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ABSTRACT

We developed hydrodynamic models for transport of water and macromolecules
across the glomerular capillary wall, based on the ultrastructure of its constituent layers.
Models were developed for the endothelial fenestrae, basement membrane and epithelial
filtration slits with slit diaphragms. The input data included the dimensions of the
various structures from previous electron microscopy studies, and the hydraulic
permeability recently measured for isolated basement membrane in vitro. The model for
hindered transport of macromolecules focused on the slit diaphragms and basement
membrane.

As a model for flow through the slit diaphragms which connect the epithelial foot
processes, we obtained finite element solutions of Stokes' equations for flow
perpendicular to a single row of cylinders confined between parallel walls. We
computed a dimensionless "additional resistance" (f), defined as the increment in
resistance above the Poiseuille flow value, for LIW < 4 and 0.1 < RIL < 0.9, where L is
half the distance between cylinder centers, W is half the distance between walls and R is
the cylinder radius. Two factors contributed to f: the drag on the cylinders, and the
incremental shear stresses on the walls of the channel. Of these two factors, the drag on
the cylinders tended to be dominant. We also analyzed another representation of the slit
diaphragm suggested in the literature, which consists of a central filament, parallel to the
surfaces of the foot processes and connected to the foot processes by alternating cross-
bridges on either side.

We computed velocity and pressure profiles within the endothelial fenestrae and
the basement membrane, and calculated the hydraulic permeability of these structures.
These results were combined with those for the epithelial slits and the resulting values of
the overall hydraulic permeability of the capillary wall (k) agreed very well with an
experimental range derived from micropuncture measurements in normal rats.
Furthermore, the model provided estimates of the relative contribution of each layer to
the total water flow resistance. The hydraulic resistance of the endothelium was
predicted to be small, while the basement membrane and epithelial slits were each found
to contribute roughly half of the total water flow resistance. When applied to a study of
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glomerular injury in rats, the model correctly predicted the observed trends in hydraulic
permeability.

The hydraulic permeability model was applied also to a study of healthy and
nephrotic humans. There was good agreement between the predicted values of hydraulic
permeability (based on measurements of basement membrane thickness and filtration slit
frequency) and independent estimates based on hemodynamic measurements and
measurements of glomerular filtering surface area. Moreover, the model provided an
explanation for the fact that reductions of glomerular filtration rate in various human
nephropathies tend to be correlated more with reductions in filtration slit frequency than
with changes in basement membrane thickness.

To describe the hindered transport of plasma proteins and other macromolecules
through the slit diaphragm, we developed an approximate hydrodynamic model for
spherical, Brownian particles passing through a row of infinitely long cylinders of
macromolecular dimensions. The selectivity of the slit diaphragm was assessed by
computing concentration profiles for a wide range of molecular sizes for Pe < 1, where
Pe is a Peclet number based on the cylinder radius. The sieving coefficient for the slit
diaphragm was computed as the concentration far downstream (corresponding to
Bowman's space) divided by the average concentration at a specified distance upstream
from the cylinders (corresponding to the location of the basement membrane). The
results of previous experimental sieving studies using rats could be accounted for
approximately by postulating a wide distribution of spacings between the fibers of the slit
diaphragm. Calculations made by coupling the results for the slit diaphragm with a
model of the glomerular basement membrane suggest that the slit diaphragm is by far the
most size-restrictive part of the overall barrier.

In addition, we developed a model of glomerular filtration with pulsatile
pressures and flows, and used this model as a standard in evaluating the suitability of the
usual steady-state formulations. The model included sinusoidal variations in the
transcapillary hydraulic pressure and the afferent arteriolar plasma flow rate over each
cardiac cycle. The analysis suggested that the previously ignored time derivatives in the
luminal mass balances are not negligible, and that the oscillations in pressure are
sufficient to cause filtration reversal at the more efferent locations in a capillary.
However, the time-averaged values of glomerular filtration rate and sieving coefficients
for macromolecules were not significantly different from those for a steady-state
formulation. This supports the validity of the steady-state assumption used in previous
models of glomerular filtration as well as in the hydrodynamic models described in this
thesis.

Thesis Supervisor: William M. Deen
Professor of Chemical Engineering
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FOREWORD

Following are references for material described in this thesis.

The reference for the material of Chapter 2 is: M. Claudia Drumond and William M.
Deen, "Analysis of pulsatile pressures and flows in glomerular filtration", Am. J. Physiol.
261 (Renal Fluid Electrolyte Physiol. 30): F409-F419, 1991.

Most of the material in Chapter 3 will appear as a paper in J. Biomech. Eng. which is still
in press as of this writing. The paper, by M. Claudia Drumond and William M. Deen, is
entitled "Stokes flow through a row of cylinders between parallel walls: Model for the
glomerular slit diaphragm".

Most of the material in Chapter 4 will appear as a paper in the Am. J. Physiol. which is
also still in press. The paper, by M. Claudia Drumond and William M. Deen, is entitled
"Structural determinants of glomerular hydraulic permeability".

A manuscript by M. Claudia Drumond, Batya Kristal, Bryan D. Myers and William M.
Deen, based on the work described in Chapter 5, has been submitted to the J. Clin.
Invest. The manuscript is entitled "Structural basis for reduced glomerular filtration
capacity in nephrotic humans".

A manuscript by M. Claudia Drumond and William M. Deen, based on the work
described in Chapter 6, has been submitted to the J. Biomech. Eng. The manuscript is
entitled "Hindered transport of macromolecules through a single row of cylinders:
Application to glomerular filtration".
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CHAPTER 1

BACKGROUND

1.1 INTRODUCTION

The major function of the kidneys is to maintain the volume and composition of

the body fluids within normal limits. The functional subunits of the kidneys are the

nephrons, each consisting of a tubular and a vascular structure. There are about one

million nephrons in a human kidney and about 30,000 in a rat kidney. The blood reaches

a nephron via an afferent arteriole which bifurcates into a network of capillaries, the

glomerulus, where an ultrafiltrate of the blood plasma is produced. The capillaries rejoin

to form an efferent arteriole (Figure 1.1). The ultrafiltrate, collected in Bowman's space,

proceeds through the renal tubules. Both the amount and composition of the tubule fluid

change throughout the tubular segments, via reabsorption and secretion processes across

the tubule walls. The fluid still remaining at the end of the collecting tubules (usually

less than 1% of the glomerular filtrate) becomes urine.

We will focus our attention on glomerular filtration, a process driven by

imbalances of hydrostatic and osmotic pressures between the capillary lumen and

Bowman's space. The wall of the glomerular capillaries is normally very permeable to

water and small solutes but highly selective to macromolecules, such that it permits

almost no loss of the major plasma proteins into the urine. Molecular size, configuration

and charge, hemodynamic conditions, and structural properties of the capillary wall are

all important determinants of glomerular filtration. Functional information on mass

transport in the renal microcirculation is provided largely by micropuncture and

clearance experiments. Following is a brief summary of the information available from
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Figure 1.1 - Schematic representation of a glomerulus.

these physiological studies. A more comprehensive review can be found in Maddox et

al. (1992).

MICROPUNCTURE. Micropuncture techniques allow measurements at the level of

a single nephron and involve a surgical procedure in which one of the kidneys of an

anesthetized animal (commonly the rat) is exposed. Sharpened micropipettes are then

inserted into portions of some nephrons, allowing collection of fluids and pressure

measurements. Quantities such as the "single-nephron glomerular filtration rate" of

water (SNGFR), afferent plasma flow rate (QA), glomerular (PG) and tubular (PT)

pressures, and solute concentrations can be determined by micropuncture. Typical values

found in male euvolemic l Munich-Wistar rats are SNGFR - 40 nvmin, QA - 150 nl/min,

PG - 50 mm Hg, AP - 35 mm Hg, CPA - 6 g/dl, and A - 20 mm Hg (Maddox et al.,

1992), where AP is the transmural hydraulic pressure difference (AP = PG - P), and CPA

I Euvolemic rats are rats in which plasma has been infused to compensate for surgical fluid losses.
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and A are the concentration of protein and the osmotic pressure, respectively, in the

afferent arteriole. We see that the net ultrafiltration pressure at the afferent end of a

capillary (AP - nA) is - 15 mm Hg. Because of the large volume of fluid crossing the

capillary wall, the osmotic pressure rises considerably along the capillary and, thus, the

net ultrafiltration pressure decreases. Typical values for the net ultrafiltration pressure at

the efferent end are only - 2 mm Hg (Maddox et al., 1992). As will be seen below, the

results of micropuncture experiments can be used to calculate the glomerular

ultrafiltration coefficient, K, which is the product of the glomerular filtration area, S, and

the hydraulic permeability of the capillary wall, k. For normal male euvolemic Munich-

Wistar rats the range for Kf is - 4 - 6 n/min/mm Hg (Maddox et al., 1992). The total

glomerular capillary surface area (S) of superficial glomeruli for this strain is about

0.0016 cm2 (Pinnick and Savin, 1986). Thus, k - 3 - 5x10-9 m/s/Pa. It is noteworthy that

these values of hydraulic permeability are one to two orders of magnitude greater than

typical values found in other capillary systems (Maddox et al., 1992).

FRACTIONAL CLEARANCE. The fractional clearance of a given solute is defined

as the urinary clearance of that solute (QUCSJcsA, where Qu is the flow rate of urine and

csu and CSA are the solute concentration in the urine and afferent arteriole, respectively)

divided by the glomerular filtration rate of water (GFR). Since it is a less invasive

technique than micropuncture, requiring only urine and systemic blood samples,

clearance measurements can be performed both in humans and experimental animals. If

the test solute is neither reabsorbed nor secreted in the renal tubules, the fractional

clearance equals the sieving coeficient, 0, defined as the ratio between the solute

concentration in Bowman's space and that in the afferent arteriole. Dextran and other

exogeneous polymers, such as Ficoll, polyethylene glycol and polyvinylpyrrolidone, fall

into this category of solutes and thus are suitable for clearance experiments aimed at

measuring 0. Although dextran and its charged derivatives have been the test solutes

most frequently used, Oliver et al. (1992) recently concluded that Ficoll (which has a
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cross-linked structure and behaves approximately as a rigid sphere) is a better marker

than dextran (which is approximately a linear polymer, existing in solution as a random

coil) for the glomerular filtration of neutral globular proteins and that it may be preferred

over dextran in studies of glomerular size-selectivity. Figure 1.2 shows the sieving curve

for Ficoll obtained in this study (Oliver et al., 1992). Molecular charge is another

important determinant of glomerular filtration of macromolecules. Because the capillary

wall is negatively charged, the filtration of cationic macromolecules is enhanced and the

filtration of anionic macromolecules is retarded relative to that of neutral

macromolecules (Deen et al., 1980). As will be seen in Section 1.3, under the

assumption that the capillary wall is a membrane perforated by a homogeneous

population of cylindrical pores, one can estimate the pore radius, r, and the

concentration of fixed anionic charges, cm, from sieving curves of neutral and charged

macromolecules. Typical values for the rat, obtained from sieving curves for dextran and

its charged derivatives, are r 50 A and cm 160 meq/l (Deen et al., 1980; Maddox et

al., 1992).

Chronic renal diseases are commonly characterized by reductions in the

glomerular filtration rate, and by the appearance of substantial amounts of protein in the

wine (proteinuria). These abnormalities have been reported in a number of human

diseases (Deen et al., 1985; Guasch et al., 1991, 1992; Myers et al., 1982; Nakamura and

Myers, 1987; Shemesh et al., 1986), and studied in more detail in experimental diseases

induced in animals (Anderson et al., 1988; Ichikawa et al., 1982; Yoshioka et al., 1987).

The functional changes in these diseases are commonly attributed to a decrease in the

ultrafiltration coefficient for water (K) and, depending on the particular model of the

capillary wall (see below), to an increase in the pore radius (ro), to a shift in the pore size

distribution to larger pores, or simply to an increase in the number of very large, non-

selective pathways. In some cases, it has also been suggested that there is loss of charge-

selectivity of the capillary wall (Bridges et al., 1991; Guasch et al., 1993; Olson et al.,
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1981). A finding of numerous studies of altered glomerular permeability, including most

of the studies cited above, is that there are significant alterations in the morphology of

the capillary wall.

1.2 CHARACTERIZATION OF THE GLOMERULAR CAPILLARY

WALL

Figure 1.3 shows a schematic representation of the capillary wall with its

constituent layers: the fenestrated endothelium, adjacent to the capillary lumen; the

glomerular basement membrane; and the epithelial foot processes, facing Bowman's

space. Electron microscopy techniques have allowed a relatively detailed

characterization of the capillary wall. Presented next is a brief review of some of the

existing studies. Because there is a vast amount of information in this field, some of

which is outside the scope of this thesis, the following review will focus mainly on those

aspects of the structure that are relevant to the present work. Frequent reference will be

made to more extensive reviews on the subject.

1.2.1 FENESTRATED ENDOTHELIAL CELLS

The endothelial cells form the innermost layer of the glomerular capillary wall.

The cytoplasm of these cells is perforated by numerous pores (fenestrae), 20 to 100 nm

in radius (Kondo, 1990; Koriyama et al., 1992; Larsson and Maunsbach, 1980; Lea et al.,

1989; Levick and Smaje, 1987; Maul, 1971; Rhodin; 1962; Ryan, 1986; Takami et al.,

1991). Rhodin (1962) observed the existence of a diaphragm (-6 nm thick) covering

each fenestra in mouse glomerular capillaries. The existence of one or more diaphragms

covering endothelial fenestrae of the rat glomerular capillary wall has also been reported

(Larsson and Maunsbach, 1980; Maul, 1971). However, it is usually suggested that the
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Figure 1.3 - Schematic representation of the glomerular capillary wall. The innermost
layer, lining the capillary lumen, is a fenestrated endothelium; the middle layer is a
basement membrane; the outermost layer is formed by foot processes of epithelial cells
connected by thin slit diaphragms (labeled "SD").

fenestrae have no diaphragm (Abrahamson, 1987; Avasthi and Koshy, 1988; Farquhar,

1981; Levick and Smaje, 1987). In his review, Ryan (1986) states that diaphragms are

absent in most species, while Kanwar and Venkatachalam (1992), in their review, state

that the diaphragms are present at early age but disappear with further maturation.

The most detailed study of the three-dimensional structure of the endothelial cells

seems to be that of Lea et al. (1989), who proposed that the fenestrae are channels of

circular cross-section with varying radii (Figure 1.4). The observed frequency of the

fenestrae was ~70 per pgm2 of total surface area of the capillary wall. At the luminal or

contraluminal surfaces of the endothelial cells about 83% of the surface area of the

basement membrane is exposed, whereas in the plane corresponding to the minimum

pore diameter (-60 nm), only - 20% of the glomerular basement membrane is exposed.

Different shapes for the fenestrae have also been suggested (e.g., octagonal (Maul, 1971)

and oval (Kondo, 1990)).
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Basement
membrane

Endothelium

Capillary lumen

Figure 1.4 - Schematic representation of the endothelium illustrating the shape of the
fenestrae proposed by Lea et al. (1989). Each fenestra has a circular cross-section. The
direction of filtrate flow is indicated by the arrows.

Although the role of the endothelial layer in glomerular filtration is not known

precisely, the possibility of contraction of the fenestrae and consequent changes in pore

size has been proposed as a means to control the permeability of the endothelium (Lea et

al., 1989). Nonetheless, the large dimension of the fenestrae and the results of tracer

studies (see below) suggest that the endothelial resistance to the filtration of water and

uncharged macromolecules may not be a significant fraction of the overall resistance of

the capillary wall.

It has been observed that the surface of the endothelial cells is covered by a rich

polyanionic "coat", forming a sparse fiber matrix lining the capillary lumen and filling

the fenestrae (Avasthi and Koshy, 1988). Sialoglycoproteins (namely podocalyxin),

heparan sulfate proteoglycans and hyaluronic acid have been identified in this coat

(Avasthi and Koshy, 1988; Horvat et al., 1986). Because of its anionic content, it is

possible that this fiber matrix is an important resistance to the filtration of negatively

charged macromolecules.
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1.2.2 GLOMERULAR BASEMENT MEMBRANE

The middle layer of the glomerular capillary wall is the glomerular basement

membrane (GBM), which consists of a network of fibers and apparently is divided into

three layers of different electron density and composition: the "lamina rara interna"

adjacent to the endothelium; a central dense layer (the "lamina densa"); and the "lamina

rara externa" adjacent to the epithelial cells. The fibers appear closely packed in the

lamina densa and loosely arranged in the lamina rarae, but it has been argued that this

three-layered arrangement might be an artifact of the tissue fixation procedure (Goldberg

and Escaig-Haye, 1986). Reported values for the diameters of the various "fibrils" (also

called "cords") composing each layer range from -2 to -10 nm (Farquhar, 1981; Ionue,

1989; Kanwar and Venkatachalam, 1992; Kubosawa and Kondo, 1985; Laurie et al.,

1984; Takami et al., 1991). Reported values for the total thickness of the basement

membrane range from -100 nm to -300 nm (Abrahamson, 1987; Kondo, 1990, Larsson

and Maunsbach, 1980; Ryan, 1986, Takami et al., 1991).

There are several reviews on the chemical composition and architecture of

basement membranes in general and glomerular basement membrane in particular

(Abrahamson, 1987; Farquhar, 1981; Ionue, 1989; Kanwar and Venkatachalam, 1992;

Yurchenco and Schittny, 1990). The major components of the glomerular basement

membrane identified thus far include type IV collagen, laminin (a sialoglycoprotein) and

heparan sulfate proteoglycans (Abrahamson, 1987; Kanwar and Venkatachalam, 1992;

Laurie et al., 1984). Other glycoproteins, such as entactin, nidogen and fibronectin, have

also been identified in the basement membrane. It has been suggested that the anionic

nature of the glomerular basement membrane is mainly due to the presence of

proteoglycans, of which heparan sulfate proteoglycan seems to be the most abundant

(Abrahamson, 1987), and that the anionic groups of the GBM are important for the

charge selectivity of the glomerular capillary wall (Kanwar and Farquhar, 1979).
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Smaller amounts of other anionic compounds such as chondroitin sulfates and hyaluronic

acid are also present in the basement membrane (Abrahamson, 1987; Rosenzweig and

Kanwar, 1982). The precise location of all these components within the glomerular

basement membrane is still a matter of debate. While some investigators localize

collagen, laminin and proteoglycans in all three layers (Abrahamson, 1987; Ionue, 1989;

Laurie et al., 1984) others suggest that some components are present in only one or two

layers (Abrahamson, 1987; Farquhar, 1981). The architecture of the various fibrils is

also not known precisely. Kubosawa and Kondo (1985) observed that in the lamina rarae

the fibrils are interconnected, forming a three-dimensional meshwork, whereas Laurie et

al. (1984) and Takami et al. (1991) observed that the fibrils in these layers are oriented

approximately perpendicular to the surface of the endothelial and epithelial cells. The

lamina densa has been described as being composed of closely packed particles

(Kubosawa and Kondo, 1985) or fibrils (Laurie et al., 1984), or composed of fibrils

arranged in a polygonal meshwork (Takami et al., 1991).

Methods have been developed that allow the isolation of basement membranes

and the subsequent study of their functional properties. Usually, the isolated membranes

are placed in ultrafiltration cells and consolidated under pressure to form a layer whose

filtration properties are subsequentely studied. These studies have the advantage of

eliminating the effects of the endothelial and epithelial layers, but it has been argued that

the isolation procedures may destroy some important characteristics of the original

membrane (Farquhar, 1981).

It has been observed that films prepared from fragments of tubular and

glomerular basement membranes (with > 80% of GBM) behave as compressible

ultrafilters and show size-dependent rejection of proteins (Robinson and Walton, 1989).

Concentration polarization phenomena were believed to occur when solutions containing

large proteins were filtered (Robinson and Cotter, 1979; Robinson and Walton, 1987,

1989). Experimental determination of the solid volume fraction () of the isolated films
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yielded = 0.1 (Robinson and Walton, 1987). Estimates of and fiber radius (r)

obtained by fitting experimental results to the "fiber matrix model" of Curry and Michel

(1980) (see Section 1.3.2), yielded q ~ 0.1 - 0.2 and r - 0.75 - 1.7 nm (Robinson and

Walton, 1987, 1989).

Experiments with films containing > 95% of glomerular basement membrane,

albumin solutions at physiological concentrations, and using filtration pressures close to

physiological values, have shown that the hydraulic permeability of the basement

membrane is -5 times larger than values reported for in vivo glomerulus (Daniels et al.,

1992). Furthermore, measured sieving coefficients of albumin (0 0.1) were much larger

than values commonly reported for in vivo glomerulus ( < 0.001; Maddox et al., 1992).

Therefore, it was concluded that the cellular components of the capillary wall must

represent a major contribution to the resistance to the filtration of water and

macromolecules.

1.2.3 EPITHELIAL FOOT PROCESSES AND SLIT DIAPHRAGMS

The third layer of the glomerular capillary wall is formed by the "pedicels" or

"foot processes" of the glomerular epithelial cells. Although there are focal regions of

contact between adjacent foot processes, in general the narrow gaps between them are

spanned by thin, porous diaphragms (the slit diaphragms). Schnabel et al. (1990)

identified a tight junction protein known as ZO-1 in the slit diaphragms but the exact

composition of the diaphragms is not known yet (Schnabel et al., 1990; Kanwar and

Venkatachalam, 1992).

The structural details of the slit diaphragms are still in dispute. Figure 1.5 shows

the structure originally proposed by Rodewald and Karnovsky (1974). It consists of a

central filament (-110 A in diameter), parallel to the surfaces of the foot processes,

which is connected to the foot processes by alternating cross-bridges (-70 A in diameter)
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Figure 1.5 - Schematic representation of the epithelial slit diaphragm, as suggested
Rodewald and Karnovsky (1974). The reported dimensions of the pores between cross-
bridges are 40 x 140 A.

on either side. Recently, it has been argued that this type of structure (the "zipper"

configuration) might be an artifact of tissue fixation. Hora et al. (1990) and Ohno et al.

(1992) studied the structure of the slit diaphragm by quick-freezing methods. They

argued that when the glomerular tissue is fixed using the method of Rodewald and

Karnovsky (1974) (which employs tannic acid, glutaraldehyde and osmium tetroxide),

there is contraction of the foot processes which induces artifacts in the structure of the

slit diaphragm. They proposed that the slit diaphragm has mainly a non-porous structure,

consisting of "sheet-like substructures with the space between the foot processes being

occluded by uniform components." (Hora et al., 1990). These structures were the most

abundant structures seen in fresh unfixed glomeruli. In glomeruli fixed with

paraformaldehyde and glutaraldehyde, Hora et al. (1990) observed these "sheet-like"
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structures as well as "ladder-like" structures, "in which cross-bridges were formed

between the foot processes". Zipper structures were also seen in parts of the diaphragm.

The zipper configuration has also been reported by Kubosawa and Kondo (1985), who

used a quick-freeze deep-etch replica method and reported transverse fibrils -6-8 nm

thick, and by Kondo (1990), who used an embedement-free sectioning method and

similar fixatives to Rodewald and Karnovsky and saw transverse fibrils -14-20 nm thick.

Reported values for the width of the slit channels range from - 20 to - 80 nm

(Furukawa et al., 1991; Larsson and Maunsbach, 1980; Ohno et al., 1992; Rodewald and

Karnovsky, 1974; Ryan, 1986; Webber and Blackbourne, 1970) comprising - 9 - 20%

(Furukawa et al., 1991; Rodewald and Karnovsky, 1974; Shea and Morrison, 1975) of

the peripheral glomerular capillary surface area.

Although there is still great controversy about the role of the epithelial cells and

slit diaphragms, it has been suggested that the filtration slits are likely to be important in

controlling the hydraulic permeability of the glomerular capillaries (Ryan, 1986; Shea

and Morrison, 1975). In addition, the small dimensions of their pores (see Figure 1.5)

suggests that they probably are an important resistance to the transport of plasma proteins

(Rodewald and Karnovsky, 1974; Shea and Morrison, 1975).

It has been observed that the epithelial cells can undergo pronounced

morphological changes in association with marked alterations in glomerular function,

suggesting that this layer is important for the overall performance of the glomerulus. For

example, dramatic changes in the foot processes have been reported in proteinuric

animals (Bridges et al., 1991; Fries et al., 1989; Messina et al., 1989; Miller et al., 1990;

Olson et al., 1981; Ryan et al., 1975) as well as in nephrotic humans (Guasch et al., 1991,

1992, 1993; Shemesh et al., 1986). Specifically, these changes include "fusion" of foot

processes, with consequent reduction in the frequency of filtration slits and, in some

animal models, displacement of foot processes and diaphragms, and stacking of

diaphragms.

28



The surface of the epithelial cells is covered with a thick anionic coat, the

glycocalyx, rich in sialoglycoproteins, the most abundant being podocalyxin (Kerjaschki

et al., 1984). Latta et al. (1975) suggested that the glycocalyx also extends over the

filtration slits and that it represents an additional size and/or charge selective barrier in

glomerular filtration. There is some evidence suggesting that the sialoglycoproteins

contribute in part to the charge selectivity properties of the glomerular capillary wall and

that the glycocalyx seems to be essential for the maintenance of the normal morphology

of the foot processes (Kanwar and Venkatachalam, 1992; Schnabel et al., 1989).

1.2.4 ULTRASTRUCTURAL TRACER STUDIES

The main purpose of ultrastructural tracer studies is to identify which layer of the

glomerular capillary wall is mainly responsible for the retention of plasma proteins (e.g.

albumin) in the blood stream. These studies involve the injection of a suitable

macromolecular tracer followed by tissue fixation and tracer detection by electron

microscopy. If the tracer is held up at a certain level of the glomerular capillary wall, it

is concluded that the main barrier to the tracer is present at that level. There is

considerable debate over the results of these studies. In general, because uncharged

macromolecules are not held up upstream from the fenestrae, no size barrier is attributed

to the endothelial cell layer. However, while some investigators attribute the main

resistance to the lamina densa of the basement membrane, others consider that the

epithelial slits are the principal size barrier (reviews in Farquhar (1981); Kanwar and

Venkatachalam (1992) and Ryan (1986)). This controversy might be due to the different

nature of the tracers employed and to the different experimental conditions.

There is considerable evidence that the anionic nature of the capillary wall is

essential for normal glomerular function. In particular, loss of negative charges is

believed to be associated with some forms of proteinuria. There have been efforts to
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determine which layer(s) of the wall is(are) mainly responsible for its charge selectivity

properties but, once again, no common agreement has been reached. Here there is an

additional problem because some cationic tracers may have nephrotoxic effects (Ryan,

1986). It seems reasonable to suppose that the anionic coat of the endothelial cells and/or

the anionic groups of the glomerular basement membrane are probably the most

important charge barriers of the glomerular capillary wall.

1.2.5 CONCLUDING REMARKS

Although the microstructure of the glomerular capillary wall has been

characterized in fairly good detail, it is still a matter of debate which layer(s) is(are)

mainly responsible for its water flow resistance as well as its size and charge selectivity.

Much of the existing information seems to support the view that the endothelium is not a

significant barrier to the filtration of water and uncharged macromolecules, whereas it

appears that the epithelial slits and the glomerular basement membrane may both be

important barriers.

Mathematical models are needed to critically evaluate current hypotheses on the

relationship between glomerular morphology and glomerular barrier function, and to

suggest directions for further investigation. The next section reviews the existing

mathematical models of glomerular filtration. As will be seen, the existing models are

not well suited to the task of relating morphology to function.

1.3 PREVIOUS THEORETICAL MODELS OF GLOMERULAR

FILTRATION

In general, mathematical models of glomerular filtration have been used to:
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* Characterize the properties of the glomerular capillary wall by computing

parameters such as the ultrafiltration coefficient, the pore radius (if the capillary

wall is assumed to be perforated by pores), the concentrations of fixed negative

charges, etc.

* Predict the outcome of experiments in which one or more variables are

changed, in an attempt to find which variables are the most important

determinants of glomerular filtration.

* Calculate filtration pressures from sieving or clearance data. This is an

attractive application of the theoretical models since in humans it is not possible

to perform micropuncture experiments.

A brief review of recent models of glomerular ultrafiltration and glomerular

permselectivity is presented next.

1.3.1 MODELS OF GLOMERULAR ULTRAFILTRATION

The water flux (volume flux) across the wall of the glomerular capillaries, J,, is

usually described by the Starling equation

Jv = k(AP - aAx) (1.1)

where AP is the hydraulic pressure difference; Ax is the osmotic pressure difference; k is

the hydraulic permeability of the capillary wall; and ao is the osmotic reflection

coefficient. The osmotic pressure in the capillary lumen, x,, is mainly due to the plasma

proteins, which are normally retained in the blood stream. Thus, a o 1 and equation

(1.1) can be simplified to

Jv = k(AP - 0G )- (1.2)
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The osmotic pressure, 7t,G can be related to the plasma protein concentration, c,

by empirical relations (Chang, 1980; Deen et al., 1972; Du Bois et al., 1974; Lambert et

al., 1982). An expression which is commonly used is

n o = a c + a2c2 (1.3)

where al = 1.629 mm Hg/(g/dl) and a2 = 0.2935 mm Hg/(g/dl)2 (Deen et al., 1972).

The water flux, Jv, is a function of position along the capillaries. The filtration of

water causes an increase in the plasma protein concentration (and thus in %IG) with axial

position, thus leading to a decrease in Jv. A simple steady-state material balance yields

dQ= -SJv, (1.4)
dx

where Q is the plasma flow rate per glomerulus and x is the normalized axial position in

the capillaries (x = 0 at the afferent end and x = 1 at the efferent end). Note that implicit

in equation (1.4) is the assumption that the glomerular network is made of identical

capillaries in parallel, an assumption that has been justified by Remuzzi and Deen (1986).

Besides a relationship between nEG and c, the integration of equation (1.4) requires the

specification of AP and a material balance for the plasma proteins. The hydraulic

pressure in Bowman's space, P,, is commonly assumed constant and the pressure drop

inside the capillary has been predicted to be small (-3% of pressure at the afferent end

(Huss et al., 1975; Lambert et al., 1982)), so that most models assume that AP is

constant. Neglecting axial diffusion and radial variations of protein concentration - a

reasonable assumption, as proved theoretically by Deen et al. (1974) - the material

balance for plasma proteins is
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d(Qcp) 0. (1.5)
dx

The integration of equations (1.4) and (1.5) leads to mathematical relations that

allow the calculation of K (K - kS, where S is the surface area per glomerulus) from

micropuncture data (i.e., QA, the afferent plasma flow rate; CPA and cpE, the afferent and

efferent protein concentrations, and AP) (Deen et al., 1972, 1973). Together with

estimates of S (Pinnick and Savin, 1986; Maddox et al., 1992), it is then possible to

determine the hydraulic permeability of the glomerular capillary wall (k).

1.3.2 MODELS OF GLOMERULAR PERMSELECTIVITY

There have been considerable advances in the theoretical description of

glomerular permselectivity. For a given "test" solute, the steady-state mass balance along

a capillary is

d(eCs) d( = SJ (1.6)
dx

where cs is the solute concentration in the capillary lumen and Js is the solute flux across

the glomerular capillary wall. Note that, like equation (1.5), equation (1.6) neglects axial

diffusion, uses radially averaged concentrations, and treats the capillary network as a set

of identical capillaries in parallel. The latter assumption has been justified by Remuzzi

and Deen (1989).

To integrate equation (1.6), one needs to find a suitable expression for the solute

flux, Js. A possible approach to calculate Js for a single solute is based on the principles
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of non-equilibrium thermodynamics and makes use of "phenomenological coefficients",

as proposed by Kedem and Katchalsky (Chang, 1980; Chang et al., 1975; Kedem and

Katchalsky, 1958). While this approach does not require any assumptions about the

nmicrostructure of the capillary wall, it has had limited application because the solute

reflection coefficient and diffusive permeability need to be determined experimentally

for each solute of interest. Alternatively, the solute flux can be calculated by first

proposing an idealized model for the glomerular capillary wall. A simple approach that

has been widely used consists of assuming that the capillary wall is a membrane

perforated by a homogeneous population of cylindrical pores of radius r. Since the

length of the pores, e, is usually much larger than r, it is possible to neglect "end

effects" and assume fully developed flow inside the pore. In this "isoporous model", J is

simply given by

is = -fKdD + KcJv c (1.7)
dz

where c is the radially averaged solute concentration inside the pore; z is the axial

distance along the pore; D. is the solute diffusion coefficient in an unbounded medium;

f is the fraction of the capillary area occupied by the pores; and K, and Kd are,

respectively, hindrance coefficients for convection and diffusion, both averaged over the

cross-section of the pore as described in Deen (1987). Hindrance coefficients quantify

the hydrodynamic interactions between the solute particles and the pore walls: hindrance

coefficients for diffusion are related to the increased hydrodynamic drag at the particle

surface relative to that in an unbounded medium, whereas hindrance coefficients for

convection are related to the fact that the local velocity of a neutrally buoyant particle

inside the pore is smaller than the unperturbed fluid velocity at the same radial position.

Most equivalent pore models of glomerular filtration have used "centerline
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approximations", in which Kc and Kd are replaced by the local values of the hindrance

coefficients at the centerline of the pore (Deen et al., 1980, 1985; Deen and Satvat, 1981;

Remuzzi and Deen, 1989).

The function c = c (z) in steady-state can be determined by solving a material

balance for the solute,

d= 0, (1.8)
dz

which, combined with equation (1.7), leads to

(1.9)dC d2c
d; d;: '

where Pe is a Peclet number defined by

(1.10)Pe= KcJV
JKdD_

and (= z/ ) is a dimensionless pore axial distance. Assuming equilibrium at the

entrance and exit of the pore, the boundary conditions can be written as

c = cs at = 0

(1.11)

C = Cs at = 1,
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where CsB is the solute concentration in Bowman's space and · is the equilibrium

partitioning coefficient, equal to (1 - r/ro)2 for neutral spherical particles of radius r in

cylindrical pores of radius r. In equilibrium, the "effective" concentration inside the

pore is smaller than that in the bulk solution (i.e., < 1) because the center of the

particles cannot sample positions closer than r from the pore wall (steric exclusion

effect).

With regard to the calculation of CSB, different approaches have been used. While

some models assume that csB is independent of x (Chang, 1980; Chang et al., 1975), Deen

et al. (1980) argued that Bowman's space is unlikely to be well mixed and that csB should

be calculated at each axial position, x, by (Deen et al., 1980; DuBois et al., 1975)

Js
Css = · (1.12)

Jv

In this case, integration of equation (1.9) leads to

is (1KJKvc (1.13)

Equation (1.6) can then be integrated, allowing the calculation of the sieving coefficient,

0, which is given by

CSA CSA(V)
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where CSA is the solute concentration at the afferent end of the capillary and the brackets

indicate axially (x) averaged quantities.

The definition of Pe in equation (1.10) involves two parameters,f and e, which

can be related to the ultrafiltration coefficient by assuming Poiseuille flow in the pores.

With this assumption, the expression for Pe becomes (Deen et al., 1985):

Pe = K) (1.15)

where g is the viscosity of the ultrafiltrate.

Thus, only two parameters, K and r, are needed to characterize glomerular

filtration using this equivalent pore model. It is possible to compute Kf from

rmicropuncture data, as described in the previous section, and to determine r from

fractional clearance data for exogeneous test macromolecules. Although this model is

attractive because of its simplicity, it is clear from fractional clearance studies using

dextrans that this "isoporous" representation of the glomerular capillary wall is

inadequate for molecules with r > -45 - 50 A (Deen et al., 1985, Myers et al., 1982).

That is, the fractional clearance results do not show a sharp cut-off in filtration beyond a

certain molecular size, as would be expected from an isoporous membrane. As can be

inferred from Figure 1.2, the recent results obtained using Ficoll (Oliver et al., 1992) also

suggest that an isoporous model of the capillary wall is inadequate.

There have been several attempts to describe the glomerular capillary wall in a

more accurate way. One approach involves the assumption of a continuous distribution

of pore radii: lognormal, normal and gamma distributions have been used (Deen et al.,

1985, Remuzzi and Deen, 1989; Oliver et el., 1992). The existence of two populations of

pores of different radii has also been proposed (Deen et al., 1985; Myers et al., 1982).
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Another approach was to assume that the capillary wall has a large number of pores of

uniform radii and a small number of large, non-selective pathways. This model, referred

to as the "isoporous-with-shunt" model, represents an attempt to explain the presence of

small amounts of very large macromolecules in Bowman's space (Deen et al., 1985;

Remuzzi and Deen, 1989; Oliver et el., 1992). A recent approach, the "lognormal-plus-

shunt" model, consisted of adding a shunt to a lognormal distribution of pore sizes

(Oliver et al., 1992).

A different approach, suggested by the fibrous nature of the glomerular basement

membrane, would be to assume that the glomerular capillary wall is composed of a

random network of fibers. Curry and Michel (1980) developed a "fiber matrix model"

based on the Carman-Kozeny equation and on the theory of partitioning and diffusion of

Ogston and co-workers (Ogston, 1958; Ogston et al., 1973). This model has been

applied to the interpretation of filtration data obtained with isolated films of renal

basement membranes (Robinson and Walton, 1987, 1989) and basement membranes of

Englebreth-Holm-Swarm (EHS) mouse sarcoma (Katz et al., 1992). It has also been

used to predict the hydraulic and solute permeabilities of the endothelial glycocalyx

(Levick and Smaje, 1986). However, this model completely neglects the hydrodynamic

interactions between permeating solutes and fibers and uses a questionable

approximation to calculate the filtration reflection coefficient. A more rigorous approach

to describe hindered transport in fibrous media has been developed by Phillips et al.

(1989), who described the fibers as fixed periodic arrays of spheres and calculated

hindered transport coefficients using a detailed hydrodynamic model. For small solid

volume fractions ( < -0.1) the results compared favorably with an "effective medium"

approach based on Brinkman's equation (Brinkman, 1947).

There is experimental evidence that the glomerular capillary wall contains fixed

anionic charges (Section 1.2) and this fact must be taken into account when modeling

transport of charged molecules. There are only a few theoretical models for glomerular
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filtration of charged particles. One approach was to assume that the glomerular capillary

wall contains a uniform concentration of fixed anionic charges, cm (Deen and Satvat,

1981; Deen et al., 1980). In an extension of this model, the glomerular capillary wall

was modeled as three layers in series (corresponding to the lamina rara interna, lamina

densa and lamina rara externa) each characterized by its own pore size and fixed charge

concentration (Van Damme and Prevost, 1985). Wolgast and Otjeg (1988) developed a

"gel model" to describe osmotic flow through the capillary wall. However, the physical

basis of this model is highly questionable since the integrity of a hydrogel, when in

contact with a protein solution, is attributed entirely to a gel swelling pressure generated

by the fixed negative charges in the gel. The main objection to this model is that it

completely neglects the fact that a gel in solution tends to swell by absorption of the

surrounding solvent, leading to the development of forces associated with tension in the

fibers (Flory, 1953).

1.3.3 CONCLUDING REMARKS

In addition to their theoretical interest, mathematical models of glomerular

filtration are important tools in the quantitative analysis of experimental data. Although

the existing models have been applied with appreciable success to the interpretation of a

variety of experimental results, they are not accurate enough for some important

applications (e.g., to estimate filtration pressures from sieving data (Maddox et al.,

1992)) and are not capable of simulating a number of experimentally observed situations

(e.g., to predict the effects localized changes in the structure of the glomerular capillary

wall). To obtain an accurate mathematical representation of the glomerular filtration

process, some of the restrictive assumptions of the existing models must be relaxed.

Two important classes of assumptions are common to all models of glomerular

filtration. They concern:
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* the time-dependent nature of glomerular filtration (i.e., the pulsatility of blood

pressure and flow);

* the microstructure of the glomerular capillary wall.

Implicit in all models described above is the use of time-averaged quantities. In

other words, the pulsatility of the blood pressure and flows in the glomerulus has always

been neglected and steady-state equations used. This assumption, which has never been

critically addressed before, is the focus of the analysis described in Chapter 2.

Perhaps the most over-simplified assumptions of the existing models of

glomerular filtration concern the structure of the capillary wall. Most models assume

that the capillary wall behaves as an equivalent membrane with cylindrical pores.

However, it is clear from Section 1.2 that the glomerular capillary wall does not resemble

a membrane with straight pores. In fact, its ultrastructure is highly anisotropic. As a

result of their lack of structural detail, the existing models are not capable of predicting

the effects of local changes in the morphology of the capillary wall. Therefore, a more

realistic approach, one considering the ultrastructure of the capillary wall, is clearly

needed. This is the focus of Chapters 3 through 6.

40



CHAPTER 2

ANALYSIS OF PULSATILE PRESSURES AND
FLOWS IN GLOMERULAR FILTRATION

2.1 INTRODUCTION

The pulsatility of the glomerular capillary hydraulic pressure (PG) has been well

established for some twenty years, since the first application of the servo-null pressure

technique to the Munich-Wistar rat (Brenner et al., 1971). Glomerular pressure tracings

are routinely recorded by numerous investigators, although the waveforms are rarely

discussed or reproduced in publications. Representative examples of pressure waveforms

recently measured in a normal euvolemic rat are shown in Figure 2.1. The tracing for PG

closely resembles that for the systemic arterial pressure (PF, femoral artery), although of

course with a different mean value and amplitude. Now shown in Figure 2.1, but evident

in the original simultaneous tracings for PG and PF, is that the glomerular capillary and

arterial pressure pulses are exactly in phase. The pressure at the venous end of an

efferent arteriole (PE) has greatly attenuated pulses, and the proximal tubule pressure (Pt)

is almost constant (on the time scale of a few cardiac cycles). Representative mean

values and amplitudes of the various pressures are shown in Table 2.1. Because the

amplitude of the pulses in P is negligible, the glomerular transcapillary hydraulic

pressure difference, AP = PG - PT, has an amplitude similar to that of Pa, :10 mm Hg.

Mathematical models for the glomerular filtration of water and macromolecules

(Chang, 1980; Chang et al., 1975; Deen et al., 1985; Deen et al., 1972; Deen et al., 1974;

Deen et al., 1980; DuBois et al., 1975; Huss et al., 1975; Lambert et al., 1982; Remuzzi

and Deen, 1986; Remuzzi and Deen, 1989) have found extensive application in the

interpretation of renal micropuncture and clearance data. As mentioned in Chapter 1,
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Figure 2.1 - Pressure waveforms measured in the femoral artery (PF), glomerular
capillary (Pa), efferent arteriole (PE), and proximal tubule (PT) of a normal euvolemic
Munich-Wistar rat (S. Anderson, personal communication). The tracings for PF and Pa
also show time-integrated mean values.
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Table 2.1 - Representative Hydraulic Pressures in the Rat

Amplitude
(mm Hg)

Mean
(mm Hg)

Femoral artery (PF)

Glomerular capillary (PG)

Efferent arteriole (PE)

Proximal tubule (PT)

120

48

22

12

such models are needed to calculate the value of the ultrafiltration coefficient (Kr) from

measured pressures and flows, and to obtain pore-size parameters from the fractional

clearances of test molecules such as dextran. Accurate models are indispensable in

characterizing the effects of a given experimental maneuver or disease state on the

intrinsic permeability characteristics of the glomerular capillary wall. All previous

models of glomerular filtration use some form of steady state mass balance, and contain

only time-averaged pressures, flows, and concentrations. The assumption has been that

steady state equations with time-averaged input quantities will accurately simulate the

time-averaged behavior of the glomerulus, but this supposition has never been critically

examined.

The relatively fast and high amplitude pulses in AP provide cause for concern

over the validity of steady state models. With a typical afferent oncotic pressure () of

-20 mm Hg in the rat, the time-averaged net ultrafiltration pressure, AP - ,G declines

from -15 mm Hg at the afferent end of a capillary to at most a few mm Hg at the efferent

end. Thus, the ±10 mm Hg variations in AP over each cardiac cycle are expected to

cause a large percentage change in the net pressure for filtration, enough even to reverse
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the transmembrane flux at the more efferent locations along a capillary during part of a

cycle. Because the coupled differential equations which describe plasma flow rates,

protein concentrations and solute concentrations along a glomerular capillary are

nonlinear, the effects of pulsatile pressures (and flows) are not necessarily negligible.

That is, the usual steady state equations cannot be obtained from a more accurate set of

time-dependent equations by formally averaging all quantities over time. To address

these concerns, we describe here a model with pulsatile pressures and flows, and use this

model as a standard in evaluating the suitability of previous steady state formulations.

2.2 MATHEMATICAL MODEL

MODEL GEOMETRY. As with most previous models mentioned in Chapter 1, the

glomerular capillary network is represented as a number of identical capillaries (of length

L) in parallel. As shown in Figure 2.2, the total concentration of impermeant plasma

proteins (cp) and the concentration of some tracer solute (cs) in the capillary lumen are

both assumed to depend on axial position (x) as well as time (t). The effects of a

distribution of capillary dimensions in the glomerular network (Remuzzi and Deen, 1986;

Remuzzi and Deen, 1989) and of concentration variations over a given lumenal cross-

section (Deen et al., 1974) have been shown to be minor. The capillary wall is treated as

an equivalent membrane, consisting of a rigid matrix perforated by cylindrical pores of

length . Axial position along a pore is denoted by z, and the solute concentration

within a pore is given by C. The solute concentration at the Bowman's space side of the

membrane, CsB, is assumed to be determined by the fluxes of water and solute from

nearby pores (Deen et al., 1980), and therefore depends on both x and t.

We will refer frequently to quantities which are averaged over one cardiac cycle

(of period to), and occasionally to quantities averaged over the length of a capillary. For

a given variable X, the time-averaged and length-averaged values are denoted by X and
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Figure 2.2 - Schematic representation of a portion of the glomerular capillary wall.

(X), respectively. The averages were calculated from

11+1o

X=- Xdt
to

(X) =- Xdx.Lo

In all calculations of X, t was chosen to be sufficiently large to give a "steady-periodic"

variation of X with t (see Section 2.3).

VOLUME FLUX. With the assumption of a rigid membrane, the volume flux Jv

from capillary lumen to Bowman's space can be described by the usual Starling relation,
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Jv =k(AP - G( )

where k is the effective hydraulic permeability. (Because the final equations to be solved

involve only the product SJv, where S is the total "membrane" surface area per

glomerulus, in this chapter, the important parameter for water filtration is Kf = kS.) The

local oncotic pressure 7rG is related to the plasma protein concentration (cp) by equation

(1.3), that is,

tG = a1cp + a2cp. (2.2)

The oscillations in AP, causefd by the pulsatility of PG, are approximated by

AP = AP(1 + acos 2 t) (2.3)

where a is a dimensionless amplitude (fraction of AP) and the dimensionless time

variable is defined as = t/to. As discussed previously (Brenner et al., 1972), it can be

assumed to good approximation that AP is independent of x. While the simple harmonic

function given by equation (2.3) does not exactly represent the actual PG waveform in

Figure 2.1, it is reasonable to expect that the key elements in pressure pulsatility are the

amplitude and frequency, and that waveform details are relatively unimportant.

SOLUTE FLUX. Conservation of solute at any position along a pore requires that

+ S- =0 (2.4)
at az

where Js is the solute flux based on the cross-sectional area of the pore. Under pulsatile
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conditions (acslat * 0), J is not necessarily independent of z, as it would be for a

steady state. However, it will be shown that the response time of a pore is sufficiently

fast, relative to the pulse time, that the usual steady state expression can be used for the

solute flux. That is, the time derivative in equation (2.4) is unimportant, so that the

solute concentration and flux in a pore are "quasi-steady."

The instantaneous, local solute flux is given

acJ=-KD , + KJ;c (2.5)

where D, is the solute diffusivity in bulk solution, and Kd and Kc are hindrance factors

for diffusion and convection, respectively (Deen et al., 1985). The volume flux based on

the pore cross-section, J;, is related to Jv by J = Jv/f, where f is the fraction of the

capillary surface occupied by pores. Substituting equation (2.5) into equation (2.4), and

introducing the dimensionless position variable = z/ge, we obtain

Pe ac; ac; ac;
Pe + g Pe ac s = (2.6)

Sr at a ag2

Pe = = ( c) (2.7)
fKdD 8KKdD..

Sr = KcJvtO to (2.8)
fe t,

Jvg = -. (2.9)
Jv

As described in Section 1.3, the second expression for the Peclet number, Pe, in equation

(2.7), involving the pore radius (ro) and the viscosity of the ultrafiltrate (g), follows from
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the assumption of Poiseuille flow in a pore (Chang et al., 1975; Deen et al., 1985). The

"new" dimensionless group is the Strouhal number, Sr, which is the ratio of the pulse

time (to) to the convective transit time for solute in the pore, t, = fe/(KJ v ). Both Pe

and Sr depend on solute size (through Kc, Kd and D ) and on position along a capillary

(through J).

The magnitude of Sr provides an indication of the importance of the time

derivative in equation (2.6). In particular, if Sr >> 1, the time derivative term will tend

to be negligible. When this is true, the solute concentration profile along a pore responds

almost instantaneously to changes in Cs or Jv. Under these quasi-steady conditions, the

remaining terms in equation (2.6) can be integrated to obtain c, and then Js = Js/f

= KJvcs (2.10)
s1 _ e-9 Pe (1 - KJ )

where is the equilibrium partition coefficient. As with K, and K., for neutral,

spherical macromolecules depends only on the ratio of solute radius to pore radius, r/r o

(Deen et al., 1985). In obtaining equation (2.10) we used the relations

C (x,O,t) = Cs (x,t) (2.11)

Cs (x,t,t) = 'cs (x, t) (2.12)

Cs, = s (2.13)
Jv

Equations (2.11) and (2.12) are based on the usual assumption that the pores are

sufficiently long to neglect mass transfer resistances associated with the pore ends (Keh,

1986). This is justified by the fact that the thickness of the basement membrane alone

(1000 A) greatly exceeds typical values of ro (-50 A). The basis for equation (2.13) has
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been discussed in Section 1.3.

Equation (2.10) is identical to solute flux expressions in previous steady state

models (equation (1.13)), except that Jv, cs, and the new quantity g are now functions of

time. As already mentioned, this quasi-steady result is expected to be valid for Sr >> 1.

For typical hemodynamic conditions in the rat, Sr declines from -300 at the afferent end

of a capillary to -30 at the efferent end; the dependence of Sr on solute size is relatively

weak for the sizes of main interest, 20 < rs < 50 A. To test whether Sr = 30 is sufficiently

large to obtain the quasi-steady result, we compared fluxes calculated from numerical

integration of the full time-dependent equation (equation (2.6)) with those obtained from

equation (2.10). Equation (2.6) was solved for Cs(5,x) for conditions representative of

the efferent end of a capillary, where Sr is smallest. The function g(T) and the upstream

boundary concentration Cs(0,) were assumed to be sinusoidal in time, as determined by

tile solution to the time-dependent luminal mass balance equations (see below). The

other boundary concentration, c(l,), was assumed constant for the purpose of these

tests. The solute flux Js (,') computed from equations (2.5) and (2.6) was found to be

practically indistinguishable from that obtained using the quasi-steady approach

(equation (2.10)). These results confirmed the validity of equation (2.10) for describing

solute fluxes across the glomerular capillary wall under pulsatile conditions.

MASS BALANCES FOR THE CAPILLARY LUMEN. Conservation equations are

needed to describe variations in plasma flow rate (Q), cp, and c with time and position

along a capillary. Neglecting concentration polarization and axial diffusion (Deen et al.,

1974), these equations can be written as

du SJvdu = v - (2.14)

amp +( = 0 (2.15)
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K s + a(u) SJs (2.16)
asr 0_171 QACSA

Dimensionless position along a capillary is denoted by rl = x/L. The dimensionless

plasma flow rate (u), protein concentration () and solute concentration () are all

expressed relative to values at the afferent end of a capillary: u = Q/QA, Up = Cp/cpA, and

's = C/CsA. The coefficient K is defined by

=t (2.17)
to

where t, is the mean residence time (transit time) for plasma in the capillary lumen.

Because Kc is not small (see Section 2.3), it is not possible to neglect the time derivatives

in equations (2.15) and (2.16), as was done for the analogous conservation equation for a

single pore (equation (2.6)). The absence of a time derivative in equation (2.14) depends

only on the assumption that the capillaries behave as rigid tubes; for a constant density

fluid in a rigid conduit, there is no possibility of any time-dependent accumulation of

total mass.

Although technical limitations have prevented measurement of plasma flow

oscillations at the single nephron level, the pulsatile pressures undoubtedly result in

oscillations of the afferent arteriolar plasma flow rate. We describe these in a manner

similar to the oscillations in AP (equation (2.3))

QA = Q [1 + 13 cos 2x( + )]. (2.18)

The new quantities in equation (2.18) are the dimensionless amplitude, 3, and the phase
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shift (relative to the pressure oscillations), 0.

The initial and boundary conditions used to solve equations (2.14) - (2.16) are

11=0 u = l+cos2x(+l 0 )

Op =1 (2.19)

Os =1

=O: U = 1+cos2r 0o
*p =1 (2.20)

Os = 1

Equation (2.19) follows directly from equation (2.18) and the definitions of u, Op, and As.

The initial state specified by equation (2.20) is entirely arbitrary, because our objective is

to simulate only the "steady-periodic" behavior of the glomerulus, in which all variables

experience repetitive cycles. Equation (2.20) serves only as a convenient condition for

starting the simulations; as will be shown, the system of equations soon "forgets" the

condition imposed at t = 0.

The equations were solved using a finite difference method adapted from the Lax-

Wendroff scheme (Press et al., 1986).

FILTRATION RATES. The single nephron glomerular filtration rate (SNGFR),

averaged over a cardiac cycle, was calculated from

SNGFR = QA [1 - (1)] . (2.21)

The time-averaged sieving coefficient of a given macromolecule is given by
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=(7s) (2.22)
CSA(JV)

For a macromolecular tracer which is not secreted or reabsorbed by the tubule, e would

equal the urinary fractional clearance.

FILTRATION REVERSAL. Given the relatively large amplitude of the oscillations

in PG and AP (Table 2.1), there are occasions when Tc, > AP, causing the direction of

filtration to reverse. Thus, at the more efferent locations along a capillary, there are

periods when Jv < 0 (equation (2.1)) and, concurrently, Js < 0. For consistency with the

underlying physical assumptions, we replaced equation (2.10) during filtration reversal

by

J = 1 tKJvSc (2.23)

Taken together, equations (2.10) and (2.23) yield sieving characteristics of the capillary

wall which are independent of the direction of transmembrane flow, as expected for a

porous membrane of fixed structure.

The only difficulty in applying equation (2.23) is in evaluating Cs8. Because

during filtration reversal Bowman's space is no longer "downstream," equation (2.13) for

cs8 is no longer valid. To develop an alternative approximation for Cs,, we note that at

each location where filtration reversal occurs, the amount of fluid filtered during the

preceding "forward flow" period can be computed. Considering that this fluid forms a

layer of thickness e,f it can be shown that f I< 0.8 gm, and that the characteristic time

for diffusional equilibration within this layer (e2 /D.) is less than 5% of the pulse period.

In other words, concentration variations in this fluid layer, in the direction perpendicular
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to the membrane, will tend to be minimal. Accordingly, we replaced CSB in equation

(2.23) by C, the average solute concentration computed for the period of forward

filtration (. < X < 12)

lJsd'
CSB = - (2.24)

P Jvd'

No modifications in the volume flux equation or the mass balance equations are needed

to accommodate periods of filtration reversal.

PORE STRUCTURE. For simplicity, most of the calculations assumed a single

population of pores of radius r. The size-dependent factors 4 , Kd and K, were

calculated as described previously (Deen et al., 1985). For comparison with this

"isoporous" model, we considered also an "isoporous with shunt" representation in

which, besides small pores of radius r, there exists a nonselective pathway which

permits free filtration of all sizes of molecules. To account for the contribution of the

shunt to the volume flux, Jv, it is necessary to replace equation (2.1) by

Jv = k(AP - n, ) + J (2.25)

where co is the fraction of the filtrate volume passing through the nonselective pathway.

While the driving pressure for filtration through the shunts, AP, is not a function

of axial position in the capillary, the driving pressure for filtration through the small

pores, AP - G, changes throughout the capillary. Therefore, o is not a constant.

However, the fraction of the filtrate volume that would pass through the shunts in the

hypothetical situation where tcG = 0 is solely a property of the capillary wall. Denoting

this fraction by o, w can be calculated by
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(A) 1=cl~ Al (2.26)

o o AP i t

where g. is the viscosity of plasma (Deen et al., 1985). We used %/[ = 1.6.

The contribution of the shunts to the solute flux, Js, is oJvCs and, thus, equation

(2.10) must be replaced by

Js = (1- co)J( _cK +(JvCs. (2.27)

Note that filtration through the shunt does not reverse, because the oncotic pressure is

assumed not to act across these large pores.

2.3 RESULTS

Unless noted otherwise, the results presented are for the isoporous representation

of the capillary wall. The input parameters used in most of the simulations are

summarized in Table 2.2. The values of AP, QA, cPA, K, and ro are all representative of

normal euvolemic Munich-Wistar rats. The pulse period (to) is based on a typical heart

rate in the rat of 5 s-' (see Figure 2.1), whereas the lumenal residence time (t) is a mean

value for the rat glomerulus estimated by Shea (1981). The relative amplitude for AP

was calculated from the values in Table 2.1: a = 10/36 = 0.28.

The relative amplitude and phase for QA ( and ;o) were also estimated from the

pressure data, as follows. The instantaneous plasma flow rate is related to the pressure
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Table 2.2 - Model Parameters for the Euvolemic Rat

Quantity

AP

QA

CPA

Kf

ro

to

t,

TO

Value

36 mm Hg

140 nl/min

5.7 g/dl

5.0 nl/(min.mm Hg)

50IA

0.2 s

0.4 s

0.28

0.14

O

drop across the afferent arteriole (APA) and the afferent arteriolar resistance (RA) by

QA= APA (2.28)
RA

Assuming that almost all of the pre-glomerular pressure drop occurs in the afferent

arteriole, APA = PF - Po. As already noted in connection with Figure 2.1, the oscillations

in PF and PG are in phase. It follows that APA can be approximated as

APA = APA (1 + Y cos 2 ) (2.29)
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where y is a relative amplitude for APA (analogous to a in equation (2.3)). If it is

assumed further that RA, is constant, equations (2.28) and (2.29) can be combined to give

QA =QA (1 + cos 2) (2.30)

where QA = APA/R,. A comparison of equations (2.18) and (2.30) then suggests that 1

= y and ;o = 0. From Table 2.1, = y = (20 - 10)/(120 - 48) = 0.14. In support of this

approach, we note that the phase shift between pressure and flow in the human renal

artery has been found to be approximately zero (Mills et al., 1970). Moreover, for

pulsatile blood flow in fine glass tubes, pressure and velocity variations are in phase

(Bugliarello and Sevilla, 1970).

Figure 2.3 illustrates the distinction between the "transient" and "steady-periodic"

behavior of a variable, in this case the luminal concentration of a solute with rs = 30 A.

The behavior of s = CJCSA is shown for two axial locations, near the afferent end of the

capillary ( = 0.2) and at the efferent end ( = 1). At either location, Os evolves from the

arbitrary initial value of unity to a pattern which is steady-periodic, or repetitive in time.

The evolution occurs more quickly for rl = 0.2 (because there is less change from the

initial value), but even for rT = 1 the initial transient is complete after about three pulse

periods ( - 3). Plasma flow rates and protein concentrations exhibited similar behavior.

Of interest is that varying t, (over a twenty-five-fold range) caused directionally similar

changes in the duration of the transient phase, but had no significant effect on the steady-

periodic results. By replacing equation (2.20) by various other initial conditions, we

confirmed that the steady-periodic solutions were independent of the flow and

concentration profiles specified at = 0. Time-averaged values over a cycle were

computed only when the root-mean-square difference in each of the variables (u, , s)

relative to the previous cycle was < 10-5.
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Figure 2.3 - Dimensionless solute concentration in capillary lumen (%) as a function of

time (X), at two axial locations (). The assumed molecular radius is 30 A, and other
quantities are as given in Table 2.2. "Steady-periodic" behavior is achieved for > 3.
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The time-dependent behavior of the volume flux, expressed in dimensionless

form as SJIQA, is illustrated in Figure 2.4. For clarity in this and Figures 2.5 - 2.8, X = 0

is redefined as the start of any steady-periodic cycle; thus, the complete steady-periodic

solution is illustrated for 0 < t < 1. As shown in Figure 2.4, filtration reversal (Jv < 0) is

predicted for the efferent end of the capillary over slightly less than half of each cardiac

cycle. At either axial position shown, Jv is nearly in phase with AP, which peaks at = 0

and = 1 (equation (2.3)). The reason there is a slight phase difference lies in the

behavior of the oncotic pressure term. As shown in Figure 2.5, the protein concentration

(expressed as p = ccPA) lags behind AP by about one-quarter cycle. The consequent

lag in sa is responsible for the slight phase shift in Jv.

The plasma flow rate (expressed as u = Q/QA) exhibits more interesting phase

behavior, as shown in Fiure 2.6. At ri = 0.2 the local plasma flow rate is essentially in

phase with QA and AP, whereas at Ti = 1 it is almost fully out of phase. These results

may be explained on the basis of two competing effects. Near the afferent end of a

capillary the plasma flow rate is controlled largely by conditions in the afferent arteriole,

so that it oscillates in phase with QA. Opposing this influence is the fact that peaks in Jv

(which are almost in phase with those in QA), increase the rate at which plasma flow

declines along a capillary. Thus, the pressure-induced oscillations in Jv tend to make the

plasma flow rate along a capillary completely out of phase with QA. As evidenced by the

results for rl = 1 in Figure 2.6, the latter effect has become dominant by the efferent end

of the capillary, for the parameter values used.

The competing influences of QA and AP on the efferent arteriolar plasma flow

rate (QE) can be seen more clearly by integrating equation (2.14) over the length of the

capillary. Expressed in terms of UE = QEIQA, the result is

58



1 nI .U

0.5

SJv

QA

0.0

0.0 0.5 1.0

T

Figure 2.4 - Variations in dimensionless transmural volume flux (SJv /QA) over a

cardiac cycle, at two axial locations. In this and Figures 2.5 - 2.8, X = 0 corresponds to

the beginning of any cardiac cycle, once steady-periodic behavior has been achieved.
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Figure 2.5 - Variations in dimensionless protein concentration (p) over a cardiac cycle,
at two axial locations.
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Figure 2.6 - Variations in dimensionless plasma flow rate (u) over a cardiac cycle, at two
axial locations.
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u =+F (ic +( -aF)cos2 x (2.31)

where F = Kf APQA . Although (G) also varies with time, the main contribution to

the oscillations in UE comes from the last term in equation (2.31). Thus, QE will tend to

be in phase with QA when P - aF > 0, and out of phase when P - aF < 0. For the

parameter values in Table 2.2, P - aF = -0.22. Accordingly, u at iT = 1 is out of phase

with QA, as shown in Figure 2.6.

Instantaneous solute concentrations next to the Bowman's space side of the

capillary wall (sB = CSB/CSA) are shown in Figure 2.7, again for rs = 30 A and rl = 0.2 or rl

= 1. In interpreting either curve, it is helpful to bear in mind that the instantaneous

sieving coefficient (downstream/upstream concentration ratio) varies inversely with I Jv I

. 'When volume flow ceases, the transmembrane solute concentrations quickly equilibrate

(c s = Css for Jv = 0). Thus, for TI = 0.2, 0SB reaches a maximum for _- 0.5 when Jv is at

its: minimum (recall Figure 2.4). Likewise, for rl = 1, ,SB exhibits similar (although more

exaggerated) trends near the beginning and end of a cycle. However, at Ti = 1, filtration

reversal begins at X = 0.27 and continues until = 0.69, and during this period Cs is

assigned the constant value determined by equation (2.24). At the two instants when Jv =

O, CSB = cs > CSA, which is why OsB exceeds unity.

Plotted in Figure 2.8 is the transmembrane solute flux computed for the same

conditions as in Figure 2.7. As expected from an inspection of equation (2.10), Js tends

to vary in parallel with J,. The main purpose of Figure 2.8 is to show that the computed

value of Js at 1 = 1 varies smoothly with time, despite the discontinuous nature of the

approximation used for Css (recall Figure 2.7). The mass balance equations are very

forgiving of possible errors in CSB at times when Jv - 0, because there is very little

transmembrane movement of solute at those moments.
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Figure 2.7 - Variations in dimensionless solute concentration in Bowman's space (B)
over a cardiac cycle, at two axial locations.
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Figure 2.8 - Variations in dimensionless solute flux (30 A molecular radius) over a
cardiac cycle, at two axial locations.
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The most significant quantities are the overall measures of the filtration process,

SNGFR and 0. To assess the possible errors in neglecting the pulsatility of AP and QA,

we compared results of the present model with steady state calculations, using the same

time-averaged input parameters. A steady state model equivalent to one reported

previously (Deen et al., 1985) was obtained by neglecting the time derivatives in

equations (2.15) and (2.16), setting AP = AP in equation (2.3), and setting u = 1 in

eq:uation (2.19). For the baseline conditions (Table 2.2), the pulsatile and steady state

values of SNGFR were identical to four digits (43.63 nl/min). Moreover, SNGFR was

found to be insensitive to the values chosen for a and P. For example, with a = 0.28 and

x, = 0, increasing 13 from 0 to 0.3 caused only a 0.2% change in SNGFR. Similarly,

changes in % had a negligible effect on SNGFR. These results imply that there will be

negligible error in using a steady state model to calculate Kf from measured values of

SNIGFR, QA, A, and cPA.

Theoretical sieving curves (0 vs. r) computed using the pulsatile and steady state

models are compared in Figure 2.9. For the smaller molecules, 0 is seen to be lower for

the pulsatile model by as much as 10%. The two curves cross at rs = 35 A, but there are

only very small differences between the curves for values of rs larger than that. To

assess the magnitude of the error in using the steady-state model to interpret fractional

clearance data, we treated the values of 0 obtained with the pulsatile model as if they

were a set of experimental data, and performed a least-squares fit of the steady state

model to these "data" (Remuzzi and Deen, 1989). The pore radius was adjusted to

minimize the following sum of squared errors

ei 2
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Figure 2.9 - A comparison of sieving curves computed using the pulsatile model and a
steady-state model, for an isoporous membrane and input parameters given in Table 2.2.
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where n is the number of molecular sizes considered, and 0i and 0 are the "true" and

calculated values of the sieving coefficient, respectively. As shown in Table 2.3, this

yielded a pore radius of 50.1 A. The tendency of the steady-state model to overestimate

i0 for small molecules was balanced by its tendency to underestimate for large

molecules, the result being that the best-fit pore radius was virtually identical to the

"true" pore radius.

The conclusions reached with the "isoporous with shunt" model were similar to

those already described for the isoporous model. The value of SNGFR obtained for

pulsatile conditions was again indistinguishable from that calculated using steady-state

mass balance equations (SNGFR = 44.06 nl/min for o = 0.01). The sieving curves

(Figure 2.10) were similar to those obtained with the isoporous approach (Figure 2.9),

except that 0 with a shunt remains greater than zero for rs > r. As shown in Table 2.3,

when the pulsatile model was used to generate "data", the fitted values of ro and 0o using

the steady state approximation were almost identical to the "true" values, for a wide

range of co. The most significant functional characteristic of the shunt is 0, which is

the sieving coefficient calculated for the largest molecules (where rs > ro). It is given by-(tvcs )
= () (2.32)

where the overbar in the numerator denotes the time-average of the product of the

quantities shown (not the product of the individual time-averages). As indicated in Table

2.3, the difference between the pulsatile and best-fit steady state values of 0.. was

negligible for all cases examined.

Also tested was the ability of the steady state model to accurately describe the

response of 0 to hemodynamic perturbations. To do this we compared the values of 0
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Table 2.3 - Effects of the Steady State Assumption on the
Values of Fitted Pore-Size Parameters

Pulsatile Model (a) Steady-State Model (b)

Membrane r t o 0 . r o 0.
Model (A) (A)

Isoporous 50.0 0 0 50.1 0 0

Isoporous 50.0 1.0x10-4 3.3x10 4 50.1 9.9x10-5 3.2x10 -4

with 50.0 1.0x10-3 3.3x10- 3 50.1 1.Ox10-3 3.3x10 -3

Shunt 50.0 5.0x10-3 1.6x10-2 50.0 5.1x10 -3 1.7x10-2

50.0 1.0x10-2 3.3x10- 2 49.8 1.0x10-2 3.3x10-2

(a) The values of ro and oo shown for the pulsatile model were used as inputs in generating "data"
to be fitted using the steady state model. Other inputs were as shown in Table 2.2.

(b) The values of ro and oo for the steady-state model were obtained via a least-squares fit to
the sieving curve generated using the pulsatile model.

obtained with the steady state model with those for the pulsatile model, when either AP

or QA were varied above or below their baseline levels given in Table 2.2. The results

for the isoporous model are shown in Figures 2.11 and 2.12. In general, the dependence

of 0 on QA and AP computed with the steady state model was very similar to that

obtained using the pulsatile model. The trends obtained with the shunt model were very

similar to those illustrated in Figures 2.11 and 2.12. We conclude that the steady state

approach is adequate for predicting the effects of hemodynamic perturbations on SNGFR

and 0.
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Figure 2.10 - A comparison of sieving curves computed using the pulsatile model and a
steady-state model, for an isoporous-with-shunt membrane with oo = 0.01. Other input
parameters were as shown in Table 2.2.
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Figure 2.11 - Effects of selective variations in mean transmural pressure (AP) on sieving
coefficient, computed using either the steady-state or pulsatile models. An isoporous
membrane was assumed, with effective pore radius of 50 A. Other parameters were as
shown in Table 2.2.
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Figure 2.12 - Effects of selective variations in mean afferent arteriolar plasma flow rate

(QA) on sieving coefficient, computed as described in Figure 2.11.
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2.4 DISCUSSION

The present study represents the first attempt to analyze the effects of pulsatile

pressures and flows on glomerular filtration. Previous modeling efforts directed at the

filtration of water and/or macromolecules have simply assumed that steady state mass

balance and flux equations, employing only time-averaged quantities, accurately describe

dynamic events in the glomerulus (Chang, 1980; Chang et al., 1975; Deen et al., 1985;

Deen et al., 1972; Deen et al., 1974; Deen et al., 1980; DuBois et al., 1975; Huss et al.,

1975; Lambert et al., 1982; Remuzzi and Deen, 1986; Remuzzi and Deen, 1989); no

particular justification for this assumption has been offered. The steady state assumption

was made especially questionable by the rapid and relatively large oscillations in AP (+

-:30% relative to AP), and by the nonlinear nature of the equaticns used to describe the

plasma flow rate, the protein concentration, and the concentration of test solutes along a

glomerular capillary. Our analysis suggests that solute concentrations within a

membrane pore should respond quickly enough to make the usual steady state flux

equations applicable, but that the previously ignored time derivatives in the lumenal mass

balance equations for protein and test solutes are not negligible.

It is largely fortuitous, then, that the steady state approach works very well.

Using the results of the pulsatile model as the standard, the steady state assumption

should lead to negligible errors in calculating K, r, and o0 from micropuncture and

fractional clearance data. The effects of hemodynamic perturbations on SNGFR or 

were also represented accurately by the steady state model. We conclude that the steady

state models are still useful tools for extracting membrane properties from micropuncture

and clearance data. Given its greater computational complexity, the modest increase in

accuracy offered by the pulsatile model would not appear to justify its routine

application.

Using the pulsatile model to assess the errors made in the steady state approach
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requires, of course, that the assumptions underlying the present formulation be valid.

Treating the glomerular capillary network as an array of identical capillaries in parallel,

neglecting concentration polarization, and representing the capillary wall as an equivalent

porous membrane, are features common to both the steady state and pulsatile

formulations. The simplified network representation and the neglect of concentration

polarization have been shown previously to cause little error in steady state models (Deen

et al., 1974; Remuzzi and Deen, 1986; Remuzzi and Deen, 1989), and we see no reason

to believe that these assumptions would be appreciably less accurate under pulsatile

conditions. It also seems reasonable to suppose that if we had used a more realistic

model of the capillary wall, one based on its ultrastructure (see Chapters 4 - 6), a

comparison between steady and pulsatile approaches would yield conclusions similar to

those obtained here. One new factor which had to be addressed is the mechanical

response of the capillary wall to pulses in AP. We assumed that the capillary wall

behaves as a rigid structure, so that the filtration surface area and pore structure do not

vary over a cardiac cycle. In support of this assumption, it seems likely that the

distensibility of a glomerular capillary is determined largely by the elastic properties of

the basement membrane. In the absence of specific data for the glomerulus, we used a

Young's modulus derived from data for tubular basement membranes (Welling and

Grantham, 1972). For oscillations of 10 mm Hg in AP, the change in capillary radius

predicted from this value was < +1%. Thus, it seems unlikely that there would be

significant changes in capillary radius during a cardiac cycle.2

2 At a given axial position along a capillary, alterations in the transmural pressure difference, which are
balanced by changes in the circumferential stress in the capillary wall, may lead to changes in the
capillary radius. For thin-wall elastic tubes, the condition of equilibrium between transmural pressure
and wall tension can be written as

dAP Et
dr R2

where E is the Young's modulus of the wall material and R is the tube radius (Welling and Grantham,
1972). Applying the integrated form of this equation to a glomerular capillary (with R _ 3 pm and et 
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Another new factor in modeling pulsatile pressures and flows was the need to

represent filtration reversal (fluid and solute absorption) in the more efferent portions of

a capillary during part of each cardiac cycle. This led to difficulty in identifying an

equation which governs CSB during filtration reversal. The main source of the difficulty is

that the geometric complexity of Bowman's space precludes writing a simple mass

balance equation for the test solute, one which would be analogous to equation (2.16).

As discussed in connection with equation (2.24), order of magnitude considerations

suggest that during filtration reversal CSB can be approximated by its average value during

the preceding period of forward filtration. To test the sensitivity of the results to this

approximation, we considered also two more extreme situations: Case A, setting CsB

(during reversal) equal to its maximum value during forward filtration; and Case B,

setting Cs8 (during reversal) equal to its minimum value during forward filtration. In all

cases the predicted fluxes qualitatively resembled those shown in Figure 2.8. The sieving

curve for Case B was visually indistinguishable from that shown for the pulsatile model

in Figure 2.9, while that for Case A was slightly lower, with a maximum difference of

8% for intermediate molecular sizes. We conclude that possible errors in the

approximation used for CSB are unlikely to have a material effect on our results.

Of the various input parameters, the only quantities which could not be derived

fairly directly from micropuncture or clearance data were the lumenal residence time (tr)

and the amplitude () and phase shift ( 0) of the oscillations in QA. As already noted in

connection with Figure 2.3, variations in the assumed value of t r affected primarily the

duration of the initial transient period in the simulations, the time required to achieve the

desired steady-periodic behavior of the solutions. The length of this transient period has

0.1 pm), and using an average of the values of E reported by Welling and Grantham (1972) for tubular
basement membranes (E = 8x10 6 dyne/cm 2 ), it can be shown that for changes in AP of ±10 mmHg, the

relative changes in capillary radius, AR/R, are ±0.005. In other words, the calculated change in R is only
±0.5%.
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little or no physiological significance, because of the artificial nature of the initial

conditions. The values chosen for 0 and were also found to be relatively unimportant.

Varying ;o and in various combinations over the ranges 0 < ' o < 1 and 0 < P < 0.3

affected SNGFR and 0 by <1% and <0.5%, respectively. The effects of oscillations in

AP, considered alone, tended to be larger than the effects of selective oscillations in QA.

While our main results were insensitive to and x, it is interesting to note that

for the baseline conditions of = 0.14 and o = 0 in the afferent arteriole, the analogous

amplitude ratio and phase shift computed for QE were 0.31 and 0.45, respectively. The

predicted amplitude ratio for QE may be compared with an independent estimate from the

pressures in Table 2.1. Assuming relations analogous to equations (2.28) - (2.30), the

amplitude ratio for the efferent flow is (10 - 1)/(48 - 22) = 0.35, in good agreement with

the value computed in the simulations. However, the original pressure tracings show that

there is no phase shift between the pressure pulses in the efferent arteriole and in the

glomerular capillaries. A possible explanation for this inconsistency is that the arteriolar

resistances may not be time-independent, as had been assumed in applying equation

(2.28).
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CHAPTER 3

STOKES FLOW THROUGH A SINGLE ROW OF
CYLINDERS BETWEEN WALLS: MODEL FOR

THE GLOMERULAR SLIT DIAPHRAGM

3.1 INTRODUCTION

During the ultrafiltration of blood in renal glomerular capillaries, the filtrate must

cross the slit diaphragm, which spans the slits between the epithelial foot processes of the

capillary wall. As was described in Chapter 1, the structural details of the slit diaphragm

are still in dispute. Figure 3.1 shows two possible configurations for the slit diaphragm.

The "zipper configuration" is the structure originally proposed by Rodewald and

Karnovsky (1974) (see Figure 1.5) and the "ladder configuration" is a simpler structure

based on observations of Hora et al. (1990). The main objective of the analysis presented

in this chapter was to determine the hydraulic permeability of the ladder and zipper

configurations of the slit diaphragm.

The study of viscous flow past cylindrical objects confined between parallel walls

has a long history. Hele-Shaw (1898) observed that, for flow around a single cylinder

with axis perpendicular to closely spaced walls, the streamlines resemble those for

inviscid flow around an infinite cylinder of the same radius. As described by Lamb

(1945), Stokes proved that when inertia is negligible and the channel width (2W) is small

compared with the cylinder diameter (2R) the equations of motion indeed reduce to a

potential flow equation. He neglected the component of the velocity perpendicular to the

walls (v,) and assumed that d 2v / x2 >> 2v, / dy or a 2v / aZ2 for i = y, z. His solution

is valid except near the cylinder, in a region of thickness O(W). In particular, his

76



"LADDER"

$2R

2Rc

2W

2Rc

28 2R
J·

2W

I

Figure 3.1 - Schematic representations of twc
diaphragm of renal glomerular capillaries.
observations of Rodewald and Karnovsky
motivated by the work of Hora et al. (1990).
indicated by the arrows at the bottom.

D possible configurations of the epithelial slit
The "zipper" structure is based on the

(1974), whereas the "ladder" structure is
The approaching flow is along the z axis, as

77

2L

2RS 28

"ZIPPER"

, 8IV



solution does not satisfy the no-slip boundary conditions at the cylinder surface.

Improvements on Stokes solution for WIR << 1 were made by Thompson (1968), who

used a singular perturbation method to obtain inner and outer expansions for the velocity

and pressure fields up to O[(W/R)2 ]. Considering a single cylinder between walls which

are not so closely spaced, Lee and Fung (1969) obtained a uniformly valid series

solution, each term of which satisfies the equations of motion and the boundary

conditions at the channel walls. The coefficients of the (truncated) series had to be

determined numerically so as to satisfy the no-slip boundary conditions at the surface of

the cylinder. This approach was found to be adequate for practical computations only

when WIR < 5. An approximate two-term solution was also developed by retaining only

the first terms of the infinite series. This solution, which neglects v, is accurate only for

W/IR < -1. Recently, Vrahopoulou (1992) obtained finite element solutions of the

velocity field around a single cylinder between walls for WIR = 0.1 and 2. For WIR = 0.1

the velocity field in the midplane between cylinders resembled the limiting Hele-Shaw

solution, while for WIR = 2 there were significant differences between the numerical

results and the Hele-Shaw solution.

Lee (1969) used the approximate two-term approach of Lee and Fung (1969) to

model flow through a doubly periodic array of cylinders between parallel walls. In

addition to the limitations of Lee and Fung's (1969) two-term approximation, the solution

obtained by Lee (1969) is accurate only when the volume fraction of cylinders is small.

Recently, Tsay and Weinbaum (1991) constructed a more general solution to the problem

addressed by Lee (1969). They obtained a doubly-periodic infinite series solution which

is an extension of Lee and Fung's (1969) solution for one cylinder. As in the latter, the

series identically satisfies the no-slip condition at the channel walls, and the coefficients

of the (truncated) series were determined numerically so as to satisfy the no-slip

boundary condition at the surfaces of the cylinders.
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;3.2 PROBLEM FORMULATION

Due to the extremely low Reynolds number in the physiological system of

interest (Re - 10-6) the local fluid velocity in the periodic unit cells shown by the dashed

lines in Figure 3.1 can be obtained from Stokes and continuity equations:

VP = V2v (3.1)

V-v=0 (3.2)

where P is the pressure, v the local fluid velocity, and g the fluid viscosity.

The appropriate boundary condition at all solid surfaces (Is) is zero velocity,

v,, = vy = v = 0 on s. (3.3)

Because of symmetry considerations,

VX=0 atx =0O (3.4)

for the ladder configuration and

v, =0 aty = O andy=L (3.5)

for both ladder and zipper configurations.

Restricting the analysis to long channels, the upstream and downstream boundary

conditions (representing unperturbed plane Poiseuille flow) are
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2 =-V 1- , v,=v.=O atz=±S2[W)J (3.6)

where V is the mean fluid velocity. The length 8 was chosen to be sufficiently long so as

not to affect the flow in the vicinity of the cylinders. Finally, due to symmetry,

Vx =vy =Oatz=O. (3.7)

The hydraulic permeability of each unit cell is defined by:

V
Ak=P (3.8)

where AP is the pressure drop between z = - and z = 6. Due to symmetry,

AP = 2(P 8 -PO) where P and P0 are the (constant) pressures at z = -8 and z = 0,

respectively. It can be shown that, for the ladder configuration, the dimensionless total

resistance,

LAP
fr V (3.9)

is a function of three length ratios, which may be chosen as RIL, LW and 6/L. For the

zipper configuration there are four length ratios, RyJL, R,/L, LW and 6/L. In a long

channel of length 28 with no cylinders, the dimensionless resistance would be that for

Poiseuille flow,
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f 68L (3.10)

For large enough IzVL, the disturbances in the velocity field caused by the presence of

the cylinders become negligible, as indicated by equation (3.6). Therefore, for large 8/L,

the increment in resistance above the Poiseuille flow value will become independent of

&/L. Accordingly, we employ the "additional resistance" (f), where

f fT -fp (3.11)

The additional resistance, f, depends only on RIL and LIW for the ladder, and on RcL,

RIL, and LIW for the zipper configurations.

3.3 SOLUTION METHODS

A Galerkin finite element solution of equations (3.1) and (3.2), with boundary

conditions (3.3) - (3.7), was obtained with the software package FIDAP (Fluid Dynamics

International, Evanston, Illinois) on a Cray X-MP EA/464 supercomputer. We chose a

consistent penalty formulation which, relative to alternative mixed formulations, has the

advantage of eliminating the pressure unknowns from the discretized finite element

equations. This is done by replacing equation (3.2), the continuity equation for an

incompressible fluid, by

V .v = -eP (3.12)

where the dimensionless quantities are
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. v PL
v -; P , = ; V -LV . (3.13)

V uV

This approach therefore introduces a "compressibility error" which motivates the choice

of a small value for the penalty parameter, e. There is, however, a practical lower bound

for e because very small values of this parameter lead to ill-conditioned matrices and

large truncation errors (Kheshgi and Scriven, 1982). Commonly used values of e range

from 10-6 to 10-9. The results presented here were obtained with = 10-7 or 10-8. We

used three-dimensional brick elements with triquadratic basis functions for v (27

nodes/element) and linear basis functions for P (4 nodes/element). In the preliminary

two-dimensional calculations (see below) we used quadrilateral elements with

biquadratic basis functions for v (9 nodes/element) and linear basis functions for P (3

nodes/element). These choices guarantee the absence of spurious pressure modes and, in

addition, it has been shown that they lead to optimal rates of convergence in the finite

element solution of equations (3.1) and (3.2) in a rectangular domain with uniform mesh

and Dirichlet boundary conditions, using a penalty formulation (Oden, 1982).

Typical meshes used in our three-dimensional calculations are shown in Figure

3.2. Due to the symmetry of the velocity and pressure fields, only 1/4 and 1/8 of the unit

cells of the zipper and ladder configurations, respectively, needed to be used in the

simulations.

3.4 RESULTS

3.4.1 VERIFICATION OF THE NUMERICAL METHOD
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Figure 3.2 - Typical finite element meshes for 1/4 of a unit cell of the zipper
configuration (L/W = 0.284; RJL = 0.625; RcW = 0.277) and 1/8 of a unit cell of the
ladder configuration (LIW = 2, R/L = 0.5). Each element has 27 nodes for v and 4 nodes
for P.
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We checked the accuracy of the finite element method against existing solutions

for two-dimensional flow perpendicular to a row of cylinders (no walls), or for flow

around a single cylinder between parallel walls.

TWO-DIMENSIONAL FLOW THROUGH A SINGLE ROW OF CYLINDERS. Tamada

and Fujikawa (1957) used Oseen's technique to obtain an analytical solution for Stokes

flow perpendicular to a row of infinitely long cylinders, which is valid when the diameter

of the cylinders is small compared with the distance between cylinders (R/L << 1).

Sangani and Acrivos (1982) analysed two-dimensional flow through a square array of

infinite cylinders. In particular, they obtained an asymptotic solution for the case of

small gaps between cylinders. This lubrication limit also applies to flow through a single

row of closely spaced cylinders (RIL - 1). Edwards et al. (1990) used finite element

methods in the analysis of flow through various spatially periodic two-dimensional arrays

of cylinders.

We obtained finite element solutions for flow perpendicular to a row of infinitely

long cylinders over a range of RIL encompassing both limits. Our meshes were

composed of -750 to -1200 nodes (-170 to -280 elements) and the CPU time on the

Cray X-MP EA/464 was in all cases < 5 seconds. We analyzed the effect of the penalty

parameter on the computed drag on a cylinder. (A force balance shows that the drag on

one cylinder per unit length, F, is given by F = 2LAP.) Changes in the penalty

parameter from 10-6 to 10-9 produced negligible changes (< 1%) in the drag.

Figure 3.3 shows streamlines and isobars for RIL = 0.5. This simulation was done

with a mesh containing 949 nodes (216 elements). The CPU time on the Cray X-MP

EA/464 was around 3 seconds. It can be seen that the disturbances in the flow field

caused by the cylinders decay relatively fast. In fact, as shown in Figure 3.4, the

disturbances in v, become negligible for Izl/L > 2 - 3. (It was verified that, when (Izl-R)/L

> 3, Iv-l1 < 0.001) Furthermore, the computed values of P at z = -6 were independent of
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Figure 3.3 - Streamlines and isobars for flow through a row of infinitely long cylinders
with R/L = 0.5.
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Figure 3.4 - Velocity component vz at y/L = 1 as a function of z/L for flow through a row
of infinitely long cylinders with RIL = 0.1, 0.5 and 0.9.
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y to 5 digits. The results presented in this section were obtained with a conservative

value of /L = 5.

Figure 3.5 shows the dimensionless drag as a function of the dimensionless gap

between cylinders. There is excellent agreement between our results and those of

Tamada and Fujikawa (1957) for large gaps (< 0.2% difference for 0.1 < RIL < 0.5), and

between our results and those of Sangani and Acrivos (1982) for small gaps (< 0.3%

difference for 0.8 <R/L < 0.95 and 1.1% difference for R/L = 0.7). Our numerical values

and corresponding analytical results are given in Table 3.1. Also shown in Table 3.1 are

values of the dimensionless drag per cylinder for flow through a square array of

cylinders, calculated using an asymptotic result for small RiL (Sangani and Acrivos,

1982). Interestingly, these values are similar to those for flow through a single row of

cylinders (2, 4 and 6% difference for RiL = 0.1, 0.3 and 0.5, respectively, when

compared with our numerical results).

FLOW AROUND A SINGLE CYLINDER BETWEEN PARALLEL WALLS. We also

obtained finite element solutions to the three-dimensional problem addressed by Lee and

Fung (1969), namely Stokes flow around a single cylinder between parallel walls. To

approximate the behavior of a single cylinder in a channel of infinite extent, we had to

make both L and 6 in our ladder configuration large compared with R and W. (We used

L = § in these comparisons.) The largest finite element meshes considered had ~10,000

nodes and the CPU time was ~10 minutes.

The numerical values of dimensionless drag on the cylinder, f (fD FD /(VW),

where FD is the drag on the cylinder), were compared with the approximate two-term

solution of Lee and Fung (1969) which is accurate to within 0.5% for WIR < 1. For WIR

= 0.5, the differences were smaller than 3%. In addition tofD, we also computedf,. andf.

Since, for finite 6, P is not constant at z = -, we replaced AP in equation (3.9) by AP,

where P is the pressure averaged over the cross section of the channel. Using the two-
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Figure 3.5 - Dimensionless drag as a function of the dimensionless gap between
cylinders, for flow through a row of infinitely long cylinders.
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Table 3.1 - Dimensionless drag on a cylinder for flow through a single
row and square array of cylinders

F/(2gV)

Single Row Square Array

RIL Numerical T&F S&A S&A

(Small RIL) (Small RIL) (Large RIL)

0.1 3.78 3.77 3.71

0.3 9.96 9.96 9.61 12.2

0.5 26.4 26.4 24.8 28.3

0.7 100 80.6 57.6 101

0.8 280 70.4 43.8 279

0.85 575 574

0.9 1.59x103 1.58x10 3

0.95 8.95x10 3 8.94x103

T & F: Results of Tamada and Fujikawa (1957)
S & A: Results of Sangani and Acrivos (1982)

term approximation of Lee and Fung (1969) to estimate AP and substituting the result in

equation (3.9), yields

(3.14)f6 2 = 6 RKo(d)
6(W) 2 () Ko(R)

where KO and K2 are modified Bessel functions of order 0 and 2, respectively, and

r = /2W. The first term on the right hand side of equation (3.14) is fp and the second
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term is f (both with 6 = L). The second term is equivalent to that derived by Lee and

Fung (1969). Comparing the results of numerical simulations for WIR = 0.5 with the

estimates of equation (3.14), it was verified that while differences in fT were < 2%, the

numerical values off were as much as twice the analytical estimate given by the second

term of equation (3.14). In connection with the discrepancies inf, it should be noted that

both 8 and L had to be large compared with R and, even for large values of S/R (and

L/R), an increase in this parameter resulted in a non-negligible decrease in f. The

mraximum value of 8/R (= LIR) used was 20, since larger values would have required

excessive computational times. The large size of the computational domains required

relatively large elements (contributing to the inaccuracies in fT and fD), and also caused

most of the flow resistance to be due to the viscous stresses at the channel walls

(fT - f >> f). As a consequence off being one to two orders of magnitude smaller than

fT, small errors in fT led to large percentage errors in f. Similar difficulties arose in

numerical simulations of Hele-Shaw flow (WIR << 1). In that case the governing

equations reduce to a two-dimensional Laplace equation for P and the analytical solution

yields f = (3n/2)(R/W) 2.

In summary, we conclude that the finite element method gives excellent results

for flow through a row of cylinders, but is not well suited for computingf in unbounded

domains where the disturbances are of small magnitude. In particular, it is not

appropriate for cases where the disturbances are caused by a single object and where

fT f, >> f, since f is then very sensitive to the approximations involved in the

truncation of the infinite domain. However, because of the strong hydrodynamic

interactions between cylinders, the domains shown in Figure 3.1 should favor the

application of the finite element method. In fact, for the ladder and zipper structures, the

interactions between the disturbances of adjacent cylinders will help make P independent

of x and y at finite z, as has been implicitly assumed in equation (3.6). For these
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structures, it was verified that the pressure at z = -8 was independent of x and y and the

value off reached a constant.

3.4.2 FLOW THROUGH A SINGLE Row OF CYLINDERS BETWEEN

PARALLEL WALLS

For the ladder configuration, the finite element meshes were composed of -4500

to -13,500 nodes and the CPU time was between -2 and -15 minutes. Changes in the

penalty parameter did not have an important effect on the computed values off. We used

E = 10-7 as long as the total flow rate at the entrance (z = -) and center (z = 0) of the

channel were equal to at least 4 digits (i.e., "compressibility error" < 0.05%). A smaller

( = 10-8) was usually needed to satisfy this requirement for the largest values of RIL.

VELOCITY AND PRESSURE PROFILES. Shown in Figures 3.6 through 3.10 are

velocity and pressure profiles for LW = 2 and RIL = 0.1, 0.5 and 0.9. Except in Figure

3.10, all profiles were evaluated at the intersection of the plane halfway between the wall

and x = 0 with the plane halfway between the cylinder surface and y = L, that is, at x =

0.5W and y = 0.5(L-R). As seen in Figure 3.6, v = 0 far upstream from the cylinders,

then reaches a minimum as z is increased, and finally returns to zero at z = 0. The

distance from the cylinder surface over which v differs significantly from zero is -W in

each case, not only for the conditions of Figure 3.6 but for all other geometric parameters

examined. In addition, the maximum value of Ivl is significantly smaller than that of IvI.

That is, except in a region of thickness -W near the cylinders, the flow field has the

properties of a two-dimensional Hele-Shaw flow. Similar results were reported for flow

around a single cylinder between walls (Lee and Fung, 1969) and flow past a doubly

periodic array of cylinders (Tsay and Weinbaum, 1991). As shown in Figure 3.7, vy also

exhibits a minimum for z < 0.
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Figure 3.6 - Velocity component v, for flow through a row of cylinders between walls,
with LIW = 2 and RL = 0.1, 0.5, and 0.9. v, is evaluated at x/W = -0.5 and (y-R)/L = -
0.5. This velocity component is anti-symmetric about x = 0 or z = 0; that is, v,(x,y,z) = -
v,(-x,y,z) = -v,(x,y,-z) = v,(-x,y,-z).
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Figure 3.7 - Velocity component vy for flow through a row of cylinders between walls,
with LIW = 2 and RIL = 0.1, 0.5, and 0.9. vy is evaluated at x/W = -0.5 and (y-R)/L = -

0.5. This velocity component is anti-symmetric about y = 0 or z = 0; that is, vy(x,y,z) = -

v,-y,z) = -v(x,y,-z) = vx(x,-y,-z).
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Figure 3.8 - Velocity component v for flow through a row of cylinders between walls,
with L/W = 2 and RIL = 0.1, 0.5, and 0.9. v is evaluated at x/W = -0.5 and (y-R)/L = -
0.5. The unperturbed value of v/V is 1.125. This velocity component is symmetric
about z = 0.
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Figure 3.9 - Dimensionless pressure for flow through a row of cylinders between walls,
with L/W = 2 and RIL = 0.1, 0.5, and 0.9. P is evaluated at x/W = -0.5 and (y-R)/L = -0.5.
Po is the pressure at z = 0. The dimensionless pressure is anti-symmetric about z = 0; that
is, [P(x,y,z) - PO] = -[P(x,y,-z) - PO].
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Figure 3.10 - Dimensionless pressure for flow through a row of cylinders between walls,
with LIW = 2 and R/L = 0.1, 0.5, and 0.9. P is evaluated at x = y = O0. Po is the pressure at
z - O. The profiles are interrupted at z = -R, which corresponds to the surface of the

cylinder.
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The profiles of v illustrated in Figure 3.8 closely resemble those for the two-

dimensional case (Figure 3.4). As RIL increases, that is, as the spacing between cylinders

decreases, the decrease in cross-sectional area available for flow causes the magnitude of

vz to increase significantly near z = 0. Deviations in v/V from the unperturbed Poiseuille

flow value are evident in this case only for Izl/L < -2. In all cases considered, deviations

from the unperturbed value of v/V at x = 0 were used to help guide the choice of 8; these

deviations were required to be < 0.5% at Izl/L = 8/L - 0.5. The additional criterion used

was that further increases in 6 should produce negligible changes inf.

As seen in Figure 3.9, for the largest values of RIL, most of the pressure drop

occurs in the region between cylinders, whereas for the smallest values of RIL, the

dimensionless pressure profile resembles the unperturbed (linear) profile. Figure 3.10

shows pressure profiles evaluated at a different location, namely x = y = 0. The curves

are interrupted at z = -R, where the fluid contacts the cylinder. It is noteworthy that the

pressure reaches a minimum at z < 0. That is, the pressure gradient at that location

changes sign in the region upstream from the cylinders. This behavior is also predicted

by Lee and Fung's (1969) solution for flow around a single cylinder between walls.

PARAMETRIC STUDIES. Table 3.2 gives the computed values off as a function of

L/W and RIL. The dependence of f on the dimensionless gap between cylinders (1-R/L)

is illustrated in Figure 3.11. L/W = 0 corresponds to the two-dimensional results given in

Section 3.4.1 and the solid line is the lubrication limit of Sangani and Acrivos (1982).

For LW > 0, there are two contributions to f: the drag on the cylinders and the

incremental viscous stresses at the walls. In all cases analyzed, the contribution of the

cylinders to the additional resistance was larger than the contribution of the incremental

stresses at the walls, both tending to make f > 0. This is in contrast to the results of Lee

and Fung (1969) for flow around a single cylinder between walls, where the cylinder and

wall effects were of opposite algebraic sign. That is, the shear forces at the walls for

their single cylinder were smaller than the undisturbed Poiseuille values, while those for
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Table 3.2 - Dimensionless additional resistance () for flow through a
single row of cylinders between parallel walls

our row of cylinders were larger. This can be explained as follows. Because of the no

slip condition at the cylinder surface, the fluid must decelerate in the immediate vicinity

of the cylinders. This decrease in v tends to decrease the magnitude of the shear stresses

at the channel walls, relative to the undisturbed Poiseuille flow values. On the other

hand, in the region between cylinders, the velocity must increase above the undisturbed

values in order to satisfy continuity. This increase in v tends to increase the stresses at

the walls above the undisturbed flow values. In all our simulations with the ladder

configuration, the latter factor dominated and, thus, the shear forces at the walls were

larger than the undisturbed flow values. For the case of one cylinder (Lee and Fung,

1969), because the domain around the cylinder was infinite in all directions, the decrease

in stress caused by the deceleration of the fluid near the cylinder evidentely dominated

and thus the shear forces at the walls were smaller than the undisturbed values.
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L/W

RIL 0 1 2 3 4

0.1 3.78 4.95 6.23 7.89 9.79

0.3 9.96 13.7 19.2 27.3 37.6

0.5 26.4 35.6 50.0 71.9 101

0.7 100 125 161 214 286

0.8 280 328 393 482 601

0.85 575 652 747 873 1.04x103

0.9 1.59x10 3 1.73x103 1.90x103 2.10x10 3 2.34x10 3
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Figure 3.11 - Dimensionless additional resistance as a function of the dimensionless gap
between cylinders for flow through a row of cylinders between walls. Symbols are the
numerical results; the dashed lines represent the interpolation formulas (equations (3.15)
- (3.17) for RIL 0.7 and (3.18) - (3.20) for RIL 5 0.7); the solid line is the two-
dimensional lubrication solution of Sangani and Acrivos (1982).
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For a given aspect ratio LIW, as the gap between cylinders decreases the drag on

the cylinders increases and, thus,f increases. Moreover, for fixed L and R, as the spacing

between walls decreases (that is, as L/W increases),f increases. It can also be seen thatf

is more sensitive to changes in RIL than to changes in L1W and, thus, for small gaps, the

values of f approach the two-dimensional lubrication limit of Sangani and Acrivos

(1982).

Figure 3.12, which is a replot of the results in Figure 3.11, shows the dependence

off on R/W for different values of R/L. The solid line is the two-term approximation of

Lee and Fung (1969) for flow around a single cylinder between parallel walls, and

corresponds to RIL = 0. It can be seen that, as was observed in Figure 3.11, f becomes

less dependent on R/W for the larger values of RIL.

Interpolation formulas for f were obtained. When the gap between cylinders is

small,f is well approximated by

f =A -R~ -(3.15)

where

logA = log 9r+ 0.144 L +0.011 L (3.16)
42 W W

and

B = - 2 .5 + 0.11 +0 .00957 (3.17)
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Figure 3.12 - Dimensionless additional resistance as a function of RIW for flow through a
row of cylinders between walls. Symbols are the numerical results; the dashed lines
represent the interpolation formulas (equations (3.15) - (3.17) for R/L > 0.7 and (3.18) -
(3.20) for RIL < 0.7); the solid line is the two-term solution of Lee and Fung (1969) for a
single cylinder between walls.
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These expressions are accurate to within 3% for 0.7 < RIL < 0.9 and 0 < LW < 4. When

L/W = O, equations (3.15) - (3.17) reduce to the two-dimensional lubrication formula of

Sangani and Acrivos (1982). For less closely spaced cylinders,

R
logf = C + D- (3.18)

W

where

C = 0.33 6 +2 .7 4 -2.74j) +3.16() (3.19)

and

D = R/ + 0. 454 - 0. 652 - + 0.152( L) (3.20)

which is accurate to within 4% for 0.1 < RIL < 0.7 and 0 < LIW < 4.

It must be emphasized that the relative errors in the numerical values of f are

expected to be larger for small RIL and large LW since in these cases ft - fp. (For the

value of 6 used in most of the simulations,fp = 24, 96, 216 and 384 for LIW = 1, 2, 3 and

4, respectively.)

The fact that, in the two-dimensional limit (L/W = 0), the values off for a single

row and for a square (doubly periodic) array of cylinders (with the same RIL) are similar

(see Section 3.4.1) suggests that this might also be true when the cylinders are confined

between walls. This hypothesis motivates a comparison between our results for the

ladder configuration (periodicity in y direction) and those of Tsay and Weinbaum (1991)
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for a square array of cylinders between walls (periodicity in y and z directions). Tsay and

Weinbaum (1991) assumed that the direction of flow makes an angle of 450 with the z-

axis but, as shown in Lee (1969), the drag coefficient for a square array is independent of

flow direction. We used the interpolation formula of Tsay and Weinbaum (1991)

(accuracy of 20%) to estimate the dimensionless additional resistance for flow

perpendicular to a square array of cylinders between walls. The differences between

these estimates and our numerical values off for the ladder geometry were in all cases <

2:1 %.

3.4.3 HYDRAULIC PERMEABILITY OF THE EPITHELIAL SLITS

Here, we consider the zipper configuration of the slit diaphragm, as reported by

Rodewald and Karnovsky (1974). According to these authors, the spaces between the

central filament (radius RC) and the membranes of the epithelial foot processes which

bound the filtration slit (here represented as a parallel wall channel) are bridged by fibers

of radius R.. The center-to-center spacing of the fibers is 2L and width of the slit is 2W

(Figure 3.1). The average values for the ultrastructural parameters are RB = 3.5 nm, R =

5.45 nm, L = 5.6 nm and W = 19.7 nm (Rodewald and Karnovsky, 1974), giving RaIL =

0.625, RJ/W = 0.277 and LW = 0.284. To establish upper and lower bounds for each of

these ratios, we used the standard deviations of the slit dimensions given by Rodewald

and Karnovsky (1974). We analyzed the sensivitivity off to changes in the three length

ratios by performing a series of six simulations where each of these ratios was

independently varied. The finite element meshes used in the simulations were composed

of -7600 to ~10,000 nodes (-750 to ~1000 elements) and the CPU time with a Cray X-

MP EA/464 was 5 to -11 minutes. The "baseline" results and the results of the six

additional simulations are given in Table 3.3. It was verified thatf was most sensitive to

RB/L (a change of +22% in RB/L lead to a change of +180% inj), then to Rc/W (changes
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Table 3.3 - Dimensionless additional resistance (f) for flow through
the zipper configuration of the slit diaphragm

of about ±20% in RcW produced changes of about ±10% in f) and finally to L/W

(changes of about ±20% in L/W produced changes of about ±4% in f). The high

sensitivity off to RB/L parallels the high sensitivity off to RIL in the ladder configuration.

Figure 3.13 shows the dimensionless additional resistancef plotted as a function

of AJA r, where AT = 4LW is the cross-sectional area/unit cell and A c is the wetted area of

the cylinders/unit cell,

-Ie(R D l 2 2 2
AC = 47rRCL -8Rc FO RB - RCsin 2 d

+47rRBW-8R CiR -RB sin2 odO
(3.21)

or, equivalently,

104

RO/L RcJW LW f

0.625 0.277 0.284 101

0.516 0.277 0.284 56.7

0.760 0.277 0.284 284

0.625 0.234 0.284 93.0

0.625 0.326 0.284 112

0.625 0.277 0.236 97.6

0.625 0.277 0.340 105
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Figure 3.13 - Dimensionless additional resistance as a function of the ratio of
cylinder area (Ac) to total cross sectional area (AT) for the ladder and
configurations. The dashed lines are the interpolation formulas for the
configuration; symbols are results for the zipper configuration.
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Rql,-nE( , 1 2 ~ R2 2A = 2- )' -R - 'j RB )

C2 Rc 2 RC ) (3.21a)

+ 41rJW-8RnRCE 2 (Z RB J
where F and E are elliptic integrals of first and second kinds, respectively. A simple

approximate formula which, for the range of parameters studied, is accurate to within

6%,is

-- t(R 0.5 R _ RR (3.22)
AT \W L LW LW 

The dashed lines in Figure 3.13 correspond to the interpolation formulas for the ladder

configuration (AJAT = ntR/L) for the cases of LIW = 0 and LIW = 2. The symbols are

results of numerical simulations with the zipper configuration, for the baseline values of

the three length ratios (filled circle) as well as for the combinations of structural

parameters that give the largest and smallest values of R,/L and RCW. It can be seen that

the values of f for the zipper configuration correlate well with those obtained for the

ladder configuration, when plotted in this manner. In particular there is good agreement

with the results for the two-dimensional case (LIW = 0) (Note that for the zipper

configuration, L/W = 0.24 - 0.34). This provides a simple way of obtaining a rough

estimate off for the zipper configuration using the results given in Section 3.4.2 for the

ladder configuration.

For the average values of the geometric parameters reported by Rodewald and

Karnovsky (1974), AJAT = 2.16 and, as shown in Table 3.3,f = 101 (using a mesh with

9851 nodes, 1008 elements). Neglecting fp, the hydraulic permeability of the epithelial
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slit was computed to be 7.9x10- 8 m/s/Pa. Typical values for the overall hydraulic

permeability of the glomerular capillary wall are - 3 - 5x10-9 m/s/Pa (see Section 1.1).

Since the slits occupy only -10% of the surface of the glomerular capillary wall, we

conclude that the slit diaphragms contribute roughly half of the overall hydraulic

resistance of the glomerular capillary wall.

3,5 CONCLUDING REMARKS

As a model for flow through the slit diaphragms, we obtained finite element

solutions of Stokes equations for flow perpendicular to a row of cylinders between

parallel walls, a geometric model that is referred to as the "ladder configuration". A

dimensionless additional resistance (f) of the ladder configuration was computed for L/W

< 4 and 0.1 < RIL < 0.9. Two factors contributed to f: the drag on the cylinders, and the

incremental shear stresses on the walls of the channel. Of these two factors, the drag on

the cylinders tended to be dominant.

We also considered the structure of the slit diaphragm originally proposed by

Rodewald and Karnovsky (1974) (the "zipper configuration"). Using the value of f

obtained for this structure, the hydraulic permeability of the epithelial slits was estimated

to be 7.9x10-8 m/s/Pa. In Chapter 4 we develop hydrodynamic models for the other two

layers of the capillary wall (the endothelium and the basement membrane) and combine

the results of those models with the results obtained in this chapter in order to obtain

theoretical estimates of the overall hydraulic permeability of the capillary wall.
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CHAPTER 4

STRUCTURAL DETERMINANTS OF
GLOMERULAR HYDRAULIC PERMEABILITY

4.1 INTRODUCTION

Under normal conditions the glomerular capillary wall is extremely permeable to

water. However, as mentioned in Chapter 1, proteinuric kidney disorders are typically

associated with significant reductions in the glomerular filtration rate of water, which are

usually atributed to reductions in the glomerular ultrafiltration coefficient (Kf) calculated

on a whole kidney and/or single nephron basis (Deen et al., 1985; Maddox et al., 1992;

Miller et al., 1990). (Kf = kS, where k is the hydraulic permeability of the glomerular

capillary wall and S is the total glomerular filtration area.) Frequently, these functional

changes are accompanied by considerable alterations in morphology of the capillary wall,

such as thickening of the basement membrane and/or broadening of the foot processes.

However, there have been no suitable mathematical models to assist in establishing the

quantitative relationships between structural and functional properties.

The main objective of the analysis described in this chapter was to elucidate

which structures of the capillary wall determine the resistance to the filtration of water.

Specifically, our objective was to develop hydrodynamic models for the endothelial

fenestrae and basement membrane, and couple those models with the model for the

epithelial slits described in the previous chapter in order to predict the hydraulic

permeability of the capillary wall and the relative contribution of each layer to the total

water flow resistance.

4.2 MODEL FORMULATION
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4.2.1 MODEL GEOMETRY AND OVERALL APPROACH

Based on structural information from electron microscopy studies (Chapter 1), it

is possible to identify approximate repeating units for the glomerular capillary wall.

Figure 4.1 shows the idealized "structural unit" employed here, which is based on a

single filtration slit and which is periodic in the x and y directions. Filtration occurs in

the positive z-direction. The three layers of the capillary wall (endothelium, basement

membrane and epithelium) are illustrated in the top view while the bottom view shows

the surface of the fenestrated endothelium as seen from the capillary lumen.

We assumed that the shape of the fenestrae is that suggested by the detailed study

of Lea et al. (1989) (see Figure 1.4). Accordingly, the fenestrae were assumed to be

channels of circular cross-section (bottom view, Figure 4.1) with varying radii (top view,

Figure 4.1). Also, because it has been suggested that the fenestrae are filled with a sparse

fiber matrix (glycocalyx), we considered two cases, one for fenestrae containing only

fluid and another for fenestrae filled with a glycocalyx. The ultrastructure of the fibers

of the basement membrane has not been completely characterized, so that we modeled

the basement membrane as an effectively homogeneous medium, without regard for the

size, shape and position of individual fibers. The structure of the slit diaphragm was

assumed to be that proposed by Rodewald and Karnovsky (1974), that is, the zipper

configuration shown in Figure 3.1.

The hydraulic permeability of the glomerular capillary wall (k) is defined by the

Starling equation (equation (1.1)),

JV
k = v (4.1)

PUF
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Figure 4.1 - Structural unit for the glomerular capillary wall. The top view shows the
three layers of the capillary wall and the bottom view shows the endothelial surface with
the circular fenestrae. In this example there are two fenestrae (Nf =2). The direction of
filtrate flow is along the z-axis, as indicated by the arrows in the top view.
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where Jv and PUF are, respectively, the fluid velocity and net ultrafiltration pressure, both

averaged over the full cross-sectional area (x and y directions) in a structural unit.

Because the osmotic reflection coefficients of the major plasma proteins are very close to

unity, Jv obtained for a Starling or hydraulic-osmotic pressure difference will equal that

resulting from an equivalent hydraulic pressure difference. Thus, in calculating k using

the structural model it is permissible to replace PUF by a purely hydraulic pressure

difference, APT. (In this and other quantities, overbars denote averages in x and y.)

Writing APT as a sum of three terms, one for each layer, and defining

ki = A (i = en, bm, ep) (4.2)

where the subscripts en, bm and ep refer to the endothelium, basement membrane and

epithelium, respectively, it follows that

11 1 1 1
- = + + . (4.3)

k ken kbm kc

The modeling approach consisted of computing the velocity and pressure profiles in each

layer independently, thereby calculating the three individual permeabilities (equation

(4.2)), and then determining k using equation (4.3).

4.2.2 MODEL FOR THE ENDOTHELIUM

Figure 4.2 shows the geometry of a single fenestra, as suggested by the structural

findings of Lea et al. (1989). At z = 0 the radius of the fenestra is R whereas at z = -Rf

and z = Rf the radius is 2Rr Water flow is in the positive z-direction. If it is assumed that
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I2Rf

Rf

2Rf

Figure 4.2 - Schematic representation of a single fenestra, as suggested by Lea et al.
(1989). The main flow is along the z-axis. The radius of the fenestra at z = 0 is R
whereas at z = R the radius is 2Rr

the fenestrae contain only fluid, then the appropriate model equations are the Stokes and

continuity equations. The boundary conditions used to solve these equations are given in

Appendix A. As mentioned above, we addressed the possibility that the fenestrae might

be filled with a fiber matrix (glycocalyx). The alternative mathematical model for this

case is also described in Appendix A.

The equations for both modeling approaches were solved numerically using the

software package FIDAP (Fluid Dynamics International, Evanston, Illinois) on a Cray X-

MP EA/464 supercomputer.

The permeability of a single fenestra was determined from the computed velocity

and pressure fields by

k - = v (4.4)

where Vf is an average fluid velocity in the z-direction in the fenestra (based on the

cross-sectional area at z = 0), P, is the luminal pressure and Po is the average pressure at
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the exit of the fenestra (z = R). Because Jv = e vI, where ef is the fraction of the

capillary surface occupied by the fenestrae,

ken = E/kf . (4.5)

The fractional area was based on the minimum radius of the fenestrae, so that

E = R NfI/(WbLb,, ), where Nf is the number of fenestrae/structural unit, and Wbm and

Lbm are the dimensions of a structural unit in the x and y directions, respectively.

4.2.3 MODEL FOR THE BASEMENT MEMBRANE

When structural details are not specified, flow through porous media is

commonly described using Darcy's law,

=_ VP (4.6)

where v' and P' are the velocity and pressure averaged over a length scale large enough

to represent the microstructure of the porous medium, and KD is the Darcy permeability

of the "effective medium" composed of the solid and fluid phases. This equation could

be: generalized to a non-isotropic porous medium by replacing the scalar KD by a tensor,

but the basement membrane will be considered here to be isotropic. If there were no

cells covering the surfaces of the basement membrane then kbm =kb°, = KD/(gl8b),

where , is the basement membrane thickness. Because much of the basement

membrane area in vivo is blocked by endothelial cells and foot processes, kbm < k . The

purpose of the mathematical model described in this section is to predict the effect of

partial cell coverage by computing the diverging-converging flow patterns in the
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basement membrane. Johnson et al. (1992) developed a similar model to describe the

resistance of juxtacanalicular connective tissue in the eye to outflow of aqueous humor.

Combining equation (4.6) with the continuity equation one obtains

F2P d2p d 2p. d2p*V2p' =a2 P + P+ +2P = 0. (4.7)
d 2 y &

To bracket the actual physical situation, we considered two different sets of

boundary conditions. One consisted of specifying constant pressure at the openings,

P =P' atQ/

P*=P* at sQ (4.8)

az =0 at ,, and QLp,

where Po' and P. are specified basement membrane pressures at the openings; ff and LT,

correspond to the endothelial and slit openings, respectively; and f,. and f ip correspond

to the surfaces covered by endothelium and epithelium, respectively. The second set of

boundary conditions consisted of specifying constant velocity, rather than constant

pressure, at the openings

P _ b. at Qf
dz EfKD

= -_ bat a, (4.9)
&a EKD

"- =0 at f,,, and f
dz e
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where , is the fractional area of the slit opening and v,, is an average basement

membrane velocity in the z-direction, based on the area of a structural unit (;, = J).

Common to both sets of boundary conditions was that the z-component of the velocity

vanishes at the areas covered by the endothelium and epithelium, so that aP'/az = 0 at

those locations. The remaining boundary conditions in both cases, which incorporate the

symmetry in the x and y-directions, were

- =0 at x=Oandx= W,m/2 (4.10)
dx

and

- =0 at y =0 andy=Lb,/2 (4.11)
dy

where x = y = 0 is the center point of the bottom view in Figure 4.1.

Equation (4.7) with either set of boundary conditions was solved using FIDAP.

The hydraulic permeability of the basement membrane was then calculated by

KD 3P

kbm = p = (4.12)

where is the z-component of the pressure gradient averaged in x and y, over a

structural unit, and Po and T, are basement membrane pressures averaged over the

endothelial and slit openings, respectively.
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4.2.4 MODEL FOR THE EPITHELIUM

The hydrodynamic model for the epithelial slits (slit channel with diaphragm)

was developed in Chapter 3. In that chapter we analyzed two possible configurations for

the slit diaphragm, namely the ladder and zipper configurations shown in Figure 3.1.

Here we will consider only the zipper configuration, for which there are reported values

of all structural parameters needed.

The hydraulic permeability of the epithelial slits, k,, is given by

V _V
k = , = X (4.13)

where V, is the average of the z-component of the velocity in the slit channel and P is

the pressure in Bowman's space. Using equations (3.9) and (3.11) (with V = V, and AP =

AP,), equation (4.13) becomes

k, = (f + f (4.14)(f +fpg

where L is half the distance between the centers of the cross-bridges (Figure 3.1), f is the

dimensionless additional resistance of the slit diaphragm, and fp is the dimensionless

resistance of the slit channel alone. Because Jv =e,,, the permeability of the

epithelium is given by

kp = ,k, . (4.15)
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4.3 RESULTS

4.3.1 PARAMETER VALUES

Approximate ranges for the ultrastructural parameters involved in the model, are

given in Table 4.1. For the "baseline" calculations we used the following values: Rf = 30

nm (Lea et al., 1989); W, (= 2W) = 39.4 nm, L = 5.6 nm, R8 = 3.5 nm and R = 5.45 nm

(Rodewald and Karnovsky, 1974) (W, L, R8 and Rc are the slit diaphragm parameters

shown in Figure 3.1); 6bm = 200 nm, a representative value, halfway between the extreme

values given in Table 4.1; and Wbm = 360 nm, Lbm = 120 nm and Nf = 3 , leading to =

0.20 and e, = 0.11, which are consistent with the values given in Table 4.1. Another

required model input is the Darcy permeability of the basement membrane. The value

used, KD = 2.7 nm2, was derived from the recent results of Daniels et al. (1992) 3. The

fluid viscosity in all simulations was that of water at 37°C, t = 7x10-4 Pa.s.

4.3.2 HYDRAULIC PERMEABILITY OF THE ENDOTHELIUM

The main conclusion from the calculations detailed in Appendix A is that, if the

fenestrae contain only fluid, the water flow resistance of the endothelium is negligible,

that is ke >> k. In fact, using the baseline inputs we obtained k _- 2.0x10-7 m/s/Pa.

Estimates of k from micropuncture data yield k - 3 - 5x10- 9 m/s/Pa (see Section 1.1). A

comparison between this experimental range for k and the computed value of k,, suggests

that the resistance of the endothelium is -2% of the total resistance of the capillary wall.

3 Daniels et al. (1992) measured the hydraulic permeability of films of basement membrane (8.8 mun in
thickness) at 25°C. Using an albumin solution at a concentration of 4g/dl, and using a filtration pressure
of 50 mm Hg, they obtained a hydraulic permeability of 4.61x10-6 cm/s/mm Hg. The product of this
value, the film thickness, and the viscosity of a dilute albumin solution at 250C (0.00089 Pa-s) yielded KD
= 2..7x10- 8 m2 .
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Table 4.1 - Ultrastructural parameters for glomerular capillary wall of normal rat

Approximate
Range

20 - 100

0.08 - 0.3

110 - 280

3-10

5-6

5-6

20 - 80

0.09 - 0.2

280 - 400

References

Avasthi & Koshy (1988)(g), Kondo (1990),
Koriyama et al. (1992), Larsson &

Maunsbach (1980), Lea et al. (1989), Levick
& Smaje (1987)(s), Maul (1971), Ryan

(1986)(s), Takami et al. (1991)

Larsson & Maunsbach (1980), Lea et al.
(1989), Levick & Smaje (1987)(), Webber &

Blackbourne (1970)

Abrahamson (1987)(g), Kondo (1990),
Larsson & Maunsbach (1980), Ryan

(1986)(g), Takami et al. (1991), Webber &
Blackbourne (1970)

Kondo (1990), Kubosawa & Kondo (1985),
Rodewald & Karnovsky (1974)

Rodewald & Karnovsky (1974)

Rodewald & Karnovsky (1974)

Furukawa et al. (1991), Kondo (1990),
Larsson & Maunsbach (1980), Ohno et al.
(1992), Rodewald & Karnovsky (1974),
Ryan (1986)(s), Webber & Blackbourne

(1970)

Furukawa et al. (1991), Larsson &
Maunsbach (1980), Rodewald & Karnovsky

(1974), Shea & Morrison (1975)

Furukawa et al. (1991), Gundersen et al.
(1980), Larsson & Maunsbach (1980),

Rodewald & Karnovsky (1974)
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(units)
R. (a)

(nrim)

(b)

5Jbm

(nm)

Rs(c)

(nm)

(nm)

L (d)

(nm)

WI
(nm)

£e (e)

Wm (f)
(nm)



Table 4.1 (continued)

Notes:

(') In Lea et al. (1989) R, correponds to the radius of the fenestra at z = 0 (Figure 4.2). The
other studies do not mention the curvature of the walls.
(,) The value from Lea et al. (1989) (e = 0.2) is based on the area of the fenestrae at z = 0
(Figure 4.2).
(c) The range for RB was obtained from the mean value standard deviation given in
Rodewald and Karnovsky (1974), and from the approximate sizes reported in Kondo (1990)
and Kubosawa & Kondo (1985).
(d) The ranges for R and L were obtained from the mean value ± standard deviation given in
Rodewald and Karnovsky (1974).
(e) The values of e, from Furukawa et al. (1991) were calculated as W/W1 ,. The estimate of
e, from the results of Shea and Morrison (1975) was based on the assumption of these
authors that W, = 39 nm.
(f The values of W,, from Rodewald and Karnovsky (1974) were calculated from reported
values of W. and estimates of E,.
(5) This reference either is a review or gives value(s) for the quantity of interest which were
obtained from other reference(s).

We also addressed the possibility that the fenestrae are filled with a glycocalyx.

Because, to our knowledge, the Darcy permeability of the glomerular glycocalyx (KD) is

not known, we performed calculations for various values Darcy permeability, including

that used for the basement membrane (KD = K, = 2.7 nm2). In Appendix A we give

results for values of K' ranging from 2 to 100 nm2. The result for KD = 2.7 nm2 was k,,

1.3x10-8 m/s/Pa. Although an order of magnitude smaller than the value of k,,

calculated for fenestrae filled only by fluid, this estimate of k,, is still three to four times

larger than experimental values for the overall permeability k. As will be discussed, the

true value of K' is almost certainly larger than that used here. Thus, even if the

fenestrae are filled with glycocalyx, it is likely that the endothelium contributes little to

the overall hydraulic resistance of the capillary wall.
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4.3.3 HYDRAULIC PERMEABILITY OF THE BASEMENT MEMBRANE

We first examined whether or not the circular shape of the endothelial openings is

important in the calculations of kbm. To do so, we compared numerical results for the

three-dimensional domain with results for a simpler, two-dimensional domain where

each circular fenestra was replaced by a stripe with the same fractional area and with the

orientation of the epithelial slit. The fractional area was calculated using the minimum

radius of the fenestra, Rr The two-dimensional domain is shown in Figure 4.3. The

width of the transformed endothelial openings, W, is such that N/Wbm =

NjR7/(Wb,,.Lb) = es. This approximation considerably reduced the computational time.

For example, for a 3-D finite element mesh with -13,000 nodes the CPU time on a Cray

X.-MP EA/464 was -3 min, whereas for a 2-D mesh with -10,000 nodes the CPU time

was only -40 s. For the baseline values of the ultrastructural parameters and constant

pressure boundary conditions (equation (4.8)), the 2-D and 3-D values of kbm were equal

to two digits (kbm = 8.6x10-9 m/s/Pa). This demonstrates that the shape of the fenestrae is

not an important factor in assessing the effect of the boundaries on the permeability of

the basement membrane, and justifies the use of the 2-D geometry in Figure 4.3.

It is noteworthy that if the part of the basement membrane resistance that is

associated with the endothelial openings were a larger fraction of the overall basement

membrane resistance, then the 2-D simplification we have employed would not be as

accurate. This would occur if e£ and/or 6bm were significantly smaller than the values

reported for rats. For e < -0.03 or 8
bm < -30 nm, the error in the 2-D approximation

would be > -10%, if all other parameters remained at their baseline values.

Focusing thereafter on the simpler, 2-D case, we then examined the effect of the

type of boundary conditions imposed at the endothelial and slit openings. For the

baseline values of the structural parameters, the numerical values of kbm were 8.6x10-9

m/s/Pa using constant pressure boundary conditions (equation (4.8)), and 8.3x10-9 m/s/Pa
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Figure 4.3 - Two-dimensional representation of the basement membrane, in which the
circular fenestrae have been replaced by stripes (width = W) ocupying the same
fractional area. W, is the width of the slit opening and Sbm is the thickness of the
basement membrane.

using constant velocity boundary conditions (equation (4.9)). The difference between

these two estimates of kbm is negligible. We preferred the use of constant velocity

boundary conditions because an analytical solution of equation (4.7) could be obtained.

The 2-D pressure field with constant velocity boundary conditions is given by

-b +c 2 j os=oI+2X Cos
KD Wbm =1 X. sinh iK JLW.

K.Wb

(4.16)
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where

= 2nlr (4.17)

sin nrz,
sn = s (4.18)

n/E s

= (4.19)

and Do is a constant related to Po'. The quantities x2., and x2, (i = 1, ... N) are the x-

coordinates defining the boundaries of the fenestrae in a structural unit. To calculate

these coordinates we assumed that the fenestrae are equally spaced and that the structural

unit is symmetric relative to x = 0. The values of x such that x2, l < x < x, correspond to

an endothelial opening whereas the values of x such that x2, < x < x+, correspond to a

covered region. Thus, F£ = z(xx - x2,_, )/Wm .
i-=I

The velocity field was determined from equations (4.16) and (4.6), yielding

V -X osh( n -y, cosh( " ) ( (4.20)sin=(-2 M. J 11 - in n(4.20)
M.
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4 sinh(%z + y,, n XO - Z)______

=b = 1+21n * C
=1+2£ n t=1 sinh Wbm Wbm)

bm /

(4.21)

Using either equation (4.20) or (4.21), one can calculate the stream function, N (up to an

arbitrary additive constant). This yields,

= +2 h(.J Wbm -sin ( . (4.22)
Wbmvbm Wb nl ,, sinh 6bm W

Kbm

Figure 4.4 shows isobars calculated using equation (4.16). The close spacing of

the isobars near the endothelial and slit openings indicates that a large fraction of the

overall pressure drop occurs in those regions. Figure 4.5 shows streamlines calculated

using equation (4.22), illustrating the diverging/converging nature of the flow which

causes the effective permeability of the basement membrane, kb,, to be smaller than that

of "bare" basement membrane.

Using equation (4.16), the average pressures at the endothelial and epithelial

openings can be calculated and then substituted into equation (4.12), yielding

)- -1

Wb m y j 2+ 2 24y,kb = 1+2 W_,J
A .m [ b n= t) n h(XAmJ X. sinh(X,8 mJ

Vbm Wbm

(4.23)
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Figure 4.4 - Isobars in the basement membrane for e, = 0.11, E = 0.20, Nf = 3 and

,=Wb,,, = 0.56. There are 25 equally spaced contour levels.
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Figure 4.5 - Streamlines in the basement membrane for es = 0.11, e! = 0.20, N = 3

and 8 bIWbm = 0.56. There are 25 equally spaced contour levels.
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Using equation (4.23) and the baseline values of the ultrastructural parameters yielded kbm

= 8.27x10-9 m/s/Pa, which confirms the finite-element result.

Equation (4.23) can be used to analyze the effect of the ultrastructural parameters

on k,, without the need for further finite element computations. Figure 4.6 illustrates

the effect of the fractional areas of the endothelial and slit openings on the resistance of

the basement membrane. The ordinate is a dimensionless resistance of the basement

membrane to filtration of water, obtained by taking the ratio of the permeabilities with

(kb,) and without (kbm) cells,

kim kb- kbm (4.24)
D m) bmk:

By definition, km = 1 when there are no cells (es = ef = 1). As cell coverage increases,

that is, as e, and eI decrease, the resistance of the basement membrane increases. For the

baseline condition of E£ = 0.11 and e£ = 0.20, Figure 4.6 shows that the actual resistance

of the basement membrane is 2.3 times the resistance without cells.

Plotted in Figure 4.7 is the dimensionless resistance of the basement membrane as

a function of e,, for varying numbers of fenestrae per structural unit (N.). For a given

value of e an increase in N causes a decrease in the hydraulic resistance. This is

because distributing a given amount of opened area into a larger number of smaller,

evenly spaced, openings (while keeping the total opened area constant) causes the flow

pattern to approach that for a homogeneous surface. Since each structural unit is based

on one slit, N may be expected to increase in glomerular diseases characterized by

broadening of the foot processes.

For small enough values of e. and e, and large enough values of 8 bWbm, equation

(4.23) can be considerably simplified. First, we note that for large enough values of
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Figure 4.6 - Dimensionless resistance of the basement membrane (l/kbm.) as a function of
the fractional area of the slit opening () and fractional area of the fenestrae (f), for
three fenestrae per structural unit (Nf = 3) and 5 bm/Wbm = 0.56.
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Figure 4.7 - Dimensionless resistance of the basement membrane (l/kb.) as a function of
the fractional area of the fenestrae (e) and the number of fenestrae per structural unit
(No), for e, = 0.1 and ,bmW,,b = 0.56
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6,bWb, tanh(Xn6bJWb) _= 1.0 and sinh(n§,Wb, ) >> 1.0 so that equation (4.23) can be

written approximately as

kb,m K b [1+2X +J] ) (4.25)

It can also be shown that

2_ = I uiz cos (nh') d ' (d4

,,-1 A, 47r3e, 2 o o,~l n
(4.26)

4 3e 2 j ln 2sin ))du du'
4 3e;r O 2 0 o

where u = 2c,5. To obtain the second equality we used equation 1.441.2 of Gradshteyn

and Ryzhik (1980). Expanding sin(u"/2) in a Taylor series for small u" (i.e., for small

,), and retaining only the first non-zero term of the expansion, we evaluated the integrals

in equation (4.26), yielding

wn2 3 1 ln(2e). (4.27)
.. , ;. 4i 2ir

Similarly, it can be shown that, for small ef and evenly spaced fenestrae,

'l No (41t 2$I l(2 f)). (4.28)
Xri. Nf 4 2Jr
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Substituting equations (4.27) and (4.28) into equation (4.25) and using equation (4.24)

yields

k;, - 1 + i - -In (2re,)) + (3-In (2- ,) )]. (4.29)

Equation (4.29) indicates that there is a linear relationship between the dimensionless

resistance, l/k,, and In ef or In e,, as was observed in Figures 4.6 and 4.7. Moreover, the

slopes of the lines in Figure 4.7 are inversely proportional to the number of

fenestrae/structural unit. For N > 2, equation (4.29) is accurate to within 2% for ef< 0.3,

e, • 0.3 and blWbm, 0.4. For the baseline values of the ultrastructural parameters the

error is only 0.2%. Equation (4.29) provides the most convenient way to estimate the

effects on kb, of changes in the various structural parameters.

In the preceding analysis we assumed that the basement membrane is

homogenous. In Appendix B we describe an alternative model which assumes that the

basement membrane is formed by three layers of distinct Darcy permeability,

corresponding to lamina rara interna, lamina densa and lamina rara externa.

4.3.4 HYDRAULIC PERMEABILITY OF THE EPITHELIUM

Assuming the zipper configuration for the slit diaphragm, and using the mean

values of the structural parameters given by Rodewald and Karnovsky (1974), we

obtained f = 101 (see Table 3.3). Neglecting the resistance offered by the slit channel

alone (fe), equation (4.14) yielded k, = 7.9x10-8 m/s/Pa, a result also given in Section

3.4.3. We neglectedfp because for reasonable slit lengths, the resistance of the channel is

much smaller than that of the slit diaphragm. (The resistance of a straight channel 100
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nm long is only -4% of the resistance of the diaphragm.). For , = 0.11 and k, = 7.9x10-8

rrns/Pa, equation (4.15) yields kp = 8.6x10-9 m/s/Pa.

An assumption of the model for the epithelial slits was that the walls of the slit

channel are straight. However, electron micrographs of the capillary wall suggest that

the width of the channel increases downstream from the diaphragm. In Appendix C we

describe an alternative model for the epithelial slits which accounts for increases in

channel width.

4.3.5 COMPARISON WITH EXPERIMENTAL RESULTS FOR RATS

The baseline results for fluid-filled fenestrae are given in Table 4.2. The overall

hydraulic permeability, calculated from equation (4.3), is k = 4.1xlO-9 m/s/Pa. It is

predicted that the resistance of the endothelium is negligible and that the basement

membrane and epithelium contribute roughly half to the total water flow resistance. If

we assume that the fenestrae are filled with a glycocalyx with the same Darcy

permeability of the basement membrane, then kn = 1.3x10-8 m/s/Pa (Section 4.3.2) and k

= 3.2x10-9 m/s/Pa. In either case, the model predicts values of k which are within the

experimental range for normal rats.

The study of Miller et al. (1990) using adriamycin, which included both

micropuncture and morphometric measurements, provides an excellent opportunity to

apply the model to data for nephrotic rats. In that study all rats received a dose of

adriamycin, which causes proteinuria and significant structural changes in the foot

processes. The rats were divided into three groups: Group 1 (control) received no further

treatment, Group 2 was subjected to 4/5 renal ablation and Group 3 was placed on a low

protein diet. Shown in Table 4.3 are ultrastructural parameters derived from

measurements reported in that study. The width of the structural unit, Wb., was

131



Table 4.2 - Predicted and experimental values of
hydraulic permeability for normal rat

Hydraulic
Permeability % Resistance

(m/s/Pa)

Endothelium, kn(,) 2.0x 10-7 2

Basement Membrane, kb, 8.3x10-9 50

Epithelium, k, 8.6x 10-9 48

Overall, k 4.1 x 10- 9 100

Experimental Range for k 3-5x10-9

(') The value of k,n shown is for fluid-filled fenestrae.

Table 4.3 - Values of ultrastructural parameters
for rats with adriamycin nephrosis

Group Wh,, bm g

(gm) (gm)

1 1.5±0.1 0.31±0.08 (9.8±3.6)x10 -3

2 1.2±0.1 0.50±0.09 (4.1+1.3)x 10-2

3 1.2±+0.1 0.31±+0.08 (1.1±+0.4)x10 -2

The values are given as mean ± standard error.
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calculated from the measured slit frequency as described in Appendix D, 4 and the

basement membrane thickness 8
bm was estimated as the volume of basement membrane

divided by the surface area of peripheral capillary wall (S). The fraction of the capillary

wall from which foot processes had become detached, g, was calculated from the surface

area of peripheral capillary wall denuded of epithelial cells divided by S. The errors

shown in Table 4.3 were calculated based on the standard errors of the measured

quantities. To obtain the other parameters needed, we assumed the baseline values of e/

(= 0.2), W, (= 39 nm), and number density of fenestrae (N/W,, = 8.33x106 m-'). In

addition, we assumed that kn = 2.0x10-7 m/s/Pa, calculated kb, using equation (4.23) with

K = 2.7 nm2, and calculated kp using equation (4.15) with k, = 7.9x10-8 m/s/Pa.

To account for the fact that some of the filtering surface was denuded of foot

processes, we assumed that filtration occurred through two parallel pathways. Path 1,

with overall hydraulic permeability k,, included all three layers of the capillary wall.

Path 2, with permeability k2, represented areas where foot processes were absent

(structural unit with , = 1 and kp - °°). The overall hydraulic permeability of the

composite barrier was calculated as

k = (1- g)kl + gk2. (4.30)

The results of these calculations, as well as the experimental values k, (derived from the

values of Kf and S reported by Miller et al. (1990)) are summarized in Table 4.4. The

errors in k, were calculated based on the standard errors of Kf and S. The errors in k1, k2

and k were obtained by an analysis of propagation of errors (see below) based only on the

4 T:his is a departure from the analysis described in the paper listed in the Foreword as containing the
material of Chapter 4. In that paper, the values of Wb,, were simply calculated as the inverse of the
filtration slit frequency reported by Miller et al. (1990), without any correction to account for the random
angle of sectioning (see Appendix D).
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Table 4.4 - Experimental and predicted hydraulic permeabilities for rats
with adriamycin nephrosis

Group k, k k k
(m/s/Pa) (r/s/Pa) (m/s/Pa) (m/s/Pa)

1 (9.7±2.0)x10 - '0 (1.0O0.4)x10- 8 (1.1±0.2)x10-9 (8.7±1.4)xl0 -'

2 (1.2±0.2)x10- 9 (6.7±2. 1)x 10-9 (1.4±0.3)x10 -9 (1.3±0.2)x 10-9

3 (1.2±0.2)x10- 9 (1.0-0.4)x10-8 (1.3i0.3)x10- 9 (8.7±1.5)x 1 0-'

The errors shown were obtained as described in the text.

errors of the parameters given in Table 4.3. The model was able to predict reasonably

well the trends in k,, (similar k,, in Groups 1 and 3, and a larger value in Group 2).

Although k overestimated k,, in all groups, if we account for the errors in k and in k,

we see that the ranges for k and k.,P overlap.

4.4 DISCUSSION

The mathematical model presented here is the first one to predict the hydraulic

permeability of the glomerular capillary wall from its morphology. Using only structural

information and in vitro results obtained with isolated films of basement membrane, the

model predictions agreed very well with values derived from micropuncture in normal

rats. The model also predicted the trends of k observed in a study with nephrotic rats.

The Darcy permeability of the basement membrane (KD) was the only model parameter

not derived from ultrastructural data. However, the value used (KD = 2.7 nm2), calculated

from the data of Daniels et al. (1992), is consistent with the approximate structural

properties of the basement membrane, namely its porosity and fiber radius. Assuming
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that the volume fraction occupied by fibers is 0.1 (Robinson and Walton, 1989) and that

the fiber radius is that of collagen (-1 nm), one can use the empirical relations given in

Jackson and James (1986) to predict KD. Using the equations for cubic and random

arrays of fibers one obtains, respectively, KD = 2.1 nm2 and KD = 2.5 nm2, both estimates

being close to the value used. Robinson and Walton (1989) have also measured the

hydraulic permeability of films of basement membrane. Using their result for an

albumin solution at a filtration pressure of 75 mm Hg, one gets KD = 1.8 nm2. Using this

value in equation (4.23) one obtains k,b = 5.5x10-9 m/s/Pa and, from equation (4.3) (with

the value of k,n for fluid-filled fenestrae), k = 3.3x10-9 m/s/Pa. This is 20% lower than

the baseline value of k = 4.1x10-9 m/s/Pa, but still within the experimental range for

normal rats.

Because the range of parameters given in Table 4.1 is relatively wide, we used a

propagation of errors analysis (Taylor, 1982) to estimate the sensitivity of k to changes in

e,, ., bm, W, KD, k, and kr We assumed uncertainties of ±30% in the baseline values of

e,, £! and b,, and an uncertainty of +20% in the baseline value of W,,. To account for

the value of K, derived from the results of Robinson and Walton (1989), we assumed KD

-2.7±0.9 nm2. We made additional simulations with the zipper configuration of the slit

diaphragm to account for the standard errors of the average structural parameters given

by Rodewald and Karnovsky (1974), and obtained k, _= (7.9_1.4)x10-8 m/s/Pa. Finally,

we used the values of kn given in Section 4.3.2 for fluid-filled fenestrae and fenestrae

filled with glycocalyx (which were calculated assuming ef = 0.2) and estimated kf using

equation (4.5) with er = 0.2. Based on these calculations we assumed kf _ (1.0±0.9)x10-6

m/s/Pa. With these assumptions, a propagation of error analysis (Taylor, 1982), where

each of the parameters was independently varied, yielded k _ (4.1±2.4)x10-9 m/s/Pa.

The model predicts that the hydraulic resistance of the endothelium is much

smaller than that of the basement membrane or epithelium. As suggested by Lea et al.

(1989), we assumed that the fenestrae have a circular cross-section, but some studies
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propose other shapes (e.g. octagonal (Maul, 1971) or oval (Kondo, 1990)). The assumed

shape of the fenestrae is of little consequence in the model, because the resistance of the

endothelium is small.

As was discussed in Chapter 1, there is some evidence that the endothelial cells

are covered by an anionic fiber matrix (the glycocalyx) and that this fiber matrix also

fills the fenestrae. Podocalyxin (a sialoglycoprotein), heparan sulfate proteoglycans and

hyaluronic acid have been identified in the glycocalyx. This fiber matrix is probably

much more permeable to water than the basement membrane, whose major component is

collagen. Indeed, whereas reported values of Darcy permeability for pure hyaluronic

acid matrices range from 18 to 720 nm2 (for solid volume fractions ranging from 0.01 to

0.0003) the values for collagen range from 0.8 to 6.1 nm2 (for solid volume fraction

ranging from 0.3 to 0.09) (Jackson and James, 1986). Levick and Smaje (1987) used the

Carman-Kozeny equation to estimate the hydraulic permeability of the endothelial

glycocalyx of various fenestrated capillaries. They assumed a fiber radius of 0.5 nm and

a solid volume fraction of 0.05. These values, given in a review by Curry (1984), were

estimated by applying the "fiber matrix model" of Curry and Michel (1980) to hydraulic

conductivity and protein filtration data obtained in mammalian capillaries, other than the

glomerulus. Despite the limitations of this model (see Section 1.3.2) and the fact that the

experimental data might not apply to the glomerular glycocalyx, we used their values of

fiber radius and solid volume fraction and the Carman-Kozeny equation (with its

constant set equal to 5) to calculate the Darcy permeability (KD). This yielded KD = 4.3

nm2. Using this value for the Darcy permeability of the glycocalyx, we obtained k, =

2.0x10-8 m/s/Pa and k = 3.5x10-9 m/s/Pa. In this case, the resistance of the endothelium is

17%O of the overall resistance of the capillary wall, still a much smaller percentage than

those of the basement membrane (42%) or epithelium (41%). In conclusion, the value of

k,. - 1.3x10-8 m/s/Pa, that we calculated assuming KD = 2.7 nm2, should underestimate
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the true permeability of the endothelium, even if the fenestrae are filled with a

glycocalyx.

As was mentioned in Chapter 1, some ultrastructural studies report the existence

of one or more diaphragms covering each fenestra. Because most evidence seems to

indicate that they are not present in the adult rat glomerular capillary wall, we did not

attempt to account for such diaphragms in our model.

In calculating the permeability of the basement membrane (kb,,), we assumed that

the effective radius of the endothelial openings is equal to the minimum radius of the

fenestrae (Ri). This choice was partially motivated by the fact that the study of Lea et al.

(1989) seems to be the only one suggesting that the radius of the fenestrae changes,

becoming twice as large where the fenestrae contact the basement membrane. As seen in

Table 4.1, typical values for the fraction of the capillary wall occupied by the fenestrae,

E, are smaller than 0.3. If we had assumed that the effective radius of the endothelial

openings was 2R,, then we would have obtained a much larger area fraction, ef - 0.8.

Keeping all other parameters the same, equation (4.23) yields k,, = 9.2x10-9 m/s/Pa and

equation (4.3) yields k = 4.3x10-9 m/s/Pa for ef = 0.8. The value of k is only 5% higher

thanm the baseline result, indicating that the effective radius assumed for the openings is

unimportant. In the calculations of kbm we further assumed that the domain is symmetric

relative to x = 0 (Figure 4.3). This simplification is justified since we verified that, for a

given Er, the exact location of the fenestrae is not an important parameter when compared

with, for example, N,

One of the major limitations of Darcy's law is that, for flow in bounded porous

media, it is not capable of satisfying the required continuity of velocity and surface stress

at the boundary surfaces, because of its reduced order in v' as compared with Stokes

equations. To circumvent this problem, Brinkman (Brinkman, 1947) proposed the

following correction to equation (4.6)
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VP* = - v' +p V 2v' . (4.31)
KD

This equation can be viewed as Darcy's law with an extra term to account for the viscous

stresses in the fluid, or as Stokes equation with an additional term to account for the

resistance offered by the solid phase. Because P' and v' in equation (4.31) are averaged

over a lenght scale (8,) representative of the microstructure of the basement membrane,

these two variables must change over a distance which is large compared with §O.

Examination of equation (4.31) shows that velocity gradients can occur in a length scale

comparable to 1XD. Therefore, using Brinkman's equation to better describe flow near

boundaries is expected to be valid only in highly permeable porous media where ,jR

>> . A lower bound estimate of 6a,, is the interfiber spacing. Estimates of the

interfiber spacing range from -3 to -20 nm (Kubosawa and Kondo, 1985, Laurie et al.,

1984; Takami et al., 1991). Assuming KD = 2.7 nm2 then J < ,, and the use of

equation (4.31) is questionable. Thus, neither Darcy's law nor Brinkman's equation will

give an accurate representation of the flow field near the boundaries, in a length scale

comparable to Jk (1.6 nm). Because this distance is much smaller than the

dimensions of a structural unit (m = 200 nm), it is expected that the relative magnitude

of the global errors will not be very significant. In systems where the macroscopic

dimensions are much larger than [JX the viscous term in equation (4.31) is negligible

over most of the domain and, thus, Darcy's law is a good approximation.

The basement membrane apparently consists of three layers of distinct electron

density, namely a central, electron dense layer (the lamina densa) and two external, less

dense layers (the lamina rarae interna and externa), although it has been suggested that

this three-layered structure might be an artifact of the method used to prepare the tissue

for electron microscopy (Goldberg and Escaig-Haye, 1986). For simplicity, and because

it was possible to derive experimental values for KD only for the basement membrane as a
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whole, all of the foregoing results were obtained by assuming a single layer of basement

membrane with uniform properties. We also investigated an alternative model in which

the basement membrane has three layers, each with its own KD. Specifically, we

obtained the analytical solution for the two-dimensional domain (Figure 4.3) using

constant velocity boundary conditions at the endothelial and slit openings, as detailed in

Appendix B. In that appendix we show that if, as suggested by the limited ultrastructural

information available, the Darcy permeability of the lamina rarae is much larger than that

of the lamina densa, k,, eventually approaches the value obtained when no boundaries

are present (kbm = 1.93x10-8 m/s/Pa). Using kbm = 1.9x10-8 m/s/Pa, kn = 2.0x10-7 m/s/Pa

and k = 8.6x10-9 m/s/Pa in equation (4.3) we obtain k = 5.8x10-9 m/s/Pa, which is

somewhat above the experimental range of 3 - 5x10-9 m/s/Pa.

In calculating the resistance of the filtration slits we assumed that the channel

walls are straight (Figures 3.1 and 4.1). That is, the shape of the foot processes was not

taken into account. Most electron micrographs of the glomerular capillary wall suggest

that the channel width (distance between adjacent foot processes) increases with

increasing distance downstream from the diaphragm. However, the extent of increase

and the shape of the cells depend on the method used to prepare the tissue for electron

microscopy (Furukawa et al., 1991). As detailed in Appendix C, we performed

numerical simulations for tapered channels in order to estimate the hydraulic

permeability of the slit diaphragm in these channels. The results showed that the

dimensionless additional resistance of the slit diaphragm (f) is virtually the same as that

calculated assuming straight walls. Because the resistance of the channel walls (either

straight or tapered) is negligible compared with the resistance due to the slit diaphragm,

we conclude that the use of straight walls to predict k, is acceptable.

The approach used to calculate the hydraulic permeability of the capillary wall by

independently computing the permeability of each layer is approximate in the sense that

the boundary conditions are not matched exactly at the interfaces between fenestrae and
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basement membrane and between basement membrane and epithelial slits. However, the

error introduced by this approach should be negligible. Regarding the basement

membrane, we showed that kb,, is approximately the same for constant pressure and

constant velocity boundary conditions, suggesting that the results are not very sensitive to

the type of boundary conditions. To check this hypothesis, we performed simulations

with the 3-D model of the basement membrane where we specified a pressure profile at

the endothelial openings (taken here to have radius = 2R) fitted from the profile

computed for a single fenestra. The value of kbm was not significantly different from that

obtained for the usual endothelial openings of radius Rf with specified constant pressure.

Regarding the epithelium, the boundary conditions at the entrance of the slit channel will

have some effect on the resistance of the channel but should not significantly affect the

resistance of the slit diaphragm. Since the diaphragm is the dominant contribution to the

resistance of the epithelium, the effect of boundary conditions on k is also expected to

be negligible. Accordingly, there seems to be little justification for pursuing a more

rigorous approach of computing the flow field simultaneously in the fenestrae, basement

membrane, and slits.

The analytical results derived for kbm (equations (4.23) or (4.29)), together with

the results for kn and k.,, provide a convenient way to predict the effect on k of changes

in such properties as the frequency of filtration slits and the thickness of the basement

membrane. The excellent agreement obtained between predicted and measured values of

k for normal and nephrotic rats supports the validity of the physical assumptions. These

findings encouraged us to apply the model to an experimental study of two human

nephropathies. This study is detailed in Chapter 5.
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CHAPTER 5

STRUCTURAL BASIS FOR REDUCED
GLOMERULAR FILTRATION CAPACITY IN

NEPHROTIC HUMANS

5.1 INTRODUCTION

Studies of a variety of human glomerular diseases have demonstrated that the

overall ultrafiltration coefficient (K) for the two kidneys is reduced relative to that in

healthy controls (Austin et al., 1993; Guasch et al., 1991, 1992; Myers et al., 1991;

Scandling et al., 1992). Although the inability to measure the glomerular transcapillary

hydraulic pressure difference (AP) in humans precludes precise calculations of K, the

reductions in K computed for nephrotic (i.e., heavily proteinuric) individuals are

typically so large that there is little doubt that glomerular ultrafiltration capacity is

severely compromised in such disorders. Because K as determined in these human

studies is the product of glomerular hydraulic permeability (k) and the total surface

available for filtration in the two kidneys, the observed reductions in K might be due to

decreased k, decreased surface area per glomerulus, a decreased number of functioning

glomeruli, or some combination of these factors. Measurements have been reported for

some of the key quantities in humans which should influence K,, including surface area

per glomerulus (Austin et al., 1993; Guasch et al., 1991, 1992; Mauer et al., 1992),

basement membrane thickness (Guasch et al., 1991, 1992; Myers et al., 1991; Austin et

al., 1993; Mauer et al., 1984; Osterby et al., 1983), and filtration slit frequency (Austin et

al., 1993; Guasch et al., 1991, 1992; Myers et al., 1991). Reductions in filtration slit

frequency reflect broadening and "effacement" of the epithelial foot processes, a uniform

finding in virtually all humans with the nephrotic syndrome. The most consistent
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inference from morphometric analysis of glomeruli of nephrotic individuals has been a

strong correlation between decreases in estimated Kf and reductions in filtration slit

frequency (Bohman et al., 1984; Ellis et al., 1987; Guasch and Myers, 1993; Shemesh et

al., 1986). Efforts to ascertain whether changes in filtration slit frequency or other

factors can account for the observed alterations in K have been hampered by an

inadequate understanding of the relationship between the various structural quantities and

k.

The objective of the following analysis was to apply the model developed in

Chapter 4 to membranous nephropathy (MN) and minimal change nephropathy (MCN),

two human glomerulopathies in which Kf is estimated to decline markedly, despite

preservation of the surface area available for filtration (Guasch et al., 1992, Guasch and

Myers, 1993). To elucidate the biophysical basis for reduced glomerular filtration rate

(GFR) and Kf in these disorders, we combined an assessment of glomerular filtration

dynamics with a morphometric analysis of glomeruli obtained by renal biopsy.

5.2 METHODS

The experimental data for this study were obtained by Dr. Bryan D. Myers and

Dr. Batya Kristal at the Stanford University Medical Center.

5.2.1 PATIENT POPULATION

The subjects of this study were 34 consecutive adult patients below 60 years of

age, who were referred to Dr. Bryan D. Myers, because of a nephrotic syndrome and a

histopathological diagnosis of either membranous nephropathy (Group MN, n = 23) or

minimal change nephropathy (Group MCN, n = 11). They were aged between 18 and 59

years and 20 of the 34 were male. Thirty-six healthy volunteers (Group HC), matched
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for age (21 - 54) and gender (19 males) served as controls. They were divided into two

groups. One group (Group HC1, n = 24) underwent a physiological evaluation of

glomerular function; the other group (Group HC2, n = 12) were living kidney transplant

donors, who underwent a morphometric analysis of glomeruli obtained by kidney biopsy

at: the time of transplantation. Each control subject denied a history of renal disease,

hypertension or diabetes, and was found to be normotensive and normoglycemic and to

have a negative dipstick test for urinary protein at the time of evaluation.

5.2.2 PHYSIOLOGIC EVALUATION

Patients and Group HC1 consented to undergo differential solute clearances

according to a protocol which had been approved previously by the Institutional Review

Board at the Stanford University School of Medicine. Each was admitted to a Clinical

Research Center on the morning of the study. Antihypertensive agents were withdrawn

48 hr prior to admission in all patients receiving such therapy. Urine was voided

spontaneously after diuresis had been established with an oral water load (10 - 15

mg/Kg). A priming dose of inulin (50 mg/Kg) and para-aminohippuric acid (PAH, 12

mg/Kg) was then administered. Thereafter, inulin and PAH were given by continuous

infusion to maintain plasma levels at 20 and 1.5 mg/dl, respectively.

Sixty minutes after the priming dose, arterial blood pressure was determined and

blood was sampled for examination of systemic colloid osmotic pressure (A) and plasma

concentrations of albumin and IgG. Four timed urine collections were then made, each

of which was bracketed by a blood sample drawn from a peripheral vein. The

glomerular filtration rate (GFR) was expressed as the average value for the four timed

inulin clearances. The rate of plasma flow (RPF) was estimated by dividing the

corresponding clearance of PAH by an estimate of the prevailing renal arteriovenous

extraction ratio for PAH. It has been shown previously that reductions of GFR and
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peritubular capillary protein concentration exert an additive effect to lower the extraction

ratio for PAH in patients with glomerular disease (Battilana et al., 1991). Based on the

observed relationships, we assigned a value for the extraction ratio of PAH of 0.9 to

healthy controls, and 0.8 or 0.7 to the nephrotic patients with either a normal or

depressed GFR, respectively.

The concentrations of inulin and PAH were determined with an automated assay

(Guasch et al., 1993). The concentrations of endogenous albumin and IgG in serum and

urine were determined immunochemically and the colloid osmotic pressure of plasma by

membrane osmometry, as described elsewhere (Cannan-Kuhl et al., 1993).

The GFR, RPF and nA were used together with the model of Deen et al. (1972) to

calculate values of the ultrafiltration coefficient (K,) for each individual, expressed as the

total Kf for all nephrons in the two kidneys. Because the glomerular transcapillary

hydraulic pressure difference (AP) could not be measured, we used assumed values of 35

and 40 mm Hg, which are representative of micropuncture results in rats (Maddox et al.,

1992). The fractional clearances of albumin (0,lb) and IgG (,,,) were determined by

dividing the clearances of albumin and IgG, respectively, by that of inulin. The

fractional clarances of albumin and IgG were measured in only 21 of the 24 individuals

of Group HC1.

5.2.3 MORPHOMETRIC MEASUREMENTS

LIGHT MICROSCOPY. The biopsies of all nephrotic patients were performed

contemporaneously with clearance determinations and before the initiation of specific

treatment. Paraffin-embedded tissue was sectioned at 1 jAm intervals and stained with

periodic-acid Schiff reagent. On average, 19 glomeruli per biopsy were analyzed at the

light microscopic level in each nephrotic patient (range 7 - 30). The average number of

glomeruli among the 12 control biopsies was also 19 (range 13 - 30). A dedicated
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computer system (Southern Micro Instruments, Inc., Atlanta, GA), consisting of a video

camera, screen, microscope and digitizing tablet, was used to perform measurements

(Guasch et al., 1991, 1992). The outline of each glomerular tuft in the cross-section was

traced onto the digitizing tablet at 900x and the cross-sectional area of the tuft (AG)

computed using area perimeter analysis. Glomerular volume (VG) was calculated from

the measured AG and corrected to account for tissue shrinkage associated with paraffin

embedding, using a linear shrinkage factor (f) (Weibel, 1979):

VG= AG f (5.1)
d

where 3 is a dimensionless "shape coefficient" (I = 1.38 for spheres) and d is a "size

distribution coefficient" which is introduced to account for variations in glomerular size

(Weibel, 1979). We used d = 1.1 as in previous studies (Austin et al., 1993; Guasch et

al., 1991, 1992, Myers et al., 1991), which corresponds to a distribution of glomerular

sizes with a standard deviation of -25% of the mean size (Weibel, 1979). It was

determined that, in the experimental procedure for tissue fixation, the value of the

shrinkage factor isfs = 0.86, and we used this value in equation (5.1).

The numbers of patent (Np) and globally sclerosed (Ns) glomeruli were counted in

sections of cortical tissue. The percentage of sclerosed glomeruli (G) was calculated by

G = Ns · 100 (5.2)
Ns + Np D

Dp

where DP and Ds are the diameters of patent and sclerosed glomeruli, respectively, which

are proportional to the square root of the tuft cross-sectional area. The ratio D s I/D
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accounts for the differences in size between patent and sclerosed glomeruli, and the

consequent difference in the probability of encountering a glomerulus of either type in a

random cross-section.

ELECTRON MICROSCOPY. For transmission electron microscopy the tissue was

fixed in 2.5% glutaraldehyde and embedded in epon. Toluidine blue-stained sections

were then surveyed to locate the two patent glomeruli closest to the center of each

section. Ultrathin sections (60 - 70 nm) of the selected glomeruli were next stained with

uranyl acetate and lead citrate and photographed. A complete montage of each

glomerulus was prepared and point and intercept counting at 2820x used to determine the

peripheral capillary surface area (S) which was defined as the interface between the

peripheral capillary wall and epithelium, and calculated as

S = VVG (5.3)

where Sv is the surface density of peripheral capillary wall (expressed as length of

peripheral capillary wall per unit cross-sectional area of glomerulus). Six to eight high-

power electron photomicrographs (11,280x) were then obtained from each of the two

glomerular profiles to evaluate the thickness of the glomerular basement membrane and

the frequency of epithelial filtration slits.

The harmonic-mean basement membrane thickness (b.) was calculated for each

individual from the measured (apparent) harmonic mean thickness ('b,) by

3S8 =3. (5.4)

where 8/(3z) is a correction factor derived by Jensen et al. (1979) to account for the

random angle of sectioning. The filtration slit frequency (FSF) was determined by
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counting the total number of slits and dividing it by the total length of peripheral

capillary wall captured on the electron micrographs (Guasch et al., 1992, Guasch and

Myers, 1993).

5.2.4 CALCULATION OF k FROM HEMODYNAMIC AND MORPHOMETRIC

DATA

The experimental estimate of k from the hemodynamic data (k,,,) was obtained

from K, the surface area per glomerulus (S), the percent of sclerosed glomeruli (G), and

the total number of glomeruli in the two kidneys (N) by

Kfk=, - (5.5)
NS(1- G/100)

We assumed N = 2x106 (Dunnill and Halley, 1972) for all subjects.

The value of k was calculated for each individual with membranous

nephropathy (MN) or minimal change nephropathy (MCN). To obtain kq, for healthy

controls (HC), we used the individual morphometric data from Group HC2 together with

the mean hemodynamic data from Group HC1.

5.2.5 CALCULATION OF k USING THE HYDRODYNAMIC MODEL

Estimates of k independent of those given by equation (5.5), denoted by k,,oak

were obtained from filtration slit frequency (FSF) and basement membrane thickness

(8,.) by employing the hydrodynamic model developed in Chapter 4. The width of a

structural unit (Wb,) was calculated from FSF by
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Wb. = 2 (5.6)
lr FSF

where 2/ is a correction factor, derived in Appendix D, which accounts for the random

angle of sectioning. Many of the structural parameters needed to calculate k,,o, appear

not to have been measured for the human glomerular capillary wall, so that we used

certain values derived for rats, as described in Chapter 4. Specifically, we used the

baseline results for the hydraulic permeabilities of the endothelium (k,,) and epithelial

slits (k). The permeability of the epithelial layer (kep) was calculated using equation

(4.15) and the fraction of the basement membrane area occupied by filtration slits, e,, was

calculated as e, = W/Wbm, where W, is the slit width. To be consistent with the use of rat

data to compute k, we used W, = 39 nm as for the rat. This value is not very different

from an estimate obtained using the data of Ellis et al. (1987) for healthy humans (W, 

43 nm). The permeability of the basement membrane (kb,) was calculated using equation

(4.23) with baseline values of Darcy permeability (KD), fractional area of fenestrae (e,)

and number frequency of fenestrae (N/W,,). Finally, ken,, was calculated using equation

(4.3). The inputs for the calculations of k,,,o are listed in Table 5.1.

5.2.6 STATISTICAL ANALYSIS

Tabulated results are given as mean ± standard error. Paired student t-tests, and

an analysis of variance (ANOVA) between groups, were used to assess the significance

of differences in mean values. In all cases, differences between means were judged

significant when p < 0.05.

5.;3 RESULTS
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Table 5.1 - Inputs for hydrodynamic model

The results of the hemodynamic measurements and calculations are shown in

Table 5.2. The mean values of GFR and Kf are plotted in Figure 5.1. There were no

statistically significant differences between the two nephrotic disorders in any of the

hemodynamic quantities. In both nephrotic groups the values of the glomerular filtration

rate (GFR), filtration fraction and nA were all significantly depressed relative to those in

healthy controls. Conversely, mean arterial pressure (MAP) was elevated in the

nephrotic groups. Differences in RPF between nephrotics and controls were not

statistically significant. As a consequence of the low GFR and the reduced colloid

osmotic pressure opposing filtration, Kf was calculated to be much lower in either

nephrotic group than in controls. Depending on the assumed value of AP, the reductions

in Kf were approximately three- to four-fold. The virtually identical values of Kf in MN

and MCN are of particular interest, given the marked differences in morphometry

between these groups (see below). Also shown in Table 5.2 are fractional clearances of
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Quantity Value

ke, 2.0x10 - 7 m/s/Pa

k, 7.9x10-8 m/s/Pa

Wbm Individual data

W, 39 nm

bm. Individual data

KD 2.7 nm2

Ef 0.2

N!Wbm 8.33x106 m- 1



Table 5.2 - Mean values of functional results

Quantity Group

(units) HC MN MCN

GFR (m/min) 113±3a 758 b 88±12b

RPF (ml/min) 6 1 8±22a 7 3 6 ±85 a 635±70a

Filtration fraction 0.1 8 5±0.0 0 5a 0.117±0.0 0 9b 0.140±0.018b

MAP (mm Hg) 8 8 _2a 10 8+ 3b 102±4b

A (mm Hg) 2 3 .2+0.4 a 15. 0 ±0. 9 b 12.9±1.3 b

18.4±1.6a 4.7±0.7b 5.1±1.0b
K3 s) (ml/min/mm Hg)

K4) (ml/min/mm Hg) 9.3±0.4a 3.50.4 3.9±.6

80.b (2.8±1.0)x10-6 a 0 .010±0.0 0 3 b 0.017±0.009 b

01tG (1.2±0.1)X10-6 a 0.004_0.001b 0.011±0.008 b

a, b: Different letters indicate means that are different by ANOVA (p < 0.05)

albumin and IgG, which were three to four orders of magnitude higher in the two

nephrotic groups than in healthy controls.

Results for the morphometric quantities are shown in Table 5.3 and Figure 5.2.

The percent of globally sclerosed glomeruli (G) was low in all three groups and the

numerical differences in the mean values between groups were not significant. Due to a

significant increase in glomerular volume (VG) in MN, the value for the surface area per

glomerulus (S) in this disorder was markedly enhanced. The numerical differences

between the mean value of S in MCN and that in HC and MN were not significant, while

the differences in the mean values of VG were marginal (p = 0.044 for MCN vs. healthy
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Figure 5.1 - Mean values of glomerular filtration rate (GFR) and ultrafiltration
coefficient (K) in healthy controls (HC) and in membranous (MN) and minimal change
(MCN) nephropathies. The error bars represent ± 1 standard error.
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Table 5.3 - Mean values of morphometric results

Quantity Group

(units) HC MN MCN

G (%) 2 .3+1. 2 a 6 .2 1. 8 a 0.730.73 a

VG (106 gm 3) 1.9 8+0.2 0 a 4 .9 1 i0. 3 4 b 3.270.59 C

S (10s gjm2) 2.97±0.32a 5.370. 46 b 4.060.61 a b

FSF (1/mm) 137 0±4 9
a 384±46b 31560 b

br (nm ) 5 18+16 a 1145106 b 51329 a

a, b, c: Different letters indicate means that are different by ANOVA (p < 0.05)

controls and p = 0.015 for MCN vs. MN). As clearly illustrated in Figure 5.2, in MN,

there was an approximately three-fold reduction in the filtration slit frequency (FSF)

relative to controls, accompanied by a doubling of the basement membrane thickness

(b). The reduction in FSF measured in MCN was very similar to that seen in MN, but

in MCN the value of 8,b remained normal.

The "experimental" estimates (kv, equation (5.5)) and the predicted values (k,,..,)

of hydraulic permeability are compared in Table 5.4 and in Figure 5.3. At either

assumed pressure, AP = 35 or 40 mm Hg, the mean values of k~, and k,,, were very

similar for MN and MCN, and much smaller in the nephrotic groups than in healthy

controls. There was good agreement between k,, and k 1,, for the two nephrotic groups.

The differences between kp and k,,l were statistically significant only for healthy

controls, and then only when kp was evaluated at the lower assumed pressure, AP = 35

mm Hg.

Individual values of k,, (evaluated at AP = 40 mm Hg, k(4)) and k,,, for MCN

and MN are shown in Figure 5.4. There was a significant positive correlation between
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Figure 5.2 - Mean values of filtering surface area (S), filtration slit frequency (FSF),
basement membrane thickness (85b) in healthy controls (HC) and in membranous (MN)
and minimal change (MCN) nephropathies. The error bars represent ± 1 standard error.
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Table 5.4 - Experimental and predicted values of hydraulic permeabilities
(units = 10-9 m/s/Pa)

Group

HC MN MCN

k 5 g 4.54+0.52a' c 0.748+0.139b 0. 7 94 ±0.121bk "

* b b
0k > 2.31+0.27 0.561+0.100 0. 620-0.097 b

k,odel 2.58+0.08* 0.733+0.081b 0.693+0.140b

a, b: For comparisons between groups, different letters indicate means
that are different by ANOVA (p < 0.05)

c : p < 0.05 for comparisons of k,p with k,,,okt within a given group.

k,, and k,,,, in both groups. The correlation coefficients (r) between kdl and k(35 ) and

between k,,, and k0 were, respectively, 0.45 and 0.42 for MN; 0.72 and 0.65 for

MCN; and 0.49 and 0.46 for the combined data of MN and MCN. Meaningful

correlation coefficients for healthy controls could not be calculated because the

functional and morphometric data were obtained in separate groups. Much of the scatter

of the points shown in Figure 5.4 is likely due to the assumptions regarding AP and N,

which significantly affect kxp. Specifically, differences in AP between individuals within

a given group were not taken into account and N was assumed to be the same for all

individuals in all groups. Also contributing to the differences between k,,,k and k,, may

have been the assumptions regarding the uniformity of some of the parameters used in

the calculation of kj,, Thus, it would have been difficult to obtain better quantitative

agreement between individual values of kxp and k,,.a,.

The fractional clearances of albumin (0ab) and IgG (01,8 ) for MN and MCN are

plotted as functions of k,,,l in Figure 5.5. There were significant negative correlations

154



6

5

a- 4
.

3

2

1

I

T

HC MN MCN

Figure 5.3 - Mean values of experimental estimates (k,,) and model predictions (k,,k,) of
the hydraulic permeability of the glomerular capillary wall, in healthy controls (HC) and
in membranous (MN) and minimal change (MCN) nephropathies. The error bars
represent ± 1 standard error.

between either fractional clearance and k,,,o,. The correlation coefficients (r) between

log afb and k,,o, were r = -0.33 for MN, r = -0.59 for MCN and r = -0.39 for the

combined data of MCN and MN. The corresponding relationships between log 0IgG and

k,, were even stronger (r = -0.47, r = -0.60 and r = -0.51, respectively). Thus, the

individuals with the highest fractional clearances of albumin and IgG tended to have the

lowest hydraulic permeabilities. The same conclusion is reached if 0 ab and 01,G are

plotted vs. k..

5.4 DISCUSSION

In both groups of nephrotic individuals, GFR was reduced by about 30% relative

to an age-matched group of healthy controls. Among the determinants of GFR, A was
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Figure 5.4 - Individual values of kd,,, and k,, in MN (open symbols) and MCN (filled
symbols). For each individual, k,,p was computed at assumed transcapillary hydraulic
pressure difference of 40 mmHg. The solid line is the identity line and the dashed line is
the regression line for the two groups. The r value for the two groups is also shown.
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depressed in the nephrotic patients while RPF was not significantly altered. These

findings are in keeping with previous observations in membranous and minimal change

nephropathies (Guasch et al., 1991, 1992; Guasch and Myers, 1993, Shemesh et al.,

1986). Given that mean arterial pressure was higher in each nephrotic group than in

controls, it is unlikely that glomerular capillary pressure and hence AP was lower in

nephrotics than in controls. Thus, the only factor which can explain the reduced GFR is

a decrease in the overall K, for the two kidneys. The precise magnitude of the calculated

reduction in K, depends on what is assumed to have happened to AP. If AP remained

constant at either 35 or 40 mm Hg, then Kf was reduced by roughly a factor of three to

four, the greater reduction in Kf corresponding to AP = 35 mm Hg. If AP increased from

35 mm Hg to 40 mm Hg in nephrotics, then there were approximately five-fold

reductions in Kr Modest increases in AP in the nephrotic individuals are consistent with

micropuncture measurements in rats with Heymann nephritis or with nephropathies

induced by puromycin or adriamycin, which are regarded as experimental models for

MN and MCN (Anderson et al., 1988; Ichikawa et al., 1982; Scholey et al., 1989;

Yoshioka et al., 1987).

Changes in peripheral capillary surface area per glomerulus (S) or in the number

of functioning glomeruli are incapable of explaining the three-to-five-fold reductions in

Kf . The percentage of globally sclerosed glomeruli measured in nephrotic individuals

was similar to that observed in controls, and this sclerosis is likely due to aging. This

suggests that there was little or no reduction in the number of functioning glomeruli in

the MN and MCN groups. Indeed, > 94% of glomerular tufts appeared non-sclerosed

and widely patent by light microscopy in all groups studied. There was a tendency

toward increased S in both nephrotic groups, although the increase relative to controls

reached statistical significance only for MN. Because the changes in the number of

functioning glomeruli appeared to be quantitatively insignificant, and because S tended to

remain constant or to increase, we infer that the depression of Kf must be attributable
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entirely to reductions in the effective hydraulic permeability of the capillary wall (k).

Ursing GFR and its determinants to calculate the hydraulic permeability, the resulting

values (k,) were virtually identical in MN and MCN.

The hydrodynamic model developed in Chapter 4 provides estimates of k entirely

independent of k,,. The applicability of this model to human data is supported by the

finding that k, ,t accurately predicts not only the trends in k,, in the present study, but

also the absolute values in each group of subjects.

The similarity of k, in MCN and MN, despite the two-fold difference in

basement membrane thickness (6 bm) is a finding which is not intuitively obvious. To

explain this result we consider now the individual factors which contribute to k. First of

all, the calculations using the hydrodynamic model suggest that, in healthy controls as

well as in subjects with MN and MCN, the hydraulic resistance of the endothelium is

negligible, the basement membrane resistance is about 60% of the total, and the epithelial

resistance accounts for the remaining 40%.

To examine in more detail the factors which contribute to the basement

membrane resistance, we note that a good approximation to km under most conditions is

given by equation (4.29) 5, that is

w, {w-bm xN 2 ( -n(2£, + -3ln(2=e.)] * (5.7)

The three main contributions to kbm are the terms separated by "+" signs in equation (5.7).

The first term represents the resistance of "bare" basement membrane, the second term

gives the increased basement membrane resistance due to coverage by endothelial cells,

5 Except for one subject with MN and four with MCN, equation (4.29) yielded values of kbm within 2% of
those obtained from the more rigorous formula (equation (4.23)). For those exceptional cases, in which
Sb,,W b,< 0.08, the discrepancies were 19 to 37%.
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and the third term is the increased resistance due to coverage by podocytes. In healthy

controls, the first term was found to be the most important, accounting for -60% of the

basement membrane resistance. By contrast, in nephrotic subjects the FSF was reduced

enough that the third term became dominant (-60% in MN and -80% in MCN).

Accordingly, kbm in MN and MCN was determined primarily by FSF and not by bm.

This result is clarified by an examination of the streamlines shown in Figure 5.6. Panel

A shows streamlines in a structural unit representative of healthy controls and Panel B

shows streamlines in a structural unit with a much smaller slit frequency, similar to that

of the nephrotic subjects. For this illustration we assumed that 5
bm is the same in both

cases, but that FSF is four times smaller in Panel B than in Panel A. Clearly, the path

length for the filtrate tends to be much larger in Panel B than in Panel A, even with

identical bm. Thus, in the nephrotic groups, where FSF is considerably reduced relative

to that in controls, the average path length and the resulting pressure drop are determined

more by the slit spacing than by bm. Assuming no major differences in filtration slit

width or slit diaphragm structure, the hydraulic permeability of the epithelial layer (k.p) is

governed mainly by FSF. With both kbm and kep in the nephrotic groups being determined

primarily by FSF, so is the overall value of k. This provides an attractive explanation for

the aforementioned fact that reductions in GFR and Kf in nephrotic subjects tend to be

correlated much more strongly with reductions in FSF than with changes in 8
bm (Bohman

et al., 1984; Ellis et al., 1987; Guasch and Myers, 1993).

For lack of specific data, we assumed that the total number of nephrons (N) was

the same in all individuals of the present study, although differences in N are likely to

exist. For example, it has been observed that N decreases with age (Dunnill and Halley,

1972; Nyengaard and Bendtsen, 1992). To minimize the effects of age differences on

our results, we excluded individuals with age > 60 years. If we had excluded all subjects

with ages > 50 years, the results would not have been significantly changed. Recently, it

has been observed that N in diabetic patients with advanced nephropathy is smaller than
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Figure 5.6 - Streamlines in the basement membrane illustrating the effect of changes in
filtration slit frequency. Panel A is an example representative of healthy controls. In
Panel B the filtration slit frequency is four times smaller than that in Panel A. The
basement membrane thickness, the frequency and fractional area of the fenestrae, and the
width of the slit opening are the same in both panels.
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in healthy controls (Bendtsen and Nyengaard, 1992). If such differences exist in MN and

MCN, it is possible that the correction for glomerular sclerosis used in equation (5.5) is

not enough to account for the differences in N between groups.

The most widely used method to determine N, as well as VG, is that proposed by

Weibel (Weibel and Gomez, 1962, Weibel, 1979 (p.44)). Using this method, estimates

of N in healthy humans have been -2x106 (Dunnill and Halley, 1972). Recently,

however, this method was criticized as being biased (Bendtsen and Nyendgaard, 1989;

Nyengaard and Bendtsen, 1992) and a new method to determine N and glomerular

volume proposed. Using this new method, a value of N = 1.2x106 was obtained

(Nyengaard and Bendtsen, 1992). Since the theoretical basis of the relationships

involved in the calculations of VG (which is related to the glomerular filtering surface

area, S, by equation (5.3)) and N are the same, and because in this study we used the

method of Weibel to determine glomerular volume, we chose to use N = 2x106 in

equation (5.5). In fact, from equations (5.1), (5.3) and equation 2.85 of Weibel (1979),

we see that the product NS (which appears in equation (5.5)) does not involve the shape

coefficient () and distribution coefficient (d), which are sources of bias.

The reductions in k in MN and MCN appear at first to be inconsistent with the

finding of considerable proteinuria, as reflected by the values of fractional albumin

clearance and fractional IgG clearance. That is, one might expect that any structural

changes which retard filtration of water would at least equally retard the transmural

passage of proteins. One reasonable hypothesis to explain these findings is that the

broadening of the foot processes (decrease of FSF) causes changes in the structure or

even entirely disrupts some of the slit diaphragms. Such changes could augment

considerably the filtration of albumin and IgG, without significantly affecting the value

of k. For example, if 5% of the slit diaphragms are assumed to be disrupted in MN and

MCN, and if this causes the resistance of the epithelium to water flow to be negligible in

5%) of the capillary wall, the mean values of k,,,t would be 7.57x10-'0 and 7.22x10-'0
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m/s/Pa in MN and MCN, respectively. These values are < 4% higher than those given in

Table 5.4, not a very noticeable difference. However, given the observation that the

cellular component of the capillary wall accounts for much of the overall size-selectivity

(Daniels et al., 1993), it is entirely possible that the rupture of this small fraction of the

slit diaphragms might allow the filtration of large quantities of albumin and IgG.

Another possible explanation is that in MN and MCN there might have been changes in

the fixed charge content of the capillary wall which, while not affecting k, could have

greatly reduced the resistance to filtration of albumin. Charge-selectivity of the

glomerular barrier in healthy humans and its impairment in nephrotic subjects with either

MN or MCN has recently been demonstrated (Guasch et al., 1993).

Another potential application of the hydrodynamic model would be to use the

values of k,,,, to calculate Kf and, together with the hemodynamic data (GFR, RPF and

A,,), to estimate AP for each individual. Because of the assumptions involved in the

model, as well as in the value of nephron number used to calculate K,, any such estimates

of AP at present are highly tentative. Nonetheless, with the present data and

assumptions, the mean values of the predicted AP were -39 mm Hg in healthy controls,

-36 mm Hg in MN and -42 mm Hg in MCN (neglecting the value for one patient with

MCN, which was larger than 100 mm Hg). The value of AP for healthy controls is quite

similar to that calculated for healthy humans by an indirect method (AP = 36 mm Hg),

one based on curve fitting of the measured sieving coefficients of neutral dextran of

discrete and graded size (Myers et al., 1988). Moreover, mean values for AP predicted

by k,,,o for all three groups are remarkably similar to corresponding values measured

directly by micropuncture in normal rats, and in rats with induced glomerular diseases

which are analogs of membranous and MCN in humans (Anderson et al., 1988; Ichikawa

et al., 1982; Yoshioka et al., 1987; Scholey el al., 1989).

To summarize, our analysis suggests that a reduction of glomerular hydraulic

permeability is a major determinant of the impaired ultrafiltration capacity in MN and
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MCN. Using the hydrodynamic model developed in Chapter 4 we concluded that, in

both disorders, the hydraulic permeability is determined mainly by the slit spacing rather

than by the basement membrane thickness. These findings point to an injury to epithelial

foot processes, with an ensuing reduction in the frequency of intervening filtration slits,

as the predominant cause of hypofiltration during the acute, nephrotic stage of each of

these glomerular injuries.
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CHAPTER 6

HINDERED TRANSPORT OF MACROMOLECULES
THROUGH A SINGLE ROW OF CYLINDERS:

APPLICATION TO GLOMERULAR FILTRATION

6.1 INTRODUCTION

An important issue in renal pathophysiology is the role of the various structures

in determining the permeability properties of the glomerular capillary wall. Using

hydrodynamic models for the three layers in combination with morphometric

measurements, we have made some progress in understanding the factors which affect

the hydraulic permeability of the glomerular capillary wall in health and disease. The

objective of the analysis presented in this chapter was to perform a similar assessment for

transport of macromolecules. Because of the large dimensions of the endothelial

fenestrae (-300 A radius), and because studies of isolated rat glomerular basement

membrane suggest that basement membrane is much less selective to macromolecules

than is the intact capillary wall (Daniels et al., 1993), we focused our attention on the

filtration slits and, in particular, the slit diaphragms. The zipper and ladder

configurations analyzed in Chapter 3 share the feature that permeating macromolecules

must pass through a single layer of fibers in which the smallest dimension of the opening

is the distance between adjacent fibers, and in which that dimension is comparable to the

diameter of a permeating molecule. There were no existing models for hindered

transport of macromolecules through thin structures of this type, so that a major part of

our effort was devoted to developing a hydrodynamic model which would be suitable for

predicting both diffusional and convective hindrances in this situation. For simplicity,

we chose to model the slit diaphragm as a row of infinitely long cylinders (i.e., the ladder
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configuration without the wall effects caused by the foot processes). Even with this

simplified geometry, a number of hydrodynamic approximations were required, as will

be seen.

6.2 MATHEMATICAL MODEL

6.2.1 SOLUTE FLUX IN SLIT

The hindered transport model for the slit diaphragm was based on the

arrangement shown in Figure 6.1, in which rigid, non-interacting spherical particles of

radius rs move with velocity U through a row of infinitely long cylinders of radius R.

The distance between the centers of adjacent cylinders is 2L. Both R and r were

assumed to be much larger than the dimensions of the solvent molecules, so that the

solvent was treated as a continuum. The local velocity of the solvent is V.

The constitutive equation for the solute flux was derived by performing a force

balance on one sphere, similar to the approach used by Einstein (1956) to treat diffusion

in bulk solution and to that employed in previous hindered transport models for various

geometries (Deen, 1987). Neglecting random fluctuations in U, there is no net force on

the sphere; the effective body force, attributed to a gradient in chemical potential, is

balanced by a hydrodynamic force. That is,

-kTVlnC-61trr, (f U - g V) = 0. (6.1)

The first term of equation (6.1) is the thermodynamic or body force, where k is

Boltzmann's constant, T is the absolute temperature and C is the concentration of solute.

Implicit in the use of point-wise concentrations is an averaging over many identical

particles, so that the concentration at a given point is proportional to the probability of
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Figure 6.1 - Schematic for transport of spherical macromolecules through a row of
infinitely long cylinders.

finding a particle center at that point. The second term of equation (6.1) is the

hydrodynamic force, which is expressed as the sum of a force due to translation of the

sphere with velocity U in a stagnant fluid, and a force due to flow at velocity V past a

stationary sphere. The tensors f and g contain force coefficients for translation of the

sphere and flow past the sphere, respectively. If there were no cylinders, both f and g

would equal the identity tensor. In the system considered here, f and g are second-order

tensors with position-dependent components determined as described below. In

calculating the hydrodynamic force we neglected any coupling between translational and
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rotational motions; that is, we have neglected the force acting on the particle due to its

rotation. As may be inferred from values of force coefficients given in Yan et al. (1986)

this force is expected to be small compared to other contributions to the hydrodynamic

force.

The solute flux, N, relative to fixed coordinates is defined by

N=UC. (6.2)

Solving equation (6.1) for U and substituting the result into equation (6.2), the solute flux

is

N=-D.d.VC+h.VC (6.3)

where Do is the diffusivity in bulk solution, given by the Stokes-Einstein equation,

kT

The new coefficients are tensors related to f and g by

d=f -l

h=f - ' .g.

(6.4)

(6.5)

(6.6)

If there are no cylinders present, then d and h both equal the identity tensor, and equation

(6.3) reduces to the usual form of Fick's law for a dilute solution.

6.2.2 CONCENTRATION FIELD IN SLIT
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To determine the steady-state solute concentration field, equation (6.3) was used

together with the solute conservation equation,

V-N=O. (6.7)

The result is

V* .(-d VC + Pe h VC) = O (6.8)

where V* - RV, V* - V/V, V is the undisturbed fluid velocity far from the cylinders

and Pe is a Peclet number based on the cylinder radius,

VR
Pe .D

D.
(6.9)

In the coordinate system of Figure 6.1, the boundary conditions used with equation (6.8)

were

N, =No at z=- 

C = C = N o/V at z -oo

NY =O at y=O and y=L

N, =O at r-(y2+z2)V 2 =R+rs.

(6.10 Oa)

(6. lOb)

(6.10c)

(6. 10d)

As shown in equation (6. 10a), upstream from the cylinders we specified a constant solute

flux (NO) at a distance 8 from the center of the cylinders. Far downstream from the

cylinders (z - oo) the concentration was assumed to reach a constant (CB) (equation
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(6.10b)). Because VC = 0 at z = oo, N, = VCB and, from conservation of mass,

N o = VC8 . Equation (6. lOc) expresses symmetry at y = 0 and at y = L. Finally, because

the centers of the spherical particles cannot sample positions closer than r from the

cylinder surface, the solute flux normal to the cylinder must vanish at a distance r from

the cylinder surface (equation (6.1 Od)).

6.2.3 VELOCITY FIELD IN SLIT

The fluid velocity field (V) was obtained by solving the Stokes and continuity

equations,

VP = V2V (6.11)

V-V=O (6.12)

where P is pressure and t is viscosity. The boundary conditions were constant velocity

at z = - and z -- oo, symmetry at y = 0 and at y = L, and zero velocity at the cylinder

surface. That is,

V= V; Vy =0 at z =- and z oo (6.13a)

V, =0 at y=O and y=L (6.13b)

V=O at r (y2 +z2 ) 2 = R. (6.13c)

6.2.4 HYDRODYNAMIC APPROXIMATIONS FOR SLIT

To complete the information needed to solve equation (6.8) we require values for

the force coefficient tensors f and g. Because there are no results available for the system
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under consideration, we followed an approximate approach similar to those of Keh

(1986) and Yan et al. (1986) in their models of transport through short, cylindrical pores.

Accordingly, we divided the fluid domain into the hydrodynamic regions shown in

Figure 6.2, and used available results to estimate f and g in each region. In this Section,

we describe briefly the approach followed to calculate f and g in each of the

hydrodynamic regions. A more detailed description, with all the equations used, can be

found in Appendix E.

In Regions I, we used results for the translation of a sphere in the presence of a

planar wall to estimate f, and results for flow past a stationary sphere in the presence of a

planar wall to estimate g. To do this, the "wall" was assumed to be a surface tangent to

the surface of the cylinder, the point of tangency being defined by a line connecting the

center of the cylinder with the center of the sphere. When the gap between the cylinder

and the sphere was small we used the lubrication results of Goldman et al. (1967a, b) and

Cox and Brenner (1967). For larger gaps we used Faxen's results (Happel and Brenner,

pp. 327 (1983)) and the results of Wakiya (Happel and Brenner, pp. 330 (1983)) and

Goldman et al. (1967b), obtained by the method of reflections. The transition between

the expressions for small and large gaps was made at the point where both yielded the

same value of the force coefficient. This procedure allowed us to estimate force

coefficients for translation parallel (f,) and perpendicular (Ix) to the fictitious wall, as well

as force coefficients for flow parallel to the wall (gl). Because there appears to be no

solution for flow past a stationary sphere towards an infinite wall, we estimated g. from

the numerical results of Dagan et al. (1982) for the case of a sphere and a (finite) disk, as

follows. We first calculated hL (= gl/f1 ) for their system using the results of their Tables

2 and 3 and equation (5.2); h is a function of b, which is the sphere radius divided by the

distance from the center of the sphere to the surface of the disk. Considering only values

of h. for cases where the radius of the sphere is not larger than the radius of the disk, the

results were well approximated by h = 1-b 3 8 . The components of f and g in (y,z)
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Figure 6.2 - Division of the computational domain into hydrodynamic regions for
specification of hindrance coefficients for a row of cylinders.

coordinates were then calculated from fj, f., gl and g by taking into account the

orientation of the wall relative to the (y,z) axis. Finally, d and h were calculated by

equations (6.5) and (6.6), respectively.

In Region III, which is between cylinders, we used the results of Ganatos et al.

(1980a, c) for a sphere between walls to estimate f1, f, and g,,. The location of the wall

closest to the sphere was determined as in Regions I, and the other wall was assumed to
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be at a distance of 2(L/cos 0 - R) from the first wall. Because the two-wall results are

available only for b < 0.909, when b > 0.909 we followed the approach of Ganatos et al.

(1980b) in modifying results for one wall. This was done for any given wall spacing by

adding a constant to the original one-wall lubrication results (as used in Regions I). This

constant was calculated by matching the two-wall results with the modified one-wall

lubrication results, at b = 0.909. The coefficient h. was estimated as in Regions I and f,

g, d and h were then calculated as before.

Regions II are transition regions, of width r is the z-direction, where the

components of d and h were linearly interpolated between the corresponding values at

the boundaries of Regions I and III.

Figure 6.3 shows the diagonal elements of d and h, namely d,, d,, h, and h., as a

function of z/L, for RIL = 0.5, r/(L - R) = 0.7, and various values of y/L. All of these

coefficients are unity far from the cylinder and all vanish at the point where the sphere

touches the cylinder (i.e., at r = R + rs). It can be seen that, despite the piece-wise nature

of the approximations, the curves are relatively smooth. The degree of smoothness

varied somewhat depending on the values of RIL and r(L - R), but in all cases analyzed

the curves were monotonic. As shown in Figure 6.4, the curves for the off-diagonal

coefficients were not monotonic nor as smooth as those shown in Figure 6.3, but the

magnitude of the coefficients was always much smaller than that of the diagonal

elements. When the off-diagonal elements were all set equal to zero, the computed

sieving coefficients (see equation (6.16) below) changed by only 1% (root-mean-square

difference for 900 values).

6.2.5 MODEL FOR BASEMENT MEMBRANE

We used an effective medium approach to model macromolecular transport across

the basement membrane, as was done previously in modeling water flow across this part
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Figure 6.3 - Diagonal elements of the hindrance coefficient tensors d and h as a function
of zL, for RIL = 0.5, r(L - R) = 0.7, and four values of yL.
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of the glomerular capillary wall (see Chapter 4). With the basement membrane assumed

to be isotropic, the conservation equation governing the steady-state concentration field

in the basement membrane was

V.(-db,,DVC' + hbmV'C') = 0 (6.14)

where V' and C' are the filtrate velocity and solute concentration, respectively, both

averaged over a length scale which is large compared to that of the microstructure of the

fibers of the basement membrane. The hindrance coefficients for diffusion and

convection in the basement membrane are dbm and hb,,n, respectively. Equation (6.14) was

solved in a two-dimensional structural unit (see Figure 4.3), with the velocity field

V' calculated using the analytical solution of Darcy's law given in Section 4.3.3.

Because the structural unit was symmetric relative to x = 0, only half of the domain was

used in the calculations. The boundary conditions for equation (6.14) were constant

solute flux at the endothelial openings, constant concentration at the slit opening, zero

flux normal to the surfaces covered by endothelium and epithelium, and zero flux normal

to the planes of symmetry. That is,

N= at the endothelial openings (6.15a)
f

C' = Co = b,,Co at the slit opening (6.15b)

N' = 0 at the areas covered by cells (6.15c)

N: = 0 atx = 0 and x = Wbm/2 (6.15d)

where N' is the z-component of the solute flux in the basement membrane, No is the

solute flux in the epithelial slit (see equation (6.10)), e is the fractional area of the
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endothelial openings, C0 is the average concentration in the fluid adjacent to the epithelial

slit opening, and cm is the partition coefficient between the basement membrane and the

adjacent fluid.

6.2.6 SOLUTION METHODS

Equation (6.8) and equations (6.11) and (6.12), with their respective boundary

conditions (equations (6.10) and (6.13)), were solved using Galerkin finite element

methods. The Stokes and continuity equations were solved first using the software

package FIDAP (Fluid Dynamics International, Evanston, IL) on a Cray X-MP EA/464

supercomputer, following the approach detailed in Section 3.3. The nodal values of V

computed with FIDAP were then used in equation (6.8). Because the nodes of the

domain where equation (6.8) was solved were not all coincident with the nodes used in

FIDAP, bilinear interpolation was used to obtain some of the nodal values of V needed

for equation (6.8). To solve equation (6.8), we employed quadrilateral elements with

bilinear basis functions for C. In the finite element meshes used to solve either equation

(6.8) or equations (6.11) and (6.12), the number of elements in the y-direction was

constant for all z, and the size of the elements in the z-direction was kept approximately

constant. The meshes had 2200 to 5900 nodes, and the CPU time for solution of

equation (6.8) (including interpolation of V) on a DECstation 5000/133 was between ~40

and 130 seconds.

The downstream boundary condition for C was applied at a finite value of z, z =

6,, chosen large enough so that further increases in §5 would not affect the calculated

sieving coefficient (see equation (6.16) below). It was verified that the value of 6, used

previously to compute velocity profiles, 81 = 5L (see Section 3.4.1), was sufficient for all

cases.
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Equations (6.14) and (6.15) for the basement membrane were solved using the

numerical method used to solve equation (6.8). We used a finite element mesh with

1600 elements and the CPU time on a DECstation 5000/133 was - 20s.

6.3 RESULTS AND DISCUSSION

6.3.1 PARAMETER VALUES

To our knowledge, there are no reported values for 8, the distance from the

basement membrane to the center of the slit diaphragm. We examined electron

micrographs from various sources (e.g., Abrahamson, 1987; Furukawa et al., 1991;

Kanwar and Venkatachalam, 1992; Kondo, 1990; Rodewald and Karnovsky, 1974) and

estimated that 8 ranges from ~30 to -70 nm. To establish an approximate range for R,

we used reported sizes of the cylindrical filaments of the zipper configuration (Kondo,

1990; Kubosawa and Kondo, 1990; Rodewald and Karnovsky, 1974) and, in addition,

made rough estimates of R based on the electron micrographs of Hora et al. (1990). This

yielded a range for R of -2 to ~10 nm. To obtain the physiological range for Pe we used

typical net ultrafiltration pressures at the afferent and efferent ends of the glomerular

capillaries (-20 and -1 mm Hg, respectively (Maddox et al., 1992)), the experimental

range for the hydraulic permeability of the glomerular capillary wall (k - 3 - 5x10-9

m/s/Pa (see Section 1.1)), an approximate range for the fraction of the glomerular

capillary wall occupied by the filtration slits (e,, - 0.05 - 0.2 (Table 4.1)), and values of

rs ranging from 10 to 70 A. This yielded values of Pe ranging from ~10-5 to -0.1.

Because the net ultrafiltration pressure changes considerably from the afferent to

the efferent end of a glomerular capillary (see above), so does the filtrate velocity. In

some calculations we used average values of filtrate velocity and net ultrafiltration

pressure, which were estimated as follows. Based on typical values for the total filtration
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rate per glomerulus (40 nl/min; Maddox et al., 1992) and total glomerular filtration area

(0.002 cm2; Maddox et al., 1992), and using es = 0.11, we estimated an average velocity

in the epithelial slits of -3.0x10-5 m/s. Using the previously calculated value for the

hydraulic permeability of the epithelial slits, k, = 7.9x10-8 m/s/Pa (see Sections 3.4.3 or

4.3.4), we estimated a pressure drop in the epithelial slits, AP,, of -3.8x102 Pa.

The structural parameters for the basement membrane calculations were as in the

baseline calculations of Chapter 4, that is Wb, = 360 nm; 8,b = 200 nm; N = 3, where N

is the number of fenestrae per structural unit; Ef = 0.20; and E, = 0.11. The additional

parameters needed to solve equations (6.14) and (6.15) were the hindrance coefficients

for diffusion (d,,) and convection (hbm), and the partition coefficient (e,,.). We

calculated dbm and hbe, using approximations suggested by Phillips et al. (1989),

evaluating dbm from the drag on a sphere in a Brinkman medium and using hbm = 1/(1-),

where is the solid volume fraction of the basement membrane. We calculated (b,

using Ogston's equation (Ogston, 1958). These relationships required knowledge of the

Darcy permeability, KD, and the fiber radius, r in addition to {. We assumed KD = 2.7

nm2 (see Section 4.3, footnote 3) and used a semi-empirical equation for a random array

of fibers (Jackson and James, 1986) to relate KD to rf and . In addition, we employed

the experimental results of Daniels et al. (1993) for diffusion of dextran with rs = 6.4 nm

through basement membrane in vitro, from which it can be inferred that obmdbm =

7.8x10-4. Using the Brinkman approach to calculate dbm and Ogston's result to calculate

b,,m this provided the additional relationship needed to calculate r and . The result was

rf=-- 1.14 nm and = 0.111.

6.3.2 SIEVING COEFFICIENTS AND CONCENTRATION PROFILES

The sieving coefficient for the slit diaphragm is defined as
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Oad = (6.16)
Co

where C0 is the average concentration at z = -8, adjacent to the basement membrane. The

dependence of ,d, on Pe is illustrated in Figure 6.5 for a particular combination of sphere

size, cylinder size, and cylinder spacing, at three values of /R. For Pe -+ 0, there is

diffusional equilibration across the slit diaphragm and ,d - 1. As Pe increases, 0, at

first decreases and then eventually returns to unity. As /R is increased, the minimum

value of 0,a becomes closer to unity and is reached at smaller values of Pe.

The non-monotonic dependence of Qd on Pe is explained by the concentration

profiles shown in Figure 6.6. Representative concentration profiles along the main

direction of flow (z) are shown for four values of Pe; note the different concentration

scales in the four panels. It can be seen that as Pe increases, two competing effects come

into play: there is a larger concentration drop in the immediate vicinity of the cylinders

(near z = 0) and there is increasing concentration polarization upstream from the

cylinders (z < 0). The net effect, as was shown in Figure 6.5, is that 0 at first decreases

with increasing Pe, but eventually returns to unity as polarization becomes more

prominent.

Figure 6.6 includes concentration profiles for positions aligned with the center of

a cylinder (y/L = 0) or midway between cylinders (y/L = 1). The dashed curves which

show the former are interrupted at Izl = R + r, where the sphere contacts the cylinder. It

is noteworthy that although N. = 0 at those points, ac/az • 0. The solute flux vanishes

because d = h = 0 at the point of contact. An advantage of using a finite element

formulation to solve equation (6.8) is that concentration gradients next to the cylinder

need not be known a priori. Instead, the no-flux boundary conditions represented by

equations (6.10c) and (6.10d) are automatically incorporated in the development of the

discretized finite element equations.
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Figure 6.5 - Effect of the Peclet number, Pe, on the sieving coefficient, 0,, for RIL = 0.5,
r(L - R) = 0.7, and three values of §/R.
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(solid curves)

182

5

5

Pe = 0.0 1



Figure 6.7 illustrates the dependence of the sieving coefficient on molecular

radius; the abscissa, X - rs/(L - R), is equivalent to the solute diameter divided by the gap

between cylinders. Solute transport is unrestricted for X -e 0 and vanishes for X > 1. For

Pe - 0, the slow flow rate permits diffusional equilibration of all solutes for which <

1. Accordingly, Oa(3) approaches a step function under these conditions, declining from

1 to 0 at X = 1. This is roughly the case for Pe = 0.001 in Figure 6.7. However, even for

Pe = 0.01, the fluid velocity is large enough that Od, declines gradually with increasing .

It is convenient to have an analytical relationship between 0, and its

determinants, namely Pe, RIL, 6/L and X. An expression which worked well was

- (1- . (6.17)
_- (l ePe-'/n (1 - Pe-a ))X

The parameter A in equation (6.17) was evaluated using

A A2A= + (6.18)
RIL 1- R/L

where Al = 3.65 and A2 = 0.573. The form of equation (6.17) is based on that obtained

for a simple, one-dimensional model of ultrafiltration across a membrane with a

concentration polarization layer. It yields correct limiting values of 0 d for Pe = 0 (, =

1), Pe - ( = 1), = 0 ( = 1) and = 1 (d = 0). The range of dimensionless

parameters used to fit the numerical values of 0, to equations (6.17) and (6.18) was 10-s

< Pe < 0.1, 3 < SIR < 35, 0.1 < RIL < 0.9, and 0.1 < . < 0.95. Combinations of these

parameters which yielded (R + rs )/L > 0.99 were excluded because the finite element

method does not provide accurate solutions for very small gaps. Also excluded were
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Figure 6.7 - Effect of relative molecular size, X, on the sieving coefficient, O., for RIL =
0.5, B/R =10, and three values of Pe.
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combinations which yielded 6/(R + rs) < 1.5, because the distance from z = - to the

cylindrical boundary was then too small for computational accuracy, as well as being

outside the physiological range. Powell's method (Press et al., 1986) was used to obtain

the constants Al and A2 from a total of 900 points. The root-mean-square error was 5%.

6.3.3 DISTRIBUTION OF CYLINDER SPACINGS

Using the dimensions given by Rodewald and Karnovsky (1974), the openings in

the slit diaphragm are only 40A by 140A, so that one would conclude that only

molecules with rs < 20A can cross the slit diaphragm. However, rigid molecules with rs

as large as 60 - 70A cross the capillary wall in limited amounts (Oliver et al., 1992),

suggesting that the structure of the slit diaphragm is probably not uniform. This

hypothesis is supported by the electron micrographs of Hora et al. (1990). To model the

effects of non-uniformities in the structure of the slit diaphragm, we assumed that the

spacing between cylinders follows a continuous probability distribution. This is much

like assuming a continuous distribution of pore radii, as done in previous models of

glomerular filtration (Deen et al., 1985). For a given distribution of spacings, the

average sieving coefficient, (0s,), was calculated as

(O,) = fO,(u)G(u)du (6.19)
0

where u is half the gap width between adjacent cylinders (i.e., u = L - R) and G(u)du is

the fraction of filtrate volume passing through gaps of half-widths between u and u + du.

In (,) and other quantities, the brackets indicate an average with respect to cylinder

spacing. The function G(u) is proportional to the probability distribution function for the

gap width, g(u), and to a weighting factor, q(u), which accounts for the fact that, for a
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given filtration pressure, the volume flow rate of filtrate through a given gap depends on

u. The latter function can be expressed as

(u + R)2
q(u) = (6.20)

fT

where fT is the dimensionless flow resistance defined by equation (3.9). Noting that, by

0definition, IG(u)du = 1, one obtains

= (u + R) 2 g(u)fT1 (u)

(u + R)2g(u)fT (u)du
0

There are at present insufficient data on the structure of the slit diaphragm to

define a specific gap-width distribution function, g(u). Two reasonable choices for the

form of g(u) are the lognormal and gamma distributions. Both should give qualitatively

similar results, in that g - 0 for u - 0 or u - co, and g(u) exhibits a single peak at

intermediate u. We chose the gamma distribution, which is defined by

Y.11Y01le72 2

g(u) = 2ue (6.22)

where r is the gamma function and y, and 72 are constants. The mean and variance of

g(u) are y,1/2 and yly/2, respectively, so that yl,-n is the standard deviation divided by the

mean.
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The assumed distribution of gap widths affects not only 0,d but also the hydraulic

permeability of the slit diaphragm, k,. Accordingly, we define an average hydraulic

permeability, (k,), given by

) I(u + R)g(u)Vdu
(k) =-(6.23)
- AP l(u + R)g(u)du

0

where AP, is the pressure drop due to the slit channel and diaphragm and (V,) is the

mean filtrate velocity in the slit channel, averaged over all cylinder spacings. Using

equation (3.9) with V = V, and AP = AP,, equation (6.23) becomes

(u + R) f' (u)(u)du (u + R)2f' (u)g(u)du
(k ) 0 ° = I (6.24)

(u+ R)g(u)du +R
0o 2

Because the hydraulic permeability of the slit diaphragm previously calculated for the

zipper configuration, k, = 7.9x10-8 m/s/Pa, yielded an overall hydraulic permeability

which agreed very well with the experimental range from micropuncture data in rats (see

Section 4.3), we assumed here that (k,) = 7.9x10-8 m/s/Pa. This assumption, together

with equations (6.22) and (6.24), provided a relationship between y and 2. Thus, to

calculate (,), we first specified y,, then calculated 2 from equation (6.24) using

Newton's method, and finally evaluated (d) using equation (6.19). The values of Pe

needed in equation (6.17) were calculated using equation (6.9) with V = V,. The values

of V (= V) were obtained from equation (3.9), assuming a representative pressure
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difference AP, = 3.8x102 Pa and calculatingfT as described in Appendix F. The integrals

in equations (6.19), (6.21) and (6.24) were evaluated numerically using Romberg's

method (Press et al., 1989).

Figure 6.8 illustrates sieving curves obtained for probability distributions g(u)

with standard deviations of 0, 30, and 90 % of the mean half-width (i.e., y-n12 =0, 0.3, or

0.9). The Peclet number was calculated as described above and the cylinder radius was

fixed at R = 5 nm or 10 nm. When the spacing between cylinders is constant, as is the

case for standard deviations of 0% in Figure 6.8, the sieving curves exhibit relatively

sharp cutoffs, similar to the results for low Pe in Figure 6.7. As the distribution of

spacings broadens, the molecular-size cutoffs become less sharp, as shown for standard

deviations of 30% and 90%. These trends can be understood by recalling that (k,) is the

same for all of the curves in Figure 6.8. As the standard deviation of the spacing

increases, there is a tendency for rapid water flow through the larger gaps, and the mean

spacing must decrease to keep (k,) constant. For R = 5 nm, the mean half-width

between cylinders (,l/y2, the mean value of L - R) ranged from 2.0 nm at a standard

deviation of 0% to 1.4 nm at a standard deviation of 90%. For R = 10 nm, the mean

half-width ranged from 2.9 to 2.1 nm. The decrease in mean spacing causes (,) for

small molecules to decrease as the standard deviation increases. However, for the larger

standard deviations there is a substantial number of very large spacings between

cylinders, which allows the passage of large molecules which otherwise would be

prevented from crossing the diaphragm. Thus, the sieving coefficient of large molecules

increases significantly as the standard deviation of g(u) increases.

One of the assumptions of the model, either for uniform or variable gap widths

between cylinders, was that the walls (cell surfaces) which bound the filtration slits have

negligible effect on 0,. To test this assumption, we computed sieving coefficients for the

case of ultrafiltration through slit channels of width 2W and length 8, in the absence of a

diaphragm. In this case, the sieving coefficients are given by
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Figure 6.8 - Average sieving coefficient for the slit diaphragm, (d), for various
distributions of cylinder spacing. The sieving coefficient is shown as a function of
molecular radius, for R = 5 nm (solid curves) and R = 10 nm (dashes curves), 8 = 50 nm,
and W = 20 nm. The gamma distributions g(u) had standard deviations of 0, 50, and 90%
of the mean half-spacing.
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oo..l - Oh (6.25)
Ocopul 1- exp(- hV§/dD )(1- Oh)

where d> is the steric partition coefficient between the slit channels and the adjacent bulk

solution, and d and h are, respectively, hindrance coefficients for diffusion and

convection. These three coefficients were evaluated using equations (32) - (34) of Deen

(1987). (The coefficients d and h are equivalent to, respectively, H/O and W/ of Deen

(1987).) For 10 < rs < 70 A and the hydrodynamic conditions of Figure 6.8 we obtained

0,h,,,w > 0.98, which suggests that the resistance of the channel is indeed negligible

compared to the resistance of the slit diaphragm. The reason the channel resistance is

negligible is that the half-width of the gaps tends to be much smaller than the half-width

of the channel (W).

6.3.4 OVERALL SIEVING COEFFICIENTS FOR THE GLOMERULAR

CAPILLARY WALL

In vivo, one can only measure sieving coefficients for the glomerular capillary

wall as a whole, and not for the slit diaphragm alone. Thus, the results from the previous

section will now be used, together with the approximate model for transport across the

glomerular basement membrane, to provide estimates of overall sieving coefficients for

the glomerular capillary wall. From the computed concentration profiles in the basement

membrane, we calculated sieving coefficients for the basement membrane, 0 ,' defined

as the concentration at the slit opening divided by that at the endothelial openings. Then,

assuming that the sieving coefficient for the fenestrae is unity (i.e., neglecting the

resistance of the fenestrae to the filtration of macromolecules), overall sieving

coefficients for the glomerular capillary wall, 0, were calculated by
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e0 = (e0d)0b, (6.26)
CL

where CL is the solute concentration in the capillary lumen.

Figure 6.9 shows values of 0 calculated for conditions similar to those of Figure

6.8. Some of the results for 0sd in Figure 6.8 are repeated for comparison; the dashed

curves include the effects of the basement membrane, whereas the solid curves do not.

For small standard deviations of the cylinder spacing (up to -50% of the mean) the

values of 0 and (d ) are almost identical, implying that the basement membrane has a

negligible effect on the overall sieving coefficient under these conditions. For some of

the larger solute sizes, where (sd) << 1, there is predicted to be some concentration

polarization in the basement membrane. Accordingly, in these cases, bm > 1 and 0

slightly exceeds (d ). Only for a very broad distribution of cylinder spacings (standard

deviation of 90%) is there a significant difference between the corresponding curves for

0 and (0,d). In this case sieving in the basement membrane overcomes polarization, so

that 0bm < 1 and < (d ). The curve labeled "(OSd) = 1" represents a limiting case in

which the slit diaphragm is effectively absent and 0 = Obm. It can be seen from this that,

even if there is no downstream resistance to cause concentration polarization, bm tends to

greatly exceed (d)..

Figure 6.10 provides an approximate comparison of theoretical values of 0 with

experimental values measured in rats using Ficoll, a polysaccharide which behaves as a

neutral, solid sphere (Oliver et al., 1992). The model predictions were calculated using

the value of the filtrate velocity already used in Figures 6.9 and 6.10. It can be seen that,

for values of rs < -40 A, there is good agreement between the experimental values and

the model predictions for R = 2 nm and a standard deviation of 50%. For larger values

of r, for which 0 < 0.01, the model predictions for R = 2 nm underestimate 0. The
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Figure 6.9 - Average sieving coefficient for the slit diaphragm ((ed), solid curves) and

overall sieving coefficient for the glomerular capillary wall (0, dashed curves) as a
function of molecular radius. The parameter values used included R = 5 nm, 6 = 50 nm,
and W = 20 nm. The gamma distributions g(u) had standard deviations of 0, 30, 50, and

90% of the mean half-spacing. Also shown are results for 0 obtained using (,a) = 1.
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Figure 6.10 - Comparison between theoretical and experimental values of the sieving
coefficient (). The experimental values (symbols) are based on fractional clearances of
Ficoll measured in rats (Oliver et al., 1992) and are shown as mean S.E.. The input
parameters for the theoretical curves were R = 2 or 5 nm, = 50 nm, W = 20 nm, and an
assumed standard deviation of g(u) equal to 50% of the mean half-spacing.
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reason for the discrepancy in the shape of the theoretical and experimental sieving curves

is; unclear. Because () is significantly affected by the assumed value of R (see Figure

6.8), we tested whether assuming a distribution of R together with a distribution of u = L

- R would alter the shape of the sieving curves. These calculations yielded sieving curves

qualitatively similar to those calculated for constant R, so that we conclude that a

distribution of R cannot explain the differences in shape between the experimental and

theoretical curves shown in Figure 6.10. A possible explanation for these differences is

that "defects" in a small fraction of the filtering surface area provide a non-selective

(shunt) pathway that offers little or no resistance to the passage of macromolecules. The

assumption of a shunt pathway in parallel with a highly selective membrane has been

used previously in "equivalent-pore" models of glomerular filtration (e.g., Deen et al.,

1985; Oliver et al., 1992). Calculations with those models have shown that a shunt will

cause a leveling off of the sieving curve for large molecular sizes, as suggested by the

data in Figure 6.10. It should be noted that the comparison between theory and

experiment in Figure 6.10 is only approximate, because the model predictions are valid

for a single location along a glomerular capillary, whereas measurements of 0 in vivo

reflect the changing conditions along a capillary. Specifically, the net ultrafiltration

pressure, and thus the filtrate velocity, decrease from the afferent to the efferent end of a

glomerular capillary.

6.3.5 SUMMARY AND CONCLUSIONS

We have developed a novel hydrodynamic model to describe hindered transport

of spherical macromolecules through single rows of cylindrical fibers of macromolecular

dimensions. Applying this model to the glomerular slit diaphragm, we conclude that the

sieving characteristics observed in normal animals or healthy humans are consistent with

a fairly broad distribution in the spacings between adjacent fibers. A comparison with
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results for Ficoll in the rat suggests that the standard deviation is roughly 50% of the

mean spacing. Under these conditions, we infer that the glomerular basement membrane

makes little or no contribution to the overall sieving coefficient for electrically neutral

macromolecules. If the endothelial fenestrae are filled by water, or by a glycocalyx

which provides a fibrous barrier no more dense than the basement membrane, then the

fenestrae will represent at most a modest extension of a basement-membrane-like barrier.

Thus, the fenestrae also will have little effect on the overall size-selectivity of the

glomerular capillary wall. We conclude that the overall sieving behavior of neutral

macromolecules is determined almost entirely by the slit diaphragm. This conclusion is

consistent with that reached in a recent study of dextran transport across isolated

glomerular basement membrane or intact glomeruli in vitro (Daniels et al., 1993). It was

found that glomerular basement membrane was much less selective than the intact

capillary wall, which included the cellular components.

Our conclusion that the basement membrane makes little or no contribution to the

size-selectivity of the glomerular capillary wall is necessarily tentative, because of the

uncertainty in the values of the transport coefficients used in the basement membrane

model. These coefficients are dbm and hbm in equation (6.14). The equations used to

estimate these parameters are expected to be accurate for fibrous media with lower solid

volume fractions than the basement membrane (Phillips et al., 1989). In addition, these

equations, as well as Ogston's equation for bm', require values for the fiber radius and

solid volume fraction of the basement membrane, neither of which is known precisely.

Using the in vitro methods referred to above (Daniels et al., 1993), it should be possible

to obtain experimental estimates of dbm and hbm as a function of molecular size for test

molecules such as Ficoll. Finally, we should note that the glomerular capillary wall

restricts passage of macromolecules on the basis of molecular charge as well as

molecular size (Maddox et al., 1992). The overall sieving coefficients for anionic

macromolecules tend to be much lower than those for uncharged macromolecules of
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similar size and chemical structure. The basement membrane may contribute

significantly to this charge-selectivity, whether or not it also constitutes an important

size-selective barrier.
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APPENDIX A

WATER FLOW THROUGH THE ENDOTHELIAL
FENESTRAE

A.1 FLUID-FILLED FENESTRAE

If it is assumed that the fenestrae contain only fluid, the governing equations for

water flow through the endothelial fenestrae are the Stokes and continuity equations

(Equations (3.1) and (3.2)). The axisymmetric geometry of the fenestrae suggests the use

of cylindrical coordinates (r,O,z). The boundary conditions at the surface of the

endothelial cells (Q,) are

v =v, = v =O at Qc. (A.1)

At the entrance of a fenestra, the boundary condition in the z-direction which could be

imposed using FIDAP was

Ii = constant at z = -R (A.2)

where I, is the total normal stress at z = -Rr Because the normal viscous stress is

expected to be small compared with the pressure, equation (A.2) can be written

approximately as

H. _ PG at z = -Rf (A.2a)
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where PG is the luminal pressure. Because of flow in the capillary lumen, the remaining

boundary conditions at z = -Rf are more difficult to determine precisely, and we

investigated three alternatives. One was to impose a constant shear stress (a,. where x is

the direction of blood flow). Based on typical blood velocities and capillary dimensions

(Shea, 1981), the shear stress (1x) was estimated to be on the order of -1 Pa. As a

second approach, we set vx equal to various constants at z = -R, as is sometimes done in

modeling flow past fluid-filled cavities. A third approach used, motivated entirely by

simplicity, was

vr =v, = 0 at z = -R . (A.3)

Fquation (A.3) yields flow in the fenestra which is axisymmetric and without swirl; that

is, for all r and z, the velocity and pressure are independent of 8 and v, = 0. The three

approaches were compared using fenestrae approximated as straight cylinders of radius

RJ. The results showed that k,, does not depend significantly on the boundary conditions

used at z = -Rf There is no reason to believe that this conclusion would be different for

fenestrae with tapered walls, so that subsequent calculations were performed using

equation (A.3).

Because the pressure at the exit of the fenestra (adjacent to the basement

membrane) might depend on r, none of the boundary conditions at z = Rf is known a

priori. To overcome this problem, we considered the extended domain shown in Figure

A. 1, which includes a portion of the basement membrane downstream from the fenestra.

The value of rm was chosen such that e£ (= (R/rbm)2) had the desired value of 0.2, and Zbm

was made large enough (, = 4Rf) so that further increases in this parameter would not

affect k,,. Brinkman's equation (equation (4.31)) was used to model flow through the

basement membrane next to the fenestra. Although, throughout most of the basement

membrane, the viscous (Stokes) term is small compared with the Darcy's term, the full
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Figure A. 1 - Computational domain for calculating the permeability of a single fenestra.
It consists of the fenestra (from z = -Rf to z = Rf) and part of the basement membrane
(from z = R to z = zbm).

Brinkman equation was used here to allow the matching of the viscous stresses at the

interface between basement membrane and fluid in the fenestra.

The boundary conditions for the basement membrane are

v,r=O and l, =O at r=rbm (A.4)

v,= v = v 0 at z = R and 2Rf< r rm (A.5)

v, = O and n, = n 2 at z = zm (A.6)

where ,, is the viscous stress exerted in the z-direction on a surface of constant r, and 12

is a constant. At the interface between the fenestra and basement membrane (z = Rf, 0 <

r 5 2R,) the velocities, pressure and viscous stresses in the basement membrane (bm) and

fenestra (f) were matched
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(Vr)b =(Vr)f

(V )b =(V )

(P),, = (P)f (A.7)

(TV )b (Tr )f

( ) (bm (=2)f

Equations (3.1), (3.2), (4.31) and (A1)-(A7) were solved simultaneously using

FIDAP on a Cray X-MP EA/464. As shown in Figures A.2 and A.3, the velocity and

pressure profiles at z = Rf depended significantly on r. Both v, and P changed little

between r = 0 and r = Rf, but decreased faster between r = Rf and r = 2Rr Using the

computed velocity and pressure profiles at z = -Rf and z = R, we calculated k,, using

equations (4.4) and (4.5). For the baseline input we obtained ken = 2.0x10 7 m/s/Pa. This

value is smaller than if it had been assumed that the fenestrae are cylindrical pores of

radius R. and length 2Rr Performing the calculations detailed above with this simpler

geometric model we obtained kn = 3.9x 10-7 m/s/Pa. If we had assumed fully developed

flow in cylindrical pores, the result (from Poiseuille's equation) would be

k, = E R2/(16 Rf) = 5.4x10-7 ms/Pa.

A.2 FENESTRAE FILLED WITH GLYCOCALYX

If it is assumed that the fenestrae are filled with a fiber matrix of Darcy

permeability KD, then Stokes equation (equation (3.1)) must be replaced by Brinkman's

equation (equation (4.31) with KD instead of KD). All other equations and boundary

conditions are as before. Because KD is not known we performed numerical calculations

with FIDAP for values of KD ranging from 2 to 100 nm2. In these calculations we used

200



0.4

Vz

Vf 0.2

0.0

0 1 2

r/Rf

Figure A.2 - Velocity profile at the interface between fenestra and basement membrane (z

= R). Vf is an average velocity in the fenestra, based on the cross-sectional area at z = 0.
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Figure A.3 - Pressure profile at the interface between fenestra and basement membrane (z
= R,). P2 is the average pressure at z = bm,, and PG is the pressure in the capillary lumen.
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the same structural parameters as in Section A.1. Calculated values of k,. are given in

Table A. 1. As KD increases, kn increases, eventually approaching the value for fluid-

filled fenestra. If we assume that the Darcy permeability of the glycocalyx and basement

membrane are the same (KD = KD = 2.7 nm2), the result is k,. = 1.3x10-8 m/s/Pa.

Table A. 1 - Calculated values of hydraulic permeability of the endothelium (kS,)

for various values of Darcy permeability of the glycocalyx (K,)
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K (nm2) k (m/s/Pa)
KD (nm2)

2 1.Ox10-8

5 2.3x10-8

10 4.0x10-8

50 1.1x10-7

100 1.4x10-7



APPENDIX B

WATER FLOW THROUGH THREE-LAYERED
BASEMENT MEMBRANE

As was mentioned in Chapter 1, the glomerular basement membrane apparently

consists of three layers: the lamina rara interna, the lamina densa and the lamina rara

externa. Because the ultrastructure of the fibers seems to change from one layer to the

next, the Darcy permeability might also change from one layer to the next. Here we

describe a model of water flow through the three layers of the basement membrane.

B.1 MATHEMATICAL MODEL

As for a homogeneous basement membrane, the governing equations are Darcy's

law and the continuity equation. However, because the Darcy permeability varies in a

step-wise manner with z, we have

v* K= K VP*

v* =_K VP

v =__ VP*

for O<z<z,

for z, • Z< z 2

for z2 < z < bm 

where z, corresponds to the interface between lamina rara interna (LRI) and lamina densa

(LD) and z 2 corresponds to the interface between lamina densa and lamina rara externa
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(LRE). The dimensionless quantities K (i = 1, 2, 3) are ratios of Darcy permeabilities,

defined as

K = (LRI) ; K2 (LD); K = (LRE) (B.2)
KD KD KD

The overall Darcy permeability, KD, is related to the values for the individual layers by

LRI, 6LD _ LR_ =_ bI + LRE = (B.3)
KD(LRI) KD(LD) KD(LRE) KD

Using the continuity equation together with equation (B.1) one obtains, for each layer, a

Laplace's equation for P*. Here we analyze only the case where we specify constant

velocity at the endothelial and slit openings. The boundary conditions at z = 0 and z =

8b,, for this case are

aP' gV-bm
at Q

az £ ,KKD f

ap= RV at f, (B.4)
az esK 3K, 

ap 0 at Q , and Q,.
az

where and , correspond the endothelial and slit openings, respectively, and Gen and

,,p correspond to the surfaces covered by endothelium and epithelium, respectively. At z

= z, and z = z2 the pressures and velocities for the adjacent layers were matched, that is,
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at z = z,

( ) =K2(aK:2
at z =z2

at z = zi

(B.5)

at z = 2

The remaining boundary conditions are equations (4.10) and (4.11). Solving Laplace's

equation for each layer with these boundary conditions, one obtains for 0 < z < z, :

+ DleAZ )Co(.nx)] . (B.6)

where the primed (dimensionless) variables are defined by

p
LVbm Wbm /KD

Xx
bm

Z

Z 

Wbm

; 6bm E bm

Wbm

(B.7)

and Do is a dimensionless constant related to P0O. For z < z < z2 ,

p = D Z + z - zP =Do-K K1 2

+ 22 (C2ne- &z'
n=l

+ D2neki ) Cos((aX')]-

For z2 z <8 bm,
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P = Do-[ + 2 (C

p E

(B.8)

(P*)� = (PI,

(Po), = (P*),

K2 DPat i
3· a at,



Z - Z2

K 3

+2 (C3 eA".'
n=l

+ D3ne Az ) cos(Ax)]

The constants Cin and Din (i = 1, 2, 3) are given by:

4:(I-R)_Y [(+n 2~ KR )(- K, I(
K3 K2)Cln=

C C + K 3

K 2R
+

K2R. )ez ii(i+
: (1- R,) + [(1 K, )(1

K3)

)+a (i K2Rn)

(B.11)

)ii (~~~~~fn 1 \

K3 )

P oz; - z;
1i K2

(B.9)

.Je 2As()

I

+a (1 K2R )
K3

(B.10)

C(1+
K2R.

K3

K2R,

K3

.(1+K2R_ )
K3)

1L.IJ
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:[c( l+
C3n =

1 - 20 ' ¢ ; - )

K 2R,, /e-2.,2'

K3

K2Rn i
K3

K2 +an(1 K2 )]e242 

1+K2 R
K3

D3n = C3 e -2" ; + n'

1a =-2 [1+ K,
K2

* 1 [
Cn =-Iii-2_

1 K e-2 zlC K- j e2

e-2 ( ;- z ) + 1
e -1n e2 az 
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c( 1+ K2R"
1+

K3
+ an (1-

(B.13)

)[c (

2yrK,
K3

miand

(B.14)

where

(B.15)

(B.16)

(+ K2) e-]J1
(B.17)

(B.18)

_ _

+ a., -K2 R

: - -

Ca ( R +-Cn' I1

K2



= n
AK

4n AnK3
MK 3

(B. 19)

(B.20)

and X,, 4, and y, are given by equations (4.17) through (4.19).

Using equations (B.6), (B.7) and (B.9) together with equation (4.12), one obtains

+ 2 [4. (C 3,e-- L
n=l

+D 3 nex ., )

(B.21)

For K1 = K2 = K 3 = 1, equations (B.10) - (B. 15) become

C1, = C2n = C3 =

Dl, = D2 = D3 =

-ye-e'S6-
A (e`-`, e-A.6m ) 

and equation (B.21) reduces to the result for a homogeneous basement membrane

(equation (4.23)).
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kbm = 8 -
bm 2+
K 3

z 2 -z;

K 2

+ Z,

K,

(B.22)

(B.23)

KDI(gIW,.)

A, (e;�`;- -n

- 7(Cl. + DIJI



B.2 RESULTS

The limited ultrastructural information available for the three layers of the

basement membrane (Takami et al., 1991) suggests that the Darcy permeability of the

lamina densa (KD(LD)) may be much smaller than that of the lamina rarae (KD(LR)). We

assumed that KD(LRI) = KD(LRE) > KD(LD); based on the observations of Takami et al.

(:1991), we estimated that ,sLR = = 0. 1486. We assumed that KD = 2.7 nm2 and 8b (=

6[+8L§O+68xE) = 200 nm, and that all other structural parameters were equal to the

baseline values (see Section 4.3.1).

Figure B. 1 shows isobars calculated assuming KD(LR)/KD(LD) = 5 (Panel A) and

K(LR)/KD(LD) = 20 (Panel B). A comparison between these two sets of isobars and

with the isobars shown in Figure 4.4 for homogeneous basement membrane, shows that

as the Darcy permeability of the lamina rarae increases (i.e., as KD(LR)/KD(LD)

increases), most of the pressure drop occurs in the lamina densa. Figure B.2 shows

streamlines calculated for the same parameters of Figure B.1. As KD(LR)/KD(LD)

increases, the streamlines in the lamina densa approach vertical lines, as if there were no

cells.

Table B.1 shows calculated values of kbm for various values of KD(LR)/KD(LD),

including those used in Figures B. 1 and B.2. As KD(LR)/KD(LD) increases, kb,, increases,

eventually approaching the value obtained when no boundaries are present (kbm =

1.93x10-8 m/s/Pa). This is because when KD(LR)/KD(LD) is large, most of the pressure

drop occurs in the middle layer (see Figure B.1), where the converging/diverging effect

of the boundaries on the flow is no longer critical.
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A

B

Figure B. 1 - Isobars in the basement membrane for e, = 0.11, e 0.20, N= 0.20, = 3, Wb =
0.56, Zl/6,, = 0.14, zJ,6, = 0.86, and KD(LR)IKD(LD) = 5 (Panel A) and KD(LR)/KD(LD)

= 20 (Panel B).
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A

B

Figure B.2 - Streamlines in the basement membrane for E, = 0.11, er = 0.20, Nf = 3,

8bIWb= = 0.56, Zl/b,, = 0.14, Z2 /b,, = 0.86, and KD(LR)/KD(LD) = 5 (Panel A) and
KD(LR)/KD(LD) = 20 (Panel B).
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Table B.1 - Hydraulic permeability calculated for basement
membranes assumed to consist of three distinct layers.

kbm (m/s/Pa)KD (LR)/KD (LD)

1

2

5

10

20

50

8.27x 10- 9

1.02x10 -8

1.32x10 -8

1.54x10-8

1.70x10 -8

1.82x10-8
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APPENDIX C

STOKES FLOW IN A TAPERED CHANNEL:
APPLICATION TO THE EPITHELIAL SLITS

An assumption of the hydrodynamic models developed in Chapters 3 and 4 was

that the width of the epithelial slits is constant. However, as seen in electron

micrographs, the width of the slit channel seems to increase with increasing distance

downstream from the diaphragm. Such an increase in width causes the hydraulic

resistance of the channel to decrease. Thus, the approximation made in Chapters 3 and 4

of neglectingfp (fp is a dimensionless hydraulic resistance of the channel alone) in the

calculation of the hydraulic permeability of the epithelium (k.p), is even more justifiable.

However, because the width of the slit channel increases immediately downstream of the

diaphragm, the disturbances in the flow field caused by the diaphragm will be different

from those in a parallel wall channel. Because the dimensionless "additional" resistance

of the diaphragm, f (f is defined by equation (3.11) as the dimensionless total resistance,

f, minus f,), is determined by these disturbances, the values of f for the actual tapered

channel can be different from those previously calculated for straight channels (Chapter

3). It is expected that, as long as the increase in channel width is not very pronounced,

differences inf will be relatively small. The objective of the analysis presented in this

Appendix was to verify this hypothesis. The approach was as follows. After specifying

the geometry of the slit channel (Section C. 1), we computed values of fT using FIDAP

and used equation (3.11) to calculatef. This equation requires the knowledge off, for a

tapered channel; In Section C.2 we derive an analytical result for f. Finally, in Section

C.3 we give results forf and compare them with corresponding results for a parallel wall

channel.
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C.1 MODEL GEOMETRY

The shape and dimensions of the slit channel, as seen in electron micrographs,

depend on the method used to prepare the glomerular tissue for electron microscopy

(Furukawa et al., 1991). Based on the limited available information, our approach was to

choose a simple geometric model with the most general features of the slit channel,

namely a gradual increase in width downstream of the diaphragm. For this purpose, it

was convenient to use a coordinate system where the geometry of the channel could be

described with only a small number of additional parameters. We chose elliptic cylinder

coordinates (,T1), which are related to the cartesian coordinates used in Chapter 3 by

{x = ccosh 4 cosn (C.1)

z=csinh sin n

where c is a constant. Properties of this orthogonal coordinate system are given in

Appendix A of Happel and Brenner (1983). Figure C. 1 shows curves of constant 11 or of

constant t. The curves of constant 1r suggest that the tapered walls of the slit channel can

be described by T1 = T1o = constant. Accordingly, our geometric model for the slit channel

was as shown in Figure C.2. We assumed that the distance between foot processes is

constant from z = -(&+a) to z = 0, and that it increases further downstream of the

diaphragm (0 < z < ) in such a way that the surface of the foot processes is described by

rl = constant. The distance a from the center of the cylinders (z = -a) to the point where

the tapering of the channel begins (z = 0) was chosen such that R < a << . From z = -

(8+a) to z = 0, the distance between the channel walls is 2W. Thus, the constant c in

equation (C. 1) is given by
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Figure C. 1 - Elliptic cylinder coordinates.

N

I I

8

K 'i = 'b

x

2W

Figure C.2 - Schematic representation of the slit channel. The slit diaphragm is located
at z = -a. The width of the channel is constant from z = -(5+a) to z = 0. For z > 0, the
walls of the slit channel are described by i = 0, (for x > 0) and = -T1o (for x < 0).
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W
c = T. (C.2)

cos n0

C.2 STOKES FLOW IN A TWO-DIMENSIONAL TAPERED

CHANNEL

The following derivation closely resembles that of Happel and Brenner (1983) for

low Reynolds number flow in a Venturi tube. The Stokes equations, written in terms of

the stream function (), are

V4v V2 (V2) = 0 (C.3)

where V2 is the Laplace operator. In elliptic cylinder coordinates, V2 is given by

c2(cosh 2 -COS2 7) da - (C.4) 2

The shape of the channel motivates the assumption (subject to verification) that

= y(77). With this assumption, equation (C.3) becomes

V = + =o (C.6)
where4(G-H) d c12 G-

where
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(C.7)

(C.8)

dr2

G - cosh2

and

H -cos2 .

After some algebra, equation (C.6) becomes

V4 =c4(GH)4[G2(F +4F)+
c (G-H) 4

G(FH - 2HF + 2F'H' + 4HF - 6F)+

(FH -FH H-2FHH+2F(H )2 -2FH)] = O

(C.9)

(C.10)

where the superscripts ' and " refer to the first and second derivatives with respect to ql,

respectively. Since F and H are functions of Tr only and G is a function of 5 only,

equation (C. 10) can only be satisfied for all 5 if

F" +4F=O

FH" -2HF + 2F'H' + 4HF-6F = O

FH 2 - FH"H- 2F'H'H + 2F(H' )2 - 2FH = 0.

(C. 1lla)

(C. 1llb)

(C. 1 Ic)
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Using equation (C. 1lla) in equations (C. 1llb) and (C. 1llc), it can be shown that the latter

two equations reduce to the same relationship. Equations (C. 1 lla) - (C. 1 c) can then be

simplified to

F" = -4F (C. 12a)

F'H' + 4HF- 2F = 0. (C. 12b)

Integrating equation (C.12a) twice yields

F = A cos(2r/) + B sin(27) (C. 13)

where A and B are integration constants. Using equation (C. 13) and the definition of H

(equation (C.9)), it can be shown that equation (C. 12b) can only be satisfied if A = 0.

Then, using equations (C.7) and (C. 13) (with A = 0) and integrating twice yields

iV = -sin(2/) + Ci +D. (C. 14)
4

The three integration constants in equation (C. 14) (B, C and D) can be determined as

follows. First, because the stream function is defined only up to an arbitrary additive

constant, we can specify

= =O atT =- (C.15)
2

where iT = n/2 corresponds to the centerline of the channel (i.e., x = 0). The condition of

no-slip at the wall requires that
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(C.16)=0 at7 = o -.
dr/

Finally, the total flow rate per unit depth in the y-direction (q) is given by

(C.17)

where r = t - r1o corresponds to the wall located at x < 0. Using equations (C.15) -

(C.17) in equation (C.14), one obtains

2qB=- 2q
sin 2/o0 + ( - 2 0o ) cos 2770

q cos 2r/oC =
sin 2r/o + ( - 2 0o )cos 2r/o

q cos 2o
2(sin 2ro + ( - 2o )cos 2o )

and thus,

q[sin(27 ) + (r - 2 ) cos(2 0o )]
= 2[sin(2r10)+ ( - 2 0)cos(21o )]'
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It can be noted that (iq) = -I(n-Ti), or equivalently, W(x) = -(-x). That is, v is anti-

symmetric relative to x = 0. Also, V(X-10) = 0 so that the no slip condition at the wall

located at x < 0 is also satisfied.

The velocity components, in elliptic cylinder coordinates, can be calculated from

by

1V -- ~---1r (C.22)
cOsh 2 cos 2 d o

1 gcosh2 -cos 2 (C.23)

Since v is a function of rl only, equation (C.23) yields v, = 0. Using equations (C.21)

and (C.22) to obtain v, and substituting the result into Stokes equations (now written in

terms of v,, v and P instead of ) one obtains

dP 2B# (2cos27 co 4 cos2 cosh ) (C.24)
T4 2BH (cosh2 ¢ cos2 )2

dJ = 2B/ sin 2r cosh 4 sinh (C.25)

dor c 2 (cosh2 - cos2 71)2

It can be shown that equations (C.24) and (C.25) are equivalent to

dP _ 2Bu d cosh sinh (C.26)
d4 c2 4 cosh2 - cos 277
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dP _ 2B [ cosh~ sinh~ 1
dq c2 d 1 cosh2 - cos2 J

and thus,

2B d[ coshh sinh 1
P = ~c cosh 2 _ cos 2 n '

Upon integration, equation (C.28) yields

2B/l cosh 4 sinh 4
c2 cosh 2 - cos2

=Po -
4qp

c2(sin 27o + (r - 2o )cos 210 )

(C.29)
cosh 5 sinh 4

(cosh2 4 - cos 2 7 )'

where Po is the (constant) pressure at the throat of the channel (z = = 0).

approaches a constant (P.) which is given by

,D ,_ 4qu

C2 (sin 2o + (r - 2o 0 )cos 2o 0 )

As -- oo, P

(C.30)

Defining an average fluid velocity based on the cross-sectional area at the throat of the

channel, V, = q/(2W), and using equation (C.2), equation (C.30) yields

(C.31)P ~-P = Wsn2 +(-r8cos2 T1oji,
P-P= W(sin2Tl +(n-2n)cos21')
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The results derived in this section can be applied to the case of flow through a slit

opening in a planar wall, for which T0 = 0. In this case equation (C.30) simplifies to

Po -P = jic2 (C.32)

and, because the pressure and velocity profiles are symmetric relative to 5 = 0,

P - P 8q (C.33)
rCC2

where P_ is the pressure as e -- oo.

For the channel geometry shown in Figure C.2, we calculated the dimensionless

resistance of the channel alone (fp) as a sum of two terms, one for the straight portion of

the channel and the other for the tapered portion. That is,

3( + a)L (Po- )L
fp v+ (C.34)

where P, is the pressure at the exit of the slit channel (z = §,), averaged in the x and y

directions. Unlike at the entrance of the channel (z = -(§+a)) where, as long as S is large,

the pressure becomes independent of x, the tapering of the channel causes the pressure at

z = 61 to be a function of x even for large 6,. In fact, the pressure decreases from the

centerline (x = 0) to the wall of the channel. As an approximation, we replaced P in

equation (C.34) by the local pressure, P,, at x = 0 (i.e., at rl = /2) and z = 1. The value

of 8 was chosen such that
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P-P ~ Pi a (C.35)
Po - P-

where a is an arbitrary parameter (a < 1). For values of a close to unity, which

correspond to long channels, the difference between the pressures at the centerline and at

the wall is small and, thus, the expected error of replacing P by PI in equation (C.34) is

also small. In the numerical calculations, 6, was made sufficiently large that a > 0.9. As

an example, for L/W = 1, Tio =1.21 and a = 0.9 (see Table C. 1), at z = 8,, the difference

between P1 and the pressure at the wall is only -3% of (P - PI).

Using equation (C.29) with iT = n/2, 5 = , and P = P1, and equation (C.30) in

equation (C.35) yields

tanh , =a. (C.36)

Noting that 4, is the value of at z = 6, and x = 0, equations (C. 1) and (C.2) yield

, W sinh 1, (C.37)
cos lo

Using equation (C.31) in equation (C.35) yields

Po , pi 8agv cos2 7 (C.38)

PF-P, W(sin2ally, equatio +(C.-24) becomes2

Finally, equation (C.34) becomes
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3(8+ a)L 8aLcos 2 C39
fj -W -2 W(sin2qo + ( - 20 )cos2q0) (C.39)

C,.3 DIMENSIONLESS ADDITIONAL RESISTANCE OF THE SLIT

DIAPHRAGM

Using four different experimental methods to prepare glomerular samples for

electron microscopy, Furukawa et al. (1991) measured the distance between adjacent foot

processes at the level of the slit diaphragm and at a distance of 50 nm downstream from

the diaphragm. We used their results to estimate an approximate range for 10. We then

specified the curvature of the walls by choosing Ti0 and, for a given a, calculated the

length of the tapered portion of the channel (86) using equations (C.36) and (C.37).

Assuming the ladder configuration of the slit diaphragm, we determined fr using

FIDAP, calculated f, using equation (C.39), and calculated the dimensionless additional

resistance of the diaphragm (f) using equation (3.11). Table C. 1 shows values of f

obtained in four case studies (we used a = L in all cases). It can be seen that the values

of f for a tapered channel are very similar to the corresponding values for a straight

channel. In conclusion, one can assume straight channel walls in calculating f for the

glomerular slit diaphragm, as was done in Chapter 3.

As a final comment, we note that the geometric model used here represents a

limiting case because, as seen in electron micrographs, the width of the slit channel

seems to stop increasing somewhere downstream from the diaphragm. Therefore, the

actual result should be bounded by the results for a straight channel and those for the type

of tapered channel considered here.
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Table C. 1 - Numerical values off for tapered and straight channels

f
LIW RIL 8/L x 5lo 6,IL Tapered Straight

channel channel

1 0.5 4 0.95 0.72 4.0 35.5 35.6

1 0.5 4 0.9 1.06 4.2 35.6 35.6

1 0.5 4 0.9 1.21 5.9 35.6 35.6

4 0.5 4 0.99 0.88 2.7 99.4 101
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APPENDIX D

CALCULATION OF THE WIDTH OF A
STRUCTURAL UNIT FROM THE MEASURED

FILTRATION SLIT FREQUENCY

In this Appendix we derive equation (5.6), which relates the width of a structural

unit (Wb,,,) to measured values of filtration slit frequency (FSF).

Because of the random angle of sectioning the glomerular capillary, the measured

apparent width of a structural unit (Wb.) will generally exceed the true width (Wb,,,). As

illustrated in Figure D.1, Wbm depends on the angle () between the filtration slits and the

line of intersection of the sample plane () with the outer surface of the capillary wall ().

It can be seen that for O < < r, Wbm 2 Wbm, the equality holding when n = i/2.

To calculate W,, from the measured mean width of a structural unit (We) we

used principles of geometrical probability. In particular, our problem is closely related to

that of calculating the expected length (a) of the chord formed by the intersection of a

plane () with a closed convex figure lying in another plane (). Using results given in

Kendall and Moran (1963) we obtained

7a= (D.1)
P

where A is the area of the closed convex curve and P is its perimeter. This result is

equivalent to that derived by Solomon (1978) (p. 32) for the case of a straight line

intersecting a closed convex curve in a plane. Equation (D. 1) can be directly applied to

our problem by defining the closed curve as a rectangle of width Wb,, and (arbitrary)
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Filtration Slits

Figure D. 1 - Schematic representation of the outer surface of the capillary wall () and
sample plane (0'), showing the relationship between the measured apparent width of a

structural unit (W,,,) and the true width (Wbm).

length e, corresponding to the area occupied by one foot process and one filtration slit.

Then, a = Wbm. Neglecting edge effects (i.e., assuming e >> Wbm) , equation (D.1) yields

- it (D.2)
Wbm = Wbm .2)

which is the desired relationship between the apparent and true widths of a structural

unit. In the experimental studies described in Section 4.3.5 and in Chapter 5, the

filtration slit frequency (FSF) was determined by dividing the total number of slits

captured in the electron micrographs by the total length of peripheral capillary wall.

Thus, 1/FSF is an estimate of Wbm. Using this result in equation (D.2) we obtain the

relationship between FSF and Wbm (equation (5.6)).
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Equation (D.2) can be derived also as follows. As indicated by Figure D. 1, the

apparent width Wm is related to Wb by

WL:bm (D.3)
sin (

The arithmetic mean of Wbm is then calculated by

x

I Wf(4)do0wim = (D.4)
If(4)d4
0

where f() is the probability density of the angle {. As shown by Solomon (1978) (p.

7:1), the probability density of the angle formed by two random lines that are known to

intersect within some finite region in space is given by

f (¢) = 1sin . (D.5)
2

Using equations (D.3) and (D.5) in equation (D.4), and performing the required

integrations, one obtains again equation (D.2).

Similarly, one can also calculate Wbm from the apparent harmonic mean width

(W ) which is defined by

229



. = (D.6)
i If jf(O)do

0

The result is

W, =4Wbm. (D.7)

The derivations presented here to obtain relationships between W',, (or W, ) and

Wbm are different from that of Jensen et al. (1979), who obtained the relationship we have

used to calculate the "true" thickness of th: basement membrane (bm, equation (5.4)).

To determine 86b one measures the distance between two lines obtained by the

intersection of the sample plane () with two parallel planes (' and B) corresponding to

the "inner" and "outer" surfaces of the basement membrane. The angle of interest in that

case (denoted as 0) is that between P and B (or B'), and the probability density for that

angle is proportional to sin20 (Jensen et al., 1979). In contrast, Wbm is the distance

between two points in the line of intersection of the sample plane () with the plane ()

corresponding to the outer surface of the basement membrane. The angle of interest is

now the angle () formed by the line of intersection of the two planes with the parallel

lines in B corresponding to the filtration slits. This is why, contrary to the suggestion of

Gundersen et al. (1980), we did not use the same correction factors for Wbm and b,,.
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APPENDIX E

HYDRODYNAMIC APPROXIMATIONS FOR
HINDERED TRANSPORT OF MACROMOLECULES

THROUGH A SINGLE ROW OF CYLINDERS

In Chapter 6 we described briefly the hydrodynamic approximations used to

estimate the force coefficient tensors f and g, which appear in the force balance for a

sphere moving through a row of infinitely long cylinders (equation (6.1)). Here we give

a more detailed description which includes all the equations used to calculate f and g in

each hydrodynamic region shown in Figure 6.2.

E.1 HYDRODYNAMIC APPROXIMATIONS IN REGIONS I

In Regions I, f was estimated using results for the translation of a sphere in the

presence of a planar wall and g was estimated using results for flow past a stationary

sphere in the presence of a planar wall. We assumed that the "wall" was tangent to the

surface of the cylinder and, for each location of the sphere, the point of tangency was

defined as shown in Figure E.1. For simplicity, and because the overall aproach was in

itself only approximate, when possible we estimated the force coefficients using

asymptotic results for small and large gaps between the sphere and the wall.

FORCE COEFFICIENTS FOR A SPHERE TRANSLATING PARALLEL TO A PLANAR

WALL (f,1). For small gaps between the sphere and the wall, we calculatedfN using the

"lubrication" result of Goldman et al. (1967a), whereas for larger gaps we used the result

obtained by Faxen (Happel and Brenner, 1983, p. 327),
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= -58 ln( b 1)+0.9588 for b > 0.967 (E.la)

-1 l)

f =( 1 - b + l b ' 45 b4- bS)' for b<0.967 (E.lb)
f 16 8 256 16

where b is the ratio between the sphere radius (rs) and the distance from the sphere center

to the wall. The transition between equations (E.la) and (E.lb) was made at the value of

b where both equations yield the same value of fu, which is b - 0.967.

FORCE COEFFICIENTS FOR A SPHERE TRANSLATING TOWARDS A PLANAR

WALL (fi). As above, we used asymptotic results for small and large gaps instead of an

exact solution, which in this case is given in Brenner (1961). For small gaps, fi was

calculated using the "lubrication" result of Cox and Brenner (1967), whereas for larger

gaps f1 was calculated using the method of reflections' result of Wakiya (Happel and

Brenner, 1983, p. 330),

fL = +2In-1 + 0.943226 for b0.508 (E.2a)
a2 5 )

f =( 1-8b+2b3) for b < 0.508 (E.2b)

where

a =In+1 + )-1 (E.3)
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FORCE COEFFICIENTS FOR SHEAR FLOW PAST A STATIONARY SPHERE (gl).

We first calculated hi (= gl/f1) using the asymptotic results given in Goldman et al.

(1967b),

h 0.7431 for b 0.747 (E.4a)

0.6376- 0.200In(b1 -1)

h =1-5 b3 for b < 0.747 (E4.b)
16

and then calculated g,, by

g, = hf, (E.5)

with f, calculated by equation (E. la) or (E. lb), depending on the value of b.

FORCE COEFFICIENTS FOR FLOW PAST A STATIONARY SPHERE TOWARDS A

PLANAR WALL (g.). Because there appears to be no solution for flow past a stationary

sphere towards an infinite wall, we used the results of Dagan et al. (1982) for a sphere

and a (finite) disk to estimate g. as follows. First, h. was calculated for the case of a

sphere and a disk, using the results of Tables 2 and 3 and equation (5.2) of Dagan et al.

(1982). The computed values of h. are given in Table E. 1, where rD is the radius of the

disk and b is the sphere radius divided by the distance from the center of the sphere to the

surface of the disk. As described in Section 6.2.4, for rsrD < 1, the results given in Table

E. 1 were well approximated by

h. =1-b 3 8 . (E.6)

Therefore, we calculated g. using
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Table E. 1 - Values of h. for a sphere and a disk, calculated
from the results of Dagan et al. (1982)

gl = hfi (E.7)

with hx given by equation (E.6) andfi given by equation (E.2a) or (E.2b), depending on

the value of b.

COMPONENTS OF f, g, d AND h IN (y,z) COORDINATES. Having calculated the

force coefficients for motion parallel and perpendicular to the planar wall (f, f., g,, and g.

), the components of f and g in (y,z) coordinates were determined by taking into account

the orientation of the wall. This yielded,
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b 0.1 0.25 0.5 0.75 1 2.5 5 7.5 10

0.909 0.302 0.307 0.324 0.320 0.291 0.253 0.434 0.608 0.724

0.8 0.570 0.579 0.651 0.573 0.530 0.580 0.812 0.908 0.953

0.667 0.796 0.804 0.808 0.766 0.737 0.864 0.960 0.988 0.997

0.5 0.956 0.959 0.937 0.909 0.909 0.977 0.999 1.002 1.003

0.333 1.015 1.009 0.986 0.984 0.990 1.001 1.002 1.002 1.001

0.25 1.019 1.008 0.997 0.999 1.000 1.002 1.001 1.001 1.001

0.2 1.016 1.005 1.001 1.001 1.001 1.001 1.001 1.000 1.000

0.167 1.012 1.004 1.001 1.001 1.001 1.001 1.000 1.000 1.000

0O.125 1.007 1.002 1.001 1.003 1.001 1.000 1.000 1.000 1.000

0.1 1.004 1.001 1.001 1.001 1.000 0.990 1.000 1.000 1.000



fyy = f sin2 B + f. cos 2 13

f. = f, cos2 P + fi sin2 3

f = $ = (f. - f )sin cos (E.8)
(E.8)

gyy = g, sin2 + g cos2 3

g = g, cos 2 3 + gL sin2 13

gy = g = (g, - g, )sin cos3

where is the angle between the y-axis and the line connecting the center of the cylinder

(0,0) with the center of the sphere (y,z), i.e. P = tan- (z/y) (see Figure E.1). Then, the

components of the tensors d and h, used in equation (6.3), were calculated using

equations (6.5) and (6.6), respectively. That is,

dy = f/det(f)

d = f,/det(f) (E.9)

dz = dy =-fy/det(f)

and

h, = (f.g - f, g, )/det(f)

h. = (f yyg - fg, )/det(f) (E.0)

hyz =(f g, -f,g, )/det(f)

h.y = (fyygy - fyg, )/det(f)

where
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z

Figure E. 1 - Diagram illustrating the location of the planar wall.

det(f) = f,, - ff. (E.11)

Using equation (E.8) in equation (E. 10) one can show that h is symmetric,

(f,g1 - fg,)sin3cos3
h, = h = ( f ) (E.12)

E.2 HYDRODYNAMIC APPROXIMATIONS IN REGION III

In Region III we estimated f1, f1 and g,, using the results of Ganatos et al. (1980a,

c) for a sphere between parallel walls. Tables E.2 through E.4 give the values of these

coefficients, which were estimated from Figures 3a and 6a of Ganatos et al. (1980a) and

Figure 3 of Ganatos et al. (1980c). The new parameter s is the distance from the center

of the sphere to the closest wall divided by the distance between the two walls. (Note

that 0 s 0.5.) The values of g,, were calculated from the values of FP plotted in

Figure 6a of Ganatos et al. (1980a) using
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Table E.2 - Values off, for a sphere between parallel walls, obtained
from Figure 3a of Ganatos et al. (1980a)

Table E.3 - Values offj for a sphere between parallel walls, obtained
from Figure 3 of Ganatos et al. (1980c)
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S

b 0 0.1 0.2 0.3 0.4 0.5

0.1 1.06 1.06 1.06 1.07 1.09 1.11

0.2 1.12 1.12 1.14 1.16 1.19 1.24

0.333 1.22 1.23 1.25 1.29 1.36 1.46

0.5 1.38 1.40 1.43 1.51 1.64 1.85

0.667 1.59 1.61 1.67 1.79 2.02 2.37

0.8 1.85 1.88 1.95 2.13 2.45 3.00

0.909 2.25 2.29 2.39 2.62 3.00 3.92

S

b 0 0.1 0.2 0.3 0.4 0.5

0.1 1.12 1.12 1.12 1.14 1.15 1.16

0.2 1.28 1.28 1.28 1.30 1.34 1.39

0.333 1.57 1.57 1.57 1.60 1.69 1.85

0.5 2.14 2.14 2.14 2.18 2.34 2.75

0.667 3.24 3.24 3.24 3.30 3.65 4.77

0.8 5.32 5.32 5.38 5.48 6.06 8.83

0.909 11.5 11.5 11.5 11.7 12.6 20.9



Table E.4 - Values of g, for a sphere between parallel walls, obtained
from Figure 6c of Ganatos et al. (1980a) and equation (E. 13)

(E.13)
FYP

g' 4s(1 - s)

The denominator in equation (E.13) accounts for the fact that we defined gH relative to

the local undisturbed fluid velocity whereas Ganatos et al. (1980a) defined F,P relative to

the undisturbed velocity at the centerline of the planar wall channel.

To calculate s and b in Region III, the location of the wall closest to the sphere

was determined as in Regions I and the distance between walls was assumed to be

2(L/cos 3- R). For b < 0.909,f,f, f and g,, were calculated by linearly interpolating 1/f,

l/f. and h, (= g,) using the values given in Tables E.2 - E.4. When b < 0.1 the

interpolations were done between b = 0.1 and b = 0 for which case all force coefficients

equal 1.
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b 0 0.1 0.2 0.3 0.4 0.5

0.1 1.06 1.04 1.05 1.06 1.08 1.11

0.2 1.12 1.13 1.14 1.15 1.19 1.23

0.333 1.21 1.22 1.20 1.28 1.35 1.42

0.5 1.32 1.32 1.35 1.43 1.54 1.69

0.667 1.45 1.45 1.48 1.59 1.78 2.00

0.8 1.54 1.54 1.60 1.77 1.98 2.26

0.909 1.62 1.67 1.73 1.89 2.15 2.50



For b > 0.909, we calculated fu, f1 and gu using an approach similar to that of

Gcanatos et al. (1980b) who modified one-wall lubrication results to account, in an

approximate way, for the effect of the second wall. Specifically, the modified lubrication

results, based on equations (E. la), (E.2a) and (E.4a), were

Afi 8 In 1 -1)+ C1(s) (E.14)

f = 2 + ln I + C (s) (E.15)

0.7431(- 8 In( b -1) + 09588 D,(s)
gm m . (E.16)

0. 6376 - 0.200 In 1-1) b

The new parameters C (s), C (s) and Dm(s), which depend only on s, were obtained by

matching the estimates of equations (E. 14) - (E. 16) with the values given in Tables E.2 -

E.4, at b = 0.909. That is,

C, (s) = ( )9 + -ln(0.1) (E.17)( 2 + n( )5

Cj (s)=(f''- 2 +0.41n (E.18)
~~~~~~0.909
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(g) 0o.909 0.6376 - 0.2001n(0.1)

1.1 0.7431 - ln(0.1)+ 0.9588)

where (f,)0. , (f )0.99 and (g, )99 are the values of f, f and g,, respectively, given in

Tables E.2 - E.4 for b = 0.909, and ao.909 is the value of a calculated using equation (E.3)

with b = 0.909. We then determined Cl (s), C1 (s) and Dt (s) for each value of s given in

Tables E.2 - E.4, and used the calculated values in equations (E.14) - (E.16) to calculate

f,,f and g, when b > 0.909. For values of s not included in Tables E.2 - E.4, we linearly

interpolated 1fl, l/f1 and g/f 1,.

The remaining force coefficient, h, was estimated as in Region I (Section E.1)

and then f, g, d and h were calculated using equations (E.8) - (E.11).

E.3 HYDRODYNAMIC APPROXIMATIONS IN REGIONS II

Regions II are transition regions where the components of d and h were

interpolated linearly from the corresponding values at the boundaries of Regions I and

IlI. In the points of Region II for which 0 < y < (R + r)cos(t/4), we assumed that the

boundary of Region III corresponds to r (y2 + z2 )V2= R + r,, where d = h = 0.

E.4 RESULTS

In Figures 6.3 and 6.4 we plotted the diagonal and off-diagonal elements of d and

h as a function of zL, for RIL = 0.5, rsl(L - R) = 0.7, and various values of y/L. Tables

E.5 and E.6 give values of those coefficients for the same parameter values.

240



Table E.5 - Calculated values of the diagonal elements of d and h
for RIL = 0.5 and rs/(L - R) = 0.7

Table E.6 - Calculated values of the off-diagonal elements of d and h
for R/L = 0.5 and rs/(L - R) = 0.7

z/L d, for y/L = h, for y/L=

0 0.5 1 0 0.5 1

0 - 0 - - 0

0.5 - - -7.6x10-2 - -3.9x 10-3

1 0 -1.Ox10-' -9.5x 10-2 0 -2.3x 10-2 -4.2x 10-3

2 0 -2.9x 10-2 -4.4x 10-2 0 0 - 0

3 0 -1.2x10- 2 -2.2x 10-2 0 0 _ 0

4 0 -6.8x10-3 -1.3x10-2 0 0 0

5 0 -4.3x10 -3 -8.2x10- 3 0 0 0

Entries shown as " 0" had absolute values <lx10 4 .
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z/L dy, for y/L = d for y/L = h, for y/L = h. for y/L=

0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1

0 - - .185 - - .400 - - .742 - - .826

10.5 - - .341 - - .455 - - .887 - - .893

1 .596 .631 .692 .287 .478 .692 .893 .932 .978 .742 .896 .978

2 .870 .868 .865 .744 .761 .799 .996 .996 .997 .996 .997 .998

3 .922 .921 .919 .844 .848 .861 .999 .999 .999 .999 .999 1.00

4 .944 .943 .943 .888 .890 .895 1.00 1.00 1.00 1.00 1.00 1.00

5 .956 .956 .956 .913 .914 .916 1.00 1.00 1.00 1.00 1.00 1.00



APPENDIX F

ESTIMATE OF THE DIMENSIONLESS FLOW
RESISTANCE FOR LARGE CYLINDER SPACINGS

In this appendix we summarize the procedure followed to calculate the

dimensionless flow resistance, fT, needed in equation (6.20). This quantity, defined by

equation (3.9), can be expressed as the sum of the dimensionless Poiseuille flow

resistance, fp (= 3TL/W 2, where T is the total length of the slit channel) and a

dimensionless "additional" flow resistance, f. For flow through a row of infinitely long

cylinders, f, = 0. For flow through the slit channel and diaphragm we saw in Chapter 4

that fp is expected to be much smaller than f. It should be noted, however, that if we

assume a distribution of cylinder spacings, as we did in Section 6.3.3, we need to account

for the existence of a small fraction of very large spacings, for which fp will be non-

negligible.

To calculate Od in Chapter 6 we neglected the effect of the walls. However, we

can incorporate wall effects on q(u) by calculating f using the interpolation formulas

derived for the ladder configuration (equations (3.15) - (3.20)). Because these formulas

only apply for RIL 0.1 and LIW < 4, when RIL < 0.1 or LW > 4 we estimated f as

follows. For L/W >> 1 and R/L << 1, v, -- 0 and vy O in most of the domain and v, can

be estimated by a modified Poiseuille flow result where, because of continuity, the

average velocity V, is a function of z in the region between cylinders. Under these

assumptions, it can be shown that

4( R1 r +2tan I' R/L -2. (F.1)v - t/1-(R/L) )) ) W2
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Thus, to calculate fT when RIL < 0.1 or L/W > 4 we linearly interpolated f between the

results for RIL = 0.1 or WIL = 0.25 and the estimate of equation (F. 1), which corresponds

to RIL = 0 or WIL = 0. Regarding f, we verified that, for reasonable channel lengths (6,

< -100 nm) the assumed value of ,T did not significantly affect (0,). Thus, we used ,T

= in the calculations of (0,); that is, we neglected the hydraulic resistance of the

channel downstream of the diaphragm.
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