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Abstract
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1. Introduction

Let M be an nxn symmetric positive semi-definite matrix, q be an element of A n

(the n-dimensional Euclidean space), and c be an element of [O,oo]n. Consider the

following problem of minimizing a convex quadratic function over a box:

Minimize f(x) = (x, Mx)/2 + (q, x) (P)

subject to 0 < xi < ci, i = 1, ... ,n.

In our notation, all vectors are column vectors, (-,.) denotes the usual Euclidean inner

product, and, for any vector x, x i denotes its i-th coordinate. Notice that we allow for the

possibility c i = oo for some i. [Our results in fact hold for general box constraints (not

restricted to the non-negative orthant), but for simplicity we will not consider this general

case here.]

The problem (P) is an important optimization problem, with numerous applications

to linear/quadratic programming [BeT89], [Man77], [MaD87], [LiP87] and to boundary
value problems [CoG78], [CGS78], [DeT84]. In the special case where ci = for all i, it

reduces to the well-known symmetric linear complementarity problem.

We make the following standing assumption on (P):

Assumption A. f is bounded from below on the feasible set X = [0,cl] x ... x [0,cn].

Since f is convex quadratic and X is a polyhedral set, it follows from a standard result in

quadratic programming (e.g. [Eav7 1], [FrW57]) that (P) has a finite optimal value and the

set of optimal solutions for (P), denoted by X*, is nonempty. However, because M is

only positive semi-definite, X* may be unbounded.

From the Kuhn-Tucker conditions for (P) it is easily seen that an x belongs to X* if
and only if the orthogonal projection of x - Vf(x) onto the feasible set X is x itself, i.e.

x = [x-(Mx+q)]+, (1.1)

where [y]+ denotes the orthogonal projection of y onto X. Now, let us write M as
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M = B+C, (1.2)

for some nxn matrices B and C. In the terminology of numerical analysis [OrR70], such a
pair (B,C) is called a splitting of M. If in addition B-C is positive definite (not necessarily

symmetric), then (B,C) is called a regular splitting of M (cf. [LiP87]).

Suppose that, instead of solving the nonlinear equation (1.1) directly, we fix a
solution estimate xe X and solve the following approximation to (1.1)

y = [y-(By+Cx+q)]+, (1.3)

to obtain a solution y. Then we set x to y and repeat the procedure. We formalize this
procedure with the following iterative scheme: Let (B,C) be a regular splitting of M.
Define a corresponding point-to-point mapping lAB:X--X by (cf. (1.3))

AB(X) = { yeSn y = [ y-(By + Cx + q) ]+ }, V xEX. (1.4)

We shall show in Section 2 that A B is well-defined (see Lemma 2 (a)). Notice that an x
satisfies (1.1) if and only if x = 3AB(x). Consider the following algorithm for solving (P):

Matrix Splitting Algorithm: Choose an x°e X. Generate a
sequence of vectors {x°,xl,... } in X by the formula

xr+l = AB(xr), r = 0, 1, .... (1.5)

In order for the algorithm (1.4)-(1.5) to be practical, the splitting (B,C) is chosen such that
Eq. (1.3) is easily solvable. We will discuss such choices in Section 5.

Consider the special case of the symmetric linear complementarity problem. The
first matrix splitting method for solving this problem is the cyclic coordinate descent
method of Hildreth [Hi157]. This method is simple, uses little storage, can exploit
problem sparsity, and is practical for solving problems on a large scale. The method of
Hildreth was subsequently extended by Cryer [Cry71] to a (point) SOR method, which in
turn was extended by Cottle, Golub and Sacher [CGS78] and Cottle and Pang [CoP82] to
block SOR methods. Cottle and Gohee [CoG78] further extended the Cottle-Golub-
Sacher method to box constraints. An extension of Cryer's method along a different
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direction was proposed by Mangasarian [Man77], which is also closely related to a

gradient projection algorithm of Aganagic [Aga78]. [Applications of Mangasarian's

method to solving strictly convex quadratic programs and linear programs are discussed in

[Man84] and [MaD87]. Parallel implementation of the method is discussed in [MaD87].]

Pang [Pan82] showed that the above methods (with the possible exception of the block

SOR methods) can be viewed as special cases of the matrix splitting algorithm (1.4)-(1.5).

Pang then proceeded to give an extensive analysis of this algorithm [Pan82], [Pan84],

[Pan86]. Yet, despite their long history and practical advantages, convergence of these

iterative methods remained largely unresolved. [A summary of the current knowledge is

given in [LiP87; §2-3]. See [BeT89; Chap. 3] for discussions on gradient projection

algorithms.] In particular, none of the above methods has been shown to be convergent

(in the sense that the iterates converge to an optimal solution) if the optimal solution is not

unique. Convergence typically requires additional assumptions on the problem, all of

which lead to the compactness of the solution set X*, in which case the proof becomes

rather routine (i.e., checking that each limit point is an optimal solution). In the absence of

any such assumption, it was only known that the gradient of the iterates converge and that

each limit point of the iterates, if it exists, is an optimal solution. The method of Cottle and

Pang [CoP82] does generate a limit point, but this method includes, in addition to the

standard block SOR iteration, a projection step which ensures the iterates to stay bounded

and, moreover, it is applicable only to problems with a network structure. It is the aim of

this paper to resolve this fundamental question of convergence by showing that the above

methods are indeed convergent without making any additional assumption on the problem.

In fact, we prove a more general result that, if the splitting is regular, then the

corresponding matrix splitting algorithm (1.4)-(1.5) is well-defined and convergent, and

the same conclusion holds for certain SOR extensions of the algorithm. [To the best of

our knowledge, the only other matrix splitting algorithm that is known to be convergent in

the same strong sense is one considered in Tseng [Tse89].] Our proof is of some interest

in itself as it uses a number of (new) contraction properties of regular splitting and gives a

detailed analysis of the trajectory of the iterates near the boundary of the feasible set X.

We remark that even for the simplest instance of the matrix splitting algorithm
(1.4)-(1.5), such as the cyclic coordinate descent method, convergence is very difficult to

establish when the cost function has unbounded level sets. The only other nontrivial

problem having unbounded level sets in the cost function, and for which the cyclic

coordinate descent method is known to be convergent in our strong sense, is a certain dual

problem arising in nonlinear network optimization [BHT87].
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This paper proceeds as follows: In Section 2 we derive a number of properties of

the solutions of (P) and of regular splitting. In Section 3 we use these properties to prove

that, when the splitting is regular, the iterates generated by the algorithm (1.4)-(1.5)

converge to an optimal solution of (P). In Section 4 we propose SOR extensions of this

algorithm. In Section 5 we apply the above results to a number of known methods.

In our notation, superscript T will denote transpose and 11.11, I.1,oo will denote,

respectively, the L2-norm and the LO-norm in some Euclidean space. If A is a square

matrix, IIAII will denote the matrix norm of A induced by the vector norm 11-11, i.e. IIAII =

maxllxll= 1 IIAxll. For any kxm matrix A, we will denote by Ai the i-th row of A and, for

any nonempty IC { 1,...,k) and JC { ,...,m), by AI the submatrix of A obtained by

removing all rows i of A such that ix I, and by Aij the submatrix of A I obtained by

removing all columns j of A such that jo J. We will also denote by Span(A) the space

spanned by the columns of A. Analogously, for any k-vector x and any nonempty subset
JC { 1,...,k }, we denote by xj the vector with components xi, is J. For any finite set J, we

denote by Card(J) the cardinality of J. Finally, for any JC { 1,...,n}, we denote by J the

complement of J with respect to { 1,...,n }.
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2. Characterization of Optimal Solutions and Regular Splittings

In this section we derive various properties of the elements of X* and the mapping
AB given by regular splittings (B,C) of M. These properties will be used in the following
section to prove convergence of the algorithm (1.4)-(1.5).

The first result states that Vf is invariant over the solution set X*.

Lemma 1. There exists a d*E 91n such that Mx* + q = d* for all x*EX*.

Proof. It is simple algebra to verify that, for any xE 9tn and ye 91n ,

f(y) - f(x) = IIM1/2(y-x)112/2 + (y-x, Mx + q).

Hence if both x and y belong to X*, so that f(y) = f(x) and (y-x, Mx + q) = 0, then
M'/2(y-x) = 0, or equivalently, My = Mx. Q.E.D.

The next result shows that, if (B,C) is a regular splitting of M, then AB is a well-
defined point-to-point mapping and possesses a certain descent property.

Lemma 2. Let (B,C) be a regular splitting of M. Then the following hold:

(a) AB:X-->X is a well-defined point-to-point mapping.
(b) For any xc X,

f(y) - f(x) < (y - x, (C - B)(y - x))/2,

where y = AB(X).

Proof. We first prove part (a). Since B - C is positive definite, it follows from 2B = M
+ (B - C) (cf. M = B + C) and the positive semi-definite property of M that B is positive
definite. Hence, by a well-known result from variational inequality [BeT89, pp. 271],
[KiS80, §2], we have that, for any xE X, the nonlinear equation

y = [y-(By+Cx+q)]+,
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has a unique solution y. This proves part (a).

Now we prove part (b). It can be seen by using M = B + C that, for any x and y in
9i n,

f(y)-f(x) = (y-x,By+Cx+q)+(y-x, (C-B)(y-x))/2.

On the other hand, we see from (1.4) that y = AB(x) if and only if ye X and

Biy + Cix+qi > 0 = Yi = 0,

Biy+Cix+qi < 0 y Yi = ci.

Hence if in addition xe X (so that 0 < x < c), then (y - x, By + Cx + q)) < 0. Q.E.D.

[The results of Lemma 2 are quite well-known (e.g. [LiP87]). The proof of part (b) is

based on one given in Lemma 4.1 of [Pan84].]

It can be seen that if the box constraints xe X are removed, then, for any splitting
(B,C) of M, y = AB(x) if and only if By + Cx + q = 0, or equivalently (assuming that B is

invertible)

y = -B-l(Cx + q) = (I - B-'M)x - B-lq.

A key property of regular splitting is that the corresponding iteration matrix I - B-1M has

its spectral radius strictly less than one over a certain subspace:

Lemma 3. Let Q be an mxm symmetric positive semi-definite matrix and let (B,C) be a

regular splitting of Q. Then B is positive definite and the following hold:

(a) The spectral radius of I - QB- 1restricted to Span(Q) is strictly less than 1, i.e. there

exist pe (0,1) and z > 0 such that

11(I - QB-l)kzll < z (p)kllzll, V k 1, V ze Span(Q).
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(b) The spectral radius of I - B-1Q is less than or equal to 1, i.e. there exists A > 1 such

that

1(I - B-lQ)kzll < AIIzl, V k 1, V ZE 9n.

Proof. Since B - C is positive definite, it follows from 2B = Q + (B - C) (cf. Q = B +
C) and the positive semi-definite property of Q that B is positive definite. For any y0e 91n,
consider the sequence of vectors {y0, yl,... } given by the recursion

Byr+l +Cyr = 0. (2.1)

Since B is positive definite, this sequence is well defined. By using (2.1) and an argument
analogous to the proof of Lemma 2, we obtain that

g(yr+l) = g(yr) + (yr+l - yr, (C - B)(yr+l - yr))/2,

where we define g:Sn_49i to be the function g(y) = (y, Qy)/2. Since Q is positive semi-

definite, g(y) is non-negative for all y. Hence the above equation (and using the positive
definite property of B - C) implies yr+ _ yr -, 0. Let dr = Qyr. Then from (2.1) and C =
Q - B we have

dr = B(yr _ yr+l), (2.2)

Therefore dr -- 0 and (multiplying both sides of (2.2) by QB- 1)

dr+l = (I-QB-1)dr, Vr.

This in turn implies that, for any doe Span(Q),

(I- QB-l)rd -. > 0 as r - oo,

and part (a) then follows from the following fact proven in Appendix A:
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Fact 1. For any mxm matrix A and any linear subspace V of 91m, if (A)kz -- 0 as k --

oo for all zeV, then there exist pE (0,1) and r > 0 such that II(A)kzll _< (p)kllzll for all k > 1

and all ze V.

Since {dr) converges to zero at a geometric rate. By (2.2) and the fact that B is

invertible, {yr+l - yr} also converges to zero at a geometric rate. Hence {yr} satisfies the

Cauchy criterion for convergence and therefore is convergent. Since (cf.(2.2)) yr+' = yr-

B-l d for all r, it follows that

yr+1 = (I-B-1Q)yr, V r.

Since {yr} is convergent for any y0e 91n, this implies that all eigenvalues of I - B-1 Q lie

either inside or on the unit circle. This proves part (b). Q.E.D.

Remark 1. Since I - B-1Q = B- (I - QB- )B, the two matrices I - B-1Q and I - QB- 1

are similar and therefore have identical eigenvalues. Hence part (b) of Lemma 3 implies

that the eigenvalues of I - QB are also within the unit circle.

Remark 2. The matrix I - coQB also has the contraction properties described in part

(a) of Lemma 3, provided that 0 < co < 1 (see Appendix A). This fact will be used in

Section 4 where we introduce under/over-relaxation to the mapping 0AB.

As an immediate consequence of Lemma 3, we have that the coordinate descent

method for solving the unconstrained version of (P) (i.e. find an x satisfying Mx + q = 0)

yr+l = (I -(E + L)-lM)yr (E + L)- q,

where E and L denote respectively the diagonal and the strictly lower triangular part of M,

converges at a geometric rate (assuming that M has positive diagonal entries and that the

problem has a solution). This result improves on one given in [Lue73; pp. 159] for the

special case where M is symmetric positive definite.

Lemma 3 in turn implies the following facts:
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Lemma 4. Let (B,C) be a regular splitting of M. Then the following hold:

(a) For any nonempty J { l,...,n}, there exist PJE (0,1) and lJ > O such that

11(I - MJJ(BJJ)- )kz I < 'J (pj)kIIII, V k z 1, V ze Span(MJJ).

(b) There exists a A > 1 such that, for any nonempty JC { 1,....,n},

II(I- (BJJ) MJJ) zll < AIIZII, V k > 1, V z.

Proof. Since B - C is positive definite, Bjj - CJJ is positive definite. Parts (a) and (b)

then follow immediately from, respectively, parts (a) and (b) of Lemma 3. Q.E.D.

Let I* denote the set of indices i for which the i-th coordinate of any element of X*
is not necessarilly fixed at either 0 or its upper bound ci, i.e.,

I* = i I di = =0

Then, for each x*e X*, we have MI*X + qI* = 0 (cf. Lemma 1), so that

qI* e Span(MI*).

The submatrix of M indexed by I* has a number of interesting properties which we show
below:

Lemma 5. For any JC I, Span(Mj)C_ Span(Mjj) and qj E Span(MJJ).

Proof. For each iz J, consider the restricted problem

Minimize (x, Mx)
subject to xi = 1, xj = 0, V jo J such that j , i.
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This problem is clearly feasible and, since M is positive semi-definite, its optimal value is

finite. It follows that this problem has an optimal solution, and from its Kuhn-Tucker

conditions we have MJi e Span(MjJ). Since the choice of ie J was arbitrary, we have

Span(MJj)c Span(Mjj). This, together with the fact qj E Span(Mj) (since qI* E

Span(MI*) and JC I*), implies qJ Span(Mjj). Q.E.D.

3. A General Convergence Theorem

Let {xr} be a sequence of iterates generated by the algorithm (1.4)-(1.5), i.e.,

xr+l = AB(xr), r = 0, 1, ... ,

where (B,C) is some regular splitting of M. By Lemma 2 (a), {xr} is well-defined. We

will show that {xr) converges to an element of X*.

To motivate our proof, note from Lemma 2 (b) that, for all r,

f(xr+l) < f(xr) - (xr+l - xr, (B - C)(xr+l - xr))/2
< f(xr) - yllxr+l - xr112/2, (3.1)

where y denotes the modulus of the smallest eigenvalue of B - C. Upon summing this

inequality over all r and using the fact that f(xr) is bounded from below for all r (cf.

Assumption A), we obtain

Ixr+l -xrll2 < oo. (3.2)
r=O

Hence xr+l - xr - 0, which together with

xr+l = [ xr+l - (Bxr+l + Cxr + q) ]+ (3.3)

(cf. xr+l = AB(xr)), the Lipschitz continuity of [.]+, and the fact B + C = M, establishes

the following:



Lemma 6.
(a) xr+l - xr - 0.

(b) xr - [ xr - Mxr- q ]+ - 0.

Hence any limit point x' of {xr} satisfies x~ = [ x~ - Mx' - q ]+ and is therefore in X*.

This result is quite well-known (e.g., [Pan86], [LiP87]) and, as we just saw, is relatively

easy to prove. The difficulty lies in showing that { xr} indeed has a limit point. This is a

highly nontrivial task to which the remainder of this section will be devoted.

Remark 3. Eq. (3.2) gives an estimate of the rate at which xr+l - xr -* 0, but technically

speaking, it is not enough for us to claim the convergence of {xr} since it does not prevent

xr+l - xr to decrease like l/r, in which case xr -- o. Intuitively, it seems unlikely that

such a sequence of iterates can be generated by the matrix splitting algorithm, but to show

this rigorously is very difficult, as indicated by the complexity of the proof given below.

For each xe 9 n, let ¢(x) denote the distance from x to X*, i.e.

¢(x) = min x*X*IIx - x*II.

The next lemma, which shows that {Mxr} converges and that {xr} approaches X*,

follows as a direct consequence of Lemma 6:

Lemma 7.
(a) Mxr + q - d*.

(b) 4(xr) - 0.

Proof. We first prove part (a). [This result is known when c i = o for all i [Pan86;

Theorem 3.1]. The following proof is simpler than that given in [Pan86] and holds for the

general case where some of the ci's may be finite.] Since M is symmetric positive semi-

definite, M 1/2 exists. Let x* be an element of X*. By a direct calculation we have that, for

all r2 0,

f(xr)- f(x*) = IIM1/ 2(xr-x*)11 2/2 + (xr-x*, Mx* + q) (3.4)
_~ .-. ~rlt/ r *s,.,'2,-
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where the inequality follows from the optimality conditions for x*. Since f(xr) is

monotonically decreasing with r (cf. (3.1)) we see that {M1/2xr) is bounded. Let z* be
any limit point of {M'/2xr}, let do = M /2z + q, and let {Mlt2xr)reR be any subsequence

of {Ml/2xr I converging to zoo. Then IMxr + q}r R - do, so that Lemma 6 (b) yields

{Xi}R ~ 0, if di > 0,

{Xi}reR 4 Ci, if d i < 0.

Since

(X* - xr, MXr + q) = (x* - xr Mxr - M/z oo) + (X* -Xr, d)

= (M1/2x* _ M1/2xr' M/2xr _ zo)

+ di>o (Xi* - Xir)d + di<0 (Xi* - xr)di, V r,

we obtain, upon passing into the limit as r -4 o, re R, that

lirn inf{(x-x, Mxr + q)) > E di>O Xi di + di<O (xi* - ci)di,
r--oo;rE R

> 0. (3.5)

where the second inequality follows from the fact 0 < x _< c. On the other hand, we have

from (3.4) that

f(x*) - f(xr) = IIMl/2 r _ Ml/2x*112/2 + (x*-r, Mxr + q), V r.

Since 0 > f(x*) - f(xr) for all r, by passing into the limit as r -4 c, r R, and using (3.5),

we obtain that

0 > Ilz - M1/2x*112/2.

Hence z' = Ml/2x*, so that {MXr} rR -4 Mx*. Since the choice of the limit point z o was

arbitrary, this holds for all convergent subsequences of {Mxr} and part (a) is proven.
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We now prove part (b). Since Mxr + q -4 Mx* + q = d* (cf. part (a) and Lemma

1), we have from Lemma 6 (b) that

xir -4 0, if di* > 0, (3.6a)

Xir - ci, if di* < 0. (3.6b)

Let dr = Mxr + q. Then we also have

dr --- d. (3.6c)

Now, each xr is a solution of the linear system

Mx + q = dr, 0 < x < c, xi = xir if di* > 0, xi = x r if di* < 0,

while it can be seen from Lemma 1 and (1.1) that X* is the set of solutions of the linear

system

My+q = d*, O<y<c, Yi=O ifdi* >, Yi=ci ifdi*<0.

Hence, by a well-known Lipschitz continuity property of the solutions of linear systems
([CGST86], [MaS87], [Rob73]) there exists, for each r, a yre X* satisfying

lxr - yrIl < 0(lidr - d*11 + E di*>O Xir + I di <O (Ci - xir)),

where 0 is some constant that depends on M only. Since yr' X*, this in turn implies O(xr)

< 0(lldr - d*11 + E di >0 Xir + di*<O (Ci - xir)). By (3.6a)-(3.6c), O(xr) -- 0.

Q.E.D.

Notice that the proof of part (a) also shows that f(xr) -- f(x*).

Under an additional regularity assumption on (P), we can show by using Lemmas

6 and 7 that {xr} converges at a geometric rate.

Proposition 1. Suppose that (P) satisfies the strong complementaritv condition, i.e.,
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d i 0 if and only if 0< Xi < ci Vx*EX*.

Then each sequence of iterates {xr) generated by the matrix splitting algorithm (1.4)-(1.5)

converges to an element of X* at a geometric rate.

Proof. Since Mxr + q -- d* (cf. Lemma 7 (a)) and xr - xr-1 - 0 (cf. Lemma 6 (a)), we

have that Bxr + Cxr- 1 + q = B(xr - xr- l) + Mxr + q - d*. This together with the fact xr =

[ xr - (Bxr + Cxr-l + q) ]+ (cf. (3.3)) implies that there exists an integer s such that, for all

r > s,

xir = 0, V i such that di > 0, xir = ci, V i such that di < 0. (37)

On the other hand, for each iE I1 (i.e. di* = 0), we have from the strong complementarity

condition that 0 < xi* < ci for all x * X . Since X* is a closed polyhedral set, this

implies that there exists an e > 0 such that e < xi < ci - £ for all x* X* and all ie I*.

Since the distance between xr and X* tends to 0 (cf. Lemma 7 (b)), this in turn implies that

there exists an integer t > s such that 0 < xj < c i for all iE I* and all r > t, so that (since xr
= [ xr - (Bxr + Cxr-l + q) ]+ for all r)

BI* xr + CI*x' 1 + qI* = 0, V r t.

Consider any x*E X*. Then, by Lemma 1, Mx* + q = d*, which together with the fact M
= B + C and di* 0 for all i I* yields BI*x* + C*x + qI* = 0. Subtracting this

equation from the above equation yields BI*(xr-x ) + Ci*(xr--x ) = 0 or, equivalently,

BI*Zr = -CI*Zr1l for all r > t, where we let zr = xr-x*. From (3.7) and the fact xi = 0 (xi

= ci) if di* > 0 (di* < 0) we also have that zir = O0 for all is I* and all r > t. Hence

BI*I*Z = -CI I*z r2 t,

or, equivalently (using CI* i = MI*- BI*I* and multiplying both sides by (Bi*i*)-1,

ZI = (I - (BI*I*) 1 M )I*I)Z V r > t.

Upon multiplying both sides by MI*I, we obtain
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MI*I*Z[ = (I- MI*I*(BI*I*)- ) MI*I*Z I* V r > t

so that, by Lemma 4 (a), {MII*Zzir ) converges to zero at a geometric rate. Since zlr

-zr*1 = -(BI I*)- MI*I* Zr;1 for all r > t (cf. equation above), this shows that { zjr is a
Cauchy sequence and that it converges at a geometric rate. Since xr = zr + x* for all r and
zir = 0 for all i I* and all r > t, this in turn shows that (xr converges at a geometric rate
and, by Lemma 7 (b), the point to which {xr} converges is an element of X*. Q.E.D.

Now let us map out the directions for the most intricate part of our proof. We
know that {xr} approaches X*, but we do not know if it is bounded. From the proof of
Proposition 1 we see that if, for every i, either (i) {xir}) stays fixed to one of the two
boundary points 0 and c i or (ii) {xir} stays strictly between 0 and ci, then {xr ) converges
at a geometric rate. Hence the difficulty lies with those coordinates of xr that bounce
around the boundary of the feasible set, possibly causing one of the remaining coordinates
to sail off to infinity. To resolve this difficulty, we will show that these coordinates
perturb the movement of the remaining coordinates only (additively) by their own
maximum deviation from the boundary. This fact, shown in Lemma 8 below, is based on
the contraction property of the algorithmic mapping for the unconstrained case (cf. Lemma
4) and Lemma 5. Then those coordinates of xr that start out far from the boundary will
stay far from the boundary (cf. geometric convergence for the unconstrained case), unless
one of the remaining coordinates also moves far from the boundary, so that, eventually,
each coordinate of xr either stays close to the boundary or stays far from the boundary.
Those coordinates that stay close to the boundary are clearly bounded; those coordinates
that stay far from the boundary are also bounded because perturbation by the other
coordinates is bounded and, within themselves, the convergence is geometric (since they
are effectively unconstrained). We now proceed with the actual proof.

Let

13 = maxJCI* Card(J) [ (jlII(Bjj) -Il IIMJJII/(l-pj)+A+ 1) II(Bjj) -lBII

I II1(BR d It IIMII/1_>1-p I
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The following lemma, based on Lemmas 1, 4 and 5, shows that those coordinates of xr

that stay away from zero are influenced by the remaining coordinates only through the
distance, scaled by J3, of these remaining coordinates from zero. This result allows us to

separate the effect of these two sets of coordinates on each other.

Lemma 8 (Coordinate Separation). Consider any JC I*. If for some two integers s > t
> 0 we have 0 < xir < ci for all ie J and all r = t+l,t+2,...,s, then, for anyx X,

IIx s -xJ II < AIIxJ t - 1* l + maXrE{t, ...,s)} II -x

Proof. The claim clearly holds if s = t (since A > 1). Suppose that s > t. Since xir > 0

for all is J and all r = t+l,...,s, it follows from the fact xr+l = [xr+l - (Bxr+l + Cxr + q)]+

for all r (cf. (3.3)) that

BXr+l + C~xr+q 1 = 0,BJx + qj 0, r = t,...,s-1,

or equivalently (using MJ = BJ + CJ),

BJ(xr+l - xr) + Mjxr+ q = 0, r=t,...,s-.

Since JC I*, we also have (using Lemma 1 and the definition of I*)

Mjx + q = 0.

Combining the above two equalities and multiplying by (BJJ)- yields

(BjJ)- 'B(r+1 - Xr) + (BJJ)-MJ(Xr- x*) = 0, r = t,...,s-1.

This in turn implies, after some rearrangement of terms, that
r+ , - - -1 r -1 r *

x r+l - X* = (I- (Bjj) Mjj)(xj - XJ) - (BJJ) MJj(XY - XJ )

- (BJJ) -Bj(xir+l -xri), r = t,...,s-1.

By successively applying the above recursion for r = t, ... , s-i, we obtain
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h-1 h-k- 
XJs - XJ = (G)(X t-XJ - I (G)h-k-l(Bj)-1MjT(x x t+k)

k=O
h-1

- (G) h-k-(B)BJJ)-TB( x t+k +l - xt+k), (3.8)
k=0

where we denote G = I - (BJJ)-Mjj and h = s - t. Now we estimate the last sum in Eq.

(3.8). Let yk = (Bjj)-IBj(X t+k_-X*). Then the last sum in Eq. (3.8)
h-1 hk

can be rewritten as I (G) h- - l (y + l _ yk) By rearranging the terms within the
k=O

summation sign, we obtain an alternative form for this sum:

h (G)h-k-l (yk+l_ yk) = h (G)hklyk+_ (G)h h-k-ly
k=O k=O k=O

h-1 h-Ih-1 h-k-i k h h h-k-i k
= X(G)- (G) yh_(GhlyO _ (G)h-k-ly
k=l k=l

h-1 (h-k_ 1

= h(G)h (G - I)y k +yh- (G)h-ly 0

k=l

Since G - I = -(B)-MJJ, this together with (3.8) implies that

,h , h-1 (G)h-k- _
Xs - Xj = (G) (xjt _- XJ ) - (Gh-k-B j)-1M (xt+k- X

k=0
h-1 ( )h-k_ 1

+ - (G)h-ki( 0 .)-B M k + h (G)
k=l

Let H = I- MJ (Bjj) . Then G = (Bj) HBj, so that (G)h-k-1 = (Bj) (H)h B
for all k. This together with the above equation yields

XJ - XJ (G)h(XJt -XJ )- , (Bjj)- (H) Mjk1 (x t+k _x )
k=0

+ I (gjj)_l(H)h-k- Mjjyk + yh - (G)h-l y0.
k=l
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Also, since JC I, we have from Lemma 4 that II(H) h-k-ll (J) h-k-zI for any

Zr Span(Mjj) and II(G) hzIll < Alzl for any z. This, together with the above equation and the
fact Span(Mjy)C_ Span(MjJ) (cf. Lemma 5), implies

h- 1 h-k-
!xl s- xJll < II(G) (xt--x;)ll + II(Bj)- 11 il(H)h-k-M 4(Xyt+k-X[*)1l

k=0
h-1 h-k-1

+ E II(Bjj) 11 i(H) k-LMjjykIl + Iyhll + II(G)h-lyOll
k=l

h-i -i (PJ~h-k-1k A< AIIxJ - x J*11 + I II(BJJ) lllMJ (pJII ) I IM(X t xy*)11

+ I I I (BPJ) II 'E (P{) 1} IIykil + ItYhjl + AIIYOIIk=0-h-1 h-k-

< AUXIIx- x *1 + 11(B )-11 IIlMJII1 - (PJ) max S-.} IIx _ -XJ+ II(BBJJ)IIlJ (p)h - llIMmykll + lyhll + 0lly°llk=l (1 1

h-1< AUx/t -x ll - ZJl I(Bjj) 11 IIMjll C (p-PJ) max { .lxyr-_x. IIh-1

+ 1: II(Bj)11 M1 11lll - pj)-lmaxkE {1...h-i) Ilykl + Ijyh ll + Ally0Il.

k -il t+k_ (B--I {t . IIx - Xt*e

Since yk = (Bjj) -IB(xt+k-Xy*), we also have Ilykll < II(B1j)-7BjiJ Ilxjt+k-xJ* 11and the

lemma is proven. Q.E.D.

By using Lemmas 6, 7 and 8, we can now prove our main result that {xr)
converges. The basic idea of the proof is to show that those coordinates of xr that are
bounded sufficiently far away from zero are essentially unaffected by the rest. This then
allows us to treat these coordinates as if they are unconstrained in sign and by using the
contraction property of AB on them, we conclude convergence for these coordinates. We

define the following scalars for the subsequent analysis:

60 = 1,
cYk = A+3+f3+(f+l)Ck- 1, k= l,2, ... ,n.

[Notice that ck > 1 for all k and is monotonically increasing with k.]
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* X* A
Lemma 9. For any 6 > 0, there exists an x EX and an r > 0 such that

jllx-xr *ll. < 0 + tj, r r> . (3.9)

Proof. To simplify the proof, we will assume that ci = oo for all i. The case where ci <
oo for some i can be handled by making minor modifications to the proof. Furthermore,
by using Lemmas 6 (a) and 7 (b), we will without loss of generality assume that

O(xr) < 6, V r, (3.10a)
llxr+l-xrll _< 6, V r. (3.10b)

Since ci = oo for all i, we have that xi* = 0 for all ix I* and all x*E X, and it immediately

follows from (3.10a) that

Xr < , V r, V iI*. (3.11)

We first have the following lemma which states that Lemma 9 holds in the special
case where the coordinates that start near the boundary of X remain near the boundary
(also assuming that the remaining coordinates start far from the boundary).

Lemma 10. Fix any ke { 1,...,n }. If for some nonempty JC I* and some two integers
t' > t we have

xit > CFk 6, V ic J, (3.12a)
xir < yk-l, V i J, V r = t, t+l, ... , t'-l, (3.12b)

then the following hold:

(a) xiT > Ck- 8, V it J.

(b) There exists an x*E X such that
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Proof. Let x* be any element of X* satisfying (xt) = IIxt - x*il. Then we have from

(3.10a) that

lIxt- x ll < 6. (3.13)

Also we have from (3.12b) that, for all ie J, xi < xit + lxt - x*ll < C6k_-1 + IIxt - x*ll,
which together with (3.13) implies 0 < xi <• k_16/ + 6. Since 0 < xir < Ck-_l for r = t,

t+l, ... , t'-1 (cf. (3.12b)), this in turn implies that

Ixir -xii < Ckl/56+ 6 V iJ, r =t, t+l, ... , t'-l. (3.14)

Next we prove by induction that, for r = t, t+l, ... , t'-l,

xi > OJk-15 + , V iE J. (3.15)

Eq. (3.15) clearly holds for r = t (cf. (3.12a) and ck >2 k-1 + 1). Suppose that (3.15)

holds for r = t, t+l, ... , s, for some se {t,t+l,...,t'-2). We will prove that it also holds
for r = s+l. Since 0 < xir < c i for all ie J and all r = t+l, ... , s (cf. (3.15) and ci = oo for
all i), we have from Lemma 8 that

Ilxj --XJ* 1l < AIIXJ t- xJ*ll + maXrE{t X.ll

which together with (3.13) and (3.14) implies

IlxJS- xJ*l < A5 + f3 (COk-15 + 6)- (3.16)

Then we have that, for any ic J,

xi s + l x it - - IIX t - xS+111

2 Xit - (I11xt - xj*ll + Ilxj - xjSl + Ixjs - xJS+111)

> Ck 68- (6 + IIxJ* - xJSII + 6 )

>2 kS - (6 + (a6 + Ck-16 + 38) + 6 )

= kl1q+ 6,
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where the strict inequality follows from Eqs. (3.10b), (3.12a) and (3.13). This completes
the induction and proves that (3.15) holds forr = t, t+l, ... , t'-l. Since (3.15) holds forr
= t, t+l, ... , t'-l, it can be seen from the argument above that (3.16) holds for s = t, t+l,

... , t'-l, which combined with (3.14) (and using the facts P > 1 and lizil, < lizil for all z)

yields

Ilxr-x *ll. < (A + Pak-l + P), V r = t, t+l, ... , t'-l.

Since A + [ok-1 + 3 < ok, this proves part (b). From (3.15) with r = t'-l, we have that,

for all is J,

xit >_ x i - - lixe- l _ xt'll

> Gk-16 + 6 - IIxt - 1 - xfill.

Since IIxt -lI - xt'11 < 6 (cf. (3.10b)), this proves part (a). Q.E.D.

The following lemma extends Lemma 10 by removing the assumption that the coordinates
that start near the boundary of X remain near the boundary (while still assuming that the
remaining coordinates start far from the boundary):

Lemma 11. Fix any ke { 1,...,n}. If for some JC I* with Card(J) > Card(I*) - k + 1

and some integer t we have

xit > 0k5, V ic J,
xit < Vk-18l ' i J,

then there exists an x*E X* and a 2> t satisfying

Ix r -x*ll < GkO, Vr>. (3.17)

Proof. We prove by induction on k. By Lemma 10 (b), we see that the claim holds for k
= 1. [Since in this case J = I*, by (3.11), the condition (3.12b) is satisfied for all t' > t.
Then Lemma 10 (b) yields that there exists an x eX* such that Ilxr - x*llo < ok6, for all r

> t.] Suppose that the claim holds for k = 1, 2, ... , h-l, for some h 2 2. We will show
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that it also holds for k = h. Fix any JC I* with Card(J) > Card(I*) - h + 1 and any integer

t for which

Xit > ih8, V ie J, (3.18a)

Xit < ah-18, V ie J. (3.18b)

We consider two cases:

(i) xir < Chh-l6, for all ix J and all r > t.

Since xit > Ch6, for all is J (cf. (3.18a)), it immediately follows from Lemma 10

(b) that there exists an x*e X* such that

llxr - x*ll, < /h6, V r > t.

This shows that (3.17) holds for k = h (with i = t and with the above choice of x*).

(ii) There exists an r > t and an ix J such that xi r > h-_15-

Let

t' = Smallest r (r > t) such that xr > > lh-_l for some ix J.

Then, by (3.18b), xir < 5hh-15 for all ix J and all r = t, t+l, ... , t'-l. Since xit >

Yh68 , for all is J (cf. (3.18a)), Lemma 10 (a) yields that

xit > Vh-16, V ieJ. (3.19)

Consider the h+l1 intervals

[0,(056], (A0A,{16], (G18(G26], -- , ((Th-2/5,(h-16], ((Yh_-l, o)-

We have from (3.19) and the fact xit > Gh-16 for some ie J that the (h+l)-st interval

contains at least Card(J) + 1 elements from the set {xl t',xj, ..., nt. Also, (3.11)

and co = 1 imply that the first interval contains at least n - Card(I*) elements from

the same set. Since Card(J) > Card(I*) - h + 1, this leaves at most h - 2 elements
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from that set to go into the remaining h - 1 intervals. Hence, by the Pigeon Hole
principle, there must exist some je { 1,2,..., h-l }) such that

xit ' (o(j_1, j5], v' i.

Let h' be the largest j for which this occurs. Then the interval (ah' 6,oo) contains at

least Card(J) + h - h' elements from the set {xl t , x2
t ', ... , xn' }. Let J' be the index

set for these elements, i.e., J' = ( i I xit > Ch 5 ). Then we have

xi t > (h' 6 , V i J',

xit' < ah'15, V if J',

and

Card(J') > Card(J) + h - h'
> Card(I*) + 1 - h'.

Moreover, by (3.11), we have J'C I*. Since h' < h, we can apply our induction
hypothesis to h', J' and t' to conclude that there exists an x*E X* and a t 2 t'

satisfying

!Ixr - X*11* < (hG, V r 2 t.

Since oh' < ah, this shows that (3.17) holds for k = h (with the given t and x*).

This then completes the induction on k and proves the lemma. Q.E.D.

Now we use Lemma 11 to prove our claim. Fix any integer r 2 1. Consider the
two possible cases: either (i) xir < oCn8 for all i and all r > i, or (ii) there exists a t >2 and

an i such that Xit > noS. In case (i), let x* be an element of X* such that q(xr) = Ilx7 - x*11.

Then we have from (3.10a) that, for all i,

0 < xi* < Xi+ IIx -x*11 -< Cn + +6.

Since 0 < xir < cn5, for all i and all r >2 , this implies that
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Ilxr - x*11. < Ons + r, r 2 r.

Hence (3.9) holds with r = r and with the above choice of x . Now consider case (ii). In
this case, by the Pigeon Hole principle, one of the following n intervals

(0068, 16], (1, 2628], ... ((n-16, Gn6]

does not contain any element from {x1t, x2 t, ... , xnt), i.e., there exists jE { 1,2,...,n such

that

Xi t X (oj_15, j5], V i.

Choose k to be the largest such j and let J = {i I xit > Ck5 }. Then Card(J) > n - k + 1

and

Xi > Oki, V iE J,

Xit < Ok-1 l, V ii J.

Moreover, by (3.11) and ok > 1, we see that JC I*. Hence the assumptions of Lemma 11
is satisfied by k, J and t, and it follows from Lemma 11 that there exists an x*E X* and a

> t satisfying

Ilxr - x*ll* < crk6, Vr>[.

Since ak < on, this shows that (3.9) holds (with the given x and with r = t). Q.E.D.

The following main convergence result then follows as a corollary of Lemma 9.

Theorem 1. The matrix splitting algorithm (1.4)-(1.5) is well-defined and it generates

a sequence of iterates {xr} converging to an element of X*.

Proof. The algorithm is well-defined by Lemma 2 (a). Now, for any e > 0, Lemma 9
shows that there exists an E X and an such that

shows that there exists an x E X* and an r > 0 such that



25

A
Ilxr - x* ll, < E/2, V r > r.

Hence, for all rl , r 2 > r, there holds

I1xr - xr211*_ < Ilx rl - x*li + IIx* - xr 211 ,

< e/2+E/2 = e.

This implies that {xr} is a Cauchy sequence so that it converges. By Lemma 7 (b), it
converges to an element of X*. Q.E.D.

4. SOR Matrix Splitting Algorithms

In this section we consider three extensions of the basic algorithm (1.4)-(1.5).
Firstly we consider one that adds an under/over-relaxation parameter to the algorithm.
This extension is motivated by the block SOR methods of Cottle, Golub and Sacher
[CGS78], of Cottle and Goheen [CoG78], and of Cottle and Pang [CoP82] (which
introduced a mechanism for over-relaxation) and the methods of Mangasarian [Man77] and
of Aganagic [Aga78] (which introduced a mechanism for underrelaxation). Secondly we
consider a Gauss-Seidel extension of the basic algorithm. In this algorithm, only a subset
of the coordinates are relaxed at each iteration while the other coordinates are held fixed.
Lastly, we consider an SOR extension of the basic algorithm which allows non-cyclic
order of relaxation. This third algorithm contains the previous two as special cases but is
shown to be convergent only in a certain weak sense.

We first describe the under/over-relaxation extension. In the algorithm, we choose
a splitting (B,C) of M and a relaxation parameter Ci satisfying

O < co, B - C + (1-o)M is positive definite. (4.1a)

We also choose a second relaxation parameter co satisfying

0 < Xo < min{l,o}, (4. 1b)
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and an nxn positive diagonal matrix D. Then, for any chosen x°e X, we generate a

sequence of vectors {x°,xl,... ) in X by the formula

xr+ l = (1-or)x r + (or'r (4.2a)

where xr is a solution of the equation

y = [ y - D(By + Cxr + q) ]+, (4.2b)

and or is any scalar in [0,Ci] such that xr+l given by (4.2a) is in X.

Notice that if (B,C) is a regular splitting and

0 < C < 1 + l/lQ-1/2MQ-1 /211,

where Q denotes the symmetric part of B - C, i.e. Q = ((B - C) + (B - C)T)/2, then

(4.1a) is satisfied. Hence, the above algorithm contains as a special case the algorithm

(1.4)-(1.5) (let c0 = co = 1 and D be the nxn identity matrix). The relaxation parameter Or

introduced in (4.2a) is useful mainly when o r > 1 (i.e., over-relaxation [OrR70]), which

in some cases can significantly improve the convergence. Nonetheless, the case of under-

relaxation, i.e. C r < 1, is also of some practical interest since, in this case, it is only

required that B - C be positive definite on the null space of M (instead of on the entire

space) in order for (4.1a) to hold. The purpose for introducing the matrix D in (4.2b) is,

from the point of view of convergence, largely cosmetic as the presence of D does not

change the sequence of iterates generated. [To see this, note that since D is a diagonal

matrix, y is a solution of (4.2b) if and only if ye X and yi = 0 (yi = ci) for all i such that

Dii(BiY + Cixr + qi) > 0 (< 0). Since Dii > 0 for all i, this set of conditions is equivalent

to yE X and yi = 0 (yi = ci) for all i such that Biy + Cixr + qi > 0 (< 0), which in turn is

equivalent to y = [ y - (By + Cxr + q) ]+ or, by (1.4), y = AB(xr).] However, by

choosing D to match the structure of B and C, we can in some cases simplify the form of

the iteration (see Section 5 for examples). Note that since the sequence of iterates

generated is independent of D, we can also allow D to be time-varying.

By modifying the argument used in Sections 2 and 3, we can show that the

algorithm (4.1a)-(4.2b) is convergent:
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Theorem 2. For any splitting (B,C) of M and any scalars c, & satisfying (4.1a)-

(4.lb), any nxn positive diagonal matrix D and any x°OX, the sequence of iterates {xr}

generated by (4.2a)-(4.2b) is well defined and converges to an element of X*.

Proof (sketch). Since 2B = (B - C + (1-c)M) + 6M (cf. M = B + C) and CoM is

positive semi-definite, we have from (4.la) that B is positive definite. The proof of
Lemma 2 (a) then shows that AB is a well-defined point-to-point mapping. For r =

0,1,..., let xr be a solution of (4.2b). Then from the preceding discussion we have that

x = aB(X), r = 0,1,...,

so that {xr) is well-defined. Since xr+l = (l-cr)xr + corxr for all r, {xr) is well-defined.

Now we show that ({xr}) is convergent. The proof of this is very similar to that of

Theorem 1, with Lemmas 4, 6 and 8 replaced by more general versions of themselves that

take into account the relaxation parameters. Firstly we have the following extension of

Lemma 4:

Lemma 12. For any splitting (B,C) of M and any scalars co, co satisfying (4.1 a)-

(4.lb), the following hold:

(a) For any nonempty Jc { 1,...,n}, there exist PJE (0,1) and 'J > O such that

k

II n (I - hMjs(Bj)-l)zI _< j (pj)kllzll, V k > 1, V zE Span(MJI),
h=l

for all sequences of scalars { 1, 02, ... } in the interval [Co,c].

(b) There exists a A > 0 such that, for any nonempty Jc { 1,...,n },

k

II (I - 0h(Bjj)-lMj)zII < AIzI, V k > 1, V z,
h=l

for all sequences of scalars {0l , 02, ... } in the interval [Ž,i] .
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Proof. This proof is similar to that of Lemmas 3 and 4. Fix any nonempty JC { 1,...,n }

and consider the iteration

yr+1 = (1 - i)yr- o(Bjj) CJY = (I - Co(BJJ) MJj)Yr, r 1,....

Let g:9 Car d(J -) 9Z denote the function g(y) = (y, Mjjy)/2 . By using MJJ = BJJ + CJJ, we

find that

g(yr+l) = g(yr) - _ ( -yr+y ((l-C)MJJ + Bjj - CJJ)(Yr+l-y )).
2 Co

Since (1-c5 )Mjj + Bj - CJj is positive definite and g(y) is non-negative for all y, this

implies that yr+l - yr -_ 0. Then, by an argument analogous to that used in the proof of

Lemma 3, we obtain that (I - )MJJ(Bjj) ) z - 0 as k -- oo for all ze Span(MJJ). Part

(a) then follows from the following fact proven in Appendix A (letting A = I -

CoMJJ(Bjj) -1, = Span(Mjj), and 6 = fl//)

Fact 2. For any mxm matrix A and any linear subspace V of 91m, if (A)kz --- 0 as k --
oo for all zt V, then, for each 6E (0,1], there exist p e (0,1) and c, > 0 such that

k

!1I 7 (( 1-0h)I + ohA) zll _< T (p)k Iizll, V k > 1, V ze V,
h=l

for all sequences of scalars { 01,0 2,... in the interval [5,1].

Part (b) then follows from an argument analogous to that used in the proof of Lemma 3.

Q.E.D.

By using Lemma 12, we obtain the following extension of Lemma 8:

Lemma 13. Consider any JC I*. If for some two integers s > t > 0 we have 0 < xir <

c i for all iE J and all r = t+l,t+2,...,s, then, for any x*E X*,
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IIxS - xj *11 < AIIxJ t - xJ11 + 3 maxrE {t ...,) IIXr-xJ1,

where A is as in Lemma 12 and [ is a constant that depends on M, B, c and c only.

Proof. Since xr = AB(xr) for all r, by an argument analogous to that used in the proof of
Lemma 8, we obtain that

A r * - 1 r *-1 r *rxAr xi = (I - (BJJ) MJs)(XJ - x*) - (BJJ) Mjj(xr -x )
A r- x),- (Bjj) Bj (xr - xr), r= t,... ,s-1.

Since xr+ l - xr = )r(X - xr) for all r (cf. (4.2a)), this in turn implies that

il- * (I - or(B ) -1M)(x j - Xj*) -- o(Br(BJ) MJ(XT -- X*)

- (Bjj)-lBj (xr+ l - xy r), r = t,.. ,s-1.

By successively applying the above recursion for r = t, ... , s-l, we obtain

- x = (Gh-l).. (G)(xt - x*)

h-1 h- 1 k+1
-- (G -l)(Gk+ )o+k(B )-M jI(xt+k(B - x )
k=O
h-1 h1..

(Gh-l (Gk+l)(yk+l _ yk),
k=O

where we denote Gk = I - ot+k(BJJ)- MJJ yk = (B) -l (xt+ ), and h = s - t. By

rearranging terms within the last sum as in the proof of Lemma 8, we obtain the alternative

expression:

xjs -- xj = (Gh-). (G°)(xt - xJ*)

h-i h-1 k+l) kBjj)-lMj(xyt+k -Y, (G ) (G )t+k(B J J
k=O
h-1 h1 k+ 

_- (Gh-) (G k +l)(Gk_ I)yk + yh - (G )h-...(G)y0.
k=l
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Let Hk = I- COt+kMJJ(Bij)-1 . Then Gk = (Bjj)-I(Hk)Bjj, so that (Gh- )---(G k+) =

(BJ)- 1 (H') .. (Hk+)Bjj for all k. This together with the above equation and the fact

G k - I = -cot+k(B) -lMjj yields

x _xJ (G)- )... (G)(xt - X*)
h-1 k+

- co t+k(Bjj)-(H (H (H )MJT(Xyt+k - X*)
k=O
h-1 t+- h-i

+ co t+k(B j)-l(Hh.. (H )Mjjyk + yh _ (G )- (G )y° .
k=l

The remainder of the proof then follows from Lemma 12 (using the fact oŽ < or •< C for all

r) and an argument analogous to that used in the proof of Lemma 8. Q.E.D.

We now show that Lemma 6 holds. Fix any integer r O. Let x = xr, y = xr, and
o = cr. By using the equation M = B + C, we find that

f((1-co)x + coy) - f(x) = - (y - x, ((1-c)M + B - C)(y - x))

+ co(y - x, By + Cx + q).

Since (y - x, By + Cx + q) O0 (cf. y = [ y - (By + Cx + q) ]+), this together with 0 < co

< o and the positive semi-definite property of M yields

f((l-co)x + coy) - f(x) < -- (y - x, ((l-co)M + B - C)(y - x))

< - (y - x, ((1-Co)M + B - C)(y - x)).

Since (1-c5)M + B - C is positive definite (cf. (4. la)) and co co > 0, this implies

f((l-o)x + coy) - f(x) < -yly - x112, for some postive constant y. Hence f(xr+ l ) - f(xr) <

-yllxr - rll for all r. Since f is bounded from below, this implies xr - xr -- O and xr - [ xr

- Mxr - q ]+ -- 0. Since Ilxr+l - xrlI < Illxr - xrll (cf. (4.2a) and 0 < or < CO), we also

have xr+l - xr -- 0, so that Lemma 6 holds. Q.E.D.
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Since Lemma 7 depends only on Lemma 6, it follows that Lemma 7 also holds.
Now, we have from (4.2a) that, for all r, xr+l - r = (l-l/cr)(xr+l - xr), so that

Iixr+l - xrll < max{ 1,1/c0}llx r+l - xrll.

Hence, by redefining the scalar o0 to be 1 + max 1,1/0 with the other scalars ol, ...,c
recursively defined as before, the proof of Lemma 10 (with Lemma 8 replaced by Lemma
13) still goes through. Lemmas 9 and 11 then follow from Lemmas 6, 7 and 10.
Q.E.D.

Remark 4. We can also use different relaxation parameters for different coordinates
provided that the relaxation parameters are fixed. More precisely, let us consider the
following under-relaxed algorithm:

1 T r 1
Xr+ l = I ... Ixr + I ... IAB(xr), r = 0, 1,...

L 1-o un J L Cn J

where x°e X, 1, ... , n are fixed scalars in the interval (0,1], and (B,C) is a splitting of

M for which the matrix

1
2B 1 ... I -M

L 1/kr J

is positive definite. In the special case where l = ... = con, this algorithm reduces to the

algorithm (4.1a)-(4.2b) using fixed under-relaxation. By suitably modifying the proof of
Theorem 2, it can be shown that this under-relaxed algorithm is convergent.

Now we consider a Gauss-Seidel type algorithm. Let ( 1,...,n} be partitioned into

m nonempty, mutually disjoint subsets I l , 12, ... , Im (i.e., Ii n Ij = 0 if i # j and I1 u ...

u Im = { 1,...,n)). For j = 1,...,m, we choose a regular splitting (BIjIj'CIjIj) of MIjij and

define a corresponding mapping Aj:X--X by
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OAj(x) = { ye9 I YIj = [ Yj -(BIjIjYI + CIjIjXIj + M1 Ijijxj + qlj) ], (4.3)

YTj = XI ),+ J

where [.]7 denotes the orthogonal projection onto the box X [O,ci]. By Lemma 2 (a), Aj
where j iEIj

is a well-defined point-to-point mapping. The mapping A.j has the effect of applying a

matrix splitting iteration to the subset of coordinates indexed by Ij, while the other

coordinates are held fixed. The Gauss-Seidel matrix splitting (GS-MS) algorithm
generates a sequence of iterates by applying cyclically the mappings A l , ... , A,:

GS-MS Algorithm. Choose an x0°X. Generate a

sequence of vectors {x°,x',...) in X by the formula

xr+ l = (A.mo 'oA. 2oA.1)(xr), r = 0, .... (4.4)

It is easily seen that in the special case where m = 1, this algorithm reduces to the
algorithm (4.1a)-(4.2b) with relaxation parameters co = Co = 1.

By extending the proof of Theorem 2, we can show that the GS-MS algorithm is

convergent:

Theorem 3. The sequence of iterates generated by the GS-MS algorithm (4.3)-(4.4)

converges to an element of X*.

Proof (sketch). Similar to the proof of Theorem 2, it suffices to show that Lemmas 6

and 8 hold.

We first show that Lemma 6 holds. Since the Ij's are disjoint, we have from (4.4)

that

xr+l = ( ... r+l X r),
Ij i 1, Ij-1 Im

Therefore, by (4.3), each r+1l satisfies

=[~I - (B IjI, Cjx+ J M Ij + CIjjXj Ijl+ qIj)]j' (4.5)Ik Ikj j iii Ik-j >j k
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so that Lemma 2 (b) yields

f(Xr+l ,... ,Xj+1 X r ... x r) - f(xI 1 ... r+l Xr,...X r)
Xl j IIj+ +' 1 X Ij_1 " r

< -(X r+lXr( -X )(xl r+l _ Xr))/2
Ij Ij

Since BIjI - CIHI is positive definite, this implies that there exists a y > 0 such that

f(xr+1 X+IX+1 r <X ) < f(XIl r +l , Xr '--'XI)T x - ll 2,
I Ii Ij+ 1 " .. 'x IM 11 '... ''"' IjIl '11 '"X- - - -

for all r and all j. By applying this inequality recursively for all j, we obtain that

m
f(xr+1) < f(xr ) - jY Ix r+1- x11r, 2, V r.

j=1 J 

m
Since f is bounded from below, this shows that , I I'+ 1 - X1 r12 -- 0 or, equivalently,

j=1 J I

xr+1 - xr 0 o. Now, from (4.5) we have that

IIxi+i -[ Xr+l - (Ml Xr+l + q1 ) ]Il

= II[xf1 - (Bxj r+l + xjM x r++ M x + jM x1kX + )]
-- lIj Ijiji k<j IjIk Ik- 1 k>j jk I

Ij Ij IJ j

<{ I-BIj(j(XI' - x1 ) + ; EM (3i - r) j = ,m,
ii Ii j kXj j IJk 1k Ik'

where the inequality follows from the nonexpansive property of the projection mapping
[.] j, i.e. Il[y]j - [x]j+ll < Ily - xll for all x, y. Since xr+l - xr -- 0, the above inequality

shows that xr+l - [ xr+l - (Mxr+1 + q) ]+ -- 0.

Now we show that Lemma 8 still holds (possibly with a different 3). Consider

any JC I* and suppose that for some two integers s > t > 0 we have 0 < xr < c i for all ie J
A A ̂

and all r = t+l,t+2,...,s. Let Jj = JrlIj and Jj = JnIj. Then Ij = JjuJj for all j, and we

have from (4.5) that, for any re {t,...,s-1 },
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O = BJIX r+l + CJjjXj + MJjkIk M + + kjM XIT qj

Jj~jJi Ji:1 J k<j JjJk Jk k>j k 
+ BX r + Cl Mj X+1 + M+ qjj, j = 1,...,m.+ l ,jyMJjlkXfrk+l + + MJjlkX/k' + x ...

k<j jk k k>j jk 

By rewriting the last four sums as Bjjj(xl - xgr) + M g(x - xg) +
i J ij l J k<j kk 

m
X MJ k xk r, we can express the above set of equations using a single matrix splitting:
k=l j k ak

r r 

IgJJl I ...J1J 1Jm-1 MJ1Jm

I : I I : I
O M ... M B xr+l + C M ... MJjJ. JjJj-l JjJJ J Cjj j Mjjjj+i JjJm J

Mml1. MJmJm~lBjm~m I CJmJm 1]

r

I B
+M|i . MjMj_1 U% I(xff1-xF) + M.x.T + qj,

Bi Ii

I Jm 1 . Mjmlm_ m B m
LJ

or equivalently,

0 = Fx r+ + Gx r+ H(xjr+l - xr) + M x +qj,

for suitably defined matrices F and H, with G = MJJ - F. Fix any x E X*. By subtracting

the identity 0 = Mjx* + qJ (cf. JC I* and Lemma 1) from the above equation and

rearranging terms, we obtain
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· F) -1 rrjL * -1 * -
x l -xj = (Ir - (F) Ml)(xj - xj ) - (F) M(x x) -(F)-IH(x- r+l - xr),

r = t,...,s-1.

Now the matrix difference F - G can be seen to have the form L + E - LT, where L is
certain strictly (block) lower triangular part of Mjj and E is a block diagonal matrix whose

j-th diagonal block is BJj - CJJ. Therefore (z, (F - G)z) = (z, Ez) > 0 for all z • 0,

where the strict inequality follows from the positive definite property of the BJ Jj - Cj j 's.

This shows that (F,G) is a regular splitting of MJJ. The rest of the proof then proceeds as

in the proof of Lemma 8. Q.E.D.

Remark 5. We can also introduce under/over-relaxation in the GS-MS algorithm. More
precisely, for each je { 1,...,m}, let (B I3 ,CIji) be a splitting of MIjI and oj be a scalar in

(0,1] satisfying

BIjj - CIjIj + (l-oj)MIjj is positive definite.

We define Aj as in (4.3) (but with the above splitting) and let Rj:X--X be the under-
relaxation mapping corresponding to Aj:

%j(x) = (+-c j)x+C jAj(x).

Then the under-relaxed GS-MS algorithm comprises applications of the mappings R1, ..,

Rm in a cyclical manner:

xr+l = (,mo .o. 2ol,)(xr), r = 0, 1, ....

In the special case where Col = -... = m = 1, the above algorithm reduces to the GS-MS

algorithm. We can furthermore introduce an over-relaxation mechanism at the end of each
iteration:

xr+l = (1-cOr)xr + cr(m'o..O 2o°1)(xr) r = 0, 1, ...,

where each cr is chosen such that xr+le X and co < cor _< 6. The relaxation parameters
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to and X are chosen such that 0 < La < min( 1,)} and K + (1l-i)M is positive definite,
where K is the nxn block diagonal matrix whose diagonal blocks comprise the positive

definite matrices (Bjl - CjIj + (1-j)Mi i)/ j, j = 1,.. .,m. We can also introduce a

positive diagonal matrix in the definition of tj as in (4.2b). In the special case where m =
1 and il = 1, this latter algorithm reduces to the algorithm (4. l1a)-(4.2b). Convergence of

the above algorithms can be shown by modifying the proof of Theorems 2 and 3.

We can further extend the GS-MS algorithm to allow under/over-relaxation (during
the updating of each subset of coordinates), non-disjoint subsets Ij, and non-cyclic order

of relaxation. This leads to the following SOR type algorithm, which we call the SOR-MS
algorithm: Let II, ... , Im be a finite collection of nonempty (not necessarily disjoint)

subsets of { 1,...,n} whose union equals { 1,...,n). For eachj = 1,...,m; we choose a

splitting (Bijj,CIjij) of MIjIj and a cj > 0 satisfying

BIj - CIjij + (1-6j)MIjIj is positive definite. (4.6a)

We also choose a second relaxation parameter -tj satisfying

0 < coj < min{ 1,cij}, (4.6b)

and define Pj:X-4X to be the point-to-set mapping

Pj(x) = { z I z = (1-co)x + oAj(x), zeX, for some j _< co < oj }, (4.6c)

where Aj:X--X is the point-to-point mapping given by (4.3). The SOR-MS algorithm

generates a sequence of iterates by successively applying the mappings P1, ... , Pm (but

not necessarily in any fixed order):

SOR-MS Algorithm. Choose an x0°X. Generate a
sequence of vectors x0 ,x1 ,... in X by the formula

xr+l E Pjr(xr), r = 0, 1, .... , (4.7)

where j0,j 1,... is some sequence of indices in { 1,...,m }.
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We will impose the following rule on the order of coordinate relaxation (e.g. [SaS73],

[HeL78]):

Almost Cyclic Rule. There exists integer r such that { 1,...,m} c {jr+lj+2, ,jT+ for

all r.

The SOR-MS algorithm can be seen to contain all of the earlier algorithms as
special cases. For example, if m = 1, then it reduces to the algorithm (4.1 a)-(4.2b). If the
Ij's are disjoint, j = Coj = 1 for all j, and {j0 jl,... =- {1, ... , m, 1, ... , m, ... , then it

reduces to the GS-MS algorithm. It also contains other methods as special cases. For
example, if the M1 1 's are positive definite and we choose B = MI for all j, then (4.6a)

is equivalent to oj < 2 and the SOR-MS algorithm reduces to a block SOR method

considered in [Tse88; §6.2]. If furthermore the Ij's are disjoint and {jO,j1,...) = { 1,

m, 1, ... , m, ... }, then it reduces to the block SOR methods considered in [CGS78],

[CoG78]; and if m = n and Ij = {j} for all j, then it reduces to the point SOR methods of

Herman and Lent [HeL78] and of Lent and Censor [LeC80]. For another example, if Ij =

{ 1,...,n for all j, then it reduces to a matrix splitting algorithm that alternates amongst m

matrix splittings.

We have not been able to show that the SOR-MS algorithm is convergent in the

sense of Theorems 1 to 3. However, by combining the second half of the proof of

Theorem 2 with the first half of the proof of Theorem 3, we can show that it is convergent
in the weaker sense of Lemma 7:

Theorem 4. Let x°,xl,... denote the iterates generated by the SOR-MS algorithm

(4.3), (4.6a)-(4.7) under the Almost Cyclic rule. Then Mxr + q - d* and (xr) ---> 0.

Moreover, f(xr) tends to the optimal value of (P) and every limit point of {xr} is a solution

of (P).

Although the above result is not the strongest possible, it nonetheless improves upon those

existing. For example, it shows, for the first time, that the algorithms considered in
[Tse88; §6.2], [HeL78], [LeC80], [CGS78] and [CoG78] generate iterates that approach
the solution set X*.
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5. Application to Known Methods

In this section we apply the results developed in Sections 3 and 4 to a number of

well-known methods and show, for the first time, that these methods are convergent
without making any additional assumption on the problem. We also extend some of these

methods to incorporate over-relaxation.

Example 1 (point SOR method). Suppose that M has positive diagonal entries.

Consider the following well-known point SOR method [Hi157], [Cry71], [Man84] for

solving (P)

xir+l = [ Xir - (M -.)(j<i Mijxr+l + X Mijxjr + qi) ]i, i = 1,...,n,

where a is a relaxation parameter in (0,2) and [.]+ denotes the orthogonal projection onto

the interval [O,ci]. [This method can be viewed alternatively as a (cyclic) coordinate

descent method with inexact line search [Tse88; §6.2].] It is easily seen that this method is
a special case of the algorithm (4. la)-(4.2b) with co = i = 1 and the following choices of

(B,C) and D:

B = alE + L, C = (l-cCl)E +LT, D= aE- 1,

where E and L are, respectively, the diagonal and the strictly lower triangular part of M.
Since B - C = (2oCa-1)E + L - LT, which is positive definite for all ace (0,2), it follows

from Theorem 2 that this method is convergent. This improves upon existing results

(e.g., [Cry71], [Man84], [LiP87]), which require for convergence either M be strictly

copositive or that a certain Slater condition hold (all of which lead to the compactness of

X*).

Example 2 (Gradient Projection algorithms). Consider the well-known gradient
projection algorithm [Gol64], [LeP65] (also see [Ber82], [BeT89], [Lue73]) applied to

solve (P):

xr+ = [ xr - a(Mxr + q) ]+,
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with a is a positive stepsize. It is easily seen that this is a special case of the algorithm

(4.1a)-(4.2b) with co = = 1 and the following choices of (B,C) and D:

B = a-lI, C = M - a-1I, D = aI.

In this case B - C can be seen to be positive definite for all a < 2/llM11. Hence by Theorem

1, the algorithm is convergent for all as (0, 2/11MlI). Aganagic [Aga78] proposed a

modification of the above algorithm by adding a relaxation parameter Ce (0,1]:

xr+l = (l-co)xr + co[ xr--a(Mxr + q) ]+.

This algorithm is also a special case of the algorithm (4.1a)-(4.2b) with c = co = co and

with (B,C) and D given as above. Hence, by Theorem 2, this algorithm is also convergent
for all as (0, 2/1MII). [This improves on the result of Aganagic which requires M to be

positive definite for convergence. Furthermore, from Theorem 2 we see that over-
relaxation (i.e. co > 1) is also permissible, as long as aoe (0, 2/llMll).]

Example 3 (Mangasarian's algorithm). Consider the following iterative algorithm

proposed by Mangasarian [Man77] (also see [Man84], [MaD87] for applications)

xr+l = (l-c)xr + o[ x r - cE(Mxr + q + K(xr+l - xr)) ]+,

where coe (0,1], E is an nxn positive diagonal matrix, K is an nxn matrix, and a is a

positive scalar. It can be seen that the above algorithm is a special case of the algorithm
(4.1a)-(4.2b) with o = co = co and the following choices of (B,C) and D:

B = (aE)- 1 + coK, C = M - (aE)- 1 - coK, D = aE.

Since B - C + (1-co)M = 2(aE)-1 + 2coK - coM, it follows from Theorem 2 that the above

algorithm is well defined and convergent if 2(aE)- 1 + 2coK - coM is positive definite,

which is exactly the condition given by Mangasarian [Man77; Eq. (6)]. [However,

Mangasarian only showed that each limit point of the iterates generated by the algorithm is

a solution (which does not imply that a limit point exists) and did not show that the

algorithm itself is well-defined.]
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Example 4 (block SOR method). Consider the following block SOR method of Cottle,

Golub and Sacher [CGS78] and of Cottle and Goheen [CoG78] (also see [CoP82]):
Partition the index set { 1,...,n} into m nonempty, mutually disjoint subsets II, ... , Im and

assume that Mi is positive definite for all j. Choose a relaxation parameter cite (0,2).

Then, for any given x°E X, the method generates a sequence of iterates {x° , x l, .. }

whereby, given xr, a new iterate xr+l is generated as follows:

Let z0 = xr . For j = 1, ... ,m, compute zj to be the (unique) solution to the following

system of nonlinear equations ([] 7 denotes the orthogonal projection onto the
interval [0,ci])

zi = [zi-(Mi + qi) ], iV Ij,
Zi = z Vj-,izj

A.
and let zi = (1 - co)z j- 1 + coz J, where co is the largest scalar in (0,6] such that ziJ X.

Then set xr+l = zm .

[This method essentially replaces the strictly lower triangular (diagonal) part of M in the
point SOR method by strictly lower triangular (diagonal) blocks.] In the case when 6i = 1,

this method can be seen to be a special case of the GS-MS algorithm (4.3)-(4.4) with

B Ijl = MIjIj' Cjlj = 0,

so that by Theorem 3 it is convergent. If 0 < X < 1, then by Remark 5 it is also

convergent. [This improves upon the results of [CGS78] and [CoG78] which require M

to be positive definite for convergence. It also obviates the need for the projection step
employed in [CoP82] to ensure the existence of a limit point.] In the case when 1 < co < 2

however, the convergence of this method remains unresolved. It is known to be

convergent only in the weak sense of Theorem 4.
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Appendix A.

Consider any mxm matrix A and any linear subspace V of 9 tm such that (A)kv - O0
as k -- oo, for all veV. Then the following hold:

(a) There exist pe (0,1) and z > 0 such that

II(A)kvll < t (p)k Ilvll, V k 2> 1, V v V.

(b) For any 65 (0,1], there exist pae (0,1) and 'r > O such that

k

II -I ((1-c oh)I + cwhA) vil < z (p8)k IlvlI, V k 2 1, V v V,
h=l

for all sequences of scalars { co1,2,.. .} in the interval [6, 1].

Proof. Let V be spanned by the vectors v i , v2, ... , v. Then we can write

A = P-1JP,

for some invertible (complex) matrix P and J is the Jordan canonical form of A [OrR70].
Hence, for all i,

(P-FJP)kvi = P-1(J)kPvi -- 0, as k - oo.

Let J1, J2, ... , Js be the Jordan blocks of J, and let X1, X2, *--, s be the corresponding

(complex) eigenvalues of J. [Hence J is block diagonal with Jj as its j-th diagonal block

and each Jj is upper triangular with Xj along the diagonals.] Let

r '
P Vi

Pvi = P2
V i
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be the partition of Pv in accordance with the partition of J. Then since (J)kPvi -4 0 as k

-4 o, for all i, this implies that

(Jj)kPjvi - O as k , V i, Vj.

Now if IXjl > 1, then we have that Pjvi = 0 for all i. [To see this, suppose the contrary, so

that Pjv i 0 for some i. Let 1g denote the last nonzero component of Pjv'. Then it is easily

seen that the corresponding component of (Jj) Pjvp is (kj) k, which converges to zero by

assumption. But this can happen only when I;jl < 1, a contradiction.] Therefore Pjvi = 0

for those j for which IXjR > 1. Let

f-

[ Jj if IXjl < 1,

Jj = -

[ 0 if Ijl > 1.

Then

r r
| (J!)kPvi J I (J,1)kP1 i

(J)kpvi = P (J2)kp2v i = (J2)kp2 vi i.

j J I
kL L 

Hence (J) Pv = (J)kpv for all ve V, where J is the mxm block diagonal matrix whose j-th

diagonal block is Jj. This in turn implies that

II(A)kvll = IlP-(J)kPvii

= IIP-' (J)kpkvll

Since the spectral radius of J is strictly less than one, there exists pe (0,1) and X > 0 such

that II(J) kl < t (p)k for all k > 1. Therefore (letting X = lIIP-111 IIPII)
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11(A)kvil < liIP-ll X (p)k IIPII Ilvll < t (p)k 11vil, V k > 1.

This proves part (a).

Now we prove part (b). Fix any integer k > 1 and any sequence of scalars
col,Co2,...,C k} in the interval [6,1]. Since A = P-1JP, we have

k k k

Il((1-coh)I + ohA) = I-P-l((1 coh)I + chJ)P = p-l( l ((l oh)I + ohJ) )p
h=l h=l h=l

Let

I (1-Co)I + ohJj if Ixjl < 1,
j

l 0 if Ijl > 1,

and let Jh be the mxm block diagonal matrix whose j-th diagonal block is Jjh. Since Pjv =
0, for all ve V and all those j's for which I.jl > 1 (cf. proof of part (a)), we see that

k k

( I((1Coh)J + hj) )Pjv ( jh )Pjv, V ve , Vj.
h=l h=l

It then follows that

k k

( ((l- h)I + CohJ)) = ( J )pv, V v V.
h=l h=l

Since 6 _< c h < 1 for all h, the spectral radius of the Jh's are bounded away from 1. Then,
by an argument similar to that used for part (a), we obtain that there exist pbe (0,1) and r,

> 0 (depending on A, P and 6 only) such that
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k k

IIP-l( n ((1wh)I + cohJ) )Pvll = l( n jh )Pll
h=l h=l

Q< (pa)k lvll, V VEV.

Q.E.D.
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