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Abstract

I have added support for predicate dispatching, a powerful generalization of other dis-
patching mechanisms, to the Common Lisp Object System (CLOS). To demonstrate
its utility, I used predicate dispatching to enhance Weyl, a computer algebra system
which doubles as a CLOS library. My result is Dispatching-Enhanced Weyl (DEW),
a computer algebra system that I have demonstrated to be well suited for both users
and programmers.
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Chapter 1

Introduction

1.1 Background

1.1.1 Predicate Dispatching

Quite a few programming languages allow procedures to have multiple implemen-

tations. In Common Lisp [Ste90]’s terminology, each implementation is a method

of the same generic function, and deciding which to use in a particular situation is

dispatching. The details of dispatching vary from language to language, but it gener-

ally involves attempting to determine the most specific applicable method, where the

definitions of applicability and specificity depend on the language.

One traditional approach is type-based dispatching. In a system using that ap-

proach, every method has a tuple of types; a method applies to a tuple of arguments

iff every argument is an instance of the corresponding type (or a subtype thereof).

Also, one method is more specific than another iff its specializers are pointwise sub-

types of the other method’s. Even within this approach, there is a fair bit of vari-

ation; for instance, some languages (such as Common Lisp [Ste90], Dylan [App92],

and Cecil [CCG98]) consider all mandatory arguments’ dynamic types, but others

(including C++ [Str97] and Java [GJS96]) distinguish the first argument syntacti-

cally and semantically, considering only statically-declared types for the others. (In

some cases, C++ doesn’t even look at the distinguished argument’s dynamic type.)
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Some languages with better support for dynamic types extend the system further by

introducing predicate classes [Cha93], also called “modes” and “classifiers”; in these

languages, of which Cecil [CCG98] is a good example, every object effectively has a

(potentially dynamically changing) set of predicate types in addition to its normal

type.

In another common approach, which ML [MTH90], Haskell [PJHA+99], and re-

lated languages use, every method has a pattern which determines applicability, al-

lowing relatively fine-grained control. However, “specificity” in these languages is

simply a matter of textual ordering; a developer can inadvertently shadow a method

by defining it after another method with more general applicability.

To put it briefly, predicate dispatching [EKC98] is the best of both worlds. Like

pattern-matching, it allows fine-grained control of applicability, but like type-based

dispatching, it bases specificity on mathematical relationships rather than textual

ordering. Specifically, the idea is that every definition of a procedure has an associ-

ated predicate expression, whose truth value can depend not just on the types of the

arguments but also on the types of their contents, and even on the result of arbitrary

boolean expressions in the base language. (Predicate dispatching is more powerful

than predicate classes because the expressions can refer to multiple arguments.) It

is cleaner than pattern matching in that the system considers logical implication

rather than textual ordering when choosing between multiple applicable procedures.

Furthermore, other techniques do not allow applicability to depend on relationships

between arguments, and lack efficient ways to specify disjunctions of (simple or com-

pound) tests.

1.1.2 The Common Lisp Object System

In the words of John Foderaro [Fod91], Lisp is “a programmable programming lan-

guage” in that it is extremely extensible by design. One way in which this property

manifests itself is that most popular dialects, including ANSI Common Lisp, support

a powerful macro facility. Because Lisp has such a uniform syntax, programs in such

dialects can define new special forms as easily as new functions. (By contrast, most
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other languages would require modifying the implementation, making such programs

less portable and harder to build.)

ANSI Common Lisp’s macro system is by no means its only avenue of extensi-

bility; the language also includes a powerful object system, imaginatively named the

Common Lisp Object System (CLOS) [BDG+88]. Even without extensibility, CLOS

is very rich; among other things, it supports multiple inheritance, generic functions

which dynamically dispatch on all of their arguments, dynamic class redefinition, and

several means of method combination. On top of all that, CLOS has a Meta-Object

Protocol (MOP) [KdRB91], which promotes classes, methods, and generic functions

to first-class “meta-objects,” making it possible to obtain a wide range of custom

behavior by subclassing the standard meta-object classes.

1.1.3 Weyl

One interesting piece of software written in CLOS is Weyl [Zip93], a computer al-

gebra system that is based on the principles of category theory and that tags every

value with an appropriate domain. The traditional design of computer algebra sys-

tems consists of a pile of predefined code and an interface for interactive use; if users

can write additional code at all, they typically have to use a proprietary extension

language which is quirky or provides little general-purpose functionality. The pop-

ular programs Mathematica [Wol99] and Maple [Kam99] both have such extension

languages.

However, Weyl’s author, Richard Zippel, wrote the base code as a set of publically

available CLOS classes and methods, providing full Common Lisp as an extension

language and allowing the system to double as a class library for Lisp software that

manipulates mathematical objects. It differs from Macsyma [Mac95], a historically

important algebra system written in Lisp, by using Lisp as its extension language and

by operating at a higher (domain-based) level having been designed to be useful as a

library.

Unfortunately, Weyl is still not quite as extensible as it could be: many inter-

esting operations (including, for instance, integration) have special cases that do not
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correspond to a simple intersection of operand types. As a consequence, code imple-

menting such an operation has to check for such cases directly, which is less than ideal

as far as extensibility goes: if a user of the system finds an additional case interesting,

that user has to copy the code that checks for special cases of the operation and insert

a test for the relevant case. With predicate dispatching, on the other hand, the user

would simply be able to define a method whose predicate corresponds to the case.

1.2 Organization

Chapter 2 discusses related work. Chapter 3 describes the interface to my code.

Chapter 4 presents some examples that motivate and clarify the remaining material.

Chapter 5 discusses the design issues I considered. Chapter 6 describes my implemen-

tation of predicate dispatching in more detail. Chapter 7 discusses its application to

symbolic mathematics. Chapter 8 lists my contributions. Chapter 9 discusses future

directions.

14



Chapter 2

Related Work

Discussion of other computer algebra systems appears in Section 7.1.

2.1 Predicate Dispatching

Ernst et al. [EKC98] introduce the notion of predicate dispatching; their paper defines

its semantics in terms of an abstract syntax, and demonstrates its generality with a

number of examples (whose equivalents in my system’s syntax appear in Chapter 4).

The authors also advertise a small implementation (Güd) which supports their core

syntax and some useful syntactic sugar.

Chambers and Chen [CC99] present an algorithm for producing efficient dispatch

trees for predicate-dispatched multimethods. Their work is in the context of the

Vortex optimizing compiler for Cecil, and takes advantage of static type information

which I do not have available; however, much is still applicable, and could be used to

improve the performance of my system.

Bachrach and Burke [BB] discuss building dispatch trees at runtime, limiting the

contents of the trees to methods which have actually been applicable so far. Their

work is also in terms of compilation, and most relevant to the case of per-call-site

dispatching trees, but could potentially benefit my system as well.
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2.2 Other Dispatching Approaches

Languages which do not support predicate dispatching may still support some other

kind of dispatching; here are some of the more interesting approaches.

CLOS [BDG+88] has a relatively rich type-based system even without the MOP.

Unlike many popular languages, it is multiply-dispatched, considering all mandatory

arguments’ dynamic types. In addition, it supports eql specializers, which restrict

applicability to cases where the argument in question is a particular object, and

forms of method combination that let multiple applicable methods cooperate with

each other to a limited degree.

Dylan’s [App92] actual dispatching system is purely type-based. However, its

definition of “type” is fairly broad; the language includes a rich, but unfortunately

inextensible, type system supporting multiple inheritance, singleton types (akin to eql

specializers), union types (retroactive supertypes), and limited types (with constraints

on range or element type).

Cecil [CCG98] is multiply-dispatched and has a prototype-based object system

that automatically gives it something resembling eql specifiers. (It does not prevent

people from extending objects used in that fashion, though.) In addition, it supports

predicate classes [Cha93], which allow objects to have dynamically changing sets of

predicate types in addition to their static types; dispatching can consider predicate

types.

Mathematica [Wol99], meanwhile, is an sophisticated example of a pattern-based

language: It does not require all the patterns (and bodies) to appear in the same

place, so users can extend system functions. It has an elaborate system of precedence

which makes textual order relatively unimportant (though still, alas, relevant in some

cases). It even allows users to conditionalize applicability on predicate expressions.

On the other hand, it does not directly support any sort of class-based subtyping.
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Chapter 3

System Specification

Note: Readers not already familiar with predicate dispatching may wish to read the

next chapter first.

3.1 Syntax

The syntax for methods of a predicate-dispatched generic function is similar to that

for methods of standard CLOS generic functions:

(defpdmethod name lambda-list predicates . body)

Name, lambda-list, and body are exactly as in normal defmethod; in particular,

lambda-list can contain specializers (restricting mandatory arguments to particular

types or values), which allow the system to take advantage of native CLOS dispatch-

optimizing mechanisms. Predicates is a (possibly empty) literal list of Lisp expres-

sions.

3.2 Semantics

The predicates are evaluated as if they appeared in the body, except that assignment

to normal arguments (as opposed to &aux variables) leads to undefined behavior.

(However, a method’s predicates effectively share &aux variables with each other and

its body, so assigning to them is a valid way to pass information; see Section 5.7.)
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For a predicate-dispatched method to be considered applicable to a given vector

of arguments, each of the method’s predicates must return true (non-nil) given the

argument values. The system considers a method to be more specific than another

method iff it can determine that the first method’s predicates logically imply the

second’s; it honors and, or, not, eql (where one argument is constant), typep (where

the type is constant), and accessors. It considers conventionally-defined methods less

specific than methods defined with defpdmethod, which is not necessarily correct.

The system does not guarantee when or how often it will evaluate a method’s

predicates, save that it will evaluate them in order and stop as soon as it finds one

that evaluates to nil.

3.3 Differences from the Reference System [EKC98]

Although I based my design on Ernst et al.’s reference system, it differs in some

respects:

• My system extends an existing language (Lisp), whereas theirs defines a new

language for specifying predicates.

• My system does not check for ambiguity. (See Section 5.5.)

• My system does not ensure ahead of time that there is always an applicable

method. (See Section 5.6.)

• My system does not allow predicates to bind variables for bodies; instead, it

allows them to assign to &aux-bound variables. (See Section 5.7.)

• My system does not (directly) handle pattern matching; however, it would be

possible to add support cleanly. (Again, see Section 5.7.)

• My system does not have named predicate types; macros can do the same job.

18



3.4 Other Known Issues

• Efficiency could be better.

• The system assumes that all method definitions appear at toplevel.

• It can get specificity wrong when code mixes defmethod and defpdmethod, be-

cause it treats anything with a predicate as more specific than anything without.

• Invoking a predicate-dispatched generic function can make CMUCommon Lisp [Mac92]

repeatedly print “Note: Deleting unused function NEXT-METHOD-P.”

• The system does not work properly on all CLOS implementations; see Sec-

tion 6.4.
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Chapter 4

Basic Examples

Except where otherwise noted, I took the examples here from [EKC98].

Here is how one might merge two lists into a list of pairs:

(defpdmethod zip (l1 l2 )
((consp l1 )
(consp l2 ))

(cons (cons (car l1 ) (car l2 ))
(zip (cdr l1 ) (cdr l2 ))))

(defpdmethod zip (l1 l2 )
((or (null l1 ) (null l2 )))
nil)

These two methods cover all possible pairs of lists with no overlap: the first applies

when neither is empty (as predicates are implicitly anded together), and the second

applies when either is.

This example is actually simple enough for standard CLOS’s multiple dispatching

to be able to handle it:

(defmethod zip2 ((l1 cons) (l2 cons))
(cons (cons (car l1 ) (car l2 ))

(zip2 (cdr l1 ) (cdr l2 ))))

(defmethod zip2 (l1 l2 )
nil)

(The first method is more specific, and so overrides the second when both apply.)
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However, CLOS’s standard dispatching cannot handle everything predicate dis-

patching can. One simple case it cannot handle is dispatching based on parity, as in

the Collatz “hailstone” function [Lag85]:

(defpdmethod hailstone (n)
((evenp n))
(/ n 2))

(defpdmethod hailstone (n)
((oddp n))
(+ (∗ n 3) 1))

(defun hsseq (n)
(if (= n 1)

’(1)
(cons n (hsseq (hailstone n)))))

(This example does not appear in [EKC98].)

In general, predicates are useful when one wants to pick a method based on the

contents of objects rather than just their types. The following code defines a hierar-

chy of expression types (shown in Figure 4-1), and then defines the constant-fold

operation and gives special cases for adding and multiplying two constants:

atomic-expr

var-ref int-const

binop-expr int-plus int-mul

expr binop

Figure 4-1: Example hierarchy of expression types

(defclass expr () ())

(defclass atomic-expr (expr) ())
(defclass var-ref (atomic-expr) ()) ;; would have slots in practice.
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(defclass int-const (atomic-expr)
((value :reader value-of )))

(defclass binop () ())
(defclass int-plus (binop) ())
(defclass int-mul (binop) ())

(defclass binop-expr (expr)
((op :reader op-of )
(arg1 :reader arg1-of )
(arg2 :reader arg2-of )))

(defpdmethod constant-fold (e)
() ;; default method.
e)

(defpdmethod constant-fold ((e binop-expr))
((typep (op-of e) ’int-plus)
(typep (arg1-of e) ’int-const)
(typep (arg2-of e) ’int-const))

(make-instance ’int-const :value (+ (value-of (arg1-of e))
(value-of (arg2-of e)))))

(defpdmethod constant-fold ((e binop-expr))
((typep (op-of e) ’int-mul)
(typep (arg1-of e) ’int-const)
(typep (arg2-of e) ’int-const))

(make-instance ’int-const :value (∗ (value-of (arg1-of e))
(value-of (arg2-of e)))))

In principle, one could also have explicit types like “sum of two constants,” but that

would lead to an explosion of types. Predicates make this sort of code easier to

understand and easier to extend with more elaborate cases such as the following,

which handles the case of sums where one term is zero:

(defpdmethod constant-fold ((e binop-expr) &aux (a2 (arg2-of e)))
((typep (op-of e) ’int-plus)
(typep (arg1-of e) ’int-const)
(zerop (value-of (arg1-of e))) ;; guarded by previous check
(not (typep a2 ’int-const))) ;; avoid possible ambiguity

a2 )
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(defpdmethod constant-fold ((e binop-expr) &aux (a1 (arg1-of e)))
((typep (op-of e) ’int-plus)
(not (typep a1 ’int-const)) ;; avoid possible ambiguity
(typep (arg2-of e) ’int-const)
(zerop (value-of (arg2-of e))) ;; guarded by previous check

a1 )

Note that these methods only apply when the non-zero terms are not integer con-

stants. (They could be variable references or compound expressions, say.) Without

this restriction, present in the original example, there would be no unique most specific

method for a sum where one term is zero and the other term is an integer constant;

zero is more specific than some integer constant, but some integer constant is more

specific than anything. On the other hand, this is really a case of harmless ambiguity,

as both methods would give the same result on such input; Section 5.5 discusses this

issue further.

As I mentioned, predicate dispatch also generalizes pattern matching. Patterns

whose elements have fixed positions translate directly into predicates, as in the above

code for constant-fold. However, the system can also accommodate patterns with

variably-positioned elements with a bit of external help. The following code for rewrit-

ing products containing two sines illustrates that approach:

(defpdmethod linearize ((expr ge-times) &aux (terms (terms-of expr)) mi)
((setf mi (match-or-nil terms ’(∗ sin? ∗ sin? ∗))))
(let ((x (arg-of (second mi))) (y (arg-of (fourth mi))))

(make-ge-times (domain-of expr)
(append (list 1/2 (− (cos (− x y)) (cos (+ x y))))

(first mi) (third mi) (fifth mi)))))

In this example, mi stands for “match information”; because it is an &aux-bound

variable, the predicate’s assignment to it is visible in the body. (match-or-nil is a

fictitious function that returns a list of subexpressions on success and nil on failure;

I take advantage of the fact that setf returns the last value supplied.)
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Chapter 5

Design Considerations

5.1 General Design Principles

When developing my system, I tried to satisfy several principles, which I list in

decreasing order of priority:

• Copying Ernst et al.’s reference system [EKC98].

• Making the interface simple, and consistent with the rest of CLOS.

• Making the code portable across CLOS implementations.

• Keeping the implementation simple enough to complete.

• Making the code reasonably efficient.

Unfortunately, the fact that I was dealing with an interpreted language interfered

with some of these goals; in particular, I had to give up early detection of ambiguity

or insufficient coverage.

5.2 Predicates as Qualifiers

In standard CLOS, methods have two attributes that affect dispatching: specializers

and qualifiers. Specializers are associated with mandatory arguments and determine
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applicability; qualifiers are associated with entire methods and affect method com-

bination. (For instance, standard method combination uses the qualifiers :before,

:after, and :around.) CLOS assumes that those are the only relevant attributes; if

I define a method with the same specializers and qualifiers as another method, the

system will discard the original method.

Therefore, I had three options. First, I could treat predicates as specializers, which

would require arbitrarily assigning them to mandatory arguments and dealing with

the one-specializer-per-argument limit. Second, I could treat predicates as qualifiers,

even though only specializers are supposed to affect applicability. Finally, I could

treat predicates as a third distinguishing attribute, hacking everything necessary to

honor it at the inevitable cost of some portability. I chose to treat predicates as

qualifiers for the sake of simplicity; unfortunately, that approach turned out to break

on one implementation I tried.1 (It works on at least three others, though.)

5.3 Syntax

Although the MOP is fairly versatile, it provides no hooks into defmethod that would

allow qualifiers to appear after lambda lists. Because lambda lists provide useful con-

text for predicates, I introduced a wrapper allowing predicates to appear in between

lambda lists and bodies. Because my wrapper took a different syntax from defmethod,

a different name was in order; I chose defpdmethod, where pd of course stands for

“predicate dispatched.” (defpmethod was also a possibility, and easier to pronounce

but also easier to typo.) As for its precise syntax, I considered supporting a new

lambda-list keyword (perhaps &when or &predicate) or a declare-like construct,

but decided to take a simpler approach because I saw no particularly compelling

reason to add another context-specific syntax extension.

In keeping with that philosophy (simplicity of interface), I also chose to allow

developers to represent predicates as arbitrary Lisp expressions rather than making

them learn a special language for predicates or deal with syntactic restrictions; after

1Allegro Common Lisp 6.0 [Fra00]; see Section 6.4.
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all, Lisp already has reasonable support for type-checking, boolean combination, etc.

As a side bonus, this design made it easy to write a prototype that dealt with every-

thing but specificity ranking. One consequence of this decision is that the structure

of predicates is implicit rather than explicit; if the system’s internal representation

for a particular sort of test improves, developers will not necessarily have to modify

their code to take advantage of the improvement. On the other hand, the analyzer

is not especially clever, so developers may inadvertently write code that it handles

poorly. (It may end up being unable to determine implication relations even when

they exist, whereas it would have been able to had one or both predicates been writ-

ten differently. Note that this issue just affects determination of relative specificity,

which is uncomputable in the general case anyway.)

The only other major syntactic issue is that defpdmethod takes a list of predicates

(which it implicitly intersects) rather than a single predicate. Given that t and

explicit intersection are both legal, this is purely a surface issue; my only reason

for taking a list was that such an arrangement worked better for my prototype,

which approximately judged specificity by counting predicates. (That approach was

extremely crude, but allowed me to test some parts of the system early on.)

5.4 Modularity

In order to avoid interfering with the existing environment, I put everything in

its own package (predicate-dispatch). Moreover, I created a new generic func-

tion type (gf-with-predicate-dispatching) and a new method type (predicate-

dispatched-method), and specialized my method redefinitions on them. Because

CLOS’s internals are object-oriented, this addition took very little work; unfortu-

nately, it requires more of a MOP than some implementations have. (See Section 6.4

for details.) That issue does not terribly concern me, since I need to assume a proper

MOP elsewhere anyway.
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5.5 Ambiguity

Ernst et al. [EKC98] ensure that there is always a unique most specific method. In

many cases, particularly in the domain of mathematics, their concern is unwarranted.

In such cases, anything that applies is correct, and anything other than the default

method is a win, so overlapping non-default methods cause no problems. For instance,

one interesting problem is integration, a partial treatment of which appears in Sec-

tion 7.2. If the user-visible code were a generic function rather than a wrapper and it

had an additional method for integrals with numerical limits, that method would be

ambiguous with methods specialized on particular sorts of integrand; however, that

would not be a problem because the system would end up getting the same answer

either way.

On the other hand, there are also cases where ambiguity really is a problem, so

catching it can be useful. For instance, consider the case of a generic function for

transferring funds between bank accounts, where certain types of account require

special treatment. If I wanted to transfer money from an account of type X to an

account of type Y, then neither a method specialized only on a source of type X nor

a method specialized only on a destination of type Y would be appropriate.

The best solution would probably be to give each predicate-dispatched generic

function a flag indicating whether it can have ambiguous methods; for safety’s sake,

they would be illegal by default. My system performs no ambiguity checking as of

yet, however.

5.6 Coverage

Ernst et al. also ensure that there is an applicable method at every call site, which

they can readily do because their system is compiler-based. Although my system

could also benefit from such checks, working them in would be difficult; some sort of

stand-alone checker that developers could pass their code through might make more

sense.
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5.7 Communication via &aux Variables

Common Lisp allows programmers to replace let* around a method body with

&aux in its lambda list. I extended this feature for predicate-dispatched methods;

a method’s predicates effectively share bindings of &aux variables with the method

body and each other (but not with other methods). I considered special-casing dis-

junctions à la Ernst et al. [EKC98], but decided against it; the exception makes

sense in their system because they let predicates bind variables, whereas I merely let

them assign to (shared) variables that are already bound. One use of this extension

is for performance; binding &aux variables to expressions which appear in multiple

predicates, or in the body and some predicate, avoids making the system recompute

them.

Another, more interesting, use is communication; since the variables are shared,

an assignment in one predicate is visible in later predicates and the body. Thanks

to this feature, usefully supporting pattern-matching (for example) would not require

modifying my system. Somebody could simply write a helper function that takes

a pattern and whatever it should match against and returns either nil (indicating

no match) or a description of the match that a predicate could assign to an &aux

variable.

5.8 Lazy Predicate Checking

Letting predicates pass information to their associated method bodies led to certain

architectural constraints. In particular, it made it impossible for compute-applicable-

methods (a MOP function I specialize) to check predicates; my definition of compute-

applicable-methods instead sorts methods based on implication (arbitrarily order-

ing methods with logically independent predicates) and leaves the checking up to the

wrapper make-method-lambda uses. That arrangement turned out to have an unex-

pected advantage: when the wrapper goes through the sorted list, it can stop checking

predicates as soon as it finds a hit. (Invoking call-next-method or next-method-p
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within the body would force it to resume until it found another hit, but still not

necessarily go all the way through the list.) In addition, it does not interfere with

applicable-method caching, so it is also a performance win in that respect.

5.9 Mutation and Specificity

Allowing predicates to modify variables means that the implication checker ought to

consider ordering. To take a contrived example, if a is an auxilary variable,

(and (eq a 2) (setf a 2))

implies

(and (evenp a) (setf a 2))

but

(and (evenp a) (setf a 2))

implies

(and (setf a 2) (eq a 2)).

As it happens, my system is too conservative about predicates encapsulating raw

code for that problem to arise; it sees no implication relationship between any of the

above predicates. A better way to avoid having to worry about ordering would be

to impose usage restrictions (checked at method definition time): predicates may not

assign to &aux variables which already have assignments or dereference unassigned

&aux variables, where the default of nil does not count as an assignment.
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Chapter 6

Implementation

6.1 Overview

defpdmethod is a macro which expands into a call to defmethod, using the code in

pc-build.lisp (Section A.5) to convert the supplied specifiers and predicates into

an object of class predicate-qualifier (described in Section 6.2), which it supplies

to defmethod as a qualifier. It also contains some code to deal with sharing &aux

variables. Like all of the top-level code, it appears in predicate-dispatch.lisp

(Section A.2), which you can read for more details.

defmethod in turn calls down to make-method-lambda, which mostly generates a

lot of boilerplate to check predicates; although putting all that code in every method

no doubt leads to some memory bloat, my semantics for &aux leave little choice. As

discussed in Section 5.8, this code checks predicates on demand, so it should win on

time even if it loses on space.

Invoking a predicate-dispatched generic function triggers some other parts of the

code. First, the system calls the new definition of compute-applicable-methods-using-

classes, and perhaps also compute-applicable-methods. Lacking places to store

&aux-variable values, neither can usefully determine eligibility; however, they still do

useful work by sorting the predicate-blind list of applicable methods by implication.

The system determines whether a predicate p implies a predicate q by constructing

¬p∨q and using the code in normalize-or.lisp (Section A.4) to attempt to simplify
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it to *true*.

Once the system has the list, it uses compute-effective-method to turn it into

an effective method form. My implementation differs from the standard one in not

supporting standard method combination (:around, :before, and :after), and in

passing the most specific method along with the other methods; my architecture

requires the second change so that the code make-method-lambda issues can check

its predicate.

6.2 Representations

As mentioned in Section 5.2, I turn predicates into qualifiers. Specifically, I turn

them into instances of predicate-qualifier, which contains an object descended

from class predicate (which I shall describe shortly) and an integer indicating how

many &aux variables to allocate space for. Class predicate is the abstract ancestor of

all predicate types; Figure 6-1 shows the entire hierarchy, which contains nine concrete

and three abstract classes. For instance, my system would turn the predicate in

(defpdmethod ∗test∗ ((foo standard-object) (bar standard-class))
((eql (class-of foo) bar))
t)

into the object

#<pq 0 #<and #<proj 0 #<type STANDARD-OBJECT>>
#<proj 1 #<type STANDARD-CLASS>>
#<Interpreted Function (LAMBDA

(PREDICATE-DISPATCH::AUXV FOO BAR
&REST #:G1004)

(DECLARE
(IGNORE #:G1004
PREDICATE-DISPATCH::AUXV))

(EQL (CLASS-OF FOO) BAR))
{480DBF91}>>

The code that constructs predicates from expressions starts out by analyzing them

in terms of another hierarchy, which Figure 6-2 presents. In addition, as mentioned

in Section 5.4, I subclass standard-generic-function with gf-with-predicate-
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dispatching and standard-method with predicate-dispatched-method to avoid

interfering with existing CLOS code; aside from that, I just work with standard types.

(There are some places where symbols can only take on values from a small finite set;

I’ll discuss them in the next section.)

6.3 Analyzing Implication

The above explanation should suffice for most of my code. However, normalize-or.lisp

(Section A.4) deserves additional discussion; it is relatively complicated because it

deals with implication. (p ⇒ q is equivalent to ¬p∨ q; proving that the latter expres-

sion is always true allows me to conclude that the former is.)

My system starts out by rewriting the given predicate in disjunctive normal form,

which may entail duplicating some subpredicates. This process yields a predicate

with three levels: from the bottom up, the levels are simple terms (which may be

negated, but are not compound), purely conjunctive predicates (PCPs) (conjunctions

of terms), and full predicates (disjunctions of purely conjunctive predicates).

The code, in turn, has five levels. At the top, normalize-predicate maps full

predicates to full predicates, using a loop that builds its result up from purely con-

junctive predicates. That loop, in turn, contains an inner loop that passes the PCP to

be added along with each existing PCP to compute-safe-patch, which determines

their union’s maximal PCPs. compute-safe-patch contains more (implicit) loops

that get its information from analyze-term, which takes a simple term and a PCP

and returns an analysis (described later in this section). analyze-term contains a

final implicit loop, which passes pairs of simple terms to compare-terms and gets

back relations (also described later in this section).

There are five possible analyses of a simple term with respect to a PCP:

extra: Not (known to be) inconsistent or redundant with the given PCP.

fatal-mismatch: Inconsistent with some term of the PCP, and not (known to be)

complementary with it.
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match: Equivalent to some term of the PCP.

mismatch: Complementary to some term of the PCP, and not (known to be) incon-

sistent with any other terms.

weak: Redundant given the PCP, but not (known to be) equivalent to any term.

There are also seven possible relations between the simple terms p and q: same

(p ⇔ q), opposite (p ⇔ ¬q), forward (p ⇒ q), backward (q ⇒ p), exclusive

(p ⇒ ¬q), comprehensive (¬p ⇒ q), and nil (no known relation).

6.4 Portability

In general, I tried to write my code so that it would work on any CLOS implementation

with support for the full MOP. However, I was only able to get it to work on three:

CMU Common Lisp [Mac92] (2.4.x and 2.5.x), Allegro Common Lisp [Fra00] (5.0

but not 6.0), and GNU Common Lisp [Sch01] (for which I had to build Portable

CommonLoops [BKK+86]).

Allegro Common Lisp 6.0 seems unwilling to deal with passing predicates off as

qualifiers: it only accepts non-standard qualifiers in conjunction with non-standard

method combinations, and I was unable to find a usage of define-method-combination

that would satisfy it. (A method combination definition involves classifying methods

into a statically defined set of groups, and Allegro objects to putting two methods

with identical specializers in the same group.)

The other two implementations I tried (CLISP 2000–03–06 [HS00] and Poplog

15.53 [Slo90]), meanwhile, would not let me subclass standard-generic-function

because it was a built-in-class rather than a standard-class. (Neither seems to

have heard of funcallable-standard-class.)
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Chapter 7

Symbolic Mathematics

One application area in which predicate dispatching can be particularly useful is

symbolic mathematics, which exhibits a lot of special cases that do not correspond

well to combinations of types.

7.1 Popular Software

The two leading programs for symbolic mathematics (as opposed to numerical com-

putation) are Maple [Kam99] and Mathematica [Wol99]; Macsyma [Mac95] is also

historically significant. Although all three work well for symbolic calculations, their

extension languages leave something to be desired; as such, none is a great platform

for programs that deal with mathematical objects. (As you may recall, Section 1.1.3

discusses Weyl, which takes a more balanced approach.)

7.1.1 Macsyma

Macsyma started out as part of a U.S. Department of Energy project in the late 1960s,

but has survived to this day because it continues to be useful for many problems. It

is a Lisp program, but its interface uses a separate extension language with an infix

syntax akin to typical mathematical notation. Needless to say, it supports anonymous

functions, albeit with dynamic scoping. It lacks dispatching per se, but compensates
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by providing a pattern-substitution facility.

Although Macsyma is a good program, it suits users much better than developers.

For one thing, although it is written in Lisp, it predates object-oriented programming

by well over a decade, so developers cannot cleanly extend its built-in functions.

(They can define pattern rules, but those are somewhat arcane and serve a somewhat

different purpose. On the other hand, developers can take advantage of CLOS when

adding wholly new functions.) Also, it relies too much on global parameters to work

well as a library.

7.1.2 Maple

In the early 1980s, researchers at the University of Waterloo in Canada set out to pro-

duce a computer algebra system that would run reasonably on relatively inexpensive

hardware. (Previous systems effectively required dedicated mainframes.) Its exten-

sion language is similar to Macsyma’s, but a bit more sophisticated; it supports not

only anonymous functions but also modules, lexical scope, and optional type-checking.

It supports dispatching only in that a few built-in functions will dispatch on the type

of a single argument; however, like Macsyma it has a separate pattern-substitution

facility.

Again like Macsyma, Maple is good for users but not all that great for developers.

Because its (C) source is not available, developers can extend the system only in its

own language, which is decent enough but not quite the same as anything else. Also,

it lacks true dispatching; the closest it has is pattern substitution, with the caution

“It is the responsibility of the user to make sure that the pattern is not overlapping.”

Its effective monolinguality also detracts from its utility as a library.

7.1.3 Mathematica

Mathematica is the youngest popular program under consideration, dating back only

to the late 1980s. Whereas Macsyma and Maple both combine pattern-matching with

monolithic functions, Mathematica expresses everything in terms of rewrite rules. As
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such, it essentially amounts to a huge term-rewriting system, which is an interesting

design choice. In order to get the most out of that design, it defines relatively complex

heuristics for ranking rules in terms of specificity, though still does not appear to tackle

actual implication.

As with Maple, Mathematica’s source is unreleased C, so the system is extensible

only in its own language and relatively unsuitable as a library for other software. Also,

its rewrite-rule-focused language, though surprisingly versatile (and clearly Turing-

complete), is not the right tool for every problem; as such, even examples intended

to show it off resort to various kludges. (For instance, page 228 of [Mae96b] suggests

faking call-next-method by conditionalizing on a global variable which the extend-

ing method temporarily sets to false.) It also suffers from a lack of non-structural

subtyping.

7.2 Example: Symbolic Integration

Note that all three of the above systems, despite their differences in design, support

some form of pattern matching. The reason for this is that there are quite a few

mathematical functions and operators which have simple values only in certain special

cases; a lot of the time, the special cases correspond poorly to intersections of natural

types. One particularly good example of this phenomenon is symbolic integration.

pd-integration.lisp (Section B.1) contains my implementation of integration in

Dispatching-Enhanced Weyl (DEW). Its external interface is int, which calls down

to integral via either definite-integral or indefinite-integral, depending

on whether the caller specified limits. integral does the actual work; by default,

it constructs an object of type ge-integral (where ge is Weyl’s abbreviation for

“general expression”), but there are also a number of specialized methods which yield

more useful results, such as the one that handles exponentials with constant bases:

(defpdmethod integral ((expr ge-expt) var
&aux (base (base-of expr)) (exp (exponent-of expr)))

((free? base var)
(linear? exp var))
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(if (= base 1)
(/ exp (deriv base var))
(/ (make-ge-expt (domain-of expr) base exp) (log base) (deriv base var))))

Note that the only method here that can get by without predicates is the one that

simply distributes integration over addition:

(defpdmethod integral ((expr ge-plus) var) ()
(make-ge-plus (domain-of expr)

(mapcar (lambda (exp)
(integral exp var))

(terms-of expr))))

This issue may help explain why standard Weyl lacks support for integration.

7.3 Example: The Struve H Function

Programming in Mathematica [Mae96b] uses the Struve function Hν(z) to demon-

strate how to implement support for a new special function in Mathematica (which

I target because it is the most sophisticated of the three programs discussed in Sec-

tion 7.1). Maeder’s code deals with easy-to-compute special cases, series expansion,

numerical evaluation, differentiation, and formatting. Most of this code translates

well into DEW; my translation appears in Section B.2. I had to omit symbolic series

expansion because Weyl does not (yet?) support it, and differentiation and formatting

because it was not always clear how to treat symbolic functions of multiple arguments.

7.4 Current Limitations

Although DEW has the makings of an excellent computer algebra system, it is not

quite there yet. Its most serious problem is that its mathematical library is much

smaller than other systems’. Actual pattern-matching sugar would also come in handy

in some cases, such as simplifying products where the relevant terms may be mixed

between irrelevant terms. One final issue is that DEW only deals with Lisp’s prefix

syntax, which some mathematicians find awkward.
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Chapter 8

Contributions

I have portably extended CLOS with predicate dispatching, making its advanced

functionality available to a wide range of users. I have additionally contributed to

the computer algebra community by making this functionality available to Weyl,

yielding an even more interesting system.
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Chapter 9

Future Directions

I plan to add examples and test cases to make sure my code works in a wide range

of situations, and to improve my existing examples, particularly integration. As it

happens, integration has the problem that it is often necessary to fall back on heuris-

tics, which may require backtracking if chosen poorly; however, it may be possible to

handle that with judicious use of call-next-method.

If time permits, I will add other features to the general predicate dispatch code.

Here’s what I have in mind, in decreasing order of priority:

• Write code to produce custom dispatching trees, which should take care of the

majority of the issues listed in Section 3.4. Figure out if adding new methods

requires rebuilding the trees from scratch.

• Provide a reasonable syntax for specifying predicates by means of patterns.

• Enhance the predicate type system. (Numeric comparison could turn out to be

useful, for instance.)

I might also give DEW an alternate front-end supporting conventional (infix)

algebraic notion for input, since that is much more conventional for mathematics.
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Appendix A

Base system source

A.1 pd-package.lisp

(make-package :predicate-dispatch :use ’(:lisp
#+allegro :mop
#+(and CLOS (not POPLOG)) :clos
#+(and PCL (not CMU)) :pcl))

(in-package :predicate-dispatch)

#+CMU (shadowing-import ’(mop:compute-applicable-methods
mop:compute-applicable-methods-using-classes
mop:compute-discriminating-function
mop:compute-effective-method
mop:find-class
;;mop:find-method-combination
mop::funcallable-standard-class
mop:generic-function-method-combination
mop:generic-function-name
mop:make-method-lambda
mop:method-function
mop:method-qualifiers
mop:method-specializers))

(export ’(defpdmethod gf-with-predicate-dispatching
predicate-dispatched-method))

(provide ’pd-package)

A.2 predicate-dispatch.lisp

(require ’pd-package)
(in-package :predicate-dispatch)
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(require ’pc-build)

;; Known issues with this code:
;; * It’s not particularly efficient.
;; * It assumes all method definitions appear at toplevel.
;; * It has bogus semantics for specificity. (Mostly fixed, but bogus
;; behavior can still occur when code mixes defmethod and defpdmethod.)
;; * CMUCL spews "Note: Deleting unused function NEXT-METHOD-P."

(defclass gf-with-predicate-dispatching (standard-generic-function)
()
(:metaclass funcallable-standard-class)
(:default-initargs :method-class (find-class ’predicate-dispatched-method)))

(defmethod update-instance-for-different-class :before
(old (new gf-with-predicate-dispatching) &rest junk)
;; AFAICT, change-class ignores default initargs.
(declare (ignore junk))
(unless (slot-boundp old ’method-class)

(setf (slot-value new ’method-class)
(find-class ’predicate-dispatched-method))))

(defclass predicate-dispatched-method (standard-method)
())

;; Turn the predicate list into a qualifier. This approach has two
;; major advantages:
;; * There’s a portable way to pull the predicate list back out.
;; * It doesn’t yield "redefinitions" with identical specializers and
;; qualifiers but different predicates.

(defmacro defpdmethod (name lambda-list pred-list &rest body)
(ensure-generic-function name

:generic-function-class
’gf-with-predicate-dispatching)

(let ((auxtail (member ’&aux lambda-list))
(pred (build-predicate lambda-list pred-list)))

(if auxtail
(do ((auxvars (cdr auxtail) (cdr auxvars))

(index 0 (1+ index ))
(let-clauses nil))

((null auxvars)
‘(defmethod ,name ,pred ,(ldiff lambda-list auxtail)

(let ,let-clauses ,@body)))
(push ‘(,(car-or-identity (car auxvars)) (aref auxv ,index ))

let-clauses))
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‘(defmethod ,name ,pred ,lambda-list ,@body))))

(defmethod predicate-of ((method standard-method))
(declare (ignore method))
∗true∗)

(defmethod pq-of ((method predicate-dispatched-method))
(find-if #’predicate-qualifier? (method-qualifiers method)))

(defmethod predicate-of ((method predicate-dispatched-method))
(predicate-of (pq-of method)))

(defun sort-methods (methods)
(stable-sort (copy-list methods) #’implies? :key #’predicate-of))

(defmethod compute-applicable-methods-using-classes
((gf gf-with-predicate-dispatching) classes)
(multiple-value-bind (methods memoizable)

(call-next-method)
(values (sort-methods methods) memoizable)))

(defmethod compute-applicable-methods ((gf gf-with-predicate-dispatching) args)
(sort-methods (call-next-method)))

(defmethod make-method-lambda ((gf gf-with-predicate-dispatching)
(method predicate-dispatched-method)
lambda-expression
environment)

‘(lambda (args remaining-methods &optional auxv)
(,(call-next-method gf method

‘(lambda (&rest args)
(let ((next-auxv nil))

(labels ((find-next-method ()
(if remaining-methods

(multiple-value-bind (applies? av)
(let ((pq (pq-of (car remaining-methods))))

(evaluate-predicate
(predicate-of pq) args
(make-array (auxv-count-of pq)

:initial-element nil)))
(cond (applies? (setf next-auxv av)

t)
(t (pop remaining-methods)

(find-next-method))))
nil)))

(cond (auxv
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(apply #’(lambda ,(cadr lambda-expression)
(labels ((next-method-p ()

(or next-auxv (find-next-method)))
(call-next-method (&rest cnm-args)

(unless (next-method-p)
(error "No next method for ˜A."

’,(generic-function-name
gf )))

(funcall (method-function
(car remaining-methods))

(or cnm-args args)
(cdr remaining-methods)
next-auxv)))

,@(cddr lambda-expression)))
args))

((find-next-method)
(funcall (method-function (car remaining-methods))

args (cdr remaining-methods) next-auxv))
(t (error "No applicable method for ˜A on ˜S."

’,(generic-function-name gf ) args))))))
environment)

args (cdr remaining-methods))))

(defmethod compute-effective-method ((gf gf-with-predicate-dispatching)
method-combination
methods)

(declare (ignore method-combination))
‘(call-method ,(car methods) ,methods))

(provide ’predicate-dispatch)

A.3 predicate-classes.lisp

(require ’pd-package)
(in-package :predicate-dispatch)

;; proposed schema for normalized predicates:
;;
;; full multipredicate = PCM | or(PCM{2,}) | constant
;; full unary predicate [predicate class] = PCU | or(PCU{2,}) | constant
;;
;; PCM = SM | and(SM{2,})
;; SM = test | not(test) | projected-unary(PCU)
;; PCU = PNU | and(PNU{2,})
;; PNU = PEU | not(PEU)
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;; PEU = SU | extracting-unary(SU)
;; SU = typecheck | equality | test
;;
;; abbreviations stand for (Purely Conjunctive)/Simple Multi-arg/Unary and
;; Possibly Negated/Extracting Unary.

(defclass predicate () ; abstract
((normal? :initarg :normal?

:reader normal?
:initform nil)))

(defclass test-predicate (predicate)
((test :initarg :test

:reader test-of )
(pass-auxv :initarg :pass-auxv

:reader pass-auxv?
:initform t)))

(defclass constant-predicate (predicate)
((value :initarg :value

:reader value-of )))

(defclass typecheck-predicate (predicate)
((target-type :initarg :target

:reader target-of )))

(defclass equality-predicate (predicate)
((target-value :initarg :target

:reader target-of )))

(defclass modified-predicate (predicate) ; abstract
((base-predicate :initarg :base

:reader base-of )))

(defclass projected-unary-predicate (modified-predicate)
((argument-index :initarg :index

:reader index-of )))

(defclass extracting-unary-predicate (modified-predicate)
((accessor-chain :initarg :accessors

:reader accessors-of )))

(defclass not-predicate (modified-predicate)
())

(defclass compound-predicate (predicate) ; abstract
((subpreds :initarg :subpreds

49



:reader subpreds-of )))

(defclass and-predicate (compound-predicate)
())

(defclass or-predicate (compound-predicate)
())

(defclass predicate-qualifier ()
((predicate :initarg :predicate

:reader predicate-of )
(auxv-count :initarg :auxv-count

:reader auxv-count-of )))

(defun predicate-qualifier? (x )
(typep x ’predicate-qualifier))

(defconstant ∗true∗ (make-instance ’constant-predicate :value t))
(defconstant ∗false∗ (make-instance ’constant-predicate :value nil))

(defmethod evaluate-predicate ((predicate test-predicate) args auxv)
(values (apply (test-of predicate)

(if (pass-auxv? predicate) (cons auxv args) args))
auxv))

(defmethod evaluate-predicate ((predicate constant-predicate) args auxv)
(declare (ignore args))
(values (value-of predicate) auxv))

(defmethod evaluate-predicate ((predicate typecheck-predicate) args auxv)
(values (typep (car args) (target-of predicate)) auxv))

(defmethod evaluate-predicate ((predicate equality-predicate) args auxv)
(values (eql (car args) (target-of predicate)) auxv))

(defmethod evaluate-predicate ((predicate projected-unary-predicate) args auxv)
(evaluate-predicate (base-of predicate)

(list (nth (index-of predicate) args)) auxv))

(defmethod evaluate-predicate ((predicate extracting-unary-predicate) args
auxv)

(do ((arg (car args) (funcall (car accessors) arg))
(accessors (accessors-of predicate) (cdr accessors)))

((null accessors) (evaluate-predicate (base-of predicate)
(list arg) auxv))))

(defmethod evaluate-predicate ((predicate and-predicate) args auxv)
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(values (every #’(lambda (subpred) (evaluate-predicate subpred args auxv))
(subpreds-of predicate))

auxv))

(defmethod evaluate-predicate ((predicate or-predicate) args auxv)
(values (some #’(lambda (subpred) (evaluate-predicate subpred args

;(copy-seq auxv)
auxv))

(subpreds-of predicate))
auxv))

(defmethod evaluate-predicate ((predicate not-predicate) args auxv)
(values (not (evaluate-predicate (base-of predicate) args auxv)) auxv))

(defun make-or (subpreds &optional normal? )
(make-instance ’or-predicate :subpreds subpreds :normal? normal? ))

(defun make-and (subpreds &optional normal? )
(make-instance ’and-predicate :subpreds subpreds :normal? normal? ))

(defun make-not (base &optional normal? )
(make-instance ’not-predicate :base base :normal? normal? ))

(defun constant-predicate? (predicate)
(typep predicate ’constant-predicate))

(defun or-predicate? (predicate)
(typep predicate ’or-predicate))

(defmethod normalize-predicate (predicate)
predicate)

(defmethod normalize-predicate ((predicate not-predicate))
(if (normal? predicate)

predicate
(normalize-predicate
(let ((base (normalize-predicate (base-of predicate))))

(typecase base
(not-predicate (base-of base))
(and-predicate (make-or (mapcar #’make-not (subpreds-of base))))
(or-predicate (make-and (mapcar #’make-not (subpreds-of base))))
(projected-unary-predicate (make-instance ’projected-unary-predicate

:index (index-of base)
:base (make-not (base-of

base))))
(constant-predicate (make-instance ’constant-predicate

:value (not (value-of base))))
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(otherwise (make-not base t)))))))

(require ’normalize-or) ;; split off due to size

(defun flattened-and-subpredicates (p)
(if (typep p ’and-predicate)

(apply #’append (mapcar #’flattened-and-subpredicates (subpreds-of p)))
(list p)))

(defun safe-index-of (p)
(and (typep p ’projected-unary-predicate)

(index-of p)))

(defmethod normalize-predicate ((predicate and-predicate))
(cond ((normal? predicate) predicate)

((null (subpreds-of predicate)) ∗true∗)
((null (cdr (subpreds-of predicate)))
(normalize-predicate (car (subpreds-of predicate))))

(t (let ((subpreds (mapcar #’normalize-predicate
(flattened-and-subpredicates predicate))))

(let ((first-or (find-if #’or-predicate? subpreds)))
(if first-or ;; distribute!

(normalize-predicate
(make-or
(mapcar #’(lambda (x)

(make-and
(substitute x first-or subpreds :count 1)))
(subpreds-of first-or))))

(do ((ht (make-hash-table))
(rsp (reverse subpreds) (cdr rsp)))

((null rsp)
(let ((terms (gethash nil ht)))

(maphash #’(lambda (index preds)
(if index

(push (make-instance
’projected-unary-predicate
:base (normalize-predicate

(make-and preds))
:index index)

terms)))
ht)

(make-and terms t)))
(if (typep (car rsp) ’projected-unary-predicate)

(push (base-of (car rsp))
(gethash (index-of (car rsp)) ht))

(push (car rsp) (gethash nil ht))))))))))
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(defmethod normalize-predicate ((predicate projected-unary-predicate))
(if (normal? predicate)

predicate
(flet ((make-cousin (new-base &optional normal? )

(make-instance ’projected-unary-predicate
:base new-base
:index (index-of predicate)
:normal? normal? )))

(let ((base (normalize-predicate (base-of predicate))))
(typecase base

(or-predicate (normalize-predicate
(make-or (mapcar #’make-cousin (subpreds-of base)))))

(constant-predicate base)
(otherwise (make-cousin base t)))))))

(defmethod normalize-predicate ((predicate extracting-unary-predicate))
(if (normal? predicate)

predicate
(normalize-predicate
(flet ((make-cousin (new-base &optional normal? )

(make-instance ’extracting-unary-predicate
:base new-base
:accessors (accessors-of predicate)
:normal? normal? )))

(let ((base (normalize-predicate (base-of predicate))))
(typecase base

(or-predicate (make-or (mapcar #’make-cousin (subpreds-of base))))
(and-predicate (make-and (mapcar #’make-cousin (subpreds-of base))))
(constant-predicate base)
(not-predicate (make-not (make-cousin (base-of base))))
(otherwise (make-cousin base t))))))))

(defmethod implies? (pred1 pred2 )
;; takes advantage of simplification done in normalize-or.lisp
(let ((norm (normalize-predicate (make-or (make-not pred1 ) pred2 ))))

(and (constant-predicate? norm) (value-of norm))))

(provide ’predicate-classes)

A.4 normalize-or.lisp

(require ’pd-package)
(in-package :predicate-dispatch)

;; Abstract transformations:
;; * p v ˜p -> *true*
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;; * (p+ ˆ q*) v p+ -> p+
;; * (p ˆ q+) v (˜p ˆ q+) -> q+
;; * (p ˆ q* ˆ r+) v (˜p ˆ q*) -> (q* ˆ r+) v (˜p ˆ q*)
;; * (p ˆ q* ˆ r+) v (˜p ˆ q* ˆ s+)
;; -> (q* ˆ r+ ˆ s+) v (p ˆ q* ˆ r+) v (˜p ˆ q* ˆ s+)
;; [may be useful in setting the stage for other transformations]

;; prove complete?

;; interesting test cases:
;; * (p ˆ q) v (p ˆ ˜q) v (˜p ˆ q) v (˜p ˆ ˜q)
;; * (p ˆ q ˆ r) v ˜p v ˜q v ˜r
;; * (p ˆ q) v (˜q ˆ r) v (˜r ˆ ˜p) v (p ˆ ˜q ˆ ˜r) v (˜p ˆ q ˆ r)

(defun flattened-or-subpredicates (p)
(if (typep p ’or-predicate)

(apply #’append (mapcar #’flattened-or-subpredicates (subpreds-of p)))
(list p)))

(defun extra-flattened-and-subpredicates (p)
(cond ((typep p ’and-predicate)

(apply #’append (mapcar #’extra-flattened-and-subpredicates
(subpreds-of p))))

((and (typep p ’projected-unary-predicate)
(typep (base-of p) ’and-predicate))

(mapcar #’(lambda (x) (make-instance ’projected-unary-predicate
:base x :index (index-of p)))

(subpreds-of (base-of p))))
(t (list p))))

(defun maybe-make-eup (base accessors)
(if accessors (make-instance ’extracting-unary-predicate

:base base :accessors accessors)
base))

(defun maybe-flip (orig pairs flip? )
(if flip?

(or (cdr (assoc orig pairs))
(car (rassoc orig pairs)))

orig))

(defun adjust-comparison (orig neg-x neg-y)
(maybe-flip (maybe-flip orig

’((same . opposite)
(forward . comprehensive)
(backward . exclusive))
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neg-x )
’((same . opposite)

(forward . exclusive)
(backward . comprehensive))

neg-y))

(defun compare-terms (x y &optional neg-x neg-y)
(adjust-comparison
(cond ((typep x ’projected-unary-predicate)

(and (typep y ’projected-unary-predicate)
(= (index-of x ) (index-of y))
(compare-terms (base-of x ) (base-of y) neg-x neg-y)))

((typep y ’projected-unary-predicate) nil)
;;
((and (typep x ’equality-predicate)

(typep y ’equality-predicate))
(if (eql (target-of x ) (target-of y)) ’same ’exclusive))

;; no appropriate auxv...pass nil instead, and ignore errors.
((typep x ’equality-predicate)
(ignore-errors

(if (evaluate-predicate y (target-of x ) nil)
’forward
’exclusive)))

((typep y ’equality-predicate)
(ignore-errors

(if (evaluate-predicate x (target-of y) nil)
’backward
’exclusive)))

;;
((typep x ’not-predicate)
(compare-terms (base-of x ) y (not neg-x ) neg-y))

((typep y ’not-predicate)
(compare-terms x (base-of y) neg-x (not neg-y)))

;;
((and (typep x ’extracting-unary-predicate)

(typep y ’extracting-unary-predicate))
(do ((x-acc (accessors-of x ) (cdr x-acc))

(y-acc (accessors-of y) (cdr y-acc)))
((or (null x-acc) (null y-acc)

(not (eql (car x-acc) (car y-acc))))
(and (or (null x-acc) (null y-acc))

(compare-terms (maybe-make-eup (base-of x ) x-acc)
(maybe-make-eup (base-of y) y-acc)
neg-x neg-y)))))

;;
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((and (typep x ’typecheck-predicate)
(typep y ’typecheck-predicate))

(let ((tx (target-of x ))
(ty (target-of y)))

;; In a more static environment, we’d want to compare the sets
;; of concrete subtypes. As it is, we have to be conservative.
(cond ((eql tx ty) ’same)

((subtypep tx ty) ’forward)
((subtypep ty tx ) ’backward)
(t nil))))

;;
((and (typep x ’test-predicate)

(typep y ’test-predicate))
(if (eql (test-of x ) (test-of y))

’same
nil))

;;
(t nil))

neg-x neg-y))

(defun analyze-term (x yy)
(let ((comparisons (remove nil (mapcar #’(lambda (y) (compare-terms x y))

yy))))
(cond ((null comparisons) ’extra)

((member ’exclusive comparisons) ’fatal-mismatch)
((member ’opposite comparisons) ’mismatch)
((member ’same comparisons) ’match)
;; ((member ’forward comparisons) ’match)
((member ’backward comparisons) ’weak)
;; "comprehensive" and "forward" don’t help us.
(t ’extra))))

(defun annotate-term (x yy)
(cons x (analyze-term x yy)))

(defun keep? (x y)
(or (member ’extra y :key #’cdr)

(member ’weak x :key #’cdr)))

(defun compute-safe-patch (left right)
;; Return values:
;; (1) Safe patch if appropriate (single mismatch), nil otherwise.
;; (2) Does left cover any extra territory?
;; (3) Does right?
(let∗ ((fleft (extra-flattened-and-subpredicates left))

(fright (extra-flattened-and-subpredicates right))
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(xleft (mapcar #’(lambda (l) (annotate-term l fright)) fleft))
(mismatches (count ’mismatch xleft :key #’cdr)))

(if (or (member ’fatal-mismatch xleft :key #’cdr)
(> mismatches 1))

(values nil t t) ;; We lose.
(let∗ ((xright (mapcar #’(lambda (r) (annotate-term r fleft)) fright))

(keep-right (keep? xright xleft)))
(if (zerop mismatches)

(values nil
(or (not keep-right)

(keep? xleft xright))
keep-right)

(values
;; Merge useful terms into a patch. Keep weak terms on the left
;; despite their redundancy because something may depend on them
;; wrt short-circuiting.
;; Return t instead of an empty patch.
(or (mapcar #’car

(delete ’mismatch
(nconc xleft

(delete-if
#’(lambda (x)

(member (cdr x) ’(match weak)))
xright))

:key #’cdr))
t)

(keep? xleft xright)
keep-right))))))

(defmethod normalize-predicate ((predicate or-predicate))
(cond ((normal? predicate) predicate)

((null (subpreds-of predicate)) ∗false∗)
(t
(let ((subpreds (mapcar #’normalize-predicate

(flattened-or-subpredicates predicate))))
(if (some #’value-of (remove-if-not #’constant-predicate? subpreds))
∗true∗
;; can mutate here because nothing else refers to subpreds.
(do ((queue (delete-if #’constant-predicate? subpreds)

(cdr queue))
(new-subpreds nil (if insert-head

(cons (car queue) survivors)
survivors))

(survivors nil nil)
(insert-head t (and (not insert-head) (null survivors))))
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((null queue) (if (cdr new-subpreds)
(make-or new-subpreds t)
(car new-subpreds)))

;; (format t "Queue:˜:W˜%NewS: ˜:W˜%" queue new-subpreds)
(dolist (subpred new-subpreds)

(multiple-value-bind (patch keep-left keep-right)
(compute-safe-patch (car queue) subpred)

;; (format t "Patch:˜:W˜%KeepL:˜:W˜%KeepR:˜:W˜%" patch
;; keep-left keep-right)
(if patch

(if (eq patch t)
(return-from normalize-predicate ∗true∗);; we win!
(push (normalize-predicate (make-and patch))

(cdr queue))))
(if keep-left

(setf insert-head t))
(if keep-right

(push subpred survivors))))))))))

(provide ’normalize-or)

A.5 pc-build.lisp

(require ’pd-package)
(in-package :predicate-dispatch)

(require ’predicate-classes)
(require ’xcond)

;; I’d love to use macroexpand-all from the walker bundled with PCL,
;; but it’s not completely safe. (Tagbody’s tags *cannot* result from
;; macro expansion.)

(defun build-predicate (lambda-list predicate-bodies)
(multiple-value-bind (ll-analysis ll-predicates auxv-count)

(analyze-lambda-list-for-analysis lambda-list)
(make-instance ’predicate-qualifier

:predicate (normalize-predicate
(make-and
(append ll-predicates

(mapcar #’(lambda (body)
(build-pred-internal
(analyze-expr body

ll-analysis)
lambda-list))
predicate-bodies))))
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:auxv-count auxv-count)))

(defclass expression-analysis ()
((arguments-used :initarg :args-used

:reader args-used)))

(defclass trivial-analysis (expression-analysis)
((code :initarg :code

:reader code-of )
(substitute? :initarg :substitute?

:reader substitute?
:initform nil)))

(defclass manifest-constant (expression-analysis)
((value :initarg :value

:reader value-of )
(arguments-used :initform nil)))

(defclass extraction-or-simple-test (expression-analysis)
((argument-index :initarg :index

:reader index-of )
(unary-chain :initarg :chain

:reader chain-of )))

(defclass extraction-analysis (extraction-or-simple-test)
())

(defclass typecheck-analysis (extraction-or-simple-test)
((target-type :initarg :target

:reader target-of )))

(defclass eql-analysis (extraction-or-simple-test)
((target-value :initarg :target

:reader target-of )))

(defclass not-analysis (expression-analysis)
((base-analysis :initarg :base

:reader base-of )))

(defclass compound-analysis (expression-analysis)
((terms :initarg :terms

:reader terms-of )))

(defclass and-analysis (compound-analysis)
())

(defclass or-analysis (compound-analysis)
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())

(defun mkxtriv (analysis var code)
(make-instance ’trivial-analysis

:args-used (adjoin var (args-used analysis))
:code code))

(defun mktriventry (arg)
(cons arg (make-instance ’trivial-analysis :args-used (list arg) :code arg)))

(defun null-triv (expr)
(make-instance ’trivial-analysis :args-used nil :code expr))

(defun car-or-identity (x )
(if (consp x )

(car x )
x ))

(defun extract-arg-name (ll-term key? )
(cond ((atom ll-term) ll-term)

((and (consp (car ll-term)) key? ) (second ll-term))
(t (car ll-term))))

(defun analyze-lambda-list-for-analysis (lambda-list)
(do ((ll lambda-list (cdr ll))

(index 0 (1+ index ))
(partial-result (list (mktriventry ’auxv)))
(ll-predicates nil)
(auxv-count 0)
(last-key nil))

((null ll) (values partial-result (reverse ll-predicates) auxv-count))
(let∗ ((carll (car ll))

(arg (extract-arg-name carll (eq last-key ’&key))))
(assert (symbolp arg))
(cond ((eq carll ’&allow-other-keys) nil) ; do nothing

((member carll ’(&optional &rest &key &aux)) (setf last-key carll))
((member carll lambda-list-keywords)
(error "Unsupported lambda list keyword ˜S" carll))

((null last-key)
(push (cons arg (make-instance ’extraction-analysis

:index index :chain nil
:args-used (list arg)))

partial-result)
(if (and (consp carll) (cdr carll))

(push (build-pred-internal
(analyze-specializer (second carll) arg index
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partial-result)
lambda-list)

ll-predicates)))
((eq last-key ’&rest) (push (mktriventry arg) partial-result))
((eq last-key ’&aux)
(if (consp carll)

(push (build-pred-internal
(analyze-expr ‘(progn (setf (aref auxv ,auxv-count)

,(second carll))
t)

partial-result)
lambda-list)

ll-predicates))
(push (cons arg (make-instance ’trivial-analysis

:args-used ‘(auxv ,arg)
:code ‘(aref auxv ,auxv-count)
:substitute? t))

partial-result)
(incf auxv-count))

(t ; &optional or &key
(if (or (atom carll) (null (cdr carll)))

(push (mktriventry arg) partial-result)
(let ((analysis (analyze-expr (second carll) partial-result)))

(push (cons arg (mkxtriv analysis arg
‘(or ,arg ,(second carll))))

partial-result)
(if (cddr carll)

(push (mktriventry (third carll)) partial-result)))))))))

(defun analyze-specializer (specializer arg index ll-analysis)
(cond ((symbolp specializer) (make-instance ’typecheck-analysis

:index index :chain nil
:target specializer
:args-used (list arg)))

((and (listp specializer)
(= (length specializer) 2)
(eq (car specializer) ’eql))

(analyze-expr ‘(eql ,arg ,(cadr specializer)) ll-analysis))
(t (error "Unsupported specializer ˜S for ˜S" specializer arg))))

(defun analyze-expr (expr ll-analysis &optional macros symbol-macros)
(multiple-value-bind (expansion expanded? )

(macroexpand-1 expr)
(xcond ((assoc expr symbol-macros)

=> #’(lambda (a) (analyze-expr (cdr a) ll-analysis macros

61



symbol-macros)))
((and (consp expr)

(assoc (car expr) macros))
=> #’(lambda (a) (analyze-expr (apply (cdr a) (cdr expr))

ll-analysis macros symbol-macros)))
((and expanded? (or (atom expr)

(not (or (special-operator-p (car expr))
(member (car expr)

’(and eql not or typep))))))
(analyze-expr expansion ll-analysis macros symbol-macros))

((assoc expr ll-analysis) => #’cdr)
((constantp expr) (make-instance ’manifest-constant

:value (eval expr)))
((atom expr) (null-triv expr))
((consp (car expr));; must be a lambda form
(analyze-exprs expr ll-analysis macros symbol-macros))

((assoc (car expr) ∗analysis-helpers∗)
=> #’(lambda (a) (funcall (cdr a) expr ll-analysis macros

symbol-macros)))
(t (let∗ ((aa (mapcar #’(lambda (x) (analyze-expr x ll-analysis

macros
symbol-macros))

(cdr expr)))
(aa1 (car aa)))

(if (or (cdr aa)
(special-operator-p (car expr))
(not (typep aa1 ’extraction-analysis)))

(make-instance ’trivial-analysis :code expr
:args-used
(reduce #’union aa :key #’args-used))

(make-instance ’extraction-analysis
:index (index-of aa1 )
:chain (cons (symbol-function (car expr))

(chain-of aa1 ))
:args-used (args-used aa1 ))))))))

(defun analyze-exprs (ee l m s &optional whole (force-trivial? t))
(if (or force-trivial? (cdr ee))

(make-instance ’trivial-analysis
:args-used (reduce #’union ee

:key #’(lambda (e)
(args-used (analyze-expr

e l m s))))
:code whole)

(analyze-expr (car ee) l m s)))
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;; force trivial analysis
(defun analyze-first-arg (e l m s)

(analyze-exprs (list (second e)) l m s e))

(defun analyze-second-arg (e l m s)
(analyze-exprs (list (third e)) l m s e))

(defun analyze-block (e l m s)
(analyze-exprs (cddr e) l m s e))

(defun analyze-eval-when (e l m s)
(analyze-exprs (cddr e) l m s e))

(defun analyze-flet/labels (e l m s)
(let∗ ((function-names (mapcar #’car (second e)))

(m2 (remove-if #’(lambda (x) (member (car x) function-names)) m))
(m-for-functions (case (car e)

(flet m)
(labels m2 )))

(functions-analysis (analyze-exprs (mapcar #’(lambda (x)
‘(lambda ,@(cdr x)))
(second e))

l m-for-functions s))
(body-analysis (analyze-locally ‘(locally ,@(cddr e)) l m2 s)))

(make-instance ’trivial-analysis
:args-used (union (args-used functions-analysis)

(args-used body-analysis))
:code e)))

(defun analyze-function (e l m s)
(if (and (consp (cadr e))

(eq (caadr e) ’lambda))
(analyze-lambda (cadr e) l m s)
(null-triv e)))

(defun analyze-lambda (e l m s)
(let ((new-bound-vars (mapcar #’car (analyze-lambda-list-for-analysis

(second e)))))
(flet ((shadowed? (a) (member (car a) new-bound-vars)))

(analyze-locally (if (stringp (third e))
(cdddr e)
(cddr e))

(remove-if #’shadowed? l)
m
(remove-if #’shadowed? s)
e))))
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(defun analyze-let/let∗ (e l m s)
(let ((new-bound-vars (mapcar #’car-or-identity (second e))))

(flet ((shadowed? (a) (member (car a) new-bound-vars))
(for-bindings (x x∗) (case (car e)

(let x )
(let∗ x∗))))

(let∗ ((l2 (remove-if #’shadowed? l))
(s2 (remove-if #’shadowed? s))
(bindings-analysis (analyze-exprs

(apply #’append
(mapcar #’cdr

(remove-if #’atom (second e))))
(for-bindings l l2 ) m (for-bindings s s2 )))

(body-analysis (analyze-locally ‘(locally ,@(cddr e)) l2 m s2 )))
(make-instance ’trivial-analysis

:args-used (union (args-used bindings-analysis)
(args-used body-analysis))

:code e)))))

(defun analyze-locally (e l m s &optional (whole e) (force-trivial? t))
;; deal with "special" declarations
(do ((exprs (cdr e) (cdr exprs))

(specials nil)
(l2 l)
(s2 s))

((or (null exprs)
(atom (car exprs))
(not (eq (caar exprs) ’declare)))

(flet ((shadowed? (a) (member (car a) specials)))
(analyze-exprs exprs

(remove-if #’shadowed? l2 )
m
(remove-if #’shadowed? s2 )
whole
force-trivial? )))

(dolist (decl (cdar exprs))
(if (eq (car decl) ’special)

(mapc #’(lambda (v) (pushnew v specials))
(cdr decl))))))

(defun analyze-macrolet (e l m s)
;; loses on &environment. Eit.
(do ((m2 m)

(clauses (second e) (cdr clauses)))
((null clauses) (analyze-locally ‘(locally ,@(cddr e)) l m2 s e nil))
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(let∗ ((clause (car clauses))
(name (first clause))
(ll (second clause))
(body (cddr clause))
(qargs (gensym)))

(push (cons name (eval ‘(lambda (&rest ,qargs)
(destructuring-bind ,(cons (gensym) ll)

(cons ,name ,qargs)
,@body))))

m2 ))))

(defun analyze-setq (e l m s)
(labels ((every-other (l)

(if (and (consp l) (consp (cdr l)))
(cons (cadr l) (every-other (cddr l)))
nil)))

(analyze-exprs (every-other (cdr e)) l m s) e))

(defun analyze-symbol-macrolet (e l m s)
(do ((s2 s)

(clauses (second e) (cdr clauses)))
((null clauses) (analyze-locally ‘(locally ,@(cddr e))

(set-difference l s2 :key #’car)
m s2 e nil))

(let∗ ((clause (car clauses))
(name (first clause))
(expansion (second clause)))

(push (cons name expansion) s2 ))))

(defun analyze-tagbody (e l m s)
(analyze-exprs (remove-if #’atom (cdr e)) l m s e))

;;;

(defun analyze-and/or (e l m s)
(let ((subanalyses (mapcar #’(lambda (x) (analyze-expr x l m s))

(cdr e))))
(make-instance (case (car e)

(and ’and-analysis)
(or ’or-analysis))

:terms subanalyses
:args-used (reduce #’union subanalyses :key #’args-used))))

(defun analyze-eql (e l m s)
(flet ((make-eql (ea mc)

(make-instance ’eql-analysis
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:index (index-of ea)
:chain (chain-of ea)
:args-used (args-used ea)
:target (value-of mc))))

(let∗ ((subanalyses (mapcar #’(lambda (x) (analyze-expr x l m s))
(cdr e)))

(types (mapcar #’type-of subanalyses)))
(cond ((equal types ’(extraction-analysis manifest-constant))

(make-eql (first subanalyses) (second subanalyses)))
((equal types ’(manifest-constant extraction-analysis))
(make-eql (second subanalyses) (first subanalyses)))

(t (make-instance ’trivial-analysis
:args-used (reduce #’union subanalyses

:key #’args-used)
:code e))))))

(defun analyze-not (e l m s)
(let ((base (analyze-expr (second e) l m s)))

(if (typep base ’extraction-analysis)
(make-instance ’extraction-analysis

:index (index-of base)
:chain (cons #’not (chain-of base))
:args-used (args-used base))

(make-instance ’not-analysis
:base base))))

(defun analyze-typep (e l m s)
(let ((subanalyses (mapcar #’(lambda (x) (analyze-expr x l m s))

(cdr e))))
(if (and (typep (first subanalyses) ’extraction-analysis)

(typep (second subanalyses) ’manifest-constant))
(make-instance ’typecheck-analysis

:index (index-of (first subanalyses))
:chain (chain-of (first subanalyses))
:args-used (args-used (first subanalyses))
:target (value-of (second subanalyses)))

(make-instance ’trivial-analysis
:args-used (reduce #’union subanalyses

:key #’args-used)
:code e))))

(defconstant ∗analysis-helpers∗
;; omitted (potentially evaluate any "argument"):
;; catch, if, multiple-value-{call,prog1}, progn, progv, throw,
;; unwind-protect
;; quote is also omitted because constantp takes care of it.
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‘((block . ,#’analyze-block)
(eval-when . ,#’analyze-eval-when)
(flet . ,#’analyze-flet/labels)
(function . ,#’analyze-function)
(go . ,#’(lambda (e l m s) (declare (ignore l m s)) (null-triv e)))
(labels . ,#’analyze-flet/labels)
(lambda . ,#’analyze-lambda)
(let . ,#’analyze-let/let∗)
(let∗ . ,#’analyze-let/let∗)
(load-time-value . ,#’analyze-first-arg)
(locally . ,#’analyze-locally)
(macrolet . ,#’analyze-macrolet)
(return-from . ,#’analyze-second-arg)
(setq . ,#’analyze-setq)
(symbol-macrolet . ,#’analyze-symbol-macrolet)
(tagbody . ,#’analyze-tagbody)
(the . ,#’analyze-second-arg)
;;
(and . ,#’analyze-and/or)
(eql . ,#’analyze-eql)
(not . ,#’analyze-not)
(or . ,#’analyze-and/or)
(typep . ,#’analyze-typep)))

(defmethod build-pred-internal ((analysis trivial-analysis) lambda-list)
(do ((ll (cons ’auxv lambda-list) (cdr ll))

(used (args-used analysis))
(code (code-of analysis))
(index −1 (1+ index )) ;; starts at -1 to account for auxv.
(auxv-count 0)
rnorm ropt rest rkey ignores last-ll-key remaining-optionals smlcl)

((null ll) (if (and (not rest) (null rkey))
(setf rest (gensym)

ignores (cons rest ignores)))
(make-instance ’test-predicate

:test (eval ‘(lambda (,@(reverse rnorm)
,@(and ropt

(cons ’&optional
(reverse ropt)))

,@(and rest ‘(&rest ,rest))
,@(and rkey ‘(&key

,@(reverse rkey)
&allow-other-keys)))

,@(and ignores
‘((declare (ignore ,@ignores))))
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,(if smlcl
‘(symbol-macrolet ,smlcl ,code)
code)))))

(let∗ ((carll (car ll))
(arg (extract-arg-name carll (eq last-ll-key ’&key)))
(used? (member arg used))
(arg2 (and (consp carll) (third carll)))
(used2? (member arg2 used)))

(cond ((eq carll ’&allow-other-keys) nil) ; do nothing (always on)
((member carll ’(&optional &rest &key &aux))
(setf last-ll-key carll)
(if (eq carll ’&optional)

(setf remaining-optionals (cdr ll))))
((member carll lambda-list-keywords)
(error "Unsupported lambda list keyword ˜S" carll))

((and (null last-ll-key) (null (cdr used)) (eq arg (car used))
(>= index 0))

(return-from build-pred-internal
(make-instance ’projected-unary-predicate

:index index
:base (make-instance

’test-predicate
:test (eval ‘(lambda (,arg)

,(code-of analysis)))
:pass-auxv nil))))

((null last-ll-key) (push arg rnorm) ; don’t want specializer!
(if (not used? ) (push arg ignores)))

((and (eq last-ll-key ’&rest) used? ) (setf rest arg))
((eq last-ll-key ’&aux)
(if used? (push ‘(,arg (aref auxv ,auxv-count)) smlcl))
(incf auxv-count))

((and (eq last-ll-key ’&key) (or used? used2? ))
(if used2? (progn (push carll rkey)

(if (not used? ) (push arg ignores)))
(push (list arg (second carll)) rkey)))

((and (eq last-ll-key ’&optional) (or used? used2? ))
(mapc #’(lambda (x) (push (car-or-identity x) ropt))

(ldiff remaining-optionals ll))
(setf remaining-optionals (cdr ll))
(if used2? (progn (push carll ropt)

(if (not used? ) (push arg ignores)))
(push (list arg (second carll)) ropt)))))))

(defmethod build-pred-internal ((analysis manifest-constant) ll)
(declare (ignore ll))
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(make-instance ’constant-predicate :value (value-of analysis)))

(defmethod build-pred-internal ((analysis extraction-analysis) ll)
(declare (ignore ll))
(let∗ ((chain0 (chain-of analysis))

(not? (eql (car chain0 ) #’not))
(chain (if not? (cdr chain0 ) chain0 ))
(test (make-instance ’test-predicate

:test (or (car chain) #’identity)
:pass-auxv nil))

(subbase (cond ((null chain) test)
((null (cdr chain)) test)
(t (make-instance ’extracting-unary-predicate

:accessors (cdr chain)
:base test))))

(base (make-instance ’projected-unary-predicate
:index (index-of analysis)
:base subbase)))

(if not?
(make-instance ’not-predicate :base base)
base)))

(defmethod build-pred-internal ((analysis extraction-or-simple-test) ll)
(declare (ignore ll))
(let ((base (make-instance (if (typep analysis ’typecheck-analysis)

’typecheck-predicate
’equality-predicate)

:target (target-of analysis)))
(chain (chain-of analysis)))

(make-instance ’projected-unary-predicate
:index (index-of analysis)
:base (if chain

(make-instance ’extracting-unary-predicate
:accessors chain :base base)

base))))

(defmethod build-pred-internal ((analysis not-analysis) ll)
(make-not (build-pred-internal (base-of analysis) ll)))

(defmethod build-pred-internal ((analysis compound-analysis) ll)
(funcall (typecase analysis

(and-analysis #’make-and)
(or-analysis #’make-or))

(mapcar #’(lambda (a) (build-pred-internal a ll))
(terms-of analysis))))
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(provide ’pc-build)

A.6 xcond.lisp

(require ’pd-package)
(in-package :predicate-dispatch)

;; supports => a la Scheme cond.
(defmacro xcond (&rest forms)

(and forms
(let ((form (car forms)))

(cond ((atom form) (error "Bad cond form ˜A" form))
((null (cdr form)) (let ((fresh-sym (gensym)))

‘(let ((,fresh-sym ,(car form)))
(if ,fresh-sym

,fresh-sym
(xcond ,@(cdr forms))))))

((and (= (length form) 3) (eq (second form) ’=>))
(let ((fresh-sym (gensym)))

‘(let ((,fresh-sym ,(car form)))
(if ,fresh-sym

(funcall ,(third form) ,fresh-sym)
(xcond ,@(cdr forms))))))

(t ‘(if ,(car form)
(progn ,@(cdr form))
(xcond ,@(cdr forms))))))))

(provide ’xcond)
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Appendix B

Source for DEW applications

B.1 pd-integration.lisp

(in-package :weyli)
(require ’predicate-dispatch)
(use-package ’predicate-dispatch)

(defclass ge-integral (general-expression)
((expr :initarg :expr

:accessor expression-of )
(var :initarg :var

:accessor variable-of )
(lower :initarg :lower

:initform nil
:accessor lower-bound-of )

(upper :initarg :upper
:initform nil
:accessor upper-bound-of )))

(defmethod print-object ((int ge-integral) stream)
(format stream "int ˜A d˜A" (expression-of int) (variable-of int))
(if (lower-bound-of int)

(format stream " from ˜A to ˜A" (lower-bound-of int)
(upper-bound-of int))))

(defpdmethod integral (expr var) ()
(let ((d (typecase expr

(domain-element (domain-of expr))
(t ∗general∗))))

(make-instance ’ge-integral :expr expr :var var :domain d)))

(defun definite-integral (expr var lower upper)
(let∗ ((ge-var (coerce var ∗general∗))
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(indef (integral expr ge-var)))
(if (typep indef ’ge-integral)

(make-instance ’ge-integral :expr expr :var var
:domain (domain-of indef )
:lower lower :upper upper)

(− (substitute (coerce upper ∗general∗) ge-var indef )
(substitute (coerce lower ∗general∗) ge-var indef )))))

(defun constant-of-integration ()
(coerce (gensym "C") ∗general∗))

(defun indefinite-integral (expr var)
(+ (integral expr (coerce var ∗general∗))

(constant-of-integration)))

(defun first-domain (&rest args)
(cond ((null args) nil)

((typep (car args) ’domain-element)
(domain-of (car args)))

(t (apply #’first-domain (cdr args)))))

(defun int (expr var &optional lower upper)
(if lower

(weyli::definite-integral expr var lower upper)
(weyli::indefinite-integral expr var)))

(defmethod symbol-of ((sym symbol))
sym)

(defun free? (expr var)
;;(zerop (deriv expr var))
(not (depends-on? expr var))
)

(defun make-free-in? (var)
(lambda (expr) (free? expr var)))

;; useful for a limited version of the chain rule
(defun linear? (expr var)

(let ((d (deriv expr var)))
(and (not (zerop d))

(free? d var))))

(defun same-var? (var1 var2 )
(and (or (symbolp var1 ) (typep var1 ’ge-variable))

(or (symbolp var2 ) (typep var2 ’ge-variable))
(eq (symbol-of var1 ) (symbol-of var2 ))))
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(export ’int)

;;; useful specializations follow

(defpdmethod integral (expr var)
((free? expr var))
(∗ expr var))

(defpdmethod integral (expr var)
((same-var? expr var))
(∗ 1/2 expr expr))

(defpdmethod integral ((expr ge-plus) var) ()
(make-ge-plus (domain-of expr)

(mapcar (lambda (exp)
(integral exp var))

(terms-of expr))))

(defpdmethod integral ((expr ge-times) var
&aux (free? (make-free-in? var))
(terms (terms-of expr)))

((member-if free? terms))
(let ((domain (domain-of expr)))

(make-ge-times domain
(cons (integral (make-ge-times domain

(remove-if free? terms))
var)

(remove-if-not free? terms)))))

(defpdmethod integral ((expr ge-times) var)
((= (length (terms-of expr)) 1))
(integral (car (terms-of expr)) var))

(defpdmethod integral ((expr ge-expt) var
&aux (base (base-of expr)) (exp (exponent-of expr)))

((free? exp var)
(linear? base var))

(let ((exp1 (+ exp 1)))
(if (zerop exp1 )

;; XXX – should take absolute value of log.
(/ (make-ge-log (domain-of expr) base) (deriv base var))
(/ (make-ge-expt (domain-of expr) base exp1 ) exp1 (deriv base var)))))

(defpdmethod integral ((expr ge-expt) var
&aux (base (base-of expr)) (exp (exponent-of expr)))

((free? base var)
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(linear? exp var))
(if (= base 1)

(/ exp (deriv base var))
(/ (make-ge-expt (domain-of expr) base exp) (log base) (deriv base var))))

(defpdmethod integral ((expr ge-application) var
&aux (first-arg (first (args-of expr))))

((equal (name-of (funct-of expr)) "sin")
(linear? first-arg var))

(− (/ (make-ge-cos (domain-of expr) first-arg) (deriv first-arg var))))

(defpdmethod integral ((expr ge-application) var
&aux (first-arg (first (args-of expr))))

((equal (name-of (funct-of expr)) "cos")
(linear? first-arg var))

(/ (make-ge-sin (domain-of expr) first-arg) (deriv first-arg var)))

(defpdmethod integral ((expr ge-application) var
&aux (first-arg (first (args-of expr))))

((equal (name-of (funct-of expr)) "tan")
(linear? first-arg var))

(− (/ (make-ge-log (domain-of expr)
(make-ge-cos (domain-of expr) first-arg))

(deriv first-arg var))))

(defpdmethod integral ((expr ge-application) var
&aux (first-arg (first (args-of expr))))

((equal (name-of (funct-of expr)) "log")
(linear? first-arg var))

(/ (− (∗ first-arg (make-ge-log (domain-of expr) first-arg))
first-arg)

(deriv first-arg var)))

(defpdmethod integral ((expr ge-application) var
&aux (first-arg (first (args-of expr))))

((equal (name-of (funct-of expr)) "sinh")
(linear? first-arg var))

(/ (make-ge-cosh (domain-of expr) first-arg) (deriv first-arg var)))

(defpdmethod integral ((expr ge-application) var
&aux (first-arg (first (args-of expr))))

((equal (name-of (funct-of expr)) "cosh")
(linear? first-arg var))

(/ (make-ge-sinh (domain-of expr) first-arg) (deriv first-arg var)))

(defpdmethod integral ((expr ge-application) var
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&aux (first-arg (first (args-of expr))))
((equal (name-of (funct-of expr)) "tanh")
(linear? first-arg var))

(/ (make-ge-log (domain-of expr)
(make-ge-cosh (domain-of expr) first-arg))

(deriv first-arg var)))

;; ...

B.2 struve.lisp

(in-package :weyl)
(require ’predicate-dispatch)
(use-package ’predicate-dispatch)

;; This code assumes that the Bessel and gamma functions have been defined.

(defpdmethod struve-h (r z )
(let ((d (or (first-domain r z ) ∗general∗)))

(make-ge-funct d (make-function d ’struve-h 2) r z )))

(defpdmethod struve-h ((r ratio) z )
((> r 0)
(not (zerop z ))
(= (denominator r) 2))

;; Weyl doesn’t support symbolic sums. :-/
(do ((m 0 (1+ m))

(sum 0 (+ sum (/ (∗ (gamma (+ m 1/2))
(expt (/ z 2) (+ (∗ −2 m) r −1)))

(gamma (+ r 1/2 (∗ −1 m)))))))
((> m r) (+ (bessel-y r z ) (/ sum pi)))))

(defpdmethod struve-h ((r ratio) z )
((< r 0)
(not (zerop z ))
(= (denominator r) 2))

(∗ (expt −1 (− −1/2 r)) (bessel-j (− r) z )))

(defpdmethod struve-h (nu z )
((zerop z ))
0)

(defpdmethod struve-h ((nu number) (z number))
((or (floatp nu) (floatp z )))
;; don’t give inexact results for exact inputs.
(do ((s 0 (+ s (/ zf g1 g2 )))
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(so −1 s)
(z2 (− (expt (/ z 2) 2)))
(k1 3/2 (1+ k1 ))
(k2 (+ nu 3/2) (1+ k2 ))
(g1 (gamma 3/2) (∗ g1 k1 ))
(g2 (gamma (+ nu 3/2)) (∗ g2 k2 ))
(zf ((expt (/ z 2)) (+ nu 1)) (∗ zf z2 )))

((= s so) s))
)

;; not sure how to work derivative or print form in, given issues with
;; mixing defmethod and defpdmethod. :-/ (Subclassing ge-application
;; also seems to be out, given Weyl’s treatment of it.)
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Appendix C

Other code

C.1 Struve.m

(* :Title: Struve *)

(* :Context: ProgrammingInMathematica‘Struve‘ *)

(* :Author: Roman E. Maeder *)

(* :Summary:
Definitions for the Struve functions

*)

(* :Copyright: © 1989-1996 by Roman E. Maeder *)

(* :Package Version: 2.0 *)

(* :Mathematica Version: 3.0 *)

(* :History:
2.0 for Programming in Mathematica, 3rd ed.
1.1 for Programming in Mathematica, 2nd ed.
1.0 for Programming in Mathematica, 1st ed.

*)

(* :Keywords: Struve *)

(* :Sources:
Roman E. Maeder. Programming in Mathematica, 3rd ed. Addison-Wesley, 1996.

*)

(* :Discussion:
See Section 8.4 of "Programming in Mathematica"
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*)

BeginPackage["ProgrammingInMathematica‘Struve‘"]

StruveH::usage = "StruveH[nu, z] gives the Struve function."

Begin["‘Private‘"]

SetAttributes[ StruveH, {NumericFunction, Listable} ]

(* special values *)

StruveH[r_Rational?Positive, z_] /; Denominator[r] == 2 :=
BesselY[r, z] +
Sum[Gamma[m + 1/2] (z/2)^(-2m + r - 1)/Gamma[r + 1/2 - m], {m, 0, r-1/2}]/Pi

StruveH[r_Rational?Negative, z_] /; Denominator[r] == 2 :=
(-1)^(-r-1/2) BesselJ[-r, z]

(* Series expansion *)

StruveH/: Series[StruveH[nu_?NumberQ, z_], {z_, 0, ord_Integer}] :=
(z/2)^(nu + 1) Sum[ (-1)^m (z/2)^(2m)/Gamma[m + 3/2]/Gamma[m + nu + 3/2],

{m, 0, (ord-nu-1)/2} ] + O[z]^(ord+1)

(* numerical evaluation *)

StruveH[_, 0] := 0

StruveH[nu_?NumericQ, z_?NumericQ] /; Precision[{nu, z}] < Infinity :=
Module[{s = 0, so = -1, z2 = -(z/2)^2, k1 = 3/2, k2 = nu + 3/2, g1, g2, zf},

zf = (z/2)^(nu+1); g1 = Gamma[k1]; g2 = Gamma[k2];
While[so != s,

so = s; s += zf/g1/g2;
g1 *= k1; g2 *= k2; zf *= z2; k1++; k2++

]; s
]

(* derivatives *)

StruveH/: Derivative[0, n_Integer?Positive][StruveH] :=
Function[{nu, z},
D[ (StruveH[nu-1, z] - StruveH[nu+1, z] + (z/2)^nu/Sqrt[Pi]/Gamma[nu + 3/2])/2,

{z, n-1} ]
]

(* interpretation and formatting for traditional form *)
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StruveH/:
MakeBoxes[StruveH[nu_, z_], form:TraditionalForm] :=

RowBox[{SubscriptBox["H", MakeBoxes[nu, form]], "(", MakeBoxes[z, form], ")"}]

MakeExpression[ RowBox[{SubscriptBox["H", nu_], "(", z_, ")"}],
form:TraditionalForm ] :=

MakeExpression[ RowBox[{"StruveH", "[", RowBox[{nu, ",", z}], "]"}], form ]

End[]

Protect[StruveH]

EndPackage[]
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