
Computer Science and Artificial Intelligence Laboratory

Technical Report

m a s s a c h u s e t t s i n s t i t u t e o f t e c h n o l o g y, c a m b r i d g e , m a 0 213 9 u s a — w w w. c s a i l . m i t . e d u

MIT-CSAIL-TR-2006-022 March 20, 2006

Computing action equivalences for
planning under time-constraints
Natalia H. Gardiol and Leslie Pack Kaelbling

Computing action equivalences for planning

under time-constraints

Natalia H. Gardiol

MIT Computer Science and Artificial Intelligence Lab

Cambridge, MA 02139

nhg@mit.edu

Leslie Pack Kaelbling

MIT Computer Science and Artificial Intelligence Lab

Cambridge, MA 02139

lpk@mit.edu

December 31, 2005

Abstract

In order for autonomous artificial decision-makers to solve real-
istic tasks, they need to deal with the dual problems of searching
through large state and action spaces under time pressure. We study
the problem of planning in domains with lots of objects. Structured
representations of action can help provide guidance when the number
of action choices and size of the state space is large. We show how
structured representations of action effects can help us partition the
action space in to a smaller set of approximate equivalence classes.
Then, the pared-down action space can be used to identify a useful

1

subset of the state space in which to search for a solution. As com-
putational resources permit, we then allow ourselves to elaborate the
original solution. This kind of analysis allows us to collapse the action
space and permits faster planning in much larger domains than before.

1 Introduction

In many logical planning domains, the crux of finding a solution often lies in

overcoming an overwhelmingly large action space. Consider, as an illustra-

tion, the classic blocks world domain: the number of ways to make a stack

of a certain height grows exponentially with the number of blocks on the

table; and if the outcomes of actions are uncertain, this apparently simple

task becomes daunting. We want planning techniques that can deal with

large state spaces and large, stochastic action sets, since most compelling,

realistic domains have these characteristics.

One way to describe large stochastic domains compactly is to use relational

representations. Such a representation allows dynamics of the domain to

be expressed in terms of object properties rather than object identities, and,

thus, yields a much more compact representation of a domain than the equiv-

alent propositional version can.

Even planning techniques that use relational representations, however often

end up operating in a fully-ground state and action space when it comes time

to find a solution, since such spaces are conceptually much simpler to handle.

In this case, a key insight gives us leverage: often, several action instances

produce similar effects. For example, in a blocks world it often does not

matter which block is picked up first as long as a stack of blocks is produced

in the end. If it were possible to identify under what conditions actions

produce equivalent kinds of effects, the planning problem could be simplified

by considering a representative action (from each equivalence class) rather

2

than the whole action space.

This work is about taking advantage of structured, relational action represen-

tations. First, we want to identify logically similar effects in order to reduce

the effective size of the action space; second, we want to limit the state space

in which we search for policies to an informative, reachable subset.

2 Relational Envelope-based Planning

Decision-making agents are often faced with complicated problems and not

much time in which to find a solution. In such situations, the agent is bet-

ter off acting quickly – finding some reasonable solution fast – than acting

perfectly. Relational Envelope-based Planning (rebp) [11] is a planning ap-

proach designed for time-pressured decision-making problems.

rebp proceeds in two phases. First, given a planning problem, an initial

plan of action is found quickly. Knowledge about the structure of action

effects is used to eliminate potentially redundant information and focus the

search onto high-probability sequences of actions, known as an envelope of

states [7]. Second, if the agent is given additional time, it can elaborate

the original plan by considering lower-probability consequences of its action

choices. Figure 1 shows a very high-level system diagram of the main parts

of the rebp system.

rebp lets us reason with ground states and actions, which have the advantage

of conceptual simplicity, but it is designed to limit how much of the ground

state and action space is considered at a time. rebp explicitly inhabits the

space between a plan (a sequence of actions computed for a given state/goal

pair) and a policy (a mapping from all states in a space to the appropri-

ate action). This allows an agent to make a plan that hedges against the

most likely deviations from the expected course of action, without requiring

3

Figure 1: A high-level schematic of the rebp system. The input to the system is
twofold: a set of probabilistic transition schemas. and a description of the planning
problem at hand. The next process is to find an initial plan quickly. The final
process is to refine the initial plan as resources permit.

construction of a complete policy. Then, as time permits, envelope-growing

techniques [7, 11] are used to improve the partial policies incrementally.

A key step, however, is to produce the initial envelope efficiently. In our pre-

vious work [11], a useful insight was to partition the actions into equivalence

classes; then, we search only over representative actions for each equivalence

class instead of over the set of ground actions. If done properly, the resulting

reduction in branching factor results in huge planning efficiency gains.

In the previous work, we used a heuristic method to partition the actions

into classes. In this paper, we provide a formal basis for computing action

equivalence classes.

2.1 Relational representation of actions and states

We cast our planning problem in the framework of a Markov decision process

(mdp) [17]. An mdp is a tuple, M = 〈S,A,T ,R〉 where: S is a set of states;

A is a set of actions, where each action a maps a state to a distribution over

next states; R is a reward function mapping each state to a real number;

and T is a transition function mapping each state-action-state triple to a

4

probability. A solution for an mdp is a mapping from states to actions that

maximizes long-term reward. This function, π, is called a policy.

In the past, much work on finding policies for mdps considered a state to be

an atomic entity; this approach is known not to scale to large state spaces,

and much recent literature has been devoted to smarter ways of representing

problems.

In this work, we take advantage of a more compact way of representing state

transitions. Rather than viewing a state as a set of propositional features,

we think of it as a set of logical relationships between domain objects. Since

these relations can make assertions about logical variables, a single relation

may in fact represent a large number of ground propositions. This lets us

use a single logical schema to represent many ground state transitions.

We define a relational mdp (rmdp) as a tuple M ′ = 〈P ,O,Z, T ,R〉. P is a

set of logical predicates, denoting the properties and relations that can hold

among the finite set of domain objects, O. Z is the set of transition schemas

in a subset of the ppddl language1 [20]. T is a set of object types. R is a

scalar reward function.

An rmdp M ′ induces a fully-ground mdp M as follows:

States: The set of ground states S is determined by P and O. In other

words, each ground state s is an application of the domain predicates over

the domain objects; any relation that is not known to be true is assumed to

be false. We treat a ground state as a conjunction of positive and/or negative

ground terms.

Actions: The set of ground actions is determined by Z and O. A rule z

applies in a state s if its precondition can be logically unified against some

subset of the state’s ground relations. This unification yields a set of ground

1We do not consider conditional outcomes.

5

(:action pick-up-block-from

:parameters (?top - block ?bot - object)

:precondition

(and (on-top-of ?top ?bot) (not (= ?top ?bot)) (on-top-of ?top ?bot)

(forall (?b - block) (not (holding ?b)))

(forall (?b - block) (not (on-top-of ?b ?top))))

:effect (probabilistic

0.9 (and (holding ?top) (not (on-top-of ?top ?bot)))

0.1 (and (forall (?b - block)) (not (on-top-of ?b ?top))

(on-top-of ?top table))))

(:action put-down-block-on

:parameters (?top - block ?bottom - object)

:precondition

(and (not (= ?top ?bottom))

(holding ?top)

(not (holding ?bottom))

(or (= ?bottom table)

(and (on-top-of ?bottom ?any)

(forall (?b - block) (not (on-top-of ?b ?bottom))))))

:effect (and

(not (holding ?top))

(probabilistic 0.75 (on-top-of ?top ?bottom)

0.25 (on-top-of ?top table))))

Figure 2: Probabilistic relational schema for blocks-world dynamics in the PPDDL
formalism. Each rule schema contains the action name, arguments, precondition,
and a set of outcomes.

6

actions z|s, each element of which an instantiation of the rule schema over

the objects in state s.

Transition Dynamics: We assume only one rule can apply per state transi-

tion, so the distribution over next states is given compactly by the distribu-

tion over outcomes encoded in the rule schema. When a rule is applied to

a state s, the ground action a ∈ z|s maps s to an outcome which specifies

the set of changes: the set of facts that are now true because of a, add(a),

and the set of things that are no longer true because of a, del(a). However,

an outcome only describes the changes to a subset of the domain relations;

Thus, to compute the complete successor state of the ith outcome, γi(a, s),

we assume a static frame. The state relations not directly changed by a are

assumed to remain the same as in s.

Rewards: A ground state is mapped to a scalar reward according to R(s).

The original version of envelope-based planning [7] used an atomic mdp rep-

resentation. To extend envelope-based planning to relational domains, then,

we need two things. First, we need a set of probabilistic rule schemas, which

tell us the transition dynamics for a domain; and second, we need a problem

description, which tells us the states and reward. This is the structure shown

in Figure 1.

Rules may be designed by hand or obtained via learning [21]. Figure 2 shows

an example rule.

A to define a planning problem we have to specify the following elements. The

initial world state s0 is a set of ground relations that are true in the starting

state; relations that aren’t stated are assumed to be false. The goal condition

g is a logical sentence; planning terminates upon successful achievement of

the goal. The reward is specified by list of logical conditions mapping states

to a scalar reward value. If a state in the current mdp does not match a

reward condition, the default value is 0. Additionally, we must specify how

7

to consider states that are out of the envelope. In our case, we assign them

a penalty that is an estimate of the cost of having to recover from falling out

(such as having to re-plan back to the envelope, for example).

We adopt the following notational conventions. We identify each relation p by

the predicate’s name (designated name(p)) and the number and type of its ar-

guments. For example, the relation on/2 is fully specified as on(Block , Surface).

A domain element, or object, o ∈ O is uniquely identified by its name

(name(o)). The function type(o) returns the type of the object o. A type

t ∈ T has a set of more specific types, subtypes(t) (which may be empty),

and a set of more general types, supertypes(t) (also possibly empty). Each

domain element and each variable in the argument list of a relation or rule

schema must be assigned a type. A domain element o can only be substituted

for a variable v if type(o) ∈ subtypes(v). We also adopt the following short-

hand: if a ground relation p(o1, ..., on) appears in s, we say p(o1, ..., on) ∈ Ps;

if a domain object o1 appears in a relation in s, we say o ∈ Os;

2.2 Initial trajectory planning

Given a set of schemas and the problem description, the first step in envelope-

based planning is finding the initial envelope. In a relational setting, when the

underlying mdp space implied by the full instantiation of the representation is

potentially huge, a good initial envelope is crucial. It determines the quality

of the early envelope policies and sets the stage for more elaborate policies

later on.

Blum and Langford [3] describe a probabilistic extension to the Graphplan

algorithm [2], called TGraphplan (tgp), that can quickly find the shortest

straight-line plan from start to goal that satisfies a minimum probability. We

use the trajectory found by tgp to populate our initial envelope.

8

Figure 3: An illustration of the envelope-based approach to planning. The task
is to making a two-block stack in a domain with two blocks. The initial envelope
is shown (far left), followed by a step of deliberation (i.e., consideration of devi-
ations from the initial plan) (middle), and finally after envelope expansion and
computation of a new mdp policy (far right).

Initial plan construction essentially follows the tgp algorithm described by

Blum and Langford [3]. The tgp algorithm starts with the initial world

state as the first layer in the graph, a probability threshold for the plan, and

a maximum plan depth. The output of the tgp algorithm is a sequence of

actions that achieves the goal with probability higher than the threshold.

We run into difficulties, however, when the number of domain elements is

large. The relational mdp describes a large underlying mdp and when a

schema is grounded, it generates a number of actions exponential in the

number of domain objects. Large numbers of actions mean a huge branching

factor in the plan graph, which grinds tgp to a near halt. Thus, we want to

avoid considering all the actions during our plan search.

To cope with this problem, we have identified a technique called equivalence-

class sampling. We partition into equivalence classes the actions that produce

the same effects on the properties of the variables in their scope. Then, the

plan graph can be constructed by chaining forward only a sampled action

from each class. The sampled action is representative of the effects of any

action from that class. Sampling reduces the branching factor at each step

in the plan graph, so significantly larger domains can be handled.

9

2.3 Equivalence in relational domains

Before we proceed to define equivalence between objects, however, we make

the following crucial assumption:

Assumption 2.1 (Sufficiency of Object Properties). We assume a domain

object’s function is determined solely by its properties and relations to other

objects, and not by its name.2

So, for example, consider a blocks world in which the only two properties are

the relation on() and the attribute color(). Then if two blocks block14 and

block37 are both red, are both on the table, and have nothing on them, they

would be considered functionally equivalent. If block37 had another block on

top of it, however, it would not be equivalent to block14.

Intuitively, we mean to say that two objects are equivalent to each other if

they are related in the same way to other objects that are, in turn, equivalent.

Evaluating equivalence is tricky, of course, because computing whether two

objects are equivalent requires looking at the objects that they are related to;

we have to “push” through each relation an object participates in. Previous

work on object equivalence, or symmetry, has used single, unary relations as

a basis for computing similarity [8, 9, 10].

We want to study object equivalence when more complex relationships are

present. To generalize our concept of equivalence, we view a relational state

description as a graph. The nodes in the graph correspond to objects in

the domain, and the binary relations between the objects correspond to the

edges. For each pair of related nodes, we construct an edge representing

2What if we are in a setting in which a few objects’ identities are in fact necessary? One
could encode this information via supplementary properties, by adding a relation such as
block14(X) that would only be true for block14. Obviously, if identity matters for a large
number of objects, the approach described here would not be suitable.

10

Figure 4: Two blocks-world states depicted pictorially (a), and as a set of

ground relations (b). The corresponding state relation graph is constructed

by labeling each edge with the predicate’s name and each node with the

object’s type and unary properties. In (c), we see the state relation graph.

Since it is the same for both blocks-world states, they are equivalent.

the relation. In addition, nodes and edges are labeled with a string (or set

of strings). Each node is labeled with the object’s type, and each edge is

labeled with the predicate name. If an object also participates in a unary

relation, we augment its label set with that predicate’s name. 3

Definition 2.2 (State Relation Graph). A state relation graph G for a state

s is a labeled, directed graph. The set V (G) of vertices is:

V (G) = {vo|o ∈ Os}, where

∀vo. label(vo) = {type(o)} ∪ {name(p)|∃p(o) ∈ Ps}.
3At present, we consider up to binary relations. In the case of relations with more than

two arguments, we would have to consider a hypergraph representation to allow for edges
of more than two nodes — a non-trivial extension.

11

The set E(G) of edges is:

E = {(vo1 , vo2 , p)|o1, o2 ∈ Os, p(o1, o2) ∈ Ps}.

�

An isomorphism between two labeled graphs G1 and G2 is a bijective function,

Φ : V (G1) → V (G2), such that ∀v ∈ V (G), label(v) = label(Φ(v)), and

(vo1 , vo2 , p) ∈ E(G1) if and only if (Φ(vo1)Φ(vo2), p) ∈ E(G2).

Now we extend the meaning of Φ, which is in principle a mapping between

nodes, to allow us to map graphs, sentences, and actions. First, let us define

Φ(G1) = G2, the graph that results from applying Φ to all the vertices of G1:

V (G2) = {Φ(vo)|v ∈ G1}, and

E(G2) = {(Φ((vo1),Φ(vo2), p))|(vo1 , vo2 , p) ∈ G1}.

Second, we define Φ(σ1) = σ2, the sentence 0that results from applying Φ to

all the objects of ground sentence σ1:

σ2 =

p(Φ(o1), . . . ,Φ(on)), if σ1 is an n-ary relation p(o1, . . . , on), or

¬Φ(ρ), if σ1 is a negation ¬ρ, or

∨iΦ(ρi), if Φ(σ1) is a conjunction ∨i ρi, or

∧iΦ(ρi), if Φ(σ1) is a disjunction ∧i ρi, or

And finally, we extend Φ to actions. This follows easily from the above case,

since the precondition and all outcomes of an action are ground sentences.

We define Φ(a1) = a2 to refer to the re-written action that results from

applying Φ to the action a1:

precondition(a2) = Φ(precondition(a1)), and

∀i outcomei(a2) = Φ(outcomei(a1))

12

Definition 2.3 (State equivalence). Two states are equivalent, written s1 ∼
s2, if there exists an isomorphism, Φ, between the respective state relation

graphs such that Φ(Gs1) = Gs2 .

Definition 2.4 (Action Equivalence). The applications of action schema z

in states s1 and s2 yield the sets of ground actions z|s1 and z|s2 . Two ground

actions a1 ∈ z|s1 and a2 ∈ z|s2 are equivalent if and only if there exists a Φ

such that Φ(Gs1) = Gs2 and Φ(a1) = a2.

Figure 5 contains an example of computing the equivalence between pairs of

ground actions that result from applying a rule schema z in a state s.4

To show that the relations defined in Definitions 2.3 and 2.4 are equivalence

relations, we have to show that they are reflexive, symmetric, and transitive.

Lemma 2.5. Relation-graph isomorphism defines an equivalence relation on

states and actions.

Proof. First, a state s produces a unique relation graph Gs, and there always

exists the identity mapping from Gs to Gs, so we conclude s ∼ s. Next, if

s1 ∼ s2, then there exists Φ such that Φ(Gs1) = Gs2 . Since Φ is bijective,

it has an inverse, Φ−1(Gs2) = Gs1 , and so we conclude s2 ∼ s1. Finally, if

s1 ∼ s2 and s2 ∼ s3, then there exist Φ1 such that Φ1(Gs1) = Gs2 and Φ2 such

that Φ2(Gs2) = Gs3 . Thus Φ2(Φ1(Gs1)) = Gs3 , which implies s1 ∼ s3. The

argument for actions is analogous. �

Since the relation ∼ is an equivalence relation, we denote the equivalence

class of item x as [x].

Next, we see that if a logical sentence is satisfied in a state s, then it can be

satisfied in any state s̃ ∈ [s]. We must be clear about the setting: we assume

that a non-ground sentence contains no constants, and that a ground state

is a fully ground list of facts (which we can treat as a conjunction or set

4Not that in this case, the Identity mapping always exists. Since it provides no useful
information, however, it is omitted for simplicity.

13

Figure 5: In the top row of the figure, we see a state s, rule schema z, and the

set of ground actions that results from applying z in s. The middle row shows

the computation of equivalence classes: for each pair of ground actions a1

and a2, we compute whether there exists an isomorphism such that Φ(s) = s

and Φ(a1) = a2. The isomorphism Φ, at right, exists. In the bottom row of

the figure, we see the three equivalence classes that were computed.

14

of ground relations). When we say that a state entails a sentence, we are

speaking purely of syntactic entailment.

Lemma 2.6. If a sentence σ is entailed by a state s, then it is entailed by

any s̃ ∈ [s]

Proof. Let Φ(s) = s̃. If sentence σ is entailed by s, then there is some

substitution ψ for the variables in σ such that ψ(σ) is a subset of s. In other

words, s |= σ if and only if ∃ψ.ψ(σ) ⊆ s. Assume σ is entailed by s, and let

ψ(σ) ⊆ s. We know by equivalence of s and s̃ that:

Φ′(s̃) = s.

So, ψ(σ) ⊆ Φ′(s̃),

and, (Φ′)−1(ψ(σ)) ⊆ s̃.

Let Φ′′ = (Φ′)−1 ◦ ψ.
Then, Φ′′(σ) ⊆ s̃, and, thus

s̃ |= σ.

�

The next establishes the equivalence of the states produced by taking equiv-

alent ground actions in equivalent states.

Lemma 2.7. If two actions a1 ∈ z|s1 and a2 ∈ z|s2 are equivalent, then the

successor states determined by their respective outcomes are equivalent.

Proof. By definition, for a given outcome i of z, γi(a1, s1) = s1 ∪ addi(a1) \
deli(a1), so:

Φ(γi(a1, s1)) = Φ(s1 ∪ addi(a1) \ deli(a1))

= Φ(s1) ∪ Φ(addi(a1)) \ Φ(deli(a1))

= s2 ∪ addi(a2) \ deli(a2)

= γi(a2, s2)

thus, γi(a1, s1) ∼ γi(a2, s2)

�

15

In the case of deterministic actions, a solution plan is said to exist if there

is a sequence of actions that leads from the starting state to the goal. In

the case of stochastic actions, however, we have no control over the actual

outcome; we only know the distributions over outcomes. What does it mean

for a solution straight-line plan to exist in this case? Since a straight-line plan

considers only a single outcome at each step, we designate the anticipated

outcome to be the one expected by the planning procedure; usually, this is

just the most likely outcome. Thus, in this case, a plan exists if there is

a sequence of actions whose expected outcomes yield a state sequence that

leads to the goal. We accept as a goal state any state that entails the goal

conditions g.

Now we almost have all the pieces to state the main theorem. We know that

equivalent schema applications produce equivalent successor states. Now, we

must show that a sequence of schema applications can be replaced by an

equivalent sequence to produce equivalent ending states.

Definition 2.8 (Equivalent Planning Procedures). Let P be a planning

procedure such at at each state s, P selects an action a. Consider a planning

procedure P’ such that at each state s̃ ∼ s, P’ chooses an action ã ∼ a. Then

P and P’ are defined to be equivalent planning procedures.

Theorem 2.9. Let P be a complete planning procedure.5. Any planning

procedure P’ equivalent to P is also a complete planning procedure. That is,

γ(a1, . . . , an, s0) → g ⇒ γ(ã1, . . . , ãn, s0) → g

Proof. We prove the theorem by induction. First, consider the initial

step. If a1 in s0 is equivalent to ã1 in s0, then γ(a1, s0) ∼ γ(ã1, s0) (by

Lemma 2.7). Next, we need to show that if ai+1 in γ(a1, . . . , ai, s0) is equiv-

alent to ãi+1 in γ(ã1, . . . , ãi, s0), then γ(a1, . . . , ai+1, s0) ∼ γ(ã1, . . . , ãi+1, s0).

5A complete planning procedure is one which is guaranteed to find a path to the goal
if one exists.

16

Again, Lemma 2.7 guarantees that

γ(ai+1, γ(a1, . . . , ai, s0)) ∼ γ(ãi+1, γ(ã1, . . . , ãi, s0)), thus,

γ(a1, . . . , ai+1, s0)) ∼ γ(ã1, . . . , ãi+1, s0)).

Hence, γ(a1, . . . , an, s0) ∼ γ(ã1, . . . , ãn, s0),

and by Lemma 2.6, γ(ã1, . . . , ãn, s0) → g. �

Thus, any serial plan that existed before in the full action space will have an

equivalent version in the new, collapsed action space.

Planning in the reduced action space consisting of representatives from each

equivalence class preserves completeness. It does, however, have an effect on

plan parallelism. Since we are limited to only one action of each class on

each step, a planning procedure that might have used two instances of the

same class in parallel would have to serialize them.

2.4 Planning with equivalent actions in TGraphplan

Now we want to use this notion of action equivalence in the REBP planning

framework.

When we apply this definition into the TGraphplan setting, however, the

following issue arises: in each layer of the plan graph, there is no notion

of “current state.” In the Graphplan algorithm, the first level in the graph

contains the propositions corresponding to the facts in the initial state. Each

level beyond the first contains two layers: one layer for all the actions that

could possibly be enabled based on the propositions on the previous level,

and a layer for all of the possible effects of those actions. Thus, each level of

the plan graph simply contains a list of all propositions that could possibly

be true. The only information at our disposal is that of which propositions

are mutually exclusive from one another.

17

In order to partition actions into equivalence classes, we adopt the following

criterion. We define the extended state of an action to be all those propo-

sitions in the current layer that are not mutually exclusive with any of the

action’s preconditions. Thus, we group two actions together if the ground

objects in each argument list are isomorphic to each other with respect to

each action’s extended state.

Computing equivalence based on extended states will create a finer set of

equivalence classes as compared to ground states: the set of propositions that

could be possibly true is greater than or equal to the set that will actually

become true. Thus, the equivalence classes produced by this criterion will

be at least as fine as those produced by Theorem 2.9.

3 Experimental Validation

As a check, we did a small study to illustrate the computational savings

of planning with equivalence class sampling. Figures 6, 7, and 8 show these

results. The experiments were done in the ICAPS 2004 blocks-world domain,

varying the number of blocks and the number of colors. In each case, the

goal was to stack all of the blocks, and the starting state was with all blocks

on the table. The x-axis of the graphs is the time (in milliseconds) spent

planning. This was measured using a monitoring package, which measures

only the time spent in computing the plan, not just elapsed CPU time. Each

data point shows the time at which a plan graph layer was added, and the

number of actions added to that layer.

Figure 6 shows the results for the two-block domain. The correct plan in

this case is two actions: first is a pick-up action, and second is a put-down

action to create a stack with the first block on top of the second. In the case

where there is only one color, REBP is able to identify the equivalence of

18

both pick-up actions in the first step, and so it only adds one planning action

to the plan graph in that step. In the case where there are two colors, both

actions belong to different classes, so there is no difference between sampling

from the classes or using all of the actions. In each case, however, the cost

of computing the classes is higher.

In Figures 7 and 8, the number of blocks increases. With just four blocks in

the domain, the branching factor when using all actions is already such that

the computational savings of computing the action classes is significant.

Some notes: In Figure 8 it is not clear why the domain with a single color

should take the all-actions search so much longer than in the case with two

colors. This may be an artifact of the search ordering in TGraphplan. Also,

in Figures 7 and 8, the dip in the number of actions added after steps 3 and

4 (respectively) of the sampling search is due to the fact that, as the plan

graph is extended, the mutex relationships between the propositions tend to

disappear. This reduces the number of distinctions between the actions and

enables more of them to be in the same equivalence class.

4 Conclusion

Our objective, ultimately, is to plan in large domains in which there is time-

pressure to begin acting appropriately. To this end, we seek to take advantage

of an envelope-based planning framework, which explicitly considers low-

complexity plans first, and higher-complexity plans as time permits. The

difficulty of envelope-based approaches, however, is always this: what is the

best way to populate the initial envelope?

If our domain is represented relationally, then it makes sense to leverage

the fast classical planning techniques for finding straight-line plans, such as

Graphplan. However, when our domains have many objects in them (which

19

Figure 6: Planning with equivalence-class sampling vs. with all actions in

domains with two blocks and one color (top), and two colors (bottom).

20

Figure 7: Planning with equivalence-class sampling vs. with all actions in

domains with three blocks and one color (top), and two colors (bottom).

21

Figure 8: Planning with equivalence-class sampling vs. with all actions in

domains with four blocks and one color (top), and two colors (bottom).

22

is precisely the setting we want to consider), the number of ground action

instantiations creates an crippling branching factor for Graphplan and de-

scendent algorithms. They are unable to find the straight-line plan we need

in order to create an initial envelope.

Thus, for envelope-based approaches to scale, it is crucial to find a way to

prune out action instantiations that do not achieve qualitatively different

outcomes.

There is a host of preceding approaches that attempt to identify symmetries

in the problem to collapse actions together [8, 9, 10]. Unfortunately, in

the existing work in this area there is a rather weak notion of what makes

objects equivalent. These notions rely primarily on unary relations, and they

are hard to reconcile with a relational domain in which relations have more

than one argument.

This is the first work that we know of that explicitly attempts to define what

it means for planning operators to be equivalent in the presence of complex

relational structure. This is work is an initial attempt at formalizing such a

definition and to apply it within the context of envelope-based planning.

4.1 Related Work

Techniques for planning in large state spaces need to employ some way of

restricting the search space. There are a few main ways that this is done in

the literature.

First, one can use a heuristic to guide search. This group includes heuris-

tic search methods [1, 16, 4] in the context of mdps. Heuristic planning

approaches seek to avoid the evaluation of a whole, potentially large, state

space by using a heuristic estimate. However, computing a good heuristic

can often be rather expensive, and it may not always be obvious how to

23

choose a good heuristic. Furthermore, these approaches are agnostic on the

problem of potentially large action spaces, which is impossible to ignore for

relational domains.

Next, one can seek to identify symmetries in the problem structure to col-

lapse actions together. This group includes work in the context of constraint

satisfaction and probabilistic STRIPS planning [8, 9, 10]. Unfortunately, in

the existing work in this area the notion of what makes objects equivalent

relies primarily on unary properties; thus, the contributions are difficult to

extend to relational domain in which relations have more than one argument.

More recently, there have been a number of approaches that learn from small,

concrete, examples and ramp up. In the setting of relational mdps, the first

set of approaches seeks to learn a generalizable value function [15, 14] The

general strategy is to solve one problem instance, compute value function that

will generalize to larger instances, and directly tackle the next instance. The

complementary approach [18] employs a similar strategy, but in the space

of policies rather than value functions. The difference with our work is that

these compute solutions over the entire rmdp space, whereas our approach

explicitly attempts to solve only a subset of it.

Finally, one can analyze the transition dynamics collapse together states

that behave the same. This set includes techniques that model mdps in

which certain groups of states are grouped together and treated as an atomic,

abstract state [5, 12, 6, 13]. This work is clearly related to ours, but important

here is the notion of actions being equivalent in all states to achieve a reduced

version of the whole domain. By contrast, our work seeks to dynamically

compute action equivalence given the current state and task, i.e., to locally

collapse states/actions for the purposes of forward planning.

24

References

[1] A. G. Barto, S. J. Bradtke, and S. P. Singh. Learning to act using

real-time dynamic programming. Artificial Intelligence, 72(1), 1995.

[2] Avrim L. Blum and Merrick L. Furst. Fast plannning through planning

graph analysis. Artificial Intelligence, 90:281–300, 1997.

[3] Avrim L. Blum and John C. Langford. Probabilistic planning in the

graphplan framework. In 5th European Conference on Planning, 1999.

[4] Blai Bonet and Hector Geffner. Labeled RTDP: Improving the conver-

gence of real-time dynamic programming. In ICAPS-03, 2003.

[5] Thomas Dean and Robert Givan. Model minimization in markov deci-

sion processes. In AAAI, 1997.

[6] Thomas Dean, Robert Givan, and Sonia Leach. Model reduction tech-

niques for computing approximately optimal solutions for markov deci-

sion processes. In UAI, 1997.

[7] Thomas Dean, Leslie Pack Kaelbling, Jak Kirman, and Ann Nichol-

son. Planning under time constraints in stochastic domains. Artificial

Intelligence, 76, 1995.

[8] T. Ellman. Abstraction via approximate symmetry. In Proceedings of

the 13th International Joint Conference on Artificial Intelligence, 1993.

[9] Maria Fox and Derek Long. The detection and exploitation of symme-

try in planning problems. In 16th International Joint Conference on

Artificial Intelligence, 1999.

[10] Maria Fox and Derek Long. Extending the exploitation of symmetries

in planning. In AIPS, 2002.

25

[11] Natalia H. Gardiol and Leslie P. Kaelbling. Envelope-based planning

in relational MDPs. In Advances in Neural Information Processing 16

(NIPS-2003), Vancouver, 2004.

[12] Robert Givan and Thomas Dean. Model minimization, regression, and

propositional strips planning. In 15th IJCAI, 1997.

[13] Robert Givan, Tom Dean, and Matthew Greig. Equivalence notions and

model minimization in markov decision processes. Artificial Intelligence,

147:163–223, 2003.

[14] Carlos Guestrin. Planning Under Uncertainty in Complex Structured

Environments. PhD thesis, Stanford University, 2003.

[15] Carlos Guestrin, Daphne Koller, Chris Gearhart, and Neal Kanodia.

Generalizing plans to new environments in relational MDPs. In Inter-

national Joint Conference on Artificial Intelligence (IJCAI 2003), 2003.

[16] Eric Hansen and Shlomo Zilberstein. LAO*: A heuristic search algo-

rithm that finds solutions with loops. Artificial Intelligence, 2001.

[17] M. Puterman. Markov decision processes: discrete stochastic dynamic

programming. John Wiley & Sons, 1994.

[18] SungWook Yoon, Alan Fern, and Robert Givan. Inductive policy selec-

tion for first-order MDPs. In 18th International Conference on Uncer-

tainty in Artificial Intelligence, 2002.

[19] H. Younes and M. Littman. PPDDL1.0: An extension to pddl for ex-

pressing planning domains with probabilistic effects. In In Proceedings of

the 14th International Conference on Automated Planning and Schedul-

ing, 2003.

[20] H. Younes and M. Littman. PPDDL1.0: An extension to PDDL for

expressing planning domains with probabilistic effects. Technical Report

CMU-CS-04-167, Carnegie Mellon University, 2004.

26

[21] Luke Zettlemoyer, Hanna Pasula, and Leslie Pack Kaelbling. Learning

planning rules in noisy stochastic worlds. In Proceedings of the Twentieth

National Conference on Artificial Intelligence (AAAI-05), 2005.

27

