
Stochastic Modeling of Biological Sequence

Evolution

by

Keyuan Xu

Submitted to the Department of Electrical Engineering and Computer

Science
in partial fulfillment of the requirements for the degree of

Master’s of Engineering in Electrical Engineering and Computer
Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 2005

c© Massachusetts Institute of Technology 2005. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

May 6, 2005

Certified by. .

George C. Verghese
Professor

Thesis Supervisor

Certified by. .
Peter C. Doerschuk

Professor
Thesis Supervisor

Accepted by .
Arthur C. Smith

Chairman, Department Committee on Graduate Students

2

Stochastic Modeling of Biological Sequence Evolution

by

Keyuan Xu

Submitted to the Department of Electrical Engineering and Computer Science
on May 6, 2005, in partial fulfillment of the

requirements for the degree of
Master’s of Engineering in Electrical Engineering and Computer Science

Abstract

Markov models of sequence evolution are a fundamental building block for making
inferences in biological research. This thesis reviews several major techniques devel-
oped to estimate parameters of Markov models of sequence evolution and presents
a new approach for evaluating and comparing estimation techniques. Current meth-
ods for evaluating estimation techniques require sequence data from populations with
well-known phylogenetic relationships. Such data is not always available since phy-
logenetic relationships can never be known with certainty. We propose generating
sequence data for the purpose of estimation technique evaluation by simulating se-
quence evolution in a controlled setting. Our elementary simulator uses a Markov
model and a binary branching process, which dynamically builds a phylogenetic tree
from an initial seed sequence. The sequences at the leaves of the tree can then be
used as input to estimation techniques. We demonstrate our evaluation approach on
Arvestad and Bruno’s estimation method, and show how our approach can reveal
performance variations empirically. The results of our simulation can be used as a
guide towards improving estimation techniques.

Thesis Supervisor: George C. Verghese
Title: Professor

Thesis Supervisor: Peter C. Doerschuk
Title: Professor

3

4

Acknowledgments

I thank Professor George C. Verghese and Professor Peter C. Doerschuk for their

excellent guidance and constant motivation to excel. Their mastery of mathematics

and insight into engineering helped me develop valuable new perspectives on our

research.

I thank Professor Sanjoy K. Mitter for supporting my research through NSF Grant

CCR-0325774.

I thank my wonderful parents Minzhen Xu and Shouying Wang for their care and

guidance. They have supported me through every challenge I’ve faced. All of my

achievements are also theirs.

5

6

Contents

1 Introduction 13

1.1 Overview . 13

1.2 Markov Model of Evolution . 16

1.3 Applications of the Markov Model . 17

1.3.1 Sequence Alignment . 17

1.3.2 Phylogenetic Tree Construction 19

2 Estimation of Markov Model Parameters 21

2.1 Overview . 21

2.2 Parametric Models . 22

2.2.1 Jukes-Cantor . 22

2.2.2 Kimura . 23

2.2.3 Felsenstein . 23

2.2.4 HKY . 24

2.2.5 General Reversible Model . 24

2.2.6 The Codon-Based Model . 25

2.3 Maximum Parsimony Techniques . 26

2.3.1 PAM . 26

2.3.2 Extensions of PAM . 29

2.3.3 Disadvantages of PAM . 29

2.4 Maximum Likelihood Techniques . 30

2.5 Faster Empirical Techniques . 31

2.5.1 Arvestad and Bruno . 31

7

2.5.2 Resolvent . 34

2.5.3 Devauchelle et al. 37

2.5.4 PMB . 41

2.6 Estimation Techniques Based on Structural Information 45

2.6.1 Contact-Based Model of Protein Evolution 45

2.6.2 Scoring Matrices from Structural Alignments 46

2.6.3 Scoring Matrices from Structural Properties 46

2.7 Extensions of the Elementary Markov Model 47

2.7.1 Insertions and Deletions . 47

2.7.2 Rate Heterogeneity . 47

2.7.3 Site Independence . 48

3 Sequence Evolution Simulator 51

3.1 Overview . 51

3.2 Simulation Algorithm . 52

3.2.1 Simulating Point Mutations 52

3.2.2 Simulating Extinction . 53

3.2.3 Phylogenetic Tree Generation 53

3.2.4 The Evolution Process . 54

3.3 Evaluation of Accuracy . 55

3.4 Order of Growth . 56

4 Evaluation of Arvestad and Bruno’s Technique 61

4.1 Overview . 61

4.2 Accuracy Across Simulation Parameters 62

4.3 Accuracy Benchmarks . 67

4.4 An Alternate Way of Estimating Eigenvalues 68

4.5 Incorporating Population Frequencies 70

5 Conclusion 77

8

List of Figures

1-1 Global pairwise alignment example. 18

1-2 Phylogenetic tree examples. 19

3-1 Phylogenetic tree generation. 54

3-2 Pseudocode for Sequence Evolution Algorithm. 54

3-3 Events of a single simulation step. 59

4-1 Relative errors across sequence length L. 64

4-2 Relative errors across extinction rate x. 64

4-3 Relative errors across total simulation time T 65

4-4 Relative errors across time scale c. 65

4-5 Relative errors of the benchmark experiments. 68

4-6 Relative errors of the alternate version of Arvestad and Bruno technique. 71

4-7 Eigenvalues distributions yielded by the alternate and original tech-

niques at c = 0.01. 72

4-8 Eigenvalues distributions yielded by the alternate and original tech-

niques at c = 0.03. 72

4-9 Eigenvalues distributions yielded by the alternate and original tech-

niques at c = 0.05. 73

4-10 Eigenvalues distributions yielded by the alternate and original tech-

niques at c = 0.3. 73

4-11 Relative errors of the original and branch always simulation algorithms. 76

4-12 Eigenvalue distributions yielded by each simulation algorithm. 76

9

10

List of Tables

4.1 Simulation Parameters. 63

11

12

Chapter 1

Introduction

1.1 Overview

The field of bioinformatics has gained widespread popularity due largely to efforts

such as the genome projects, which have yielded an abundance of biological sequence

data for analysis. This has led to the development and enhancement of many com-

putational techniques for making inferences in biology and medicine. For example,

predictive network models have been built to describe regulatory mechanisms in cel-

lular processes. Advancements have been made in sequence alignment techniques

and three-dimensional protein structure prediction algorithms to allow researchers to

more confidently infer the functionality of newly discovered proteins.

A fundamental building block in the development of many tools and techniques in

bioinformatics is a mathematical model of the evolution of genetic information, and in

particular, a model of DNA and protein sequence evolution. Common uses for models

of sequence evolution include building scoring systems for sequence alignment algo-

rithms and predicting branch lengths for phylogenetic tree reconstruction algorithms.

The most widely accepted model of sequence evolution is the Markov model of residue

substitution [12]. In its simplest form, this model ignores insertions and deletions, and

assumes that substitution at each site of a sequence proceeds independently of other

sites and according to a common continuous-time Markov chain. Thorne [50] and Liò

and Goldman [31] provide reviews of research on models of sequence evolution.

13

Many techniques have been developed to estimate the parameters of a Markov

model of sequence evolution from observations of contemporary sequence data. How-

ever, in order to confidently make inferences from estimated Markov models, it be-

comes necessary to evaluate the accuracy of these estimation techniques. Yang [55]

and Whelan and Goldman [53] used likelihood ratio tests to compare nested paramet-

ric models by fitting them to sequence data sets from populations with well-known

phylogenetic relationships. Müller and Vingron [36] and Müller et al. [35] tested

their estimation techniques by randomly generating alignments at given divergences

using a given Markov model and then attempting to reconstruct the model parame-

ters using the alignments. Devauchelle et al. [9] tested their estimation technique by

simulating realizations of sequences along well-known phylogenetic trees with a given

Markov model and then attempting to reconstruct the model parameters from these

sequences.

All of these evaluation methods require a priori accurate knowledge of sequence

alignments, time divergences, or phylogenetic tree structure. However, historical

evolutionary events are generally not known with certainty, and there is a lack of

data with which estimation techniques can be evaluated. Thus, current evaluation

methods can test only a small sampling of an estimation technique’s performance and

only for species with phylogenetic relationships that are known with high levels of

confidence.

The similar problem of evaluating of phylogenetic tree reconstruction algorithms

when known phylogenies are unavailable was discussed by Hillis et al. [21]. Their so-

lution was to generate phylogenies in the laboratory, which they did for bacteriophage

T7 by elevating their mutation rates through the use of mutagens [20]. Then, they

simulated sequence evolution along their generated phylogenetic trees with a given

model and used the sequences at the leaves to evaluate various phylogenetic tree re-

construction algorithms [21]. However, this evaluation method is limited to organisms

that can be properly cultivated and manipulated in laboratory settings. Kuhner and

Felsenstein [29] similarly evaluated phylogenetic tree reconstruction accuracy. They

randomly generated phylogenetic trees by simulating a branching process. Sequence

14

evolution was then simulated along these phylogenetic trees with a given model. A

drawback of this evaluation method is that the generation of phylogenetic trees and

the simulation of sequence mutation take place as independent processes, whereas

one would expect them to be closely coupled in real life.

We propose using a new simulation technique to generate evolutionary events, in a

controlled setting with specifiable parameters, for the purpose evaluating techniques

that estimate parameters of Markov models of sequence evolution. Our simulation is

different from [21] and [29] in that phylogenies and sequence mutations are generated

as part of a single process. This eliminates the problem of having to determine phy-

logenies in advance. Estimation techniques can be applied to the realized sequences

of the simulation, and the estimated parameters can be compared to the underlying

specified parameters for evaluating accuracy. Using simulations, data sets can be re-

peatedly generated under varying sets of parameters, and estimation accuracy can be

repeatedly observed. This allows users to gain a sense of a technique’s performance

distribution and performance under varying evolutionary conditions. Our method

can also be applied to evaluating the accuracy of phylogenetic tree reconstruction

algorithms, but we focus on Markov model estimation techniques in this thesis.

The layout of this document is as follows. For the remainder of this chapter, we

provide a mathematical characterization of the Markov model of sequence evolution

and provide examples of its application in bioinformatics. Chapter 2 provides a review

of some well-known techniques that have been developed for estimating the parame-

ters of Markov models from observed sequence data. We also discuss generalizations

of the simplifying assumptions made for the elementary Markov model and point

to research that attempt to use structural information to estimate Markov model

parameters. Chapter 3 introduces our evolution simulation algorithm and describes

how it can be used to evaluate estimation techniques. Chapter 4 describes a series

of experiments where we evaluated the accuracy of Arvestad and Bruno’s estimation

technique [4] using our simulation approach. We also considered modifications to

their technique and our simulator and examined their effects on estimation accuracy.

15

1.2 Markov Model of Evolution

The characterization of a Markov model begins with the definition of an alphabet

of residues. In the case of DNA, for example, the alphabet consists of the set S =

{A, C, G, T}. Let X(t) denote a random process that takes values from the set S and

represents the evolution of a particular site in the sequence through time. The model

then consists of a Markov chain whose transition probabilities are assembled in the

matrix P(t) = {pij(t)}, defined for t ≥ 0, where pij(t) = Pr[X(s + t) = j|X(s) = i]

refers to the probability that residue i will be replaced by residue j after a time of

t. Note the assumption that Pr[X(s + t) = j|X(s) = i] is only dependent on the lag

t and not on the absolute time point s. All sites in a sequence evolve independently

according to the same Markov chain.

This definition specifies P(t) as a row-stochastic matrix; hence, the properties

pij(t) ≥ 0 and
∑

j pij(t) = 1 must hold. In addition, P(0) = I must be true, since all

residues must remain unchanged over a time lag of zero units. Furthermore, we have

P(t)P(s) = P(t + s), which is known as the Chapman-Kolmogorov equation.

Markov matrices P(t) can be generated from an instantaneous rate matrix Q =

{qij}. Using the forward Kolmogorov equation d
dt
P(t) = P(t)Q and the initial condi-

tion P(0) = I, we get the relationship

P(t) = exp(tQ) =

∞
∑

n=0

Qntn

n!
. (1.1)

The off-diagonal terms qij for i 6= j are positive and represent the instantaneous

transition rates of the process. The diagonal terms qii are defined such that each row

of Q sums to zero.

The Markov chain is commonly assumed to be equilibrium, with stationary distri-

bution vector π, and to be time-reversible. Time-reversibility implies that a Markov

chain running forward in time is indistinguishable probabilistically from the same

Markov chain running backwards in time. Formally, reversibility holds for a process

in equilibrium when the detailed balance equations πiqij = πjqji hold, or equivalently,

16

πipij(t) = πjpji(t) hold for all t ≥ 0, and all possible i, j.

For simplicity, we will refer to Q as a rate matrix and P(t) as a mutation matrix

for the remainder of this thesis.

1.3 Applications of the Markov Model

Markov models of sequence evolution provide a basis for making phylogenetic infer-

ences, making them useful in several areas of bioinformatics research. Two popular

applications, in which Markov models of sequence evolution are applied, are sequence

alignment and phylogenetic tree reconstruction. There are large volumes of literature

devoted to these two topics. We present a brief overview here and point to chapters

6 and 14 of Ewens and Grant [12] and Durbin et al. [11] for more comprehensive

reviews.

1.3.1 Sequence Alignment

Sequence alignment is site-by-site arrangement of sequences intended to highlight

their evolutionary similarities. In particular, the arrangement is made to maximize

the likelihood that corresponding sites of an alignment evolved from a common an-

cestor, given some model of sequence evolution. Alignments are often used to reveal

information regarding gene functionality and the classification of protein families.

There are several varieties of sequence alignments, including pairwise alignments,

multiple alignments, and database searches for sequence similarity. Pairwise align-

ments further break down into global alignments, local alignments, and fitting one

sequence into another. Figure 1-1 shows an example of a global pairwise alignment

of 2 DNA sequences. The “ ” symbol represents an indel which are positions where

insertions or deletions are hypothesized to have occurred in the evolutionary path

relating the 2 sequences.

Several algorithms have been developed for finding optimal sequence alignments.

The most commonly used pairwise alignment algorithms are the dynamic program-

ming algorithms of Smith and Waterman [45] and Needleman and Wunsch [37]. A

17

commonly used algorithm to construct multiple alignment is CLUSTAL W [49], and

a common algorithm used for database searches for similarity is BLAST [3].

Sequence alignment algorithms typically require a scoring system, which can be

derived from evolutionary relationships. In pairwise sequence alignment, a score is

attributed to the residue pairing at each site of the alignment. Summing the residue

pairing scores over all sites gives the score of an alignment. These pairwise scores can

be conveniently assembled in a matrix. Early scoring matrices for pairwise amino acid

sequence alignment include: the Unitary Protein Matrix (UPM), which simply scored

each residue pairing a 1 if the residues matched and a 0 if the residues mismatched;

the Genetic Code Matrix (GCM), which gave each residue pairing a score between 0

and 3 depending on the number of nucleotides the two amino acids had in common;

and the Structure Genetic Matrix (SGM), developed by Mclachlan [32], which was

constructed using observed amino acid sequences and physio-chemical properties.

The most commonly used scoring matrices today are the log-odds matrices derived

from Markov models of sequence evolution [44]. In deriving log-odds matrices, prior

biological knowledge must first be used to select a time t, which represents the most

likely time divergence between the set of sequences to be compared. A mutation

matrix P(t) can then be used to construct a scoring matrix S = {sij} using the

transformation

sij = C log(
pij(t)

πj
), (1.2)

where C is an arbitrary scaling constant. The score sij is attributed to pairing residue

i with residue j; it gives the ratio of the likelihood that residue i aligned with j as

a result of the model, given by P(t), and the likelihood that the alignment occurred

randomly. Taking the logarithm of this likelihood provides a scoring system that is

G A A T C T
| | |

C AC A A _

Figure 1-1: Global pairwise alignment example.

18

additive. Hence, a high alignment score indicates that the sequences involved are

closely related, given the particular Markov model. Clearly, an accurate model of

sequence evolution is essential for generating confident alignments.

1.3.2 Phylogenetic Tree Construction

Inferring a phylogenetic tree that describes the evolutionary relationships between a

set of sequences has long been a topic of interest in bioinformatics and is also useful

in the prediction of gene functionality. There are two types of phylogenetic trees:

rooted trees, where the root represents the common ancestor of all sequences related

by the tree; and unrooted trees, where the direction of evolutionary time flow is

not specified. Figure 1-2 show examples of rooted and unrooted trees relating the

hypothetical sequences A, B, C, D, and E.

C DA B E

(a) Rooted tree

A

C

D

EB

(b) Unrooted tree

Figure 1-2: Phylogenetic tree examples.

Constructing a phylogenetic tree for a given set of sequences involves first, calculat-

ing the evolutionary distance between every pair of sequences, and then, specifying

the tree topology. Evolutionary distances are normally calculated using maximum

likelihood techniques with models of sequence evolution. Chapter 13 of Ewens and

Grant [12] shows how maximum likelihood measures of distance can be estimated

when simple parametric Markov models of evolution are assumed. More rigorous

techniques used to predict distances from more general Markov models are described

19

by Baake and von Haeseler [5]. Note that since we can only observe contemporary

sequences, there is no way to determine the absolute scale on time. Hence, we can

only estimate relative evolutionary distances.

Pairwise distances are then passed as input to algorithms that determine the

topology of a phylogenetic tree. Well-known algorithms for topology reconstruction

include the neighbor-joining algorithm [43] and the Unweighted Pair Group Method

with Arithmetic Mean (UPGMA) algorithm [46].

A popular tree reconstruction algorithm that does not use a model of sequence

evolution is the method of maximum parsimony. In this algorithm, the optimal

topology of a tree is found by enumerating all possible topologies relating a given

set of sequences and selecting the tree that minimizes some “cost” function. When

constructing a phylogenetic tree for a population of sequences, cost is typically defined

as the total number of observed substitutions across all branches of the tree. While

this method is advantageous in that it does not require any pre-derived knowledge, its

branches do not have a well-defined time structure. This method is further discussed

in chapter 2 in the context of the PAM estimation technique [8].

20

Chapter 2

Estimation of Markov Model

Parameters

2.1 Overview

Several techniques have been developed to empirically estimate Markov models of

sequence evolution through analysis of observed sequences. Markov models have

also been characterized parametrically using knowledge of biochemical properties.

Parametric models are naturally more popular for describing DNA evolution. There

are much fewer nucleotides than amino acids, making it relatively easier to define a

manageable set of parameters to characterize properties in nucleotide substitution.

Models of protein evolution are typically estimated empirically without any prior pa-

rameterizations. Since evolutionary events between neighboring sites in a sequence

are generally not independent as the Markov model assumes, modeling protein evo-

lution is often preferred over modeling DNA evolution, because it can potentially

characterize dependence between adjacent sites at the nucleotide level.

We present, in this chapter, a review of some of the most widely-used empirical es-

timation techniques and parameterizations of Markov models of DNA evolution. We

focus on estimation techniques that use observations of sequence data, and also intro-

duce estimation techniques that use the structural properties of biological sequences.

The estimation techniques are described for sequences with a general alphabet of

21

residues S and presented under a common mathematical framework. We also dis-

cuss some shortcomings of the elementary Markov model of sequence evolution and

present some generalizations that have been proposed.

2.2 Parametric Models

The most general rate matrix Q of a Markov model of sequence evolution has only the

requirement that its off-diagonal terms are positive, and the sum of each of its rows are

zero. Several parametric models have been proposed to simplify the characterization

of the rate matrix for models of DNA evolution. The following sections introduce

some of the most widely-used parameterizations.

2.2.1 Jukes-Cantor

The most simple parametric model of nucleotide substitution was proposed by Jukes

and Cantor [25]. Their model assumed that all nucleotides are equally likely to un-

dergo substitution, and given that a substitution has taken place, any other nucleotide

is equally likely to be the replacing nucleotide. Hence, the rate matrix of this model

can be parameterized as

Q =

















. α α α

α . α α

α α . α

α α α .

















. (2.1)

The diagonal terms are all −3α since the sum of the rows of Q must be zero. It can

be easily verified that the Jukes-Cantor model has a uniform stationary distribution

and is reversible. In practice, this model is generally found to be too simple and

unable to sufficiently model the rates of nucleotide substitution.

Note that we have ordered the indices of this matrix and all subsequent DNA

mutation matrices discussed in section 2.2 such that 1 = A, 2 = G, 3 = C, 4 = T.

22

2.2.2 Kimura

Kimura [27] introduced a slightly more complex model of nucleotide evolution that

allows for differences between transition and transversion rates. A transition is the

substitution of a purine by a purine or the substitution of a pyrimidine by a pyrim-

idine, while a transversion is the substitution of a purine by a pyrimidine or vice

versa. Nucleotides A and G are purines, and nucleotides C and T are pyrimidines.

Transitions and tranversions are expected to differ, because purines and pyrimidines

have different molecular structures. The rate matrix of this model is parameterized

as

Q =

















. α β β

α . β β

β β . α

β β α .

















. (2.2)

The parameter α controls the rate of transitions, while the parameter β controls

the rate of transversions. It can also be easily shown that Kimura’s model has a

uniform stationary distribution and is reversible. The Kimura model generalizes to

the Jukes-Cantor model when α = β.

Kimura’s model is still overly simplistic since it possesses many assumptions of

symmetry and uniformity. Chapter 13 of Ewens and Grant [12] and Liò and Goldman

[31] describe several generalizations of Kimura’s two-parameter model, including the

contributions by Blaisdell, Schadt et al. , Takahata and Kimura, and Gojobori et al.

2.2.3 Felsenstein

Felsenstein [13] introduced an alternate generalization of the Jukes-Cantor model.

Felsenstein’s model specifies that the rates of substitution are proportional to the

stationary distributions of the replacing nucleotides. The rate matrix is parametrized

23

as

Q =

















. απG απC απT

απA . απC απT

απA απG . απT

απA απG απC .

















. (2.3)

The parameters πA, πG, πC , and πT specify the stationary distribution, and α

in this case is a scaling parameter. This model of substitution allows for arbitrary

stationary distribtions but is still restricted to be reversible. Felsenstein’s model

generalizes to Jukes and Cantors model when πA = πG = πC = πT = 0.25.

2.2.4 HKY

Hasegawa et al. [18] introduced a model that combined the features of both the

Kimura and Felsenstein models. This model, called the HKY model, can be described

as the Felsenstein model with an extra parameter to characterize the difference be-

tween transitions and transversions. The rate matrix can be written as

Q =

















. απG βπC βπT

απA . βπC βπT

βπA βπG . απT

βπA βπG απC .

















. (2.4)

The HKY model generalizes to the Kimura model when πA = πG = πC = πT =

0.25 and generalizes to the Felsenstein model when α = β. Like the Felsenstein model,

it allows for arbitrary stationary distributions but is restricted to be reversible.

2.2.5 General Reversible Model

The general reversible (REV) model only parameterizes the assumption that the

process of nucleotide substitution is reversible. This model can be generalized to

each of the previous four models upon proper setting of its free parameters. Its rate

24

matrix takes the form

Q =

















. απG βπC γπT

απA . ζπC ηπT

βπA ζπG . µπT

γπA ηπG µπC .

















. (2.5)

Yang [55] and Yang et al. [57] evaluated these nested parametric models by fit-

ting them to homologous DNA sequences from families with well-known phylogenies.

Maximum likelihood techniques were used to determine how well the various models

explained the observed sequences. In [57], it was found that the HKY model was

superior the Jukes-Cantor, Kimura, and Felsenstein models. In [55], it was found

that the REV model provides a better fit for observed sequence data than the HKY

model when substitution rates were assumed to be homogeneous across all sites in a

sequence. Furthermore, the general unconstrained model was not found to improve

upon the REV model in these experiments. Yang thus recommended the REV model

to be used in phylogenetic analysis [55].

2.2.6 The Codon-Based Model

A parametric Markov model that describes sequence evolution at the codon level

was first introduced by Goldman and Yang [14] and later simplified by Nielsen and

Yang [38]. There are 64 different codons, 3 of which are stop codons and were not

considered. The substitution rates of the remaining 61 codons were assembled in a

61-by-61 continuous-time Markov matrix. The rate matrix took the form Q = {qij}

where

qij =











































0, i and j differ at 2 or 3 positions

µπj , i and j differ by 1 synonymous transversion

µκπj , i and j differ by 1 synonymous transition

µωπj, i and j differ by 1 nonsynonymous transversion

µωκπj, i and j differ by 1 nonsynonymous transition











































(2.6)

25

The parameters πj for j = 1 . . . 61 represents the stationary distributions of the 61

non-stop codons; µ represents a scaling factor; κ represents the transition/transversion

ratio; and ω represents the ratio of synonymous to nonsynonymous substitutions.

Models of amino acid substitution are generally more popular in practice than the

codon-based model.

2.3 Maximum Parsimony Techniques

We begin our exploration of empirical estimation techniques for Markov models of

sequence evolution by discussing the Point Accepted Mutations (PAM) technique [8].

PAM and its variants are often call maximum parsimony techniques, since they use

the method of maximum parsimony to construct phylogenetic trees as part of their

technique.

Dayhoff and coworkers developed PAM to estimate amino acid substitution rates

from observed sequences. Their original technique made no explicit mention of a

Markov model of sequence evolution. In this document, we present their technique

for a general alphabet of residues S and in the framework of a Markov model.

2.3.1 PAM

The aim of the PAM technique is to infer all individual residue substitutions, i.e. point

mutations, from a set of related sequences organized into multiple alignments. The

residue mutations are inferred by constructing phylogenetic trees for each multiple

alignment and observing the residue exchanges across each branch of the inferred trees

from root to leaf. The relative frequencies of these point mutations are then used to

estimate a reversible mutation matrix P(τ), which is used to estimate a reversible

rate matrix Q.

Maximum Parsimonious Phylogenetic Trees

Phylogenetic trees are inferred from each multiple alignment using the method of

maximum parsimony. This method works by enumerating all possible phylogenetic

26

trees for a given multiple alignment, and selecting the tree with the minimum number

of total substitutions across all branches. The observed residue exchanges across all

phylogenetic trees of all multiple alignments are tallied in a count matrix N. A

two-way counting scheme was used in the tallying, whereby if residue i is aligned

with residue j across a tree branch, then Nij and Nji are both incremented by 1. If

i = j, then Nii is incremented by 2. This counting method is equivalent to assuming

reversibility. It assumes that each of the two sequences spanning a branch can be

treated as the ancestor; thus time can flow in either direction. When more than

one most parsimonious tree exists for a multiple alignment, the contribution of that

multiple alignment to the count matrix is averaged over all of its most parsimonious

trees. The rows of the count matrix N are normalized to stochastic vectors to obtain

an estimate P(τ).

Closeness Criterion

The sequences of each multiple alignment must be “sufficiently close” to each other

to reduce the probability of having two or more consecutive substitutions at any site.

Having unobserved mutations puts biases into estimates of the substitution rates.

To satisfy this requirement, Dayhoff et al. used multiple alignments, where each

sequence in the alignment was no more than 15% different from any other sequence

in the alignment. Having “sufficiently close sequences also provides a small divergence

time τ . Hence, the estimated mutation matrix can be related to the mutation rate

matrix by the expression

P(τ) = exp{τQ} ≈ I − τQ. (2.7)

Time Scale

Absolute time scales cannot be estimated because all sequences observed in the esti-

mation are assumed to be from one point in time. Dayhoff also defines a meaningful

relative time scale by letting the distance of 1PAM denote the amount of evolutionary

time necessary for 1% of the residues to mutate. Let ∆t represent the distance of

27

1PAM; P(∆t) represents the 1PAM mutation matrix. Assuming ∆t is also small,

P(∆t) can be estimated from P(τ) as follows:

P(τ) ≈ I− τQ (2.8)

∆tQ ≈
∆t

τ
I −

∆t

τ
P(τ) (2.9)

P(∆t) ≈ I − ∆tQ (2.10)

≈ I −
∆t

τ
I +

∆t

τ
P(τ) (2.11)

≈ (1 − c)I + cP(τ). (2.12)

The constant c = ∆t/T must be selected such that the expected number of substitu-

tions after 1 step of the mutation matrix P(∆t) is 1% of the total number of residues.

Hence,

∑

i

∑

i6=j

πiP(∆t)ij =
∑

i

∑

i6=j

cπiP(τ)ij = 0.01 (2.13)

c =
0.01

∑

i

∑

i6=j πiP(τ)ij
, (2.14)

where πi is the frequency of residue i, which can be estimated from the observed

frequency of residue i sequence data.

2PAM mutation matrices can be extrapolated using

P(2∆t) ≈ P(∆t)P(∆t). (2.15)

Since the 1PAM matrix is itself an estimation, this extrapolation technique losses

accuracy in estimating nPAM matrices for large values of n. Dayhoff uses this method

for extrapolating matrices up to a distance of 250PAM. Note that the nPAM matrix,

for n > 1, is defined as n steps of the 1PAM matrix, and n% of residues do not mutate

with one step of the nPAM matrix.

28

Q 1 can be estimated up to an unknown multiplicative scale factor using τQ ≈

I−P(τ) or τQ = exp{P(τ)}. The unknown scale factor corresponds to the fact that

absolute time scales cannot be estimated.

2.3.2 Extensions of PAM

Since the development of the PAM technique in the 1970s, genome projects have

yielded an abundance of amino acid sequence data. By the early 1990s, some tens of

thousands of protein sequences were available for analysis.

Applying the PAM technique to this data would likely improve estimates of

Markov models of protein evolution. However, the PAM technique in its original

form would require inordinate amount of processing time if applied to protein se-

quence databases of such size. In separate efforts, Jones et al. [24] and Gonnet et

al. [16] developed algorithms that efficiently estimate Markov models of sequence

evolution from large databases of amino acid sequences using the PAM formalism.

The resulting Markov models are expected to perform better in sequence analysis

applications.

2.3.3 Disadvantages of PAM

The PAM technique has two main disadvantages. First, PAM estimates are only

based on sequences that are “sufficiently close” to each other. This criterion leads

to two consequences: 1) an abundance of sequence data is omitted from being used

as estimation data, and 2) the estimated rates of substitution are only accurate at

short evolutionary divergences. Substitution rates at longer evolutionary divergences

are extrapolated by iterated application of the 1PAM matrix and lose accuracy for

increasingly high divergences.

Second, the method of maximum parsimony yields phylogenetic trees with no time

structure; the branches of the resulting tree have no specified lengths. The mutation

matrix P(τ) is estimated by uniformly averaging observed substitutions across each

1The rate matrix Q was not considered in the original work of Dayhoff et al.

29

branch, which implicity assumes that they are all of equal length. Ideally, if the true

phylogenetic tree was known and has branch lengths t1 . . . tn, Q would be estimated

by first estimating the mutation matrices P(t1) . . .P(tn) for each branch, then taking

a weighted average of their logs:

Q =
log{P(t1)}

t1
+ · · · +

log{P(tn)}

tn
. (2.16)

Thus, the PAM technique could yield distorted results by using a phylogenetic tree

with no specified branch lengths. The following estimation techniques address these

issues.

2.4 Maximum Likelihood Techniques

Maximum likelihood estimation techniques improve upon the shortcomings of the

PAM technique. These techniques generally aim to simultaneously find the phyloge-

netic tree (complete with branch lengths) and the Markov model of evolution that

maximizes the likelihood of a given set of observed sequence alignments. Mathe-

matically, the goal is to maximize the likelihood L(Q,T|A), subject to varying the

parameters Q and T, where T represents the tree topology and branch lengths and

A represents the observed alignments. A parameter space consisting of phylogenetic

tree topology, branch lengths, and a rate matrix Q is searched to find the optimal

setting. Typically, iterated techniques characteristic of the expectation maximization

algorithm are used for optimization over several parameters.

Maximum likelihood techniques have been used to estimate Markov models for

different families of amino acid sequences by Adachi and Hasegawa [1], Yang et at.

[58], Adachi et al. [2], Whelan and Goldman [54], and Müller et al. [35]. Variations

of the basic methodology have been explored by these authors in attempt to improve

computational efficiency.

These techniques improve upon the PAM estimation technique, since they present

a model that allows multiple substitutions to occur across any site in an alignment.

30

However, maximum likelihood techniques are also very computationally expensive.

Usually, they are only applied to small data sets.

2.5 Faster Empirical Techniques

Several empirical techniques have been published in recent years, which address the

shortcomings of both the PAM and the maximum likelihood techniques. These meth-

ods typically take as input a set of pairwise aligned sequences and aim to estimate

the mutation matrix P(tk) and the time divergence tk implied by each alignment k.

The estimates of P(tk) and tk are manipulated in various ways to obtain estimates of

the rate matrix Q.

These methods are expected to be more accurate than the methods of maximum

parsimony because they can incorporate information from alignments with all degrees

of evolutionary divergences. The divergence times tk allow the estimates P(tk) to be

weighted in various ways to account for different substitution rates at different diver-

gence times. These methods are also typically faster than the maximum likelihood

techniques, since they do not directly infer phylogenetic tree topologies.

We introduce four of these techniques, namely the Arvestad and Bruno [4], Re-

solvent [36], Devauchelle et al. [9], and PMB [52] techniques.

2.5.1 Arvestad and Bruno

Arvestad and Bruno [4] developed a technique for estimating a reversible rate matrix

Q 2 from a given collection of pairwise aligned sequences. Their technique aims

to reconstruct Q by estimating its eigenvectors and eigenvalues from the observed

alignments. We write the eigen-decomposition of Q as Q = VΛV−1, where the

columns of V are the eigenvectors, and the (diagonal) entries of the diagonal matrix

Λ are the eigenvalues.

2Q was unnecessarily assumed to be normal in [4]. We remove this assumption.

31

Estimating P(tk)

Observed residue exchanges in the aligned sequences are used to obtain estimates

P(tk) with some unknown tk for each alignment k. Before we describe the estimation

procedure, notice that the reversibility assumption is necessary for the estimate P(tk)

to be valid. The sequences of each alignment k are the leaves of a phylogenetic tree,

and the matrix P(tk) estimates the process that travels from one sequence, backwards

in time to the common ancestor, and forward in time to the other sequence, with a

total time separation of tk.

One way to ensure reversibility is to employ the two-way counting scheme in

estimating P(tk). This scheme was described in the PAM section for counting residue

exchanges across all branches of a phylogenetic tree.

Another way to ensure reversibility is to use a one-way counting scheme to estimate

P(tk), and then symmetrize the matrix quantity

Π1/2
∑

k

P(tk)Π
−1/2 (2.17)

by replacing it with

Π1/2
∑

k P(tk)Π
−1/2 + (Π1/2

∑

k P(tk)Π
−1/2)T

2
, (2.18)

to make the detailed balance equations hold for all P(tk). Here, Π denotes a diagonal

matrix of the steady-state residue frequencies. In the one-way counting scheme, one

sequence in each pairwise alignment is arbitrarily chosen as the ancestor, and the

other is the descendant. Since reversibility is assumed, the choice of ancestor can

be arbitrarily made. The i, j-th element of a count matrix N(k) is estimated as the

number of times residue i in the ancestor aligns with residue j in the descendant.

The rows of N(k) are normalized to stochastic vectors to obtain an estimate P(tk).

32

Estimating the Eigenvectors of Q

The matrix P(tk) can be factored as follows:

P(t) = exp(Qt) (2.19)

= I + Qt +
1

2!
Q2t2 + · · · (2.20)

= I + VΛV−1t +
1

2!
(VΛV−1)2t2 + · · · (2.21)

= V(I + Λt +
1

2!
Λ2t2 + · · ·)V−1 (2.22)

= V exp(Λt)V−1 (2.23)

Notice from the decomposition that Q and P(tk) have the same eigenvectors.

Furthermore, any linear combination of the matrices P(tk) have the same eigenvectors

as Q. Hence, we get the eigenvectors of Q by calculating the eigenvectors of
∑

k P(tk).

A weighted linear combination of the P(tk)’s can also be used to maximize the effect

of the least noisy estimates.

Estimating the Eigenvalues of Q

The eigenvalues of Q can be estimated up to an unknown scale factor using the fact

that

P(tk) = V exp(Λtk)V
−1 (2.24)

V−1P(tk)V = exp(Λtk) (2.25)

log(V−1P(tk)V) = Λtk. (2.26)

Each alignment k yields four observations of five unknown variables, namely the four

eigenvalues and the time divergence tk. This corresponds to the fact that absolute

time scales cannot be estimated. Thus it is impossible to determine the eigenvalues

with certainty. Rather, the eigenvalues can be determined up to an unknown time

scale by estimating their ratios λr/λs. This can be done using a linear regression

33

through the origin:

λr/λs =

∑

all alignments k(λrtk)(λstk)
∑

all alignments k(λstk)2
. (2.27)

A weighted linear regression can be also used to minimize noise. One of the eigenvalues

of a rate matrix must be 0. For the remaining eigenvalues, one is arbitrarily set to

−1, and the others are estimated according to the ratios λr/λs.

The eigenvalues are guaranteed to be real because the rate matrix Q is reversible.

Reversibility implies that the detailed balance equations πQ = QTπ, written here in

matrix form, must hold. Hence, the quantity

M = π1/2Qπ−1/2 (2.28)

must be symmetric. This guarantees the matrix M to have real eigenvalues. To show

that Q and M have the same eigenvalues, we factor

M = π1/2Qπ−1/2 = VΛVT, (2.29)

where Λ is a diagonal matrix of real eigenvalues and V is an orthogonal matrix of

eigenvectors. Isolating Q, we get

Q = π−1/2VΛVTπ1/2, (2.30)

Hence, the eigenvalues of Q are Λ

Once the eigenvalues and eigenvectors are known, Q can be constructed using the

eigen-decomposition expression, up to an unknown multiplicative factor, correspond-

ing to the arbitrary value of −1 used for one of the eigenvalues.

2.5.2 Resolvent

Müller and Vingron developed the Resolvent technique [36], which takes as input a

collection of pairwise alignments and aims to estimate a reversible rate matrix Q by

34

first, estimating its resolvent and then, expressing Q in terms of the resolvent. The

resolvent is a matrix quantity equivalent to the component-wise Laplace transform of

P(t) and is written as R(s) = {rij(s)}, where

rij(s) =

∫ ∞

0

e−stpij(t)dt. (2.31)

To express Q in terms of its resolvent, we take Laplace transforms on both sides of

the Chapman-Kolmogorov equation

d

dt
P(t) = P(t)Q, (2.32)

and algebraically manipulate the result. The rate matrix Q can be written as

Q = sI− R(s)−1. (2.33)

The resolvent technique uses an iterative estimation approach. Mutation matrices

P(tk) are first estimated for each alignment k. Using these estimates and an initial

rate matrix Q0, time divergences tk are estimated for each alignment k using the

maximum likelihood technique. These time divergences are then used, along with

the mutation matrices, to estimate the resolvent by approximating the right side of

equation 2.31. Equation 2.33 is then used to calculate a rate matrix Q1. The entire

procedure then repeats until convergence and yields an estimate of the rate matrix.

Estimating P(tk) and tk

Estimates of the mutation matrix P(tk) and its corresponding time divergence tk

are obtained from each pairwise alignment k. Müller and Vingron used the two-way

counting scheme, which was used in the PAM technique, to get reversible estimates

of P(tk).

Consider the m-th iteration of estimating tk. Let N(k) = {n
(k)
ij } represent the

matrix of two-way counts obtained from estimating P(tk). Let π represent a vector

of steady-state residue frequencies, which is estimated from the observed residue

35

frequencies in all alignments. Given an the Markov model estimated from the previous

step, Pm−1(t) = exp{tQm−1}, the likelihood of alignment k to have an evolutionary

time divergence of tk is

L(tk|Alignment k) =
∏

i

∏

j

(πipm−1,ij(tk))
n

(k)
ij . (2.34)

Taking logs on both sides yields

logL(tk|Alignment k) =
∑

i

∑

j

n
(k)
ij log(πipm−1,ij(tk)). (2.35)

The value of tk that maximizes this likelihood is the solution to the expression

0 =
d

dt
log L(tk|Alignment k) =

∑

i

∑

j

n
(k)
ij

d

dt
log(πipm−1,ij(tk)) (2.36)

=
∑

i

∑

j

n
(k)
ij

d

dt
log(πPm−1(tk))ij (2.37)

=
∑

i

∑

j

n
(k)
ij

d
dt

(πPm−1(tk))ij

(πPm−1(tk))ij
(2.38)

=
∑

i

∑

j

n
(k)
ij

(πP(tk)Qm−1)ij

(πPm−1(tk))ij
(2.39)

=
∑

i

∑

j

n
(k)
ij

(Pm−1(tk)Qm−1)ij

pm−1,ij(t)
. (2.40)

The solution can be found by applying Newton’s method for example.

Estimating the Resolvent

Consider the m-th iteration of estimating the rate matrix. The resolvent is first

calculated by approximating equation 2.31, and equation 2.33 is used to calculate

Qm.

Assuming there n pairwise alignments, each element of the resolvent can be esti-

36

mated using the piece-wise linear integration

rij(s) =

∫ ∞

0

e−stpij(t)dt (2.41)

≈

∫ t1

0

e−stpij(t)dt + · · ·+

∫ ∞

tn

e−stpij(t)dt, (2.42)

where

∫ tk+1

tk

e−stpij(t)dt ≈

∫ tk+1

tk

e−st(pij(tk) +
pij(tk+1) − pij(tk)

tk+1 − tk
(t − tk))dt. (2.43)

The choice of s is independent of Q. However, to minimize the effect of approximation

errors, s is chosen to maximize the likelihood of the alignments

log L(s|n Alignments) =
∑

k

∑

i

∑

j

n
(k)
ij log(πi(e

tk(sI−R(s)−1))ij). (2.44)

2.5.3 Devauchelle et al.

Devauchelle et al. [9] developed a novel method for analyzing how well a single

reversible rate matrix Q describes a set of pairwise aligned sequences, i.e., given a

set of pairwise alignments whose sequences are related by some phylogenetic tree,

they analyzed how well evolution along every branch of that tree can be modeled

by a single reversible Q. Their analysis also yielded an approach for estimating a

reversible Q from a given set of pairwise alignments, which we present here.

Estimating Matrix Logarithms

Given a set of alignments, a mutation matrix P(tk) was estimated from the observed

substitution frequencies of each alignment k. The estimation procedure can be carried

out using a two-way counting scheme or a one-way counting scheme with subsequent

symmetrization, as described in the Arvestad and Bruno section. The matrix loga-

rithms of these mutation matrices are then calculated:

L(tk) = log(P(tk)) (2.45)

37

Note that numerical methods for calculating matrix logarithms may not work under

certain circumstances for reasons discussed in [9] and [52]. For this reason, De-

vauchelle et al. considers only pairwise alignments in which the two sequences are

“sufficiently related,” defined to mean that their corresponding mutation matrix esti-

mate P(tk) admits a logarithm. A sufficient condition for the sequences of alignment

k to be sufficiently related is if there exists some positive integer n such that

||(P(tk) − I)n||F < 1, (2.46)

where the Frobenius norm ||A||F of a matrix A = {aij} is defined as

||A||F =

√

∑

i

∑

j

a2
ij =

√

tr(AAT). (2.47)

Principal Components Analysis

Given that all alignments k are related by a single reversible rate matrix Q. We can

write

L(tk) = tkQ (2.48)

for all k. Before continuing, we introduce a change in our notations to make the

following mathematical derivations more intuitive. Instead of representing quantities

of the Markov model as |S|-by-|S| matrices, where S is the alphabet of residues, and

|S| is its corresponding size, we represent the quantities as |S|2-by-1 vectors. We let

the log vector L̃(tk) and the rate vector Q̃ represent the vectorized versions of L(tk)

and Q respectively.

The rate vector Q̃ and the divergence times tk can be estimated simultaneously

by choosing them to maximize the quantity

∑

k

||L̃(tk) − tkQ̃||2, (2.49)

38

where the norm || · || of a vector is the square root of the sum of the squares of its

entries. It is easy to see that equation 2.49 is maximized when L̃(tk) = tkQ̃ for all

alignments k. Manipulating these equations, we get

L̃(tk)
T = tkQ̃

T (2.50)

L̃(tk)
T Q̃ = tk||Q̃||2 (2.51)

(L̃(tk)
T Q̃)L̃(tk) = t2k||Q̃||2Q̃. (2.52)

Summing these equations yields

∑

k

(L̃(tk)
T Q̃)L̃(tk) =

∑

k

t2k||Q̃||2Q̃ (2.53)

Equation 2.53 shows that Q̃ is an eigenvector of the linear mapping

A →
∑

k

(A(tk)
T Q̃)L̃(tk), (2.54)

with eigenvalue
∑

k t2k||Q̃||2. Note that A represents a |S|2-by-1 vector. It was found

in [9] that Q̃ is the eigenvector corresponding to the top eigenvalue of the linear

mapping.

The rate matrix is found through a principal component analysis of the given

pairwise aligned sequences. Devauchelle et al. constructed a matrix K which rows

are made up of the vectors L̃(tk)
T . Thus, K has dimensions n-by-|S|2, where n is the

number of “sufficiently related” alignments used in the estimation. In computing the

singular value decomposition of K, we compute the matrix C = KTK,

KTK =
∑

k

L̃(tk)L̃(tk)
T (2.55)

=
∑

k

t2kQ̃Q̃T (2.56)

KTKQ̃ =
∑

k

t2k||Q̃||2Q̃. (2.57)

39

This shows that the matrix C represents the linear mapping of equation 2.54. Thus,

Q̃ can be estimated by calculating the eigenvector corresponding to the largest eigen-

value of C. Q̃ can then be rearranged into matrix form to get the matrix Q.

Notice that Q is only estimated up to a multiplicative scale factor, since eigenvec-

tors are only defined up to a multiplicative scale factor. This corresponds once again

to the fact that an absolute time scale cannot be estimated.

Alternate Algorithm

We present an alternate method for deriving an estimate Q̃ given the estimates L̃(tk).

Consider first a matrix A with eigenvalues λ1, . . . , λn, arranged in decreasing order by

magnitude, |λ1| > · · · > |λn|, and corresponding eigenvectors v1, . . . ,vn. Assuming

that a unique largest eigenvalue (by magnitude) exists, then we have

Arv1 ≈ λr
1v1 (2.58)

when r is large. Hence, we can estimate the largest eigenvector v1 up to an unknown

multiplicative scale factor by first guessing some initial vector and then repeatedly

multiply it by the matrix A.

We use the same approach to estimate Q̃. We first make an initial guess Q̃0; then,

we iteratively apply the mapping of equation 2.54 to our guess. After each iteration

m, we normalize our estimate to unit Frobenius norm to prevent the estimate from

blowing up or decaying to zero, since it is being scaled by the largest eigenvalue at

each step. Hence, the m-th iteration of the algorithm becomes

Q̃m =
∑

k

(L̃(tk)
T Q̃m−1)L̃(tk) (2.59)

Q̃m = Q̃′
m

/||Q̃′
m
||F (2.60)

This iteration converges assuming there is a unique largest eigenvalue by magni-

tude.

40

2.5.4 PMB

Veerasamy et al. [52] developed the Probability Matrix from Blocks (PMB) technique,

which estimates a reversible rate matrix Q from the BLOSUM series of scoring ma-

trices [19]. The BLOSUM technique, which was developed by Henikoff and Henikoff,

estimates a series of scoring matrices for amino acid alignment. Veerasamy et al. used

data from these scoring matrices to derive the corresponding Markov model of amino

acid substitution.

BLOSUM Clustering Percentages

The BLOSUM technique derives scoring matrices from residue exchange counts ob-

served in multiple alignments of sequences. The technique involves a clustering scheme

to reduce biases from over-represented protein families. At the c% clustering level,

each multiple alignment is partitioned into clusters such that each sequence in a clus-

ter has c% or higher sequence identity to at least one other sequence in that cluster.

Residue exchange counts are then taken from each cluster of sequences; a two-way

counting scheme is used and the observed exchanges in each pairwise alignment of

every cluster are tallied in the count matrix N(c). The residue exchange counts are

weighted such that each cluster contributes uniformly toward the substitution rate

estimates regardless of the number of sequences it contains.

This clustering scheme results in scoring matrices sensitive at different evolution-

ary divergence times. When c is low, the sequences of each cluster are guaranteed

to have very little identity to sequences in all other clusters of the same multiple

alignment. The resulting residue exchange counts are then representative of a large

divergence time. The opposite is true when c is high. The PMB technique takes

advantage of this clustering scheme to obtain mutation matrix estimates P(t) for a

wide range of divergence times t.

41

Estimating P(tc)

A mutation matrix P(tc) = {pij(tc)} is estimated for each BLOSUM clustering level c

using the observed residue exchange count matrix N(c) = {n
(c)
ij }, where tc represents

the unknown time divergence implied at the c% clustering level,

pij(tc) =
n

(c)
ij

∑

j n
(c)
ij

. (2.61)

Since the matrices N(c) are constructed using a two-way counting scheme, the result-

ing mutation matrix estimates are reversible.

A vector of steady-state residue frequencies π(c) = {π
(c)
i } is also estimated for each

clustering percentage from the observed residue frequencies,

π
(c)
i =

∑

j n
(c)
ij

∑

i′

∑

j n
(c)
i′j

. (2.62)

Estimating tc

To estimate the divergence time t, the PMB technique defines a quantity D(t), defined

to be the average probability of substitution implied by one step of the matrix P(t)

and written as

D(t) = 1 −
∑

i

πipii(t). (2.63)

The quantity D(t) can be directly calculated from observed sequence data, and

its behavior with respect to t is fairly predictable. For small values of t, we expect

D(t) to increase linearly with t. For increasingly larger values of t, we expect D(t) to

level out to a constant. The PMB technique estimates an explicit equation relating

D(t) and t. The divergence times tc are then estimated by calculating the quantities

D(tc) and applying the estimated equation.

The relationship between D(t) and t is estimated as follows. An expression for

42

dD(t)
dt

is first estimated using the five-point formula for numerical differentiation,

dD(t)

t
=

D(t − 2h) − 8D(t − h) + 8D(t + h) − 12D(t + 2h)

12h
. (2.64)

With h chosen to be 0.01t, the expression simplifies to

t
dD(t)

t
=

D(0.98t) − 8D(0.99t) + 8D(1.01t) − 12D(1.02t)

0.12
. (2.65)

The quantities D(nt) can be calculated by applying the Chapman-Kolmogorov equa-

tion,

D(nt) = 1 −
∑

i

πipii(nt) (2.66)

= 1 −
∑

i

πipii(t)
n. (2.67)

Using equations 2.65 and 2.67, the coordinate pair (D(tc), tc
dD(t)

dt
|t=tc) can be calcu-

lated for each clustering percentage c. The resulting coordinate points can be plotted

on a coordinate plane of D(t) versus tdD(t)
t

and fitted to a curve. Veerasamy et al.

found that a cubic polynomial was a sufficient fit for the data from the BLOSUM

count matrices, giving the resulting curve the expression

t
dD(t)

dt
= a3D(t)3 + a2D(t)2 + a1D(t) + a0. (2.68)

We can infer the boundary conditions

lim
t→0

D(t) = 0 (2.69)

and

lim
t→0

dD(t)

dt
= 1, (2.70)

From these boundary conditions, it can be concluded that a0 = 0 and a1 = 1. This

43

simplifies the resulting curve to have the expression

dt

t
=

dD(t)

a3D(t)3 + a2D(t)2 + D(t)
, (2.71)

which can be easily solved since it is separable. This solution provides the relationship

between D(t) and t that was sought. The time divergences tc are estimated by

calculating D(tc) and applying the relationship given by the solution to equation 2.71.

Estimating Q

A rate matrix is estimated at each clustering level using the fact that

Q(c) =
log P(tc)

tc
. (2.72)

Note again that logarithm of a matrix may not exist under certain circumstances.

From this collection of rate matrix estimates, the matrix that minimizes the ex-

pression

∑

c

|| exp(tcQ
(c)) − Pc(t)||

||Pc(t)||
(2.73)

is selected to be the universal rate matrix Q. Veerasamy et al. defined matrix norm

||A|| to be the largest eigenvalue of A.

Adaptation to Pairwise Alignment Data

The PMB method could also have been applied to a collection of pairwise aligned

sequences. The estimates P(tc), originally obtained from the observed residue ex-

changes at each clustering percentage c, can be replaced by P(tk) obtained from

observed frequency exchanges in each alignment k. The remainder of the technique

can proceed exactly as described above. However, the differential equations yielded

from different sets of observed alignments may be difficult to solve.

44

2.6 Estimation Techniques Based on Structural In-

formation

All of the estimation techniques presented thus far use observed sequence data for

calculating rate matrix estimates. For amino acid sequences, several estimation tech-

niques that use protein structural information to derive models of sequence evolution

and the related sequence alignment scoring matrices have also been developed. Some

researchers have recommended the use of structural information to judge evolutionary

relationships for protein sequences, because protein structures are better conserved

than their corresponding sequences [7]. These estimation techniques are based more

on analysis of biochemical properties of amino acids, in contrast to estimation tech-

niques using only sequence data, which are based almost entirely on quantitative

techniques. This thesis focuses on techniques using sequence data, but presents a

brief introduction of techniques using structural data in this section.

2.6.1 Contact-Based Model of Protein Evolution

Lin et al. [30] developed the Contact Accepted mutatiOn (CAO) model, which de-

scribes a Markov model of amino acid side-chain contact mutation. This model

considers not the substitution of individual amino acids, but rather, the interchang-

ing of amino acids side-chain contacts within a protein. The CAO model consists

of a 400 by 400 rate matrix corresponding to the 20 by 20 possible combinations of

amino acids that make up the 400 possible contact combinations. This description

of side-chain contact evolution is advantageous because it incorporates sequence and

structural information into a single model.

A rate matrix for the CAO model has been estimated in [30] using Müller and

Vingron’s resolvent technique [36] and protein data from public databases. To further

elaborate upon the idea of characterizing proteins by their side-chain contacts, Klein-

jung et al. [28] have developed algorithms to perform pairwise sequence alignments

based on contact information.

45

2.6.2 Scoring Matrices from Structural Alignments

We have shown that substitution scoring matrices can be calculated from observed

residue exchanges in sequence alignments either directly, through the BLOSUM tech-

nique [19], or indirectly, through log odds-matrices [44]. Substitution scoring matrices

have also been calculated through observed amino acid substitutions in the structural

superposition of pairs of similar proteins by Risler et al. [42], Johnson and Overing-

ton [23], and Prlic et al. [39]. Amino acids on separate proteins that have been

structurally superimposed are usually considered to be aligned if their Cα and/or

Cβ molecules are closer than some specified threshold. Each alignment serves as an

observed amino acid substitution.

2.6.3 Scoring Matrices from Structural Properties

Various techniques have also been developed to use structural properties of amino

acids derive substitution scoring matrices or enrich scoring matrices derived from

observed sequence data.

Rao [41] developed a scoring matrix, called the Exchange Matrix derived from

PARameters (EMPAR), based on physical characteristics of amino acid residues.

The physical parameters used include the alpha helical, beta strand, and reverse turn

propensity parameters, the residue polarity, and the consensus hydrophobicity.

Miyazawa and Jernigan [34] derived a scoring matrix by measuring the average

stability of a protein’s structure caused by an amino acid exchange. The degree

of stability of a protein’s structure was estimated by examining a protein’s residue-

residue contacts.

Dosztányi and Torda [10] estimated substitution scoring matrices based on force

fields. Their technique involved associating an energy score to each residue within the

context of some protein for an entire database of proteins. All sites with residue i in

the database were then computationally mutated to residue j, and the average result-

ing energies at those sites were used to calculate a similarity score between residues

i and j. Note that this estimation technique requires no evolutionary arguments.

46

Teodorescu et al. [48] derived a mixed scoring matrix through a linear combination

of a BLOSUM matrix and threading energy information. Threading is the alignment

of a protein sequence with a three-dimensional protein structure and is associated

with an energy function that measures the quality of fit [33].

2.7 Extensions of the Elementary Markov Model

The elementary Markov model makes many simplifying assumptions on the process

of sequence evolution. The realism of some of these assumptions has been studied

and generalizations of the elementary model have been proposed and analyzed.

2.7.1 Insertions and Deletions

The Markov model of sequence evolution only considers the process of substitution

and ignores insertions and deletions (collectively referred to as indels); indels have

proven to be difficult to model [50]. However, models for insertions and deletions are

important since they can provide a basis for scoring gap penalties in dynamic pro-

gramming algorithms that infer optimal gapped alignments between a set of sequences

[37], [45].

An analysis of indels was introduced in Gonnet et al. [16] and further elaborated

on, by the same group, in Benner et al. [6]. They used results from an exhaustive

matching of the entire sequence database to empirically describe indel probabilities

in the context of pairwise alignments of homologous sequences. In particular, they

characterized gap length distribution and the probability of having a gap as a function

of evolutionary distance. These results were used to refine the scoring of gap penalties.

2.7.2 Rate Heterogeneity

The Markov model assumes that all sites in a sequence evolve according to the same

Markov chain. This property has been studied in detail, and it has been widely

recognized that such an assumption is unrealistic. Several studies have proposed

47

generalizations of the elementary Markov model where this assumption has relaxed

to allow all sites to evolve according to the same Markov chain, but scaled to run at

different rates. This property is commonly called rate heterogeneity.

Kelly and Rice [26] developed a model of sequence evolution that allows hetero-

geneous rates of substitution by defining a continuous nonnegative random variable

to represent substitution rate. The relative rate of substitution at each site is a re-

alization of this random variable. In their analysis, Kelly and Rice assumed gamma

and log-normal distributions for this random variable and estimated the distribution

parameters from observations of sequence data and phylogenetic trees using the max-

imum likelihood technique. They also considered the case where no distribution was

assumed and calculated bounds on the mean and variance of the substitution rate.

Holmes and Rubin [22] modeled residue substitution in a sequence using a hidden

Markov model. Hidden states were used to model a site’s biophysical context to

account for different selective pressures and allow for substitution rate heterogeneity.

They also derived an expectation maximization algorithm for the maximum likelihood

training of their model from observed sequence alignments.

2.7.3 Site Independence

The Markov model assumes that all sites in a sequence evolve independently of all

other sites. This property has also been found to be unrealistic and has been partially

overcome by modeling molecular evolution at the protein or codon level to account

for site dependence at the DNA level. Several further generalizations have also been

considered.

Gonnet et al. [15] tested this independence assumption by developing a Markov

model of sequence evolution for dipeptides. Their model consists of 400-by-400 substi-

tution matrices that report the transition probabilities between all pairs of dipeptides.

Empirical results in their study revealed that amino acid substitution rates are cor-

related to the substitution rates of neighboring amino acids; the degree of correlation

depends on the amino acid type.

Yang [56] developed a space-time model for DNA substitution that allows for

48

heterogeneity and correlated rates of substitution over sites. The time process con-

sists of the elementary Markov model for describing nucleotide substitution, and the

space process consists of a serially correlated gamma function that characterizes the

variation and correlation of substitution rates over sites.

49

50

Chapter 3

Sequence Evolution Simulator

3.1 Overview

We developed an elementary model that simulates sequence evolution according to

the preceding Markov model in a controlled setting. The simulation uses a Markov

rate matrix Q∗ = {q∗ij}
1 and proceeds for time T , beginning from a given seed

sequence. Substitutions and a binary branching process are simulated to construct a

phylogenetic tree with the realized sequences at the leaves. The realized sequences

can then be passed as input to techniques that estimate Markov model parameters to

evaluate their accuracy in reconstructing Q∗. Users can adjust the sequence length

L, simulation time T , extinction rate x, and rate matrix Q∗ to allow the simulation

to represent different evolutionary conditions.

Classical methods of simulating sequence evolution (used in [9], [21], [29], and

[40]) require as input a phylogenetic tree with specified branch lengths. Typically, the

branch lengths are modified to denote the mean number of substitutions per site that

will be realized along that branch. A root sequence and a Markov model of sequence

evolution are also given. Evolution is simulated down each branch, beginning with

the root and ending at the tips of the leaves. For each branch, a mutation matrix P(t)

is constructed from the given Markov model and scaled such that the mean number

1We take Q∗ to denote the underlying specified model and later use Q to denote the estimated
model.

51

of substitutions per single application of the matrix matches the branch length. P(t)

is then applied to the sequence at the top of the branch to create a sequence for the

bottom of the branch.

Rambaut and Grassly introduced Seq-Gen in [40], and Grassly et al. introduced

PSeq-Gen in [17], which are two software packages that implement DNA and protein

sequence evolution respectively in this fashion. These software packages can both be

downloaded at

http://evolve.zoo.ox.ac.uk/software.html.

The advantage of our simulator is that it does not require as input a phylogenetic

tree. Instead, it generates a phylogenetic tree as part of the simulation according

to a process that is coupled with the process of sequence mutation simulation, thus

reflecting their expected dependencies in real life. Users of our simulator do not need

to discover phylogenies in advance. In addition, with classical simulators, a simulation

run always uses the same phylogenetic tree unless the user manually inputs a new

one. With our simulator, the phylogenetic tree varies for each simulation run, since

it is generated by a random process.

3.2 Simulation Algorithm

3.2.1 Simulating Point Mutations

Sequence mutations are simulated assuming an elementary Markov model of sequence

evolution. All sites evolve independently, but governed by the same rate matrix Q∗.

Suppose a given site is currently in state i, i.e., residue i is currently in that position.

A continuous-time Markov process states that the site will remain in state i for a

time period that is exponentially distributed with parameter |q∗ii|. Our simulator

mimics this action. Since software simulations take place in discrete-time, we use

Bernoulli trials to approximate the Poisson arrivals that define the exponentially

distributed holding times at each site. Suppose ∆t represents the time elapsed during

each discrete simulation step. The Poisson process can then be approximated by a

52

Bernoulli process with parameter |q∗ii|∆t. Thus, at each simulation step for each site

in a sequence, a random number is uniformly generated between 0 and 1. If this

random number is less than |q∗ii|∆t, then a substitution occurs at that site.

Given that a substitution has occurred, the replacing residue is selected according

to the embedded discrete-time Markov chain D∗ = {d∗
ij} defined by

d∗
ij =







0, i = j

q∗ij/|q
∗
ii|, i 6= j







. (3.1)

Residue replacement is simulated by generating a random number that is uniformly

distributed between 0 and 1. If the random number is less than d∗
i1, residue 1 replaces

residue i. Otherwise, if the random number is less that d∗
i1 + d∗

i2, residue 2 replaces

residue i. This process repeates until a replacing residue is found. Note that since
∑

j d∗
ij = 1, a replacing residue must be found, and since d∗

ii = 0, the replacing residue

cannot be the same residue.

3.2.2 Simulating Extinction

At each simulation step, for an entire sequence, a Bernoulli trial with parameter x is

simulated to determine whether or not that sequence becomes extinct. If a sequence

becomes extinct, it is removed from the simulation. If the sequence survives, it ia

then considered site-by-site for point mutations. We assume that extinction occurs at

a uniform rate x for all time and over all sequences, for simplicity. Extinction can be

similarly simulated by generating a random number uniformly distributed between 0

and 1. If this random number is less than x, extinction occurs.

3.2.3 Phylogenetic Tree Generation

A phylogenetic tree is constructed during the simulation through a binary branching

process. Each sequence is represented by a branch extending from a node. The

starting seed sequence is represented by a branch extending from the root. During

each simulation step, all branches are extended by length ∆t. If a sequence undergoes

53

mutation at any of its sites during a step, a split is generated in the corresponding

branch; the original parent sequence occupies one branch and the mutated sequence

occupies the other. Both the original and mutated sequences continue involving

independently along their respective branches. If a sequence becomes extinct during

a step, the corresponding branch ceases to grow. The leaves of the phylogenetic tree

at the bottom-most layer will thus represent the surviving sequences. Figure 3-1

illustrates this branching process.

Original Sequence Daughter Sequence

Simulation Step 2: Mutation

Simulation Step 1: No Mutation

Root

Figure 3-1: Phylogenetic tree generation.

3.2.4 The Evolution Process

Figure 3-2 shows the pseudocode that implements our sequence evolution simulation

algorithm.

 for i <- all sequences
 SIM_EXTINCT(seq(i))
 if extinct -> remove seq(i)
 for j <- all sites
 SIM_MUTATION(seq(i), site(j))
 if mutate -> add mutated seq
 end
 end
end

for time <- T/ t

Figure 3-2: Pseudocode for Sequence Evolution Algorithm.

The elementary model used here can be refined in various ways to better represent

54

features of evolution in different contexts. For example, an interesting question to

consider is whether or not it is appropriate to branch at a simulation step when

substitution takes place at only one site in a sequence. The answer is dependent

on the semantics of the simulation. Having branching even for single site mutations

is representative of a microscopic context, where perhaps, each branch represents a

single strand of DNA or protein in a cell, and each simulation step represents DNA

replication or protein synthesis. In this context, it seems appropriate to differentiate

even single residue differences.

On the other hand, one might also consider a macroscopic context where each

branch represents a species, and each branching event represents the process of spe-

ciation. In this context, branching should only occur when sequences are sufficiently

different. The Extensions section discusses algorithms more representative of this

context. For our initial evaluations, the elementary simulator is sufficiently rich.

3.3 Evaluation of Accuracy

The realized sequences of the simulation are passed as input to various estimation

techniques to evaluate their accuracy in reconstructing Q∗. Rate matrix estimates

Q are typically calculated with arbitrary time scales, corresponding to the fact that

absolute time scales cannot be estimated by observing sequences from one point in

time. Hence the estimate Q is usually on a different time scale than the true rate

matrix Q∗ assumed in the simulation. In order to compare Q with Q∗, a scale

factor ρ must be determined such that ρQ and Q∗ are on the same time scale. We

use a Frobenius-norm matching to determine the appropriate scale factor ρ. The

Frobenius-norm of a matrix is given by equation 2.47.

We select the optimal scale factor as the choice of ρ that minimizes the quantity

||ρQ − Q∗||2F . It can easily be determined that the optimal choice of ρ is calculated

using the expression

ρ =

∑

ij qijq
∗
ij

∑

ij qij
. (3.2)

55

We use the relative error

f =
||ρQ − Q∗||F

||Q∗||F
(3.3)

as a metric to denote the accuracy of the estimated rate matrix Q with respect to

the rate matrix Q∗ used in the simulation.

3.4 Order of Growth

Sequence evolution in our simulator follows a Galton-Watson branching process,

which is discussed in [47]. The simulation begins with a population of size Z0 = 1

sequence of length L. The simulation proceeds for time T in T/∆t independent sim-

ulation steps. During a simulation step, an offspring generating function is applied

to each sequence, which yields either 0, 1, or 2 sequences depending on whether or

not extinction or mutations occurred. The event tree of a single simulation step is

depicted in figure 3-3. Note that extinction occurs with probability x for an entire

sequence, and is independent of site-by-site mutations. We let p denote the probabil-

ity that a single sequence splits into two sequences. Since a split occurs if and only if

at least one residue in a sequence mutates, p has the value

p = 1 − (1 −
∑

i

πi|q
∗
ii|∆t)L, (3.4)

where Q∗ = {q∗ij} is the assumed Markov model of sequence evolution.

Let Zn denote the size of the population after n steps of simulation. Using the

techniques in [47], we can characterize the survival probability of the population and

the order of growth of Zn in terms of its mean and variance. We begin by calculating

56

the expected number of sequences after one simulation step:

E[Z1] =
2

∑

z=0

sP (Z1 = z) (3.5)

= (1 − p)(1 − x) + 2p(1 − x) (3.6)

= (1 + p)(1 − x). (3.7)

In the terms of the Galton-Watson process, (1 + p)(1 − x) is the mean number

of offspring produced per parent. If (1 + p)(1 − x) is ≤ 1, then this population will

eventually die out with certainty. On the contrary, if (1+ p)(1−x) is > 1, then there

is a non-zero probability that this population will survive forever.

To calculate the mean and variance of Zn for all n ≥ 2, we must calculate the

probability generating function (pgf) of the offspring generation function. The prob-

abilities of yielding 0, 1, or 2 offspring at each simulation step are given by p0 = x,

p1 = (1− p)(1− x), and p2 = p(1− x) respectively. The pgf of applying the offspring

generating function for one simulation step can then be expressed as

G1(s) =

2
∑

k=0

pks
k (3.8)

= x + (1 − p)(1 − x)s + p(1 − x)s2. (3.9)

The pgf of applying offspring generating function for two simulation steps is given

by G2(s) = G1(G1(s)), and the pgf of applying offspring generating function for three

simulation steps is given by G3(s) = G1(G1(G1(s))). This technique allows us to

calculate the pgf, Gn(s), after any number of simulation steps n. Note that the k-th

factorial moment of a discrete random variable X, E[X(X − 1) · · · (X − k + 1)], can

be calculated by taking the k-th derivative of its pgf with respect to s and evaluating

the resulting quantity at s = 1. Hence, the mean and variance of Zn can be obtained

from the expressions

E[Zn] =
d

ds
Gn(s)|s=1 (3.10)

57

and

Var[Zn] =
d2

ds2
Gn(s)|s=1 +

d

ds
Gn(s)|s=1 − (

d

ds
Gn(s)|s=1)

2. (3.11)

We can qualitatively see that increasing sequence length L or increasing the ele-

ments of the rate matrix Q∗ increases the single step mutation probability p, which in

turn increases the population’s survival probability and the mean number of sequences

after n simulation steps. Increasing extinction rate x has the opposite effect.

58

S = 1
0

S = 0
1

S = 1
1

S = 2
1

extinction

Prob = x

no extinction

Prob = 1-x

mutation

Prob = p

Prob = 1-p

no mutation

Figure 3-3: Events of a single simulation step.

59

60

Chapter 4

Evaluation of Arvestad and

Bruno’s Technique

4.1 Overview

We used our simulation method to evaluate Arvestad and Bruno’s estimation tech-

nique [4]. Multiple datasets of sequences were generated using the preceding simula-

tion algorithm under varying set of parameters, which represent varying evolutionary

conditions. The Arvestad and Bruno technique was used to estimate Markov models

from these datasets. The relative error metric shown in expression 3.3 was calculated

for each Markov model estimate. The empirical distributions of the resulting relative

errors were observed to evaluate the accuracy of the Arvestad and Bruno technique.

In addition, we considered adaptations to the Arvestad and Bruno technique and

our simulation algorithm and examined their impact on the relative error metric. An

advantage of a simulation approach to evaluation is that it allows us to empirically

evaluate the effect of even minor modifications on estimation accuracy. The effects

of such modifications are often difficult or tedious to characterize analytically.

61

4.2 Accuracy Across Simulation Parameters

We used Arvestad and Bruno’s technique [4] to estimate the rate matrix Q∗ used in

our simulation in four separate experiments. In each experiment, a single simulation

parameter was varied across a specified range, and all other parameters were held

constant at their default values. In the first experiment, sequence length L was

varied from 25 to 150 in steps of 25; in the second experiment, the extinction rate

x was varied from 0% to 15% in steps of 3%; in the third experiment, simulation

time T was varied from 3 to 7 in steps of 1; in the forth experiment, time scale c was

varied from 0.1 to 0.9 in steps of 0.1. These experiments allowed us to observe the

sensitivity of the technique’s accuracy across various simulation parameters.

The time scale variable was implemented in the simulator to provide an easy way

to uniformly scale the mutation rates. Upon changing the time scale, the maximum

off-diagonal element of the rate matrix is set to the new time scale, and all other

elements are scaled according to their ratios with the maximum off-diagonal term.

Table 4.1 shows the parameters used. Note that the rate matrix Q∗ is a randomly

generated reversible rate matrix, and the initial distribution of residues corresponds

to its steady state distribution. The seed sequence was randomly generated for each

experiment; the residue at each site of the seed sequence was randomly chosen, in-

dependently of all other sites, and according to the probabilities of the initial distri-

bution. The Q∗ displayed in table 4.1 was scaled according to the time scale value

c = 0.3. In experiment 4, Q∗ was rescaled appropriately for each value of c.

For each experiment, 100 simulations were run under each set of parameters. For

each simulation sun, all possible pairs of realized sequences were (trivially) aligned

site-by-site and passed to the Arvestad and Bruno technique to estimate Q∗. Note

that alignments can be constructed in this manner, because corresponding sites in

two sequences are known to have evolved from a common ancestor given that no

insertions and deletions were simulated. If the number of surviving sequences was

less than a certain threshold for any simulation, the run was repeated to avoid calling

the estimation algorithm on a sparse dataset. The threshold was set to 5 sequences

62

Table 4.1: Simulation Parameters.

Sequence Type DNA
Sequence Length L Expt. 1: 25-150; Default: 100
Extinction Rate x Expt. 2: 0%-15%; Default: 2%
Total Evolution Time T Expt. 3: 3-7; Default: 6
Time Scale c Expt. 4: 0.1-0.9; Default: 0.3
Discrete Step Time ∆t 1
Initial Distribution π∗

[

0.443 0.195 0.188 0.175
]

Rate Matrix Q∗









−0.278 0.065 0.095 0.119
0.148 −0.349 0.114 0.088
0.224 0.118 −0.404 0.062
0.300 0.097 0.067 −0.464









for these experiments.

Figures 4-1 to 4-4 show boxplots of the distributions of the relative errors for each

experiment. Note that the box represents the interquartile range, the line inside the

box represents the median, and the data points outside the whiskers are considered

outliers. The plots were generated using the boxplot command in Matlab version 7.

Boxplots are described in detail by Vanderviere and Huber in [51]. For each figure,

the left plot is zoomed to show the entire boxplot distribution and the outliers, while

the right plot is zoomed for a closer view of the interquartile ranges.

Experiments 1 through 3 show that the accuracy of Arvestad and Bruno’s tech-

nique improves as the amount of input data increases. Increasing sequence length

and simulation time increases the amount of realized sequences from the simulation.

Note that an increase in sequence length leads to an increase in input data in two

ways: first, it leads to an increase in the number of sites in each sequence; second,

it increases the probability of branching at each simulation step, which can be calcu-

lated as p = 1 − (1 −
∑

i πi|q
∗
ii|∆t)L. An increase in extinction rate conversely leads

to a decrease in the amount of input data.

An increase in input data improves mutation matrix estimates P(tk) taken from

pairwise alignments k. Using the two-way count scheme, each element of the exchange

matrix P(tk) is estimated as p
(k)
ij = n

(k)
ij /n

(k)
i , where n

(k)
ij is the number of times in

63

25 50 75 100 125 150

0.05

0.1

0.15

0.2

0.25

0.3

R
el

at
iv

e
E

rr
or

Sequence Length

(a) full view

25 50 75 100 125 150
0.04

0.06

0.08

0.1

0.12

0.14

0.16

R
el

at
iv

e
E

rr
or

Sequence Length

(b) zoomed in

Figure 4-1: Relative errors across sequence length L.

0% 5% 10% 15% 20% 25%

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

R
el

at
iv

e
E

rr
or

Extinction Rate

(a) full view

0% 5% 10% 15% 20% 25%
0.04

0.06

0.08

0.1

0.12

0.14

0.16

R
el

at
iv

e
E

rr
or

Extinction Rate

(b) zoomed in

Figure 4-2: Relative errors across extinction rate x.

64

3 4 5 6 7

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

R
el

at
iv

e
E

rr
or

Simulation Time

(a) full view

3 4 5 6 7

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

R
el

at
iv

e
E

rr
or

Simulation Time

(b) zoomed in

Figure 4-3: Relative errors across total simulation time T .

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

R
el

at
iv

e
E

rr
or

Time Scale

(a) full view

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

R
el

at
iv

e
E

rr
or

Time Scale

(b) zoomed in

Figure 4-4: Relative errors across time scale c.

65

alignment k that residue i aligns with residue j in any order, and n
(k)
i is the total

number of occurrences of residue i in both sequences of alignment k. The variance of

each estimate p
(k)
ij is

p
(k)
ij (1 − p

(k)
ij)

n
(k)
i

. (4.1)

With more input data, this variance becomes smaller, and we can expect more accu-

rate estimates of P(tk). Each estimate P(tk) is directly used to estimate the eigen-

vectors and eigenvalues of the rate matrix. Hence, improving the accuracy of P(tk)

is likely to improve the accuracy of the rate matrix estimate, which the experimental

results demonstrate.

From our results in experiment 2, we can see that the performance of Arvestad and

Bruno’s technique decreases steadily with increasing extinction rate. However, note

that, since a simulation was rerun if it yielded less than the threshold of 5 sequences,

we are unable to evaluate and compare estimation results from parameter sets that

are expected to yield less than 5 realized sequences per simulation run. If we were

to further increase extinction rate, thus reducing the expected number of surviving

sequences, we would reveal less and less information regarding its effect on estimation

accuracy, because the true expected number of surviving sequences would be masked

by the threshold.

The effect of time scale on estimation accuracy varies, as shown in experiment

4. One might expect, at first, that increasing time scale increases the probability of

branching at each simulation step p, which in turn increases the amount of sequences

available for input data, which increases estimation accuracy. The results support

this hypothesis for low values of c. For high values of c, however, estimation accuracy

actually becomes worse. A likely reason for this behavior is that, since substitution

rates increase for high values of c, the expected number of substitutions at internal

nodes of the phylogenetic tree increases. Recall that, in Arvestad and Bruno’s esti-

mation technique, each estimate P(tk) is taken from an alignment composed of two

sequences at the leaves of the tree and represents the evolutionary process that travels

66

from one sequence, up to the common ancestor, and down to the other sequence. The

estimate P(tk) becomes less accurate as the number of residue mutations along its

path increases, because the estimate is based only on observing the end points of the

path. The substitutions at the internal nodes are unobserved. Thus, the quality of

our estimates becomes worse when substitution rates increase.

This argument also suggests that estimation accuracy eventually decreases if total

simulation time is further increased. At higher simulation times, the depth of the

phylogenetic tree increases; hence, the expected length of the path between the two

sequences of every alignment increases; hence, the expected number of mutations

along every path increases. Estimates of P(tk) would thus be more biased. This

argument will be examined in future simulation experiments.

4.3 Accuracy Benchmarks

To gauge the quality of the relative error distributions observed in the previous exper-

iments, we performed two benchmark experiments. One set of experiments involved

randomly generating 300 reversible instantaneous rate matrices Q and observing how

well ρQ matched Q∗ for the optimum ρ. One would anticipate that the relative error

in this case would be quite poor.

The other set of experiments involved applying Dayhoff’s PAM technique [8] to

the phylogenetic trees constructed from the simulations. We generated 300 simulation

runs using the default parameters in table 4.1, i.e. L = 100, x = 2%, T = 6, and

c = 0.3. For each resulting phylogenetic tree, observed residue frequencies were

counted across each branch from root to leaf. All counts were summed together to

obtain an estimate P(t) for each tree. A scaled rate matrix was estimated using

tQ = log(P(t)). We then observed how well ρtQ matched Q∗ for the optimum ρ.

We call this technique PAM∗. We expect this technique to yield an accurate estimate

since we use knowledge of the actual phylogenetic tree and sequences at its internal

nodes.

Note that the simulation parameters used imply high probabilities of mutation,

67

p ≈ 1, and thus yield phylogenetic trees that branched at nearly every step and have

almost all branches of equal length. Hence, the observed exchange frequency counts

across each branch can be appropriately summed together for a single P(t) estimate.

Fig. 4-5 shows the distribution of the relative errors (on a log scale) of the bench-

mark experiments. For comparison, it also shows the distribution of relative errors

of the Arvestad and Bruno technique evaluated under the same parameter set as the

one used for the PAM∗ experiments. This distribution was compiled from the results

of experiments 1-4, described in the previous section, and includes experiment 1 with

L = 100, experiment 3 with T = 6, and experiment 4 with c = 0.3.

We can see from these plots that the median values of the benchmark experi-

ments are just below 0.50 and 0.06 respectively. The Arvestad and Bruno technique

achieves a median value of just more than 0.07 under the same parameter set. Thus,

the Arvestad and Bruno technique’s accuracy is close to the accuracy of the PAM∗

technique, which uses knowledge of the simulated phylogenetic tree and all sequences

at the tree’s internal nodes. This demonstrates the merit of the Arvestad and Bruno

technique!

4.4 An Alternate Way of Estimating Eigenvalues

We developed an alternate version of Arvestad and Bruno’s technique, where we

modified the method by which the eigenvalues were estimated. We evaluated the

PAM* Arvestad and Bruno Random Reversible Q

10
−1

10
0

R
el

at
iv

e
E

rr
or

Figure 4-5: Relative errors of the benchmark experiments.

68

alternate form of the technique with our simulator and compared its performance

with the performance of the original technique.

Recall from chapter 2 that the original Arvestad and Bruno technique yields

weighted eigenvalue estimates Λtk, for each alignment k. These weighted eigenvalue

estimates are then used to estimate eigenvalue ratios using a linear regression through

the origin:

λr/λs =

∑

all alignments k(λrtk)(λstk)
∑

all alignments k(λstk)2
. (4.2)

One of the eigenvalues is known to be 0. For the remaining eigenvalues, one is

arbitrarily chosen to be −1, and the others are estimated according to the ratios

λr/λs.

Thus, Arvestad and Bruno obtained estimates of eigenvalue ratios by averaging

over all times tk. Our modification involves first estimating time ratios tu/tv by

averaging over all eigenvalues. This can be similarly done using a linear regression

through the origin:

tu/tv =

∑4
i=1(λitu)(λitv)
∑4

i=1(λitv)2
. (4.3)

We arbitrarily set one of the time variables to unity, t1 = 1. The remaining times tk are

set according to the time ratios tk/t1. The weighted eigenvalue estimates Λtk are then

divided by the corresponding estimate of tk to normalize all eigenvalue estimates to the

same time scale. The individual eigenvalue estimates are then averaged to obtain an

aggregate estimate. Assuming there are n total alignments, each eigenvalue estimate

can be expressed as

Λ =

∑

k
Λtk
tk

n
. (4.4)

To compare the alternate Arvestad and Bruno technique with the original tech-

nique, we ran 100 iterations of our simulation with the default parameters shown in

table 4.1. We used both versions of the technique to estimate Q∗ for each simulated

69

dataset and recorded their resulting relative errors. This experiment was repeated

for four different time scales, c = {0.01, 0.03, 0.05, 0.3}, to gauge the effect of the

modification under varying substitution rates. Figure 4-6 shows the distribution of

the relative errors for the original and alternate techniques under the different time

scales.

The results show that the alternate version of the technique has a lower median

relative error for the three experiments with the smaller time scale values. This

suggests that the alternate version of the technique improves estimation accuracy at

sufficiently low substitution rates. Analytically, it would be quite tedious to determine

the exact source of improvement of the alternate technique over the original. One

possibility is that the alternate technique involves two stages of averaging, thereby

eliminating more noise in the eigenvalue estimate. Using our simulator, however,

performance variations from even subtle modifications can be identified through em-

pirical analysis.

To further characterize the improvement of the alternate version of the technique

over the original one, figures 4-7 through 4-10 show the distributions of the eigen-

value estimates yielded for each version of the technique at each time scale considered.

Each axis on the 3-D scatter plot represents one of the non-zero eigenvalues ranked in

increasing order. The * marks the position of the eigenvalues of the true rate matrix,

and every other point marks the eigenvalue positions of the rate matrix estimates.

These plots show that the eigenvalue estimates of the alternate version of the tech-

nique are a bit more condensed around the true eigenvalue position at the three lower

time scales. The improvement is most noticeable for c = 0.03 and c = 0.05.

4.5 Incorporating Population Frequencies

We modified our simulation algorithm to account for population frequencies in se-

quences and examined its impact on the accuracy of Arvestad and Bruno’s technique.

Originally, we only simulate branching when at least one site in a sequence mutates

during a simulation step. In the modified simulator, we branch at every simulation

70

Original Alternate

0.2

0.3

0.4

0.5

0.6

0.7

R
el

at
iv

e
E

rr
or

(a) c = 0.01

Original Alternate

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

R
el

at
iv

e
E

rr
or

(b) c = 0.03

Original Alternate

0.1

0.2

0.3

0.4

0.5

0.6

R
el

at
iv

e
E

rr
or

(c) c = 0.05

Original Alternate
0.02

0.04

0.06

0.08

0.1

0.12

0.14

R
el

at
iv

e
E

rr
or

(d) c = 0.3

Figure 4-6: Relative errors of the alternate version of Arvestad and Bruno technique.

71

−0.025

−0.02

−0.015

−0.01

−0.02

−0.015

−0.01

−0.005

0
−0.015

−0.01

−0.005

0

Smallest Eigenvalue2nd Smallest Eigenvalue

3r
d

S
m

al
le

st
 E

ig
en

va
lu

e

(a) Original

−0.025

−0.02

−0.015

−0.01

−0.02

−0.015

−0.01

−0.005

0
−0.015

−0.01

−0.005

0

Smallest Eigenvalue2nd Smallest Eigenvalue

3r
d

S
m

al
le

st
 E

ig
en

va
lu

e

(b) Alternate

Figure 4-7: Eigenvalues distributions yielded by the alternate and original techniques
at c = 0.01.

−0.03

−0.02

−0.01

0

−0.02

−0.015

−0.01

−0.005

0
−0.015

−0.01

−0.005

0

Smallest Eigenvalue2nd Smallest Eigenvalue

3r
d

S
m

al
le

st
 E

ig
en

va
lu

e

(a) Original

−0.03

−0.02

−0.01

0

−0.02

−0.015

−0.01

−0.005

0
−0.015

−0.01

−0.005

0

Smallest Eigenvalue2nd Smallest Eigenvalue

3r
d

S
m

al
le

st
 E

ig
en

va
lu

e

(b) Alternate

Figure 4-8: Eigenvalues distributions yielded by the alternate and original techniques
at c = 0.03.

72

−0.12
−0.11

−0.1
−0.09

−0.08

−0.1

−0.05

0

0.05

0.1
−0.08

−0.07

−0.06

−0.05

−0.04

−0.03

−0.02

Smallest Eigenvalue2nd Smallest Eigenvalue

3r
d

S
m

al
le

st
 E

ig
en

va
lu

e

(a) Original

−0.12
−0.11

−0.1
−0.09

−0.08

−0.1

−0.05

0

0.05

0.1
−0.08

−0.07

−0.06

−0.05

−0.04

−0.03

−0.02

Smallest Eigenvalue2nd Smallest Eigenvalue

3r
d

S
m

al
le

st
 E

ig
en

va
lu

e

(b) Alternate

Figure 4-9: Eigenvalues distributions yielded by the alternate and original techniques
at c = 0.05.

−0.62
−0.6

−0.58
−0.56

−0.54
−0.52

−0.55

−0.5

−0.45

−0.4
−0.48

−0.46

−0.44

−0.42

−0.4

−0.38

Smallest Eigenvalue2nd Smallest Eigenvalue

3r
d

S
m

al
le

st
 E

ig
en

va
lu

e

(a) Original

−0.62
−0.6

−0.58
−0.56

−0.54
−0.52

−0.55

−0.5

−0.45

−0.4
−0.48

−0.46

−0.44

−0.42

−0.4

−0.38

Smallest Eigenvalue2nd Smallest Eigenvalue

3r
d

S
m

al
le

st
 E

ig
en

va
lu

e

(b) Alternate

Figure 4-10: Eigenvalues distributions yielded by the alternate and original techniques
at c = 0.3.

73

step regardless of whether there is a mutation or not. The modified algorithm seems

to be more characteristic of real life scenarios such as DNA replication; when pro-

liferation occurs, certain daughter sequences are identical to the parent sequence,

and other daughters are mutated versions of their parents. The modification also

allows the realized datasets to account for frequencies in our realized population of

sequences. We are interested in whether or not this additional information can lead

to improvements in estimation accuracy.

We ran 200 iterations of our simulation; the first 100 iterations were run under

the original algorithm, and the second 100 iterations were run under the modified

algorithm where branching was always simulated. The simulation parameters used

in this experiment were the default parameters shown in table 4.1, except time scale,

for which we used c = 0.01. We needed to pick a low time scale for this experiment to

ensure that the probability of branching for a single simulation step p is sufficiently

low. If p is high, branching would almost always occur, and there would be virtually no

differences between the data yielded from both simulations. A time scale of c = 0.01

yields a rate matrix

Q∗ =

















−0.0093 0.0022 0.0032 0.0040

0.0049 −0.0116 0.0038 0.0029

0.0075 0.0039 −0.0135 0.0021

0.0100 0.0032 0.0022 −0.0155

















, (4.5)

and a p value of 0.6888, whereas a time scale of c = 0.3 yields a p value that is very

close to 1.

Figure 4-11 shows the distribution of the relative errors under each simulation

algorithm. We can see that the relative errors under the branch always version of the

simulation algorithm are lower. Figure 4-12 shows the 3-D scatter plots of the distri-

bution of the eigenvalue estimates under each simulation algorithm. As before, the

* indicates the eigenvalue position of the true rate matrix, and each axis represents

one eigenvalue ranked in increasing order. We can see that the eigenvalues of the

estimates under the simulation algorithm that always branches are more condensed

74

around the true rate matrix. These initial experiments to indicate that populations

frequencies can help to improve Markov model estimation accuracy. Further exper-

iments are necessary to determine whether or not these improvements are simply

because the branch always algorithm yields more estimation data.

75

Original Branch Always

0.1

0.2

0.3

0.4

0.5

0.6

R
el

at
iv

e
E

rr
or

(a)

Figure 4-11: Relative errors of the original and branch always simulation algorithms.

−0.03
−0.028

−0.026
−0.024

−0.022

−0.025

−0.02

−0.015

−0.01

−0.005
−0.02

−0.015

−0.01

−0.005

0

Smallest Eigenvalue

Original

2nd Smallest Eigenvalue

3r
d

S
m

al
le

st
 E

ig
en

va
lu

e

(a) Original

−0.03
−0.028

−0.026
−0.024

−0.022

−0.025

−0.02

−0.015

−0.01

−0.005
−0.02

−0.015

−0.01

−0.005

0

Smallest Eigenvalue

Branch Always

2nd Smallest Eigenvalue

3r
d

S
m

al
le

st
 E

ig
en

va
lu

e

(b) Branch Always

Figure 4-12: Eigenvalue distributions yielded by each simulation algorithm.

76

Chapter 5

Conclusion

We have presented the Markov model of sequence evolution and provided a review

of several important techniques that have been developed to estimate its parame-

ters from observed alignments of sequence data. We have also introduced techniques

that incorporate structural properties of proteins into estimates of amino acid sub-

stitution rates and discussed generalizations of the elementary Markov model, which

relax the assumptions of rate homogeneity, site independence, and no indels. Such

a model is useful in inferring protein functionality and genetic relationships, and in

understanding the process of evolution at the molecular level.

We introduced a new method of simulating sequence evolution under an elemen-

tary Markov model, which is different from classical methods that require as input

a known phylogenetic tree and simulate sequence mutations along the branches of

the tree. Our simulator makes no a priori assumptions about phylogenetic relation-

ships and generates a phylogenetic tree through a branching process, whose rules are

governed by simulated sequence mutations.

The key utility of such a simulator is that it enables the user to evaluate and

compare different techniques that estimate parameters of a Markov model of sequence

evolution. The simulator can be continuously re-run to generate sequence families

to be used as estimation data. Estimation results allow us to gain a sense of a

technique’s performance distribution and performance under varying parameter sets.

A major benefit of using our simulator in evaluations is that it eliminates the need to

77

determine phylogenies in advance, which is a problem that has been faced by several

other evaluation techniques [21], [29].

We applied our evaluation technique to Arvestad and Bruno’s estimation tech-

nique [4] and found that it performed quite well given sufficiently rich data. The

accuracy values yielded by this technique approach the accuracy values yielded from

the PAM∗ technique, which use full knowledge of the simulated phylogenetic tree. In

addition, our simulator was able to empirically characterize performance differences

in the modifications made to Arvestad and Bruno’s estimation technique and the evo-

lution simulation algorithm. Such characterizations are usually quite tedious using

a purely analytical approach. Similar experiments can be designed to study esti-

mation performance under different circumstances or for other estimation techniques

discussed in chapter 2.

In conclusion, we are delighted to present our findings in this exciting field of

research. We hope our initial analyses and experimentation can lead to new insight

and spark new ideas into the way Markov models of sequence evolution are estimated

and used.

Extensions

Several extensions stem from this project. Our elementary simulator of sequence evo-

lution can be improved in many ways to more accuracy model more complex evolution-

ary processes. All generalizations of the elementary Markov model, such as modeling

insertions and deletions and allowing for substitution rate heterogeneity and indepen-

dence between adjacent sites, can be considered for implementation in the simulation

algorithm. The extinction rate, which is currently modeled as a Bernoulli trial acting

independently on all sequences, can be modified to be a sequence-dependent function

to account for fitness in individuals. The rules of phylogenetic tree generation can

also be modified to account for different evolutionary contexts.

In its current from, the sequence evolution algorithm is representative of a micro-

scopic evolutionary context, such as DNA replication. The algorithm can be adapted

78

to represent a macroscopic evolutionary context, such as having sequences represent

species, and branching represents the process of speciation. One way to realize such

a context is to have each branch contain not one, but a collection of sequences. Each

collection represents a species and its closely related homologs. Mutations and ex-

tinctions are to be simulated for each sequence in a collection. Branching occurs,

when the sequences of a given collection form two distinct clusters on some spectrum.

Each cluster would then be placed on its own branch, and evolution would proceed

independently for each branch. An entire collection becomes extinct when all its in-

dividual sequences become extinct. Large scale disasters that cause the extinction of

an entire collection can also be simulated.

Another extension is to consider the results of the evaluation experiments for de-

veloping improvements for Markov model estimation techniques. For example, we

have found from empirical results that accounting for the frequencies of individual se-

quences in a population could lead to improved estimates. However, our experiments

only considered passing all individuals of a given sequence as input into an estima-

tion technique, such that more populous sequences would get more representation.

The estimation technique itself does not explicitly account for population frequencies.

Modifying techniques to account for frequencies would be an interesting experiment.

Availability

A software package called the Evolution Laboratory has been developed using Matlab

version 7 the Bioinformatics Toolbox 2.0, and implements the sequence evolution

simulation algorithm and a few estimation techniques discussed in this thesis. This

software package is available for download from the URL

web.mit.edu/kashew/Public/EvolLab.zip.

79

80

Bibliography

[1] J. Adachi and M. Hasegawa. Model of amino acid substitution in proteins en-

coded by mitochondrial dna. J. Mol. Evol., 42:459–468, 1996.

[2] J. Adachi, P.J. Waddell, W. Martin, and M. Hasegawa. Plastid genome phy-

logeny and a model of amino acid substitution for proteins encoded by chloroplast

dna. J. Mol. Evol., 50:348–358, 2000.

[3] S.F. Altschul, W. Gish, W. Miller, E.W. Myers, and J.D. Lipman. Basic local

alignment search tool. J. Mol. Biol., 215:403–410, 1990.

[4] L. Arvestad and W.J. Bruno. Estimation of reversible substitution matrices from

multiple pairs of sequences. J. Mol. Evol., 45:696–703, 1997.

[5] E. Baake and A. von Haeseler. Distance measures in terms of substitution pro-

cesses. Theor. Pop. Biol., 55:166–175, 1999.

[6] S.A. Benner, M.A. Cohen, and G.H. Gonnet. Empirical and structural models

for insertions and deletions in the divergent evolution of proteins. J. Mol. Biol.,

229:1065–1082, 1993.

[7] C.L. Clothia and A. Lesk. The relationship between the divergence of sequence

and structure in proteins. EMBO J, 5:823–826, 1986.

[8] M.O. Dayhoff, R.M. Schwartz, and B.C. Orcutt. A model of evolutionary change

in proteins. In M. O. Dayhoff, editor, Atlas of Protein Sequence and Structure,

5:345–352, 1978. Suppl. 3.

81

[9] C. Devauchelle, A. Grossman, A. Henaut, M. Holschneider, M. Monnerot, J.L.

Risler, and B. Torresani. Rate matrices for analyzing large families of protein

sequences. J. Comput. Biol., 8:381–399, 2001.

[10] Z. Dosztanyi and A.E. Torda. Amino acid similarity matrices based on force

fields. Bioinformatics, 17:686–699, 2001.

[11] R. Durbin, S. Eddy, A. Krogh, and G. Mitchison. Biological Sequence Analysis,

Probabilistic Models of Proteins and Nucleic Acids. Cambridge University Press,

Cambridge, UK, 1998.

[12] W.J. Ewens and G.R. Grant. Statistical Methods in Bioinformatics, an Intro-

duction. Springer, New York, 2001.

[13] J. Felsenstein. Evolutionary trees from dna sequences: A maximum likelihood

approach. J. Mol. Evol., 17:368–376, 1981.

[14] N. Goldman and Z. Yang. A codon-based model of nucleotide substitution for

protein-coding dna sequences. Mol. Biol. Evol., 11:725–736, 1994.

[15] G.H. Gonnet, M.A. Cohen, and S.A. Benner. Analysis of amino acid substitu-

tion during divergent evolution: the 400 by 400 dipeptide substitution matrix.

Biochem. Biophys. Res. Commun., 199:489–496, 1994.

[16] G.H. Gonnet, M.A. Cohen, and Benner S.A. Exhaustive matching of the entire

protein sequence database. Science, 256:1443–1445, 1992.

[17] N.C. Grassly, Adachi J., and A. Rambaut. Pseq-gen: an application for the

monte carlo simulation of protein sequence evolution along phylogenetic trees.

CABIOS, 13:559–560, 1997.

[18] M. Hasegawa, H. Kishino, and T. Yano. Dating of the human-ape splitting by a

molecular clock of mitochondrial dna. J. Mol. Evol., 22:160–174, 1985.

[19] S. Henikoff and J.G. Henikoff. Amino acid substitution matrices from protein

blocks. Proc. Natl. Acad. Sci. U.S.A, 89:10915–10919, 1992.

82

[20] D.M. Hillis, J.J. Bull, M.E. White, M.R. Badgett, and I.J. Molineux. Experi-

mental phylogenetics: Generation of a known phylogeny. Science, 255:589–592,

1992.

[21] D.M. Hillis, J.P. Huelsenbeck, and C.W. Cunningham. Application and accuracy

of molecular phylogenies. Science, 264:671–677, 1994.

[22] I. Holmes and G.M. Rubin. An expectation maximization algorithm for training

hidden substitution models. J. Mol. Biol., 317:753–764, 2002.

[23] M.S. Johnson and J.P. Overington. A structural basis for sequence comparisons.

J. Mol. Biol., 233:716–738, 1993.

[24] D.T. Jones, W.R. Taylor, and J.M. Thornton. The rapid generation of mutation

data matrices from protein sequences. CABIOS, 8:275–282, 1992.

[25] T.H. Jukes and C.R. Cantor. Evolution of protein molecules. in Mammalian

Protein Metabolism, pages 21–132, 1969. H.N. Munro (ed.).

[26] C. Kelly and J. Rice. Modeling nucleotide evolution: a heterogeneous rate anal-

ysis. Math. Biosci., 133:85–109, 1996.

[27] M. Kimura. A simple method for estimating evolutionary rate in a finite popula-

tion due to mutational production of neutral and nearly neutral base substitution

through comparative studies of neucleotide sequences. J. Mol. Biol., 16:111–120,

1980.

[28] J. Kleinjung, J. Romein, K. Lin, and J. Heringa. Contact-based sequence align-

ment. Nucleic Acids Res., 32:2464–2473, 2004.

[29] M.K. Kuhner and J. Felsenstein. A simulation comparison of phylogeny algo-

rithms under equal and unequal evolutionary rates. Mol. Biol. Evol., 11:459–468,

1994.

83

[30] K. Lin, J. Kleinjung, W.R. Taylor, and J. Heringa. Testing homology with

contact accepted mutation (cao): A contact-based markov model of protein evo-

lution. Comput. Biol. Chem., 27:93–102, 2003.

[31] P. Lio and N. Goldman. Models of molecular evolution and phylogeny. Genome

Res., 8:1233–1244, 1998.

[32] A.D. Mclachlan. Repeating sequences and gene duplication in proteins. J. Mol.

Biol., 64:417–437, 1972.

[33] J. Meller and R. Elber. Protein recognition by sequence-to-structure fitness:

Bridging efficiency and capacity of threading models. Adv. Chem. Phys., 120:77–

130, 2002.

[34] S. Miyazawa and R.L. Jernigan. A new substitution matrix for protein sequence

searches based on contact frequencies in protein structures. Protein Eng., 6:267–

278, 1993.

[35] T. Muller, R. Spang, and M. Vingron. Estimating amino acid substitution mod-

els: a comparison of dayhoff’s estimator, the resolvent approach and a maximum

likelihood method. Mol. Biol. Evol., 19:8–13, 2002.

[36] T. Muller and M. Vingron. Modeling amino acid replacement. J. Comput. Biol.,

7:761–776, 2000.

[37] S.B. Needleman and C.D. Wunsch. A general method applicable to the search for

similarities in the amino acid sequence of two proteins. J. Mol. Biol., 48:443–453,

1970.

[38] R. Nielsen and Z. Yang. Likelihood models for detecting positively selected amino

acid sites and applications to the hiv-1 envelope gene. Genetics, 148:929–936,

1998.

[39] A. Prlic, F.S. Domingues, and J.S Manfred. Structure-derived substitution ma-

trices for alignment of distantly related sequences. Protein Eng., 13:545–550,

2000.

84

[40] A. Rambaut and N.C. Grassly. Seq-gen: an application for the monte carlo

simulation of dna sequence evolution along phylogenetic trees. CABIOS, 13:235–

238, 1997.

[41] J.K.M. Rao. New scoring matrix for amino acid residue exchanges based on

residue characteristic physical properties. Int. J. Peptide Protein Res., 29:276–

281, 1987.

[42] J.L. Risler, M.O. Delorme, H Delacroix, and A. Henaut. Amino acid substitutions

in structurally related proteins. J. Mol. Biol., 204:1019–1029, 1988.

[43] N. Saitou and M. Nei. The neighbor-joining method: a new method for recon-

structing phylogenetic trees. Mol. Biol. Evol., 4:406–425, 1987.

[44] R.M. Schwartz and M.O. Dayhoff. Matrices for detecting distant relationships.

In M. O. Dayhoff, editor, Atlas of Protein Sequence and Structure, 5:353–358,

1978. Suppl. 3.

[45] T.F. Smith and M.S. Waterman. The identification of common molecular sub-

sequences. J. Mol. Biol., 147:195–197, 1981.

[46] P.H. Sneath and R.R. Sokal. Numerical Taxonomy. W.H. Freeman and Company,

San Francisco, 1973.

[47] D.E. Taneyhill, A.M. Dunn, and M.J. Hatch. The galton-watson branching

process as a quantitative tool in parasitology. Parasitol Today, 15:159–165, 1999.

[48] O Teodorescu, T. Galor, J. Pillardy, and R. Elber. Enriching the sequence

substitution matrix by structural information. Proteins, 54:41–48, 2004.

[49] J.D. Thompson, D.G. Higgins, and Gibson T.J. Clustal w: Improving the

sensitivity of progressive multiple sequence alignment through sequence weight-

ing, position-specific gap penalties and weight matrix choice. Nuc. Acids Res.,

22:4673–4680, 2000.

85

[50] J.L. Thorne. Models of protein sequence evolution and their applications. Curr.

Opin. Genet. Dev., 10:602–605, 2000.

[51] E. Vanderviere and M. Huber. An adjusted boxplot for skewed distributions.

Physica-Verlag/Springer 2004, pages 1933–1940, 2004. COMPSTAT Symposium

2004.

[52] S. Veerassamy, A. Smith, and E. Tillier. A transition probability model for amino

acid substitutions from blocks. J. Comput. Biol., 10:997–1010, 2003.

[53] S. Whelan and N. Goldman. Distribution of statistics used for the comparison of

models of sequence evolution in phylogenetics. Mol. Biol. Evol., 16:1292–1299,

1999.

[54] S. Whelan and N. Goldman. A general empirical model of protein evolution

derived from multiple protein families using a maximum-likelihood approach.

Mol. Biol. Evol., 18:691–699, 2001.

[55] Z. Yang. Estimating the pattern of nucleotide substitution. J. Mol. Evol., 39:105–

111, 1994.

[56] Z. Yang. A space-time process model for the evolution of dna sequences. Genetics,

139:993–1005, 1995.

[57] Z. Yang, N. Goldman, and A.E. Friday. Comparison of models for nucleotide

substitution used in maximum liklihood phylogenetic estimation. Mol. Biol.

Evol., 11:316–324, 1994.

[58] Z. Yang, R. Nielsen, and M. Hasegawa. Models of amino acid substitution and

applications to mitochondrial protein evolution. Mol. Biol. Evol., 15:1600–1611,

1998.

86

