April 1990 LIDS-P-1961

THE DESIGN OF SIMULATION LANGUAGES FOR SYSTEMS
WITH MULTIPLE MODULARITIES!

by

S. Rowley
C. Rockland

This research was supported by the Army Research Office under
grant ARO-DAALQ03-86-K-0171 and the National Science Foundation
under grant NSF ECS-8809746.

1

The Design of Simulation Languages for Systems with Multiple
Modularities

Steve Rowley *and Charles Rockland |
Laboratory for Information and Decision Systems. MIT

77 Massachusetts Ave.

Cambridge MA 02139 USA

Abstract

Biological systems exhibit. several characteristics that
are not shared by human-enginecred systems: there
are often no clear module boundaries (or there are
several module boundaries, depending on the ques-
tion being asked); individual parts often serve mnl-
tiple roles, depending on the behavior being studied;
and system characteristics often vary from individual
to individual.

Conventional simulation languages, however, do not
cope well with this non-modularity. We have devel-
oped a theory of the design of simulation languages
for such systems. and partially verified it in one case
study. \We separate the notion of “structure™ $ of a
system from the “behavior™ B of its parts. \We allow
multiple versions of both the structure (51,.52.---)
and the corresponding behavior (B;[S.). B2[Si].--+)
of each part S,. The different. structures or behaviors
might be alternative theories, or abstractions of each
other, for example.

We also lhiave theories of how to interpret the sim-
ulations produced by (Si, B,[S:]) pairs. One goal is
to extract “design™ information. i.e.. explain how the
system solves problems. Another is to test the effects
of alternative models of behavior By[Si]. B2[Si].---
for the same structure. or the eflects on behavior
due to alterations in structure. A third is to judge
the relative degree of consistency between various
(Si. B,[S:]) pairs.

We exhibit how these ideas apply to the motor ner-
vous system of the necmatodes C. elegans and Ascaris
suum. We also provide arguments that this kind of
simulation methodology is also applicable to engi-
neered artifacts, such as systems where parts must
serve multiple roles.

1 Introduction

Most cffort in simulation languages has been directed at
the simulation of lunan-engineered artifacts. For examn-
ple, when designing complex systems such as oil refineries,
computers, or information systems. we would like to have
a high degree of confidence that the system will work ac-
cording to design. Does the oil refinery pollute too much?
Is the computer fast enough? Will the information sys-
tem correctly transaction-lock 125 asynchronous database
queries?

Traditionally, the design of simulation langnages has
heen driven by that task: given a set of rules for how the

*Also of Clenter for Theoretical Physics. MIT.
tAlso of Clenter for Intelligent Control Systems.

Key Words:

Description of
Rules of .
Systen in e System
Module + .
Terms of Behavior
Behavior
Modules

Figure 1: Using component behavior to compare system be-
havior with design goals.

components of a system work. describe, as in Figure 1, the
overall behavior of a collection of such components and
describe the degree to which that behavior meets design
criteria.

However, such engineered systems share a trail iu comn-
mou: abstraction of function into modules. That is, the de-
signers of the systems. in order to cope with the complexity
of their task, broke the system up into pieces, eacl of which
has some small set of functions and a simple interface to
the rest of the world. Oil refineries are made of pipes,
pups, and tanks; computers are made of subsystems for
memory, 10, and floating-point arithmetic; databases have
files, scheata, and query interfaces. Eacli of Lthese “parts”
has a well-defined and small functionality, and a fairly rigid
interface to other parts.

In recent years, the interest in biological systems [Larkin
88: Carruthers 88] has motivated many to study systems
that do not have this modularity feature.! Biological sys-
tems use a single part - e.g., a nerve cell - for many dil-
ferent functions, depending on the external conditions, de-
velopmental stage of the organism. whether other parts
of the organism need to be compensated for, and so on.
For example, it is well-known to neurophysiologists that
the nervous system can functionally compensate for cer-
tain types of damage.

Here we report on a case study of the development of
a simulation language for such multi-modular systews,
applied to the motor nervous system ol the nematodes
C'aenorhabditis elegans and Ascaris suum [Kenyon 88:

!And in some highly-constrained engineered systems. such
as the space shuttle. On the space shuttle. a given hull tile has
both a heat-conducting function and an aerodynamic function.
These functions may come into direct conflict when, for exam-
ple, we want a particular tile to be thick to be a good insulator,
but to be thin to be of the right shape to make the shuttle
airbody have the right lift-drag characteristics.

Biological simulation, nematodesm, modularity, language design.

Wood 88; Stretton 85]. The “parts list” for (. elegans.
i.e., all the cells, including their complete developien-
tal history, is quite well-known from biological experiment
[Wood 88]. The “wiring diagram” for the nervous system
is Tully mapped. too. However, any decomposition of this
svstem into “modules™ is, at least in part. in the eye of the
heholder. For example, while the time-course of assembly
of cells into the juvenile organisin is known in detail, its
logic remains mysterious [Lewin 84]. Some decompositions
make some (uestions easy to answer. hut other questions
hard. We therefore call such systems multi-modular.

We begin iu the next section by showing an example of
an engineered system that has mimltiple modularity bound-
aries, and discuss hriefly the problems in simulating it.
Then we discuss some language design issues which arise
in addressing those problems. We tind that object-oriented
programmiung languages and databases offer much power in
helping the simulator keep track of the mnultiple modularity
boundaries. Finally, we realize that multi-imodular systems
might have the property that they produce many simula-
tions, with possibly conflicting results, depending on what
modnlarity decomposition you choose to look at. Qur aim
is to build a theory of how to weld together those possibly-
conflicting simulations into a coherent theory about the
multi-modular system in question.

2 What Makes a System
Multi-Modular?

A multi-modular system is one for which there is no unique,
fundamentally motivated decomposition into modules that
works acceptably well for all reasonable uestions we might
want to ask about it. There may be a (hopefully small)
number of such decompositions, cach of which works ac-
ceplably well for a class of questions. We want to focus
on the impact that multiplicity of viewpoints has on at-
tempts to simulate such systems, and upon our attempts
to interpret those simulations in terins of theories of systen
hehavior.

2.1 Pump or Heater? A Multi-Modular
Engineered Artifact

To get an understanding of the implications of multi-
modularity, let’s take a look at a (poorly!) engineered
artifact that exhibits these characteristics. Consider an
alleged “water pump.” shown in Figure 2.

This pump/heater takes in electrical energy F at one
port. and water at low pressure p at another port. It puts
out the water at higher pressure p+Ap at a third port (do-
ing work 11" in the process) and waste heat Q at a fourth.
Now, most pumps will be designed in such a way that
the waste heat) is negligible. encouraging the abstraction
that a pump is a machine for converting electrical energy
E into a pressure difference Ap. That is, we can simplify
our model of the pump for most purposes, ignoring the
waste heat.

However, suppose that’s not true in this case, i.e.,
that the waste heat ¢ is significant. After all. the
pump/hicater’s primary loyalty is to the First Law of ther-
modynamics, £ = 1V 4+ Q, not to our notions of what con-
stitutes useful behavior. We are equally justilied in looking

Elec. Energy E

r High-P Water }

Work W

Low-P Water '

Waste Heat Q

Figure 2: An electric water pump. Or is it an electric heater?

Elec. Energy E

suty Suitoo0)

Excess
Water
Drain

6: Electrical Generator

Heat Q

(utexq 3eaH $S3OXF)

S

Figure 3: A pump/heater & generator system. Non-modular-
ity propagates!

at the device as an electrical heater instead of as a pump!
[t has more than one useful way of being put into a sur-
rounding system. For example. consider the new system
in Iignre 3, where we have incorporated the pump/heater
into an electrical generator.

At first blush, we might be temipted to divide this systein
into two modules, corresponding to the pump/heater and
the generator. Ilowever, it doesn’t take long to discard that
idea. The generator might well call upon the pump/heater
when it either needs water puinped into it, or when it needs
to be warmed up. Either view of the pump/heater will do.
However, the functions of heat and pumpiung arec no longer
separable, i.e., the action is non-modular. If the generator
is already too hot but needs water pumped anyway. it must
take steps to compensate for the extra heat. It might,
for example, have a set of cooling fins that it can open
to release heat or close to retain heat. Similarly. il the
generator already has enough water but needs heat, it has
to have a way to drain off the excess water pumped. The
state transition diagram for the way the generator operates
the pump is shown in Figure 4.%

2Note that there are other states possible. e.g.. Punmp On,
Drain Open, Fins Out. For now. this odd state doesn’t make
sense, since it turns on the pump and then compensates for
both of the pump’s effects, wasting electricity in the process.
An engineer would just turn down the generator instead. How-

Fins In

Need
Water

Need
Water

Figure : State tramsition diagram for the pump/heater &
generator system.

Thus we see that the non-modularity of the pump/heater
has propagated into the systems nearby, so they can com-
pensate, extracting just the parts of the functionality they
need. I we insist on a module decomposition between the
puntp/heater and the generator, we must live with the [act
that treatment of the pump waste heat is now non-local,
i.e.. created in the pump “module” and radiated away in
the generator "module.” Similarly, the pumped water is
created in the pump module, but sometinmes compensated
for by a drain in the generator module. Once several such
non-localities crop up, we must begin to suspect that our
decision to divide the observed system into pump and gen-
erator modules might have been wrong. Perhaps we should
he dividing it into water circuils and heat circuits, instead,
as in Figure 5.

Initially, this looks pretty good: at least it scparates
the heat and water flows, treating them as separate “mod-
ules.” Well, almost: the notion of pump and generator
have gone away! Even though the real world contains an
artifact for the pump and one for the generator, there is
no artifact we can point to in this model and say. e.g..
“This is the generator.” To recover them requires coupling
the apparently separate heat and water flows. Once again,
non-locality has reared its ugly head: this time, the useful
notions of pump and generator have been smeared across
module boundaries.

We just can’t win: there is no single decomposition of
this system into modules that works for all reasounable
questions we might ask about it.* There is no question

ever, the non-modularity of biological systems means that evo-
lution wonld equally favor a kludge that used the pump as a
place to dump excess electricity. thus using this odd state.
*Of course. the samne is true of truly modular systems. il we
admit “unreasonable™ questions, i.e.. ones that have nothing
to do with the design goals of the system. In order to know
what a - presumably modular — electrical generator smells like,

Request for Water

Water Water
Source Sink
Water at Pressure p
Request for Heat
Heat Heat
Source Sink

Heat Q

Figure 5: The pump/heater & generator system. viewed as a
water circuit and a heat circuit.

that this is bad engineering design: it wonld have been
a much better idea to separate the functions of pumping
and beating by making the punp deal with its own waste
heat, perphaps by giving it its own cooling fins. This would
have contained the heat problem within a module, saving
us the headache of dealing with the heat non-locally. We
could then add a separate heater module, if required. The
prump/generator modularity would be thereby validated,
instead of giving rise to a competing water/heat circuit
decomposition.

2.2 Nematode Biology as a System with
Multi-Modularity

However, there are many situations in Nature where you
are not. allowed to redesign the parts you're given. For ex-
ample, marine plankton are known [Beardsley 89] to emit
dimethyl sullide gas as a by-product. Dimethyl sulfide in
turn has a meteorological effect in cloud formation: cloud
formation regulates sunlight input to the plankton. Thus
the plankton and cloud systems are coupled in a way that
inviles us to question whether or not the whole of the di-
vision into subsystemns of algae and atmospheric gasses is
useful.

Another example [Carruthers 88] is that of the grasshop-
per (. pellucida and its fungal pathogen E. gyrilli. 'The
dyautics of the two organisms tempts us to hwmp them
together into a single entity that responds to environmen-
tal stresses through either or both grasshopper and fungal
popnlations.

We have begun studying non-modulatity in the architec-
ture and behavior of the nematode (. elegans [Rockland
89], Figure 6. C. elegans is a small (ca. Imm), free-living
(i.e., non-parasitic) soil roundworm, dining on bacteria.

we'd need to analyze the chemistry of all its components in
the presence of high electromagnetic ficlds. Fortunately, we
rarely care about the smell of a generator. Still. it is exactly
questions like this that vex us in many environmental hazards:
carpet glues that work admirably as glues later turn ont to emit
formaldehyde, i.e., “smell” in a dangerous way. Sometimes they
cause illnesses, unless compensated for by air-handling equip-
ment (non-locality!). The real behavior of a system in principle
depends on «ll the physics involved. not just that piece we dig-
nify as the “purpose” of the system.

ganglion pharynx

ANTERIOR valve

mouth

ring DORSAL

pharyngointestinal

body muscle

sanglionrectum
ventral gonad
i ganglion motor neurons in : .
ganglion ventral cord primordium
left
VENTRAL coelomocytes

right lumbar
ganglion

cuticle

i ti
intestine POSTERIOR

preanal

Figure 6: The nematode Cacrorhabditis elegans, after [Sulston 83).

It is. in various respects, the simplest existing cellularly-
differentiated organism. N has, over the past 25 years,
been nsed as a model system for concerted study of de-
velopment, structure, function. and hehavior [Wood 8&8].
Thus, it is perhaps the best-documented organism on the
planet:

o It is has exactly 959 cells, all of which ave classified
and named. They are invariant from individual to
individual.

e There are 302 neurons, for which a complete wiring
diagraim is known.

e The complete lineage of every cell, all the way back to
the fertilized zygote, is known.

o 'The genetics is exceptionally well-understood, and a
large range of mutants have been catalogued.

e Despite the small number of neurons. the animal is
capable of a rich variety of behaviors: locomotion,
head-waving, pharyngeal pumping, response to touch,
response Lo gradients in temperature or chetnical con-
centration, etc. Some of these give evidence of plas-
ticity, and even rudimentary learning.

We cliose to work with this organisin because of the large
amount of data available, and because the small cell num-
her is likely to enhance the extent of mutual coupling and
integration of the various control structures. Our goal is
to provide a framework for integrating all this data, in an
attempt to help come up with a theory of how the organ-
ism works. For example, there is a related pig parasite,
Ascaris sunum. Experiments on Ascaris complement those
on (. elegans [Stretton 85; Walrond 85]). Ascaris. about
30cim long, has around 50,000 cells, but a nervous system of
only 298 cells, essentially homologous to that of C. elegans.
Is the control system for C. clegans “over-engineered.” or
does Ascaris have some trick for controlling au order of
magnitude more muscle cells with an “under-engineered”
control system?

Our project has begnn to study the motor nervous sys-
tent of the worm [Rockland 90]. i.e.. the set of nenrons
and body-wall muscles that control locomotion hy propa-
gating a wave of muscle contraction along the body. The
motor nervous system of the worm can, in one modular-
ity, be viewed as 5 repeated “segmental oscillators,” as in
Figure Ta [Stretton 85; Walrond 85]. We should empha-
size that this picture is already an abstraction of reality:
the “real” worm has 11 neurons in each segmental oscilla-
tor, not 4. In addition, the actual neurous are branched
structures with a precise geomelry of synaplic connections
along their fibers. That is to say, the neurons and synap-
tic relations in Figure Ta are aggregations of real neurons
ignoring synaptic geometry, i.e., someone’s idea of a mod-
ule. This is what we call absiraction of structure: we may
wish to have multiple different views of what constitute
the parts of the system under study, ignoring details we
think might be irrelevant.

For example:

o [Walrond 85] deals with all the synapses that seem
to be present in a segmental oscillator on the ha-
sis of structural, anatomical criteria: we call this the
“anatomical” segimental oscillator, as in Figure 7h.

e On the other hand. [Stretton 85] identifies just those
synapses that seem to be physiologically active: we
call this the “physiological” segmental oscillator. as in
Figure Ta.

The physiological structure is an abstraction of the a-
natowical in which the apparently noulunctioning syunap-
ses are ignored. It is this abstraction on which we shall
base examples here: the anatomical case, as well as more
detail on the physiological case is in [Rockland 90]. Thus
the structural abstractions that we have dealt with are, in
order of increasing abstraction:

1. The full network of neurons, complete with synaptic
geometry.

Dorsal Muscle

DI

IN

VI
2

Dorsal Muscle

DI

IN

o\ VI

Ventral Muscle

Ventral Muscle

(a)

Figure 7: (a) The physiological version ol the segmental oscillator.

(b)

DE = dorsal excitor. VI = ventral inhibitor, etc. IN =

interncuron, an excitor from the rest of the nervous system. (b) Anatomical version. Some of these synapses are physiologically

inactive.

2. A segmental oscillator structure that lumps the 11
neurons into 4 groups, but retains all synapses — the
anatomical case.

3. A segmental oscillator structure that abstracts out
(i.e., ignores) all but the physiologically active synap-
ses — the physiological case.

In order to simulate the behavior of such a segmental
oscillator, we need models for how muscles and nerves he-
have. That is, we want to know:

o what statc do the components carry,

e what relations to the state of other components do
they have, and

e how does the state evolve in tine?

For example, one model of nerves & muscles is rather
like digital electronics:
e Binary State: Each type of cell has associated a static
number called a “threshold,” and is in one of two
states: “firing” or “not firing.”

e Synaptic Relations: All components evolve in syn-
chrony with a global clock. At each clock tick, cells
sum up the weights of synapses from firing cells. (In-
hibitory synapses have negative weights.)

o Frolution: 1f that sum is above the threshold, the cell
goes into state “firing”™ on the next cycle, otherwise it
goes into state “not firing.”

Even this extremely simplistic model of component. be-
liavior can give rise to interesting global patterns of worm-
like behavior, such as “coiling” and “shrinking,” describ-
able in terms of phase coupling of oscillators of period 1,
2 or 4 [Rockland 90]. Moreover. by comparing global be-
havior patterns resulting from the anatomical and physio-
logical versions. we can determine which criterion for the
presence of svnapses better reflects reality. On the other
hand, there are many more realistic behaviors of neuron
and muscle! We might want to consider the effect of asyn-
chrony, or the dispersion of electrical waves as they prop-
agate along the waveguide-like processes, perhaps with a
cable cquation [Rockliand 89; Niebur 86;: Nichur 88].

Alternatively, we can model the details left out of the
digital behavior above with a probabilistic background: a
neuron fires with probability py il it is above threshold.
and fails to fire with probability ps if it is below. This
generates a 2-parameter family of beliaviors that approach
the digital one as py,pa — 1.

We would very much like to know which details of behav-
iors are essential for the worm, and which are just accidents
of Nature. That is to say, there are many different views
of behavior, as well as structure. We call this abstraction
of behavior: more abstract behaviors ignore some details,
and should generate correspondingly less detailed simnla-
tions. Using this idea, we can explore the space of cell
behaviors and determine which behaviors are essential for
explaining observed behaviors of the worim, and which are
mere accidents of Nature.*

3 Simulation Language Design
Issues for Multi-Modular
Artifacts

Our notion of simulating multi-modular systems is founded
on both abstraction of structure and abstraction of be-
havior. That is, we have multiple structural decomposi-
tions of a system Si.S52..--. For example, two diflerent
decompositions of the systems discussed above were the
pump and generator decomposition versus the decomposi-
tion into heat-flow and water-flow circuits. Similarly, the
2 forms of segmental oscillators in (. elegans are compet-
ing structures for the same object. Also, we have multiple
theories of the behaviors of the parts with structure S;:
B\ [Si]. Ba[Si], - - - For example, the “digital™ hehavior of
neurons above, and a more refined cable-theoretic behavior
of the same neurons might be competing behavior hypothe-
ses, or coarse-grainings of each other. We want to find out

*Of course, changing selection pressures on a popnlation may
select for a previously-inessential trait. What we're really do-
ing is finding the features of structure and behavior that are
important for explaining experiments.

e

which hehavior model is right, or we want to find out how
much detail is necessary.

Once we make the decision to have structures Sy, Sq, - - -
and behaviors By, Ba, - - -, we have to face two problems:

I. We have to keep track of the relationships hetween
the various B;'s, making sure they share code where
possible.

2. We have an enormous space of possible simulations,
possibly as big as the fiber product® S B of structures
and behaviors. That is. we may have a simulation for
cach (.5;, B; [Si]) pair.

3.1 The Object-Oriented Structure of
Vermis

The usual solution to the first problem is the use of ohject-
oriented programming languages.® Our system, called Ver-
mis, is implemented in Comumon Lisp [Steele 84] using the
Common Lisp Object System (C'LOS) [Keene 88] on the
Symbolics Lisp Machine [Symbolics 90]. This is an impor-
tant insight: by using protocols, we can define the functions
that can be used on objects in our languages. without hav-
g to deline their implementation.” Furthermore, the use
of inheritance perniits us to recycle old methods, i.e.. build
upon and share the code of others.

‘The first problem we attacked was figuring out the
classes from which user-defined structures and behaviors
would inherit. ‘They are shown in Figure 8.

e The theory of structure in Vermis is one of recursive
coutainers: objects can be iuside other objects, for
whatever “inside” might mean in your theory. We pro-
vide generic functions for mapping {unctions over an
object’s contents, finding the container of an object,
and so on. In addition to the “inside”-ness relation,
we can define other relations between objects, such
as synaptic connections, chemical influences, heat cir-
cuits, ete. For example, the pump and generator sys-
tem of Figure 3 would be an object containing 2 parts:
the pump/heater and the generator. We create ad-
ditional relations that describe electrical, water, and
heat. connections. The pump/heater and generator
might then have their own recursive structure, as well.

e The theory of behavior in Vermis is that the objects
in structures have state; the behavior defines a way of
evolving that state in time by looking at containment
and other relations. We provide generic functions for
changing the current state and evolving the state of a
composite structure to a later state. For example, the
pump and generator system of Figure 3 would assign
state variables such as temperature. water content,
and power output to the generator. The evolution of
those variables would depend on their current values,
possibly their time history, and the heat, electrical,
and water connections to the pump.

*That is, at each structure S;, we erect a fiber of appropriate
behaviors B[S.].

“See. e.g., [Carrnthers 88; Larkin 88] for a simtilar application
to insect disease dynatuics.

"See, e.g.. [Rowley 87] for another example of the use of
protocols in language design.

Those classes that are ancestors of basic-behavior are
for implementing behaviors: those that are ancestors of
basic-structure are for implementing structures. Obvi-
ously, some are for both. The “division of labor™ amongst
the classes of Figure 8 is this:

e named-object-mixin provides names by which all in-
stances of classes may be referred to. There are vari-
ous generic functions to ask an ohject what its name
is. make up a new name for a new object, and find an
object with a given name.

¢ instance-remembering-mixin provides generic func-
tions for mapping a function over all instances ol a
class, and for accessing instances built on named-ob-
ject-mixin by their names.

e hierarchical-object-protocol defines a protocol
for objects that can be nested “inside™ each other. It
requires its client classes to supply methods for generic
functions that map over countents, find the container
a given object is in, draw the object and its contents
to a graphics stream, and generally to understand the
idea of containment. Also. it has a notion of state, so
that it can redisplay the object appropriately when it
changes.

It does not. however, supply an implementation of
container data structures. It is a prolocol class: it
requires the programmer to mix in an implementation
class, and checks that it is complete at compile time.

e abstract-container-mixin is a partial implementa-
tion of hierarchical-object-protocol. It provides
a slot for the container of an object and the required
methods to alter it. It does not, however, supply a
complete implementation of hierarchical-object--
protocol. as it does not know how to represent an
object’s contents. Such classcs are called “abstract.”

e container-only-mixin completes the implementa-
tion of hierarchical-object-protocol started in
abstract-container-mixin, by providing methods
that do nothing (gracefully) when we attempt to re-
fer to an object’s contents. That is, it models objects
that can be part of other things, but are themselves
atomic.

e abstract-container-&-contents-mixin builds on
abstract-container-mixin. supplying a slot for the
ohject’s contents. It does not. however, conumit to a
particular representation for the set data structure of
the contents: it could be a list. array, hash table, etc.
Hence this class is “abstract,” as well.

e list-contents—mixin completes the imiplementation
of hierarchical-object-protocol siarted in ab-
stract-container-&-contents-mixin by supplying
methods to treat the contents of an object as a list.

e hash-contents-mixin completes the implementation
of hierarchical-object-protocol started in ab-
stract-container-&-contents-mixin by supplying
methods to treat the contents of an object as a hash
table. For large numibers of objects contained, this can
lead to a speedup over list-contents-mixin. bhut
such a table takes more memory. For small numbers
of contents. a list is usually faster.

VERMIS-BEHAVIOR-PROTOCOL

INSTANCE-REMEMBERING-MIXT

NAMED-OBJECT-MIXIN

HIERARCHICAL-OBJECT-PROTOCOL

~af}— More General Classes

VERMIS-STRUCTURE-PROTOCOL

ABSTRACT-CONTAINER-MIXIN--— CONTAINER-ONLY-MIXIN

ABSTRACT-CONTAINER-&-CUNTENTS-MIXIN<

HIERARCHICAL-OBJECT-STATE-FREE-MIXIN

BASIC-BEHAVIOR

BASIC-STRUCTURE

HASH-CONTENTS-MIXIN

LIST-CONTENTS-MIXIN

More Specific Classes —

Figure 8: The basic class structure of Vermis

e hierarchical-object-state-free-mixinspeeds up
graphical rvedisplay of hierarchical objects by noting
that this ohject has no state, i.e.. its display can never
change as a function of time.

e vermis-structure-protocol is a protocol class, like
hierarchical-object-protocol. 'Tlhiis one defines
the protocol obeyved by all structures that will be
simulated by Vermis. This consists of the protocol
of hierarchical-object-protocol augmnented by a
[ew more generic functions for creating and killing in-
stances.

e vermis-behavior-protocol is also a protocol class.
It. defines the protocol obeyed by all hehavior models.
It consists of the protocols of named-object-mixin
and instance-remembering-mixin, along with the
generic functions:

— set-state writes a new state into an object,
presumably having computed it via note-next--
state.

— note-next-state figures out, from the current
state of an object. its relations with other objects,
and a behavior, what its next state will be. This
state cannot be written into the object until all
the objects have been advanced, however. The
Vermis software takes care of this by computing
all the new states first and then writing them into
the objects together.®

— evolve-organismtakes an object and a hehavior
model. and finds the total state of the object at
sotne future time.

*This does not mean Vermis is commited to a discrete notion
of time. One could construct a behavior model that uses a com-
puter algebra package, like MACSYMA [Symbolics 86]. to solve
continuous models exactly, In that case, note-next-state
would use the value of that solution at intervals.

These all combine to form the root classes on which users
build their structures and bhehaviors: basic-structure
and basic-behavior. 'lo date, we have built in Vermis
several interesting such structures and behaviors, shown
in Figure 9.

We define new structures in Vermis with the defstruc-
ture defining forn. defstructure is a recursive specifica-
tion of the parts of an object, their initialization keywords,
and the relations between them. For exaiple, to define the
physiological segimental oscillator of Figure Ta, we could do
something like Figure 10°.

The code of Figure 10 constructs an object out of parts
from previously-defined structures, namely nerve-cell &
muscle-cell. The relation synapse-between. also de-
fined elsewlere, “wires up” the segiuental oscillator as
shown in Figure 7a.

We have used this recursive definition method to define
the following structures for simulation:

e segmental-oscillator is just like the above exam-
ple. but more general. 1t is a prototype for both the
anatomical and physiological oscillators; a keyword at
mmake-instance time specifies which version to use.

e segmental-linear-oscillator is more like what ac-
tually occurs in the real worm, i.e., we string together
N of the segmental oscillators, using some simple
synapsing rules (detailed in [Rockland 90; Stretton 85:
Walrond 85]). Au example is shown in Figure 11a.

e segmental-ring-oscillator is used to determine
which of the global behaviors of segmental-linear--
oscillator are due to edge effects, i.e., absence of
left- or right-hand neighbors for the extreme segments.

? Actually, we're supressing a lot of detail here for pedagogi-
cal purposes. In fact. we would define one strncture for both the
anatomical and physiological segmental oscillators. Also, a lot
of geometrical information — affine transformations to position
the parts graphically — has been suppressed.

SEGMENTAL-0SCILLATOR

BASIC-STRUCTURE SEGMENTAL-LINEAR-OSCILLATOR

SEGMENTAL-RING-OSCILLATOR

PROBABILISTIC-BEHAVIOR

BASIC-BEHAVIOR~= DIGITAL-BEHAVIOR

PROBABILISTIC-INTERNEURON-BEHAVIOR

<«— More General Classes More Specific Classes —P»

Figure 9: The derived classes built in Vermis.

(defstructure physiological-segmental-oscillator ()
;3 the physiological segmental oscillator takes no parameters.

:parts ’ ((nerve-cell :name "DE" :threshold 1 :firing-p t :geometry ...)
(nerve-cell :name "DI" :threshold 1 :firing-p nil :geometry --.)
(nerve-cell :name "VE" :threshold 1 :firing-p nil :geometry .-.)
(nerve-cell :name "VI" :threshold 1 :firing-p t :geometry -..)
(muscle-cell :name "Dorsal Muscle" :threshold 1 :firing-p t :geometry ---)
(muscle-cell :name "Ventral Muscle" :threshold 1 :firing-p nil :geometry -..))

:relations ’ ((synapse-between "DE" "Dorsal Muscle" :weight +1 :geometry --.)

(synapse-between "DE" "VI" :weight +1 :geometry :..)
(synapse-between "DI" "Dorsal Muscle" :weight -1 :geometry -..)
(synapse-between "DI" "DE" iweight -1 :geometry --.)
(synapse-between "VE" "Ventral Muscle" :weight +1 :geometry ...)
(synapse-between "VE" "DI" :weight +1 :geometry -..)
(synapse-between "VI" "Ventral Muscle” :weight -1 :geometry -..)
(synapse-between "VI" "VE" :weight -1 :geometry -..))
)

Figure 10: Example definition of the structure of a segmental oscillator. with physiological synapses. Compare Figure Ta.

We impose cirenlar boundary conditions, i.e.. make an
annular wortin. An example is shown in Figure 11D,

That is. one can hoth parametrize structures and composc
them to form larger structures. We use this olten to ex-
plore variations on a structural theme.

Similarly, the mechanism for making a hehavior specifi-
cation is the defining form defbehavior. defbehavior
lets you detine a new class, just as ('LOS defclass,
hut also encourages you to supply method definitions for
note-next-state and evolve-organism. Since the be-
haviors are implemented as classes, yvou can use inheritance
to share code. For example, the digital model alluded to
above can be defined as in Figure 12a. Using inheritance,
the probabilistic liring model alluded to above may be huilt
on top of it as in Figurc 12b.1% Note that the probabilistic
version need only override the note-next~state method:
it simply inherits the vest.

Our project involved a lot of experimentation with al-
ternative versions of both structure and behavior. That
is, we didn’t start with specifications for structural and
behavioral models: rather, we viewed Vermis as a system
for prototyping aud exploring alternatives. This sort of
prototyping view meant that we depended strongly upon:

e object-oriented programming (provided hy C'LOS),

e a flexible language witlh functions as first-class data
objects (provided by Common Lisp),

e and a very good program development and debugging
environment (provided by the Symbolics system).

We found the fast compile-test-debug-edit loop, single
uniform address space, user-interface jnanagement system,
and abstraction power to be essential in tackling tough
simulation problems.

3.2 Theory Formation: Managing the
Mayhem of Multiple Modularities

Once we accept the theory of multiple modularity, we can
generate a large number of siimnlations, one for each ele-
ment S B, the fiber product of the structures and behav-
iors. There are a couple of facts that come to our rescue, so
we don’t actually have to look at that many simulations:

e Most hehavior models are written with a particular
structure, or family of structures in mind. It doesn’t
necessarily make sense to apply a behavior model to
all available structures.

o People don’t propose families of structures and behav-

iors that are unrelated: they almost always have some
theory of how they are related.
For example, the physiological segmental oscillator of
Iigure Ta is an abstraction of the anatomical segmen-
tal oscillator of Figure Th, which is in turn an ah-
straction of the real thing. Similarly. the ring oscilla-
tor of Figure 11h should approach in ils simulations
the linear oscillator of Figure lla as N — ¢, for any
behavior model applicable to both.!!

"Once again, we have suppressed some detail, such as the
mechanism whereby new states get recorded and then written
back into the cells.

Hprovided. of conrse, that measurements are taken in a re-
gion not immediately dominated by edge effects. That means it

a
.‘_’"'_: B B-_: [S_;] _— Sg
As > Ap As
Sl o Bl [bl] H——— Sl

Figure 13: Algebraically commutative diagram showing
the relationships between elements of fiber product of
structures and hehaviors on the one hand, and the sim-
ulations they generate on the other.

The existence of this homiomorphisin, i.e., abstraction
relation. makes us think there should be a similar ho-
womorphism, holding at least statistically, between
simulations. If structure 59 is an image of S;, then
there should be a corresponding map. such as averag-
ing or coarse-graining, between simulations involving
St and Ss. '

Similarly, behavior models can he related. For ex-
ample, the two behaviors of Figuve 2 are related in
that the second becomes the first as the probabilities
p1.p2 — 1. We can test the simulations involving
them to see if the distributions of behaviors become
statistically indistinguishable in this linit.

The second of these points is particularly important:
given a set of mappings relating structures Sy, Sa, .- and
behaviors B, [S;]. Bo[Si]. -+ a multi-modular simulation
engine such as Vermis becomes a testing ground for per-
forming numerical experiments. 'The theories being tested
are what we think those mappings preserve, i.e., the state-
ments about structures and behaviors for which they are
homomorphisms. Statistical measures of the relations be-
tween the simulations should verify or refute the theories
allegedly relating S, So.--- and Bi[S;], Ba[S:].- - This
is illustrated in Figure 13. Let Ag and Ap be homomor-
phisms (e.g., abstraction operators) that are claimed to re-
late the structures and behaviors, respectively. These con-
stitute the “theory™ the person inventing the simulation is
trying to test. Let ¢ be the map [rom a (.5, B;[Si]) pair to
a simulation T; they generate. Then the algebraic diagram
should commute; that is, there should exist another homo-
morphisim Ay that relates the simulations. Vermis may he
viewed as a system for generating the homomorphism As

must be distant from the edges of the linear oscillator. and only

for times such that the region cannot either have communicated
with the edge of the linear oscillator, or propagated information
around the ring oscillator.

Ventral

Ventral

(a) (b)

Iigure 11: (a) The segmental linear oscillator. physiological synapsing rules. for N = 5. (b) The segmental ring oscillator.
physiological synapsing rules, for ¥ = 5.

(defbehavior digital~behavior (.-} (O
:evolve-organism ((organism) ---)
iwrite-back-states () .-

:note-next-state ((cell)
(let ((new (above-threhold-p self cell)))
. save new state ---)))

(a)

(defbehavior probabilistic-behavior ((p1 0.8) ;prob firing above threshold
(p2 0.1)) ;prob firing below threshold
(digital-behavior)
:note-next-state ((cell)
(let ((new (true-with-prob
(if (above-threhold-p self cell) pl p2))))
- save new state --)))

(b)

FFigure 12: A digital cell behavior. and a probabilistic generalization of it. above-threshold-p is true if the incoming synapses are
above the cell's threshold. true-with-prob takes a probability and returns true with that probability.

10

to sce to what degree it is consistent!? with the product
homomorphism Ag ™ Ag. Alternatively, one might notice
among a family of simulations that there is a simple homo-
morphism As and seek to find an explaining theory, i.e..
construct the Ag <y Ag that underlics it.

We are at present working on mechantsms to store simu-
lations and the structures & behaviors that generate them
in an object-oriented database [Syutbolics 88]. We an-
ticipate drawing upon various Al techniques, in particu-
lar truth maintenance [deKleer 86] and qualitative physics
[Forbus 84], to extract information about theories from the
rich set of relationships between simulations, structures,
and behaviors.

3.3 Comparison with Diagnosis & Design
Systems

We might compare this work in some respects to the work
in Al on diagnosis and design expert systems [Davis 84;
Hamscher 88: Williams 87]. The gencral idea in those sys-
tems is to use a model for what a system is supposed to
do (based on engineering documentation) to attempt to
diagnose it when it fails, from first principles. “Diagnose”
in this context essentially means to come up with a mini-
mal theory ol what device is broken that explains observed
hehavior.

Qur project is the reverse: given observed hehavior of
worms, we want to be able to derive the “design theories™
hehind them. These design theories are both strictural
(what part decompositions are important?) aod behav-
ioral (what details of cell chemistry /geometry/etc. are im-
portant?),

lHowever, both kinds of systems have to explore simu-
lation at varying levels of detail. [[Tamscher 88], iu par-
ticular. discusses the use ol qualitative physics [Forbus 84]
in diagnosing circuit boards. People who diagnose circuit
hoards don’t do detailed simulations in their head. but ask
qualitative questions like, “Is the voltage al the clock in-
put changning in time, or not?” Thus any simulation done
by a programn to imitate this person should be done at a
similarly gqnalitative level. While we have not yet begun to
exploit the techniques of qualitative simulations, we expect
these ideas Lo be very useful to writers of Vermis behavior
models.

4 Conclusions

We have surveyed systems that have multiple decomposi-
tions into modules, huilding a theory of how to simulate
them and relate the resulting simulations to each other.
The resulting system, Vermis, was imiplemented on a Sym-
holics Lisp machine in Common Lisp and the Connmon
Lisp Object System. We have applied this system to the
motor nervous system of the nematodes €. Elegans and
Ascaris swwm, the results of which are reported in [Rock-
tand 90].

12131 a fashion to be defined by each such theory. That is, each
theory must define not only a relation between structures and
behaviors, but a hypothesis about how to observe this in the
“numerical experiments” of simulation. For example, a coarse-
graining of a behavior might lead one to suspect it will gen-
erate simulations that are time-averages of the more detailed
behavior.

11

The resulting system is flexible, extensible, and modu-
far!3, reflecting the same gnalities of the underlying lan-
guage and object-oriented programming extensions. li is
an engine for generating intuition about theories of struc-
ture and behavior, which can then be used to drive more
fortnal mathematical analysis.

5 Acknowledgements

This research was supported by the National Science Foun-
dation under grant NSF FCS-8809746 and the Army Re-
search OHice under grant ARO-DAALU3-86-K-0171 (Cen-
ter [or lutelligent C'ontrol Systems).

The authors would like to thank Drs. Peter Doerschuk,
Carl Johnson, Sanjoy Mitter, and Antony Stretton for dis-
cussions and for critical reading of the manuscript.

References

[Beardsley 89] Beardsley. T. “Gaia: The smile remains, but
the lady vanishes,” Scientific American, De-

centber 1989, pp. 35-36.

C'arruthers, R.. et al. “Simulation of inscct
disease dvnamics: an application of SERB to
a rangeland ecosystem.” Simuwlation. Septem-
ber 1988, pp. 101-109,

[Carruthers 88]

[Davis 84] Davis. R. “Diagnostic Reasoning Based on
Structure and Behavior,™ Artificial Intelli-

gence 24(1):347-410, 1984.

delkleer, I. “An Assumption-Based TMS."
Artificial Intelligence 28(2). pp. 127 - 162,
1986.

Forbus, K. Qudlitative Process Theory, MIT
Al Laboratory TR-78Y, 1984.

[deKleer 86]

[Forbus 84]

[Hamscher 88] Hamscher, W. Model-Based Troubleshooling
of Digital Systems. MI'T' Al Laboratory 'I'R-

1074, 1988.

[Keene 88] Keene. S. Object-Oriented Programming in

Common LISP. Symbolics Press, 1988,

wr

Kenvon, C. “The nematode (. elegans,” Cle-
netics 77. pp. 71-94.

[IKenyon 88]

[Larkin 88] Larkin, T.. et al. “Simulation and ohject-
oriented programming: the development of
SERB,” Simulation, September 1988, pp. Y3-

100.

[Lewin 84] Lewin. R. Interview with Sidney Brenner on

C". Elegans, Science 224:1327-1329.

[Niebur 86] “Computer simulation of networks of elec-
tronic neurouns,” Conference on Compuler
Simulation in Brain Science. Copenhagen,

1986.

Ph.D. Thesis. Institnte of Theoretical Phy-
sics, University of Lausanne, Switzerland,
1988.

[Niebur 88]

Rockland. C'. The Nematode as a Model Com-
plex System: A Program of Research. MI'T
Laboratory for Information and Decision Sys-
tems WP-1865. 1989,

[Rockland 89]

13 Unlike the systems for which it was designed!

[Rockland 90}

[Rowley 87]

[Stretton 85]

[Steele 84]
[Sulston 83]
[Symbolics 86}
[Symbolics 8]
[Symbolics 90]

[Walrond 85]

[Williams 87]

[Wood 88]

Rockland. C'. and Rowley, S. “Simulation and
Analysis of Segmental Oscillator Models for
Nematode Locomotion.” submitted to Jour-
nal of Experimental Biology, 1990,

Rowley, S.. et al. “Joshua: Uniform Access to
Heterogeneous Knowledge Structures.” Pro-
ceedings of AAAL-87. pp. 48-52.

Stretton, A.. el al.. “Neural Control of he-
haviour in Ascaris™, Trends in Neuroscience
8. pp. 294-300, 1985,

Steele, G.. et al. Common Lisp: The Lan-
guage, Digital Press, 1984.

Sulston. J. et al. “T'he embryonic lineage of €.
elegans,” Devel. Biol. 100, pp. 64-119, 1983,

Macsyma Reference Manual, Symbolics, Inc.,
1986.
Statice Reference Manual, Symbolics, Inc.,
1988.

Genera 8.0 Reference Documentation, Sym-
bolics. Inc.. 1990,

Walrond. J. and A. Stretton, “Excitatory and
inhibitory activity in the dorsal musculature
of the nematode Ascaris: evoked by single
dorsal excitatory motoncurons.” J. Neurosci.
5, pp. 1-8. 1985.

Williams, B. “Diagnosing Multiple Faults,”
Artificial Intelligence 32(1), pp. 97 - 130,
April 1987,

Wood, W. B. (ed.). The Nematode Caenor-

habditis Elegans, Cold Spring Harbor Labo-
ratory, 1988.

12

