bundle .
analysis., -

2.27.2 Description of COBRA IV-I Modeling

While COBRA IV-I does not have a BWR option, BWR bundle analysis can
be performed with judicious modeling. The modeling of channels and rods
is done in the same way as it was with COBRA IIIC/MIT; ie. any number of

assemblies are lumped together as a channel and a single rod represents
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the average behavior of all the rods in a channel. However, the transverse
momentum equation 1s not eliminated and it is necessary to circumvent the
effect of this equation. By specifying zero gap between channels, no
crossflow is permitted and the transverse momentum equatlon is effectively
- eliminated. Using this technique the geometrical modeling of BWR bundles
is essentially the same for both codes.

The boundary conditions which can be used with COBRA IV-I do differ
from those used with COBRA IIIC/MIT. Although the need to specify the
inlet temperature and reference pressure is unchanged, the user can specify
the pressure drop boundary condition in one of two ways. The first option
i1s to specify a value for the pressure drop. When this method is used,
the inlet flow for each channel is adjusted such that each channel's
pressure drop is equal to the input value, The total inlet flow is not
held constant during the iterative procedure. This option can only be
used for implicit, steady-state analyses.

The second option involves specifying the inlet flow for each channel.
If the correct inlet flows are selected, then equal pressure drops will
occur across all channels. This option does not change the total inlet
flow during the iterative procedure, but the inlet flows must be known
a priori, However, the first option requires that the core pressure drop
be specified and this quantity m;y not be as well known as the total inlet
flow. Furthermore, a comparison of COBRA IIIC/MIT and COBRA IV-I is more
meaningful if both codes use approximately the same ﬁoundary conditions.
Consequently, if COBRA IIIC/MIT is employed to generate the correct flow
splitting and these flows are then used in COBRA IV-I, each code will have
the same inlet flow and pressure drop and a meaningful comparison can be

made, Unfortunately, this method can only be applied for steady-state
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analysis, since individual inlet flow rates cannot be specified as a function
of time in COBRA IV-I. Nonetheless, this second option can be used with

COBRA IV~I in order to compare this code with COBRA IIIC/M[T in steady-state.

2.3 Steady-State Analysis
Steady-state analyses of BWR type bundles have been performed using

both COBRA IIIC/MIT and COBRA IV-I. The implicit solution method of
COBRA IV-I is used exclusively for BWR analysis #ith this code. Three
cases are examined and comparisons are made in an attempt to identify
similarities and differences beiween ﬂhe two c@es. Both codes use similar
solution methods, but do differ in two distinct ways. The first is that
COBRA IV-I has a spatially implicit energy equation as opposed to the
explicit energy equation used in COBRA IIIC/MIT. Use of the spatially
implicit energy equation requires a simultaneous solution for the coolant
enthalpy and clad temperature at each axial level., A second distinction
is that the heat transfer package used in COBRA IV-I is different from
that used in COBRA IIIC/MIT. A RELAP-4 type heat transfer package is
used in COBRA IV-I. This package includes correlations which cover the
entire single phase and two-phase heat transfer regimes., On the other
hand, the heat transfer package in COBRA IIIC/MIT only includes correlations
for the single phase and nuclea.t;e boiling regimes. Besides the differences
in correlations, the logic which governs the use of the correlations also
differs between the two codes. Therefore, a comparison of the results of
the two codes should reveal the importance of these dissimilarities.

In order to make useful comparisons of the two codes it is necessé.ry
to examine the predicted values for various parameters. For example, the

enthalpy distribution should give a good indication of the performance
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of the energy equation. Alternatively, instead of using the enthalpy,
one ~c:ould also examine the quality, the void fractim, or the density as
these are all calculated directly from a given enthalpy. For the purpose
of comparing the energy equations, the discussion will foc_us primarily on
the density and void_fra,ction as these two variables are also important
from a neutronic feedback point of view. Since the clad temperature
distribution is a strong function of the heat transfer package, this
parameter is employed to compare the heat transfer packages of the two

codes.

2.3.1. Description of Steady-State Modeling

Before comparing the predictioné of the two codes, it is necessary
to triefly describe the modeling used in this analysis. (A more thorough
description can be found in Appendix B.) The geometry for the numerical
experiments is basically the same for all cases. Five channels are
modeled, with each channel representing a different position in a typical
BWR core. Channel 1 consists of two 7x7 bundles., Channels 2, 3, 4, and 5
are each composed of foﬁr 7x7 bundles. The number of axial nodes is the
only geometrical variable which is not held constant for all cases. Radial
peaking factors are different for each channel, but the same factors are
used for each case analyzed. Ott;er variables held constant for all cases
include the axial power distribution, the average heat flux, and the total
1n1ét flow rate. For the steady-state comparisons a homogenous two-phase
frictlon multiplier and a slip equal to unity are used.

2.3.2 Sensitivity Study of the Inlet Flow Distribution

Since the inlet flow distribution 1s needed as input for COBRA IV-I,
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the sensitivity of this distribution to variations in the input data is
examined. A base case and three variations of this case are analyzed.
The base case consists of using 40 axial nodes together with the Levy
subchooled void fraction correlation (22) and an inlet temperature of
527 °F, The first variation involves increasing the number of axial nodes
to 60, The second variation uses 40 nodes, but this time the Levy
correlation is not used. Finally, the third variation is the same as the
base case except the inlet temperature is decreased to 514 °p.

The results of this sensitivity study are summarized in Table 2.1.
It is seen that both the pressure droﬁ and inlét flow distribution change
as each input parameter is varied. These changes are not too large, but it
is interesting to note that even a variation in node size can affect the
inlet flow distribution. The variation of the inlet temperature has the
most pronounced effect on both the pressure drop and inlet flow distribution.
This sensitivity study indicates that when the inlet flow distribution
predicted by COBRA IIIC/MIT is used in COBRA IV-I, one must use the same

modeling and options in both codes in order to make useful comparisons.

2.4 Results of Steady-State Analyses

2.4.1 Description of Steady-State Cases

Three steady-state cases are used to compare COBRA IIIC/MIT and
COBRA IV-I., Each case differs slightly from the otheritwo in their
respective modeling as seen in Table 2.2, The first case, which represents
the base case, uses the Levy subcooled vold fraction model and an inlet
temperature of 527 °F. The second case only differs from the first case
in that the Levy model is not used. Finally, the third case is the same

as the first case except for a change of the inlet temperature to 514 %.
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TABLE 2.2
DIFFERENCES IN MODELING

OF THE STEADY-STATE CASES

Case Tin (°F) Levy Model
1 527 yes
2 527 no
3 514 yes



36

Each case is analyzed first with COBRA IIIC/MIT in order to determine the
inlet flow distribution., With this distribution the case is thea analyzed

with COBRA IV-I. The results of these analyses are presented below.

2.4,2 Results of Case 1

The first case was run using both codes as described above. In
comparing the results it is impractical to report the value for every
variable and, therefore, only a few representative values will be discussed.
For example, the results from channel 4 approximate the average of the
five channels, while those from channel 2 are the hot channel values. The
results frém these two channels will receive the primary emphasis.

The density distribution in channels 2 and 4 are illustrated in
Figure 2.1, In either channel, there is essentially no difference between
the COBRA IIIC/MIT and COBRA IV-I results. In fact, the maximum difference
between any value predicted by both codes is less than 0.,1%., This close
agreement of the densities 1s also found among the enthalpies\and void
fractions. Consequently, any differences introduced by the different
energy equations are not apparent from these results,

The clad temperature distribution is used as a means of comparing the
heat transfer packages. Results from rod 2 (the hot rod) are shown in
Figure 2.2. For most of the axial length the predictions of the two codes
agree rather well, However, near the inlet, COBRA IIIC/MIT predicts a
clad temperature which is approximately 60 o3 higher than that predicted
by COBRA IV-I. This large difference occurs only for one node, but
indicates a dissimilarity in the heat transfer packages. A similar result
is found for rod 4 as seen in Figure 2.3. Once again the COBRA I1IC/MIT

results are much larger than those of COBRA IV-I at the beginning of the
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channel. However, for this rod the discrepancy exists for more than just
the first node. These initial observations indicate that the clad temperature

predictions do not agree very well.

_2.4.3 Results of Case 2

As part of this investigation, a second comparison case was made.
This case is the same as the above except that Levy's model is not used.
As was found in the previous case, the enthalpy and density distributioms
are essentially identical for both codes. The density distributions for
channels 2 and 4 are illustrated in Figure 2.4, Note that once boiling
begins the density drops rather sharply. In this case, boiling begins in
channel 2 at 18, inches and begins in channel 4 at 25.2 inches., Since the
first case includes the subcooled boiling model, boiling begins earlier
in each channel--at 3.6 inches in channel 2 and at 10.8 inches in channel 4.,
Figure 2.5 shows the density distributions with and without the Levy model
for channel 4. Although the influence of the Levy model is not noticeable
at high void fractions (ie. low densities), in the subcooled regime this
model has a dramatic effect on the density predictions. Therefore, in order
to accurately predict the density distribution, the Levy model should be
used.

The clad temperature pred!.ciions for this second case point out further
deviations between the two codes. Predictions from rod 2 are illustrated
in Figure 2.6. The COBRA IV-I results are identical to those found in
the first case, indicating that the heat transfer model is independent of
levy's model. The COBRA IIIC/MIT results do depend on the use of the Levy
model, as the clad temperatures are predicted to be much higher than the

COBRA IV-I results for a longer length of the rod. In fact, COBRA IIIC/MIT
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predicts a maximum clad temperature which is approximately 140 p higher
than that predicted from either COBRA IV-I or COBRA IIIC/MIT with the
Levy model.

2.4.4 Results of Case 3

As further evidence of the importance of thé Levy model, a third case
was run in which the Levy model was used together with an inlet temperature
of 514 °F. With a lower inlet temperature, subcooled boiling begins
further up the channel. The shifted boiling front should have an impact
on the COBRA IIIC/MIT clad temperature results. However, as before, the
density distribution predictions of the two codes a.fe identical. As
expected, the clad temperature predictions differ significantly., Figure 2.7

illustrates the rod 4 clad temperature distribution for each code. It is

interesting to note that the COBRA IV-I clad temperature predictions are

the same as they were for the first two cases. The COBRA IIIC/MIT predictions

are significantly greater than those of COBRA IV-I in the subcooled regime.
It is also observed that the COBRA IIIC/MIT results remain liarger for a
longer length of the channel in this case than they did in the first case
when the inlet temperature was 527 O,

2.5 Discussion of the Steady-State Results

These widely differing results between the two codes can be explained
in terms of the heat transfer models. As mentioned above, the heat transfer
package can be divided into two parts. The package consists of both heat
transfer correlations and a logic system which determines when and how to
use each correlation. Hence, even if the same correlations are in each

heat transfer package, a different logic system can lead to different
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results. In order to investigate this latter possibility the heat transfer

nodels in each code are examined in detail.

2.5.1 Heat Tramsfer Correlations

It is found that the heat transfer correlations used in each code are
identical up to a void fraction of 0.8, Both codes use Thom's forced
convection correlation (5) in the single phase regime and use Thom's
nucleate boiling correlation (5) in the nucleate boiling regime. After a
vold fraction of 0.8 is reached, COBRA IV-I uses the Schrock and Grossman
correlation () up to the point of CHF, while COBRA IIIC/MIT continues to
uwse Thom's nucleate boiling cofrela.tion. However, only channel 2 reaches
a voild fraction greater than 0.8 and it does so only for the last quarter
of the channel. From the previous figures of clad temperature, it was
observed that the main discrepancies occur in the beginning of the channel,
and over the last quarter of the channel the temperature predictions are
rather close. The regime at the beginning of the channel is single phase
and, yet, different temperatures are predicted even though identical
correlations are used. Hence, the way these correlations are employed or

the logic of the two packages must differ;

2.5.2 Heat Transfer Logic

Indeed, it is found that the logic systems in each code are different
from one another. The main difference between the two codes is how each
determines when to switch from the forced caonvection correlation. to the
nucleate boiling correlation. The COBRA IIIC/MIT criterion for switching
correlations depends on whether or not the quality is greater than zero.
If the quality is greater than zero, then the nucleate boiling correlation
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is used. The quality is not simply meant to mean the thermodynamic quality,
since when Levy's model is used a positive quality is predicted even though
the fluid is still subcooled (ie. the thermodynamic quality is negative).
Hence, a positive quality indicates the start of boiling. The COBRA IV-I
criterion for switching does not depend on the quality, but instead depends
on the clad temperature. If the clad temperature is greater than the fluid
saturation temperature, then it begins to use the nucleate boiling |
correlation. However, if the heat transfer coefficient predicted by the |
forced convection correlation is larger than that predicted by the
nucleate bqiling correlation, then the forced convection correlation is
used. In the cases analyzed here, the nucleate boiling heat transfer
coefficient is usually four times as great as the forced convection heat
transfer coefficient. Hence, for COBRA IV-I, the nucleate boiling
correlation is used once the clad temperature is greater than the saturation

temperature even if boiling has not started.

2.5.3 Explanation of Clad Temperature Discrepancies

Using this knowledge of the logic systems, the large differences in
the clad temperature predictions can be explained. Referring back to
Figure 2.3, which depicts the clad temperature distributions of rod 4 for
the first case, one finds that e&en in the subcooled regime the clad
temperature is greater than the saturation temperature. This condition
means that COBERA IV-I uses the nucleate bolling correlation even at the
beginning of the channel. Since subcooled boiling does not begin until
the third node, COBRA IIIC/MIT uses the forced convection correlation in
the first two nodes. In these two nodes, the COBRA IV-I heat transfer

coefficient is approximately four times larger than that used by COBRA I11C/MIT.
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Consequently, the clad temperatures predicted by COBRA IV-I are significantly
less than those predicted by COBRA IIIC/MIT. Once boiling begins,
COBRA IIIC/MIT switches to the nucleate boiling correlation and the clad
temperature decreases dramatically. Thus, the dissimilar heat transfer
logic leads to large differences in the clad temperature predictions.

In order to examine the influence of the logic more closely,
COBRA IIIC/MIT was changed so that its logic would be the same as that
found in COBRA IV-I. With the logic changed, the modified COBRA IIIC/MIT
was employed to analyze the first case again (inlet temperature 527 0
and thé Levy model used). The clad témperaturé distribution of rod &4 is
shown on Figure 2.8, Also on this figure are the COBRA IV-I and original
COBRA IIIC/MIT temperature distributions. The modified COBRA IIIC/MIT
still predicts a higher temperature in the first node, but agrees with
COBRA IV-I in the second node. Thereafter, the modified COBRA IIIC/MIT
is exactly the same as the original COBRA IIIC/MIT., Although the change
in the heat transfer logic put the COBRA IIIC/MIT and COBRA IV-I results
in closer agreement, this change alone did not produce exact correspondence
between these two codes.
i - The reason for the remaining discrepancies between the modified
COBRA IIIC/MI? and COBRA IV-I results can be attributed to the different
energy equations. The explicit ﬁature of the COBRA IIIC/MIT energy
equation requires that information (eg. fluld temperature and heat flux)
from the previous node be used in determining quantites (eg. heat tranfer

coefficient) for a particular node. Consequently, in the first node, the

nucleate boiling correlation cannot be used because the heat flux from the

previous node is required and there is no previous node. By default, the

forced convectlion correlation is employed even though the clad temperature

FIy
A



CLAD TEMPERATURE (°F)

600.

590.

570.

560,

550.

49

< COBRA ITIC/MIT

- MODIFIED COBRA IXIC/MIT

| 4

1

COBRA IV-I
™ COBRA IV-I
i e - " i i 4 A i A 4 )
0. 24, 48, 72. 9%. 120. 144,

AXIAL LENGTH (INCHES)
FIGURE 2,8

CLAD TEMPERATURE VERSUS AXIAL LENGTH
RESULTS FOR CASE 1, ROD &4



50

is greater than the saturation temperature. The application. of this
correlation results in a large temperature for the first node.

COBRA IV-I does not have this problem since its energy equation is -
spatially implicit. With this equation, consistent sets of heat fluxes,
-clad temperatures and heat transfer coefficients are determined at each
axial node. Although a number of iterations are required to obtain a
converged solution, a consistent solution is obtained even in the first
node. Hence, the large difference in the first node is due to differences
in the energy equations which cause different heat transfer correlations
t0 be used. '

As further evidence of theheffect of the different energy equations,
one should note the dlscrepancles in the subcooled boiling regime. This
regime begins at the point where the COBRA IIIC/MIT clad temperature prediction
decreases dramatically (refer to Figure 2.8). In this regime, both codes
are using the same heat transfer correlations, but the COBRA IIIC/MIT
temperature predictions are between 1 °F and 5 °p greater than those of
COBRA IV-I. As indicated above, COBRA IIIC/MIT must use information from
the previous node to determine the heat transfer coefficient. Since the
power distribution is increasing in this regime (see Appendix B), the
heat flux for a particular node will be higher than that for the previous
node. This condition means that_the heat transfer coefficient, which
depénds on the heat flux and uses the heat flux from .the previous node,
will be lower than a consistent value would be. However, COBRA ;V-I
calculates a consistent heat transfer coefficient and, consequently, the
COBRA IV-I temperature predictions are lower than those of COBRA IIIC/MIT.
Once again, the differences in the energy equations lead to different

clad temperature predictions.
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2.,5.4 Summary of Steady-State Analyses

The above steady-state BWR bundle analyses exemplify some of the
similarities and differences between the two codes. The enthalpy and
density distributions as predicted by each code agree extremely well with
one another., This agreement occurs in spite of the fact that a wide
spectrum of fluid conditions are attained--from slightly subcooled to
void fractions greater than 0.8. However, the clad temperature distri-
butions as predicted by each code are radically different from one
another in the subcooled regime. Large differences are caused by both
different heat transfer logic and different energy equations. The
differences in heat transfer logic are concerned with the criterion for
changing heat transfer correlations. The different energy equations
also have a major influence on the heat transfer calculations. For a
particular node, COBRA IIIC/MIT calculates the heat transfer coefficient
using conditions from the previous node. This calculation produces an
inconsistent set of heat transfer coefficient, heat flux and clad
temperature. On the other hand, COBRA IV-I uses an iterative procedure
to determine a consistent set of these variables at each node. Hence,
the different heat transfer packages and different energy equations lead

to significantly different clad temperature predictioms.

2.6 Transient Analysis

This section discusses the results of transient BWR bundle-wide
analysis. As with the steady-state cases, a five-channel geometry is
employed to model typical regions in a BWR core. The transient which

is examined 1is a pressurization transient which, in fact, simulates a
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turbine trip without by-pass transient. For this type of transient analysis,
attempts were made to use both COBRA IIIC/MIT and COBRA IV-I.

Unfortunately, COBRA IV-I is not able to perform in this mode of
analysis. The main reason for this failure appears to be related to a
lack of appropriate boundary conditions. For a realistic transient,
one would require either the inlet flow for each channel as a function
of time or the core pressure drop as a function of time. COBRA IV-I
cannot accept individual channel inlet flow rates as a function of time.
However, it is possible to specify the pressure drop as a function of
time if the explicit method of COBRA IV-I is used. This latter option
was employed, but meaningless results (e.g., negative flows) occurred.
An attempt was then made to simply maintain a steady-state solution by
requiring that the pressure drop remain constant during the'transient;
This unperturbed transient also produced negative flows and, hence,
was deemed meaningless. Therefore, the pressure drop boundary condition
does not provide the necessary boundary condition for this type of
analysis.

In view of this difficulty, other boundary condition modeling was
examined. The available choices are:

a) total inlet flow with implicit method;

b) total inlet flow with explicit method; and

c) pressure drop with explicit method.
The last condition, as discussed above, did not produce meaningful
results. Using either the explicit or implicit method, the total inlet
flow could be specified as a function of time. This total flow rate

is divided among the channels in the same ratio as it is in steady-state.
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Hence, if the flow splitting in steady-state produces equal pressure drops
across all channels, the pressure drops will not remain equal during the
transient. 1In order to maintain equal pressure drops, it would be necessary
to know the correct flow splitting at each time during the transient. This
latter option is not available in COBRA IV-I and, consequently, only the
total inlet flow could be specified at each time step. Using this condi-
tion, reasonable results were predicted with either the implicit or explicit
methods. However, this boundary condition is not exactly appropriate for
bundle-wide analysis and no comparisons could be made with COBRA IIIC/MIT.
Consequently, COBRA IV-I is not used in the transient BWR bundle analysis.

On the other hand, it is possible to use COBRA IIIC/MIT for transient
BWR bundle analysis; However, while analyzing a pressurization transient,
two severe problems were encountered (23,_24). Although each problem had a
different cause, both resulted in a breakdown of the code if small time step
sizes (0.01 seconds) were used. A few inconsistencies in the BWR method
were also discovered during the investigation. Appropriate corrections were
found such that both the inconsistencies and breakdowns were eliminated.
These modifications are discussed in Sections 2.6.1 through 2.6.6.

After correcting these difficulties, a pressurization transient was
analyzed. The objectives of this analysis are (a) to verify that the BWR
option would operate in transient mode, (b) to investigate the effect of
using the Levy model, and (e) to observe the effect of the pressurization
transient on various core parameters. Since the code is able to analyze
the pressurization transient, the first objective is satisfied. From the
subsequent analysis, the second and third ebjectives are fulfilled, and a

discussion of these are found in Section 2.7.



2.6.1 Discussion of the First Problem
Once the steady-state analysis was completed, an attempt was made

to analyze a pressurization transient with COBRA IIIC/MIT. This case
employs nearly the same modeling found in the second steady-state case.
The only difference is that this transient case includes the application
of both the Smith slip correlation and the Armand two-phase friction
multiplier. Starting from a steady-state solution, which has a pressure
of 1035 psia, the pressure is increased at a rate of 5% per second and
a time step size of 0.0l seconds is used. With this modeling scheme,
COBRA IIIC/MIT was run and after 44 time steps negative flows are predicted.
These negaiive flows result at the inlet of channel 5 and lead to the
divergence of the code. The occurrence of negative flows does not seem
~ to be physically meaningful, and indicates that a numerical instability
is causing the failure of the code.

An investigation into this breakdown was initiated and it was
discovered that the prediction of negative inlet flows cause the code to
diverge. As explained in Appendix A, an iterative procedure is used to
update the inlet flows. The equation employed to update the inlet flow
for the ith channel is

an
n =, +S8 ZPAP-P (2.1)
1317 745 T ap | san T '
&P

The only way that a negative inlet flow can be predicted is if the term

4n
m L2
AP ji Am i
&OP

is negatlive and larger in magnitude than m In order to discover how

15’
this term could become large and negative, a careful examination of the
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breakdown was performed.
From this analysis, the cause of the breakdown became apparent. It
is found that the term, am/AP, for a particular channel is usually
positive, but could occasionally be negative. At the point of the breakdown

this term. is negative for channel 2. However, this term, by itself, 1is
not a problem, but the combined term,

28

is negative while the term

Zeg
is positiv:e. One can immediately seé that these circumstances will cause
the term

2%,

SE
to be large in magnitude and negative. A negative flow can then be
predicted for a channel if am/AP for that channel is sufficiently large
and positive. For the case being analyzed, these conditions are met and
a negative inlet flow is predicted in channel 5. Once the negative flow
is predicted, the code begins to predict divergent results and eventually
fails.

Although the calculation of a negative am/AP is required for a
btreakdown, a negative Am/AP by itself will not cause a breakdown. A
combination of effects is necessary, but if am/AP is always positive then
negative flows will not occur. From a physical point of view, a ﬂegative
&n/AP represents a flow instability. However, due to the high flow rates
in the channels it is unlikely that such an instability exists.
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The calculation of a negative Am/AP must be attributed to a numerical
cause, From the investigation, it was discovered that the pressure drop
is not solely a function of the inlet flow rate. In fact, it was found
that for the same inlet flow rate two different pressure drops can be

- predicted. Apparently, the pressure drop function is dependent on the
iteration scheme. This dependence results in negative Am/AP predictions
on many occasions. Consequently, the prediction of a.‘ negative _Am/AP,in
1tself, does not appear to be a serious problem with the code.

As was seen above, the term

2%
2

(which is defined to be P_) is negative when the breakdown occurs. The
tern, Po’ is the value of the pressure drop which is the same for all
channels. The prediction of a negative P o represents a non-physical -
yesult. Since the iterative process is a mathematical procedure, the
prediction of a negative P is not prohibited on a mathematical basis.
However, on a physical basis, P o would not be negative for a BWR core

under most conditions.

2.6.2 Solution of the First Problem

In order to eliminate this problem, a number of possible corrections
were examined. For example, one such correction, as suggested by R.
Bowring (25), constrains Am/AP to be non-negative. However, the value of
An/AP can change by as much as 50% from one iteration to the next and,
hence, there is a question as to which value should be used if Am/AP

becomes negative. A second correction, which was implemented, ccnstrains
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Po to be non-negative. As discussed above, a negative P; is a non-physical
rqsult and, furthermore, if this term is negative, then a breakdown can
occur. Unlike the constraint on Am/AP, there is no difficulty in
consi.:raining P,» since P, normally would change by less than 0.5% from

- one iteration to the next. Consequently, if P o is predicted to be less
than zero, then its value frbm the previous iteration could safely be

used. ‘i‘herefore, this constraint was chosen to correct the code.

The implementation of this constraint is achleved by modifying the
subroutine SEPRAT. This subroutine controls the iterative inlet flow
updating procedure. It is a simple matter to add a few statements which
wouid insure a positive P . A ‘complete listing of this subroutine can
be found in Appendix C.

The case which broke down was rerun with this additional constraint.
It was found that with this constraint the breakdown is eliminated. At
the point where the code had previously failed, it now is able to converge
and no new problems are observed. None of the results predicted prior to
the treakdown have changed, indicating that the additional constraint
would not change the predictions of the code. Hence, the constraint on
Po simply allows convergence of the code without influencing the results
of the code.

2.,6.3 Discussion of the Second Problem

After correcting the above problem, an attempt was made to analyze
the same pressurization transient with the only modeling change being the
application of the Levy model., With this small modeling change, the transient
was run, but falled to converge even at the first time step. No problems

wexre found in the steady-state solution, which indicated that this praoblem
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was related to the transient calculations. In fact, the failure only
occurred when both the Levy model and small time step sizes (0.0l seconds)
were used. When larger time step sizes were employed or the Levy model
ﬁa.s not used, then no breakdown was found. Hence, this second problem
- represented an obstacle for applying COBRA IIIC/MIT to transient, BWR
bundle analyses.

A detailed investigation of the breakdown identified the conditions
and consequences of the failure. The code would fail when time step
sizes less than 0.l seconds are used in conjunction with the Levy model.
The failure is independent of the pressurization rate or other forecing
functions which indicates that there is an inherent problem in the code.
When the code fails the following results are predicted:

(a) negative inlet flows;

(b) divergent pressure drops;

(¢c) divergent flow rate.
These results are definitely not realistic and could only be attributed
to a numerical instability.

The next step in the investigation was to determine the nature of
the numerical instability. In order to clearly examine the solution method,
the pressure forcing function was not used, With no forecing functions.
applied, a transient calculation should simply maintain its steady-state
solution. If the solution method were indeed stable, then no changes
fram the steady-state solution should occur, regardless of the tiine step
size used. By examining this unperturbed transient any deviations from
steady-state could be immediately detected and thelr cause identified.

Many unperturbed transient runs were made using various combinatlons

of time step slze with and without the Levy model. When Levy's model is
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not used, no wnusual results are detected even for time step sizes of
0.001 seconds. Likewise, when Levy's model and time step sizes greater
than 0.1 seconds are used, no deviations from the steady-state solution
are observed. However, when Levy's model and small time step siges

- (eg. 0,01 seconds) are used, the code would begin to diverge on the first
time step., After only a few time steps the code has completely diverged
and failed. This inability to maintain a steady-state solution raises
thé question as to whether or not the BWR option in the code had beeh
adequately tested. In fact, it was never tested seriously.

The d}vergent behavior of the code for the unperturbed transient
can best be identified by obsefving the behavior of particular variables.,
For example, the linear heat generation rate, q', is found to fluctuate
during this "transient". These fluctuations in q' only occur in the
subcooled regime of each channel. In the boiling regime, q' does not
fluctuate and is maintained at its steady-state value., The typical
fluctuations of q' in the subcooled regime are shown in Figure 2.9. This
figure reveals that q' is higher at the first time step, lower at the
second time step, higher at the third time step, and finally diverges at
| the fourth time step. The expected constant behavior of this variable
is not observed and one would conclude that an instability existed in
the method.

With variables such as q' diverging, one would question whether or
not the conservation equations are being solved correctly. However, for
most cases analyzed, no breakdowns occur which would support the belief
that the equations are being solved correctly. Still the question which
persisted is why do Levy's model andsmall time step sizes lead to the

divergence of the code?
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In order to answer this question it is necessary to review the effect

of these options on the solution method. Basically, the Levy model increases

the coupling between the heat transfer and hydraulic calculatims. This
tightened coupling is found primarily in the subcoéled reglime and 1is
manifested through the density. The density acts as a link between the
energy equation and the continuity and axial momentum equations. The

energy equation is solved first to find the enthalpy, which in twrn is

~ used to find the density. Once the density is found, it is used first

to calculate the flow rate by means of the continuity equation and then
to calculate the pressure drop through the axial momentum equation. When
Levy's mociel is not used, the density is only a function of the enthalpy.
But, with the Levy model, the density is a function of enthalpy, flow
rate, q', and heat transfer coefficient. One can see that the degree of
coupling has increased, since when using the Levy model the flow rate is
used to determine the density and in turn the density is used to determine
the flow rate.,

The effects of small time step sizes are most important in the
continuity and axial momentum equations. Time derivatives in these
equations become more sensitive to small changes as the time step size
is decreased. For example, a small density variation can lead to large
changes in the flow rate. With a time step size of 0,01 seconds, a 1%
density change leads to a 10% change in the flow rate. Any density
variation immediately leads to a significant change in the flow rate
when small time step sizes are used. Hence, small time step sizes also
increase the coupling between the conservation equations.

However, this strong coupling alone would not cause the code to fail.

The calculation of some parameter would have to be in error and with the
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strong coupling this error would be amplified. Therefore, it was
assumed that some parameter was being incorrectly calculated, but this
error was only detectable when the strong coupling existed.

Since the code failed when the Levy model was applied, the parameters
which are used in this model were examined. The enthalpy, mass flow rate,
and heat transfer coefficlent were being calculated correctly, but q' was
not being calculated correctly on each iteration. On the first iteratlion
- of a particular time step, q' would be calculated using

q' = Dh (Tc - Tf) . (2.2)
On subsequent iterations, both the clad temperature, T, and the fluld
tempera.turé, Tf, are held constant. However, the heat transfer coefficient,
h, can change during the iterative procedure because the mass flow rate
changes as a result of the pressure drop iteration scheme.  Any change in
h should then be used to compute the changes in q'., These changes in q'
were not being accounted for. Instead;q' was calculated on the first
itexfation and held constant for the remaining iterations of the time
step. This calculationwas not correct and turned out to be the primary
cause of the code's fallure. .

In order to see why the failure to calculate q' on each iteration
led . to the breakdown, it is necessary to trace through the unperturbed
transient. The steady-state sol;xtion is found as the starting point of
the transient. Since each channel behaves similarily, only the behavior
of-cha.nnel 1 will be examined here. On the first time- step, the inlet
flow converges 1o a value which is slightly lower than its steady-state
wvalue, The reason that this value is lower is that it is virtually |
impossible to have an exact steady-state solution, beca.use.the steady-state

solution is converged to a user-specified criterion. Any small errors
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which might exist in the solution will be amplified when small time steps
are used. It follows, then, that unless one starts with an exact solution,
small fluctuations would be expected. However, these small fluctuations
should not lead to divergence of the code. |

With the converged solution from the first time step, the transient
continues to the second time step. The lower inlet flow from the first
time step 1s used as the initial guess for the inlet flow., With this
lower flow, q° in the first node is calculated to be lower than its
steady-state value because the heat transfer coefficient is lower. The
lower q°, }ower flow rate, and lower h are used as input into the enexrgy
equation and the net result is .a. higher density. Thils higher density
causes a deceleration of the flow and a reduction in the pressure drop
for the first node. The second node uses the reduced flow and, as in the
first node, q' is lower. This lower q' leads to a lower flow for the third
node and reduced pressure drop. The flow continues to decrease until the
nucleate boiling regime is reached, after which the flow remalns constant.
At the end of this first iteration, the pressure drop for this channel is
lower than P o thereby requiring an increased flow for the second iteration.

The second iteration begins with an inlet flow which is higher than
its steady-state value. However, q' is not recalculated and again the
density is increased. This :anréased density causes a reduction in the
flow rate as was found on the first itera.tion. The calculatlimns continue
up the channel and the net result is that the total pressure drop is still
lower than P o and, hence, the inlet flow rate is increased once more.
Using this higher inlet flow the code converges on the third iteration.
It should be noted that the converged inlet flow is 1% greater than its
steady-state value at this point in time.
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The third time step uses this higher inlet flow on the first iteration.
In the first node, q' is found to ©oe higher than it was on the second
time step. The increased q' leads to a density decrease and in turn
the flow increases. The second node uses the increased flow to find a
- higher q' and lower density. This type of behavior propagates up the
channel and the net result is a higher pressure drop due to the increased
flow. The iterative procedure reduces the inlet flow for the second
iteration. Although the inlet flow is lower on the second iteration,
the flow is accelerated up the channel and the pressure drop is again
higher than P o' The inlet flow 1s again reduced and eventually the code
converges, but the inlet flow is much less than its steady-state value.
The behavior of the inlet flow for channel 1 is illustrated in
Figure 2.10. One sees that at the third time step the flow has been
significantly decreased. On the fourth time step, this significantly
lower flow leads to a greatly reduced q' which decelerates the flow. The
pressure drop is drastically reduced and, hence, on successive iteratioms

the flow is continually increased until the code fails.

2.6.4 Solution of the Second Problenm

This second failure of the code was eliminated by calculating q' on
each iteration. The reason for .the success of this solution can be seen
by referring to the above example. For example, at the beginning of the
second jteration of the second time step a higher than steady-state inlet
flow is used. This higher flowwill lead to a high q' if q' is recalculated.
A lower density is predicted and the flow is increased for the second node.
The calculations continue and the pressure drop for the channel is found

to be higher than P o' This result causes a reduction in the inlet flow
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to a value which is closer to its steady-state value. As was seen above,
the fallure to recalculate q' leads to an increased inlet flow which
diverges from the steady-state value. By recalculating q' on each
iteration, a stabilizing effect is added to the code, which yields
convergence.,

In order to implement the correct calculation of q*, changes were
"made to subroutine HEAT. Instead of using the same q' on each iteration,
the equation used to calculate q' was altered so that q' would be
recalculated on each iteration. This change was made in subroutine HEAT
and a complete listing of the corrected version of this subroutine can
be found iﬁ Appendix C.

With the code corrected, the hold steady-state transient was rerun
and worked successfully. This encouraging result led to the rerunning
of the pressurization transient. The code is able to analyze this transient
without any abnormal behavior. Subsequent tests were made using smaller
time step sizes (0.005 seconds) and pressurization rates of up to 100
psi/éecond. No new failures occur and it appears that the problems in

the code have been successfully solved.

2.6.5 Discussion of Inconsistencies in the BWR option

Besides the problem associafed with the calculation of q', a few
additional inconsistencies were discovered in the BWR option during the
course of this investigation. These inconsistencies involve the void
fraction calculatiom, the flow rate calculation, and the pressure drop
calculation. Each of these calculations along with their appropriate
corrections 1s discussed ﬁelow. |

The void fraction is calculated before the flow rate is updated in
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a particular node. Since the vold fraction calculation requires the flow
rate when Levy's model is used, there is a question as to which flow rate
should be employed in this calculation. In a steady-state calculatiom,
the flow rate from the previous node should be used since the flow rate
does not change along the channel. For fransient calculations, one can
use either the previous node value or the previous iteration value. In
COBRA IIIC/MIT, the value from the previous iteration was being employed
in the void fraction calculation, This usage 1s incorrect in steady-state
analysis. The solution method does not converge on the flow rate which
means that‘the flow rate could change significantly from one iteration
to the next. Hence, it is best to use the flow rate from the previous
node in both steady-state and transient calculations. Subroutine SCHEME
was changed such that the flow from the previous node would be used in
the void fiaction calculation. A listing of this subroutine is found in
Appendix C.

After the void fraction is calculated, the density can be determined.
Once the density is known, the flow rate can be immediately calculated.
In COBRA IIIC/MIT, the flow rate was not being updated immediately and,
consequently, the velocity was being calculated_using the wrong flow rate.
To correct this inconsistency, subroutine VOID was changed so that the
flow rate would be calculated 1ﬁﬁediate1y after the density is known.,
This subroutine is listed in Appendix C. v

The final inconsistency was found in the pressure drop calculation.
In COBRA IIIC/MIT, an approximation is made in the equation used to calculate
the pressure drop. This approximation 1s only required when there is
crossflow, le, when PWR semi-open cores or subchannels are analyzed.

Therefore, when the BWR option is used this approximation is not needed.
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The pressure drop equation was corrected to eliminate this unnecessary
apprcximation. These correctlians occurred in subtroutine DIFFER and a

listing of this subroutine is in Appendix C.

2.,6.6 Effects of Code Changes

The improvements in the BWR option, which are discussed above, have
significantly increased the applicability of COBRA IIIC/MIT. Although
transient analysis with the BWR option had been attempted, many problems
were encountered and the code frequently falled. These breakdowns appeared
to limit the applicability of the code for manj transients of interest
(esg. pressﬁrization transient). However, with the use of the above
corrections these breakdowns are eliminated and, consequently, many
transient cases can now be analyzed. Therefore, the limitations on the
applicability of the BWR option have been removed.

Furthermore, a number of inconsistencies in the BWR option have been
eliminated. The removal of these inconsistencies represents the first
major change made to the BWR option. These inconsistencies are concerned
with the calculation of a number of parameters. Many of these calculations
are valid in the PWR option. By correcting these inconsistencies, the
solution method in the BWR option is improved without significantly altering
the results of the code. Therefére, these corrections represent definite

improvements in the BWR optlon.

2.7 Results of Transient Analysis

2.7.1 Description of Transient Cases
The modeling used in the transient analysis is similar to that used

in the previous studies. Once again, the five channel geometry 1s used.
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Bach channel is divided into 40 nodes yié¢lding an axial mesh size of 3.6
inches. An inlet temperature of 527 OF is used which corresponds to a
subcooling of 27.5 Btu/lb at 1035 psia. Two cases are used in this
analysis. Both cases consider the same geometry and the only difference
between the two cases is that the first case, case A, uses the Levy model,
while for the second case, case B, the Levy model is not applied. Each
case starts with a pressure of 1035 psia and the same power, and both of
these variables are increased at a rate of 5% per second. These two forcing
functions are applied simultaneogsly and the t:ansient is run for 1.0
seconds using time step sizes of 0.0l seconds.

Since it is the intent of this analysis to investigate the effect
of Levy's model and to observe the influence of the pressurization on
various parameters, the transient behavior of a few selected variables
will be examined. For example, the vold fraction reflects the influence
of using the Levy model. The case which uses the Levy model will have
larger void fractions in the subcooled regime. The clad temperature
distribution will also demonstrate the effect of the Levy model. As was
seen in Section 2.4, the application of the Levy model can dramatically
alter the clad temperature distribution. Besides 1llustrating the
effect of the Levy model, these two variables show the influence of the
transient forcing functions. An increase in pressure will cause a
reduction in the void fraction. The clad temperature predictions will
be affected by both the reduction in the vold fraction and the increase
in,power; Consequently, the void fraction and clad temperature are used

to report the results of the transient analysis,
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2.7.2 Results of Case A

The results of the first case, which used the Levy model, lllustrate
the influence of the transient forcing functions. The vold fraction
distribution in channel 2 at the beginning and end of the transient are
“ shown in Figure 2.11. As the transient proceeds, the beginning of
subcooled boiling moves toward the end of the channel. The magnitude of
the void fraction is also reduced at each point aloﬁg the channel. These
two observations are also found in the other channels.

The clad temperature distiribution also changes during the transient.
Figure 2.12 illustrates the changing distribution for rod 4, The first
observation to note is that aléng most of the rod the temperature
increases with time. Although the power was being increased, the main
cause of the increasing temperatures is the increase in the saturation
temperature assoclated with the pressure increase. During the transient,
the saturation temperature increases by approximately 6 °F. In the boiling
regime the temperature difference between the clad and fluid saturation

temperature is given by the Thom nucleate boiling correlation,

T, - Ty = 0.072 (%) exp(-P, 4/1260.), (2.3)

o~
[1]

where q" is the heat flux and Pref

% increase in both the heat flux and reference pressure this temperature

is the reference pressure., With a

difference has actually decreased. However, since the saturation

temperature is increased, the clad temperature is also increased. Thérefore,
except fdr the first few nodes where boiling has not occurred, the

increase in clad temperature can be attributed to the increased saturation
temperature,

A second observation is that as the boiling front moves up the channel
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the associated change in heat transfer correlation results in a large
increase In clad temperature. As was seen in the steady-state analyses,
the heat transfer logic dictates that the nucleate boiling correlation
be used only if boiling has occurred. Application of this correlation
results in a much higher heat transfer coefficient than would be predicted
by the forced convection correlation. Hence, the large drop in the clad
temperature indicates that boiling has begun. Since the pressurization
tends to suppress boiling, the location aiomg the channel where boiling
begins moves toward the channel end. For example, the node, which was
the first to boil at the start of the-transienﬁ, does not have boiling
in it later on in the transient. Consequently, the forced convection
correlation is used instead of the nucleate bolling correlation and the
tenperature increases sharply.

A final observation, which is barely discernable, is that the clad
temperatures in the first two nodes are lower af 1.0 seconds than they
are at 0.0 seconds. This behavior is due to changes in the inlet flow
rate. The inlet flow rate changes from one time step to the next in
order to satisfy the boundary conditions. Since the forced convection
correlation depends on the flow rate, a higher flow rate will lead to a
higher heat transfer coefficient. The fluctuating heat transfer
coefficient leads to changes in ihe clad temperature. This observation
as well as the two others described above were typical of the clad

temperature behavior in case A.

2.7.3 Results of Case B
In case B, the Levy model is not used and, therefore, the void

fraction is zero until the equilitrium quality becomes greater ithan zero.
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The void fraction distribution for channel 2 during the transient is
showr. in Figure 2.13. Once again, the increase in pressure during the
transient causes boiling to begin further up the channel, Likewise,
the magnitude of the vold fraction 1s reduced at each location along
the channel. These typlical results were found in the other channels as
well.,

The clad temperature predictions for rod 4 are shown in Figure 2.14.
The behavior of these predictions as a function of time are similar to
those found in case A. First, it 1s seen that the predicticns at 1.0
seconds are larger than those predictéd in steédy-state. This result is
again due io the increased saturation temperature. Secondly, the shifting
boiling front causes large differences between the predictions at 0.
seconds and those at 1.0 seconds. These large differences occur in nodes
which were bolling in steady-state, but which stop boiling as the pressure
is increased. Again these differences can be attributed to the heat
transfer coefficient which is used. Finally, small fluctuations in the
clad temperature predictions at the beginning of the channel were observed.
These fluctuations result froﬁ the changing inlet flow rgte which directly
influences the heat transfer coefficient. Results for the other rods

exhibited similar behavior during the transient.

2.8 Discussion of Transient Results

The two transient cases analyzed can be used to 1ilustrate the
influence of the Levy model. The most obvious influence of this model is
to increase the magnitude of the vold fraction in the subcooled and initial
part of the boiling regimes. As seen in Figure 2.15, the use of the

Levy model predicts larger vold fractions for the first third of the
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channel. Also, the beginning of boiling is predicted to occur earlier.
At the end of the transient, the relative differences between the two
cases remain the same, Figure 2.16 illustrates the void fraction
distribution at 1.0 seconds. The curves for both cases have decreased
in magnitude and the start of boiling has shifted toward the top of the
channel. However, the differences in the predictions of the two cases
are unchanged.

Besides influencing the vold fraction, the Levy model also has a
large effect on the clad temperatures. Figure 2.17 shows the clad
temyeraturg predictions with and withéut the Levy model. Once again,
the dramatic differences in these predictioné are caused by the heat
transfer logic. Since boiling begins near the inlet when the Levy
model is used, the nucleate boiling correlation begins to be employed
closer to the inlet for case A. In fact, case A applies the nucleate
boiling correlation almost 12 inches earlier than case B. As was seen
before, the large difference between the forced convection and nucleate
boiling heat transfer coefficients leads to large differences in the
clad temperature predictions.

A simlilar result occurs at the end of the transient. As illustrated
in Figure 2,18, the temperatures are still significantly different in
the subcooled boiling regime., The main difference between the results
a£ the end of the transient and those at the start is ﬁhai the temperature
has increased sharply in a few positions. These increases occur in nodes
which stop boiling during the course of the transient, As the pressure
increases, some nodes stop boiling and, consequently, they begin to use
a lower heat transfer coefficient. This switch in heat transfer coefficient

begins to drive the clad temperature up, because the heat flux has not
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decreased.,

2.8.1 Summary of Transient Results

The results of the transient analysis can be summarized as follows.
- Frst of all, it is found that the increase in pressure affects both the
void fraction and clad temperature distributions. The start of boiling
moves toward the exit and the magnitude of the void fraction is reduced.
Clad temperatures in the boiling regime are increased due to the increase
in saturation temperature. The movement of the boiling front also causes
sharp increases in the clad temperature. A second result concerns the
impact which the application oi‘ the Levy model has on the vold fractim
and clad temperature distributions. As would be anticipated, the case
which uses the Levy model predicted higher values for the void fraction
over much of the boiling length. The clad temperatures in the subcooled
bolling regime are predicted to be smaller when the Levy model is applied
since the start of boiling is predicted to occur earlier. Hence, both
the use of Levy model and the increase in pressure influence the void

fracticn and clad temperature distributions.

2.9 Conclusions

The main intent of the invéétigations discussed in this chapter has
been to evaluate BWR bundle analysis. In order to perform this evaluation,
both CCBRA IIIC/MIT and COBRA IV-I have been used. These codes are
compa.red'for various steady-state cases in an attempt to identify
significant differences. Transient analysis has been performed with
COBRA IIIC/MIT alone. From these investigatlions, a number of conclusions

can be drawn.
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First of all, the use of COBRA IV-I for steady-state analyses is
deemed acceptable., With the boundary conditions obtained from
COBRA IIIC/MIT, COBRA IV-I is able to adequately model the EWR bundles.
The close agreement between the density and enthalpy predictions of the
- two codes verifies that COBRA IV-I could model ducted BWR bundles in
steady-state.

A second conclusion is that the heat transfer calculations in
COBRA IIIC/MIT are not adequate for the subcooled boiling regime. These
inadequacies result from both a questionable logic system and an
explicit energy equation. The logic used to determine the proper heat
transfer coefficient is overlylsensitive to boiling and does not take

into account the amount of wall superheat (ie. T - Tsai)' Consequently,

c
when the Levy model is not used and there is no subcooled boiling, the

clad temperature can be over 100 °p greater than the saturation temperatuxe.
With this much superheat, some boiling should occur and the nucleate

bolling heat transfer correlation should be used even though boiling is

not predicted. The temperature predictions should not be as sensitive

as they are to the use of the Levy model. Therefore, a loglic system
similar to that used in COBRA IV-I, which is independent of the Levy

model, should be implemented in COZRA IIIC/MIT. However, a new logic
system alone is not sufficient to produce consistent heat transfer
calculatims. The explicit nature of the energy equations leads to an
inconsistent set of heat transfer coefficients, heat fluxes and clad
temperatures at each axial level. 1In particular, the heat transfer
coefficient is based on information from the previous node. For exanmple,

if the power 1s increasing along the rod and subcooled boiling exists,

then the predicted heat transfer coefficient will be lower than a -
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consistent value would be. It follows that with a lower heat transfer
coefficient, higher clad temperatures will be predicted. A consistent
heat transfer coefficient would improve the heat transfer calculations
and a method for aghieving this result should be implemented in

" COBRA IIIC/MIT. Hence, improvements in both the heat transfer logic and
the procedure for calculating the heat transfer coefficient are required
to improve the heat transfer calculations for subcooled boiling in

COBRA IIIC/MIT.

Thirdly, although transient analyses have been performed with
COBRA IIIC/EIT. further testing of this code for transient, BWR bundle
analyses is required. The problems discovered while attempting to use
this code illustrate the need for adequate testing of the code. No new
problems were found, but it is possible that some difficulties might
still occur,

A fourth conclusion is that, with the exception of the heat transfer
calculations, COERA IIIC/MIT could satisfactorily analyze a BWR
pressurization transient. As would be expected, the increase in pressure
leads to an increase in the saturation enthalpy and the vpid fraction 1is
reduced. Due to the heat transfer dependence on boiling, the reduction
in void fraction leads to increased clad temperatures in a few nodes.
This result can be explained in terms of the heat transfer logic, but is
probably not a realistic result. With improved heat transfer capabilities,
the code should yield more realistic results for the parameters of interest.

Finally, the results indlcate that the Levy model should be used in
BWR bundle analyses. Althowgh this model has little effect in the high
void fraction regimes, it has a great influence in the subcooled regime.

When this model is used, boiling is predicted to start earlier and the
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magnitude of the void fraction is increased in the initial stages of
boiling. These effects are very important for neutronic feedback
calculations and should be accounted for in order to accurately analyze
the BYR bundles.,
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CHAPTER 3
ANALYSES OF SEVERE POWER TRANSIENTS

3.1 Introduction

The thermal-hydraulic calculations in MEKIN (7) are performed using
COBRA IIIC/MIT., Since MEKIN can be used to analyze very rapid power
transients (eg. rod ejection accident), it is imperative that COBRA IIIC/MIT
be able to analyze these transients. This requirement implies that |
COERA IIIC/MIT must yleld realistic results even when very small time
stéps (0.0025 seconds) are used. With very small time step sizes, rapid
density changes can lead to convergence difficulties. For example, the
sudden start of boiling during a rapid power transient can lead to large
density changes which, in turn, cause large flow rate changes. Depending
on the situvation, the code may require a large number of iterations in
order to converge., Alternatively, on some occasions the code may fail
to converge. This latter characteristic is not desirable and the
circumstances leading to its occurrence must be identified.

Therefore, in order to assess the applicability of COBRA IIIC/MIT,
various severe power transients were investigated. These investigations
involve using both COBRA IIIG/MIT and COBRA IV-I. Comparisons between
the two codes are made for the vé,rious cases, Since COBRA IV-I contains
two distinct solution methods, some comparisons are made between COBRA IIIC/MIT
and the implicit method of COBRA IV-I, while others are made between
COBRA IIIC/MIT and the explicit method of COBRA IV-I. Through
comparisons of the results, differences in the two codes are identified.

For example, although both COBRA IIIC/MIT and the implicit solution

method of COBRA IV-I are similar in many regards, they do differ in their
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energy equations and heat transfer packages. These differences become
apparent when the results are compared. On the other hand, the explicit
solution method is inherently much different from that in COBRA IIIC/MIT.
Hence, comparisons between these latter two methods should reflect the
differences between these methods. Another use of these.comparisons is
to évaluate the adequacy of COBRA IIIC/MIT. The improvements in the
encrgy equation and the addition of the explicit solution method make
COBRA 1IV-I1 better sulted to handle severe transients. Consequently, it
is possible to determline whether or not COBRA IIIC/MIT is predicting
realistic results in severe power transients through comparisons with
COERA IV—i;

3.2 Modeling Sequence

ihe transients discussed in this ch#pter are simulated rod ejection
transients. The main characteristic of this type of transient is a 1arge‘
power lncrease during a very small time period. For example, the power
can increase froma zero power condition to 10 times its full power value
in less than 0.1 seconds. These transients are called power transients,
since‘the rapid power increase and subsequent decrease drives the thermal-
hydraulic calculations during the transient. Hence, the use of simulated

rod ejection transients permits the performances of COBRA IIIC/MIT and

] COBRA IV-I to be evaluated for these severe power transients.

& " The modeling used in these power transients can be divided into three
T parts. The first part involves the geometrical layout of the channels.

: | This layout includes such specifications as channel area and length,

rod dimenslions, and other parameters relevent to the geometry. The

second part involves the selection of the thermal-hydraulic models used




88

in the analysis. For example, the use of the Levy model or some mixing
correlatio may be specified. Finally, the third part involves the
operating conditions and transient forcing functions. In this part,
various operating conditions are specified as well as any changes in
these conditions as a function of time. A complete description of the
modeling used in each case can be found in Appendix B and a brief
description follows,

The geometrical layout is the same for all transient cases. Two
channels are used with each representing a part length 14 x 14 PWR fuel
assembly, Typical values are used for the floﬁ area, rod dimensions,
fuel parameters, and gap size. The total length of each channel is
59.2 inches (150 cm). This small section is used so that a power history
could be determined in an economical way with MEKIN., Each channel is
divided into 5 axial nodes which result in node sizes of 11.84 inches
(30 cm).

The thermal-hydraulic models are essentially the same in each case.
The only exception is whether or not the Levy model is used. In cases
comparing COBRA IIIC/MIT and the explicit method of COBRA IV-I, the
Levy model is not used. The reason for not using this model is that it
c#nnot be applied with the explicit method of COBRA IV-I, because the
equations in this method are sol&ed assuming a homogenous equilibrium
model and this assumption precludes the use of the Levy model. In cases
coﬁparing COBRA IIIC/MIT with the implicit method, the Levy model is
always used. The other thermal~hydraulic models which are applied are
described in Appendix B.

The operational conditions and transient forcing functions for the

various cases are nearly identical. Each case uses an inlet temperature
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of 635 °F and a reference pressure of 2100 psia. Cases 1 thru 3 use an
inlet mass flux of 2.48 I*ll’b/hr/:t‘t2 and an average heat flux of

10 Btu/hr/ft%, Case 4 uses an inlet flux of .25 MIb/hr/ftZ and an
average heat flux of 1000 Btu/hr/ftZ, These input data are summarized
in Table 3.1. All cases employ a uniform axial power distribution and
peaking factor of 1.52 and .48 inchannels 1 and 2, respectively. The
power forcing function is also the same for all cases. Hence, except

for case 4, the operational conditions are identical.

3.3 Results for Case 1

The first case is analyzed with the original version of COBRA IIIC/MIT.
This version does not contain the corrections suggested in Chapter 2.
Using this version, with the Levy model included, the power transient
was run. The initital run used a time step size of 0.0l seconds. It
‘worked successfully although some curious results occur once boiling
starts. These results include large increases in both the flow rate and
Pressure drop. A second phase of .the investigation was an attempt to
analyze the transient with time step sizes of 0,0025 seconds. This run
failed to converge at the point where boiling started. After a thorough
investigatio, the cause of the ;‘a.ilure and a solution for it have been
found. This problem and its solution as well as the results with a time step

size of 0.0l seconds are discussed below.

3.3.1 Initial Results
The initial results of this case were obtained using a time step size
of 0.01 seconds. The transient was run and it is found that subcooled

bolling begins at 0.12 seconds in channel 1. Once boiling begins, the
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TABLE 3.1

SUMMARY OF INPUT DATA

Tin Pref Gin q" Levy
Case (°F) (psia) (M1b/hr-£2) (Btu/hr-£t2)  Model
1 635 2100 2.48 10 yes
2 635 2100 2,48 | 10 yes
3 635 2100 2.48 10 no
4 635 2100 0.25 1000 no
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mass flow rate and pressure droplincrease sharply. As illustrated in
Figure 3.1, the exit mass flow rate increases significantly at the start
of boiling., After a few time steps, the flow rate has decreased to a
value near its pre-bolling value. The transient behavior of the pressure
drop in channel 1 is shown in Figure 3.2, The pressure drop increases

at the point of boiling, but becomes negative on the next time step.
Eventually, it returns to its pre-boiling value. Hence, both the. flow
rate and pressure drop experience sharp increases at the point of boiling,
but after a few time steps they return to their pre-bolling value.

The reason for this behavior can be understood by examining the
transient behavior of the density. As seen in Figure 3.3, the channel
exit density decreases discontinuously at the start of boiling. This
large density change is then used to calculate the flow rate through

the continuity equation:
my=my o - OxAA Y /ot - wox, (3.1)

Although the crossflow, w, does increase at the start of boiling, the
density gradient, AP/Aot, is so large that the flow is accelerated.
(note that AP /st is negative). This acceleration results in the large
flow rate increase,

After boiling has started, the density does not change by large
amounts during the transient, This result leads to a reduced density
gradient.and the flow rate stabilizes. CQnsequéntly, the flow rate
returns to its pre-boliling value.

Once the flow rate is calculated, the pressure drop is cbmputedrusing
LHX  Am AL L | umAX

gl =T, Rty YT (3.2)
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When the density 1s changing slowly, the a'aAx term is the largest term
on the right hand side of this equation. The term, a', is always negative
and varies slowly as a function of time. If the density decreases abruptly,
the flow rate will increase sharply. These two effects cause the second
and third term of equation 3.2 to be negative and large in magnitude.
Consequently, the pressure drop will increase sharply.

On the next time step, the flow rate has decreased due to the lower
density gradient. The decrease in flow rate is large enough to cause
the right hand side of equation 3.2 to be positive. This result means
that the pressure drop is negative. After the flow rate stabilizes,
the pressure drop returns to its pre-boiling value. Hence, the rapid
density change, caused by the start of boiling, can explain the observed

increases in the flow rate and pressure drop.

3.3.2 Discussion of the Code Failure

When this case was run with a time step size of 0.0025 seconds, it
was found that the code failed to converge at the point wher boiling
started. As is found in the above case, the start of boiling causes the
pressure drop and flow rate to increase sharply. However, the code is
unable to converge even after 100 iterations. This behavior was deemed
unacceptable and an investigatioh into the breakdown was initiated.

The initial phase of this investigation examines the influence of
both small time step sizes and the application of the Levy model on the
results., Even though the code converges when time step sizes greater
than 0,0025 seconds are used, both the flow rate and pressure drop
increase at the start of boilling. The amount of these lncreases depends

on the time step size used; the smaller the time step size, the larger
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the increase. For example, with a time step size of 0.0l seconds the
flow rate increases by 70 1b/sec, while with a time step size of 0.0025
seconds the flow rate increases by 156 1b/sec. These differences are a
consequence of the fact that at the start of bolling the density decreases
. by an amount which is independent of time step size. Hence, the magnitude
of the density gradient would depend only on the time step size and the
increases in the flow rate and pressure drop would be larger when smaller
time step sizes are used.

When Levy!s model is not used, no large increases in the flow rate
or pressure drop occur even at the point where saturated boiling begins.
Appa.rently.. the density decrease is not as large when saturated boiling
begins as that which occurs when subcooled bolling begins. The smaller
density gradient does not lead to large increases in flow rate and pressure
drop. Hence, the density gradient, which influences the flow rate and
pressure drop, is a strong function of the time step size and the
application of the Levy model.

The next phase of the investigation reviews the procedure for
calculating the density. For a particular node in a channel, the method
for computing the density depends on whether ornot the fluld in the node
boils. If bolling is not present, then the density would be set equal
to the inverse of the specific vélume which would correspond to the
value of the enthalpy in the node. If boiling is present, then the

density would be calculated using

P=rfel-<)+p - (33)

The vold fraction, oc, is calculated with a user-specified correlation

and is strongly dependent on the quality. Since the density depends on
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the void fraction, the quality is important for the density calculation.

The calculatio of the quality can be done in one of two ways. The
first method does not include the effect of subcooled boiling and simply
uses the thermodynamic equilibrium quality. If this method is used, the
quality is only a function of the enthalpy. The second method does include
the effect of subcooled boiling through its application of the Levy model.
When the Levy model is used, the quality is a function of the flow raie,
the heat flux, and the enthalpy. Hence, if the second method is used, the
coupling among the various variables is tightened.

The third phase of the investigation examines the actual cause of
the failure. At the point where boiling starts the code fails to
converge., Since the convergence criterion is based on the flow rate,
the value of the flow rate on each lteration is studied. As illustrated
in Figure 3.4, the flow rate oscillates between two values and is unable
to converge. A careful review of the results shows that, after a few
iterations, two different solutions are obtained and the code oscillates
between them.

This oscillatory behavior results from the first node in channel
1 having a positive quality only on odd numbered iterations., On even
numbered iterations, the quality in this node is zero. This behavior
is seen in Figure 3.5. When the'quality is positive, a higher flow rate
is predicted as compared to that predicted when the quality is zero.

The flow is predicted to be higher because a poéitive quality results in
a larger density decrease, Hence, the prediction of a positive quality
on alternate iterations leads to the oscillatory flow rate.

The prediction of a positive quality on alternate iteratlions is a

result of the coupling between the flow rate, density and quality. On
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the first iteration, a positive quality is predicted for the first node
in channel 1. This positive quality leads to a decrease in the density
which, in turn, causes a flow rate increase. On the second iteration,
the increased flow rate is sufficlently high to prevent the prediction

of a positive quality. Consequently, the density is higher than it was
on the first iteration and the new flow rate is lower. On the third
iteration, the lower flow rate results in a positive quality and the

flow rate Increases for this iteration. With this higher flow rate, the
quality on the fourth iteration is zero again. This behavior is repeated

and the code oscillates between two solutions.

3.3.3 Solution of the Code Failure

Once the problem had been identified, it was necessary to find a
solution. Only physical solutions are examined so that the solution will
be valid for all cases using the Levy model. The problem arises because
the prediction of a positive quality results in a large flow rate increase.
The large flow rate, in turn, results in a zero quality on the next
iteration. Hence, the problem could be viewed in one of two ways. The
first would concern the reasons why the prediction of a positive quality
leads to such a large increase in the flow rate. And the second would
concern the actual calculation of the quality with the Levy model.

As is seen above, the prediction of a positive quglity leads to a
density decrease which, in turn, results in: a flow rate increase. The
amount of this density decrease is especially large when subcooled
boiling occurs because the pre-boiling density is much higher than the
fluid Saturation density. Once the quality is positive, the density is

calculated using equation 3.3. However, as pointed out by Sliz (26), the
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calculation of the density with this equation in the subcooled boiling
regime is not exactly correct. The fluid is still subcooled and,
consequently, the subcooled fluid density should be used instead of the
saturated fluid density. This correction reduces the density discontinuity
- at the point where boiling begins. Accordingly, the flow rate should not
increase as much as it had previously. If the flow rate increase were
reduced, the quality on the second iteration might remain positlive which
could lead to convergence.

This correction is implemented by making changes in subroutine VOID
and a listing of this subroutine is in Appendix C. The code was rerun
with this éorrection. but agaih it fails to converge. Apparently, the
reduction in the flow rate increase is not enough to eliminate the
oscillations. Even though this correction does not solve the problenm,
the density calculation is improved and this correction should be used
in the code.

After correcting the density calculation, the Levy model was examined
in order to find a method for eliminating the osclllations. During this
examination, two inconsistencles were found in tpe code's usage of the
Levy model. The first inconsistency involves the evaluation of the fluid
properties in the model. In Levy's original paper (22) the properties
are evaluated at the saturation femperature. However, the code was
evaluating these properties at the subcooled temperature. In order to
eliminate this problem, subroutine SCQUAL was changed so that the properties
in the Levy model would be evaluated at the saturation temperature. The
second inconsistency involves the heat transfer coefficient which is used
in the model. The model should use the Dittus-Boelter correlation to

calculate the heat transfer coefficient. However, the Thom éorrelation
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was being used. Once again this inconsistency was corrected by making
changes in subroutine SCQUAL. Unfortunately, the correction of these
inconsistencies did not eliminate the breakdown.

Hence, the problem of the oscillatory quality predictions remained.
Physically, if a positive quality is predicted for a particular node at
a particular point in time, then the iterative flow redistribution should
not eliminate this positive quality. Furthermore, if the quality is
prevented from oscillating, then the solution could converge. Hence, a
correction was found which prevents the quality from beccming zero once
is has beep predicted to be positive in a particular node. This correction
is implemented in subroutine SCQUAL which. is listed in Appendix C.

The way in which this correction works can be described as follows.
On the first iteration, the quality in each node is calculated and these
values are stored in a new array, DATA($XPOLD+I+MCx(J-1)). Then, on the
second iteration, the quality is recalculated. A damping scheme uses
the present iteration value and the previous iteration value to calculate
the new quality. As implemented now, 99% of the present iteration value
is added to 1% of the previous iteration value. Consequently, if a
positive quality is predicted on the first iteration, then the quality
calculated on the second iteration will be at least 1% of the first
iteration value. The iterative érocedure continues by storing the new
qualities in the DATA array. Note that once a quality is predicted to
be positive it will remain positive during the iterative procedure.

With this solution, the code is able to converge at all times
during the transient. Hence, the elimination of the oscillatory quality
predictions allows the code to converge. In order to observe the effect

of this correction, the case which uses a time step size of 0.0l seconds
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was rerun. No significant changes in the results are observed when
this corrected version of the code is used. Hence, this correction

is deemed an acceptable solution to the non-convergence problem.

3.3.4 Summary

The results of this first case indicate that, at the start of
subcooled boiling, COERA IIIC/MIT experiences difficulties when small
time step sizes are used. The large density drop, associated with the
start of boiling, leads to large increases in the flow rate. When a time
step size of 0.01 seconds is used, tﬁé code is.able to converge, even
thouzh larée increases in the flow rate occur. However, the large
increases in the flow rate cause oscillations in the results when a
time step size of 0.0025 seconds is used. These oscillations prevent the
code from converging. Thils oscillatory behavior has been investigated
and a number of corrections are implemented into the code in order to
eliminate thls behavior and allow convergence.

The first correction changes the method for calculating the density
when subcooled boiling occurs. The fluld saturation density._f’f. in
equation 3.3 is replaced with the subcooled fluld density. This
correction is based on the physical fact that when subcooled boiling
occurs, the. fluid is still subcoéled rather than belng saturated. It
should also be noted that the two-phase specific volume calculation is
chahged for the same reason. |

The second correction changes the method for evaluating variables
used in the Levy model. Specifically, the fluid properties and heat |
transfer coefficlent were not being evaluated as suggested in Levy's

paper. These lnconsistenclies do not affect the oscillatory behavior,
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but are corrected so that the Levy model would be consistent.

The final correction is the insertion of a damping scheme in the
Levy model. This scheme eliminates the oscillations by insuring that
once a positive quality is predicted that it would not become zero on
- subsequent iterations. In order to implement this correction, a new
variable,. DATA($XPOLD+I+MCx(J-1)) is added to store the values of the
qualities for all nodes. The use of this new variable requires changes
in subroutines CORE and BLOCK DATA so that it would be properly
dimensioned. These two subroutines are listed in Appendix C.

With these corrections implemented, the code is able to converge
when small time step sizes are ‘used. This solution 1is considered to
be satisfactory for this problem since it both eliminates the problem
and has a physical basis. Hence, with the corrected code, it is now

possible to make comparisons with COBRA IV-I,

3.4 Case 2 Results

The corrections discussed in Sections 2.6 and 3.3 were incorporated
into COBRA IIIC/MIT so that the severe power transient could be analyzed.
Since the intent of this analysis is to compare COBRA IIIC/MIT with
COBRA IV-I, the implicit method of COBRA IV-I is initially used to
analyze this transient. Unfortu:;la.tely. COBRA IV-1I developed oscillations
at the point when boiling begins. These oscillations are similar to those
found in COBRA IIIG/MIT. Consequently, subroutines SCQUAL and VOID were
changed using the same corrections used for COBRA IIIC/MIT. _With these
corrections, COBRA IV-I is able to successfully analyze the transient.
These corrections and a listing of subroutines VOID and SCQUAL can be
found in Appendix D.
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With both codes corrected so that they could analyze the severe
power transient, comparisons of their results are performed. Throughout
thls analysis a time step size of 0.0025 seconds is used. Comparisons
of the heat transfer and void fraction predictions are used to determine
whether or not the improved energy equation and heat transfer package in
COBRA IV-I are actually necessary for this type of transient. Conseéuently.
the clad temperature and void fraction predictions are the primary variables

which are compared.

3.4.1 Discussion

As was found in the BWR analysis, the clad temperature predictions
between the two codes are different. Figure 3.6 shows the maximum clad
temperatures differ by as much as 10 Op during the transient., This -
difference 1s not as great as those seen in the BWR cases, but could again
be explained in terms of the different heat transfer logic. The COBRA IV-I
predictions never exceed the fluid saturation temperature by more than
5 °F. because this code's logic system is based on the value of the clad
temperature. On the other hand, the COBRA IIIC/MIT predictions do exceed
the saturation temperature by up to 10 % since this code's logic system
is based on the quality.

As a further illustration of the clad temperature predictions,
Flgure 3.7 shows the axial clad temperature distributiqns for both codes
at ;two times during the transient. The COBRA IV-I predictions are
consistently uniform indicating that the Thom nucleate boiling _
correlation is used along the entire rod, The COBRA IIIC/MIT predictions
are uniform Just prior to the start of the boiling, but change significantly
once boiling is initiated. Before the start of boiling, the Thom forced



CLAD TEMPERATURE (°F)

660.

650.

640,

630.

620,

106

COBRA IIIC/MIT

\

"COBRA IV-I
P
. . | 4 ——t
O. n1 02 .3 .’-l- .5
TIME (SECONDS)
FIGURE 3.6
MAXIMUM CLAD TEMPERATURE VERSUS TIME

RESULTS FOR CASZ 2



CLAD TEMPERATIRE (°F)

660,

650:

107

COBRA IIIC/MIT

/ @ 0.15 seconds

COBRA IIIC/MIT
/ @ 0.24 seconds
COBRA IV-I

@ 0.15 seconds\

\ COBRA IV-1

@ 0.24 seconds

| " | . |

0. 25 .5 75

RELATIVE AXIAL HEIGHT

FIGURE 3.7 |
CLAD TEMPERATURE VERSUS AXTAL HEIGHT
RESULTS FOR CASE 2

1.0



108
convection correlation is used along the entire.rod. However, with the start
of bciling, only those nodes with bolling switch to the forced convection
correlation. Consequently, two correlations are in ﬁse and the net
result is a non-uniform temperature distribution. Hence, the strong

| dependence of the COBRA IIIC/MIT heat transfer logic on boiling results..
in the differences in the clad temperature predictions.

Besldes predicting different clad temperatures, the two codes also

- predict different void fractions. This result differs from the steady-

state BWR comparisons in which the density and void fraction predictions

are nearly identical. The exit void fia.ction pfedictions, as illustrated
in Pigure 5.8. differ between the two codes in two distihct Ways.

First of all, COBRA IIIC/MIT predicts boiling (ie. positive void fraction)

to occur earlier than does COBRA IV-I. Secondly, the COBRA IIIC/MIT

predictlions are greater than those of COBRA IV-I during the transient.

Since each code is using both the same power history and the Levy model,

the reason for these differences is not readily apparent,

After a re-examination of the Levy model, the reason for the differences
can be explained. The use of the Levy model causes the void fraction to

be a function of the heat flux, the mass flow rate, and the enthalpy.

The void fraction would increase with an increase in either the heat flux
or the enthalpy and would decrea.s;e with an increase in the flow rate.

These three variables are compared and it is found that only the heat

fluk differs between the two codes. This result was not expected since

the power distributions are identical for each code. However, the:

differences in clad temperatures and heat transfer coefficients result

in different heat fluxes. The COBRA IIIG/HIT heat flux predictims are

larger than those of COBRA IV-I which would lead to earlier and larger



VOID FRACTION

0.1

.08

O

.02

0.

109

COERA IIIC/MIT
MIT

) 8

COBRA IV-I

0.

.1 2 03

TIME (SECONDS)

FIGURE 3.8
VOID FRACTICON VERSUS TIME

RESULTS FCR CASE 2

i



110

subcooled void fraction predictions. Since the higher heat fluxes result
from the differences in clad temperatures and heat transfer coefficients,

the differences in the vold fraction prediction could beiindirectly

attributed to the different heat transfer logic in the two codes.

The results of the first case show that the pressure drop would
increase sharrly at the inception of boiling. This result is observed
in the COBRA IIIC/MIT run, but no large increase or decrease is observed
in 'the COBRA IV-I run. As seen in Figure 3.9, the COBRA IIIC/PE[T pressure
drop predictions oscillate when boiling started. On the other hand,
the COBRA Iv-I predictions remain nearly constant throughout the
transient. This difference in behavior can be attributed to the

differences in the energy equations in the two codes. The more implicit

nature of COBRA IV-I equation would prevent large density changes

by insuring a consistent energy solution at each axial level. Without
a large density decrease, the pressure drop would not increase significantly.
Hence, the improved energy equation in COBRA IV-I would prevent the
pressure drop oscillations which are seen in the COBRA IIIC/MIT results.
3.4.2 Summary

This second case has been used to compare COBRA IIIC/MIT and the
implicit method of COBRA IV-I for a severe power translient. Once again,
these comparisons reveal differences in the clad temperature predictions.
These differencés can be attributed to the different heat transfer logic
in the two éodes. The void fraction predictions also differ bétween
the two codes, and result from different heat flux predictions which are
caused by the different heat transfer logic. The pressure drop increase
at the start of boiling, which is observed in the COBRA IIIC/MIT run, is



PRESSURE DROP (psi)

111

15. ~
10, | ——— COBRA IIIC/MIT
COBRA IV-I
5.1 //\__
O
_5' Il 'l Il 1 ;|
0, 0.1 0.2 0.3 - 04 0.5

. TIME (seconds)

FIGURE 3.9
PRESSURE DROP VERSUS TIME

RESULTS FCR CASE 2



12

not observed in the COBRA IV-I run., This difference results from the
difference in the energy equations. Hence, both the different heat
transfer package and energy equation in COBRA IV-I result in different
predictions by the two codes.

3.5 Case 3 Results

The third case which is investigated is used to compare COBRA IIIG/MIT
and the explicit method of COBRA IV-I. Once again, the éevere power
~ transient serves as a basis for comparison. Since the expiicit methed
does not allow the use of the Levy model, COBRA IIIC/MIT was run without
this model; Consequently, no subcooling bolling is allowed and boiling
does not start until the equilibrium quality was greater than zero. Other
modeling parameters are the same as in the previous two cases and a tihe

step size of 0.0025 seconds 1is used.

3.5.1 Discussion

The intent of this analysis is to evaluate the results of COBRA IIIC/HITv
with respect to those of the explicit method of COBRA IV-I. Since the
explicit method uses an improved solution scheme, comparisons of these
two codes for the severe power transient would point out any inadequacies
in COBRA IIIC/MIT. Therefore, v;riables such as the density and clad
temperatﬁre are compared in order to evaluate the two codes.

The first comparisons are made between the density predictions of
the two codes. As illustrated in Figure 3.10 the predicted exit densities
of the two codes are in close agreement up to the p&int where boiling
begins., COBRA ITIC/MIT predicts boiling to occur approximately 0.02
seconds earlier than does COBRA IV-I. Furthermore, the COBRA IIIC/MIT
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densities are lower after boiling began. The COBRA IIIC/MIT results

show that the density begins to increase near the end of the transient
which indicates that the amount of boiling is reduced. On the other

hand, the COBRA IV-I. results show a continuously decreasing density
which indicates that the peak void fraction has not yet occurred. Similar
differences as found for the density, are also found in the enthalpy
predictions which imply that COBRA IIIC/MIT uses a higher heat input

into the channel than does COBRA IV-I.

This higher heat input is caused by the higher heat flux and clad
temperature predictions of COBRA IIIC/MIT. As seen in Figure 3.11, the
clad temperature predictions of COBRA IIIC/MIT are again higher. These
higher temperatures lead to higher heat fluxes as seen in Figure 3.12.
Note that the COBRA IV-I heat flux predictions peak earlier than those
of COBRA ITIC/MIT, but the COBRA IIIC/MIT predictions are higher for
most of the transient. The large increase in heat flux at 0.38 seconds
is caused by the transition to a different heat transfer coefficient
because boiling has started. These results again indicate the significant
impact which the heat transfer logic has on the predictions of

COBRA IIIC/MIT.

3.5.2 Summary

This case has been used to compare COBRA IIIG/MIT and the explicit
method in COBRA IV-I. These comparisons illustrate that the results of
the two ?:odes are simllar with one another until boiling begins. With
the start of bolling, the different logic systems cause different density
predictions, since the heat flux is predicted to be higher by COBRA IIIC/MIT.
The different logic also leads to different clad temperature predictions,



CLAD TEMPERATURE (°F)

670,

660.

650,

630,

115

COBRA IIIC/MIT

\

4 o | i 3 -

0. 0.1 0.2 0.3 0.4 0.5

TIME (seconds)

FIGURE 3.11

MAXIMUM CLAD TEMPERATURE VERSUS TIME
RESULTS FOR CASE 3



HEAT FLUX (MBTU/hr/f

0.4 1

0.2

0.0

116

COBRA ITIC/MIT -
\

COBRA TV-I

1 )| ———d

. Oe

0.25 0.5

TIME (seconds)

HEAT FLUX VERSUS TIME

RESULTS FOR CASE )



117

Hence, the differences in heat transfer packages are found to be the
primary causes of dissimilarities in the predictions of the two codes.

B T A

3.6 Case 4 Results

Although the results of the three previous cases have shown some
differences between the two codes, there is no indication that
COBRA IIIC/MIT is not applicable. These differences could be explained
in terms of the heat transfer logic and with similar logic systems the
results of the two codes should be in better agreement. Hence, the
intent of this fourth case is to investigate a transient in which COBRA
IIIC/MIT would not be applicable. Such a case would be one in which the
flow reverses due to the sudden voiding of a node in a channel., The
explicit method of COBRA IV-I could handle such a reversed flow
condition and could be used to find this condition. Once this transient
is identified, COBRA IIIC/MIT could be run to examine its behavior for

this transient,

3.6.1 Discussion .

A number of runs were made using the explicit method of COBRA IV-I1
. in order to find a transient in which the flow reversed. Starting with
the transient analyzed in the pr.evious three cases, the power was increased
up to 100 times what it had been., In other words, the steady-state
average heat flux was 1000 13’tn.1/hr:/ff.2 . Even with this large increase in
power, the sudden voiding at the start of boiling does not lead to a
flow reversal. Using this higher power, the inlet mass flux was then

reduced to 0.25 Mlb/ftz/hr and the transient was rerun. For this case,

¥ Ay

reverse flow does occur at approximately 0.1l seconds into the transient.
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The flow reverses at the interface between the boiling and non-boiling
sections of the channel. This result indicates that the sudden density
change, introduced by the inception of boiling, is sufficient to stop
and actually reverse the flow. The flow returns to a positive value
- after 2.5 milliseconds and remains positive thereafter.

COBRA IIIC/MIT is then used to analyze this extremely severe case.
At approximately 0.1 seconds into the transient, reverse flow is predicted
and the code fails, This failure is expected, since COBRA IV-I has
predicted a reverse flow condition. Once again, the flow reversal occurs
at the 1ntgrface between the boiling and non-boiling regimes. Also, the
time of the reverse flow prediétion is nearly the same as that predicted
by COBRA IV-I. Most predictions prior to the flow reversal are also in
good agreement. Hence, althouvgh COBRA IIIC/MIT fails when the flow
reversal occurs, its results are similar to those of COBRA IV-I up to
the point of failure. Furthermore, the point of flow reversal seems to

be reliably predicted by each code.

3.6.2 Summary

As is seen in the above analysis, the predictlon of a flow reversal
leads to the failure of COBRA ITIIC/MIT. This limitation does not apply
to the explicit method of COBRA‘IV-I. Yet, the comparison of the results
of the two codes up to the point of the flow reversal indicates that
COBRA IIIC/MIT is performing satisfactorily. It is found that, with
the excebtion of the clad temperatures, the two codes agree rather well
for most predictions. However, if calculations beyond the point of flow
reversal are required, then only COBRA IV-I could be used.

The severe transient examined in this section is just one example
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of a flow reversal transient. The sudden change in density caused by

the inception of boiling leads to the flow reversal. Boiling.occurs in
only one channel which means that the large density decrease occurs

only in this channel. With this density decrease, the difference in
Pressure between the two channels becomes very large causing a large
crossflow from the boiling channel to the non-boiling channel. As seen
in Figure 3.13, the crossflow when boiling occurs is much greater than
when no boiling occurs. If the crossflow is large enough and the flow
rate is small enough, a negative flow rate can be predicted. This result

can be seen with the aid of equation 3.1 repeated here:
my=msy - ABXAP [ot - wix, (3.1)

Although the density term would be positive, the crossflow term could
be sufficiently large to cause mj to be negative, However; the flow
rate, mj-l' must be small enough in order for this result to occur.
Hence, a combination of low flow rate and sudden density decrease would

be required for a flow reversal condition.

3.7 Conclusims

The results of the analyses in this chapter reveal three significant
conclusions regarding the applicability of COBRA IIIC/MIT and COBRA IV-I.
The first conclusion concerns the osclllations which occur at the
inceptim of boiling when very small time steps are used. Both
COBRA IIIC/MIT and the implicit method of COBRA IV-I fail to converge at
the point when subcooled boiling btegins. This failure could be considered
to be a limitation, but throush the use of a physically based correctlon
this limitation is eliminated. Hence, the ability to apply either code

to a severe power transient is not limited by the use of very small time
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step sizes.

The second conclusion concerns the validity of the COBRA IIIC/MIT
results during a severe power transient. Although the comparisons with
both the implicit and explicit methods of COBRA IV-I reveal discrepanciles
in the void fraction, density and clad temperature predictions, these
discrepancies could be explained in terms of the heat transfer logic.,
Prior to the beginning of boiling, the predictions of the two codes are
very similar. The start of boiling only affects the COBRA IIIC/MIT heat
transfer logic and results in the different prgdictions. If the two
codes use the same loglc systems, ihen their results should be in better
agreement. Hence, although the COBRA IIIC/MIT results do differ from
those of COBRA IV-I, a change in the COBRA IIIC/MIT logic system should
improve the validity of this code‘'s results.,

The third conclusion concerns the applicability of COBRA IIIC/MIT
when a flow reversal occurs., As expecied, this codes falls when the flow
reverses, while the explicit method of COBRA IV-I does not. However, the
results of the two codes are similar up to the point of the COBRA IIIC/MIT
fallure. These results illustrate that COBRA IIIC/MIT would not be
applicable if a flow reversal occurs, but the conditions for this
occurrence are, indeed, very severe. Another ohserQation is that
COBRA IIIC/MIT appears to be applicable up to the point of the flow
 reversal. Therefore, although COBRA ITICAMIT would not be applicable
if a flow reversal occurs, the code seems to perform satisfactorily for

most severe power transients.
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CHAPTER 4

LOSS OF FLOW TRANGIENT ANALYSES

4,1 Introduction

Although COBRA IIIC/MIT can be used in a coupled neutronic-thermal-
hydraulic calculation, another common use of this code is the calculation
of the Departure from Nucleate Boiling Ratio (DNBR) for both steady-state
and transient conditions. This parameter is extremely important for
the design and operation of a PWR due to its safety related significance.
Consequently, the accurate prediction of the DNBR is of paramount
importancé. COBRA IIIC/MIT has been used successfully to calculate
the DNBR for many steady-state and transient conditions (27). This
success has led to the common use of COBRA. IIIC/MIT for DNBR calculations.

With the development of COBRA IV-I, which is an improved code,
the COEBRA IIIC/MIT DNBR predictions can be assessed. This assessment
would be based on the assumption that COBRA IV-I, with its improved
energy equation and RELAP-4 heat transfer package, should yield better
results and, therefore, could be used as a standard to which other
codes could be compared. By comparing the COBRA IIIC/MIT predictions
with those of COERA IV-I, the adequacy of COBRA IIIC/MIT fof DNBR
calculations can be determined.'

For the purpose of comparing COBRA IIIC/MIT to COBRA IV-I, a series
of loss of flow transients are examined. This type of transient 1s
representative of an ATWS for which the minimum DNBR i1s the design limit.
Furthermore, this type of transient could be severe enough to illustrate
any inadequacles in the COBRA IIIC/MIT predictions. By assumlng no

scran and complete loss of the primary coolant pumps, the Minlimum Departure
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from Nucleate Boiling Ratio (MDNBR) would decrease very rapidly and
boiling could occur despite the high operating pressure. Due to the
severity of this transient, differences between the COBRA IIIC/MIT and
COBRA IV-I predictions could arise and be ldentified. Therefore, loss
of flow transients are used to assess COBRA IIIC/MIT for typlcal DNBR

analyses.

4.2 Description of Modeling

The overall modeling approach uses a single stage method (L4, 15).
This method combines an assembly to a#sembly aﬁalysis with a subchannel
analysis. The hot rod and the subchannels around it are modeled on a
subchannel baslis while the remainder of the core is modeled using a few
large channels. Using the combined modeling scheme, only one run is
required to determine the DNBR along the hot rod.

For the purpose of comparing COBRA IIIG/MIT and COBRA IV-I, the
single stage method is used for the DNBR analysis of the loss of flow
transients. A 1/8 section of the Maine Yankee core is modeled for the
application of this method. The hot rod is surrounded by nine subchannels
in order to provide sufficient detail for the DNBR analysis. Seven larger

éhannels are then employed to model the remainder of the 1/8 core.,
Typical geometrical values for tﬁe Maine Yankee reactor are used to
specify the actual dimensions of these channels. The @ata are summarized
1n'Appendix B,

A total of four loss of flow transients are analyzed using'this
single stage method. Each case employs the éame layout for the channéls,
but each also uses different values for one or more of the following

parameters; average heat flux, inlet temperature, rate of flow loss,
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or radial power factors. As seen in Table 4.1, the values for these
parameters vary from case to case. The first case repreéents a
conventional loss of flow transient since the various input values are
typlcal of a PWR. The second case is similar to the first, but the

- average heat flux is increased. Likewise, the third case differs from
the first in its rate of flow loss. Both the second and third cases are
more severe versions of the first case. Finally, the fourth case increases
both the average heat flux and inlet temperature relative to the first
case., This fourth case is the most severe case analyzed. All cases
assume that no scram occurs so that the power remains at 100% throughout
the transi;nt. Therefore, these four cases cover a wide range of possible
loss of flow transients.

Since the purpose of investigating these transients is to assess the
predictions of COBRA ITIC/MIT, both codes employ exactly the same modeling
for each case which is analyzed. This approach insures that any differences
which might occur would not be due to different modeling. Furthermore,
only the implicit method of COBRA IV-I is used during these investigations.
Therefore, with both COBRA IIIC/MIT and the implicit method of COBRA IV-I
modeled in exactly the same manner, the four loss of flow transients

were run and the results are discussed below.

4,3 Case 1 Results

The initial comparisons of COBRA IIIC/MIT and COBRA IV-I are performed
using a transient which could be considered to be a typical loss of flow
transient. Realistic values for the operating and transient conditions
are used. The inlet temperature and inlet flow rates are typical of a

PWR core. Furthermore, the power distribution is based on neutronic
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considerations only. Similarly, the rate of flow decrease is based on
the actual coastdown characteristic of a primary coolant pump. With

these conditlons, the translent is analyzed and the results are compared.

4.3.1 Discussion

Since the analysls of a loss of flow transient would usually be
concerned with the calculation of the DNBR, most comparisons use this
variable to evaluate the results of the two codes. These comparisons are
made for the rod 9 predictions, since this rod was determined to. be the
hot rod from peaking factor considerations. Comparisons of the temporal
MDNBR behavior are also performed to further evaluate the two cédes.

Besides the DNBR comparisons, the density, enthalpy, and clad
temperature predictions of the two codes are also compared. These
variables are used to evaluate the influence of both the energy equations
and heat transfer packages of each code. The rod 9 clad temperatures are
employed for the clad temperature comparisons. Since channel 11 is adjacent
to rod 9, the density and enthalpy predictions in this channel are also
used in these comparisons.

The DNBR predictions for rod 9 are compared in Figure 4.1. Both the
comparisons at 0.0 seconds and at 9.0 seconds are in rather good agreement.
Although the COBRA IIIG/MIT predictions are consistently greater than those
of COBRA IV-I, the maximum difference between the predictions at any one
point is 2.8%. Furthermore, most the predictims are within 0.1% of one
another. This close agreement is also found in the MDNBR predictions,
which are listed in Table 4.2. The maximum difference in any MDNBR
prediction is again found to be 2.8%. Once again, the COBRA IIIC/MIT
predictions are consistently greater than t_.hose of COBRA 1IV-I. The only
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2.529
2.418

ROD

9
9
7
7
7
7
7
7
7
7

COBRA IV-I

MDNBR

3.321
3.228
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significant difference in these results is the predicted location for

the point of MDNBR. However, both rods 7 and 9 use the same power factors
and, hence, it might be expected that the point of MDNBR could have moved
from one rod to the other. Overall, the DNBR predictions of the two codes
are very similar.

With the ﬁNBR predictions in close agreement, the density predictions
are compared next. These predictions are examined to see if any
discrepancies exist. Comparisons are made at both 0.0 seconds and 9.0
seconds. Both of these comparisons show extremely good agreement, as
11lustrated in Figure L.2. While the maximum difference at any one
location is approximately 0.3%, most results agree to within 0.05%.

These results indicate that COBRA IIIC/MIT is performing quite well.

However, even though the DNBR and density calculations compare
favorably, the clad temperature predictions are different. As illustrated
in Figure 4.3, the results of the two codes agree rather well at 0.0
seconds, but differ significantly at 9.0 seconds. The good agreement at
0.0 seconds is a consequence of the fact that both codes are using the
same heat transfer correlation along most of the rod. Since no boiling
occurs, COBRA IIIC/MIT always uses the forced convection correlation.
COBRA IV-I uses the forced convection correlation until the clad
temperature exceeds 643 p (saturation temperature). After this temperature
is reached, the nucleate bolling correlation is used. However, the heat
transfer coefficients predicted by each code are nearly the same and,
consequently, the two codes agree rather well at 0.0 seconds.

On the other hand, the predictions at 9.0 seconds are significantly
different from each other over the last one third of the rod. These

differences result from the differences in heat transfer logic. Over
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the first two thirds of the channel, both codes are using the forced
convection correlation. Since the flow has been reduced relative to
steady-state, the heat transfer coefficient is lower and the clad
temperatures are higher. Once the clad temperature exceeds the fluid
saturation temperature, COBRA IV-I begins using the nucleate boiling
correlation which then maintains the clad temperature at approximately
7 °F above the saturaticn temperature. Since no boiling occurs

COBRA IIIC/NIT does not switch correlations and continues to use the
forced convection correlation. Consequently, the COBRA IIIC/MIT clad
temperatures greatly exceed those of COBRA IV-i. Once again, the
differences in heat transfer logic cause the observed discrepancies

in the clad temperature predictions.

4.,3.2 Summary

The comparisons made for this first case reveal that COBRA IIIC/MIT
and COBRA IV-I are predicting simlilar results., For example, the DNEBR
comparisons show that the codes are in good agreement in spite of the
fact that their clad temperatures differ. These latter differences,
which result from differences in the heat transfer logic, do no alter
the heat flux predictions and, therefore, the DNBR results are unaffected.
Good agreement is also found not'only among the density predictions, but .
also among the enthalpy and pressure drop predictions., Hence, except for
the clad temperature predictions, the two codes agree rather well

throughout the transient.

4,4 Case 2 Results

After completing the analysis of the first case, a second case is
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studied to further compare the two codes. This second case uses a higher
average power than does the first case, but otherwise it is identical

to the first. The use of a higher power results in boiling even in
steady-state and the DNBR predictions are very low. At the end of the
transient (ie. 9.0 seconds), qualities of up to 17% are present in

some of the channels. Hence, the higher power increases the severity

of this transient.

L.4,1 Discussion

Usingdthis second case, comparisons are again made among the various
parameters of interest. The first variable to be compared is the DNBR.
As in the first case, the DNBR predictions of the two codes are very
similar. In fact, the MDNBR predictions, which are listed in Table 4.3,
are in better agreement here than in the first case. All predictions
are within 1% of each other and the predicted location of the MDNBR is
the same for both codes. Furthermore, the DNBR predictions for rod 9
compare very well throughout the transient. As seen in Table 4.4, the
results at both 0.0 seconds and 9.0 seconds are in very good agreement
along the rod. This correspondence is found even though both boiling
and non-boiling regimes are encountered. Hence, although this transient
is rather severe, the DNBR predi;tions of the two codes compare very
well with respect to one another.

Comparisons of the density and enthalpy predictions reveal that
again the two éodes are predicting similar results. For example, the
density predictions are within 0.5% of each other at any point during
the transient. Simllarly, the enthalpy predictions of the two codes

agree to within 0.3% of one another. This good correspondence indicates
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TABIE 4.3
MNDBR VERSUS TIME DATA

RESULTS FOR CASE 2

TIME COBRA IIIC/MIT COBRA IV-I
>(sec) MDNER ROD MDNER ROD
0. 1.408 9 1.404 9
1. 1.348 9 1.347 9
2. 1,278 9 1.278 9
3. 1.210 9 1.108 9
4, ' 1,140 9 1.140 9
54 1.076 9 1.085 9
6. 1.002 7 1.007 7
7. 0.912 7 0.918 7
8. © 0.809 7 0.816 7
9. 0.706 7 0.711 7
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TABLE 4.4
DNBR COMPARISONS

RESULTS FOR CASE 2, ROD 9

t = 0,0 SECONDS t = 9,0 SECONDS

HEIGHT (in.)  COBRA IIIC/MIT COBRA IV-I  COBRA IIIC/MIT COBRA IV-I

3.0 10 10 10 10
8.9 5.907 5.895 k646 4.637
14.8 4,540 L4, 528 3.558 3.552
20.8 4,007 3.99 3.139 3.119
26.7 3.934 3.924 ‘ 3.077 3.042
32.7 . 3.930 3.920 3.050 3.009
38.6 3.901 3.891 2.998 2.956
bh,5 3.865 3.8% 2.946 2.899
50.5 3.789 3.779 2.855 2.801
56,4 3.642 3.634 2.727 2.672
62.4 3,508 34501 2.602 2. 544
68.3 3.29% 3,284 2.418 2.356
4.3 3.051 3,045 2.165 2.152
80.6 2.856 2.877 1.950 1.963
86.2 2,710 2,702 1.787 1.787
92.2 2,530 2.525 1.630 1.632
98.1 2.330 2.324 1.468 1.470
104,0 2,084 2.071 1.297 1.296
110.0 1.862 1.849 1.148 1,157
115.9 1.637 1,624 1.000 1.000
121.8 1.460 1.451 0.856 0.850
127.8 1.408 1.404 0.763 0.754

133.7 1.513 1.515 0.732 0.729
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that COBRA IIIC/MIT is performing satisfactorily.

Still, the clad temperature predictioms are very different from
each other. As seen in Figure 4.4, even the steady-state clad temperature
distributions are dissimilar. Although the distributions are similar
up to approximately 650 °F, the distributions diverge after this temperture
is reached. At this temperature, COBRA IV-I begins using the nucleate
boiling correlation and, consequently, the clad temperatures remain
constant thereafter. On the other hand, COBRA IIIC/MIT continues to use
the forced convection correlation until boiling begins. Once boliling
starts, COBRA IIIC/MIT begins using the nucleate boiling correlation
and the clad temperature decreases discontinuously which results in
the peaked behavior of these predictions. Note that the peak clad
temperature is predicted to occur just prior.to the start of boiling. N
The differences between the predictions of the two codes are apparently
caused by the differences in heat transfer logic.

As a means of verifying that the clad temperature discrepanciles are
caused by the difference in logic, COBRA IIIC/MIT was modified so that
its logic system would be similar to that in COBRA 1V-I. The steady-state
solution was calculated using this modified version and the results are
compared. As illustrated in Figure 4.5, the change in logic results
in much better agreement between COBRA IIIC/MIT and COBRA IV-I. These
results verify that the difference in heat transfer logic is responsible
for the large discrepéncies in the clad temperafure predictions,

The clad temperature predictions at 9.0 seconds exhibit behavior
similar to that found in steady-state. As seen in Figure 4.6, the
comparisons of both codes reveal that the COBRA IIIC/MIT predicts large

temperature peaks during the transient, while the COBRA IV-I results
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never exceed approximately 650 °F. As is described above, the dependence
of the COBRA IIIC/MIT heat transfer logic on boiling leads to these
temperature peaks.

Another interesting effect of the COBRA IIIC/MIT logic is the shifting
of the maximum temperature during the transient. The peak of the
temperature distribution follows the shift in the boiling front. As the
transient proceeds, boiling occurs earlier along the channel. Consequently,
the nucleate boiling correlation is used earlier and the temperature
distribution peaks earlier. This resqlt also shows the strong influence

- which boiling has on the COBRA IIIC/MIT clad temperature predictions.

4.4,2 Summary

In spite of these differences in the clad temperature predictions,
COBRA IIIC/MIT and COBRA IV-I agree rather well on most of their
predictiohs for this loss of flow tranéient. The DNBR, density, and
enthalpy predictions are all in very good agreement both in steady-state
and during the transient. Only the clad temperatures differ, but these
could be brought into better agreement by changing the COBRA IIIC/MIT
heat transfer logic, Therefore, it can be concluded that, with the
exception of its clad temperature predictions, COBRA IIIC/MI‘I‘ is

predicting very reliable results for this case.

L.,5 Case 3 Results

In order to gain additional insight into the applicability of these
two codes for loss of flow analyses, a third transient is analyzed.
This transient has typical values for the steady-state solution, but

then uses a rate of flow decrease which is much greater than that used
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in the first case. The higher loss rate makes this transient more severe
than in the first case and qualities of up to 6% are present at 8.0
seconds into the transient. Therefore, this case allows comparisons

of the two codes for both boiling and non-boiling conditions.

4.5.1 Discussion

Once again the DNBR predictions of the two codes are compared.
Although the DNBR predictions do not agree as well as they had in the
second case, the results are still in good agreement. For example,
the maximum difference in the MDNBR at any time during the transient
is approxixﬁately 2.6%. As seeri in Table 4.5, most MDNBR predictions are
within 1% of each other. The location of the MDNBR is also predicted
to be the same by both codes. In addition to these comparisons, the
DNBR predictims for rod 9 are also compared. As illusfra.ted in Table
4,6, these predictions agree rather well up to a certain axial height
at both times. For example, the predictions at 8.0 seconds are within
0.2% of one another up to 62.4 inches. After this point, the predictions
are still within 5% of one another, but the extremely good agreement is
lost. Hence, the degree of agreement between the DNBR predictions varies
along the rod. |

The larger differences in tiae DNBR predictions above 62.4 inches
at 8.0 seconds are a result of different heat flux predictions. An
examination of the heat flux predictions reveals that the COBRA IV-I
predictions are higher than those of COBRA ITIC/MIT. These higher heat
fluxes lead to the observed lower DNBR predictions. The prediction of
different heat fluxes results from different clad temperature predictions.

As 1llustrated in Figure 4.7, the clad temperature predictions at 8.0
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TABLE 4.5
MDNBR VERSUS TIME DATA

RESULTS FOR CASE 3

TIME COBRA IIIC/MIT COBRA IV-I

(sec) MDNBR ROD MDNBR ROD
0. o 3.293 9 3.286 9
1. 3.159 9 3.125 9
2. 3.005 9 2.958 9
3. 2.833 9 2.775 9
L, : 2,649 9 2,581 9
5 2.377 9 2,384 9
6. 2.135 9 2.157 9
7. 1.933 9 1.939 9
8. 1.698 9 1.731 9
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TABLE 4.6
DNBR COMPARISONS
RESULTS FOR CASE 3, ROD 9

t = 0.0 SECONDS t = 8.0 SECONIS

HEIGHT (in.)  COBRA IIIC/MIT COBRA IV-I  COBRA IIIC/MIT COBRA IV-I

3.0 10 10 10 10
8.9 10 10 7.088 7.088
14.8 8.015 8.001 5454 5.456
20.8 7.109 7.095 4,830 4,837
26.7 7.017 7.003 4,745 4,750
32,7 7.048 7.035 4.730 4.731
38.6 7.036 ?.024 4,701 4,704
Ly, s 7.014 7.003 4,667 4,669
50.5 6.918 6.906 I, 562 L. 561
564 6.695 6.685 4,392 4,394
62.4 6.495 6.486 4,239 L.240
68.3 6.144 6.134 3.989 3.857
743 5.781 5.733 3.710 3.566
80.6 5.422 5.41%4 3.475 3.319
86.2 5.157 5.147 3.260 3.098
92.2 4,885 4.879 3.055 2.89
98.1 4,538 4,531 S 2.722 2.656
104.0 4,149 4,140 2.336 2.379
110.0 3.856 3.850 2,111 2,161
115.9 3.507 3,501 1.912 1.935
121.8 3.293 3.286 1.749 1.761
127.8 3.512 3.436 1.698 1.731

133.7 4,076 3.989 ' 1.862 1.891
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seconds are significantly different from one another along the same
length where the DNBR predictions are In poorer agreement. Evidently,
these different clad temperatures, which result from the differences
in the heat transfer logic in the two codes, combine with different
" heat transfer coefficients to yield dissimilar heat flux predictions.
Therefore, the dissimilar heat transfer logic indirectly leads to the
different DNBR predictions.

| Other variables, such as the density and enthalpy, are also
compared for this third case. The density and enthalpy predictions
are found to be in good agreement during the transient. All predictions
agree to within 2% of one another and most agree even better. This
good correspondence indicates that differences in clad temperatures has
little effect on these fluid variables.

4.5.2 Summary

The comparisons of the various parameters for this third case show
that the two codes do not agree as well as they had in the first two
cases. This poorer agreement is caused by dissimilar heat flux
predictions. The clad temperature predictions are significantly different
and, as a consequer-ze, differencgs in the heat flux predictions occur.
With different heat fluxes, the DNBR predictions of the two codes show
poorer agreement. However, this poorer agreement is limited to positions
where the large discrepancies in the clad temperature predictions exist.
At other'a.xia.l locatians, the two codes égree fairly well. Hence,
although the discrepancies in the clad temperature predictions lead to
poorer agreement between the codes in certain locations, overall, the

two codes are in falrly good agreement.
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4.6 Case 4 Results

A final case was run in order to make further comparisons of
COBRA ITIC/MIT and COBRA IV-I. This case uses both a higher inlet
temperature and a higher power than does the first case. Consequently,
' bolling occurs even in steady-state and qualities of up to 19% are
present at 7.0 seconds into the transient. This transient is the most
severe case analyzed and, as with the other cases, is used to compare

the predictions of the two codes.

4.6.1 Discussion

Comparisons of the DNBR predictions reveal very good agreement
between the two codes. Both the MDNBR values and the locations of the
MDNBR are predicted to be nearly the same by each code. As seen in
Table 4.7, the MDNBR predictions differ by a maximum of 1.5%, even
though the MDNBR values are very low. The DNBR predictions for rod
9 are also in good agreement. As seen in Table 4.8, the DNBR predictions
agree to within 27 of each other at both 0.0 seconds and 7.0 seconds.
These results do not show the slight differences which are observed in
the third case. Hence, even for this severe case, the DNBR predictions
are in very good agreement.

However, as seen in Figure 4.8, the clad temperature predictions
of the two codes differ significantly. The COBRA IIIC/_MI‘I‘ predictims
exhibit peaks which are indicative of the position of the boiling
front. As the boliling front moves toward the channel inlet during the _
transient, the peak temperature also shifts toward the inlet. Again
the strong dependence of the heat transfer logic on boiling cause

these predictions to peak as they do. On the other hand, the COBRA IV-I
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TABLE 4,
MDNBR VERSUS TIME DATA

RESULTS FOR CASE &4

TIME COBRA IIIC/MIT COBRA IV-I
(sec) MDNBR ROD MDNBR ROD
0. 1,065 9 1.062 9
1. 1.024 9 1.022 9
2. 0,972 9 0.970 9
3. 0.904 7 ' 0.899 7
4, - 0.828 7 0.827 7
5. | 0.752 9 0.748 7
6. 0.677 9 0.671 7

7. 0.596 14 0.587 B
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TABLE 4.8
DNBER COMPARISONS
RESULTS FOR CASE 4, ROD 9

t = 0,0 SECONDS t = 7.0 SECONDS

HEIGHT (in.)  COBRA IIIC/MIT COBRA IV-I  COBRA IIIC/MIT COBRA IV-I

3.0 10 10 10 10
8.9 5,008 4,997 4,239 4,232
14.8 3.841 3,831 3,244 3.213
20.8 3.394 3.383 2.844 2.810
26,7 . 3.328 3.319 2.768 2.732
32.7 3.312 3.296 2.719 2.679
38.6 3.285 3.268 2.670 2.630
4.5 3.241 3.233 2.619 2.577
50.5 3.153 3.145 2.538 2.493
6.4 3.031 3.026 2.425 2.381
624 2,906 2.901 2.309 2.264
68.3 2.725 2.718 2.145 2.100
743 2,523 2,519 1.914 1.917
80.6 2,340 2.336 1.740 1.748
86.2 2.168 2.161 1.588 1.593
92.2 2,004 1.997 1.449 1.453
98.1 1.823 1.812 1.309 1.315
104.0 1.618 1,606 1.161 1.163
110.0 1.437 1.431 1.010 1.010
115.9 1.264 1.259 0.855 0.856
121.8 1.122 1.123 0.721 0.722
127.8 1.062 1.065 0.633 0.634

133.7 1.097 1.104 0.597 0,600
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predictions never exceed the fluid saturation temperature by more than
a few degiees. The use of the nucleate boiling correlation along most
of the channel prevents the clad temperature from peaking. Once again,
the dissimilarity of the heat transfer logic in the two codes results
" in the different clad temperature predictions.
Nevertheless, the density and enthalpy predictions of the two codes
are in good agreement. The density predictions are within 0.5% of
one another throughout the transient. Similarily, the enthalpy predictions
agree to within 0.1% during the transient. Apparently, the differences
in clad temperature do not significantly affect either the enthalpy or

the density predictions.

4.6.2 Summary
The comparisons made for this fourth case reveal surprisingly

good agreement between the two codes. Although this transient is very
severe, the DNBR, enthalpy, and density predictions of the two codes
compare very well to one another. Only the clad temperature predictions
show any significant differences. As long as the clad temperature is
below the fluid saturation temperature, the two codes agree rather well.
The predictions diverge above th;s temperature due to the different

heat transfer logic. Furthermore, the COBRA IIIC/MIT predictions

exhibit large peaks in the clad temperature distribution which result
from this code's dependence on bolling. In spite of these different clad
temperatﬁre predictions, the two codes still agree extremely well as

evidenced by their DNER, density, and enthalpy predictians.
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4.7 Conclusions

Four loss of flow transients are analyzed in this chapter in order
{0 assess the predictive capablilities of COBRA IIIC/MIT. These transients
represent a wide range of possible loss of flow transients. For example,
the first case represents a conventional transient while the fourth case
represents a very severe, but unrealistic transient. The second and
third cases are more severe versions of the first transient. These four
transients also produce a wide variety of fluid conditions. The first
case, which 1s the least severe, hasno boiling occur at any time during
the transient. On the other hand, the second énd fourth cases have
boiling occur in steady-state and throughout the transient. The third
case is similar to the first in that no boiling occurs in steady-state,
but bolling does occur as the transient progresses., Hence, these four
transients cover a variety of fluld conditions and possible loss of
flow transients and should constitute an envelope of possible cases.

Both COBRA IIIC/MIT and COBRA IV-I are used to analyze these
transients in order that their results might be compared. Although
the investigation of these transients is approached in a manner
normally used for DNBR analysis, the main intent of these investigatlons
is not to determine the DNBR for design purposes. Instead, these
investigatims allow the two codes to be assessed by comparing their
predictions. Since COBRA IV-I should be a better tool than COBRA IIIC/MIT,
thése . comparisons would indicate whether or not COBRA>IIIC/MIT is
performing satisfactorily. Consequently, the results from these four
transients are compared and the following four conclusions can be made.

First of all, it is found that, througzhout these comparisons. the

clad temperature predictions of the two codes are significantly different.
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These differences increase both as the power is increased and as the
transient progresses. In fact, the only time the clad temperature
predictions are similar is in steady-state for cases 1 and 3. The
differences in the heat transfer packages of the two codes lead to
the dissimilar clad temperatures. However, these differences are not
due to different heat transfer correlations being available, since both
codes have the same correlations in their heat transfer packages for the
range of interest in these transients. Rather, the reason for the
differences 1s the way in which the hgat transfer coefficients are
used. The COBRA IV-I heat transfer logic dictates that the nucleate
bolling correlation be employed once the clad temperature exceeds
the fluid saturation temperature. Alternatively, the COBRA IIIC/MIT
heat transfer logic dictates that the nucleate boiling correlation
be used only if the quality were greater than zero (ie. boiling occurs).
‘The result of using these different légic systems is that the clad
temperature predictions diverge once the fluld saturation ltemperature
is exceeded. The COBRA IIIG/MIT predictions do not appear to be
correct and, hence, it is recommended that a COBRA IV-I heat transfer
logic system be implemented in COBRA IIIC/MIT.

A second conclusion would be that, in spite of the discrepancies
in the clad temperature predictions, the DNBR predictions are in very
good agreement. This good agreement is a result of the fact that,
even though different clad temperatures are predicted, the heat flux
predictions of the two codes are very similar. Consequently, the DNBR
predictions of each code are very similar for each case. In fact, the
higher power cases (2 or 4) have better agreement than do the other

cases. The only case which is even slightly affected by the different
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clad temperature predictions is the third case. In this case, different
heat fluxes are predicted and, consequently, the DNBR predictions are
in poorer agreement. However, on the whole, the DNBR predictions of .the
two codes agree extremely well with one another.

A third conclusion would be that fluid variables such as density
and enthalpy, are predicted to be nearly the same by each code.
This good agreement between the two codes indicates that the improved
energy equation in COBRA IV-I has no significant effect on the predictions
of these varlables during the transients. Furthermore, these predictions
are very similar even though a wide range of fluid conditions are
ccnsidered-; Therefore, the COBRA IIIC/MIT density and enthalpy predictions
appear to be quite adequate, since they agree so well with the COBRA IV-I
predictions.

Finally, it can be concluded that COBRA' IIIC/MIT performs very
well for the DNBR analysis of the loss of flow transients. Based on
the comparis;ons with COBRA IV-I, it is found that the two codes predict
essentially the same DNBR results. The good correspondence of these
results proves that COBRA IIIC/MIT could predict results which are
nearly identical to those of the improved code, COBRA IV-I. Therefore,

the use of COBRA IIIC/MIT for DNBR analysis should be quite satisfactory.
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CHAPTER 5

COMPARISONS WITH EXPERIMENTAL DATA

5.1 Introduction

The ideal method for verifying the predictions of any subchannel
code is by comparison with experimental measurements. As part of this
investigation, two different sets of experimental datia are compared to the
calculated results of both COBRA IIIC/MIT and COBRA IV-I. The first data
set was obtained from incore measurements of the Maine Yankee Reactor (28).
These measurements consist of the reactor cool%nt temperatures at the core
exit. By modeling both the reactor core geometry and operating conditions
as designed and using the measured inlet temperature as input, the predicted
exit temperatures of both codes are compared to the measured values at the
same radial locations. The second data set was obtained from the isothermal
two-bundle crossflow tests performed at B & W (29). These tests measured
the axial pressure distribution and the flow distribution was calculated
based on the measured pressures., Both codes are used to model the test
apparatus and the calculated results are comparcd to the B & W data. The
results of the comparisons from both of the two data sets are discussed
below.

5.2 Maine Yankee Exit{ Temperature Comparisons

An analysis of the Maine Yankee reactor's coolant temperatures at
the core exit was performed using both COBRA IIIC/MIT and COBRA IV-I.
This analysis is used to compare the predictions of these two codes with
the incore thermocouple data. This data consists of exit temperature

measurements at various radlal locatlons throughout the core. Using this
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data, the predicted values from the two codes are compared to measured

values and the results of these comparisons are discussed below.

5.2.1 Thermocouple Locations

A total of 23 temperature measurements were taken at various radial
locatlons in the core. As can be seen in the l/h core schematic, which is
illustrated in Figure 5.1, the thermocouples are distributed throughout
the core, Specifically, there are 7 locations in the first quadrant,
6 locations in the third quadran£, and 5 locations in the second and
fourth quadrants. Each thermocouple is positioned at the exit of an
assembly and its measured value represents the assembly averaged exit
coolant tempgrature. Since these measurements are assembly averaged values,
they are well suited to be compared with assembly averaged predictions
of either COBRA IIIC/MIT or COBRA IV-I. Consequently, comparisons of these

measured values with the predictions of the two codes are performed.

5.2.2 Comparisons with COBRA IIIC/MIT

The first comparisons are made using COBRA IIIC/MIT. A 1/4 core
analysis using COBRA IIIC/MIT was performed in order to make these
comparisons. This analysis uses 62 channels with each channel representing
one assembly. Using symmetry, the exit temperature predictions for the
1/4 core can be compared with the measured values in each quadrant, thereby
producing a whole core analysis. Hence, comparisons are made with all
of the 23 measured values. |

The results of these comparisons indicate that the COBRA IIIG/MIT
predictions are very good. As illustrated in Table 5.1, the differences

between the measured and predicted values are usually very small. Out
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FIGURE 5.1

LOCATIONS OF THERMOCOUPLES
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COMPARISON BETWEEN MEASURED AND

COBRA IIIC/MIT PREDICTED EXIT TEMPERATURES

QUADRANT I QUADRANT II
Measured - Predicted Measured - Predicted
Temperature Difference Temperature Difference
Bundle (°r) Bundle

23 -2.5 1l -24.0
30 "7 . 0 3 -2 . 8
37 -14- 1 : 25 : “3 2
43 "1 . 9 L"l "9 . 6
55 -10 . 8 61 -4 [ 0
57 +2.5
61 +1.3

QUADRANT TII UADRANT IV

Measured - Predicted Measured - Predicted

Temperature Difference Temperature Difference
Bundle (°r) Bundle (°F)

10 -1.5 1 +4.2
12 -22.5 3 - =12.1
1“' '0 . 3 23 -Ll- oh‘
18 -1.7 32 -4.8
20 -0.1 B | -5.1
36 -1.9

Total Number of Measurements : = 23
Number of Predictions + 2 OF = 7
Number of Predictions + 5 °F = 16

Number of Predictions + 10 °F = 19
Number of Predictions > 10 °F = 4
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of the 23 measured values, 17 of the predicted values are within 5 °F of
thelr corresponding measured value. Another interesting observation is
that the predicted values are nearly always greater than the measured
values. This result indicates that the predictions of COBRA IIIC/MIT can
. be considered as being usually conservative., Therefore, the predicted
values of COBRA IIIC/MIT are found to agree quite satisfactorily with the

measured values.,

5.2.3 Comparisons with COBRA IV-I
Having completed the COBRA IIIC/MIT comparisons, further comparisons
are made uging COBRA IV-I. Since COBRA IV-I must use a large amount of
computer storage, only a 1/8 core analysis was performed. Even this
size problem requires 650K bytes of computer storage, while the COBRA IIIC/MIT
1/4 core case. uses only 400K bytes. However, the symmetry of the core
allows the COBRA IV-I 1/8 core analysis tobe valid for making comparisons
with the measured exit temperatures. Therefore, comparisons are made
between the 23 measured values and the corresponding predictions of COBRA IV-I.
These comparisons show that COBRA IV-I also_predicts the exit temperatures
very well., As seen in Table 5.2, the differences beiween the measured
and predicted values are essentially the same as those calculated for
the COBRA IIIC/MIT comparisons. 'This good agreement occurs because the
COBRA IIIC/hIT and COBRA IV-I predictions are usually within 0.1l °F of
one another. Furthermore, a total of 16 of the COBRA IV-I predictions
are within 5 °F of their corresponding measured value. This good
agreement between the measured and predicted values indicates that

COBRA IV-I is also’able to adequately predict the exit temperatures.



