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by
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Master of Engineering in Electrical Engineering and Computer Science

Abstract

Quantum mechanics presents a more general and potentially more powerful model
of computation than classical systems. Quantum bits have many physically different
representations which nonetheless share a common need for modulating pulses of elec-
tromagnetic waves. This thesis presents the design and evaluates the implementation
of a general-purpose sequencer which supports fast, programmable pulses; a flexible,
open design; and feedback operation for adaptive algorithms.

The sequencer achieves a timing resolution, minimum pulse duration, and mini-
mum delay of 10 nanoseconds; it has 64 simultaneously-switching, independent digital
outputs and 8 digital inputs for triggering or feedback. Multiple devices can operate
in a daisy chain to facilitate adding and removing channels. An FPGA is used to
implement a firmware network stack and a specialized pulse processor core whose
modules are all interconnected using the Wishbone bus standard. Users can write
pulse programs in an assembly language and control the device from a host computer
over an Ethernet network. An embedded web server provides an intuitive, graphical
user interface, while a non-interactive, efficient UDP protocol provides programmatic
access to third-party software.

The performance characteristics, tolerances, and cost of the device are measured
and compared with those of contemporary research and commercial offerings. Future
improvements and extensions are suggested. All circuit schematics, PCB layouts,
source code, and design documents are released under an open source license.

Thesis Supervisor: Isaac L. Chuang
Title: Associate Professor of Physics
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Chapter 1

Introduction

In the 1930s, the Turing machine and the lambda calculus were proven to be the

most general model of classical computation. Problems were characterized by their

computability and complexity assuming only time and space resources for any real

machine. Early computer scientists tried many different representations for a clas-

sical bit, but in realizing their theoretical model, they implicitly assumed that only

deterministic automata were physically possible.

The formulation of quantum mechanics during the same time period opened up

the possibility of building machines with non-classical resources, such as entangled

states. The field of quantum computing is still in its infancy today, and there are

many viable representations for a quantum bit (qubit). In each case, the qubit can be

manipulated by the selective excitation of certain energy transitions. The transitions

themselves are addressed by a carrier wave, and quantum gates can be implemented

by modulating the amplitude and phase of this carrier with precisely timed pulses.

Like early classical computers, quantum computers are currently unable to boot-

strap themselves. In contrast, they can benefit from the advances of their classical

predecessors, including high-speed digital logic, programming languages, and net-

work protocols. A general-purpose sequencer device is presented in this thesis which

uses the above classical techniques to achieve fast, configurable pulse sequencing for

quantum computing.
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1.1 Pulse Programming

In a typical quantum computing setting, the user would like to perform operations on a

qubit. These operations can be reduced to a sequence of pulsed electromagnetic waves

with certain amplitudes, phases, carrier frequencies, and time durations. A recurring

problem in these experiments is the transfer of desired pulse sequences from the user

to the qubit, known as pulse programming, using minimal resources and introducing

as few errors as possible. This thesis describes a solution involving a language for

specifying arbitrary pulse sequences (pulse programs) and a pulse sequencer device for

translating these programs into the desired digital outputs efficiently and accurately.

An abstract model of this approach is depicted in Figure 1-1.

User
pulse

program
Sequencer

digital
pulses

Wave
Synth

analog
channels

Apparatus
(Qubit)

Pulse Programmer

Figure 1-1: Where does a pulse sequencer fit into quantum computing?

By itself, the sequencer only controls the timing of digital outputs (bits) and is

agnostic to how they are used. These bits are interpreted by a waveform synthesizer,

which combines them with a carrier wave to produce modulated analog output. Each

analog signal, known as a channel, feeds into an apparatus which is qubit-specific.

Multiple bits from the sequencer can be assigned to a single channel, and one se-

quencer can control multiple channels at once.

Traditionally, the sequencer and synthesizer have been combined into a single

device called a pulse programmer. By decoupling these functions into two devices,

the sequencer can accommodate changes in user requirements while the waveform

synthesizer can remain optimized for particular experiments.

To motivate the sequencer’s design and construction more concretely, its behavior

must be quantified with figures of merit and goals must be defined. Because termi-

nology for digital pulse programming is inconsistent in the literature, it is helpful to

begin with the preliminary definitions below.
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1.1.1 Multiple-Bit Pulses

Originally, the term “pulse” implied a square wave such as the one shown in Figure

1-2. These so-called binary pulses can modulate a carrier wave with two levels,

corresponding to On and Off states; they can be generated by a variety of means,

both analog and digital. Binary pulses can be characterized by the duration of their

On states, called pulse widths, and the duration of the intervening Off states, called

delays.

Sequencer Output
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Figure 1-2: Square (binary) pulse output.

However, sometimes a more complicated shape is desirable. For example, Gaus-

sian pulses have a narrower distribution of spectral power density and can excite

fewer unwanted transitions than a square wave [SMC03]. Using analog circuitry,

continuously-variable levels can be achieved at the cost of lower noise tolerance and

the inflexibility of hard-wiring pulse sequences. Thus, digital devices are preferred

for approximating arbitrary waveforms in a repeatable and programmable manner.

Digital circuits discretize both the pulse width (by a clock cycle) and the output level

(by the number of output bits), as shown in Figure 1-3. Greater fidelity to the desired

shape can be achieved by increasing the number of output bits, decreasing the clock

cycle, or both.

Pulses can now be described digitally with multiple-bit binary numbers; however,

with this change in representation from a single-bit square pulse, some terms require

clarification. “Width” can refer to the number of output bits, so a pulse’s temporal

dimension will be called a duration. Since arbitrary waveforms may make use of an

all-zero value, there is no well-defined Off state; any multiple-bit state is a valid
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Figure 1-3: Gaussian pulse output.

output value. A pulse then consists of a duration and an output value. “Delay” now

refers to decoding overhead between a pulse’s desired duration and its actual duration.

Using these terms, figures of merit can be defined to characterize the sequencer.

1.1.2 Figures of Merit

The sequencer possesses the following output capabilities: range of pulse durations,

minimum delay between two pulse values, resolution (precision) of pulse durations,

feedback latency, and number of parallel digital outputs. These figures of merit

describe the interface with the waveform synthesizer and other apparatus and are

useful for evaluating whether the sequencer can meet experimental requirements As

a visual aid, they are overlaid on the example pulse outputs of Figure 1-4.1

First, the user must determine whether the desired pulse durations fall within the

sequencer’s range. The maximum duration is rarely a limiting factor since it is easy to

increase durations by repeating them, but the minimum duration determines which

qubits the sequencer can control; by inspection, this latter parameter is 3 cycles in

the figure, for the output value of 0x6. The minimum delay is the timing error at the

end of one pulse before the next pulse appears. It is always less than or equal to the

minimum duration; in the figure, it is the overshoot of 1 clock cycle for the output

value 0x5.

Even when the above parameters are satisfied, one must be able to vary durations

with a fine enough resolution to perform reliable operations on qubits. This figure,

1The prefix 0x indicates that a hexadecimal value follows.
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also called the cycle time, is effectively equal to the period of the system clock in

digital systems. It represents the horizontal scale in the figure and does not affect

the relative timings of other events. As a consequence, the minimum duration and

minimum delay are multiples of the resolution. The minimum delay is ideally zero,

corresponding to perfect accuracy within digital switching tolerances.

To interface pulse programmers with other devices, pulse programs should be able

to wait for or respond to external events, called triggers or feedback. Because they are

asynchronous to the sequencer, there is some overhead for “rounding” the feedback

to the next clock cycle, which manifests itself as feedback latency between an event

and its response. Its value is uniformly distributed between minimum and maximum

clock multiples but is not generally a clock multiple itself; in the figure it appears to

be 1.5 cycles.

While the preceding parameters all deal with a pulse’s duration, the final figure

of merit is simply the number of bits of the pulse’s output value. A linear increase in

number of bits allows the user to encode an exponentially greater number of output

values. The example pulse outputs above have 3 bits, each of which can be treated as

a square wave pulse running in parallel and synchronized with the others; they can be

varied independently by choosing appropriate output values, allowing for one to three

channels. Bits can also be assigned to different channels by the waveform synthesizer.

Thus, the number of bits is also the upper limit of the number of channels that can

be controlled simultaneously.

clock 1 2 3 4 5 6 7 8 9 10 11

instruction wait for feedback pulse 0x5 for 2 cycles pulse 0x6 for 1 cycle

pulse output 0x2 0x5 0x6

Feedback

Bit 2

Bit 1
Bit 0

number
of digital
outputs

feedback
latency

minimum
delay

minimum
duration

cycle
time

Figure 1-4: Figures of merit for pulse sequencer output.
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1.2 Goals

Building on the context of these figures of merit and the previous definitions, overall

goals for the sequencer can now be presented.

Performance: The sequencer should have a timing resolution and minimum dura-

tion of 10 nanoseconds or less. Consequently, its minimum delay should be less

than or equal to 10 nanoseconds and as close to zero as possible. It should

also be able to switch tens of digital signals simultaneously. This is sufficient

to control one of the most demanding qubits, superconducting current phase.

Feedback: The sequencer should allow external inputs to alter the state of a pulse

program while it is running. This is needed for adaptive algorithms, such as

quantum error correction. The feedback latency should be on the order of 10

nanoseconds and as close to the minimum delay as possible.

Programmability: All pulse sequence characteristics should be configurable in soft-

ware using pulse programs. Pulse programs should support a minimum instruc-

tion set for producing pulse sequences that can change based on feedback. A

detailed discussion of pulse encoding and machine instructions can wait until

pulse programs are introduced in Chapter 5.

Ease of use: The sequencer should work with commonly-available consumer net-

works, desktop computers, and operating systems. Specifically it should have

a web interface usable in any web browser and a well-defined network protocol

for use in popular scientific software packages such as LabVIEW or MATLAB.

It should be simple to install and require little or no maintenance. Users should

be able to write and run pulse programs with a minimal learning curve.

Flexibility: The sequencer should be easy to upgrade or modify with new features,

especially new instructions for pulse programs, user interface changes, or new

communication protocols with other devices. New analog channels should be

easy to add and remove in a scalable way to achieve on the order of tens of

channels and hundreds of bits.
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1.3 Approach

The goals in the previous section can be divided among three subsystems in increasing

order of abstraction: hardware, firmware, and software. With well-defined interfaces,

the layers can be designed and modified independently of each other and errors can

be more easily isolated. The relationship between these layers can be seen in Figure

1-5.2 The hardware acts as a container for the firmware, which in turn is a container

for software. This enables a lower layer to accomplish some subset of the system’s

goals and defer the remainder to a higher layer.

Software

Host PC

Software

Firmware

Hardware

Feedback
Inputs

Pulse
Outputs

LVDS

Software

Firmware

Hardware

Feedback
Inputs

Pulse
Outputs

LVDS

Ethernet
UDP/
TCP/

IP

Daisy
Chain

Daisy
Chain

. . .

Sequencer 1 Sequencer 2

Figure 1-5: The three layers of the pulse sequencer.

The hardware layer consists of a high-speed digital printed circuit board (PCB)

that multiplexes on-board and external clock sources. It communicates with an ex-

ternal waveform synthesizer through a low-voltage differential signaling (LVDS) bus

and high-speed edgemount connector. It also contains connectors for off-board clock

sources using Sub-Miniature A (SMA) connectors and general-purpose input/output

using an inter-integrated circuit (I2C) bus. A static random access memory (SRAM)

chip provides volatile storage for general-purpose software as well as specialized pulse

programs. In addition, multiple boards can be daisy-chained together and triggered

from the same source; additional channels can be added in a modular fashion.

2Hardware, firmware, and software components in all subsequent figures will be indicated by
solid, dashed, and dotted lines, respectively.

25



Using a field-programmable gate array (FPGA), the PCB can provide reconfig-

urable “glue” logic, known as the firmware layer, between the various inputs and

outputs of the system. New features can be added simply by reprogramming the

FPGA without redesigning the board. Firmware modules include a network stack

for communicating with the user over TCP/IP, a daisy-chain stack for passing mes-

sages between sequencer devices, a general-purpose AVR processor3 for running user

interface software, and a specialized Pulse Control Processor (PCP) core for running

pulse programs.

Highly configurable tasks such as the user interface and the pulse programs them-

selves are implemented in the software layer. Two user interfaces are provided: a

graphical interface for new users and a programmatic interface for advanced users.

The graphical interface uses the HyperText Transfer Protocol (HTTP) running over

the Transmission Control Protocol (TCP) and is accessible with any web browser.

The programmatic interface runs over the User Datagram Protocol (UDP) and al-

lows sequencer actions to be scripted efficiently. Pulse programs are written as text

source files in a low-level assembly language and compiled using a port of the GNU

assembler.

The sequencer works with commonly-available consumer technology: it can con-

nect to an Ethernet network, obtain a dynamic Internet Protocol (IP) address, and

can be controlled from any personal computer (PC) on the Internet. In addition,

host-side software runs on Linux, most UNIX systems, and Microsoft operating sys-

tems. To increase its usefulness to the research community, all design documents are

released under the BSD license, including all circuit schematics, PCB layouts, source

code, and documentation. The latest release of the sequencer’s three subsystems and

all related materials can be found at the project website:

http://qubit.media.mit.edu/sequencer

3Advanced Virtual RISC (reduced instruction set computer), a family of processors from Atmel
Norway made popular in embedded systems because of their low cost, C language optimizations,
and free development tools.
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1.4 Organization

The remainder of this thesis is organized as follows.

Chapter 2 gives typical pulse requirements for several physical qubit representa-

tions and describes how a general-purpose pulse device can satisfy all of them. It also

contains a survey of existing pulse programmers, providing context for the current

work and motivating several key features.

The next three chapters describe the layers of the sequencer according to the ab-

straction hierarchy shown in Table 1.1. Each layer from Figure 1-5 is expanded into a

stack of three sublayers, also discussed in order of increasing abstraction. Each chap-

ter begins with an overview of how the given layer helps achieve the overall system

goals, followed by sections detailing each sublayer, important design decisions, trade-

offs, and alternatives. An implementation section presents post-design issues, the

tools used to construct a given layer, and lessons learned. After these, acknowledg-

ments are given of third-party contributions as well as references for further reading.

Layer Chapter Sublayer Section
Printed circuit board 3.1

Hardware 3 I/O interfaces 3.2
Storage and logic 3.3
Bus primitives 4.1

Firmware 4 Communication stacks 4.2
Processor cores 4.3
Pulse programs 5.1

Software 5 Development tools 5.2
Common gateway interface 5.3

Table 1.1: Hierarchy of abstraction layers.

Chapter 6 measures the performance and resource consumption of the device as

an integrated whole. Chapter 7 concludes the thesis with an evaluation of the current

work’s success in meeting its design goals and its suitability for future experiments.

A comparison is also provided against contemporary pulse programmers. Sugges-

tions are given for further incremental improvements to this project as well as major

extensions.
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The appendices provide a technical reference for users and developers of the se-

quencer which can be read independently from the preceding chapters and in any

order. Appendix A contains information useful for modifying the hardware layer,

including circuit schematics, layouts, and design calculations for the printed circuit

board. Appendix B gives details of the firmware layer, in particular the daisy-chain

application protocol. Appendix C is a programmer’s reference for PCP assembly

language including architectural details, a complete list of opcodes, and their binary

formats. Appendix D describes the maps used for linking and loading target software

and also specifies the CGI variables used in the web interface.
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Chapter 2

Background

The role of a pulse sequencer in the larger framework of quantum computing is best

illustrated with examples of actively-researched qubit representations. Thus, Section

2.1 describes pulsed modulation requirements for nuclear magnetic resonance, trapped

ion states, and superconducting current phases. The physics of each qubit is briefly

described along with the addressing scheme for qubits the carrier being modulated.

These examples also show how a pulse sequencer meeting generic requirements but

with a wide operating range can be used in many different experiments. Because

pulsed programming has a substantial body of prior art, the chapter concludes by

surveying the notable features of previous and contemporary devices in Section 2.2.

Along the way, key requirements of pulse programming are presented along with some

common techniques for meeting them.

2.1 Physical Representation of Qubits

A classical bit can be implemented as any deterministic two-state system. By coupling

them into a universal set of gates, one can compute arbitrary Boolean functions.

Bits can achieve robustness to noise, correct initialization, measurable output, and

determinism itself by virtue of their non-linearity. In contrast, the requirements

for a quantum bit are more complicated. Quantum states must be coupled with

outside systems for preparation and measurement, but they must also be isolated from
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unwanted couplings during gate transformations and fault-tolerant storage [NC00].

Undesirable couplings can be sources of quantum noise or error, and quantum error

correction is challenging due to the linearity of quantum systems.

The three physical qubits considered in this section are nuclear spins within a

molecule, energy states within a trapped atomic ion, and the current phase through

a superconducting junction. Each choice has benefits and drawbacks compared to

the others; however, the method for performing unitary transformations using pro-

grammed pulses is identical for these three and many other types of qubits. Typical

examples of these pulse requirements are given in Table 2.1.

Qubit Carrier Pulse Duration Typical Sequence
Frequency Range Length

Liquid-state NMR 200-600 MHz 1-10 µs 300 pulses for 7 qubits
Trapped ions 200 MHz 1-200 µs 40 pulses for 4 qubits
Supercond. phases DC or 10 GHz 10 ns - 1 µs 10 pulses for 2 qubits

Table 2.1: Pulse requirements for different qubits (adapted from [Chu04]).

2.1.1 Nuclear Magnetic Resonance

Time-domain pulsed programming techniques were first pioneered for nuclear mag-

netic resonance (NMR) spectroscopy in order to perform Fourier analysis on the

free induction decay of nuclear spins [FR81]. DiVincenzo first suggested NMR as a

setting for quantum computing experiments [DiV95] and noted that some common

NMR pulse sequences were equivalent to single-qubit gates. As a natural two-state

system with strong spin-spin couplings, nuclear spins in a molecule are nearly ideal

qubits but are difficult to measure due to their small magnetizations, requiring the

use of large numbers of molecules (on the order of 1023). Microsecond pulses mod-

ulate a transverse magnetic field at the desired Larmor frequencies, which is on the

order of 100 MHz, applying unitary transformations to spins within a bulk sample of

molecules. NMR quantum computers have been used to implement Grover’s quantum

search algorithm by Chuang, Gershenfeld, and Kubinec [CGK98] and Shor’s quantum
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factorization algorithm by Vandersypen, Steffen, Breyta, et al. [VSB+01]. Unfortu-

nately, a major limitation of NMR is the exponential decrease of signal strength with

a linear increase in nuclear spins due to pure state preparation [GC97].

2.1.2 Ion Traps

A more scalable approach also uses spin states but in isolated atomic ions coupled

by vibrational modes. Cirac and Zoller first suggested the use of linear ion traps to

perform quantum computations [CZ95], where quantum gates could be performed on

arbitrary subsets of ions, not necessarily adjacent ones. Trapped ions are first pre-

pared using Doppler and sideband cooling, after which individual energy transitions

can be excited by shining a tuned laser on individual atoms. In practice, two lasers

are often used such that the difference in frequencies is tuned to a desired transition,

on the order of 200 MHz. Ions can also be moved in a trap using electrodes which are

driven in the kilohertz to megahertz range. Both of these operations require modu-

lated pulses which are tens to hundreds of microseconds wide. Ion traps have already

been used to achieve deterministic qubit teleportation at the University of Innsbruck

[RHR+04] and NIST [BCS+04].

2.1.3 Superconducting Current Phase

Another approach uses one of three available qubits of a superconducting junction

which combines scalability with long coherence times. Superconductors enjoy very low

dissipation and offer several possible qubits including the current phase and magnetic

flux across the junction, which suffer less noise than using an electric charge repre-

sentation [MNAL03]; they can also be mass-produced and coupled using integrated-

circuit techniques. Superconducting qubits use an artificially limited subspace of

energy states with transition energies dependent on a non-linear inductance. This

inductance is controlled by high-impedance bias currents which can be modulated

by pulses to perform unitary transformations [SMC03]. In theory, superconducting

flux qubits can perform gates very quickly (in less than a nanosecond) but require
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pulse durations shorter than the capabilities of current technology. Martinis has im-

plemented a superconducting phase qubit [MO99], which has a more feasible pulse

width requirement of 10 nanoseconds, using the sequencer presented in this thesis.

2.2 Related Work

Time-domain pulse programming was first pioneered in NMR due to their usefulness

in determining molecular structure, imaging biological systems, and measuring chem-

ical properties [FR81]. Pulse programmers themselves have become an important

vehicle for transferring nuclear spin techniques to other physical systems in quantum

computing. Likewise, the increasing demand for flexible pulse generation has made

these devices less integrated with other instrumentation and more modular.

The first pulse programmers were hard-wired RC delay circuits that output a spe-

cific, linear pulse sequence when triggered. Unfortunately, this made it difficult to

tune experimental parameters or repeat the sequences many times for signal averag-

ing. An early digital/analog hybrid circuit for NMR was build by Conway and Cotts

[CC77] which allowed operators to adjust pulse durations with manual controls and

contained hardware loop counters to automate experiment repetitions. Additional

features, such as automatically incrementing the delays between pulse groups, still

required modifications to the circuit [AHT77]. It introduced the idea of modular

circuits for the easy addition of new channels, and it promoted the use of the durable

and inexpensive TTL logic family over potentially faster and more expensive ECL

components.

Today, most pulse programmers use a purely digital approach, which has gone

through two main stages as new integrated circuit technologies have become avail-

able. The first stage used discrete microprocessors to execute pulse programs and

exploited the flexibility of software. The second stage, which includes the pulse se-

quencer, uses programmable logic devices to both configure hardware and execute

pulse programs, retaining the advantages of software and extending them to the per-

formance of firmware. These stages are described below.
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2.2.1 Microprocessor Approaches

Adduci and Gerstein [AG79] developed a microprocessor-based system, also for NMR,

with delays that were controllable from a host computer through a dedicated parallel

port interface. However, pulse durations were still separately controlled through RC

delay networks. Pulse programs were written in a machine language developed for

NMR experiments and stored in on-board digital memory. The system contained a

rudimentary operating system for accepting ASCII commands from a terminal.

The advantage of a dedicated microprocessor is twofold. First, general-purpose

computers and operating systems cannot guarantee the predictable scheduling of

pulses with nanosecond precision, which is still true for modern systems. Second,

tightly coupling a pulse programmer to a host computer increases the cost of the en-

tire system and does not isolate failures between the two. Furthermore, writing pulse

programs in a machine language enabled the flexibility of loops and branches; being

digitally stored also facilitated modification and reuse. The success of this design is

evident in all modern pulse programmers, which are essentially specialized computers.

Thomann, Dalton, and Pancake [TDP84] developed a similar pulse programmer

for electron spin resonance spectroscopy. However, it could produce pulses two orders

of magnitude faster than NMR devices. Although the decay times of electron spin

states are much shorter than for nuclear spins, the pulse techniques used are basically

the same. The major advance of this programmer was the output of multiple bits in

parallel, associated with a duration, for each step of a pulse program. This unified

pulse outputs with timer loading under digital control, which decreased the circuit

complexity and allowed much smaller minimum values.

The state-machine pulse programmer by Wachter, Sidky, and Farrar [WSF88] used

a novel composite counter to increase the range of possible delays while maintaining

a fast resolution due to improvements in TTL components. The fan-out of the high-

speed clock is limited to a single fast counter, which in turn clocks slower counters.

Also, the terminal value of loop counters and delay counters are used to decode the

next instruction. The inclusion of two loop counters allowed a single level of nesting.
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Wu, Patterson, Butler, and Miller’s spectrometer [WPBM93] included a pulse pro-

grammer which controlled the timing of both amplitudes and phases using multiple-

bit channels. Pulse programs were written as modules in LabVIEW, a graphical

programming language for desktop computers. These were then compiled into the

specialized machine code for the pulse programmer hardware and written to a parallel

interface card.

Varian, the company which first produced commercial NMR instrumentation, uses

a customized bytecode language in its UNITY INOVA spectrometers [Var00a]. These

devices are usually sold as an integrated equipment cabinet with waveform generators

and Programmable Test Source (PTS) synthesizers for frequency generation. Digital

sequencing is performed by an embedded computer called the digital acquisition con-

troller housed on a PCB that is approximately 9 by 8.5 inches. It contains a 200 MHz

PowerPC-based microprocessor running the VxWorks real-time operating system and

a custom high-speed interface to analog ports and RF controllers. Table 2.2 applies

the sequencer’s figures of merits to the acquisition controller. The UNITY INOVA

is controlled over Ethernet using a dedicated Sun Microsystems workstation, which

comes pre-configured with Varian’s VNMR pulse programming software [Var00b].

This guarantees that the entire instrument works well as a monolithic unit but at

greater material cost and less flexible upgrading.

Cycle time 25 ns
Minimum duration 100 ns
Number of digital outputs 34
Number of analog outputs 4
Maximum carrier frequency 50 MHz
Maximum program size (words) 4K
Flow control features Nested looping, subroutines

Table 2.2: Figures of merit for the Varian UNITY INOVA spectrometer.

34



2.2.2 Programmable Logic Approaches

While the microprocessor approach offers significant flexibility over hard-wired pulse

programmers, many signal assignments and I/O connections are still held fixed in

hardware. More recently, Yun, Yu, Hongyan, and Gengying use a complex pro-

grammable logic device (PLD) to interface an on-board DAC to an industry standard

architecture (ISA) bus [YYHG02]. The pulse programmer and the ISA interface

controller is entirely implemented in the gate logic of the PLD, which increases the

configurability of their system without decreasing its speed.

The commercial pulse programmers from SpinCore1 are some of the most sophisti-

cated devices to date and offer both waveform synthesis and sequencing, These devices

use an Altera Stratix FPGA and proprietary firmware cores; they are implemented as

ISA or peripheral component interconnect (PCI) cards installed inside the host PC.

The PulseBlaster�, like the pulse sequencer, only produces digital outputs to control

the timing of other devices; the pulse processing core is called a pattern generator by

SpinCore [Spi04c]. The PulseBlaster DDS� is a “direct digital synthesis” pulse pro-

grammer which combines sequencing and waveform synthesis to produce both digital

outputs and analog channels [Spi04a]. The PulseBlaster ESR� is a high-performance

version for ESR spectroscopy [Spi04b]. The capabilities of the most powerful device

in each product line is shown in Table 2.3. Parenthesized figures are for alternate

models which make different feature trade-offs.

Each device is controlled over the PC’s expansion bus by using device drivers

running on the host. The user does not write pulse programs directly in the device’s

machine language. Rather, the C programming language and SpinCore’s application

programming interface (API) are used to create host binaries which, when executed,

generates instructions and downloads them into the pulse programmer. This approach

has the advantage of using existing compilers and languages to generically implement

a new language that is local to the PCI bus and internally hidden from the user.

The integrated peripheral card approach of the previous two works have the advan-

tage of a small form factor (approximately 4.5 by 7 inches) but several disadvantages

1http://www.spincore.com
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Parameter PulseBlaster PB DDS PB ESR
Cycle time (ns) 8 (10) 10 3.0 (3.3)
Minimum duration (ns) 40 (80) 50 (90) 3.0 (20)
Number of digital outputs 12 (24) 10 21 (24)
Number of analog outputs n/a 3 4
Maximum carrier frequency (MHz) 50 100 4
Maximum program size (words) 512 (32K) 512 (32K) 4K (512)
Flow control features Nested looping, subroutines
Triggering From host software or hardware inputs
Trigger Latency 80 ns 80 ns 26.6 ns

Table 2.3: Figures of merit for SpinCore’s pulse programmers.

due to tight coupling. This scheme is inflexible in that the PC must be powered off

before the pulse programmer can be installed or removed. It lacks fault-tolerance

in that the pulse programmer is not electrically isolated from the PC. The device

depends on a shared power supply and is located closed to other unshielded devices

with generate electromagnetic interference.

The direct predecessors of the current device were developed by Huang, Mar-

tinis, Waltman, and Chuang [Hua03]. The first generation device used a Rabbit

Semiconductor board to provide both an Ethernet interface and a web server; it was

easy-to-use, but had a slow cycle time and a small number of digital outputs. The

second generation device used a Digilent board with a Xilinx FPGA to achieve faster

cycle times and more digital outputs; however it suffered from an inflexible and less

user-friendly serial interface.

The goals for the current sequencer listed in Section 1.2 are chosen to retain the

advantages while overcoming the limitations of all prior devices, especially the novel

feature of feedback support. The contemporary devices in this section will be revisited

in the conclusion where they will be compared with the pulse sequencer. While some

competing devices combine both sequencing and waveform synthesis, only sequencing

capabilities will be compared.
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Chapter 3

Hardware Design

This chapter describes the hardware layer of the pulse sequencer, which consists

of I/O interfaces and electrical components connected by a PCB. In terms of the

overall goals, the hardware ultimately determines system performance by setting the

maximum clock speed, the number of available pulse outputs, and the maximum

size of a pulse program. The hardware also maintains flexibility by avoiding hard-

wired assumptions in its interface to the software and firmware layers. Implementing

common I/O bus standards and connectors makes the hardware easy to use with other

equipment. Programmability is implemented indirectly by including reconfigurable

hardware components which can be made to execute software. Finally, feedback is

supported at the hardware level by including appropriate connector inputs for external

sources.

More concretely, the sequencer PCB must perform the following tasks which higher

layers will depend on. It must run at fast clock speeds with low noise, requiring the

high-speed digital design techniques that begin this chapter in Section 3.1. The PCB

must also interface with other devices and especially the user; the choice of electronic

components, bus standards, and connectors for interfacing with the outside world is

justified in Section 3.2. Finally, the PCB must be able to connect its I/O interfaces

in a configurable way. The components used to achieve storage for pulse programs,

logic for their execution, and switching between multiple clock sources are described in

Section 3.3. The resulting PCB is shown in Figure 3-1 after fabrication and assembly.
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Figure 3-1: The assembled printed circuit board for the pulse sequencer.

3.1 PCB Design

The reliable driving and sampling of digital data at high speeds in the presence of

noise is a feature known as signal integrity. When the round-trip propagation time of

a signal approaches its transition time, the conventional circuit model using Kirchoff’s

laws cannot maintain signal integrity. On PCBs with dimensions of a few inches, this

limit is usually reached at 100 MHz. At these speeds a PCB trace is more usefully

considered as a transmission line, which predicts two chief sources of noise. Internal

noise from an isolated signal’s self interaction is called reflection; external noise from

the coupling of multiple signals is called crosstalk. A third type of noise can be

introduced by power supply fluctuations. Mitigating these sources of noise places

certain constraints on trace dimensions, routing, and layer thicknesses, which must

be balanced against available manufacturing tolerances.
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3.1.1 Transmission Line Parameters

A transmission line consists of two conductors separated by a dielectric material,

where the separation distance is much smaller than the signal wavelength and the

cross-section is homogeneous down the line length. It is a useful model for describing

signal propagation down coaxial cables, parallel plates, and especially PCB traces. In

particular, traces on surface layers can be modeled as microstrips as shown in Figure

3-2. These have a rectangular cross-section and are separated from a ground plane

on one side by a dielectric layer and are exposed to air on the other side.

Dielectric

Reference Plane

Trace

Air

Figure 3-2: A PCB trace modeled as a microstrip transmission line.

To analyze an equivalent circuit of a transmission line, the lumped circuit approx-

imation in Figure 3-3 is used; it includes a series resistance R, a series inductance L, a

parallel capacitance C, and a shunt admittance G. Taking the limit of these cascaded

lumped elements and applying Maxwell’s Equations, the telegrapher’s equations can

be derived1 to find the ratio between voltage and current changes in the transmission

line, shown in Equation 3.1.

R L
C G

Figure 3-3: Lumped element approximation of transmission lines

This characteristic impedance, denoted by Z0, is in general frequency-dependent

and complex-valued. However, its expression can be simplified depending on the

desired range of operating frequencies.2 The pulse sequencer operates at frequencies

much greater than ωLC = R/L, where the inductive term dominates the resistive term

1As done in [Kon00] and [Som99]
2A detailed treatment of performance regions can be found in Chapter 3 of [JG03].
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in the numerator and the capacitive term dominates the admittance in the denomina-

tor. The lumped model then reduces to an LC circuit where Z0 is relatively constant;

using this approximation, specific transmission line parameters are calculated for the

sequencer’s microstrip PCB trace in Appendix A.

Z0(ω) =

√

√

√

√

jωL + R(ω)

jωC + G(ω)
(3.1)

This model possesses an under-damped step response due to its lower resonant

frequency, which is more easily excited and produces unwanted signal transients. This

form of noise, known as “ringing” or reflection, is the primary obstacle to faster clock

speed. The characteristic impedance is used to calculate the additional resistance

needed to reduce a signal’s internal reflection, a process which is described next.

3.1.2 Minimizing Reflection

The amount of a wave that reflects from each end of a transmission line is determined

by the reflection coefficients. The formulae below (for the source and the load, respec-

tively) show these as real values between -1 and +1, indicating the relative magnitude

and polarity of the reflected wave to the incident wave.

ΓS =
RS − Z0

RS + Z0

(3.2)

ΓL =
RL − Z0

RL + Z0

(3.3)

These coefficients should be made as close to zero as possible to minimize re-

flections; the sequencer accomplishes this using termination, or the addition of a

resistance in series with the source (RS) or parallel to the load (RL) matched to Z0.

The three main termination schemes are depicted in Figure 3-4. The disadvantage

to end termination is its use of two resistors and its larger constant current draw.

Likewise, both-ends termination uses three resistors and halves the signal amplitude

in exchange for greater reflection damping. Source termination was chosen as a com-

promise between minimizing reflections, power consumption, and component count.
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Source Termination End Termination Both-Ends Termination

Figure 3-4: Three different termination schemes.

Terminating clock signals is especially important, since these transition twice as

fast as any data signal in the system. Reflection on a clock signal will cause false

triggering on transient logic levels in other components, which might seem mysterious

if their data signals do not switch fast enough to require termination by themselves.

Bulk propagation delays introduced by the termination resistor do not effect the

overall throughput of the clock, since a real impedance will not distort the waveform.

While impedance matching and termination compensates for a signal’s delayed

echoes, it cannot distinguish between a signal’s incident wave and coincident interfer-

ence from an adjacent signal. Dealing with unwanted couplings from external sources

is the subject of the following section.

3.1.3 Minimizing Crosstalk

Crosstalk is the interference of two signals primarily through mutual inductance.

In an ideal, lossless transmission line, the conductor carrying the outgoing signal is

closely coupled to the conductor carrying return current, which serves as a reference.

This minimizes the current’s total path in the circuit (the current loop), and thus also

minimizes inductance. In differential signaling such as LVDS, there are two explicit

conductors, and return paths between signals are isolated [Nat04]. This is a key

advantage over single-ended signaling, where a single ground trace may be shared

among many signals. On a PCB, current loops are sometimes close enough to act

as transformer windings, allowing transients on one signal to show up with opposite

polarity in neighboring signals.3

3This problem is sometimes called ground bounce.
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The pulse sequencer uses two conventional techniques to minimize crosstalk: inner

reference planes and multiple ground pins in connectors. Solid inner ground planes,

rather than power planes, are chosen to distribute the return current evenly. In

theory, any DC inner plane can act as an AC signal reference. However, on densely

populated PCBs such as the sequencer, high-speed signal traces must be routed across

layers using vias, and their signal references must also be “stitched” together with

neighboring vias in order to be continuous. Overlapping power planes often carry

different voltages and cannot be shorted, precluding their use as signal references.

In connectors, ground pins are evenly distributed between signal pins to eliminate

crosstalk in off-board communications. This provides a short, well-defined current

loop at regular intervals. Crosstalk is a more serious problem at these external inter-

faces because connector pins are usually packed closer together than any PCB traces,

making it more likely that noise will propagate from one device to another. Specific

examples of how connectors minimize crosstalk is deferred until Section 3.2.

Both reflection and crosstalk cause noise from signal couplings on transmission

lines, but noise can also be introduced at the sources driving these lines. Filtering is

required to attenuate and isolate fluctuations in the power supply.

3.1.4 Power Filtering

The pulse sequencer requires three voltage levels to interface a wide variety of compo-

nents: +1.5 volts, +3.3 volts, and +5 volts.4 Each one requires a separate regulator

and a portion of a power plane for distribution. Furthermore, the +3.3 volt supply is

further divided into two regulators to isolate critical LVDS subsystems from single-

ended signals. Ferrite beads and varistors suppress current and voltage transients

from the unregulated supplies. After regulation, local current transients are handled

by the crosstalk-handling techniques above.

Bypass capacitance is the standard solution to local voltage transients. How-

ever, these are only effective at attenuating AC voltages in a certain frequency range,

according to the relation ZC(ω) = 1/jωC. Thus, in addition to discrete bypass ca-

4The nominal unregulated input voltages are +1.8 volts, +3.6 volts, and +5.4 volts, respectively.
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pacitors, the board’s inner planes can also serve as extremely high-frequency parallel-

plate capacitance using the formula Cpp = ǫA/d. Because a given voltage supply is

not needed everywhere on the board, a single power plane can be split among two or

more voltages, as shown in Figure 3-5.

Dielectric

Ground Plane 1

Dielectric

Power Plane 1 Ground

Dielectric

Power Plane 2Ground

Dielectric

Ground Plane 2

Dielectric

Figure 3-5: Split power planes provide high-quality bypass capacitance.

The previous three subsections have discussed techniques for dealing with noise

both inherent to the PCB as well as from external sources. The final stackup resulting

from these design constraints is detailed in Section A.2. Its careful design allows it to

maintain signal integrity at speeds greater than 100 MHz and support off-board I/O

connections at the same speed. The components to achieve this fast communication

have their own electrical and mechanical constraints separate from the PCB design.

They represent the next hardware sublayer and are described in the following section.

3.2 I/O Interfaces

In order to generate pulses, the sequencer must communicate through input/output

interfaces with the following entities: the user (both inputs and outputs), the wave-

form synthesizer (outputs only), other instances of the sequencer (both inputs and

outputs), feedback sources (inputs only), clock sources (inputs only), and instruments

(both inputs and outputs). These interfaces have logical and physical parts. Logical

interfaces are internal to the PCB, and their signals are interpreted by the FPGA

firmware. Physically, these interfaces must conform to established mechanical form

factors and an electrical bus standard, including allowable voltage levels and signal-
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ing speeds. PCB traces form the physical “standard” between all connectors, while

common voltage levels and signaling speeds are determined by the FPGA and its

clocks. Many standard I/O components, such as the Ethernet controller, I2C driver,

and fiberoptic connectors, still support the 5V TTL standard and use a FET bus

switch to shift to the FPGA’s LVCMOS levels.5

This section organizes logical I/O interfaces by the bus standards used to im-

plement them; it then describes the physical connectors that implement each bus

standard. As shown in Table 3.1, multiple logical interfaces can share the same phys-

ical interface, and a single logical interface can also use multiple physical connectors.

Two interfaces have bus standards which are not discussed in this section: the SMA

clock is only limited by LVCMOS input tolerances and has no real bus standard,

while discussion of the daisy-chain interface is deferred to the firmware layer.

Bus Speed Logical Physical Media
Standard Interfaces Connectors
Ethernet 100 MHz User (TCP/IP) RJ-45 Unshielded twisted pair

SC Fiberoptic
LVDS 200 MHz Pulses Edgemount Direct connection

Feedback
Clock
Daisy-chain RJ-45 Unshielded twisted pair

I2C 400 KHz General-purpose Edgemount Direct connection
VersaLink 20 MHz General-purpose VersaLink Fiberoptic
LVCMOS 18 GHz Clock SMA Coaxial

Table 3.1: I/O bus standards, logical interfaces, and physical connectors.

3.2.1 Ethernet

Ethernet is the most popular technology for connecting local computer networks,

especially to the Internet. The physical layer for the Fast Ethernet specification pro-

vides full duplex 100 Mbps data transmission over a variety of media. It can be

incorporated into a TCP/IP stack for creating more reliable network connections and

5LVCMOS is the low-voltage 3.3V equivalent of the 5V CMOS standard.
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running higher-level applications. These characteristics make it ideal for implement-

ing an embedded user interface for downloading pulse programs.

The physical layer (PHY) is provided by the DP83843 chip from National Semi-

conductor [Nat99], chosen for its low cost and simple interface circuitry. It com-

municates with the FPGA through a standard media-independent interface (MII)

described in [Eth02] and supplies two 25 MHz clocks for transmitting and receiving.

These occupy two of the FPGA’s four clock inputs, and the receive clock is used

to synchronize incoming Ethernet frames with the firmware described in Chapter 4.

Because no collisions occur during full-duplex operation and carrier detection is not

commonly needed, these two pins are not connected.

The Ethernet interface can also make use of two different physical connectors:

a 4-pair registered jack (RJ) 45 modular connector, of which only 2 pairs are used,

and a 2-conductor fiberoptic subscriber connector (SC). Only one can be used at

a time; switching between the two involves soldering a single jumper. Unshielded

twisted pair cable is preferred for short runs and convenient connection to consumer

PCs. Fiberoptic cable is preferred for longer runs due to its greater immunity to

electromagnetic interference and ground isolation from other equipment.

3.2.2 LVDS

The low-voltage differential signaling (LVDS) standard was developed by National

Semiconductor to provide fast, low-power interconnects between PCBs with low noise

generation and high noise rejection [Nat04]. These match the requirements for several

of the sequencer’s logical interfaces, including the most important, the fast pulse

outputs to the waveform synthesizer. In addition, the speed of LVDS is suitable for

receiving moderately fast external clocks (up to 200 MHz). Also, its conversion to and

from CMOS/TTL levels makes it ideal for receiving feedback inputs, and providing

the physical layer for the daisy-chain interface.

National Semiconductor also provides two convenient components for interfacing

LVDS buses with LVCMOS logic levels, a matching transmitter and receiver. The

DS90LV047 [Nat03] takes 4 LVCMOS inputs and produces 4 pairs of LVDS outputs.
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The DS90LV048 [Nat01] takes 4 pairs of LVDS inputs and produces 4 LVCMOS

outputs. In a disconnected state, the receiver outputs high LVCMOS levels; this

feature is used to detect the end of the daisy-chain in firmware.

The first three logical interfaces that use LVDS (pulse outputs, feedback inputs,

and clock inputs) share the same physical connector, a male edgemount connector

from Samtec with 2 rows of 80 pins (part number QSE-EM-80-01-F-D-EM2). A

cross-section is shown in Figure 3-6. Right-angle connectors have the disadvantage

of skewing differential signals due to different pin lengths, impedance discontinuities

due to the right-angle bend, and reduced pin count because of through-hole soldering.

Edgemount connectors introduce less impedance, have higher pin counts, and provide

better grounding through a plated edge to inner PCB planes. Waveform synthesiz-

ers and other devices should use the matching female connector from Samtec (part

number QTE-EM-80-01-F-D-EM2) using the same pinout given in Appendix A.

PCBPlated Edge

Top Pins

Bottom Pins

Figure 3-6: The Samtec edgemount connector.

LVDS also provides high-speed, point-to-point channel coding for the daisy-chain

interface; its use as a bus standard for other on-board connectors made it a conve-

nient choice. The physical daisy-chain connectors are implemented using two RJ-45

connectors and normal unshielded twisted-pair cable to connect each device to a mas-

ter and a slave. All four pairs are used in each interface, providing two inputs and

two outputs for both the master and slave interfaces. This physical layer forms the

beginning of the daisy-chain communications stack which is primarily implemented

in firmware. A detailed discussion of the higher layers can be found in 4.2.1.

The edgemount connector is also shared by the general purpose I2C bus, while

the remaining two buses (VersaLink and SMA) each have their own connectors.
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3.2.3 I2C, VersaLink, and SMA

The pulse sequencer provides two buses for general-purpose peripherals. The I2C

bus allows the FPGA to control low-speed peripherals such as the on-board LED

controller; since I/O pins are at a premium on the FPGA, it is advantageous to address

less critical peripherals using a shared 2-wire bus. The sequencer provides the pull-up

resistors and positive power supply for this open-drain standard. These two pins are

also exported to the edgemount connector for addressing off-board peripherals.

A faster pair of general-purpose fiberoptic connectors allow the board to interface

with a wide variety of Versatile LinkTM products from Agilent. These can range from

extending an RS-232 or RS-485 bus to acting as a second, higher-bandwidth set of

daisy-chain connectors.

The final physical connector, the Sub-Miniature Version A (SMA) does not tech-

nically have its own bus standard but can be driven at CMOS logic levels to provide

an extremely fast external clock. The connector itself can receive signals many times

faster (18-24 GHz) than the PCB is capable of using. It also uses an edgemount

connector and multiple ground pins to minimize reflections.

3.3 Logic and Storage

A high-speed PCB is a physical substrate for housing I/O connectors and compo-

nents; the previous sections have described these two sublayers that are designed for

performance. The remaining sublayer must not only provide fast clock speeds, it

must supply the seed for flexibility in more abstract layers. The ideal solution to

these problems is a complex, reconfigurable logic device. An FPGA provides abun-

dant programmability but with a limited array of peripherals. The small amount of

built-in storage and clock inputs requires external SRAM and clock switching compo-

nents. Once these are secured, the sequencer can use FPGA technology to multiplex

I/O connections, encode and decode higher-layer communication protocols, and pro-

vide a platform for executable code such as user interfaces and pulse programs. The

remainder of this section describes the components chosen for logic and storage.
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3.3.1 SRAM

To achieve fast storage, SRAMs provide the fastest access times and lowest power

consumption. In addition, to avoid combinational delays and increase throughput,

the fastest SRAMs are synchronous and have registered ports. The CY7C1386b from

Cypress Semiconductor provides a suitable pipelined memory that is available in a

wide data package (36 bits), fast clock speed (150 MHz), and large memory depth

(512k words) [Cyp01]. Two unconnected address pins allow future upgrades to double

or quadruple the memory depth while remaining footprint-compatible.

This SRAM’s large depth provides ample storage space for pulse programs and

is well-suited for pipelined burst reads, which will occur frequently in later firmware

modules. Moreover, it can serve as memory for many different modules through a

single physical interface if it is connected to configurable logic. Its fast speed means

that logic components could use its stored state directly without caching. However,

its large width makes it less suitable for general-purpose random memory access.

Additional logic and cycles are needed to “resize” the physical width of 36 bits to

a more standard 16 bits or 8 bits.6 As a result, single reads have one-third the

throughput of burst reads due to pipeline delays.

Because it is volatile, it cannot be used to bootstrap the system. This limitation

cannot be overcome without incurring the increased cost, slower access times, more

complex write logic, and greater power consumption of flash chips. In these cases, it

makes sense to rely on the built-in flash memory of separate logic devices, which are

described next.

3.3.2 FPGA

An FPGA typically consists of a two-dimensional grid of logic elements, each of which

contains flip-flops, a lookup-table, and combinational logic to implement arbitrary

Boolean functions. FPGAs usually contain other devices such as phase-locked loops

(PLLs), built-in RAM blocks, and I/O pin drivers that support different logic families.

6Sizing and resulting memory segments are described in more detail in Sections 4.1.1 and B.2.
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The bulk of an FPGA’s semiconductor consists of a vast interconnection network to

distribute signals between these elements.

In recent years, the need for configurable logic and easy prototyping for integrated

circuits has driven down the cost of programmable logic devices. FPGAs, as the most

advanced examples, are a natural choice to provide the “glue” logic for different I/O

standards and clock speeds. The Cyclone EP1C12Q240C6 from Altera provides a

low-cost component with a fast clock speed (up to 450 MHz), high logic element

count (12,060), built-in memory (288 Mbits), 2 PLLs, and a variety of I/O standards

(LVCMOS is the only one currently used) [Alt03]. Its lookup tables are contained in

volatile memory, and it is reprogrammed by a serial flash device (the Altera EPCS4)

on each power-up.

Historically, pulse programming devices have included only a hardware layer and a

software layer. Unfortunately, many tasks such as memory arbitration are too compli-

cated to implement in hardware; furthermore, such tasks cannot execute in software

fast enough to produce accurate pulse timings. The introduction of a firmware layer,

made possible by an FPGA, allows logic to approach the programmability of software

and the speed of hardware. Including one device relegates almost all of our logic func-

tions and I/O control to the firmware layer, as long as all peripherals are physically

connected to the FPGA.

I/O connections also represent the major limitation of the FPGA. For a plastic

quad flat package (PQFP), the maximum feasible number of pins is 240, with 60 on

each side; 169 of these available for I/O, and these must be divided among storage

lines (control, address, and data) and peripheral lines (control and data). Because I/O

pins are limited, some features of the Altera Cyclone cannot be used. For example,

the FPGA can drive differential outputs directly using several popular standards,

but this requires two I/O pins for every signal. The final design compromised by

having the FPGA drive single-ended signals, effectively doubling the pin count while

requiring discrete components to convert them into differential pairs.

Moreover, the FPGA limits the available bandwidth of external storage. Ideally

the memory data width would equal the number of desired programmable outputs,
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allowing each memory bit to drive an output bit directly. In practice, however,

daisy-chaining memory chips to achieve this width would introduce routing and noise

problems with a shared address bus. Therefore, the task of multiplexing 36 bits of

memory among 64 digital outputs was deferred to the firmware and software layers.

The FPGA is not a bottleneck in system clock speed; its high-speed internal bus

can transition at over 450 MHz. Using its PLLs, it can multiply a 100 MHz clock from

the PCB by any half-integer multiple up to 4.5. This extremely fast clock would be

local to the FPGA’s internal logic and the pulse output circuitry. In practice, however,

the setup and hold times of the FPGA’s programmable logic limit the maximum clock

speed. In fact, due to several reasons not due to speed, it is desirable for the sequencer

to manage clocks without using the FPGA at all.

3.3.3 Clock Multiplexing

Multiplexing clock signals is difficult compared to data signals because they must

transition twice as fast, propagate farther distances, and drive much larger fan-outs.

Furthermore, the sequencer has six available clock sources for maximum flexibility,

so any clock switching scheme must support many inputs. A manual switch would

suffice for user convenience, but this provides no voltage protection against external

clock sources. A logic device could be used to multiplex clocks, but it must possess a

high-speed interconnect so that clock signals are not attenuated at high frequencies.

The FPGA would be ideal except that it only possesses 2 available input clocks.

The sequencer combines the approach of manual switches with a an separate pro-

grammable logic device (PLD), which switches the clocks directly. The GAL16LV8D

from Lattice Semiconductor provides a 5 nanosecond transition delay, limiting the

fastest clock to about 200 MHz. As a 3.3V CMOS component, it automatically con-

verts any input clock voltages to acceptable levels for the FPGA, protecting it from

potentially unsafe external levels. Unlike the FPGA, it must be programmed before

stuffing and cannot be reprogrammed afterward. In exchange for its convenient clock

switching, the PLD introduces a major clock speed limitation and complicates the

assembly procedure for new sequencer boards.
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3.4 Implementation

While the preceding sections have discussed major design decisions in order of ab-

straction, the actual interdependencies were not a linear sequence. The logic and

storage components were chosen first due to the proven success of configurable logic

and on-board buffering in previous approaches [Hua03]. Commonly used bus stan-

dards in other scientific apparatus determined the initial list of I/O connectors: SMA,

VersaLink, and I2C. LVDS is less common in existing equipment; it represents a de-

gree of freedom in designing the sequencer and a fixed compatibility standard for

later waveform synthesizers and daughterboards. The Ethernet subsystem was added

relatively late to the sequencer, requiring the MAC controller to be implemented in

firmware. While it occupies two of the FPGA’s four clock inputs, this no longer a

concern due to the PLD clock switch; moreover, it obviates the need for a separate

Ethernet controller board and its associated cables and headers.

In a previous design, the problem of low I/O pin counts was solved using a ball grid

array (BGA) package for the FPGA, which had 400 pins and a smaller PCB layout

area. However, the higher pin density increased the cost and difficulty of fabrication

due to the use of blind and buried vias, and it was eventually abandoned.

The circuit schematics and PCB layout were both implemented using the Protel

99 SE package7 (with Service Pack 6) from Altium. However, the use of Protel

limits development to Microsoft operating systems, and third parties cannot view and

modify the designs without a Protel license. Moreover, collaboration proved difficult

without version control for the design files; entire databases were copied wholesale

between different sites. In keeping with the open nature of the project, future versions

should use free software for electronic design automation (EDA). Possibilities include

the freeware version of Eagle from Cadsoft8 or open source tools like the gEDA suite.9

The latter uses open text-based formats that are suitable for versioning with, e.g.,

Concurrent Versions System (CVS).10

7http://www.protel.com
8http://www.cadsoftusa.com
9http://www.geda.seul.org

10http://www.cvshome.org
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3.5 Contributions

The printed circuit board for the pulse programmer was developed in close collabo-

ration with John Martinis, then at NIST Boulder, and Steve Waltman for their work

with Josephson phase qubits. In particular, Martinis suggested the use of a PLD as a

clock switch and the integration of the Ethernet interface directly onto the sequencer

board. He also assisted with the PCB layout and debugged the hardware errors in the

initial run of PCBs. Waltman designed the Ethernet interface circuit and suggested

the use of inner planes as high-frequency bypass capacitance. The immediate pre-

decessors of this project are the two pulse programmers by Wei-han Huang [Hua03].

The schematics and layout of the current work are based on an initial design by Steve

Huang for his Master’s thesis [Hua03]. An early proposal for the current design can

be found in the conclusion of that document.

3.6 References

High-Speed Signal Propagation by Johnson and Graham [JG03] is an indispensable

and very readable guidebook to advanced topics in high-speed digital design; it con-

tains useful approximations and practical examples at every stage of the engineering

process from the circuit schematic to PCB manufacturing. Electromagnetic Wave

Theory by Kong [Kon00] is a mathematically rigorous and concise treatment of clas-

sical electrodynamics and transmission line theory. It can be supplemented with

Someda’s Electromagnetic Waves [Som99] for a more in-depth introduction to waves

in media. Signals and Systems by Oppenheim, Willsky, and Nawab [OWN97] remains

the classic introductory text on signal processing and is useful in analyzing circuits

as linear, time-invariant systems and transmission lines as system functions.
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Chapter 4

Firmware Design

The sequencer’s reconfigurable hardware enables an intermediate abstraction layer,

the FPGA firmware, which is presented in this chapter. The sequencer’s goal of

flexibility can be achieved by using firmware to route data between I/O interfaces

and to defer programmability to the software layer; new functionality can be added

later without hardware modifications. Firmware also provides access to hardware

performance with minimal overhead compared to software drivers. Unlike the other

two layers, the firmware is effectively hidden from the user; therefore, its ease-of-use

requirements are directed towards a clean, maintainable design for developers.

To achieve the objectives above, the firmware should be divided into modules1 con-

nected by well-defined interfaces, called buses. Section 4.1 outlines the sequencer’s

bus structure augmented with three important primitive modules. Section 4.2 de-

scribes the two controllers used by the sequencer for off-board communication over

the daisy-chain and a network connection. Section 4.3 builds on these transport chan-

nels to describe the endpoints that generate and interpret data: the processor cores.

The two firmware processors, the AVR and PCP, execute user interface software and

pulse programs, respectively. All firmware modules can grouped into six top-level

blocks as shown in Figure 4-1. The I2C and AVR controllers were available as free

third-party cores, while the network, daisy-chain, SRAM controllers and the PCP

were designed for the pulse sequencer.

1Sometimes called intellectual property (IP) cores.

53



Network
Controller

Daisy-Chain
Controller

I2C
Controller

SRAM
Controller

PCP
Controller

AVR
Controller

Ethernet I/O

Pulse I/O

I2C I/O

SRAM I/O

Daisy-Chain I/O

Figure 4-1: Top-level functional blocks of the firmware.

4.1 Bus Primitives

One of the recurring problems of System-on-Chip (SoC) designs is the logical in-

terface between firmware modules for transferring control signals and data. A bus

interconnection architecture is a standard protocol that defines how these transfers

are clocked, what the signals are named, and when data is presented and latched.

The sequencer firmware uses the Wishbone bus architecture [Her02] throughout its

design to facilitate the replacement and independent testing of modules. Compared

to other bus standards, it has the advantage of being simple, independent of hardware

technology, and free for use without royalties.

The firmware layer can be viewed as chains of modules connected by buses The

module which requests a data transfer (either reading or writing) is called a master

and the module which services the request is called a slave. A module in a chain

usually has two such interfaces since it is both a master and slave to other modules

further down and up the chain, respectively. Two exceptions are shown in Figure 4-2.

Sources, where data is generated or enters the chain, have a master on the hardware

or software layer. Likewise, sinks, where data is consumed or leaves the chain, have

slaves on layers other than firmware.

Recall that the main purpose of the firmware layer is to connect the multiple,

heterogeneous hardware interfaces described in Section 3.2. In contrast, the Wishbone
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Figure 4-2: A chain of firmware modules acting as masters and slaves.

bus connects one master to exactly one compatible slave. In addition to using a

uniform bus architecture, the sequencer must augment it with three additional bus

primitives. Buses have variable widths and need a sizer to convert between them.

In addition, a bus interface forces a module to be either a master or a slave, but

modules can reverse their direction if necessary using a proxy. Finally, because the

bus uses handshaking to throttle data transfer, chains that split or merge require an

arbiter to serialize a data transfer. The use and implementation of these primitives

are discussed in the remainder of this section.

4.1.1 Sizers

Consider that the Ethernet receive interface, which is a nibble (4 bits) wide, is too

narrow to directly transmit data to the 64-bit pulse output interface, ignoring for the

moment communication protocols. Conversely, the 8-bit feedback inputs are too wide

to directly transmit to the 4-bit wide Ethernet transmit interface. Somewhere in these

chains, a sizer module2 must be interposed to translate data words from one width to

another. In the sequencer firmware, sizers are only used to convert internal memory

widths (usually 8 bits or 16 bits wide) into the 32-bit external SRAM interface by

shifting virtual words into a larger physical word. These sizers must perform binary

address conversions as well as memory sizing, as described in Section B.2.

Narrow
Master

Widening
Sizer

Wide
Slave

Wide
Master

Narrowing
Sizer

Narrow
Slave

Figure 4-3: A sizer converts from one data width to another.

The two kinds of sizers convert from a narrow data stream to a wide one or vice

versa, as shown in Figure 4-3. The widening type is sufficient to perform all sizing

2The descriptive but not widely-used term “sizer” is borrowed from the OpenCores project.
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for the following reasons. In most cases, slave widths are wider than master widths;

in the remainder of cases, the narrowing sizer can be implemented by reversing the

direction of the first type and using the second busy primitive, a proxy.

4.1.2 Proxies

Certain modules are constrained to have one direction (master or slave) but must

connect to other, non-complementary modules. For example, data received over the

network is asynchronous with respect to processors, but must be read synchronously

between these two masters. The reverse case is asymmetrically: data is transmitted

synchronously, but it is desirable to make this process asynchronous by adding an

intermediate slave. Therefore, the two kinds of proxies in Figure 4-4 are needed: one

to convert a master into a slave and one to convert a slave into a master.

Master
Master
Proxy

Memory

Master

Pseudo
Slave

Slave
Slave
Proxy Pseudo

Master

Slave

Master

Figure 4-4: A proxy can convert a master into a slave and a slave into a master.

Using a slave-slave proxy, the network receive master can write data into a memory

buffer, which is a slave, and signal the processor master that a packet is ready. The

processor master must continually poll the proxy to discover and process this incoming

data from its pseudo-slave. In the opposite direction, a master-master proxy and a

memory buffer are needed to act as a pseudo-master between the processor (a master)

and the network transmit interface (a slave) due to efficiency concerns in Section

4.3.1.3 Although sizers and proxies can change data widths and data directions, they

cannot enable separate chains to interact. Thus, a third bus primitive is needed to

split and merge chains.

3Note that conventional processors and networking hardware also use a proxy called a Direct
Memory Access (DMA) controller to achieve the same functionality using either hardware interrupts
or polling.
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4.1.3 Arbiters

One of the requirements for the firmware is that some physical interfaces must be

shared among several logical interfaces, which requires multiplexing in two direc-

tions. As an example, more than one module requires exclusive access to the network

interface for transmitting packets at different times. Conversely, an incoming network

packet must be decoded and passed on to the correct receiver. If a bus standard only

defines a point-to-point interconnection between one master and one slave (such as

Wishbone), bus arbitration is necessary to ensure that at most one master is given

access to at most one slave at any time. At the same time, all master and slave

combinations must be possible.4

Both kinds of arbiters can suffer from starvation. In many-to-one arbiters, an un-

fair scheduling algorithm can starve one or more requesting masters in favor of others

for an unbounded period of time. The sequencer firmware uses priority scheduling,

in which masters are granted service in order of a fixed ranking, because it is simple

to implement. In theory, it is not completely fair, but in practice no master requests

service often or long enough to starve a lower-priority request. One-to-many arbiters

can stall if the single master tries to address a non-existent slave. If the address

space of slaves is not complete, the arbiter must act as a pseudo-slave for the un-

used addresses. In the current implementation, data addressed to unknown slaves

is acknowledged and discarded. Both kinds of arbiters are represented pictorially in

Figure 4-5.

Single
Master

One-to-
Many

Arbiter

Slave
1

Slave
2

Many-
to-One
Arbiter

Single
Slave

Master
1

Master
2

Figure 4-5: An arbiter can serialize transfers from many masters (one master) to one
slave (many slaves).

4The appendix of [Her02] contains a good discussion of various shared bus schemes. More com-
plicated many-to-many scenarios do not occur in the sequencer firmware, so simple multiplexing
suffices.
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4.2 Communication Stacks

Equipped with the bus primitives in the previous section, the sequencer firmware

adds communication stacks, collections of modules to generate and parse a related

“ladder” of protocols. Stacks have two anti-parallel chains for transmitting (carrying

data from an internal source to a physical interface sink) and receiving (carrying data

from a physical interface source to an internal sink). Data moving to and from a

physical interface can be treated as purely encoded serial data, whereas data from an

internal source or sink is purely decoded parallel data.

The two stacks in the firmware are the daisy-chain controller and the network

controller. The daisy-chain controller uses the Pulse Transfer Protocol (PTP) to

pass messages among devices; it can be transported between separate devices using

a custom wire protocol or over an Ethernet/IP/UDP connection from the user. The

network controller makes Internet communication with the user possible with an

Ethernet Medium Access Controller (MAC) and an IP/UDP stack. Each controller’s

protocol stack roughly corresponds to the Open Systems Initiative (OSI) reference

model as shown in Table 4.1. Each communications controller includes an application

layer for bootstrapping in addition to software running on the AVR.

OSI Functions Network Daisy-Chain
Layer Layer Layer
Physical Connector interface, Ethernet PHY, LVDS and RJ45

channel modulation. RJ45
Datalink Logical link, Ethernet MAC Daisy-chain link

medium access UDP/AVR proxies
Network Global addressing, IP PTP routing

routing
Transport Multiplexing, UDP, TCP None within daisy-chain

reliability
Application API for high-level DHCP, AVR PTP server

functions

Table 4.1: Layers in the network and daisy-chain protocol stacks.
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4.2.1 Daisy-Chain Controller

Multiple sequencer devices can be connected in a serial daisy-chain to allow the user

to add and remove channels in a modular fashion; a three-node chain is shown in

Figure 4-6. Devices in a chain can be synchronized to run the same pulse programs

and are controlled by the user through a single network interface.

Figure 4-6: Three sequencer devices connected in a daisy-chain.

Each device has two physical interfaces for a single master and a slave, and each

interface has two wire pairs (for input and output, respectively). A device which

detects incoming network packets assumes it has no master and becomes the chain

initiator ; it serves as the entry point for the entire chain, and its AVR core runs the

web interface which communicates with the user. A device which detects no slave

becomes the chain terminator. This can be the same as the initiator in a one-device

chain.

The daisy-chain controller passes messages between nodes using a store-and-

forward approach which compares favorably with sharing direct wires. Benefits in-

clude transformer isolation for safety, matched impedance transfers, coexistence of

pseudo-nodes like UDP and AVR, faster throughput due to registered logic, and dy-

namic address assignment based on the serial connection topology. The drawbacks

include greater logic complexity, additional memory resources, and longer transmis-

sion latency.

The daisy-chain stack consists of a datalink layer, a routing layer, and an appli-
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cation layer. The datalink layer provides medium access control to the physical layer

for communicating frames between devices within the daisy-chain. Because frames

can originate from AVR software or over the network, the daisy-chain UDP and AVR

memory proxies as alternate datalink layers on the chain initiator. The routing layer

provides addressing and routing between the PTP servers of all devices in the chain,

the AVR of the chain initiator, and the user’s host PC. The application layer per-

forms higher-level actions, such as starting and stopping other firmware and software

modules; it is implemented by the PTP server.

Datalink Layer

The datalink layer defines the semantics of the wires in each interface and provides

medium access control. In each pair, one wire acts as a clock/strobe while the other

acts as a data/cycle line.5 The serial wire protocol uses these two anti-parallel pairs to

transmits octets least-significant-bit first as shown in Figure 4-7. Each signal change

involves a 4-way handshake to ensure that both master and slave proceed in lockstep.

The master can abort a transfer at any time by signaling a stop.

This scheme is half-duplex because of master-slave synchronization. Clock re-

covery simply becomes handshaking, but at the cost of reduced bandwidth and the

difficulty of recovering from corrupt transfers. Moreover, because this layer has fi-

nite storage to buffer messages, it provides medium access control by serializing both

interfaces. At any time, the device is only receiving from a master, transmitting to

a slave, transmitting to a master, receiving from a slave, or idle, in that order of

precedence.

master stb ack

master dat cyc

slave stb ack

slave dat cyc

Start Bit 0 Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7 Ack Stop

Figure 4-7: Daisy-chain wire protocol transferring one byte.

5These signals are called stb ack and dat cyc, respectively, after analogous Wishbone functions.
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Routing Layer

The payload transferred by the datalink link layer is a frame for the Pulse Transfer

Protocol (PTP), which is encoded and decoded by the routing layer and application

layer. PTP currently refers to both the routing and application protocols, as there is

little reason to use one without the other. The routing layer only performs addressing

and not fragmentation; the minimum frame size is the header length (10 octets) and

the maximum size is 984 octets.6

The fields of the frame are shown in Figure 4-8 and are transmitted from left to

right in big-endian order. The major and minor versions of the frame indicate what

version of the firmware is being run by the sender. The opcode indicates the type

of frame and the interpretation of the payload. The zero field is reserved for future

use and should be set to 0x00. The length is a two-octet field, most significant first,

indicating the total length of the frame including both the header and the payload.

The remainder of the frame is the opcode-dependent payload of variable length.

Field Source Dest Major Minor Op- Zero Total Unused Payload
ID ID Ver. Ver. code Length

Octets 1 1 1 1 1 1 2 2 variable
Address 0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7 0x8 0x9 0xA . . .

Figure 4-8: Fields of a Pulse Transfer Protocol frame

The source and destination IDs for a PTP frame are taken from the address space

described in Table 4.2; by treating the user’s host machine, the AVR of the chain

initiator, and the broadcast address as pseudo-devices, PTP frames can be sent and

received uniformly among these entities. Routing is performed by comparing the

destination ID of an incoming frame with the self ID of the current device. If it is

less, the routing layer forwards the frame to the master interface. If it is equal, the

frame is passed up to the application layer. If it is greater, the frame is forwarded to

the slave interface.7

6The current firmware implementation is limited to 1 KB of memory buffers for the network
controller, and UDP and IP both have 20 octet headers.

7This is a simplification which ignores the bootstrapping case. A more accurate discussion can
be found in Section B.3.
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Entity Address
User’s host PC 0x00
AVR of chain initiator 0x01
PTP server of chain initiator 0x02
PTP server of next device . . .
Broadcast pseudo-device 0xFF

Table 4.2: ID address space for the Pulse Transfer Protocol.

Three special routing cases must be considered for the chain initiator, the AVR

core of the chain initiator, and the terminator. The initiator has two masters, the

user’s host PC and the AVR core, and it performs explicit comparisons for destination

IDs of 0x00 and 0x01. The terminator discards any frames to its slave; otherwise it

would stall while waiting for handshaking to complete.

The PTP routing layer, which performs this address routing, is shown in Figure

4-9. The terminal modules on the left connect to the datalink layer while those on

the right connect to the application layer. The UDP and AVR interfaces are shown

as terminal master and slave blocks, indicating two additional datalink channels for

PTP other than the daisy-chain wire protocol. The slave link receiver is repeated in

the figure to simplify the topology.
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Master
Link

Receive

Link
Transmit
Arbiter

Slave
Link

Transmit

Slave
Arbiter

Slave
Link

Interface
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Receive

Link
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ArbiterSlave
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Receive

Route
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Transmit
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Receive PTP
Receive
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Figure 4-9: PTP routing layer transmit and receive chains.
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Application Layer

The top layer of the daisy-chain controller is the application layer, which is imple-

mented in firmware as the PTP server. This protocol has a request/response archi-

tecture suitable for clients and servers in other transport methods; for example, the

UDP interface to PTP listens on port 8738. Each request opcode has a correspond-

ing response opcode and is idempotent,8 making it simple to recover from errors by

placing the burden for retransmitting on the client. A detailed description of each

opcode can be found in Section B.3.

PTP
Routing

PTP
Datalink

UDP

AVR

PTP
Server

PCP

I2C

SRAM

Figure 4-10: Interconnections within the daisy-chain controller stack.

The strength of the daisy-chain controller design is the decoupling between the

application and routing layers, as depicted in Figure 4-10. The routing layer handles

addressing among three different PTP clients and presents a uniform interface to the

application layer, while the application layer provides its clients with uniform access

to the resources of SRAM storage, I2C communication, and the PCP. Not only does

PTP make daisy-chain operation possible, it is a central firmware connective.

Because the entire daisy-chain stack operates internally, it is not bound by existing

standards and represents a heavily-used degree of freedom in the design of the pulse

sequencer. However, eventually the device must communicate with a fixed standard,

the TCP/IP stack, in order to exploit the advanced user interfaces of desktop PCs

and to be accessible over the Internet. This inter-operation is enabled by the network

controller, the second communication stack in the firmware.

8Calling it multiple times in succession is equivalent to calling it once.
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4.2.2 Network Controller

A shortcoming of early pulse programmers was tight coupling with a host PC using

a proprietary interface, increasing the system’s cost while decreasing its flexibility.

In contrast, the pulse sequencer is accessible “out-of-the-box” from any PC using

commodity networking hardware and software. A network controller in firmware

contains protocol engines for standard Ethernet, IP, and UDP connections and can

request a dynamic IP address using DHCP. It also enables the more complicated TCP

and HTTP layers to be implemented in software for a user-friendly web interface.

The network controller contains independent transmit and receive chains which

do not interact except at several endpoints. Figure 4-11 displays the receive chain

using the bus primitives introduced earlier; the transmit chain is almost identical but

flows in the opposite direction. The ARP module within the IP layer responds to

address resolutions requests by transmitting replies and storing its own replies in a

lookup table. The DHCP module extracts configuration data from received packets

in order to transmit corresponding request packets. The PTP interface from UDP

gives direct firmware access to the PTP server.

Ethernet
Receive

IP
Receive

ARP
Receive

TCP
Receive

UDP
Receive

DHCP
Receive

PTP
Receive

TCP
Receive
Proxy Memory

Interface

TCP
Master

Figure 4-11: The receive chain of the network controller.

The network controller draws an unusual boundary between firmware and software

at the TCP layer. Because the TCP specification requires handling many more error

conditions than UDP, it is handled by software running on the AVR processor core.

The AVR treats the network controller as just another peripheral. It sends and
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receivers Internet packets using a memory proxy and a buffer at a fixed address,

allowing firmware and software to communicate asynchronously without blocking.

Both the daisy-chain and network controllers in this section contain layers of

protocol engines that make communication possible, but they do not consume or

generate data by themselves. On one side are the bus primitives and beyond them,

the hardware layer, other devices, and the user. On the other side are the embedded

processor cores, which are the execution engines within the firmware layer.

4.3 Processor Cores

The processor cores represent the most abstract firmware modules because they enable

a higher software layer. These are virtual processors have the advantage of dynamic

modifiability and replaceability over discrete microcontrollers, since it would be pro-

hibitively expensive to manufacture custom processors in silicon. On the other hand,

they have a disadvantage of higher power consumption and slower speed.

The sequencer contains two of these processor cores. The AVR runs the general-

purpose user interface and is described in 4.3.1, while the PCP runs timing-critical

pulse programs and is described in 4.3.2. The AVR is an adapted third-party core

while the PCP was written from the ground up to support special instruction timing

modes. Both cores are described in their own subsections below.

4.3.1 AVR Controller

The sequencer’s general-purpose processor emulates Atmel’s ATmega103 8-bit AVR

microcontroller. The modified controller is shown in Figure 4-12. All six I/O ports are

retained for interfacing with the firmware network and daisy-chain controllers, and

the AVR core implements the full register file and instruction set of the avr3 family.

All other built-in timers, I/O peripherals, and interrupt handlers were removed. The

modified AVR controller is shown in Figure 4-12.9

9The use of “core” in the figure refers more specifically to the part of a processor that contains
the instruction decoder and the register file, not just a firmware IP core as referred to everywhere
else.
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Because the AVR architecture has a separate program and data address space, a

firmware emulation needs to support two ports: a read-only 16-bit address space of 16-

bit words and a read-write 16-bit address space of 8-bit words. However, most FPGA

designs only have a single port to external SRAM, including the pulse sequencer.
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Figure 4-12: Machine model of the AVR controller adapted for the sequencer

The core’s original author used a statically-compiled binary image as program

memory and used the single SRAM port for data memory. This approach is un-

desirable for two reasons: it requires recompiling the entire firmware to update the

software, and it consumes gates that are needed to implement other cores. One al-

ternative would be the use of built-in FPGA RAM for one or both of the needed

memories; however, the AVR does not need to run at fast clock speeds and has a

small data width, neither of which is true of the other processor core, the PCP.

Given these resource constraints, the sequencer’s design chooses to multiplex the

external SRAM between the AVR’s instruction port, its data port, and other mod-
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ules which need non-critical memory access. This involved adding two Wishbone-

compliant memory interfaces which connect to the SRAM controller. A wait-state

generator was implemented to control these interfaces and stall the AVR core until

either instructions or program data were available on its internal memory ports.

4.3.2 Pulse Control Processor

The Pulse Control Processor (PCP) is a specialized architecture supporting a simple

instruction set and optimized for timing pulses. It provides a a general framework of

instruction formats and memory layouts, which can be customized for particular PCP

families. It has a RISC architecture and exploits a configurable number of registers

and memory address widths. There is one dedicated register for the pulse output

value. For simplicity of loading plain binaries, it has a unified instruction and data

memory.10 These parameters are quantified in Table 4.3 for the 64-bit version of the

architecture, called PCP64.

Note that the PCP64 can switch all 64 hardware outputs simultaneously from a

register, as well as associate a delay with each pulse instruction. In addition, pulse

values can be encoded directly in the instruction due to the large number of available

bits.11 This achieves smaller minimum delay and faster minimum pulse durations

compared to other approaches which load timers and pulse outputs as separate in-

structions. The choice of a 64-bit width was determined by the FPGA hardware

and its available I/O count. The instruction width characterizes an architecture by

determining the binary format it accepts, the widths of its registers, and ultimately

its performance: smaller width processors generally have a lower latency but a corre-

sponding lower throughput.

The PCP64 family constitutes an assembler target for writing software. Specific

machines within the family will support a subset of its parameters and instruction

set, which the assembler can check statically. Currently there is only one machine,

pcp0, which has a 5-bit register address width, 32 64-bit registers, an 11-bit memory

10Also known as the von Neumann architecture
11This is sometimes called a very long instruction word (VLIW) approach.
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Parameter Allowed Range
Register Address Width 0− 5 bits
Register Data Width 64 bits
Register Count 1− 32 registers
Instruction Width 64 bits (8 bytes)
Memory Address Width 0− 32 bits
Maximum Program Size 232 instruction words
Instruction Word Endianness big-endian
Instruction Opcode Width 6 bits (plus 2 flags)
Instruction Opcode Count 64, with 4 variants each

Table 4.3: Parameters of the PCP64 architecture.

address width, and a maximum program size of 211 = 2048 words.

The pcp0 implements three classes of instructions: data transfer (loading values

from main memory into registers), flow control (jumping to program addresses either

unconditionally or conditionally on feedback), and pulse output. These instructions

and their assembly language mnemonics are introduced in the next chapter, but

Appendix C should be consulted for a complete programming reference.

A programming model for these instructions is provided in Figure 4-13 showing

the major components of this processor. The feedback inputs are similar to interrupt

requests; the 64 pulse outputs, which can be loaded in 32-bit groups, have no analog

in general-purpose processors. The three largest components in pcp0 are described

below: the program memory including the register file, the timer for delaying pulse

values, and the instruction decoder.

Memory

The PCP program memory is implemented in built-in FPGA RAM to support full-

speed (100 MHz) 64-bit access to data. Although programs could be run directly

from the external SRAM by a two-stage fetch of 32 bits each, this would not allow

64-bit pulse values to switch simultaneously. If only 32-bit simultaneous switching

is required, a PCP32 family could be defined which would be able to make use of a

much larger address space (512k words minus the 64k memory used by the AVR).
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Figure 4-13: Machine model of the pcp0.

There are two separate address spaces that can be used by pulse programs. In the

first, a 5-bit address selects a 64-bit register as the destination for a load or the source

for a pulse. In the second, an 11-bit address select a 64-bit word in memory as the

source for a load (a data word) or the destination of a branch (an instruction word).

Since the program memory must be loaded from external SRAM, the PCP controller

contains an asynchronous FIFO to perform inter-clock data transfers. This allows the

PCP to be clocked much faster than and independently from other firmware modules.

Timer

The firmware uses a composite timer to control pulse delays and the execution of

instructions in the pulse controller. An atomic subtimer is limited to 31-bits by
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programming language limitations. Each one can be loaded with a value and clocked

until the delay expires and it fires, producing a one-cycle output pulse. Due to the

one-cycle delays of both the initial load and the firing event, the timer’s master (the

instruction decoder) should subtract two from its desired count. The composite timer

consists of multiple subtimers cascaded together so that the firing of a faster subtimer

enables the clock of a slower subtimer.

Timer Width Maximum Delay
16-bits 655.36 microseconds
23-bits 83.89 milliseconds
31-bits 21.47 seconds
34-bits 171.80 seconds
36-bits 11.45 minutes
38-bits 45.80 minutes
40-bits 3.05 hours
62-bits 1,1462.35 years

Figure 4-14: Maximum delays for various timer widths at 10 nanosecond resolution.

Because the composite timer is implemented in programmable logic, it has a con-

figurable width, which determines the longest delay it can conveniently and accu-

rately produce in one firing interval. A comparison of maximum delay values and

timer widths is given in Figure 4-14. The longest desired pulse delays (for NMR) are

typically no more than 3 minutes, which would give an ideal timer width of 34 bits.

The sequencer implements a slightly larger 40-bit timer since in practice it is more

efficient to implement five 8-bit subtimers.

Decoder

As with any other processor core, the bulk of the PCP’s complexity is found in its

instruction decoder. It controls instruction fetching and decoding, performs reads and

writes on the register file, loads the timer and receives its firing event, and outputs

pulses. The pcp0 has a two-stage instruction pipeline (fetching and decoding) and

one branch delay slot.

Like conventional RISC decoders, the pcp0 decoder runs general-purpose instruc-
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tions in constant time. However, it must also run specialized pulse instructions with

variable delays, and it must be able to overlap pulse and non-pulse instructions.12

This overlap allows the pcp0 to produce a train of pulses with zero delay in most

cases.13 The decoder cannot aggressively pipeline successive fetching and decoding

stages because it must stall a pulse instruction at the fetching stage if the preceding

pulse is not complete. Therefore, all instructions have a fixed two cycle execution

time, while pulse instructions have a variable delay beyond this two cycles.

4.4 Implementation

The sequencer firmware is implemented in VHDL fixed up with macros in the GNU m4

language. VHDL was chosen for its strong typing, generic parameters, and support

for design partitioning. Because it is text-based, it is also easier to control source

code versions than a visual description, although it is initially harder to visualize

and understand. Unfortunately, VHDL was developed in the 1980s before the object-

oriented programming paradigm was widespread. It supports limited hierarchical

design via composition, but in many cases it is more convenient for one design unit

to inherit and specialize behavior without exposing additional ports.

In these cases, the GNU m4 macro language is used to parameterize commonly

used design idioms, such as a pipelined memory master. The firmware is actually

implemented as m4 source files which generate intermediate VHDL files; these are

then compiled into a programmable design. The m4 macros were interpreted on the

command-line using the Minimal GNU System to provide native POSIX development

tools in Windows. The generated VHDL files were synthesized using the Quartus II

design software from Altera,14 version 4.1 with service pack 1, running on Windows

2000. Ideally, an open source synthesis tool would allow development and contribu-

tions from any platform. However, all current FPGAs and their synthesis tools use

12Pulse and non-pulse instructions are defined in more detail in the description of the event
programming model on page 77.

13A minimum delay of one cycle occurs in the case of the shortest pulse duration, also one cycle.
14http://www.altera.com
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proprietary, closed formats.

An initial design for the firmware layer sought to execute both general-purpose

software and pulse programs on the same processor core, but this proved impractical.

Due to its large instruction set, capable of multiple addressing modes and arithmetic

operations, the AVR core can only be clocked at 25 MHz, giving a 40 nanosecond

timing resolution. Simplifying the AVR was not an option, since it presented a

well-defined development target for third-party software and an existing C compiler.

Therefore, the PCP was designed as a custom core specialized for pulse timings.

4.5 Contributions

The following third-party controllers were used from the OpenCores project,15 a col-

lection of open-source FPGA modules and a community of contributing developers.

The I2C controller uses a Wishbone-compliant module with no modification. It was

originally written by Frédéric Renet and is currently maintained by Richard Herveille.

The module acts as a Wishbone master, uses 7-bit slave addresses, and operates at

a maximum of 400 KHz. The AVR core and the original ATmega103 controller was

implemented by Ruslan Lepetenok. Members of the OpenCores general mailing list16

offered advice about FPGA programming, digital logic, and implementing Wishbone.

Some ideas about implementing a network stack in VHDL are taken from a similar

project17 by James Brennan, Ashley Partis, and Jorgen Peddersen at the University

of Queensland. In particular, the current work also separates the stack into transmit

and receive chains, and data is passed between layers as byte streams for simplicity.

The libnet packet construction library18 by Mike D. Schiffman, version 1.1.1, was

used to generate standards-compliant Ethernet frames, IP datagrams, and UDP pack-

ets. The libpcap packet capture library19 enabled link-level access to the sequencer

15http://www.opencores.org
16cores@opencores.org
17http://www.itee.uq.edu.au/∼peters/xsvboard/stack/stack.htm
18http://www.packetfactory.net/Projects/Libnet/
19The original UNIX library is maintained with the tcpdump utility at http://www.tcpdump.org.

The port to Microsoft operating systems, wpcap, is located at http://winpcap.polito.it/
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devices. The Ethereal network analyzer,20 which depends on libpcap on both Win-

dows and Linux, was used heavily with libnet to test the network protocol engines in

firmware.

The idea of using an embedded processor core to output pulse instructions and

run a web interface was suggested by Isaac Chuang. Early versions of the Ethernet

MAC layer, I2C controller, and SRAM controller were implemented in firmware by

John Martinis.

4.6 References

Ashenden provides a comprehensive commentary on VHDL in [Ash04]; it is the rec-

ommended tutorial and reference for newcomers. This should be supplemented by

the IEEE specification for VHDL [VHD02], which contains an exhaustive grammar

of the language.

The Wishbone specification [Her02] is maintained by the OpenCores Organization;

it contains examples and recommendations for Wishbone in common applications,

including a multiplexed shared bus implementation. The I2C protocol is a simple

2-wire, serial bus designed by Philips that is documented in [Phi00]. The detailed

operation of Ethernet, including its frame structure and Media-Independent Interface

(MII) can be found in the IEEE 802.3 standard [Eth02].

In understanding and implementing Internet protocols, the definitive sources are

the Request For Comments (RFCs) from the Internet Engineering Task Force (IETF).21

In particular, the following draft proposals and standards were used: Address Res-

olution Protocol (ARP) [Plu82], Internet Protocol (IP) version 4 [Pos81b], Internet

Control Message Protocol (ICMP) [Pos81a], UDP [Pos80], Dynamic Host Configura-

tion Protocol (DHCP) [Dro93], and DHCP-specific bootstrapping protocol (BOOTP)

options [AD93].

20http://www.ethereal.com
21http://www.ietf.org
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Chapter 5

Software Design

Software forms the highest abstraction layer on the sequencer device and is the topic

of this chapter. It is responsible for satisfying most of the sequencer’s goals for

programmability and ease-of-use through pulse programs and the user interface, since

these are the features most likely to change. Pulse programs complete the goal of

feedback by conditionally starting or branching on feedback inputs made available by

the hardware and firmware. The software does not participate in the performance

and flexibility goals of the lower layers; it only introduces initial latencies to pulse

timing, without affecting the relative accuracy or throughput of pulse durations.

Three different platforms for running software are associated with the sequencer

device, as shown in Figure 5-1; two are virtual and one is physical. While the PCP’s

firmware architecture has been described in the previous chapter, this chapter begins

with a discussion of its programming model and assembly language syntax in Section

5.1. Because of the PCP’s optimized nature, it is not self-hosting; the user’s host

PC provides a more flexible development platform using the command-line assembler

and tools in Section 5.2. The host also possesses a more intuitive graphical interface:

a web browser. A third platform, the AVR, runs the corresponding web server and

Common Gateway Interface (CGI) to communicate with TCP and PTP devices;

this graphical interface is presented in Section 5.3. Although an overview of software

usage is included in the following sections, the end user should consult the sequencer’s

technical manual[Pha04] for more detailed operating instructions.
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Figure 5-1: Execution platforms for the software layer.

5.1 Pulse Programs

Unlike conventional software, which usually places no constraints on execution time,

pulse programs are explicitly designed to control events at specific times. Similar

to real-time embedded systems, pulse programs require both predictability (a com-

pletely deterministic schedule) and performance (the ability to schedule many events

accurately and precisely). Pulse programs at the level of assembly language must take

into account the implementation details of a particular pulse processor, including its

pipeline delays and available pulsing modes.

It is apparent that the software layer was the traditional boundary in system

design even before the advent of firmware. Although lower layers have concentrated

on the goals of performance, flexibility, and feedback, programmability and ease-of-

use have largely been deferred until now. Moreover, previous chapters have described

the design and implementation of subsystems which are meant to be used without

modification; they are provided by the author. In contrast, pulse programs are a

subsystem for which the user must provide the implementation; this section merely

describes the available facilities and limitations.

First, requirements for the input capabilities of the sequencer are discussed as

promised in Section 1.2. Next, the programming event model of the PCP is intro-

duced, which motivates the PCP assembly language whose syntax is presented last in

this section to make concrete the previously nebulous structure of pulse programs. An

overview is provided for the available instruction set, which enables pulse programs to

load data from memory, branch program flow control, and, of course, output pulses.
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5.1.1 Encoding Pulses

To generate digital pulses, the user must first encode the desired sequence into a

pulse program. The sequencer is agnostic to how the encoding is interpreted by a

connected daughterboard, such as a waveform synthesizer, but for illustration, assume

that the pulses will control the amplitude of a carrier wave. Further, assume that

8 discrete levels and a resolution of 20 nanoseconds are required, resulting in three

digital outputs and a 50 MHz clock. These parameters are illustrated in Figure 5-2.

Output Value 0x00 0x03 0x05 0x05 0x03 0x00

Clock

Bit 2

Bit 1

Bit 0

Desired Waveform

Pulse output 0x03
for 3 cycles

Pulse output 0x05
for 4 cycles

Pulse output 0x03
for 3 cycles

Pulse output 0x00
for x cycles

20 ns

Figure 5-2: Encoding pulse outputs

It is important to note that a pulse program is not completely self-contained; its

correct operation depends on two main external factors. First, the pulse outputs are

specified with the assumption that they will drive a particular daughterboard of the

sequencer which interprets the digital outputs a certain way. Second, there is no

absolute time scale; the pulse durations are specified in cycles of the processor clock

with the assumption that the provided clock has a certain frequency. It is a good

idea to document these two factors as source file comments for each pulse program.

This practice will increase the portability and maintainability of pulse programs.

5.1.2 Pulse Events

In the previous section, pulse sequences were encoded as a series of events consisting

of changes in output value and separated by durations. In the PCP programming

model, a pulse sequence always begins with an output value of all zeros for indefinite

duration until the first pulse event. Each event specifies the new output value and the
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minimum time duration until the next event; an event is caused by a special pulse

instruction. There are three important, related consequences of this event model,

which are depicted in Figure 5-3: zero output values, instruction overlapping, and

minimum durations. Pulse instructions are denoted by the letters A, B, and C; non-

pulse instructions are numbered 1, 2, 3, and 4.

Instruction A Insn 1 Insn 2 B Insn3 Insn4 C

Pulse Output 0x00 0x01 0x02 0x00

Pulse A: output 0x01
for 9 cycles

Pulse B: output 0x02
for 4 cycles

Pulse C: output 0x00
for x cycles

Figure 5-3: Pulse events and overlapping instructions.

Starting with the initial state of a pulse sequence, all output value changes are an

event, including an output of all zeros. The first consequence is that there is no special

value “in between” output values. To zero the output, e.g. at the end of a program for

safety, the user must explicitly specify a zero pulse event as pulse instruction C does

in the figure. In most applications, a value of all zeros represents a unique Off state

and any other value represents various kinds of On states; moreover, the accurate

durations of the Off state are often just as important as those of On states. The

event model gives you the flexibility to ensure that both timing requirements are met.

The second consequence arises from having two kinds of instructions: pulse and

non-pulse instructions. Non-pulse instructions are the kind found in normal proces-

sors, which perform loading data and branching; they provide a framework in which

pulse instructions can be controlled. Non-pulse instructions do not directly affect the

pulse output value, and their duration is fixed. However, they can indirectly affect

pulse events because they take a finite time to execute.

The event model solves this problem by allowing non-pulse instructions to overlap

with pulse instructions. Pulse instructions have two parts: an initial overhead of fixed

duration to load a timer and output a value, and a delay of variable duration until

the next event. The first part is like a non-pulse instruction and cannot overlap, but

the second part can execute non-pulse instructions while waiting for a timer to fire.
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If another pulse instruction is encountered before the previous duration is over, such

as pulse instruction B in the figure, its execution is stalled.

The last consequence follows as a result of overlapping instructions. Pulse events

specify a minimum duration and not an exact duration because overlapping instruc-

tions may prevent the next pulse event from being executed in time. In the figure,

pulse event B specifies a minimum duration of 4 cycles but actually executes for 6

cycles because of two intervening non-pulse instructions. Even if there were no inter-

vening instructions, the durations may still not be exact due to the fixed overhead of

each pulse instruction. In the figure, this overhead is shown as two cycles, since pulse

outputs appear two cycles after their corresponding instruction has been fetched. Any

duration shorter than the fixed overhead will always be lengthened.1

The three consequences of the event model above can actually be expressed as

a single consequence: generating accurate pulse sequences requires knowledge of in-

struction timing details. These details will provided at the end of the next section

after the syntax and instruction set of the PCP have been explained.

5.1.3 PCP Assembly Syntax

Although the actual pulse programs consist of binary numbers, most users will write

pulse programs using English-like mnemonics for the actual instructions and operands.

These mnemonics form a low-level assembly language similar to those for general-

purpose CPUs. An example pulse program demonstrating PCP assembly syntax is

shown in Figure 5-4. Line numbers are added for further explication below but are

not part of the pulse program. A gentler introduction to the same material can be

found in the sequencer manual [Pha04].

PCP assembly language inherits all GNU assembler syntax due to its implemen-

tation, as described in 5.2.2. Lines 1-5 contain the .equ preprocessor directive to

define symbols; they do not generate instructions. Comments extend from the semi-

colon character until a newline is reached. Operands to all directives and instructions

1The only exception is the minimum pulse duration of 1 cycle, which is always followed by at 1
cycle of an all-zero output value as explained on page 70.
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1 .equ ZeroReg, r0 ; r0 will hold zero value

2 .equ TRIGGER_7, 0x80 ; 7th feedback bit

3 .equ PATTERN, 0x12345678 ; output pattern while in loop

4 .equ FourReg, r2 ; r2 will hold value four

5 .equ EndReg, r1 ; r1 will hold the ending pattern

6 ld64i ZeroReg, Data_Zero

7 ld64i FourReg, Data_Four

8 ld64i EndReg, Data_End

9 Start: btr TRIGGER_7, Break ; break out of loop if trigger high

10 pr EndReg, FourReg ; output end pattern, branch delay slot

11 p PATTERN, 0x04, 0 ; output loop pattern in lower half

12 p PATTERN, 0x04, 1 ; output loop pattern in upper half

14 j Start ; loop to beginning

15 nop ; branch delay slot

16 Break: halt

17 pr ZeroReg, FourReg ; branch delay slot; zero outputs

18 Data_Four: .quad 0x0000000000000004

19 Data_Zero: .quad 0x0000000000000000

20 Data_End: .quad 0xABCDEF1234567890

Figure 5-4: An example pulse program in PCP assembly language.

are comma-delimited. Lines 6-8 contain the only data transfer instruction, ld64i,

which loads the data addressed by the second operand and stores it into the regis-

ter addressed by the first operand. Labels, terminated by colons, can be placed in

the program for later use as data addresses for loading or destination addresses for

branches. For example, Start is a branch address on line 9 used as a destination later

on and Data Four is a data address on line 18 used in a preceding ld64i instruction.

The btr instruction on line 10 implements conditional branching; in this case, it

will direct program execution to the label Break on line 16 if the seventh trigger bit

is high.2 The instruction following btr is a branch delay slot. Due to the instruction

pipeline, it is always executed regardless of whether the branch is taken or not.

Lines 11-13 produce the actual pulse outputs and demonstrate the two kinds of

pulse instructions. The register pulse instruction, pr, can change all 64 bits simulta-

neously from a register addressed by the first operand, previously loaded with ld64i.

The duration is also loaded from a register and is addressed by the second operand.

The immediate pulse instruction, p, can only change the upper or lower 32 bits at one

2The corresponding value of the symbol TRIGGER 7, 0x80, is equal to 0x01 shifted seven bits to
the left.
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time. The pr instruction produces the output value of Data End which was loaded

into EndReg, namely 0xABCDEF1234567890, which is 64-bits wide. The first operand

is the immediate output value, the second operand is the immediate duration value,

and the third operand indicates which 32-bit half of the pulse output to change. Thus,

the first p instruction produces the value of LOOP PATTERN in the lower 32 bits for a

duration of 4 cycles, and the second p instruction duplicates it in the upper 32 bits

for the same amount of time.

On Line 14, the j instruction unconditionally jumps to the Start address and

continues the loop indefinitely. It also has a branch delay slot, which is filled with

a null instruction (nop) that is guaranteed to do nothing except occupy a word in

the program address space and two cycles of execution time. To make more efficient

use of all program addresses, branch delay slots can be filled by rearranging the flow

control instructions; nops are often added, though, for simplicity.

The end result is that this pulse program will output three different values in

sequence forever or until the seventh trigger bit is raised. In that case, control will

branch to the Break location, where the halt instruction stops the PCP. Because it

alters program execution, the halt also has a branch delay slot, which is customarily

filled with a register pulse instruction turning all pulse outputs off (to zero) for safety.

The duration is irrelevant as this last pulse persists until the PCP is reset.

The timing details of the PCP promised in the previous section are are summarized

in Table 5.1. The duration for all instructions is the time it takes from one instruction

fetch to a consecutive fetch. The pulse loading overhead is the time between a pulse

instruction fetch and the appearance of its pulse outputs, coinciding with the fixed

duration. Although these timing details may interfere with pulse timing, they are

completely deterministic and allow the user to compensate for them at compile-time.

Fixed duration for all instructions 2 cycles
Immediate pulse loading overhead 2 cycles
Register pulse loading overhead 3 cycles
Pulse-instruction variable delay 0− (240 − 3) cycles

Table 5.1: Timing parameters of the PCP.
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5.2 Development Tools

After a pulse program is written in PCP assembly as described in the previous section,

it must be compiled into a PCP binary and transferred to the sequencer device. These

operations are performed using development tools which run on the host to take

advantage of existing libraries and a convenient user interface. A typical software

development session with the pulse sequencer is depicted in Figure 5-5.

PCP
assembly
source

file

GNU
assembler

PCP
binary

Web
browser

PTP
client

CPU

Host PC

PTP
server

HTTP/
CGI server

AVR

Pulse
program

PCP

Memory
transfer

Sequencer Device

TCP
transfer

UDP
transfer

pulse output
debugging

Figure 5-5: The software development process for pulse programs.

The user’s first goal is to detect the IP address of any sequencer devices on the

network and load the web server software onto them. Running the bootstrapping

program, ptpboot, on any connected host computer accomplishes this.3 Afterward,

the development cycle begins by developing PCP assembly programs such as the

example above.

To compile the necessary opcodes from higher-level mnemonics, a command-line

assembler is provided based on the widely-used GNU binutils collection. After PCP

binaries are generated on the host, the user’s next task is to transfer them to the

sequencer and device and run them. One way to do this uses a simple command-line

PTP client, which is similar to the bootstrapping program, which transfers the binary

to the PTP server directly using a UDP connection. Both of these command-line tools

are described in the rest of this section along with examples of their usage.

3The bootstrapping process is omitted from the figure for simplicity, but must occur some time
before the UDP or TCP transfer.
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The second and easier way to transfer binaries and control the sequencer is using

a web browser and the HTTP/CGI interface over a TCP connection. A description

of this more user-friendly method will follow in the next section. As with any de-

velopment activity, developing pulse programs is an iterative process using the pulse

outputs as debugging feedback to correct or improve the next PCP assembly source

file. Even with simulation, users should always verify pulse outputs with oscilloscope

measurements.

5.2.1 PTP Client

The PTP command-line client was originally a debugging tool for the daisy-chain

controller in firmware and the web interface software. However, it can also be used

to efficiently script non-interactive actions from the command-line.

An example of the command-line syntax is shown in Figure 5-6. The program re-

quires a command name plus optional command-specific parameters. The discover

command detects the IP address of the sequencer device (in this case, 192.168.1.222);

all other commands require an IP address and a device ID (recall that 02 denotes

the PTP server on the first device). The status command requests the status of

the given device. The write command loads the given program binary to the ad-

dress 0x1a0000 in byte-addressable memory. The trigger command loads the newly

written program into the PCP cache and waits for trigger source 9 (which is simply

a Start command). The start command is the awaited trigger which begins exe-

cution of the pulse program. The available commands roughly correspond to PTP

opcodes described in Section B.3; complete online help is available by running the

program with the --help switch.

The PTP client provides a command-line alternative to the web interface for trans-

ferring and controlling pulse programs. This particular sequence of commands also

outlines the procedure for manually loading and running a pulse program, although

the status command is not necessary; on the web interface, the process of triggering

and starting are combined into the same form. However, command-line tools are

currently the only option for developing and compiling pulse programs. These tools
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> ptpclient discover

> ptpclient status 192.168.1.222 02

> ptpclient write 192.168.1.222 02 program.bin 1a 0000

> ptpclient trigger 192.168.1.222 02 9 1a 0000

> ptpclient start 192.168.1.222 02 pcp start

Figure 5-6: An example of command-line syntax for the ptpclient tool.

are presented in the next section.

5.2.2 GNU Assembler

The GNU binutils collection provides tools for generating and manipulating binary

object files. It includes a linker, an assembler, a disassembler, and a binary file descrip-

tor library for inspecting and converting object files. For simplicity, the sequencer

only runs plain binary files on the PCP, so any relocations or loading information

added by the linker must be stripped before it is executable. Since many of these

tools share common code, only the assembler port is discussed.

The GNU assembler contains generic routines for parsing tokens, preprocessing

macros, and emitting instructions that are common across all processors. It also con-

tains targets, or architecture-specific opcodes and parameters for different combina-

tions of processor families and output formats.4 Within each family, specific machines

may only implement a subset of available opcodes or have other peculiarities which

are handled by the target using command-line parameters and static program check-

ing. Therefore, an assembler port to the sequencer requires specifying the opcodes

for a processor family (PCP64) and an output format (ELF64); consequently, the

sequencer target is called pcp-elf, which is the prefix for the resulting command-line

tools. Currently there is only one machine, the pcp0, but it could be extended to

future machines with more instructions and capabilities; the pcp-elf target would

be able to produce valid binaries for all of them.

4For example, a common target for PCs running Linux is i386-elf, meaning the binaries pro-
duced are Executable and Linking Format (ELF) files which run on i386 processors.
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An example of the command-line syntax is shown in Figure 5-7. In the first com-

mand, the assembler for the pcp-elf target is called on the source file program.s to

produce the ELF64 output program.elf for the machine pcp0 (the linker pcp-elf-ld

is called implicitly). The second command converts the ELF file into a plain binary

file which is suitable for transferring to the sequencer device and running on the PCP.

The programs themselves contain complete online help which can be accessed using

the --help switch.

> pcp-elf-as -m pcp0 -o program.elf program.s

> pcp-elf-objcopy -O binary program.elf program.bin

Figure 5-7: An example of command-line syntax for the pcp-elf tools.

5.3 Common Gateway Interface

The previous sections have described the capabilities of pulse programs and their

development environment using PCP assembly language. The missing step is to

transfer pulse programs after being developed on the host PC to the sequencer device

for execution. The embedded HTTP (web) interface allows the user to accomplish

this and other tasks in a graphical, interactive way. It can call native functions using

variables encoded in the HTTP post method and return the value of those functions as

HyperText Markup Language (HTML) pages using the Common Gateway Interface

(CGI) standard.

To achieve this, the software running on the AVR has three components: a driver

for TCP that interfaces with the firmware network controller, a driver for PTP that

interfaces with the firmware daisy-chain controller, and a web server augmented with

CGI functions that call these two drivers. The AVR core is able to run the same

executables as physical AVRs, simplifying its development; however, it requires large

memory buffers to run its TCP and PTP drivers and to store a read-only filesystem.

Normal AVRs have a 4K data memory limit and place global variables beneath the
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downward-growing stack which will cause the stack to get stomped by the embedded

web server. The alternate memory map used to avoid this is given in Section D.1.

PTP is a stateless protocol, as evidenced by the command-line interface in 5.2.1;

all requests must fully specify all inputs, which can be repetitive across many requests.

To automate this repetition, the CGI interface operates in two modes, as shown in

Figure 5-8. The user can address a particular device in selection mode and then

perform operations on that device for all subsequent requests in operation mode.

These two modes and screenshots from the actual CGI interface are shown in the

following two subsections. It is also possible to control the CGI interface directly

without a web browser using the variables in Section D.2. Using this approach,

however, does not detect all available devices and bypasses the error-checking provided

by the web forms.

Selection
Mode

Operation
Mode

Selecting a device

Detecting all devices

Performing
operation

Figure 5-8: Modes of operation in the web interface

5.3.1 Selection Mode

Initially, the CGI interface sends a broadcast status request down the daisy-chain to

discover all available sequencer devices, which is displayed to the user in selection

mode. For a daisy-chain with only one device, there will be only one choice, as shown

in Figure 5-9. Each device is shown with its unique ID from the space depicted in

Table 4.2 and its current status, including whether it is a chain terminator or initiator

and which processor cores (the AVR and/or the PCP) are running; the AVR core will

always be running on the chain initiator in order to execute the CGI interface in the

first place. After a device is selected, the interface will switch to operation mode and
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address all future requests to that device. The selected device can be changed by

re-entering selection mode at any time using the Devices link in the top frame.

Figure 5-9: The device selection page of the web interface.

5.3.2 Operation Mode

Once a device is selected, the CGI interface persists in operation mode, allowing the

user to perform the tasks shown in Figure 5-10. Separate forms are provided for

refreshing the status of the device, reading memory contents, writing pulse programs

to memory, starting and stopping a pulse program on the PCP, and addressing slaves

over the I2C bus. After each operation, the interface returns to an updated operation

page showing the results. If a web browser is used, the selected device ID is guaranteed

to be valid since operation mode is only reachable from selection mode.

5.4 Implementation

The primary platform for software development was Windows 2000, given the preva-

lence of Microsoft operating systems in scientific computing. However, the Minimalist

GNU System for Windows (MinGW) was used to provide a POSIX development envi-

ronment that is compatible with Linux and most UNIX variants. Thus, all source code

can be configured and compiled identically on almost all existing operating systems.

MinGW was used instead of the popular Cygwin POSIX emulation layer in order to

generate native Win32 binaries; this would free users from having to download and

install the Cygwin dynamically-linked library (DLL).
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Figure 5-10: The device operation page of the web interface.

The development of the web interface used the AVR target of the GNU Compiler

Collection (avr-gcc), also ported to Win32; this project is developed by the WinAVR

team on SourceForge.5 ANSI C library routines were provided by the AVR Standard

C Runtime Library (avr-libc), maintained in GNU’s Savannah Repository.6 The

availability of these tools made the AVR core a more viable choice than other freely-

available microprocessor cores.

The web interface was tested with the Mozilla Firefox browser,7 which is available

on Microsoft, Linux, and UNIX operating systems. However, the debugging process

was complicated by the fact that the target platform was not the same as the develop-

ment platform; therefore, advanced tools like the GNU Debugger (gdb) could not be

used to inspect the runtime state of the embedded web server and the CGI interface.

In retrospect, it would have been wiser to construct a simulation framework on the

x86 host and write unit tests for the AVR software.

5http://winavr.sf.net
6http://www.nongnu.org/avr-libc
7http://www.mozilla.org/firefox
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5.5 Contributions

The uIP embedded TCP/IP stack and embedded HTTP server is written by Adam

Dunkels at the Swedish Institute of Computer Science.8 Only the TCP layer from

the network stack is used, since the network controller implements an UDP/IP stack

in firmware. Louis Beaudoin ported the uIP’s machine-dependent portions to the

AVR.9 The GNU binutils collection is maintained by volunteers of the Free Software

Foundation and is hosted by RedHat, Inc.10 The PCP64 target is based on the

(big-endian) PowerPC64 ELF target by Ian Lance Taylor of Cygnus Support.

5.6 References

The Atmel ATmega103 datasheet [Atm01] and the AVR instruction set documenta-

tion [Atm02] were useful in adapting target software to run on the embedded AVR

processor core and interfacing it with other firmware modules.

The following Internet Engineering Task Force (IETF) standards were referenced

in adding CGI support to the embedded web server: TCP [Pos81c] and HTTP 1.1

[FGM+99].

UNIX Networking Programming by W. Richard Stevens [SFR03] is the classic

text for using the BSD sockets API on POSIX systems; portions of the command-line

client use code from this book verbatim. The client was ported to Microsoft operating

systems with the help of the Winsock Programmers’ FAQ.11

Although no comprehensive document exists for porting the GNU binutils col-

lection to a new target, the equivalent information is distributed across the GNU

assembler user’s manual [EF94], the Binary File Descriptor Library [Cha91], and the

binutils source code itself.

8http://www.sics.se/∼adam/uip/
9http://www.laskater.com/projects/uipAVR.htm

10http://sources.redhat.com/binutils
11http://tangentsoft.net/wskfaq/
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Chapter 6

Measurements and Results

The previous three chapters have described the implementation of the three subsys-

tems (hardware, firmware, and software) and how each one is optimized to perform

a subset of the system goals. Considering each subsystem in isolation encouraged

design modularity and focused the discussion of the sequencer thus far. However,

the system must now be regarded as an integrated whole to quantify its behavior in

terms of the previously-defined figures of merit. Of the five goals presented in the first

chapter, the timing parameters for performance and feedback lend themselves most

naturally to measurement; consequently their results are presented in this chapter.

First, Section 6.1 defines terminology, methods, and equipment which are common

to all the remaining sections. Next, the skew between digital outputs is presented

in Section 6.2 to determine the synchronization of the pulse output bits. Then the

system’s primary limiting factor, the resolution, is measured in Section 6.3. Both the

minimum duration and the minimum delay depend on the resolution and are measured

next; Section 6.4 discusses duration and Section 6.5 discusses delay. Next, triggering

and feedback latencies are measured in Section 6.6. Related to the timing parameters

is signal integrity and noise tolerance; hence, Section 6.7 measures the noise inherent

to the sequencer’s construction arising from both reflection and crosstalk. Finally,

as a matter of practical concern, the sequencer’s power consumption is measured in

Section 6.8. With these measurements in hand, it is possible to evaluate the success

of the sequencer’s approach and implementation in the next chapter.
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6.1 Prerequisites

All timing measurements in this chapter characterize how far a given parameter devi-

ates from its nominal value. This difference has a deterministic, constant part called a

timing error and a nondeterministic part that is modeled as a random Gaussian pro-

cess whose standard deviation is called jitter.1 Timing measurements are performed

using an Agilent 5432B Infiniium Oscilloscope with a sampling rate of 4 GSa/s. All

measurements use the 100 MHz on-board oscillator unless otherwise noted.

Most measurements take advantage of the sequencer’s programmability by running

a pulse program to exercise some quantifiable feature. Their source code is provided

along with a concise explanation of their operation. Thus, these examples also serve

a pedagogical purpose in helping users write their own pulse programs to perform

similar tasks. While no knowledge of pulse program syntax is necessary to use the

measured results, the interpretation of the results often rely on a familiarity with the

design and implementation discussion in Chapters 3, 4, and 5.

These test programs have the following features in common. Most flip bit 0 of the

output or other bits which are located on the top layer of the sequencer PCB. Loops

are used to create a periodic signal for triggering the oscilloscope and averaging across

many measurements. Macros or comments indicate configurable parameters which

are changed between compilations to test a wider range of some timing parameter.

The last instruction is always a zero pulse of an arbitrary duration that fills the branch

delay slot of the halt instruction; this is a defensive programming measure to return

the pulse outputs to a known safe state upon halting.

To simulate actual usage patterns, the test environment uses an LED test board

photographed in Figure 6-1. This test board was designed and assembled by Steve

Waltman and John Martinis at NIST Boulder; it acts as a daughterboard to the

sequencer, connecting to it via the edgemount connector. In actual experiments, it

would be replaced with a waveform synthesizer or some other interface board, but

the use and arrangement of LVDS receivers will remain unchanged.

1This differs from the usual definition of jitter as the total range of timing errors, but it is a
useful shorthand for our purposes.
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Several common causes of timing error and jitter should be mentioned here to

avoid repetition later on. LVDS chips and their differential signaling paths cannot

be routed and placed uniformly on the PCB, and manufacturing tolerances can differ

widely. Both can cause skew from one bit to another and are sources of deterministic

error. Sources of random jitter can include electromagnetic interference, thermal

noise, and system clock jitter. The most important source of jitter is introduced by

the LVDS components, since all measurements from the sequencer are actually filtered

through at least one round of LVDS conversion to reach a connected daughterboard.

Some of these error sources have specific effects on certain measurements and are

discussed where appropriate in the following sections.

6.2 Output Skew Measurements

Most pulse programs will depend on the sequencer outputting multiple synchronized

bits operating in parallel, but in reality there is always some skew between these

bits. These are not subtracted from later measurements, since the deterministic error

introduced by PCB layout and LVDS conversion does not affect relative timings on

the same bit. However, the maximum output skew determines the useful upper bound

of the maximum clock speed, measured in the next section; increasing the resolution

of pulse outputs beyond this will result in loss of synchronization.

A test program which flips all bits on and off as fast as possible with an equal duty

cycle is shown in Figure 6-2; this code will also be useful in measurements of clock

frequency dependence, such as the maximum clock speed in Section 6.3 and power

consumption in Section 6.8. Because all output bits need to switch simultaneously, a

register pulse instruction is used, which requires loading registers with output values

and the shortest register duration, 3 cycles.

The average skew of each bits relative to bit 0 is shown in Figure 6-3. From visually

inspecting the top PCB layer (Figure A-10), one can see the expected variation of

PCB trace lengths shortening to a minimum and then lengthening out again. This

correlates with the growing negative skew (indicating a shorter propagation delay)
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Figure 6-1: The LED test board constructed at NIST Boulder.

ld64i r0, Zero

ld64i r1, Out1

ld64i r2, Time1

nop

Start: pr r1, r2

pr r0, r2

j Start

nop ; branch delay slot

halt

nop ; branch delay slot

Out1: .quad 0xffffffffffffffff

Zero: .quad 0x0000000000000000

Time1: .quad 0x0000000000000003

Figure 6-2: Test pulse program for measuring output skew and clock frequency-
dependence.
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until a minimum at bit 36, after which the skew becomes less negative but never

returns to zero.
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Figure 6-3: Plot of output skew.

6.3 Clock Speed Measurements

In digital systems, all timing parameters are based on clock speed, which is the recip-

rocal of resolution for the sequencer. Therefore equivalent clock speed measurements

can be used to determine the finest resolution possible as a basis for other timing

parameters. The hardware and firmware chapters have described a process of de-

signing a PCB, selecting components, and programming modules to optimize this

primary limiting factor of system performance, and the effectiveness of this approach

is delineated in Table 6.1. The limits on clock speed can be viewed as a series of bot-

tlenecks, where the slowest bottleneck determines the maximum speed for the whole

system. To vary the clock speed, an external clock source was used in place of the

on-board oscillator; an Agilent 8648B 2 GHz signal generator was used to drive a

sine-wave clock through an SMA connector. The clock signal was amplified with a

+24V Mini-Circuits ZHL-32A module to a fixed peak-to-peak amplitude of 5.0 volts,

centered about zero. Such an input over-drives the clock switch PLD, which is a 3.3V

component, but overcomes attenuation at higher frequencies.
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Clock Cycle Bottleneck
Frequency Time
330 MHz 3.03 ns Clock switch
200 MHz 5.0 ns LVDS (from datasheet)
164 MHz 6.10 ns FPGA firmware (measured)
150 MHz 6.67 ns SRAM (from datasheet)
105 MHz 9.52 ns FPGA firmware (simulated)

Table 6.1: Maximum clock speed constraints.

On a bare PCB, only internal trace resonances constrain the maximum clock

speed, but other constraints are added with each successive component in the clock

path. The first drop in clock speed is reached by the addition of the clock switch

PLD, which essentially acts as a low-pass filter for clock signals. Its maximum clock

speed is reached when it no longer passes valid LVCMOS levels to the FPGA; this

is depicted graphically in the power consumption measurements in 6.8.3. The next

slowest components are the LVDS drivers and receivers which run at 200 MHz; the

conversion from LVCMOS to LVDS and back limits the speed of any clocks trans-

ported this way. The SRAM is the next slowest hardware component, but in actual

implementation it is only used for low-speed firmware modules such as the network

and daisy-chain controllers.

The largest actual bottleneck is due to the FPGA firmware, which must route an

external clock to many thousands of logic gates internally. In this case, the maximum

clock speed is reached not when reflection overcomes LVCMOS thresholds but when

the clock period drops beneath the setup and hold time constraints of the firmware.

Although the FPGA can physically switch clock inputs as fast as 450 MHz, the PCP

decoder cannot run that fast. Hence, clock speed represents a trade-off between

adding new features to the PCP and minimizing the firmware timing constraints.

The maximum clock speed can be measured by plotting the output jitter versus

clock frequency as done in Figure 6-4 and noting when the PCP decoder stalls; this

occurs when the jitter falls to zero at 164 MHz and remains there for all higher fre-

quencies. In timing simulations performed with the Quartus II design software, a

much more conservative estimate of 105 MHz was given. Even the measured maxi-
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mum clock speed, however, is not fast enough that the output skew in the previous

section becomes a problem. The test program for this measurement is the same one

used for output skew in Figure 6-2.
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Figure 6-4: Plot of clock frequency-dependent output jitter.

Because jitter represents additive phase noise, it is useful to determine the base

timing error and jitter of the system clock before measuring the noise contribution of

other components. These are presented in Table 6.2.

Expected Period 10.0000 ns
Expected Frequency 100 MHz
Actual Period 9.9978 ns
Actual Frequency 100.0230 MHz
Error 2.2 ps
Jitter 31.26 ps

Table 6.2: Timing error and jitter for the on-board 100 MHz oscillator.

6.4 Duration Measurements

After the resolution, the most interesting figure of merit is the minimum duration,

since it represents the real limit of the device’s performance. There is a trade-off be-

tween making the resolution finer with aggressive pipelining and decreasing the min-

imum duration by shortening the decoding pipeline overhead. Since the maximum
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clock speed and finest resolution was fixed in the previous section, the minimum du-

ration can now be determined in this section. More generally, the minimum duration

is the lower bound of the discrete spectrum of durations measured in this section.

Figure 6-5 contains the test code for making duration measurements. To achieve

minimum delays of 1 cycle, the immediate pulse instruction p must be used. The first

operand in each instruction is a hexadecimal number specifying a single unique bit;

all other bits are turned off. The second operand uses a macro to easily change which

16 consecutive duration values are being tested in any particular compilation. The

duration is specified in cycles which correspond to 10 nanosecond time steps. The

third operand indicates that only the lower 32 pulse outputs are ever used.

.equ BASE, 0x00 ; starting duration

Start: p 0x00000001, BASE+0x01, 0

p 0x00000004, BASE+0x02, 0

...

p 0x08000000, BASE+0x0f, 0

p 0x20000000, BASE+0x10, 0

j Start

nop ; branch delay slot

halt

p 0x00000000, 0x03, 0 ; branch delay slot

Figure 6-5: Test pulse program for measuring duration error and jitter.

The j instruction creates a loop so that the 16 bits which are in the lower half

and located on the top side of the PCB toggle different durations, which can be

measured for both timing error and jitter, as done in 6.4.1 and 6.4.2. Three different

compilations were used with BASE values of 0x00, 0x10, and 0x20, respectively, for a

total of 48 durations. Linear fit parameters are given in Table 6.3 for later plots of

error and jitter.

Duration Error Duration Jitter
Slope (ps / ns duration) 0.216 0.00212
y-intersect (ps at 0 ns duration) 9.244 73.006

Table 6.3: Linear fit parameters for duration error and jitter.
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6.4.1 Error

Figure 6-6 plots the timing error versus duration for 1 cycle up to 48 cycles. As

expected from the base clock jitter in Table 6.2, initial duration errors are negative.

However, the error increases roughly linearly with duration as the additive error

accumulates in each successive duration. The y-intersect is validated by giving a

relatively small timing error for a theoretical zero nanosecond duration; the small

slope of picosecond errors per nanosecond duration ensures that the percent error

will approach zero for arbitrarily long durations.

Several special cases are worth mentioning. Pulse durations for one and two cycles

are handled as special cases in the PCP decoder and have markedly more negative

errors than durations of three cycles or more, which are handled more generally. A

pulse duration of zero is not shown but results in a pulse duration of 10 nanoseconds

(1 cycle), indicating that 10 nanoseconds is indeed the minimum duration for the

sequencer. Because each instruction takes two cycles to fetch and decode, odd dura-

tions utilize a different path in firmware than even durations; however, the expected

bipartite distribution is only seen in isolated stretches around 300 to 360 nanosec-

onds or 400 to 450 nanoseconds. This trend may become more apparent for longer

durations, but at the low end its effects are obscured by the propagation delays of

the PCB layout.
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Figure 6-6: Plot of duration error.
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6.4.2 Jitter

Figure 6-7 plots the jitter versus duration for 1 cycle up to 48 cycles. Outliers are due

to PCB layout skew and initially, from the special-case handling of short durations.

Jitter increase for successively longer durations is negligible. The predicted jitter at

zero nanoseconds is greater than the system clock jitter, which can be attributed to

the timer firmware.
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Figure 6-7: Plot of duration jitter.

6.5 Delay Measurements

While a duration is an explicitly-specified time interval, delays are the implicit over-

head between durations. This overhead is incurred when the instruction decoder

loads the timer, whereas duration measurements in the previous section characterize

the PCP timer after it is loaded. The test code for measuring delay is shown in

Figure 6-8. Bit 0 is toggled on for a duration of one cycle. Note that the immediate

pulse instruction for 1 cycle is a special case which zeros all pulse outputs afterward;

this is an effective 10 nanosecond delay after all pulses of 1 cycle and represents the

minimum delay of the sequencer. For durations of 2 cycles or greater, the pipeline

of overlapping instructions described in Section 5.1 ensures that there is theoretically

zero delay between pulses, which will be useful in explaining the linear fit later on.
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Delays can be greater than the minimum value due to non-pulse instructions

inserted between pulse instructions. This is the rationale behind the test code, which

inserts nops to stretch the delay between consecutive pulses in 2 cycle (20 nanosecond)

intervals. Error and jitter are measured against this implicitly-specified nominal delay

in the rest of this section. Although it may seem unnecessary to measure error for an

overhead, writing deterministic pulse programs requires both accurate durations and

delays. Linear fit parameters for both error and jitter are provided in Table 6.4 for

plots in the remainders of this section.

Start: p 0x00000001, 0x01, 0

nop

... ; insert nops here to stretch the loop

nop

j Start

nop

halt

p 0x00000000, 0x03, 0

Figure 6-8: Test pulse program for measuring delay error and jitter.

Delay Error Delay Jitter
Slope (ps / ns delay) 0.0120 0.035
y-intersect (ps for 0 ns delay) 0.5697 52.373

Table 6.4: Linear fit parameters for delay error and jitter.

6.5.1 Error

The results of delay error are shown in Figure 6-9. As with duration, systematic

timing errors accumulate in successively longer intervals, but the rate of increasing

error diminishes rapidly against increasing delay. The extremely small timing error

for a zero nanosecond delay corresponds to duration jitter, since there is no delay

between pulses of duration greater than 1 cycle.

101



−2
0
2
4
6
8

10
12
14
16
18

0 200 400 600 800 1000 1200

A
ct

u
a
l
D

el
ay

E
rr

o
r

(p
s)

Expected Delay (ns)

Pulse Delay Error

+
+
+

+

++++

++

+
+

+

+
+
+
+

+
+++

++

+
+

+
+

+

+

++

+
+

++
+
++++

+

++

+

++++++

+

Figure 6-9: Plot of delay error.

6.5.2 Jitter

The corresponding results for delay jitter are plotted in Figure 6-10. The average

jitter increases slightly with increasing delay as expected; however, there is a bipartite

distribution between cycles with an even or odd number of nops. This is due to

jitter inherent to decoding each type of instruction. A pair of identical consecutive

instructions will cancel out part of this jitter, while an unpaired instruction will

exhibit all of it. Corroboration is provided by the lower jitter for even numbers of

nops relative to odd numbers as seen in the graph.
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Figure 6-10: Plot of delay jitter.
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6.6 Latency Measurements

The measurements in the previous three sections characterize the throughput, or

the steady-state overhead, of the pulse output pipeline. However, the pipeline also

exhibits overhead when starting or stopping called latency. Latency in the pulse

sequencer can occur during triggering, feedback, and LVDS transport.

Even in traditional pulse programmers, throughput alone does not describe the

system’s behavior even for simple, linear pulse sequences. Most devices, including

the sequencer, have the capability of waiting for an external trigger before starting a

pulse program. However, one of the sequencer’s chief advantages is that it also support

feedback, allowing programs to take multiple actions based on external events. There

is an inherent overhead associated with detecting and reacting to these events which

is measured in the rest of this section.

Another distinctive feature of the sequencer is its use of LVDS to transport off-

board signals with low power loss at the expense of additional timing error (prop-

agation delay) and jitter. Moreover, each of these parameters is different for rising

edges and falling edges due to device asymmetries. Measurements were conducted

by running the program in Figure 6-11, which toggles bit 0 on and off in a loop.

The propagation delay was taken to be the interval between the sequencer-side signal

reaching 1.0 volts and the corresponding daughterboard-side signal reaching 1.0 volts.

Even when treating the LVDS conversion as a resistive channel, the sequencer and the

LED test board have different resonances. Therefore, reflection distorts the transmit-

ted and received signals in different ways, and 1.0V was chosen rather than a logical

CMOS high or low to measure the propagation delay and not reflection distortion.

Start: p 0x00000001, 0x01, 0

j Start

nop

halt

p 0x00000000, 0x03, 0

Figure 6-11: Test pulse program for measuring LVDS latency.
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The resulting histograms for LVDS latency are shown below. The rising edge is

described by Figure 6-12 and the falling edge is described by Figure 6-13. Gaussian fit

parameters are given in Table 6.5. The mean of the Gaussians represents the average

LVDS latency while the standard deviations are the jitter. Since all triggering and

feedback tests propagate through the LVDS channel twice, their responses must be

convolved with two Gaussians. This directly leads to the latencies measured in the

following two subsections.

Rising Edge Latency Falling Edge Latency
Mean (ns) 2.9396 3.2441
Standard Deviation (ns) 0.34876 0.14547

Table 6.5: Gaussian fit parameters for LVDS edge latency.
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Figure 6-12: Histogram of LVDS rising edge latency.

6.6.1 Trigger Latency

Trigger latencies are measured with a pulse program whose first instruction raises

an output bit, as shown in Figure 6-14. No looping is necessary since triggering is

a single, asynchronous event. The time interval between the trigger signal reaching

a logical LVCMOS high level (3.0 V) and the output bit reaching the same level is

the latency. It includes one cycle to detect the trigger and lower a synchronous reset
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Figure 6-13: Histogram of LVDS falling edge latency.

signal, one cycle to detect the reset signal and start the PCP, and another cycle to

start the instruction pipeline. However, this starting circuitry is not part of the PCP

itself and is clocked at a much slower 25 MHz, accounting for 120 nanoseconds of

latency. Any additional latency must be due to LVDS conversion and propagation

through firmware bus primitives.

p 0x00000001, 0x01, 0

nop

halt

p 0x00000000, 0x03, 0

Figure 6-14: Test pulse program for measuring trigger latency.

The test program was triggered from a feedback channel on the LED test board

which was controlled over I2C and ultimately by user input. Triggering is handled

completely in firmware before software execution has begun; therefore the trigger can

be treated as a uniformly random process with respect to the starting circuitry. How-

ever, in practice, the user’s original trigger input must pass through LVDS conversion

before reaching the PCP firmware, and the resulting first output pulse must also be

converted to reach the daughterboard. This results in the distribution measured in

Figure 6-15 and the Gaussian fit parameters in Table 6.6. Notice that no measured
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latency is shorter than 120 nanoseconds or is much longer than 160 nanoseconds, cor-

responding to the 40 nanosecond synchronization window for an asynchronous signal

and a 25 MHz clock.
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Figure 6-15: Histogram of trigger latency.

Mean (ns) 149.73
Standard Deviation (ns) 5.3199

Table 6.6: Gaussian fit parameters for trigger latency.

6.6.2 Feedback Latency

A pulse program to test feedback latency must loop indefinitely while waiting for a

feedback event. To facilitate multiple measurements, the program should be reload-

able in the following sense: a rising edge on the feedback signal will trigger a mea-

surable change in output and a falling edge will reset the output. Such a program is

listed in Figure 6-16. The btr instructions use the seventh feedback input, represented

with the number 0x80. The program consists of two loops with entry points at Start

and Jump. Because the btr instruction can only branch when a positive condition is

met (in this case, when the seventh feedback input is high), the branch destination

labels must be the same for both loops in order to handle both positive and negative

cases.
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.equ TRIGGER, 0x080

Start: btr TRIGGER, Jump

p 0x0000000000000000, 0x01, 0 ; branch delay slot

j Start

nop

Jump: p 0x0000000000000001, 0x01, 0

btr TRIGGER, Jump

nop

j Start

nop

halt

p 0x00000000, 0x03, 0 ; branch delay slot

Figure 6-16: Test pulse program for measuring feedback latency.

The resulting measured latencies are plotted in a histogram shown in Figure 6-17.

Unlike triggering latency, which is entirely due to firmware running at a 25 MHz

clock, feedback branching involves a software component which runs at a faster 100

MHz clock. In a loop where the branch is taken, a minimum of 3 instructions and a

maximum of 7 instructions must be executed between a feedback input high and a

pulse output high. The minimum theoretical latency occurs when the feedback rises

right before Start and the maximum occurs when the feedback rises right afterward.

Recall that each instructions take 2 cycles and 20 nanoseconds to decode; correspond-

ingly, no latency measurement is less than 60 nanoseconds or much greater than 140

nanoseconds. The large standard deviation reflects the 80 nanosecond synchroniza-

tion window along with jitter from LVDS conversion.

Mean (ns) 112.98
Standard Deviation (ns) 22.251

Table 6.7: Gaussian fit parameters for feedback latency.

6.7 Noise Measurements

In the previous sections, throughput and latency were measured as a kind of “digital

phase noise,” or unwanted timing artifacts. These depended on the notions of timing
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Figure 6-17: Histogram of feedback latency.

error and jitter for analog phase noise. However, unwanted amplitude noise can

also affect the signal integrity of the sequencer. In Chapter 3, several techniques

were discussed for mitigating the two main sources of amplitude noise, reflection and

crosstalk. In this section, the success of these techniques is measured using power

ratio comparisons.

6.7.1 Reflection Noise

In timing measurements, a periodic signal with an asymmetric duty cycle was suf-

ficient to measure throughput and latency. In contrast, noise measurements must

clearly distinguish signal frequencies from noise frequencies, requiring a symmetric

duty cycle. The test program in Figure 6-18 produces a 50% square wave with strong

components at multiples of a single fundamental frequency. Since individual pulse

resolution has been fixed at 10 nanoseconds and a single cycle consists of two pulses

(On and Off), the square wave period can be incremented in intervals of 20 nanosec-

onds. Because of the overhead in looping, including a branch delay slot, the shortest

period is 6 cycles (60 nanoseconds).

Typically, the ratio of signal power to random noise power measures the ampli-

tude error introduced by switching components. However, the reflection noise from

parasitic resonances is greater than any background noise. Thus, taking the signal-
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.equ HALF_PERIOD, 0x03 ; in cycles, >= 3

Start: p 0x00000001, HALF_PERIOD, 0 ; pulse high

j Start

p 0x00000000, HALF_PERIOD, 0 ; branch delay slot; pulse low

halt

p 0x00000000, 0x03, 0 ; branch delay slot; turn off for safety

Figure 6-18: Test pulse program for measuring reflection noise.

to-reflection noise ratio is a conservative estimate of the sequencer’s noise rejection

properties and measures how well termination impedances were matched. It is cus-

tomary to plot this ratio versus frequency, which is inversely proportional to period.

Since periods are increased linearly, the horizontal frequency axis can be linearized

by taking its logarithm and fitting the ratios to a linear curve. As expected, the ratio

drops as frequency increases as shown by the parameters in Table 6.8; this is most

likely due to greater excitation of parasitic resonances and a rising noise floor from

switching noise.
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Figure 6-19: Plot of signal-to-reflection noise ratio.

Slope (dB / decade) -1.7978
y-intersect (dB at 0 MHz) 54.7625

Table 6.8: Linear fit parameters for signal-to-reflection-noise ratio.
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6.7.2 Crosstalk Noise

The amplitude noise from crosstalk constitutes the switching noise mentioned above.

The ratio of signal power to noise power indicates how well the digital outputs are

isolated from one another and how well-defined the current return paths are. These

measurements use the same code as for reflection in Figure 6-18; however, the noise

power is taken from the strongest frequency component of the signal in an adjacent,

non-switching output. The results are shown in Figure 6-20. The linear fit parameters

in Table 6.9 show the expected increase in crosstalk noise with frequency due to

increased switching currents and therefore increased mutual induction.
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Figure 6-20: Plot of signal-to-crosstalk noise ratio.

Slope (dB/ decade) -0.4039
y-intersect (dB at 0) 52.8027

Table 6.9: Linear fit parameters for signal-to-crosstalk noise ratio.

6.8 Power Consumption

Although power consumption is not an explicit requirement, an ideal device would

meet the stated goals while consuming as little power as possible. Three different
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power measurements are presented in this section which depend on three indepen-

dent factors: firmware programming, normal user tasks, and clock frequency. While

electrical requirements are primarily limited to the hardware layer, measuring the

power consumption before and after programming the FPGA gives another measure

of the static overhead introduced by firmware and the relative efficiency of module

implementation. Dynamic firmware overhead can be measured during the perfor-

mance of user tasks. Also, power consumption is closely related to clock frequency,

and it is useful to know this relationship independently of the maximum clock speeds

measured in Section 6.3. Pragmatically, knowledge of the device’s power consumption

is also useful in in selecting an appropriate supply. The measurements below were

taken with an Agilent E3631A bench supply, but in practice the sequencer can be

powered from a commodity AC adapter. A single DC voltage between +5.4 and +9

volts which can source 2 amperes suffices for one device.

6.8.1 Firmware Power Consumption

The measurements in Table 6.10 show the idle power consumption of the sequencer

device, before and after programming, when powered from three separate voltages.

The increase in current draw after programming reflects the power efficiency of the

firmware alone, since no other hardware parameters were changed and the processor

cores are held in reset. Along with logic resource utilization, this firmware power

consumption is a useful benchmark for quantifying the improvement of future versions.

Idle, Unprogrammed Idle, Programmed
Supply Current Power Current Power Sinks
Voltage Draw Draw
+1.8V 63 mA 113 mW 121 mA 218 mW FPGA core
+3.6V 292 mA 1051 mW 362 mA 1,303 mW FPGA I/O, oscilla-

tor, SRAM, LVDS,
clock switch, LEDs

+5.4V 481 mA 2,597 mW 631 mA 3407 mW Ethernet, fiberoptic
connector

Table 6.10: Idle and peak power consumption of sequencer device.
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6.8.2 Task-Dependent Power Consumption

The power consumptions of the sequencer in different states is shown in Table 6.11

when powered by a single +5.4V supply and running from the off-board 100 MHz

oscillator.

Current Power Sink
Draw (A) Consumption (W)
1.292 6.977 During FPGA programming.
1.502 8.111 Before DHCP.
1.496 8.078 After DHCP (idle) and during reset
1.499 8.095 PCP started but halted.
1.503 8.116 PCP running program in Figure 6-11.
1.536 8.294 AVR started.
1.518 8.197 Receiving network packet.
1.527 8.246 Using the web interface.

Table 6.11: Power consumption of various tasks at +5.4V

6.8.3 Clock-Dependent Power Consumption

Frequency-dependent power consumption was performed using the same test program

as for output skew in Figure 6-2. which simply toggled all 64 outputs on and off. This

made the power relationship to clock frequency more measurable. It also provided a

worst-case estimate for power consumption during actual use at high speeds.

The results in Figure 6-21 show a linear increase of power consumption with clock

frequency initially, with the PCP consuming more power while running than while

idle, as expected. The rapid drop in power usage at 164 MHz indicates that this is the

maximum clock speed for the PCP decoder before it fails; after this point, the stalling

of the PCP also stalls other firmware modules, so that the PCP’s running power usage

is actually lower than its idle usage. After 330 MHz, the power consumption becomes

more erratic as the clock switch no longer passes valid LVCMOS levels to the FPGA.

Linear fit parameters for power consumption are shown in Table 6.12, with the high

values at 0 MHz indicating the power consumed by non-PCP firmware.
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Figure 6-21: Plot of clock frequency-dependent power consumption.

PCP running PCP idle
Slope 3.243 mA / MHz 1.911 mA / MHz
y-intersect 1.4062 A at 0 MHz 1.1416 A at 0 MHz

Table 6.12: Linear fit parameters for clock-dependent power consumption.
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Chapter 7

Conclusion

In the first chapter, the sequencer was presented as an abstract specification of five

goals. This goals were motivated by the requirements of different qubit represen-

tations and the capabilities of contemporary devices in Chapter 2. Chapters 3, 4,

and 5 made the sequencer concrete with descriptions of a design and implementation

intended to meet the given specification. The success of this approach was measured

in in Chapter 6 for the performance and feedback goals. These results are interpreted

and the remaining subjective goals are evaluated for the sequencer in Section 7.1 of

this chapter. However, the goal of flexibility also extends to future versions of the

sequencer. Thus, improvements are proposed in Section 7.2 to further increase the

current work’s usefulness and efficiency and provide opportunities for future work.

7.1 Evaluation

In evaluating the sequencer, its goals must be understood both objectively and subjec-

tively. Several goals mention desired values for figures of merit, which were measured

in the preceding chapter. However, evaluation is not a simple decision problem since

it is often useful to know by how much a figure of merit was satisfied and how it

compares to other contemporary devices which have similar goals and which have

made different trade-offs. This quantity also represents a margin for improvement in

future versions of the sequencer.
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7.1.1 Performance

To meet the performance goal, the sequencer achieved a cycle time of 10 nanoseconds

(running at a 100 MHz clock) and is currently capable of decreasing this to about

6.25 nanoseconds (running at a 160 MHz clock). Due to its pipelining of pulses and

overlapping instructions, it is able to achieve a delay of 0 nanoseconds for most pulse

sequences; a special case is the minimum duration of 1 cycle, which must always be

followed by a 1 cycle pulse of all-zero outputs. At 100 MHz, this satisfies the goals

for a minimum duration of 10 nanoseconds and a minimum delay of 10 nanoseconds.

The combination of PCP instruction decoder’s timing constraints and the current

FPGA hardware cannot run faster than 164 MHz. Moreover, due to the skew between

output bits of the LVDS subsystem, pulses much shorter than 5 nanoseconds will

become unsynchronized, corresponding to LVDS’s theoretical maximum speed of 200

MHz. At slower speeds, however, the device is able to switch 64 digital outputs

simultaneously, with output skew no greater than 3 nanoseconds.

7.1.2 Feedback

The feedback goal consists of a hard requirement to enable the sequencer to respond

to external signals and a soft requirement to minimize this response latency. By

including LVDS receivers as well as drivers, the hard requirement is fulfilled. The

soft requirement applies to the sequencer’s two possible responses to an external

event: triggering the start of a pulse program and enabling conditional branching in

a running program. Measurements have shown that a pulse program can produce a

measurable response at most 170 nanoseconds after a trigger (with an average of 150)

and at most 160 nanoseconds after a conditional branch (with an average of 113).

While these latencies are greater than the desired value of tens of nanoseconds,

there are clear solutions to decreasing them further. To decrease the trigger latency,

the trigger mechanism should be incorporated into the PCP and clocked at its faster

speed, rather than at the slower 25 MHz of all other firmware modules. To decrease

the feedback latency, an additional branch-wait-on-trigger instruction can be added.
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7.1.3 Programmability

Satisfying the programmability goal requires the ability to control outputs with pulse

program software using a minimal instruction set for conditional feedback branch-

ing. The sequencer accomplishes this with the specialized firmware processor core,

the PCP. It is able to switch all 64 of its digital outputs independently in software

using a 64-bit register file and a unified, 64-bit wide program memory. Pulses can be

output indirectly using registers previously loaded from memory or immediate values

directly encoded into instructions. Program execution can branch to arbitrary loca-

tions unconditionally (for infinite looping) or conditionally (for feedback control); the

PCP can also safely halt at the end of a pulse program. These represent the mini-

mum instruction set for generating conditional pulse sequences. More sophisticated

features, such as finite looping and subroutines, are possible by modifying the decoder

in exchange for greater logic complexity and slower clock speed.

7.1.4 Ease-of-Use

In fulfilling the ease-of-use goal, the sequencer uses standard Ethernet connections

and a TCP/UDP/IP protocol engine to communicate with commodity hardware and

software. Network interface cards (NICs) and web browsers are available for any

consumer PC and operating system conforming to open standards such as PCI and

HTTP. The use of an assembly language and command-line compiling is still difficult

for non-programmers, but the learning curve is lessened by the instruction set’s small

size. In contrast with pulse program development, the control of the sequencer via the

web interface is much more intuitive because no external program is needed except

a web browser, and no command syntax must be remembered. On the hardware

side, the device’s power requirements can easily be satisfied with an off-the-shelf AC

adapter, making it easy to deploy in any setting.
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7.1.5 Flexibility

In order to meet its goals for flexibility, the sequencer includes a daisy-chain interface

allowing multiple devices to be synchronized to run the same pulse programs, detect

the same inputs, and use the same clocks. Channels can be added and removed easily

in multiples of 64 bits without redesigning the system. Most importantly, the daisy-

chain controller decouples the control of pulse programs from various clients, including

host access over UDP, the web interface, and other devices in the daisy-chain.

The use of well-chosen interfaces and a modular design allows many components

of the sequencer to be refactored easily and tested independently. The use of a

standard Wishbone interconnection bus between firmware modules makes them in-

terchangeable and reusable. Running a web server in software on a general-purpose

core, the AVR, isolates critical pulse program execution from non-critical user inter-

face changes. It also allows the web server to be upgraded remotely by downloading

new software, rather than reprogramming the firmware. The existence of well-defined

machine opcodes and a transfer protocol allows third-party development tools to tar-

get the sequencer and to create more user-friendly graphical programming interfaces.

Section 7.2 describes these extensions in greater detail, but the examples here attest

to the sequencer’s flexibility.

7.1.6 Comparison

Based on the figures of merit, goals, and secondary features such as cost and physical

size, the sequencer is compared with three similar devices in Table 7.1. The first

column refers to the current work, which has the benefits of high performance, wide

outputs, a flexible Ethernet interface, and uniquely among all the devices, feedback

support. It also possesses an open design, making it suitable for future development

beyond the original author. The second column details the most powerful SpinCore

device available, the PulseBlaster ESR-333-PRO; it achieves the fastest clock speed

and includes waveform generation at a greater cost and a less flexible PCI interface.

The third column refers to the sequencer’s predecessor by Huang et al., from which
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the sequencer inherited several features. This device was implemented with an off-the-

shelf Xilinx FPGA development board from Digilent; it has a relatively low cost, fast

speed, and the widest outputs. However, its serial interface is difficult to use and it

is no longer actively developed. The fourth column represents the digital acquisition

controller of Varian’s UNITY INOVA spectrometer. This is the oldest device in the

comparison and hence has the slowest performance and largest PCB size; however,

it is integrated with sophisticated waveform generators and control software, and it

is also backed by the greatest level of technical support. The price for the Varian’s

data acquisition controller is not provided because this part is never sold separately.

Parameter Sequencer SpinCore Huang Varian
Year released 2004 2004 2003 2000
Minimum cycle time (ns) 10 3 8 25
Minimum duration (ns) 10 3 8 100
Minimum delay (ns) 0− 10 3 8 25
Number of digital outputs 64 10 72 34
Number of channels 1-64 24 1-72 4
Maximum program size (words) 2K 32K 512K 4K
Maximum trigger latency (ns) 170 ns 80 ns n/a n/a
Feedback support yes no no no
Configurable clock sources yes no yes no
Waveform synthesis no yes no yes
Host interface Ethernet PCI RS-232 Ethernet
PCB size (in) 5.5 x 6 4.5 x 7 5 x 5 9 x 8.5
Unit cost $700 $3,200 $200 n/a

Table 7.1: Feature comparison between pulse sequencer and competing devices.

7.2 Future Work

As with any complex project, the sequencer device has many avenues for future exten-

sions; as part of its goal of flexibility, it was designed to make these extensions easy.

Some of these extensions are actively-developed features which did not make it into

the first release while others represent longer-term objectives. These improvements

are grouped by layer below.
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7.2.1 Hardware Extensions

Most improvements to the hardware revolve around further increasing the maximum

clock speed and increasing the number of digital outputs by upgrading, adding, or

removing components. The PCB layout is indirectly a performance bottleneck due

to reflection. The current design can attenuate reflection noise even further by ter-

minating traces between the FPGA and the LVDS subsystem.

The most challenging hardware extension is the design of a daughterboard to

perform digital-to-analog conversion. Because the sequencer only produces digital

outputs over LVDS, it generally requires this additional board to interface with other

apparatuses. Typically, quantum computing experiments will require amplitude shap-

ing, frequency generation, and phase shifting, which can be encoded in separate chan-

nels. One board with such capabilities is a programmable RF source currently being

developed by John Martinis at the University of California, Santa Barbara, and Steve

Waltman at NIST Boulder. Other daughterboards may simply convert LVDS to TTL

levels on coaxial connectors to drive circuits directly using square pulses. Such pulses

are also suitable for driving a PTS synthesizer for frequency generation.

7.2.2 Firmware Extensions

The simplest improvements to the firmware involve optimizing firmware modules

to use fewer gates and to execute in fewer cycles; both steps would decrease power

consumption and signal delays while increasing maximum clock speed. Decreasing the

resources used by the existing modules would free up space to implement new modules,

and extensive regression tests have been provided to ensure that new optimizations

preserve existing functionality.

Larger performance gains, especially in increasing clock speed, will involve the

use of multiple clocks (interclocking) and asynchronous FIFOs.1 Two areas where

this is most applicable are the datalink layer for the PTP and the PCP instruction

decoder. These may be considered separately, depending on whether the user needs

1Sometimes called a double-clocked queue.
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higher daisy-chain throughput or additional pulse instructions.

In the first case, the link layer must operate between two devices running dif-

ferent clocks. It samples a signal several times before making bit decisions to avoid

metastability, and it must transmit a byte serially bit-by-bit. During this time, the

PTP routing layer must stall and remain idle. It would be possible to clock the link

layer faster than the rest of the firmware in order to account for this sampling and

serialization overhead at the increased cost of an asynchronous FIFO with its two

interfaces for writing and reading.

In the second case, another asynchronous FIFO could be placed after the instruc-

tion decoder, which is a system bottleneck for maximum clock speed, and before the

timer and pulse output register, which can be clocked much faster. The decoder would

indirectly output pulses by writing new timer counts and output values into a queue.

The timer would read new timer counts from the queue, stall for the specified dura-

tion, and output the specified value without intervention from the decoder. Because

the queue is asynchronous, the decoder and the timer can be clocked independently.

The primary obstruction to adding new instructions and capabilities to the de-

coder is the corresponding increase in cycle time and decrease in maximum clock

speed. By using the FPGA’s built-in PLLs as clock multipliers, the timer can run

up to 4.5 times faster than the decoder and maintain a relatively fine resolution.

Asynchronous queues have their own pipeline, which would increase the feedback and

branching latency from the decoder by at least three cycles; however, this would not

cancel out the improvement in minimum duration and minimum delay. However, due

to output skew, it may not be feasible to clock the timer at its maximum speed.

Three useful additions to the instruction set include arithmetic operations, com-

parisons, and subroutine calls. One possible implementation would use a smaller reg-

ister file equal in width to the program address. This is generally much smaller than

the full 64-bits of program data; it would be small enough to allow fast arithmetic and

comparison operations but large enough to store return locations. However, even the

fastest operations and smallest register file will introduce greater timing constraints

on the instruction decoder, decreasing its maximum clock speed.
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7.2.3 Software Extensions

Software extensions can be divided between the development tools on a host PC and

the CGI interface on the sequencer device.

Although the command-line assembler is a great improvement over assembling

opcodes by hand, it still exposes the user to unnecessary implementation details such

as branch delay slots and special cases within each pulse instruction. An obvious

extension to the development tools is a port of a compiler2 for C or some other

high-level language that will shield the user from instruction scheduling and pulse

encoding. An alternate approach is the SpinCore development model in which pulse

programs are written indirectly through a host binary. This can be accomplished

most directly by creating and distributing a shared library and header files, similar

to the existing PTP network library used by the command-line client.

The web interface is useful because it exploits the ubiquity of web browsers on all

major computing platforms; however, it depends on a separate bootstrapping program

to discover and program the sequencer device. An alternative user interface would

be an integrated graphical application which would perform both bootstrapping and

user operations over the network in place of both the web browser and the current

command-line client. To provide uniformity across all host operating systems, this

application should use a cross-platform toolkit such as GTK+ or wxPython.

Finally, users may wish to control the sequencer or generate pulse programs from

popular scientific software such as LabVIEW, MATLAB, or Octave. These packages

provide interfaces for making network calls, such as constructing and parsing packets

according to a custom protocol, as well as sending and receiving them. PTP provides

a convenient and well-defined network protocol over UDP for non-interactive control

of the sequencer. Likewise, the CGI interface can be used non-interactively over

HTTP and TCP using the post and get methods and the fully-specified modes and

variables in Section D.2. A useful extension of the host development tools would be

interface libraries for the above software packages.

2The GNU Compiler Collection (gcc) is an ideal choice since it already uses the GNU binutils
collection to assemble binaries for many other targets.
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7.2.4 Methodology

An important extension to the sequencer does not involve modifying the current sys-

tem as a whole. Rather, different parts of its design and implementation can be

applied to new experiments unknown at the time of writing. Pulse programming in

general represents a technology transfer from NMR spectroscopy to other areas of

physics and quantum computing in particular. Aside from being a tangible device

with immediate applications, the pulse sequencer described in this thesis can serve as

a template for future instrumentation and experimental techniques combining pro-

grammable logic, machine languages, and network interfaces.
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Appendix A

Hardware Design Documents

A.1 Transmission Line Model of a Microstrip

The following approximations for a microstrip transmission line are taken from [IPC95]

and are only valid for

0.1 <
W

H
< 3.0 1 < ǫr < 15

where the variables are defined as follows:

W is the trace width in mils.

T is the trace thickness in mils.

H is the trace height above the reference plane in mils.

ǫr is the relative permittivity of dielectric.

σ is the conductivity of the trace material.

The characteristic impedance of the microstrip in ohms is:

Z0 =
87√

ǫr + 1.41
ln

(

5.98H

0.8W + T

)

(A.1)

The shunt capacitance in picofarads per meter is:
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C0 =
26.38(ǫr + 1.41)

ln
(

5.98H
0.8W+T

) (A.2)

The external series inductance in nanohenries per meter is:

L0 = C0Z
2
0 (A.3)

The propagation delay in nanoseconds per meter is:

tpd = 3.33
√

0.475ǫr + 0.67 (A.4)

The series DC resistance of the trace and its return path in ohms per meter is:

R0 =
1

σwt
(A.5)

Supplying values from [JG03] specific to surface mount PCB traces

W = 8 mils

T = 1.4 mils (1 ounce per square foot electro-deposited copper)

H = 6 mils

ǫr = 4.5 (for FR-4 laminate at room temperature up to 1 GHz).

σ = 5.8× 10−8 for annealed copper at room temperature.

The following approximations result:

Z0 = 54.61Ω

C0 = 102.17× 10−12 F / meter

L0 = 5.58× 10−9 H / meter

R0 = 239× 10−6 Ω / meter

tpd = 0.432 ns / meter

Using a 49.99 Ω series source termination and a typical trace length of 5 centime-

ters, the source reflection coefficient is:
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Γ =
Rs − Z0

Rs + Z0

= −0.044

For a driving voltage of 3.3V, this corresponds to a negative source reflection

of -145 mV arriving at the load two delay times (21.6 picoseconds) after the initial

incident wave, which is within the noise margin of LVCMOS.

A.2 Layer Stackup

The noise-tolerance mechanisms described in Section 3.1 place certain constraints on

the dielectric thicknesses of a PCB Minimizing reflection requires the calculation of the

characteristic impedance for a microstrip trace; this, in turn, depends on the thickness

separating signal traces and their references. Minimizing crosstalk and power filtering

requires placing signal and reference layers in the correct order and controlling the

thicknesses between power and ground planes. Moreover, the large number of desired

programmable outputs required at least two signal layers for routing traces, where

cost considerations limited the layer count to 8 or less. The resulting layer stackup

is shown in Table A.1.

Layer Name Thickness Material
(mils)

Top Routing 1.4 1 oz. copper traces
Prepreg 6.0 FR-4
Ground Plane 1 0.7 1/2 oz. copper
Core 5.0 FR-4
Power Plane 1 (+3.3V) 0.7 1/2 oz. copper
Core 35.0 FR-4
Power Plane 2 (+1.5V and +5V) 0.7 1/2 oz. copper
Core 5.0 FR-4
Ground Plane 2 0.7 1/2 oz. copper
Prepreg 6.0 FR-4
Bottom Routing 1.4 1 oz. copper traces

Table A.1: The six layer, controlled dielectric stackup for the PCB.
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The first constraint on the board stackup was matching of trace impedances on the

top and bottom routing layers to 50 Ω, the lowest value common in PCBs; lower values

tend to stress components which can overdrive the traces. Trace thickness and height

above the reference plane were both constrained by standard manufacturing tolerances

for electro-deposited copper and FR-4 prepreg, respectively. The calculation of trace

impedance can be found in Appendix A and yields an approximate value of 54.61

Ω using the values above. This agrees within 1.4% of the answer calculated by the

2D-field solver in Protel, 55.6 Ω.

The placement and thicknesses of the inner planes represented the next con-

straints. The ground planes must be exterior to the power planes in order to serve as

signal references to the routing layers. The smallest standard thickness of core layer

(5 mils) was chosen to separate each power and ground pair to improve its bypass

impedance at high frequencies. The symmetry of the layer stackup is necessary to

match impedances on the top and bottom layer. The final degree of freedom, the core

between the two power planes, was chosen to bring the total board thickness to 61.2

mils, a standard PCB thickness that is used by most edgemount connectors.1

1See Section 3.2 for the advantages of edgemount connectors.
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A.3 Circuit Schematics, Layouts, and Drawings

The following schematics are for Revision A of the hardware. All net identifiers are

global across all sheets; intersecting nets are only connected if marked with a dot.
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Figure A-1: Schematic for clock switch and clock sources.
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Figure A-2: Schematic for power supplies and safety devices.
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Figure A-3: Schematic for FPGA, SRAM, LED driver, and fiberoptic connectors.
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Figure A-4: Schematic for Ethernet controller and connectors.
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Figure A-5: Schematic for LVDS drivers and receivers.
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Figure A-6: Schematic for daisy-chain connectors and isolation transformers.
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Figure A-7: Schematic for Samtec edgemount connector.
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Figure A-8: Assembly drawing for top side (pads and silkscreen).
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Figure A-9: Assembly drawing for bottom side (pads and silkscreen).
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Figure A-10: PCB layout for top routing layer (traces and pads).
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Figure A-11: PCB layout for bottom routing layer (traces and pads).

140



Figure A-12: PCB layout for inner ground planes (keepout regions).
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Figure A-13: PCB layout for inner power planes (keepout regions).
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Appendix B

Firmware Design Documents

B.1 Power-On Reset Circuit

The underlying analog layer of an FPGA is usually reset with an RC delay circuit

connected to the positive power supply. However, a similar feature is usually not

available for the digital logic programmed into the FPGA. Many modules use state

machines and variables which must begin in a well-defined state in order to function

properly. The catch is that any power-on reset circuit must not itself depend on any

initialization; all it can use are power, ground, a clock, and combinational gates. The

circuit used in the pulse sequencer’s firmware is shown in Figure B-1.

Q1

EN

Q

CK

T

Toggle

Q2

EN

Q

CK

T

Delay

Pulse Output

Figure B-1: Power-on reset circuit for bootstrapping digital logic.

It is constructed from T flip-flops and produces a pulse one clock cycle wide,

on the first clock cycle after it powers up. Note that this is a structural, or RTL

(register-transfer logic), description using the industry standard Library of Param-

eterized Modules (LPM); in general, RTL descriptions are not otherwise portable.
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This circuit depends on the flip-flops powering up in an off state. Many FPGAs,

the Altera Cyclone included, allow one to specify the power-on states of uninitial-

ized registers; thus, the above circuit could be implemented in an equivalent VHDL

behavioral description.

B.2 Memory Segments

The sequencer’s external SRAM chip has an external data width of 36 bits, which

is not directly usable by most firmware modules. In particular, the communication

controllers operate on 8-bit wide data, since Internet protocols are octet-oriented; the

AVR core has a 16-bit wide instruction bus and an 8-bit wide data bus; and the PCP

core has a 64-bit wide instruction bus. Moreover, these usable data widths are powers

of two; to keep the sizer implementation simple, the SRAM data width is rounded

down to 32 bits and the upper 4 bits are not currently used.

Consequently, the SRAM controller must be multiplexed among three different

sizers, and the 8-bit sizer must be further multiplexed among several different clients,

making SRAM storage the source of greatest resource contention in the system. These

relationships are depicted in Table B.1.

Virtual Virtual Data Physical Segment Masters
Data Address Width Address Prefix
Width Width Multiple Width
8 16 22 14 0x1D AVR data memory

(5 bits) TCP/AVR proxy
PTP/AVR proxy
PTP (read/write)
PCP (read-only)

16 16 21 15 0x1E AVR instruction memory
(4 bits)

Table B.1: Data, address, and segment prefix widths for SRAM masters.

Note that the PCP memory master actually uses a proxy and another sizer in

reverse, going from an 8-bit read-only of external SRAM to a wider, write-only master,

the 64-bit PCP program memory.
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B.3 Pulse Transfer Protocol Application Layer

The Pulse Transfer Protocol (PTP) describes both a routing (network) layer and

an application layer. The routing layer provides addressing and datagram-oriented

network transfer, analogous to the Internet Protocol, for passing messages up and

down a daisy-chain of sequencer devices. The application layer is a request/response

architecture suitable for client/server operation. Each client request generates a cor-

responding reply from the server; the client is responsible for retransmitting requests

until a reply is received. The server side is implemented in the sequencer firmware

as a PTP server module. On the AVR, the client side is implemented with software

drivers and a firmware proxy. On the host PC, the client side is implemented with

the command-line bootstrapping program or any third-party library conforming to

the protocol; in these cases, PTP uses Ethernet/IP/UDP as an initial datalink layer

in traveling from the host PC to the sequencer device.

The opcodes and their payloads are described below in request/reply pairs. They

conform to the format of a PTP frame in Figure 4-8. Although the frame length field

accommodates 16 bits, the current implementation only supports packets shorter

than or equal to 984 octets in length (1024 octets minus headers for UDP and IP).

PTP follows the big-endian order convention of IP.1 Payloads are described in a table

where fields are listed in the order they appear in the payload and along with their

length in octets. The payload lengths specified are the minimum. In most request

opcodes, octets beyond the specified payload are ignored except for variable-length

fields. Neither the client nor server should depend on any particular value in PTP

packets beyond the stated payload lengths.

B.3.1 Null Opcode

This opcode is guaranteed to have no effect on the PTP server and does not generate

a reply. It is currently not used in any implementation.

1That is, the most significant bit in an octet has index 0 and the least significant bit has index 7,
hence the term “octet” instead of byte. Correspondingly, the most significant octet in a multi-octet
word comes first (has the lowest address).
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Request

Hex Value: 0x00

Payload Length: 0 octets

Payload Description: Payload is ignored.

B.3.2 Status Opcodes

Request

This opcode requests the status of the sequencer to be returned by the corresponding

reply.

Hex Value: 0x01

Payload Length: 0 octets

Payload Description: Payload is ignored.

Reply

This opcode returns the status of the device addressed in the corresponding request.

Hex Value: 0x11

Payload Length: 2 octets

Length in Bits Function
Octets
1 0-3 4-bit trigger source, uses the values in Table C.4.

4 1 if AVR is in reset, 0 if it is running.
5 1 if PCP is in reset, 0 if it is running.
6 1 if the device is the chain initiator, 0 otherwise.
7 1 if the device is the chain terminator, 0 otherwise.

1 0 1 if PCP has halted, 0 otherwise.
1-7 Lower seven bits of the clock scale quantum (unused).

Table B.2: Payload description for the Status Reply opcode.

B.3.3 Memory Opcodes

PTP can manipulate the entire address space of the external SRAM as byte-addressable

memory. It cannot write across segment boundaries. Note that it is unsafe to perform
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a memory write operation into the address space of the AVR while it is running, since

AVR instructions are retrieved directly from SRAM without any cache.2

Request

This opcode requests a memory read or write operation to be performed on the

addressed device. Write data is included in the request payload, and the write length

(denoted by length below) is calculated from the payload.

Hex Value: 0x02

Payload Length: 4 octets + (2 octets for reading, length octets for writing.)

Length in Function
Octets
1 Subopcode indicating which memory function to perform.

0x01 for writing, 0x02 for reading
1 Address prefix for 16-bit address, 8-bit wide segment (lower 5 bits)
2 Starting 16-bit offset in 8-bit wide segment
2 or Length for reading
length Data for writing

Table B.3: Payload description for the Memory Request opcode.

Reply

This opcode reports the success of a requested memory operation after it has com-

pleted. For reads, it returns the requested read data.

Hex Value: 0x12

Payload Length: 1 + (length for reads)

Octet Function
1 Subopcode of request, same as Table B.3.
length Data from reading.

Table B.4: Payload description for the Memory Reply opcode.

2The bootstrapping program stops the AVR automatically.
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B.3.4 Start Opcodes

The PTP server controls both processor cores in the firmware using start opcodes,

subject to waiting on triggers. Initially, both cores are held in reset. The Start

Request does not perform any program loading for the PCP; pulse programs should

be loaded with a Trigger Request first, although the Start Request can be specified

as the trigger.

Request

This opcode lowers the reset line for either the AVR or the PCP, causing that core

to begin executing instruction starting at address 0x0.

Hex Value: 0x04

Payload Length: 1 octet

Length in Function
Octets
1 Subopcode indicating which start operation to perform.

0x01 for resuming the PCP.
0x02 for suspending the PCP.
0x03 for resuming the AVR.
0x04 for suspending the AVR.

Table B.5: Payload description for the Start Request opcode.

Reply

This opcode reports the success of a requested start operation, using the same sub-

opcode as the original request.

Hex Value: 0x14

Payload Length: 1 octet

Octet Function
1 Subopcode of request, same as in Table B.5.

Table B.6: Payload description for the Start Reply opcode.
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B.3.5 Trigger Opcodes

The PCP can be made to wait on a specified trigger by the PTP server. Triggers

can include any of the feedback inputs, a manual DIP switch position, a PTP Start

Request (which does not wait on any trigger), and a null trigger, which stalls the

PCP indefinitely until a new trigger is specified. Trigger opcodes are also used to

load pulse programs for running; this is the only way to write into PCP program

memory, which the PCP treats as read-only. Note that if clk0 is not running, then

the PTP server will stall.

Request

This opcode sets the current trigger for the PCP to the specified source and loads

a pulse program beginning at the specified prefix and address in the slow external

SRAM into the fast PCP program cache. Changing the trigger without loading a

pulse program can be accomplished by setting the read length (length) to 0.

Hex Value: 0x05

Payload Length: 6 octets

Length in Function
Octets
1 Trigger source using the values in Table C.4.
1 Address prefix for segment containing the pulse program (lower 5 bits).
2 Starting address offset for the pulse program.
2 Length of pulse program.

Table B.7: Payload description for the Trigger Request opcode.

Reply

This opcode reports the success of a trigger operation, echoing the trigger source in

the original request.

Hex Value: 0x15

Payload Length: 1 octet
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Octet Function
1 Trigger source of original request in Table B.7.

Table B.8: Payload description for the Trigger Reply opcode.

B.3.6 I2C Opcodes

These opcodes define requests for I2C operations and their corresponding replies. The

PTP server can address slaves with 7-bit addresses on the I2C bus to read and write

data. Either read or write lengths or both can be zero. This command should never

stall because the firmware I2C controller, as a bus master, will simply read back zeros

if a slave never responds to a given address.

Request

Because most I2C slaves require an initial write (e.g. of an internal memory address),

the I2C Request always performs a write first using all bytes in the payload beyond

the read length (length) field.

Hex Value: 0x06

Payload Length: 3 + write length octets

Length in Function
Octets
1 Slave address (lower 7 bits)
2 Number of octets to expect while reading (read length).
write length Data to write to the slave.

Table B.9: Payload description for the I2C Request opcode.

Reply

This opcode reports the success of an I2C operation and returns any requested read

data.

Hex Value: 0x16

Payload Length: (1 + read length) octets
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Octet Function
1 Slave address from original request (lower 7 bits).
read length Octets read from the slave.

Table B.10: Payload description for the I2C Reply opcode.

B.3.7 Debug Opcodes

These opcodes define requests for the PTP server to perform a debugging operation

and the corresponding replies upon completion.

Request

Currently the only debugging function is to blink the general-purpose LEDs in the 1

byte pattern that is the suboperand.

Hex Value: 0x08

Payload Length: (1 or more) octets

Length in Function
Octets
1 Subopcode indicating which debugging function to perform.

0x01 for displaying debugging information on LEDs (1 suboperand).

Table B.11: Payload description for the Debug Request opcode.

Length in Function
Octets
1 Suboperand indicating the 8-bit pattern to display on LEDs.

Table B.12: Payload description for the Debug LED Request subopcode.

Reply

This opcode reports that the corresponding requested debugging action has com-

pleted.

Hex Value: 0x18

Payload Length: (1 + read length) octets
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Octet Function
1 Subopcode, same value as original request from Table B.11.

Table B.13: Payload description for the Debug Reply opcode.

B.3.8 Discover Opcodes

These opcodes allow the user to both discover the dynamic IP address of the daisy-

chain initiator as well as dynamically assign IDs to all other devices in the chain

starting with 02. The chain initiator can only be discovered once until it is reset.

Request

Hex Value: 0x09

Payload Length: 1 octet

Length in Function
Octets
1 Current slave address, starting with 0x02.

Table B.14: Payload description for the Discover Request opcode.

Reply

Hex Value: 0x19

Payload Length: 1 octet

Octet Function
1 Slave address from original request in Table B.14.

Table B.15: Payload description for the Discover Reply opcode.
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Appendix C

Programming Reference for the

PCP

This appendix serves as a reference for the PCP64 architecture and the only machine

currently in it, the pcp0.

C.1 Architectural Parameters

The PCP64 family has configurable parameters which are determined by each ma-

chine. These parameter values for the pcp0 are shown in Table C.1.

Parameter Allowed Range
Register Address Width 5 bits
Register Data Width 64 bits
Register Count 32 registers
Instruction Width 64 bits (8 bytes)
Memory Address Width 11 bits
Maximum Program Size 2048 instruction words

Table C.1: Machine parameters for the pcp0 in the PCP64 architecture.

Every pcp0 instruction takes two cycles to execute, with the exception of the pulse

instructions which take a variable number of cycles depending on their delay value.

Every control flow instruction has one branch delay slot due to the pipeline.
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C.2 Instruction Set for the pcp0

This section describes the instruction set supported by the pcp0, which may be ex-

tended by future machines. Each instruction is described in its own section with a

summary of its binary format, and a textual description of its operation.

For each instruction, the binary format summary follows the example of Table

C.2. The mnemonic name is given along with a one-line description. The instructions

opcode and modifiers are given as binary and hexadecimal values. Operands, their

names, bit widths, locations, and interpretations are defined. The result of each

instruction is given as one or more modifications of processor states, including the

program counter, the output of the pulse register, the pulse delay, the value of general-

purpose registers, and the value of locations in memory. The last field describes the

symbolic usage of the instruction in an assembly-language program. The notation

and abbreviations used in the remainder of this section are explained in Table C.3.

mnemonic Description of instruction.

63 58 57 56 55 51 50 46 45 41 40 39 32 31 27 23 19 15 11 7 3 0

6 bits 2 bits 5 bits 5 bits 5 bits 1 bit 8 bits 21 bits 11 bits

opcode i u operands appear here

bbbbbb bb Result: result1 result2
0xhh Usage: mnemonic operand1, operand2

Table C.2: Example of a PCP64 instruction format table.
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Symbol Description
opcode 6-bit value determining which operation to perform.
i 1-bit opcode modifier denoting an immediate operand.
u 1-bit opcode modifier denoting an unsigned operand.
pc Program counter (same width as machine address space).
rp Pulse output register (64 bits wide).
tp Pulse delay time (40 bits wide).

For 23-bit immediate timer values, upper 17 bits are zeroed.
For 64-bit register timer values, only lower 24 bits are used

selx Selects where an x-bit constant is loaded in a 64-bit register
(log2 64/ log2 x bit wide).

rn(selx) A selected subset of the specified 64-bit register.
ui Unsigned immediate address (same width as machine address space)
[ui] Dereferenced value or location of unsigned immediate address (64 bits)
uc Unsigned constant (32 bits)
ti Immediate timer constant (23 bits)
halt True when processor has halted.

False initially.
b . . . b a binary value.
0xh . . . h a hexadecimal value.

Table C.3: Notation for the PCP64 instruction set.

C.2.1 Load 64-bit Immediate Instruction

ld64i Load 64-bit unsigned data at an immediate address.

63 58 57 56 55 51 50 46 45 41 40 39 32 31 27 23 19 15 11 7 3 0

6 bits 2 bits 5 bits 5 bits 5 bits 1 bit 8 bits 21 bits 11 bits

opcode i u rd unused ui

000100 10 Result: rd ← +[ui] pc← pc + 8

0x12 Usage: ld64i rd, ui

This instruction is used to load a 64-bit data word into a general-purpose register.

The source of the load is immediately addressed by ui within the program address

space; any bits beyond the machine data address width are ignored. The destination

of the load is immediately addressed by rd; any bits beyond the machine register

address width are ignored.
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C.2.2 Jump Instruction

j Jump to an immediate address

63 58 57 56 55 51 50 46 45 41 40 39 32 31 27 23 19 15 11 7 3 0

6 bits 2 bits 5 bits 5 bits 5 bits 1 bit 8 bits 21 bits 11 bits

opcode unused ui

010111 00 Result: pc← ui

0x5c Usage: j ui

This instruction can unconditionally set the program counter to an arbitrary lo-

cation ui within the program address space. Only the lower bits of ui that are within

the machine’s address width are used. There is one branch delay slot following a

jump which is always executed before the first instruction at the destination.
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C.2.3 Branch on Trigger Instruction

btr Branch to an immediate address if triggered

63 58 57 56 55 51 50 46 45 41 40 39 32 31 27 23 19 15 11 7 3 0

6 bits 2 bits 5 bits 5 bits 5 bits 1 bit 8 bits 21 bits 11 bits

opcode unused tr unused ui

010100 00 Result: iftr, pc← ui elsepc← pc + 1

0x50 Usage: btr tr ui

This instruction allows programs to conditionally branch program execution based

on the value of digital feedback inputs in hardware. The operand tr specifies a 9-bit

mask which causes a branch when any of the specified feedback bits are high; thus, it

provides a logical OR operation on all 9 bits. Pulse programs can then conditionally

branched based on one of several different feedback inputs at any point. Table C.4

describes the interpretation of each mask bit.

tr Bit Hexadecimal Interpretation
Representation

0 0x001 Feedback input 0
1 0x002 Feedback input 1
2 0x004 Feedback input 2
3 0x008 Feedback input 3
4 0x010 Feedback input 4
5 0x020 Feedback input 5
6 0x040 Feedback input 6
7 0x080 Feedback input 7
8 0x100 DIP switch position 5
9 n/a PTP start command
n/a 0x000 Null trigger

Table C.4: Interpretation of the tr operand in the btr instruction.
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C.2.4 Halt Instruction

halt Halt program execution

63 58 57 56 55 51 50 46 45 41 40 39 32 31 27 23 19 15 11 7 3 0

6 bits 2 bits 5 bits 5 bits 5 bits 1 bit 8 bits 21 bits 11 bits

opcode unused

011001 00 Result: halt← True pc← pc

0x64 Usage: halt

After this instruction is executed, the processor enters a halted state, the program

counter is no longer incremented, and any pulse outputs in progress remain constant

until the processor is reset.

Like branch control instructions, halt has one branch delay slot. Therefore, the

last instruction ever executed by a program is not the halt itself, but the instruction

immediately after the halt.
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C.2.5 Pulse Immediate Instruction

p Pulse a 32-bit immediate output for up to a 23-bit immediate delay

63 58 57 56 55 51 50 46 45 41 40 39 32 31 27 23 19 15 11 7 3 0

6 bits 2 bits 5 bits 5 bits 5 bits 1 bit 8 bits 21 bits 11 bits

opcode ti sel32 uc

011100 00 Result: rp(sel32)← uc, tp ← ti pc← pc + 1

0x70 Usage: p uc, ti, sel32

This instruction produces a 32-bit wide pulse output for a 23-bit delay constant.

Both the output (uc) and the delay (tc) are immediate constant values encoded di-

rectly in the instruction. Since the timer normally takes 40-bit values, the upper 17

bits of the timer count for this instruction are zeroed.

Because an instruction is 64 bits wide, an immediate pulsing instruction will never

be able to encode all 64-bits; the opcode and timer values occupy some number of

bits as overhead. Therefore, 32 bits was chosen as the largest convenient subset of

64. Therefore, the p instruction takes a third parameter, sel32, which is a single bit

that determines in which half of the output register the pulse is loaded. The value

is interpreted as in Table C.5. This allows the two 32-bit halves of the pulse output

register to be modified independently.

This instruction has an output loading overhead of 2 cycles, meaning its output

value will appear on the pulse output register 2 cycles after it is fetched.

sel32 Interpretation
1 uc is loaded in upper half of rp (bits 63-32).
0 uc is loaded in lower half of rp (bits 31-0).

Table C.5: Interpretation of the sel32 operand in the p instruction.
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C.2.6 Pulse Register Instruction

This instruction loads a 64-bit pulse output and a 40-bit timer value from two reg-

isters, ro and rt, which can be the same. The timer value is taken from the lower 40

bits of a register.

The instruction has an output loading overhead of 3 cycles. This means its output

value will appear in the pulse output register 3 cycles after it is fetched. Consequently,

the minimum pulse duration for the instruction is also 3 cycles. It can maintain state

for all 64 output bits together in the register file, but it cannot maintain independent

state for any of the individual bits.

p Pulse a 64-bit register output constant for up to a 40-bit register delay constant

63 58 57 56 55 51 50 46 45 41 40 39 32 31 27 23 19 15 11 7 3 0

6 bits 2 bits 5 bits 5 bits 5 bits 1 bit 8 bits 21 bits 11 bits

opcode unused rt ro unused

011101 00 Result: rp ← ro, tp ← rt pc← pc + 1

0x74 Usage: pr ro, rt
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Appendix D

Software Design Files

D.1 AVR Maps

The sizes of the .text and .data sections will vary from version to version; the

numbers here correspond to release 0.01. When linking with the host development

tools, a binary has the layout shown in Table D.1 in a unified file. After loading into

separate instruction and data memory on the sequencer, the image has the layout

shown in Table D.2 in data memory; instruction memory remains identical to the

linking map.

Location Description
0x0000 Beginning of program instructions (.text section).

Interrupt vectors.
0x00CE ANSI C runtime initialization (.init section).

Data and BSS copying.
0x0112 Beginning of functions.
0x3E60 Beginning of initialized data (.data section).

Virtual, static web server filesystem.
0x6BDE End of file.

Table D.1: The AVR linking map for the web server binary on the host.
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Location Description
0x0FFF Beginning of stack (grows downward).
0x1000 Beginning of initialized data (.data section).

End of initialized data and beginning of heap.
0x9fff End of heap ( heap end symbol).
0xa000 TCP driver transmit buffer.
0xb000 TCP driver receive buffer.
0xc000 PTP driver transmit buffer.
0xd000 PTP driver receive buffer.

Table D.2: The AVR memory map for the web server binary on the sequencer.
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D.2 CGI Variables

Variable Mode Length Description
Name (bytes)
dev id Sel 2 Hexadecimal number identifying a device to select

for subsequent operations.
submit Ops 5 Determines which form was submitted. One of:

Blink controls debugging LEDs.
Status updates the status of the selected device.
Read reads data from memory.
Write writes data into memory.
Start starts running a pulse program.
Stop stops a pulse program.
I2C performs a slave read and/or write over I2C.

ledx, 0 ≤ x ≤ 7 Ops 0 If this variable is present at all with
submit=Blink, turns the given LED bits on
and turns all other LED bits off.

read addr Ops 6 Six-digit hex address with leading zeros spec-
ifying the starting address for submit=Read,
submit=Write, and submit=Start.

read len Ops 4 Decimal number specifying number of bytes to
read with submit=Read or submit=Start

write file Ops 0-max ASCII-encoded binary string representing data to
write with submit=Write, 2 hexadecimal charac-
ters per byte.

trigger Ops 1-2 Decimal number representing the trigger source
with submit=Start.

i2c addr Ops 2 Hexadecimal number representing a 7-bit I2C
slave address with submit=I2C.

i2c len Ops 4 Decimal number specifying number of bytes to
read with submit=I2C and i2c addr.

i2c data Ops 0-max ASCII-encoded binary string representing data to
write with submit=I2C and i2c addr.

Table D.3: CGI variables and allowed values.
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