
May 1990 LIDS - P - 1973

Forward Path Search: A New Dual Coordinate Ascent

Algorithm for Shortest Pathsi

by

Dimitri P. Bertsekas2

Abstract

We propose a new and simple algorithm for finding a shortest path from a single origin to one or more

destinations. The algorithm maintains a single path starting at the origin, which is extended or contracted

by a single node at each iteration. Simultaneously, at most one dual variable is adjusted at each iteration so

as to either improve or maintain the value of a dual function. The algorithm can be extended for the case

of multiple origins, and for this case it is well suited for parallel computation.

1 Research supported by NSF under Grant No. DDM-8903385 and by the ARO under Grant DAAL03-86-

K-0171.

2 Laboratory for Information and Decision Systems, M.I.T, Cambridge, Mass. 02139.

1

1. Introduction

1. INTRODUCTION

In this paper we consider the problem of finding a shortest path from a single origin to one or more

destinations in a directed graph (N, A). We assume that all arc lengths aij are nonnegative and all

cycles have positive length. Furthermore, to simplify the presentation, we assume that each node

has at least one outgoing incident arc; any node not satisfying this condition can be connected to

some destination node with a very high length arc without changing materially the problem and

the subsequent algorithm. We also assume that there is at most one arc between two nodes in each

direction, so that we can unambiguously refer to an arc (i, j). Again, this assumption is made for

notational convenience, our algorithm can be trivially extended to the case where there are multiple

arcs connecting a pair of nodes.

Our algorithm is very simple. It maintains a single path starting at the origin. At each iteration,

the path is either extended by adding a new node, or contracted by deleting its terminal node.

When all the given destinations become the terminal node of the path at least once, the algorithm

terminates.

In the process of finding the shortest path to the given destinations, the algorithm discovers a

shortest path from the origin to several other nodes; in fact, for the most common initialization

of the algorithm, these paths are discovered in order of increasing length order. In this sense, the

algorithm resembles Dijkstra's method. However, Dijkstra's method maintains a shortest path tree

to all "permanently labeled" nodes, while our method maintains only one path.

In its pure form, the algorithm is pseudopolynomial; its running time depends on the shortest

path lengths. This in itself is not necessarily bad. Dial's algorithm (see [Dia69], [DGK79], [AM089],

[GaP88]) is also pseudopolynomial, yet its running time in practice is excellent, particularly for

a small range of arc lengths. Another popular method, the D'Esopo-Pape algorithm [Pap74], has

exponential worst case running time [Ker81], [ShW81], yet it performs very well in practice [DGK79],

[GaP88]. Nonetheless, under mild conditions, our algorithm can be turned into a polynomial one by

using the device of arc length scaling.

The practical performance of the algorithm remains to be fully investigated. Preliminary experi-

mental results and comparison with the state of the art shortest path codes of Gallo and Pallotino

[GaP88] have been encouraging; see Section 7.

In a parallel computing environment, the problem of multiple origins with a single destination

can be solved by running in parallel a separate version of the algorithm for each origin. However, the

different parallel versions can help each other by sharing the interim results of their computations,

thereby substantially enhancing the algorithm's performance. A similar enhancement does not

2

2. Algorithm Description and Analysis

appear possible for Dijkstra's method.

The algorithm is also well suited for graphs with few origins and destinations, and with a large

number of nodes for which the Bellman-Ford algorithm is unsuitable. For such graphs the algorithm

may compete well with heuristic search methods of the type that are popular for artificial intelligence

applications (see [Pea84] and [Ber87]), while being more parallelizable than Dijkstra's method.

To place our algorithm in perspective, we note that shortest path methods are traditionally

divided in two categories, label setting (Dijkstra-like) and label correcting (Bellman-Ford-like); see

the surveys given in [AM089], [GaP86], [GaP88], and the references quoted there. Our algorithm

shares features from both types of algorithms. It resembles label setting algorithms in that the

shortest distance of a node is found at the first time the node is labeled (becomes the terminal

node of the path in our case). It resembles label correcting algorithms in that the label of a node

may continue to be updated after its shortest distance is found. However, our method is different

in one apparently fundamental way: prices are monotonically increasing in our method but they

are monotonically decreasing in label setting and label correcting methods. This in turn results

in a different type of worst case behavior for our method and methods such as the Bellman-Ford

algorithm with infinite initial labels; see Fig. 2 and the related discussion.

As we explain in Section 6, our method may be viewed as a dual coordinate ascent or relaxation

method. In reality, the inspiration for the algorithm came from the author's auction and e-relaxation

methods [Ber79], [Ber86] (extensive descriptions of these mehods can be found in [BeE88] and

[BeT89]). If one applies the e-relaxation method for a minimum cost flow formulation of the shortest

path problem (see Section 6), but with the important difference that e = 0, then one obtains an

algorithm which is very similar to the one provided here.

The paper is organized as follows: In Section 2, we describe the basic algorithm for the single

destination case and we prove its basic properties. In Section 3, we develop the polynomial version

of the algorithm using arc length scaling. In Section 4, we describe the use of a data structure

that accelerates substantially the algorithm. In Section 5, we consider the multiple destination

and multiple origin case and we briefly discuss how the algorithm can take advantage of a parallel

computing environment. The implementation and performance of parallel versions of the algorithm

will be discussed more fully in a separate paper. In Section 6, we derive the connection with duality

and we show that the algorithm may be viewed as a coordinate ascent (or Gauss-Seidel relaxation)

method for maximizing a certain dual cost function. Finally, Section 7 contains computational

results.

3

2. Algorithm Description and Analysis

2. ALGORITHM DESCRIPTION AND ANALYSIS

We describe the algorithm in its simplest form for the single origin and single destination case, and

we defer the discussion of other and more efficient versions for subsequent sections.

Let node 1 be the origin node and let t be the unique destination node. In the following, by a

walk we mean a sequence of nodes (il, i2 ,..., ik) such that (im, im+l) E A for all m = 1,..., k - 1.

If in addition the nodes il, i 2,..., ik are distinct, the sequence (il, i 2,... , i) is called a path. The

length of a walk is defined to be the sum of its arc lengths.

The algorithm maintains at all times a path P = (1,i, i2,..., ik). The node ik is called the

terminal node of P. The degenerate path P = (1) may also be obtained in the course of the

algorithm. If ik+l is a node that does not belong to a path P = (1, il, i2,..., ik) and (ik, ik+l) is an

arc, extending P by ik+l means replacing P by the path (1, ii, i2 ,... , ik,i+ i), called the extension

of P by ik+l. If P does not consist of just the origin node 1, contracting P means replacing P by

the path (1, il, i2,..., ik-1).

The algorithm also maintains a variable pi for each node i (called label or price of i) such that

pi < aii + pj, V (i,j) E 4, (Ia)

pi = aij +pj, for all pairs of successive nodes i and j of P. (lb)

We denote by p the vector of prices pi. A path-vector pair (P,p) satisfying the above conditions

is said to satisfy complementary slackness (or CS for short). This terminology is motivated by a

formulation of the shortest path problem as a linear minimum cost flow problem; see Section 6. In

this formulation, pi can be viewed as the variables of a problem which is dual in the usual linear

programming duality sense. The complementary slackness conditions for optimality of the primal

and dual variables can be shown to be equivalent to the conditions (1). For the moment, we ignore

the linear programming context, and we simply note that if a pair (P, p) satisfies the CS conditions,

then the portion of P between node 1 and any node i E P is a shortest path from 1 to i, while pl -pi

is the corresponding shortest distance. To see this, observe that by Eq. (lb), pl - pi is the length of

the portion of P between 1 and i, and by Eq. (la) every path connecting 1 and i must have length

at least equal to pl - pi.

We now describe the algorithm. Initially, (P, p) is any pair satisfying CS such as, for example,

P=(1), pi=O, Vi.

The algorithm proceeds in iterations transforming a pair (P,p) satisfying CS into another pair

satisfying CS. At each iteration, the path P is either extended by a new node or else is contracted

4

2. Algorithm Description and Analysis

by deleting its terminal node. In the latter case the price of the terminal node is increased strictly.

A degenerate case occurs when the path consists by just the origin node 1; in this case the path is

either extended, or else is left unchanged with the price Pl being strictly increased. The iteration is

as follows:

Typical Iteration

Let i be the terminal node of P. If

pi < min a +pi}, (2)

go to Step 1; else go to Step 2.

Step 1: (Contract path) Set

p,:= min {aj +p}, (3)

and if i $ 1, contract P. Terminate the iteration.

Step 2: (Extend path) Extend P by node is where

= arg min (Ia +pj }. (4)
(ij)EA

If i, is the destination t, stop; P is the desired shortest path. Otherwise, terminate the iteration.

It can be seen that following the extension Step 2, P is a path from 1 to i,. Indeed if this were

not so, then adding i, to P would create a cycle, and for every arc (i, j) of this cycle we would have

pi = aij + pj. Thus, the cycle would have zero length, which is not possible by our assumptions.

Figure 1 provides an example of the operation of the algorithm. In this example, the terminal

node traces the tree of shortest paths from the origin to the nodes that are closer to the origin than

the given destination.

Proposition 1: The pairs (P,p) generated by the algorithm satisfy CS. Furthermore, for every

pair of nodes i and and j, and at all iterations, pi - pj is an underestimate of the shortest distance

from i to j.

Proof: We first show by induction that (P, p) satisfies CS. Indeed, the initial pair satisfies CS

since aij > 0 for all (i,j) E A. Consider an iteration that starts with a pair (P,p) satisfying CS and

produces a pair (P, p). Let i be the terminal node of P. If

Pi = min {aij + pj),
(ij)EA

5

2. Algorithm Description and Analysis

P 2=2

pi -3 rC~5 ~ ~ P4 =0

Origin Destination

p3 =2

Shortest path problem with arc Trajectory of terminal node
lengths as shown and final prices generated by

the algorithm

Figure 1: Trajectory of the terminal node and final prices generated by the algorithm starting
with P = (1) and p = 0.

then P is the extension of P by a node i: and p = p, implying that the CS condition (lb) holds

for all arcs of P as well as arc (i, ix) (since ix attains the minimum in the preceding equation; cf.

condition (4)).

Suppose next that

pi < min {aij + pj}.
(ij)EA

Then if P is the degenerate path (1), the CS condition holds vacuously. Otherwise, P is obtained

by contracting P, and for all nodes j E P, we have pi = pi, implying conditions (la) and (lb) for

arcs outgoing from nodes of P. Also, for the terminal node i, we have

p, = min {ai + P},
(ij)EA

implying condition (la) for arcs outgoing from that node as well. Finally, since p, > p, and Pk = Pk

for all k 0 i, we have Pk < akj +pj for all arcs (k, j) with k 4 P. This completes the induction proof.

Finally, if (P, p) satisfies the CS condition (la), we see that the length of any path starting at node

i and ending at node j is at least pi - pi, proving the last assertion of the proposition. Q.E.D.

Proposition 2: If P is a path generated by the algorithm, then P is a shortest path from the

origin to the terminal node of P.

6

2. Algorithm Description and Analysis

Proof: This follows from the CS property of the pair (P, p) shown in Prop. 1; see the remarks

following the CS conditions (1). Furthermore, by the CS condition (la), every path connecting 1

and i must have length at least equal to pi - pi. Q.E.D.

Denote for each node i,

Di = shortest distance from the origin 1 to node i, (6)

with D1 = 0 by convention, and denote also

p0 = initial price of node i, (7)

d, = D, + p 0. (8)

Let us index the iterations by 1,2,..., and let

ki = the first iteration index at which node i becomes a terminal node. (9)

By convention, kl = 0 and ki = oo if the node i never becomes a terminal node.

Proposition 3:

(a) At the end of iteration ki we have p1 = di.

(b) If kg < kj, then di < di.

Proof: (a) At the end of iteration ki, P is a shortest path from 1 to i by Prop. 2, while the length

of P is pl - pP.

(b) By part (a), at the end of iteration kg, we have pi = di, while at the end of iteration kj, we

have Pl = dj. Since pi is monotonically nondecreasing during the algorithm and ki < kj, the result

follows. Q.E.D.

Note that the preceding proposition shows that for the default initialization case where pi = 0 for

all i, the nodes become terminal for the first time in the order of their proximity to the origin.

Proposition 4: If there exists at least one path from the origin to the destination, the algorithm

terminates with a shortest path from the origin to the destination. Otherwise the algorithm never

terminates and Pl - oo.

Proof: Assume first that there is a path from node 1 to the destination. Since by Prop. 1, pi -Pt

is an underestimate of the (finite) shortest distance from 1 to the destination t, Pl is monotonically

nondecreasing, and pi is fixed throughout the algorithm, pi must stay bounded. We next claim that

7

2. Algorithm Description and Analysis

pi must stay bounded for all i. Indeed, in order to have Pi -+ oo, node i must become the terminal

node of P infinitely often, implying (by Prop. 1) that p1 - pi must be equal to the shortest distance

from 1 to i infinitely often, which is a contradiction since pi is bounded.

It can be seen with a straightforward induction argument that for every node i, pi is either equal

to its initial value, or else it is the length of some walk starting at i plus the initial price of the final

node of the walk; we call this the modified length of the walk. Each time i becomes the terminal node

by extension of the path P, pi is strictly larger over the preceding time i became the terminal node

of P, corresponding to a strictly larger modified walk length. Since the number of modified walk

lengths within any bounded interval is bounded and pi stays bounded, it follows that the number

of times i can become a terminal node by extension of the path P is bounded. Since the number

of path contractions between two consecutive path extensions is bounded by the number of nodes

in the graph, the number of iterations of the algorithm is bounded, implying that the algorithm

terminates finitely.

If there is no path from node 1 to the destination, the algorithm will never terminate, so by the

preceding argument, some node i will become the terminal node by extension of the path P infinitely

often and pi -* oo. At the end of iterations where this happens, pi -pi must be equal to the shortest

distance from 1 to i, implying that pi -+ oo. Q.E.D.

We will now estimate the running time of the algorithm, assuming that all the arc lengths and

initial prices are integer. Our estimate involves the set of nodes

I = {i I di < d}4, (10)

and the set of arcs

Z = {(i,j) E .A i E I}. (11)

We denote by R the number of arcs in R.

Proposition 5: Assume that there exists at least one path from the origin 1 to the destination

t, and that the arc lengths and initial prices are all integer. The running time of the algorithm is

o (R(Di + p0 - pI)).

Proof: Each time a node i becomes the terminal node of the path, we have pi = pl - Di (cf. Prop.

2). Since at all times we have P1 < Di + p0 (cf. Prop. 3), it follows that

pi = pi - Di _ D1 + pO - Di,

and using the definitions di = Di + pO and di = Di + piO, we see that

Pi - pO < di -di

8

3. Arc Length Scaling

at the end of all iterations for which node i becomes the terminal node of the path. Therefore, since

prices increase by integer amounts, di - d, + 1 bounds the number of times that pi increases (with

an attendant path contraction if i # 1). The number of path extensions with i being the terminal

node of the path is bounded by the corresponding number of price increases. Furthermore, for each

iteration where i is the terminal node of the path, the computation is proportional to the number

of outgoing incident arcs of i, call it ni. We conclude that the computation time at iterations where

i is the terminal node of the path is bounded by

M(d - di + 1)ni, (12)

where M is a constant which is independent of the problem data. Adding over the set I of all nodes

with di < di, we can bound the running time of the algorithm by

M (dc - di + 1)ni. (13)
iEI

Since by Prop. 3, we have di > d,, the upper bound (13) is less or equal to

M(d - d, + 1) Eni = M(d, -d, + 1)R = M(D + p pO)R
iEl

and the result follows. Q.E.D.

Let us denote

L = max aii, (14)
(ij)EA

h = minimum number of arcs in a shortest path from 1 to t. (15)

Then we have Di < hL, and for the default price vector p = 0, Prop. 5 yields the running time

estimate

O(RhL). (16)

As the preceding estimate suggests, the running time can depend on L. This is illustrated in Fig.

2 for a graph involving a cycle with relatively small length. This is the same type of graph for which

the Bellman-Ford method starting with the zero initial conditions performs poorly (see [BeT89], p.

298). In the next section we modify the algorithm to improve its complexity.

3. ARC LENGTH SCALING

We introduce a version of the algorithm where the shortest path problem is solved several times,

each time with different arc lengths and starting prices. Let

K= LlogLJ +1 (17)

9

3. Arc Length Scaling

Origin Destination

Figure 2: Example graph for which the number of iterations of the algorithm is not polynomially
bounded. The lengths are shown next to the arcs and L > 1. By tracing the steps of the algorithm starting
with P = (1) and p = 0, we see that the price of node 3 will be first increased by 1 and then it will be
increased by increments of 3 (the length of the cycle) as many times as necessary for p3 to reach or exceed
L.

and for k= 1,..., K, define

aij(k)= [aiLJ V (i,j) E A. (18)
L 2K:- k J

Note that aij(k) is the integer consisting of the k most significant bits in the K-bit binary represen-

tation of aij. Define

k = min{k > 1 I each cycle has at least one arc (i,j) with aij(k) > 0}. (19)

The following algorithm is predicated on the assumption that k is a small integer that does not grow

beyond a certain bound as K increases. This is true for many problem types; for example when the

graph is acyclic, in which case k = 1. For the case where this is not so, a slightly different arc length

scaling procedure can be used; see the next section.

The scaled version of the algorithm solves K - k + 1 shortest path problems, called subproblems.

The arc lengths for subproblem k, k = k,..., K, are aij(k) and the starting prices are obtained by

doubling the final prices p*(k) of the previous subproblem

pi(k + 1) = 2pT(k), V i E A, (20)

except for the first subproblem (k = k), where we take

pQ(k)= O, V i E .

Note that we have aij(K) = aij for all (i, j), and the last subproblem is equivalent to the original.

Since the length of a cycle with respect to arc lengths aij(k) is positive (by the definition of k) and

from the definition (18), we have

0 < aij(k + 1) - 2aii(k) < 1, V (i, j) E A, (21)

10

3. Arc Length Scaling

it follows that cycles have positive length for each subproblem. Furthermore, in view of Eq. (21),

and the doubling of the prices at the end of each subproblem (cf. Eq. (20)), the CS condition

p°(k + 1) < p°(k + 1) + avi(k + 1), V (i,j) E A (22)

is satisfied at the start of subproblem k + 1, since it is satisfied by p (k) at the end of subproblem

k. Therefore, the algorithm of the preceding section can be used to solve all the subproblems.

Let DI(k) be the shortest distance from 1 to t for subproblem k and let

h(k) = the number of arcs in the final path from 1 to t in subproblem k. (23)

It can be seen using Eq. (21) that

DT(k + 1) < 2D0(k) + h(k),

and in view of Eq. (20), we obtain

Dt(k + 1) < 2(p;(k) - p*(k)) + h(k) = p (k + 1) - pf(k + 1) + h(k).

Using Prop. 5 it follows that the running time of the algorithm for subproblem k, k = k + 1, ... , K,

is

O(R(k)h(k)), (24)

where R(k) is the number of arcs in the set of the form (11) corresponding to subproblem k. The

running time of the algorithm for subproblem k is

O(R(k)Di(k)), (25)

where D1(k) is the shortest distance from 1 to t corresponding to the lengths a.j(k). Since

aij(k) < 2k,

we have

Do,(k) < 2kh(k). (26)

Adding over all k = k, ... , K, we see that the running time of the scaled version of the algorithm is

0 2kR(k)h(k) + > R(k)h(k)) . (27)
k=k+l

Assuming that k is bounded as L increases, the above expression is bounded by O(Ah log L), where

= maxk=_,.,K h(k), and A is the number of arcs. These worst-case estimates of running time are

4. Efficient Implementation - Preprocessing

still inferior to the sharpest estimate O(A + N log N) available for implementations of Dijkstra's

method, where N is the number of nodes. The estimate (27) compares favorably with the estimate

O(Ah) for the Bellman-Ford algorithm when 2k maxk R(k) is much smaller than A; this may occur

if the destination is close to the origin relative to other nodes in which case maxk R(k) may be much

smaller than A.

We finally note that we can implement are length scaling without knowing the value of k. We

can simply guess an initial value of k, say k = 1, apply the algorithm for lengths aij(k), and at

each path extension, check whether a cycle is formed; if so, we increment k, we double the current

prices, we reset the path to P = (1), and we restart the algorithm with the new data and initial

conditions. Eventually, after a finite number of restarts, we will obtain a value of k which is large

enough for cycles never to form during the rest of the algorithm. The computation done up to that

point, however, will not be entirely wasted; it will serve to provide a better set of initial prices.

4. EFFICIENT IMPLEMENTATION - PREPROCESSING

The main computational bottleneck of the algorithm is the calculation of min(iJ)A { ai + pi }, which

is done every time node i becomes the terminal node of the path. We can reduce the number of

these calculations using the following observation. Since the CS condition (la) is maintained at all

times, if some arc (i, ji) satisfies

Pi = aij, + pij,

it follows that

a., + Pii = min {aij + p },
(ij)EA

so the path can be extended by ji if i is the terminal node of the path. This suggests the following

implementation strategy: each time a path contraction occurs with i being the terminal node, we

calculate

min {aij + p},
(ij)EA

together with an arc (i, ji) such that

ji = arg min {aij +pj}.
(ij)EA

At the next time node i becomes the terminal node of the path, we check whether the condition

Pi = aiii + pJi is satisfied, and if so, we extend the path by node ji without going through the

calculation of min(ij)EA {aii + pi }. In practice this device is very effective, typically saving from a

third to a half of the calculations of the preceding expression. The reason is that the test pi = aiii +Pji

12

4. Efficient Implementation - Preprocessing

is rarely failed; the only way it can fail is when the price pji is increased between the two successive

times i became the terminal node of the path.

The preceding idea can be strengthened further. Suppose that whenever we compute the "best

arc"

ji = arg min aij + pj},
(ij)E{ clA

we also compute the "second best arc" ji given by

j, = arg min { aj + pj},
(itj)exIA, jji

and the corresponding "second best level"

wi = ai3i + P3i,

Then, at the next time node i becomes the terminal node of the path, we can check whether the

condition aij, + pij < wi is satisfied, and if so, we know that ji still attains the minimum in the

expression

min {aj + Pi },
(ij)EA

thereby obviating the calculation of this minimum. If on the other hand we have aij, + pj > wi (due

to an increase of pi, subsequent to the calculation of wi), we can check to see whether we still have

wi = am;. + P3;; if this is so, then ji becomes the "best arc",

ji = arg min {aij +pi },

thus obviating again the calculation of the minimum.

With proper implementation the devices outlined above can typically reduce the number of cal-

culations of the expression min($j)A {aii + PJ} by a factor in the order of three to five, thereby

dramatically reducing the total computation time.

Preprocessing

Another important way to reduce the computation time of the algorithm is to use a favorable

initial price vector in place of the default choice p = 0. This possibility arises in a reoptimization

context with slightly different arc length data, or with a different origin and/or destination. A

related situation arises in a parallel computing context; see the next section.

One difficulty here is that the "favorable" initial condition p may not satisfy the CS conditions

(1), that is, for some node i we may have

p m > min { aj + pi }.
(ij)EA

13

4. Efficient Implementation - Preprocessing

In this case, we can obtain a vector p satisfying the CS conditions (except on the immaterial outgoing

arcs from the destination t) by a preprocessing algorithm, which is reminiscent of some implementa-

tions of label correcting methods.

To be precise, suppose that we have a vector p which satisfies the CS conditions together with a

set of arc lengths {aij}, and we are given a new set of arc lengths {aij}. We describe a preprocessing

algorithm that maintains a subset of arcs £ and a price vector p. Initially

£ = {(i,j) E 4 I aij < aij, i 0 t}, p = p.

The typical iteration is as follows:

Typical Preprocessing Iteration

Step 1: (Select arc to scan) If £ is empty, stop; otherwise, remove an arc (i, j) from E and go to Step

2.

Step 2: (Add affected arcs to £) If pi > ai + pj, set

pi := aij + P

and add to £ any arc (k, i) with k 0 t that does not already belong to E.

We have the following proposition:

Proposition 6: Assume that each node i is connected to the destination t with at least one path.

Then the preprocessing algorithm terminates in a finite number of iterations with a price vector p

satisfying

Pi < aij + pj, V (i,j) E A with i A t. (28)

Proof: We first note that by induction we can prove that throughout the algorithm we have

D {(i,j) E A I pi > aii +pj, i 0 t}.

As a result, when £ becomes empty, the condition (28) is satisfied. Next observe that by induction it

can be seen that throughout the algorithm, pi is equal to the modified length of some walk starting

at i (see the proof of Prop. 4). Thus, termination of the algorithm will follow as in the proof of

Prop. 4 (using the fact that walk lengths are nonnegative and prices are monotonically nonincreasing

throughout the algorithm), provided we can show that the prices are bounded from below. Indeed

let
p i + shortest distance from k to t if k : t,

P: *= Upi if k =t,

14

4. Efficient Implementation - Preprocessing

and let r be a sufficiently large scalar so that

pk _> P - r, V k.

We show by induction that throughout the algorithm we have

pk >_ P; - r, V k # t. (29)

Indeed this condition holds initially by the choice of r. Suppose that the condition holds at the start

of an iteration where arc (i, j) with i f t is removed from £. We then have

aij + pj > ai + pi - r > mimn A {aim + pm} - r = p - r,
- (i,m)EA

where the last equality holds in view of the definition of p: as a constant plus the shortest distance

from k to t. Therefore, the iteration preserves the condition (29) and the prices p, remain bounded

throughout the preprocessing algorithm. This completes the proof. Q.E.D.

If the new arc lengths differ from the old ones by "small" amounts, it can be reasonably expected

that the preprocessing algorithm will terminate quickly. This hypothesis, however, must be tested

empirically on a problem-by-problem basis.

In the preceding preprocessing iteration node prices can only decrease. An alternative iteration

where node prices can only increase starts with

E = {(i,j) E A I aij < aij, j l1}, p = P.

and operates as follows:

Alternative Preprocessing Iteration

Step 1: (Select are to scan) If £ is empty, stop; otherwise, remove an arc (i, j) from E and go to Step

2.

Step 2: (Add affected arcs to &) If pi > aij + pj, set

pi := pi - aij

and add to £ any arc (j, k) with k # 1 that does not already belong to E.

The following proposition admits a similar proof as Prop. 6.

Proposition 7: Assume that the origin node 1 is connected to each node i with at least one

path. Then the alternative preprocessing algorithm terminates in a finite number of iterations with

a price vector p satisfying

pi < aij + pj, V (i,j) E A with j i 1.

15

5. Multiple Destinations

The preprocessing idea can also be used in conjunction with arc length scaling in the case where

the integer k of Eq. (19) is large or unknown. We can then use in place of the scaled arc lengths

aji(k) of Eq. (18), the arc lengths

ia,(k)= [aij- V (i,j) E A,

in which case we will have aij(k) > 0 if ail > 0. As a result, every cycle will have positive length

with respect to arc lengths {(ij(k)} for all k. The difficulty, however, now is that Eqs. (21) and (22)

may not be satisfied. In particular, we will have instead

-1 < aij(k + 1)- 2aij(k) < O, V (i, j) E A,

and

p°(k + 1) < p(k + 1) + .i(k + 1) + 1, V (i, j) E A, (30)

and the vector pO(k + 1) may not satisfy the CS conditions with respect to arc lengths {aii(k +

1)}. The small violation of the CS conditions indicated in Eq. (30) can be rectified by applying

the preprocessing algorithm at the beginning of each subproblem. It is then possible to prove

a polynomial complexity bound for the corresponding arc length scaling algorithm, by proving a

polynomial complexity bound for the preprocessing algorithm and by using very similar arguments

to the ones of the previous section.

5. MULTIPLE DESTINATIONS AND ORIGINS; PARALLEL IMPLEMENTATION

We first note that when there is a single origin and multiple destinations, the algorithm can be

applied with virtually no change. We simply stop the algorithm when all destinations have become

the terminal node of the path P at least once. If initially we choose pi = 0 for all i, the destinations

will be reached in the order of their proximity to the origin, as shown by Prop. 3.

The case of a single destination and multiple origins is particularly interesting because it is well

suited for parallel computation in a way that Dijkstra's algorithm is not. The idea is to maintain a

common price vector p but a different path Pi for each origin i.

Briefly, the algorithm maintains CS of all the pairs (Pi,p), and the typical iteration is executed

simultaneously for all origins i. At the end of an iteration, the results corresponding to the different

origins must be coordinated. To this end, we note that if a node is the terminal node of the path of

several origins, the result of the iteration will be the same for all origins, i.e., a path extension or a

path contraction and corresponding price change will occur simultaneously for all origins. The only

potential conflict arises when a node i is the terminal path node for some origin and the path of a

16

6. Relation to Dual Coordinate Ascent

different origin is extended by i as a result of the iteration. Then, if pi is increased due to a path

contraction for the former origin, the path extension of the latter origin must be cancelled.

An additional important detail is that an origin i can stop its computation once the terminal

node of its path Pi is an origin that has already found its shortest path to the destination. For this

reason, the parallel time to solve the multiple origins problem is closer to the smallest time over all

origins to find a single-origin shortest path, rather than to the longest time.

The parallel implementation outlined above is synchronous, that is, all origins iterate simultane-

ously and the results are communicated and coordinated at the end of the iteration to the extent

necessary for the next iteration. An asynchronous implementation is also possible principally because

of the monotonicity of the mapping

p, := min {aij + Pi };
(ij)EA

see [Ber82] and [BeT89]. Synchronous and asynchronous implementations of the algorithm will be

discussed in a different paper.

6. RELATION TO DUAL COORDINATE ASCENT

We now briefly explain how the single origin-single destination algorithm can be viewed as a coor-

dinate dual ascent method. The shortest path problem can be written in the minimum cost flow

format

minimize aijxij (LNF)
(ij)EA

subject to

X Xij- xi,=si, ViEAP, (31)
{il(ij)eA} {jl(j,i)EA}

0 < xij < 1 , V (i,j) EA, (32)

where

sl = 1, Sm =-1

si=, i 1,t,

and t is the given destination.

We formulate a dual problem to (LNF) by associating a Lagrange multiplier Pi with each conser-

vation of flow constraint (31). Letting p be the vector with elements pi, i E AJ, we can write the

17

6. Relation to Dual Coordinate Ascent

corresponding Lagrangian function as

L(x,p) =- (aij + pj - Pi)xij + Pl - P.
(ij)EA

One obtains the dual function value q(p) at a vector p by minimizing L(x, p) over all flows x satisfying

the capacity constraints (10). This leads to the dual problem

maximize q(p)
(33)

subject to no constraint on p,

with the dual functional q given by

q(p) = min{L(x,p) I 0 < xij < 1, (i,j) E A} = qij(i- pi) + Pl - P, (34)
(ij)EA

where for all (i, j) E A,

(fPi -- P)=(aij + pj -Pi if aij + pj < Pi,

-0 otherwise.

This formulation of the dual problem has been used in many prior works dealing with relaxation

methods. We note that standard duality results imply that the optimal primal cost equals the

optimal dual cost.

Let us associate with a given path P = (1,il,i2 , .. ., ik) the flow

= 1 if i and j are successive nodes in P

* 0 otherwise.

Then, the CS conditions (la) and (lb) are equivalent to the usual network complementary slackness

conditions

xij < 1 i p< aij +pj V (i,j) EA, (36)

0 < xij : pi > aij + pj (i, j) E A. (37)

Equation (36) is equivalent to the condition pi < ai3 + pi for all (i, j) E A, since the constraint

xij < N is not active for any arc flow. For a pair (x,p), the above conditions together with primal

feasibility (the conservation of flow constraint (31) for all i E A/, which in our case translates to the

terminal node of the path P being the destination node) are the necessary and sufficient conditions

for x to be primal-optimal and p to be dual-optimal. Thus, upon termination of our shortest path

algorithm, the price vector p is an optimal dual solution.

We finally provide an interpretation of the algorithm as a dual ascent method. From Eqs. (34)

and (35) it can be seen that since the CS condition (la) holds throughout the algorithm, we have

qij(pi - pj) = 0 for all (i,j) throughout the algorithm, and q(p) = pi - pt. Thus a path contraction

18

7. Computational Results

and an attendant price increase of the terminal node i of P, corresponds to a step along the price

coordinate pi that leaves the dual cost unchanged. Furthermore, an increase of the origin price Pl

by an increment S improves the dual cost by 6. Thus the algorithm may be viewed as a finitely

terminating dual coordinate ascent algorithm, except that true ascent steps occur only when the

origin price increases; all other ascent steps are "degenerate", producing a price increase but no

change in dual cost.

7. COMPUTATIONAL RESULTS

The single origin-destination pair version of the algorithm without arc length scaling and with the

default initialization (P = (1), p = 0) was implemented in a code called FORPATH. Two other

codes, due to Gallo and Pallotino [GaP88], were used for comparison. They are implementations of

Dijkstra's method, called SDKSTR and SHEAP, that use a queue and a binary heap, respectively, to

store the nodes which are not yet permanently labeled. We made a single line modification to these

codes so that they terminate when the unique destination is permanently labeled. Our informal

comparison with other shortest path codes agrees with the conclusion of [GaP88] that SHEAP is a

very efficient state-of-the-art code for a broad variety of types of shortest path problems. SDKSTR is

typically less efficient than SHEAP, being a less sophisticated implementation. We did not compare

our code with label correcting methods, since these methods are at a disadvantage when there is

only one origin-destination pair.

We restricted our experiments to randomly generated shortest path problems obtained using the

widely available NETGEN program [KNS74]. Problems were generated by specifying the number of

nodes N, the number of arcs A, the length range [1, L], and a single source and sink (automatically

chosen by NETGEN to be nodes 1 and N). The times required by the three codes on a Macintosh

Plus equiped with a Radiusl6 accelerator are shown in Tables 1 and 2 (length ranges [1,10] and

[1,1000], respectively). The tables also show the proximity rank of the destination, defined as the

number of nodes that are at no larger distance from the origin than the destination; this is also the

total number of permanently labeled nodes by the Dijkstra codes.

The tables show that FORPATH is not quite as fast as SHEAP. However, the difference in the

running times is not large for the randomly generated problems tested, and it is hoped that in a

suitable parallel computing environment FORPATH will gain an advantage. The reader is warned

that the computational results of the tables are very preliminary. Clearly one can find problems where

FORPATH is vastly inferior to the Dijkstra codes in view of its inferior computational complexity.

The important question is whether there are types of practical problems for which our algorithm is

19

References

well suited. Given the novelty of the algorithm, we find the results of Tables 1 and 2 encouraging.

However, more solid conclusions on the computational merits of our algorithm must await further

research and testing with both serial and parallel machines.

N A Proximity Rank FORPATH SDKSTR SHEAP

500 2000 422 0.1997 0.8164 0.1328

500 5000 181 0.0669 0.5332 0.0840

1000 4000 962 0.6167 3.500 0.3340

1000 10000 509 0.1997 2.684 0.2676

2000 8000 1221 0.5332 11.02 0.5332

2000 20000 1762 1.117 18.85 0.9023

3000 12000 2651 1.467 28.46 1.016

3000 30000 2443 1.434 41.04 1.230

Table 1: Solution times of shortest path codes on a Mac+ using problems generated by NETGEN.

The lengths of all arcs were randomly generated from the range [1,10].

N A Proximity Rank FORPATH SDKSTR SHEAP

500 2000 130 0.0669 0.2334 0.0501

500 5000 115 0.0832 0.3833 0.0835

1000 4000 646 0.4834 2.717 0.2666

1000 10000 302 0.2332 1.933 0.2000

2000 8000 44 0.0166 0.0664 0.0332

2000 20000 1720 2.217 18.87 0.9336

3000 12000 2461 2.317 27.88 1.034

3000 30000 1950 2.050 37.23 1.199

Table 2: Solution times of shortest path codes on a Mac+ using problems generated by NETGEN.

The lengths of all arcs were randomly generated from the range [1,1000].

20

References

REFERENCES

[AM089] Ahuja, R. K., Magnanti, T. L., and Orlin, J. B., "Network Flows", Sloan W. P. No. 2059-88,

M.I.T., Cambridge, MA, March 1989 (also in Handbooks in Operations Research and Management

Science, Vol. 1, Optimization, G. L. Nemhauser, A. H. G. Rinnooy-Kan, and M. J. Todd (eds.),

North-Holland, Amsterdam, 1989).

[Ber79] Bertsekas, D. P., "A Distributed Algorithm for the Assignment Problem", Lab. for Informa-

tion and Decision Systems Working Paper, M.I.T., March 1979.

[Ber82] Bertsekas, D. P., "Distributed Dynamic Programming", IEEE Trans. on Aut. Control, Vol.

AC-27, 1982, pp. 610-616.

[Ber86] Bertsekas, D. P., "Distributed Relaxation Methods for Linear Network Flow Problems",

Proceedings of 25th IEEE Conference on Decision and Control, 1986, pp. 2101-2106.

[Ber87] Bertsekas, D. P., Dynamic Programming: Deterministic and Stochastic Models, Prentice-

Hall, Englewood Cliffs, N. J., 1987.

[BeE88] Bertsekas, D. P., and Eckstein, J., "Dual Coordinate Step Methods for Linear Network Flow

Problems", Math. Progr., Series B, Vol. 42, 1988, pp. 203-243.

[BeT89] Bertsekas, D. P., and Tsitsiklis, J. N., Parallel and Distributed Computation: Numerical

Methods, Prentice-Hall, Englewood Cliffs, N. J., 1989.

[DGK79] Dial, R., Glover, F., Karney, D., and Klingman, D., "A Computational Analysis of Al-

ternative Algorithms and Labeling Techniques for Finding Shortest Path Trees", Networks, Vol. 9,

1979, pp. 215-248.

[Dia69] Dial, R. B., "Algorithm 360: Shortest Path Forest with Topological Ordering", Commun.

A.C.M., Vol. 12, 1969, pp. 632.

[GaP86] Gallo, G., and Pallotino, S., "Shortest Path Methods: A Unified Approach", Math. Pro-

gramming Study, Vol. 26, 1986, p. 38.

[GaP88] Gallo, G., and Pallotino, S., "Shortest Path Algorithms", Annals of Operations Research,

Vol. 7, 1988.

[KNS74] Klingman, D., Napier, A., and Stutz, J., "NETGEN - A Program for Generating Large

Scale (Un) Capacitated Assignment, Transportation, and Minimum Cost Flow Network Problems",

Management Science, Vol. 20, 1974, pp. 814-822.

[Ker81] Kershenbaum, A., "A Note on Finding Shortest Path Trees", Networks, Vol. 11, 1981, p.

399.

21

References

[Pap74] Pape, U., "Implementation and Efficiency of Moore - Algorithms for the Shortest Path

Problem", Math. Programming, Vol. 7, 1974, pp. 212-222.

[Pea84] Pearl, J., Heuristics, Addison-Wesley, Reading, Mass., 1984.

[ShW81] Shier, D. R., and Witzgall, C., "Properties of Labeling Methods for Determining Shortest

Path Trees", J. Res. Natl. Bureau of Standards, Vol. 86, 1981, p. 317.

22

