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Abstract

The relationship between the n-dimensional surfaces of smooth, strictly convex ob-
jects and the m-dimensional surfaces of their orthogonal projections, or shadows, is
investigated. Our main results concern the relationships between the local properties of
the surface at a point and those of its shadow. Specifically, the curvature Hessian of the
projection at a boundary point is shown to be simply the projection of the curvature
at the point’s pre-image. Further, necessary and sufficient conditions are presented for
solution of the inverse problem of determining the surface curvature at a point, given
the curvatures of a series of projections involving the point. These conditions imply,
for example, that knowledge of the projection of a surface point onto two hyperplanes
and an additional two-dimensional subspace is necessary and sufficient to determine the
local surface curvature there. These local results are then combined with a curvature
based object representation on the Gaussian sphere to both construct the shadows of
objects and to elucidate the inverse problem of reconstructing object shape from shad-
ows. These results serve to illuminate and extend the work of Van Hove [1] for obtaining
the two-dimensional shadow of an object in three-dimensional space.

1 Introduction

The relationship between objects and their shadows is of interest in a variety of disciplines
and applications. These applications may be divided into two groups. First, there are those
concerned with the forward problem of determining the shadow of an object on a surface
given its shape. This is the goal, for example, in image synthesis for computer graphics
[2,3] and automatic drawing generation for a part {4,5]. The second set of applications are
concerned with the inverse problem of recovering the shape of an object given a series of its
shadows. This recovery can be done either directly or indirectly. We can use the shadows
to directly reconstruct a shape approximating the underlying generating one, or we can use
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our observations in a recognition framework to choose one from among a set of candidate
objects, thus indirectly recovering the shape [6,7,1].

The generation of these shadow observations themselves arises in a variety of settings.
Aside from directly obtained shadow images, projection data often contains little more
information than the shadow of the object of interest [1]. This is true in certain instances
of non-destructive testing, in low-dose X-ray images (8], in images of backlit objects, and in
noisy range images [9,10,7,6], to name a few. In all these cases the structure of the projection
image data is effectively reduced to a shadow. Mathematically, these shadow observations
can be obtained through a number of projection geometries, including orthogonal projection,
perspective projection, and spherical projection {11,12,13]. In this work we will only consider
the orthogonal projection case.

Once obtained, multiple shadow observations can be utilized in different ways to con-
strain object shape. Sometimes they are used in a simple and direct manner, as in [14,15],
where each shadow is used to find a bounding volume for the object and the combination
of all such bounds forms an approximation to the object. Often, however, the shadows are
used in conjunction with a representation of the object in some transformed space [13,16,17),
such as the Gaussian sphere. These representations are chosen for their convenience when
working with shadow information, and because they provide simple relationships between
the object in question and its shadows. It is this latter approach that we take, using the
shadow observations to update a curvature based representation of the object. Our ap-
proach is based on [1], which was the direct stimulus for this work, but is more general and
more simple than [1].

To our knowledge, the existing shadow based approaches confine themselves to objects
in three dimensions (or less) and shadows in two dimensions (or less). We can imagine,
however, situations where such constraints might be restrictive, and the present formulation,
with its dimensional generality, could be of use. Any reconstruction problem involving a
three-dimensional object that evolves in time is inherently four-dimensional, such as imaging
of the beating heart [18, pp. 275]. Indeed, much work related to the Radon transform
is already done in such a general dimensional setting [19,20]. Another context in which
higher dimensional results may be of interest is suggested by the problem of finding a joint
probability distribution function for a set of n random variables given the distributions of
linear combinations of the variables. The original distribution is an n-dimensional density
(object) and the observations are integral projections onto lower dimensional subspaces, thus
fitting the tomography mold [21, pp. 365]. In fact, a result of probability theory essentially
states that the collection of all such line integral projections suffices to uniquely determine
a general density |22, pp. 335]. Shadows may arise either directly in these examples or else,
as described earlier, because noisy data or approximation leads to observations that are
effectively shadows.

Finally we mention that our results in Section 2.2 on recovering a symmetric (curvature)
matrix H from prcjections essentially provide a solution to the problem of recovering an
n-dimensional ellipsoid from its lower dimensional shadows. If H represents an ellipsoid via
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Figure 1: Problem definition

the equation 27 Hz = 1, then our Result 1 gives the relationship between the ellipsoid and
its projections [23] and Result 2 gives the conditions for its reconstruction. Such ellipsoid
reconstruction problems have appeared in the literature, both directly and as bounding
approximations. In [24] an ellipse is used as a simple parameterized model for objects in an
attempt to recover their eccentricity and orientation from low signal to noise tomographic
data. In [25,23] the state of a system is assumed confined to an unknown n-dimensional
ellipsoid. The goal here is essentially to reconstruct this ellipsoid from observations of its
lower dimensional projections. Finally, in [26] a group of closely spaced targets in space
is observed through a number of passive sensors. The cluster of targets is modeled as
an ellipsoid and the observations as projections of it over time. The desire is to find the
evolution of the 3-D shape of the ellipsoid.

Mathematical Preliminaries

We shall be concerned with the orthogonal projection of the n-dimensional surface O of
an object in (n + 1)-dimensional space onto an (m + 1)-dimensional projection subspace P,
to obtain a shadow with an m-dimensional surface, see Figure 1. A guide to notation is
presented in Appendix A. In general, our attention shall be restricted to smooth, strictly
convex objects (termed “rotund” [27]). We will represent the curvature of the surface O
at a point p by the symmetric Hessian matrix at the point (notation Hp(p)), i.e., by the
matrix of second partial derivatives of the surface in some local tangent-based coordinate
system [28], as illustrated below.

The boundary of the shadow in the subspace P will be a “curve” (actually a surface
in P), which we label C. This lower dimensional surface, in turn, will be the shadow of a
“curve,” termed the contour generator (CG) [13, pp. 106], on the surface O of the object.
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The points of the CG are thus precisely those that map to the boundary C under projection.
If p is such a point on the CG, we shall label its image in C by §. In addition, we assume
the dimension of P is at least 2, so that the curvature of C is well defined

In our main result we shall relate Ho(p) to H¢(p). Specifically, in Section 2 we show
that He(p) = (ST Hz'(p) S)~!, where the columns of S form an orthonormal basis for a
subspace defined by P and the tangent space of O at p. This result serves to generalize and
unify existing work, such as that in {1]. Following this solution of the forward or projection
problem, we treat the inverse problem of determining the curvature of a surface at a point
from a series of projections involving the point. Necessary and sufficient conditions are
presented for recovering H, !(p) from a series of observations H C"-l (P,1<i<q.

In Section 3 we combine these local results with a curvature based representation to
make a series of global statements. A formalism based on the work in [1] will be given,
allowing us to conveniently find the projection of an object onto an arbitrary subspace.
These relationships will serve to generalize and clarify the work in [1,16] on silhouette
determination in two-dimensions. We subsequently address issues arising in the inverse
problem of overall recovery of object shape from shadows.

In Section 4 we pose some questions and raise some issues for future research. We
give a brief discussion there of an alternative curvature representation scheme based on the
Gaussian curvature rather than the Hessian. Concluding remarks are presented in Section 5.

2 Local Results

We shall show here that the curvature of the projection at a boundary point § of the
shadow is precisely the projection of the curvature at the corresponding point p on the
contour generator of the object. We follow this local projection result with necessary and
sufficient conditions for the solution of the inverse problem of determining the curvature of
a surface at a point from a series of projections.

2.1 Projection of a Surface

The situation under consideration is depicted in Figure 2. Pick a coordinate frame in the
tangent hyperplane T at p and label the n coordinate directions by i;. Complete this local
frame by appending the local outward normal direction N(p) as the (n + 1)-st coordinate
direction, §. Let (t1,t2,...,tn,y) be the scalar coordinates of points with respect to this
frame. Locally the surface is then representable as (the Monge parameterization [29])
y = F(t1,...,tn). The curvature is taken to be the symmetric Hessian matrix Hp(p) of
second partial derivatives of F(t) with respect to these coordinates, i.e. the matrix whose
tj-th entry is dy/ot,;0t;.

For simplicity, we shall translate the projection subspace P parallel to itself to the point
of interest p, as illustrated. Denote by S the m-dimensional intersection of T and the
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Translated

Figure 2: Local situation

translated P, and let the m unit vectors S; define a coordinate frame for this subspace of
T. Now, the m+1 vectors {S;, N(p)} define a local coordinate frame in the projection of O
at p. As above, let (2, z2,...,2Zm,y) be the scalar coordinates of points in the projection
with respect to this frame. In the projection then, the curve C is locally representable
as y = f(z1,...,Zm). The curvature of the shadow H¢(p) is the Hessian of f(z) with
respect to these coordinates. Finally, denote by S the n X m matrix whose columns are
the representations of the vectors {$;} with respect to the coordinate frame {fy,...,#n} we
have defined in T at p. The columns of S are thus orthonormal. With this notation the
main projection result is:

Result 1 (Curvature of Projection = Projection of Curvature)

The curvature Hesstan of the orthogonal projection of a rotund surface at a boundary point
1s precisely the orthogonal projection of the curvature Hessian of the surface at the pre-image
of this point: H¢(p) = (ST H (p) S)72.

The proof of Result 1 is given as Appendix B. Our formulation and proof are done in a
general setting and are thus valid for any dimension, unlike the work in [1]. They are also
considerably more transparent.

This result is a local one, involving only the surface properties at a point. It establishes
a relationship between the second order term of the Taylor series approximation of the
surface at p and the corresponding term for the projection. This simple relationship will be
of use in Section 3 to find the complete shadow of an object.
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2.2 The Inverse Problem — Curvature from Projections

The inverse problem of finding the curvature of a surface at a point from orthogonal pro-
jections of the surface at the point will now be examined. From Result 1, we see that the
inverse problem may be viewed as the determination of the n x n symmetric matrix H, (p)
from a series of observations of curvature of the form H;'(5) = ST Hy(p) S:, where H;} ()
is taken as the ¢-th observation and S; is a known matrix whose orthonormal columns define
the i-th subspace of projection, as described above. We shall cast this task as a standard
linear estimation problem and present a simple necessary and sufficient condition for its
solvability in terms of a rank test on a matrix derived from the set of S;. Further, we shall
bring out certain implications of this condition for the projection subspaces ;.

For convenience in what follows, we shall take our observations to be G; = S; HZ} (5) ST
rather than H al (P). The latter can always be recovered from the former, since each S; has
full column rank. Again for simplicity, we shall let G denote Hgl(p), the inverse of the
Hessian of interest. Note that for strictly convex objects, the above inverses are certain to
exist. With this notation the inverse problem may be phrased as follows.

Problem 1 (Local Curvature from Projections) Determine the definite, symmetric,
n X n matriz G, given ¢ quadratic-form observations of the type:

Gi=PGP 1<i<g (1)
where the P; are orthogonal projection matrices, t.e. are symmetric and satisfy P‘.2 = P,.

In terms of the matrices {S;}, we have P, = S; ST. Since the columns of the known n x m;
matrix S; form an orthonormal basis for the subspace §;, P; is an orthogonal projector
onto this subspace and thus defines projection s. Our observations G; are invariant to the
particular bases S; used for the subspaces §;.

As discussed in the introduction, Problem 1 is equivalent to recovering an ellipsoid from
a series of its shadows (orthogonal projections) on the subspaces defined by the {S;}. In the
present notation, the positive definite symmetric matrix G represents an ellipsoid via the
(support function) definition {z : 27n < /9T G n, V¥ ||n|| = 1}, and its projection yields the
observations given in (1), as shown in [23]. In this framework, G; can be seen to represent
the (degenerate) ellipsoid obtained by projecting the ellipsoid represented by G.

Before we proceed, note that the problem is linear in the elements of the target matrix
G. This fact can be demonstrated by writing (1) as:

vec(Gy) = (P; ® P;) vec(G) (2)

where vec(-) denotes the vector formed by stacking the columns of the argument and ®
denotes the Kronecker product. The difficulty with this formulation is that the symmetry
of the observations G; and the target G is lost. While the vector vec(G) has n? elements,
only n(n + 1)/2 of them are independent. We shall overcome this difficulty by imbedding
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the problem in a natural way in the space of symmetric matrices. In this space, the target
matrix G is an unknown vector and an observation becomes the projection of this vector
onto a certain subspace.

Representation in Space of Symmetric Matrices

The set of n X n symmetric matrices together with the inner product (4, B) = tr(A7 B) de-
fines an n(n + 1)/2-dimensional Euclidean space which we denote by ¥ (note that this
inner product induces the Frobenius norm on a matrix (A, A)/?> = ||Allr). Suppose
{M;|1 £ £ < n(n+ 1)/2} is an orthonormal basis for this space. The symmetric ma-
trices G, P; M; P; (which we shall use shortly), and G; may then be uniquely represented
with respect to the given basis by the following vectors of coefficients:

{M} [ T
f— = 71)72:"'379_&2'0'_1),]
{M} : [ . . T
RMR p— P(’)J = LP(‘)J'I) P(z)j%"" P(t)J!‘_("T‘fil} (3)
{M} . . . . T
Gi e o) = ol 9)e, -, 90)meen |

where v, = (G, My), p(1)je = (P, M; P;, M;),and g(¢)¢ = (Gs, M) for 1 <1< ¢,1<7,€<
n(n + 1)/2. With these definitions, it is straightforward to show that:

9(f) =Pin (4)
where
Pi= [p@ulellal o) tasn |
It is also straightforward, though tedious, to show that P;P; = P; and P; = P7, so that
P; is an orthogonal projector [30] onto the subspace of ¥ spanned by the matrices P;M; F;.

Thus in the space ¥, the i-th observation is the vector g(i) obtained as the projection of
the (unknown) vector v onto a subspace specified by P; (or equivalently S;).

We may now stack up all the observations (4) into a single vector to obtain the following
overall relation: X .
g(1) Py

@11, (5)

| 9(e) ] [Py
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80
g=Py (6)
where g and P are defined in the obvious way. With this formulation, Problem 1 becomes:

find the unknown vector 4 given the observations in g and the observation geometry specified
by P. We have thus phrased the problem as one in standard linear estimation.

Necessary and Sufficient Conditions for Solvability

The formulation in (6) immediately allows us to characterize the solutions of Problem 1.
Specifically, a unique solution to the problem exists if and only if the null space of the
mapping in (6) is empty. This, in turn, is true if and only if the matrix P has full column
rank (= n(n + 1)/2). Note that an overdetermined set will be consistent since we have
assumed no noise in our measurements. We phrase this condition formally:

Result 2 (General Condition for Solvability) Problem 1 has a unique solution if and
only if the matriz P defined in Equation 6 has rank equal to n(n + 1)/2 (i.e. full column
rank). This solution, if it exists, is given by

v="Plg (7)

where PL is any left inverse of P, g is the vector of observations, and «y is the representation
of G with respect to the basis {M,}.

This result provides us with a way to test if a given series of projections, defined by F;
(and thus S;), is sufficient to determine G, or if others are needed. Later we shall present
some conditions phrased directly in terms of the subspaces P;. Note that in the noise free
case, the properties of the matrices P; imply that v = (X0, P,) ™ (T0, %)-

In the noisy case, we may easily find the linear least squared error (LLSE) solution to
an inconsistent set of equations given in the form (6). If we choose PX = P+, the Moore-
Penrose inverse of P, the equation (7) will yield the LLSE solution to Problem 1 (without
the definiteness constraint). Note that we may also implement this least squares solution
recursively (via recursive linear least squares), updating our current estimate of the vector
~ (and thus of the matrix G) as more observations become available. In this vein, we might
imagine using a recursive formulation to track the changing curvature of a dynamaically
evolving object. Such results will be described in a separate paper.

Projection Space Conditions

In this section, some conditions for the reconstruction of G will be stated directly in terms of
the projection subspaces P;. These conditions are corollaries of Result 2 but, being phrased
in terms of the subspaces of projection, do not require computation of the matrix P. We
shall give conditions for projections onto combinations of hyperplanes and two-dimensional
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subspaces (true planes, which are;the smallest projection spaces that yield shadows with
well defined curvature).

In (1, pp. 185] the result is given that for objects in three-dimensions (n = 2), a minimum
of three projections onto planes isjrequired to recover the curvature at a point. We show
here that the generalization of this;result to higher dimensions is that projections onto two
hyperplanes and onto a single additional two-dimensional plane are required to find the
curvature at a point. The result is:

Corollary 1 (Hyperplanes + 1); Projection onto at least two hyperplanes and a single
two-dimensional subspace (plane) isrnecessary to uniquely recover G. These projections will
be sufficient provided the two-dimensional subspace 1s not contained in either hyperplane.

This group constitutes a minimal set of observations to recover G, in the sense that any
other non-trivial set will increase either the number of observations or the dimension of the
observations. We outline the proof in Appendix C.

Now consider the case where the projection subspaces P; are restricted to be hyperplanes.
Applying Corollary 1 to this case, where the two-dimensional subspace referred to there is
contained in a third hyperplane, yields the following:

Corollary 2 (Hyperplanes) If the projection subspaces P; are restricted to be hyper-
planes, then at least three such progections are necessary to uniquely recover G, and three
will be sufficient provided the hyperplanes are distinct.

Other statements of this kind, combining Result 2 with different, specific combinations of
projection subspace dimensions, are of course possible.

3 Global Statements

The local curvature relationships of Result 1 and Result 2, presented in the previous sec-
tion, will now be combined with a curvature based representation of objects on an enhanced
Gaussian sphere to make global statements about shadow determination and shape recon-
struction. From the description in the introduction, it can be seen that finding the contour
generator, and hence the projection of an object is, in general, a difficult task. In what
follows, a formalism will be given that allows the projection of an object onto an arbitrary
subspace to be found in a convenient fashion. This formalism serves to generalize and clar-
ify the work in [1,16] on two-dimensional shadow determination. Following this solution to
the forward problem, we will use the enhanced Gauss representation and Result 2 to make
statements about the inverse problem of object reconstruction from shadows.
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3.1 Projection of O onto P

Consider the projection of the object surface O onto the subspace P to obtain the region
bounded by the curve C. This situation is shown as link (1) in Figure 3. The points p of 0
can be separated into two types with respect to the projection onto P: those that project
to interior points and those that project to boundary points C. The first type correspond
to points within the object’s shadow while the second type correspond to points on the
object’s contour generator (CG). These latter points are precisely those points p of O where
the normal N (p) is parallel to the subspace of projection P. The curve C may thus be found

by first identifying the CG through the normal condition, then projecting this curve onto
P.

As can be seen, the CG and thus the -curve C are not simple to find. In spite of this,
we may show that the projection C inherits certain properties from the object surface 0.
Specifically if the object surface O is smooth and strictly convex, it is not difficult to show
that C will also be. This provides us an easier, indirect way to find the projection.

3.2 The Enhanced Gauss Images £"(0) and £™(()

With the insights above, we shall consider a representation of the object better suited to the
task of projection than the standard point set or functional one [16]. Such a representation
is found in an enhanced Gauss map of the object to the n-dimensional Gaussian sphere.
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The Gaussian sphere is a unit sphere with each point on the sphere corresponding to points
of an object with the same surface normal orientation. The points corresponding to the
contour generator are thus easily found on the Gaussian sphere: they lie on the great circle
set obtained by the intersection of the Gaussian sphere and the subspace P [1,31, pp. 536].
This enhanced Gauss mapping operation is shown as link (2) in Figure 3. We define the
enhanced Gauss map formally as follows:

Definition 1 (Enhanced Gauss Map — £"(e)) The n-dimensional enhanced Gauss
map of an object O (notation £™(0)) is the composition of the standard Gauss map [32]
with @ map of each object surface point p to the pair {Ho(p),L(p)}, where Hp(p) is the
Hessian of the surface at p in local coordinates, and L(p) is the transformation from the
global coordinate system to this local coordinate system in the tangent hyperplane at p.

It can be shown that for a rotund hypersurface 0 in R"*! with the associated enhanced
Gauss image £™(0), the image £™(0) (via the curvature) determines O up to a translation
[33,29,34]. Thus we may equivalently work with the enhanced Gauss image of an object as
with the object itself. We note that while the object is uniquely defined by its enhanced
Gauss image, inverting the image to recover the object is not trivial. In principle, this
inversion can always be performed, given suitable initial conditions, but it is only recently
that both iterative and closed-form algorithms have been proposed for this problem [35,36,1].

Since the boundary C inherits its rotundness from O, we may also consider an equivalent
representation for C in terms of its m-dimensional enhanced Gauss image £™(C). Asin the
case of the object surface O, this representation determines C up to a translation. This tie
is shown as link (3) in Figure 3.

3.3 Obtaining £™(C) from £"(0)

In this section, a direct tie is made between £™(0) and £™(C), the enhanced Gauss rep-
resentations for O and C respectively. The image £™(C) depends on the local curvature
information of C at each point, which in turn depends only on the local surface shape of O
at points along the contour generator. Since our representations are curvature based, we
may thus go directly from £"(0) to £™(C) without explicitly finding the contour generator
or the curve C. The required local relationship between the object surface curvature and
the projected surface curvature at a point is provided precisely in our Result 1. By isolating
this observation we have focused on the essential element of the generalization.

To obtain £ ™(C) from £"(0) we thus need only to project the Hessians of points on the
contour generator onto P. These points, as mentioned earlier, are easily found from £"(0)
as the intersection of £”(0) and P. All that remains is to define the new transformation to
local coordinates in the projection 2(5), which is straightforward. Pick a global coordinate
frame for the projection in the subspace P. Let the columns of Il be the representation of
these global projection axes with respect to the original global coordinate system, so the
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columns of I form an orthonormal basis for P in global coordinates. The transformation
from this set of axes in the projection-to the local set at p, given by {S;, N(p)} and defined
in Section 2.1, is then given by L(p):

[1]<0-
ST(p) L(p) I (8)

L(p) =

— o —

where S is defined in Section 2.1.

We thus have the following two-step procedure to go directly from £"(0) to £™(C); this
procedure is a generalization of the method in [1], in that it holds for any combination of
object and projection dimension.

Procedure 1 (£*(0) to £€™(C))

Step 1) Identify the points of O on the contour generator by intersecting £™(0) with the
subspace P.

Step 2) Use Result 1 to project onto P the curvature information Ho(p) at points p along
the great circle set obtained in 1). Find the new transformation L(p) from global to
local coordinates in the projectian using (8).

This is a slicing operation followed by a series of local projections of curvature. Note that
the method just uses knowledge of £"(0) and P to obtain £™(C), so we may work entirely
in the domain of the enhanced Gauss representation. This step is shown as link (4) in
Figure 3. This final tie completes all the links in Figure 3 relating the various objects and
representations. In the spirit of [16] we have the relationships shown in Figure 4.

3.4 The Inverse Problem and the Gauss Map

We will now examine the object reconstruction problem in terms of the enhanced Gauss
representation for 0. In this framework, to determine O (within translation) we need to
determine the curvature at each surface point, as discussed in Section 2.2. Each projection
or shadow provides information about the surface along an m-dimensicnal great circle set
of the Gaussian sphere representation, defined by the intersection of the Gaussian sphere
with the projection subspace P. Multiple projections of a point p correspond to places on
the Gaussian sphere where these great circle sets intersect. For example, if the point p of
an object in R3 were on the contour:generator of two different projections, then it would
Jie in the intersection of two distinct great circles on the Gauss map of the object, as shown
in Figure 5.

With this insight, we see that recovering the shape of an object may be viewed as a series
of local curvature reconstructions at each point of the object. We view each projection as its
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Figure 5: A point on two contour generators
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Figure 6: A point near the intersection of a number of projections

great circle set on the Gaussian sphere. The conditions in Section 2.2, specifically Result 2,
imply a minimum number of projections involving a given point that are required to find the
local surface curvature there. This, in turn, is equivalent to a condition on the number of
intersections of great circle sets at the point. Specifically, for uniform projection dimension,
to determine the Hessian at p we must have enough distinct great circles intersect at the
image of p on the Gaussian sphere so that P in (7) is invertible. For example, we saw that
three distinct hyperplane projections at a point were necessary and sufficient for curvature
recovery.

Consider this case of projection onto hyperplanes. This is the largest, non-trivial, pro-
jection dimension possible, and is thus a best case in that it yields the most information
for each projection. From Corollary 2 and generic intersection counting arguments, it is
straightforward to show that three such projections will yield two (n — 3)-dimensional sets
of points on the n-dimensional surface O of the object, with enough information to recover
the curvature. In general, there will also be six (n — 2)-dimensional sets of points with
two hyperplanes worth of information and three (n — 1)-dimensional sets of points with one
hyperplane worth of information. For example, in R® where n = 2, this implies that projec-
tions onto three planes generically yields no points on the Gaussian sphere with three great
circle intersections, six points on the Gaussian sphere where two great circles intersect, and
three 1-dimensional sets of the great circles themselves. This generic situation is depicted
in Figure 6.

For a finite number of projections, it can thus be seen that those points with the required
number of intersections will be relatively sparse. In fact, we can see that each new projection
only constrains an additional finite number of (n — 3)-dimensional sets of points on the n-
dimensional surface. In general, we will have to use nearby or interpolated projection data,
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as for the point p in Figure 6. In this case, we might use the inconsistent information from
nearby projections together with a least squares solution to the local problem in (6) to
estimate a value for the point. This raises the issue of the first order relationship between
the orientation of the great circle sets and the corresponding conditioning of the matrix P.
It appears desirable to have the great circle sets intersect in angles as large as possible.

4 Questions

We pose some questions and raise some issues for future research. One issue is raised by the
insight in Section 3.4 above. Rather than randomly taking projections of an object, we can
use the Gaussian sphere to plan a series of views that will lead to the maximum number of
intersections and coverage of the sphere. What is the best way to spread the information
over the whole sphere, given only a finite number of views? And how can the information
from near-intersections best be used, since in general there will be many points with strictly
less than the necessary number of intersections. As discussed in [1], using global restrictions
on object shape, or continuity, to derive the object from a finite set of surface curvatures
‘gives rise to sampling questions on the Gaussian sphere and some type of surface Nyquist
criterion.

In the above sections, we have represented the surface curvature by the Hessian matrix
in some local coordinate system. This matrix is not the only way we may represent surface
curvature. It can be shown that a rotund surface is actually determined (to within a
translation) by just the determinant of the Hessian given for all normal orientations (see,
for example [33, Vol. 5, pp. 304-305]). This determinant is termed the Gaussian curvature
(notation K) and is invariant with respect to changes in the system of local coordinates.
The scalar function K(n) thus determines O (to a translation), and the function remains
scalar regardless of the dimension of the space. This function defined on the Gaussian
sphere (and hence a function of normal orientation) is called the extended Gaussian sphere
and has been studied by Horn and others [17].

The use of the Gaussian curvature K as a representation of curvature in our enhanced
Gauss mapping thus appears attractive. The key lies in the relationship between det{Ho (p)]
and det{H¢(p)], or more generally between the eigenvalues of a symmetric, definite H and
those of (STH~15)~1, where S has orthonormal columns (since H¢(5) = [STH3(p)S]™?).
Let U = [S|S1], so U is orthogonal. A determinantal and matrix identity then yields the
following simple relationship between the Gaussian curvature of the surface and that of its
projection:

Gauss curvature of surface = det(H) = det(UTHU)
= det (STH'S)™ o det (s HS*)
= (Gauss curvature of projection)

(Gauss curvature of slice perpendicular to projection)




5 CONCLUSIONS 16

The relationship between the two Gaussian curvatures thus involves the extra term
det(S 1THS 1), arising from the Gaussian curvature of a curve obtained as a slice of the
surface perpendicular to the projection defined by S. The problem is how to obtain this
extra term given only the Gaussian curvature over the Gaussian sphere and the projection
geometry? If we restrict our attention to a point p on the object, all we have is the single
number K (p). This single number in isolation gives no directional information, and thus no
way of distinguishing between projections onto different subspaces. It seems impossible to
produce a local result (as in (1)) given only knowledge of K(p) and P. We must somehow
take into account surrounding information from the surface, perhaps looking at how the
Gaussian curvature changes along the contour generator, or perpendicular to it. By looking
at the Gaussian curvature of points perpendicular to the CG perhaps we could ‘divide out’
the curvature information in that direction. We leave these as questions for future work.

5 Conclusions

In summary, we have generalized and clarified results on the relationship between local
surface curvature of an object and that of its orthogonal projection. In addition to the.
forward or projection problem, we have given necessary and sufficient conditions for solution
of the inverse or curvature reconstruction problem. These conditions, in turn, allowed
the formulation of statements directly in terms of the projection subspaces. The above
local considerations were then used to generalize to arbitrary dimensions the representation
"and projection scheme found in [1,16]. Our setting and solution, in addition to clarifying
existing work, also suggest directions for fruitful future investigation on problems such as
reconstruction from finite and misaligned projections.
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A Notation

n Dimension of object surface.

m Dimension of shadow surface.

0 n-dimensional object surface.

P (7) (m + 1)-dimensional ((m; + 1)-dimensional) projection subspace.
¥o(p) The Hessian of 0 at p in local coordinates.

¢ Boundary of projection of 0 in P.

CG The contour generator. The curve on 0 whose image is C.
p Point on the CG of 0.

p Image of pin C.

Hc(P) The Hessian of C at p in local coordinates.

T Tangent hyperplane to O at p.

{t1,..,tn} Local coordinate directions at pin T.

N(p), 9 Unit outward normal to O at p.

(t1,.,tn,y)  Coordinates of points with respect to the frame {iy,..,in,§}.
F(ty,..,tn)  Local representation of O as y = F(ty,..,t,).

S (S) Subspace of intersection between T and P (F).
{8:} Set of coordinate vectors for .

{8, N(p)} Set of vectors defining a coordinate frame in P at p.
(z1,..,Zm,y) Coordinates of points with respect to the frame {S$i,..,Sm, N(p)}.
f(z1,..,2m)  Local representation of C as y = f(z1,..,Zm).

S (S:) n x m (m;) matrix with columns representations of {$;} in frame {{1,..,f,}.
G The n X n target matrix Ho(p).

G(7) The 1-th observation, P; G P;.

P, Projector onto projection subspace ¢, P; = SST.

(-, The inner product defined on the space ¥. (4, B) = tr(AT B).

v The space of symmetric n X n matrices with inner product {-,-).

{ M} Orthonormal symmetric basis for V.

v Representation of G in basis {M,}: |11, ..,7n(n+1)/2]T; e = (G, M;).

p(1); Representation of P;M;P; in basis {M,}: [p(#);1, ..,P(i)jn(n+1)/2]T.

(1) (P:M; P;, My).

P; [2()1, 0()2, s 0 ()2l -

a(?) Representation of G(1) in basis {M,}: [9(¢)1, ..,g(i)n(,,+1)/2]T; 9(?)k = (G, My).
g The overall observation vector: [g(1),..,9(q)]7.

P The overall projection matrix: [P;|P3|..|P,]T.

L(p) Transformation to local coordinates (t1,..,tn,y) at p.

.i(p?’) Transformation to local coordinates (zj,..,Zm,y) at § in the projection.
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B Proof of Result 1

In this appendix, we shall prove Result 1 relating the curvature of a projection to the
curvature of the original surface: H¢(p) = (ST H;'(p) S)~1.

The curvature we are discussing here is the Hessian of the surface or curve at a point in
some local coordinate system. Recall, that the Hessian is defined as the matrix of second
order partial derivatives of the surface, and may be viewed as generating a second order
approximation to the surface at the point. In what follows, we shall assume we are working
at a point p on the surface of an object and henceforth suppress any mention of that fact
to simplify notation (e.g. all partial derivatives are assumed to be evaluated at p). We also
assume all surfaces are oriented by their outward normal.

B.1 Curvature of the Projection

Assume we are at a point p on the surface that will map to a boundary point of the
projection (so p is a point of the contour generator). Also assume that there is a local
coordinate system at p oriented in the following way (see Figure 7). As in Section 2.1, §
points along the local normal N(p) and the set of m vectors {%;} lies in a subspace parallel
to the subspace of projection. We complete the set with n — m vectors {Z;}, which lie
in a perpendicular subspace. Let y, z, and z, respectively, be vectors of coordinates along
these axes. With this choice, we will be projecting along the z direction onto the z-y
plane (the {Z;} and { set of axes together spanning the space of projection). We term these
coordinates ‘projection coordinates’. In this coordinate system we may represent the surface
by the function y = f‘(z, z). Now the boundary of the projection in these coordinates is
defined by the set of equations:

y = F(z,2) (9)

F, = 0 (10)

where letter subscripts denote vectors or matrices of partial derivatives (for example f’z =
[IT’ZI, ﬁ'z,,' . -,I":'zn__m] - a row vector). The matrix of second partial derivatives y,, derived
subject to the constraints (9) and (10) is H¢(p), which it is our goal to find.
Start by taking the first partial derivative of (9) with respect to z, Applying the chain
rule, this gives: 5 _
Yz = Fz + F,2, (11)

where z, is the (Jacobian) matrix of partial derivatives. Next, find the unconstrained second
partial derivative matrix y,, using (11) and the chain rule.

Yzz = i‘zz + ﬁzzzz + (Fzz + Fzzzz) zz + Fz (zzz + zzzzz) (12)
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Figure 7: Local coordinate system configuration

Now from (10), F, = 0, and taking the partial of this equation with respect to = we
obtain:

F zz T F 222z = 0
which gives:

z; = —F,'F,; (13)
where F;! exists since the surface is strictly convex.

Applying (10) and (13) to (12), we get for the curvature of the projection:

~ ~ ~ -~ ~ -~

Yzz = L'zz — FzzF;lezz - (Fzz - Fzze_lezz) ﬁ;lﬁzz
or . . .
Yzz = Fpz — Fzze_lezz = HC(I;) (14)
B.2 Projection of the Curvature

We shall now relate H¢(f) to Ho(p). Start by partitioning the set (¢,...,t,) of general
coordinates in T, defined in Section 2.1, so that p = (t1,...,tn) and v = (m+41,---,tn)-
Schematically, we have the relationship between (z, z) and (u,v) shown in Figure 7. Given
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these definitions, we may always make the following association between these two sets of

coordinates, by proper labeling:
B z
-z S

where U = [S|S%] is orthogonal and the columns of S are the representations of the {Z;}
axes in (u,v) coordinates. The columns of S thus span the space of the projection in these
coordinates. Now given the definition of F in Section 2.1, we have the following relationship
between F and F:

F(p,v) = F(z, 2).

It is straightforward to show that the Hessians of F and F in the two coordinate systems
are related by:

ﬁz: izz T Fﬂ# FI‘V
o ~ =U U 16
[ F.: F.. ] { Fvu Fo | ( )

Now note that (see, for example, [23, pp. 539]):
_ ) o .
Fou - FuuF B = ([ ol fr B [%D (17)
z

Substituting (16) into the right hand side yields:

-1 -1
P Fofiio, = (s’" Hw Fuw ] s) (18)
v v

By definition, the Hessian of 0 at p in the coordinate system (u,») is:
_ | Fun Fuv
HO(P) - { Fuu F,, ] . (19)
Combining (14), (18), and (19) we obtain:

He(p) = (ST Hz'(p) S) ™ (20)

We have thus related H¢(f) to Ho(p) through the projection type operation given in (20)
and hence the result is proved. |

C Outline of Proof of Corollary 1

The proof of Corollary 1 proceeds as follows. First, we consider just the two hyperplanes
defined by P; and P, and show that rank[PT,P7)T = n(n+1)/2 — 1, just one independent
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row short of the required number. We then show that a single additional planar shadow,
defined by Ps, adds this independent observation.

For the first part, note that the number of independent columns of P = [PT, P77 equals
the number of independent matrices in the set {P,M;P;|i = 1,2;7 = 1,...,n(n + 1)/2},
where the {M;} are the elements of an orthonormal basis on ¥. Thus, showing the first
part of the proof may be reduced to a counting argument on the number of independent
matrices in the given set, {P;M;PF,;}.

We may, without loss of generality, align n — 1 of the local axes {£;} of T to lie in §,
say {f1,...,tn-1}. Since §; and S; will intersect in an (n — 2)-dimensional subspace in T,
we may further align n — 2 of the above set of axes, say {f1,...,in-2}, with this intersection
space, again without loss of generality. This choice of alignment for the local axes results
in the following special form for the projectors P; = $;S7 and P, = S;S7:

I,.; O I,.s O
P1=[ o1 o}’ Pz:{ oz X]

where X is a 2 x 2, 1-dimensional orthogonal projector with X3, # 0. We couple these
observations about the form of P; and P, with a convenient choice of symmetric basis
M;. Specifically we chose the appropriately normalized set of matrices {erel + eeel;k, b=
1,...,n} where ¢ is the k-th unit vector. The counting argument on the set {P,M;F;} is
now straightforward, but tedious.

To show the second part, we observe that Ps = yy” for some unit n-vector y, with
Py # y and Py # y. Thus PsM; Pz = « yyT for some scalar a and we need only show
that yy? is independent of {P;M;P;|i =1,2;5=1,...,n(n+1)/2}. |
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