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Abstract

In this paper, a necessary and sufficient condition for robustly stabilizing a family of plants
described by perturbations of a fixed coprime factors of a plant is given. The computation of
the largest stability margin is discussed via solving a nonsquare El optimal control problem.
A new algorithm for obtaining lower approximaions the minimum value of the optimaization
problem, p0, is proposed. This, together with the standard algorithm which provides upper
approximations, p0 can be computed within any degree of accuracy.

1 Introduction

For unstable plants, the natural way for representing plant uncertainty is by perturbing the graph

of the plant as it operates on a specific space. The choice of the space decides the admissible class

of plant perturbations [9]. In [10], the problem of robustly stabilizing a family of plants generated

by perturbing the graph of a nominal plant over £2 was analyzed and a Necessary and Sufficient

condition was derived. Exact computation of this condition was analyzed in [6] in which the

structure of the problem with normalized coprime factors was exploited. In [5], it was shown that

this class of plants is equivalent to a class of plants perturbed through the gap metric. In this paper,

the problem of stabilizing a family of plants characterized by perturbations of the graph of a LTI

plant (for some fixed coprime factors) over £oo is considered. This is equivalent to perturbing the

coprime factors of the plant by bounded but arbitrary operators on f£. It is shown that a similar

Necessary and Sufficient condition can be derived in terms of the l1 norm [2]. The computation of

the smallest possible value of this condition is discussed, and a new iterative scheme is proposed.

Although this scheme is explained for this particular 11 problem, it generalizes in a straightforward

way to arbitrary nonsquare £1 problems.
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grant DAAL03-86-K-0171 and by NSF grant 8810178-ECS.



2 Mathematical Preliminaries

First, some notation regarding standard concepts for input/output systems. For more details,

consult [4,8] and references therein.

£e denotes the extended space of sequences in RN, f = {fo, f, f2, ... }. denotes the set of

all f E £e such that
def

Ilf 1leo = sup Ifilj < oo

where Ifilo is the standard £OO norm on vectors. '\£ ° ° denotes the set {f: f E e° and f i £ }o).

eP,p E [1, oo), denotes the set of all sequences, f = {fo, fi, f2,.. .} in RN such that

lIflleP def ( Ifiltpi) < .

co denotes the subspace of £eo in which every function x satisfies

lim x(k) = 0.
k-boo

S denotes the standard shift operator.

Pk denotes the kth-truncation operator on £e:

Pk: {fo, A, f2,.) . {f0 ,, fk ,O, }0....

Let H: i --- , e be a nonlinear operator. H is called causal if

PkHf = PkHPkf, Vk = 0,1,2,...,

H is called strictly causal if

PkHf = PkHPklf, Vk = 0, 1,2,...

H is called time-invariant if it commutes with the shift operator:

HS = SH.

Finally, H is called iP stable if

IIHlI f sup sup IlPkHftlep< oo.
k fE," IIPkflleP

Pkfo°

The quantity IHIl is called the induced operator norm over {P.

£CTV denotes the set of all linear causal £oo stable operators, T: £° t oo. £TI denotes the set

of all T E CTV which are time-invariant. It is well known that CTI is isomorphic to £1.
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Finally, it is well known that cO = £1. Given X E co and Y E e1, then

< X,Y >= E < Xij,Yij >
i,j

and the induced norm on x is given by:

1lxll = E max lxijlloo

3 Robustness in the Presence of Stable Coprime Factor Pertur-
bations

Let that Po be a linear time invariant, finite dimensional plant, with a doubly coprime factorization

given by:

V-N M JVN V =0 I

with P0o = NM- 1 . The graph of Po over the space eq is given by [9]:

Gq(Po) =Gpoeq where Gpo = N

Define the following class of plants:

Qq = {PlGP =[N + ] and Al[ ] •| }
N + A2 A2 -

where A is an P bounded linear operator. It is well known that all controllers stabilizing Po are

parametrized in the form [9]

C = (U + MQ)(V + NQ)- 1 = (V + QN)-1(U + QM)

The next theorem gives a necessary and sufficient condition for a controller that stabilizes PO to

stabilize all P Roo. A similar result in the case of P E Q2 was proved in [10].

Theorem 3.1 If C stabilizes Po, then C stabilizes all P E QOo if and only if

| [V+Q U + QM] || < 1

Proof Stability of the closed loop system is equivalent to the invertibility of the operator GTGp

inside CTV, where

G = [V+QN U+Q M]

However, GTGp = I + GCA and hence sufficiency follows immediately by the small gain theorem.
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Assume that I GC1 > 1. Then from [1,8], there exists a time varying A, strictly proper, with

tAll[ < 1 such that GCGp is unstable. The proof will be completed if it is shown that the lack of

invertibility is not a consequence of cancellations in the factors of Gp.

If |GCII > 1, then there exists an e E £t\io such that

IP-,ll>Im > 1, Vn > n*
IIPnell -

and u = GTe. In [1], it was shown that there exists a strictly proper A, time-varying, stable with

'IAll < 1 such that
Au = -e + Pn*e

and

GTGpu = (I + GCA)u~ t

which implies that GTGp is not invertible. However, since GTGpo = I, then GPou = e + gl where

GCgl = 0 and gl E £e. Also, Gpu = gl + Pn*e. If gl is unbounded, the proof is complete. If not,

then the construction has to be adjusted as follows:

The Smith-McMillan form of GC is given by

C = S1 [E o]S 2

Where Sland S 2are both invertible in £CTI. Then any input of the form g = S-21 [ satisfies

G'-"g = O. Pick g in such a way that e = e + g satisfies

IIP-lull > ml > 1, Vn > n*
IIPnll -

and g E £'\£°. It is easy to show that such a choice is possible following the construction procedure

in [1,8]. The basic idea of the construction is as follows: find an input eo that is supported on a

finite interval and captures the norm of GT. The input e is constructed (roughly) by adding up

translates of eo amplified by an increasing factor. This construction is now adjusted by adding

g=S [ ] to eo with g having the same support as eo and very small norm. The details of the

construction are omitted since it follows the same exact procudure as [1,8].

From here, the proof proceeds exactly as in [1], i.e a strictly proper time-varying A, with

tAlll < 1 is constructed such that

Au = -e + Pn.e.

Notice that

Gpu = e + gl - e + Pn*e~ = gl + g + Pn*· E \eoo.

Hence GTGp is not invertible, and the lack of invertibility is not due to cancellations in the factors

of Gp. This completes the proof.
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Comment: Theorem 3.1 is readily generalized to the case of weighted plant perturbations. The

weights will appear in the optimization problem in the obvious way. The detainls will be omitted.

4 Stability Margin

Let p be defined as

p = inf [V+QN U + QM]|]
QE£TI

Then the largest stability margin defined as the maximum [IA[[ such that the closed loop system

remains stable is equal to a. The computation of p was analyzed in [3] and more recently in [7].

The next theorem specializes the results in the above mentioned references. It will be assumed that

the Bezout equations are all polynomials in the shift operator.

Theorem 4.1

p = sup xii(0)
xEco i

Subject to

Ijx(-N* M*)11oo < 1

Proof Let

Q(N M) = (K1 1K2)

Then Q E £ 1 if and only if (K 1 K2) E £1 and

(K 1 K2 ) ( O.( N )

Hence, the annihilator subspace is given by all y E co such that

y = x(M* -N*)

with x E co is a square matrix, and M* and N* are the weak* adjoint operators associated with

M, N respectively, i.e for any x E co,

oo

xN*(t) = E x(t + k)N(k).
k=O

Hence, the dual problem is given by

/-= sup <y,(V U0)>

Finally by noting that

-N
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the result follows.

In [3], it was shown that if the factoriztion is obtained over the space of polynomial matrices, then

the above problem is readily a semi-infinite linear programming problem. An iterative procedure

was proposed and convergence was proved. This procedure corresponds to the following problem:

n = SUp Xii()
xEco

Subject to

IIPn(x(-N* M*))lloo < 1

This problem is a finite linear program, and ln >/ p. In the limit, jl n converges to p.

On the other hand, it is desirable to know at each iteration how far -An is from p. For this pur-

pose, we propose another method that approximates p from below, and has guaranteed convergence

in the limit. Consider the problem:

n = sup E ii(0)
XEco

Subject to

II(Pnz)(-N* M*)lloo < 1

This problem is also a finite linear program, and En < p. Also, -n will converge to p in the limit since

the space co can be approximated arbitrarily closely by Pnco for n large enough. Notice that the

above two problems are different. Basically, the first corresponds to truncating the constraints (the

output) after n constraints in the semi-infinite problem, and the second corresponds to truncating

the input x. It is interesting to note that this procedure is valid for approximating p from below

for the general 11 problem, and hence it provides a consistent way of computing the minimum

performance to any desired accuracy.

5 Conclusions

In this paper, the problem of robustly stabilizing a class of plants characterized by coprime factors

perturbations is analyzed and a necessary and sufficient condition is derived. The computation of

the largest stability margin is discussed and an alternative algorithm that provides lower estimates

is furnished. By having both upper and lower estimates, it is possible to get arbitrarily close to the

minimum solution.
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