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ABSTRACT

The electrical and optical properties of YAG, Nd:YAG, Ti:YAG, and Zr:YAG
were studied and quantitatively correlated to determine defect models for the
defect structure of these systems. Correlations of these independent
measurements were essential, as defect models derived from electrical or
optical measurements alone were inconclusive. The correlated defect model
provided a new interpretation for the electrical and optical properties of Ti:YAG.
This defect model was then tested by checking its predicted dependence of
Ti:YAG's optical properties with P0 2. This prediction was experimentally
verified.

Most of the systems were found to have a defect structure controlled by
inadvertent background acceptors compensated by oxygen vacancies. This
structure led to a characteristic conductivity isotherm where the conductivity
varied as P02 -1 /4 for reduced P02's, and approached P02 independence for
oxidizing P02's. Only for a heavily doped Zr:YAG sample was a new defect
structure encountered. For this sample, an extrinsically compensated defect
structure was detected, with the Zr+4 ions compensating the background
acceptors. The conductivity isotherm for this sample had a n-type like
component that varied as PO2- 1/6.

Quantitative correlations of the electrical and optical properties also provided a
deep insight into the nature of the optical properties, and how these properties
change as a function of oxidizing and reducing anneals. Correlations of this
type were used to locate the energy level positions of Fe+ 2, Ti+ 3, Zr+ 3, and

Vol' in the YAG bandgap.

Thesis Supervisor: Dr. Harry L. Tuller

Title: Sumitomo Electric Industries Professor of
Ceramics and Electronic Materials
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CHAPTER 1: INTRODUCTION

The properties of a material depend on its structure, composition, and its

processing. To engineer desired properties into a material, one must first

establish how the processing affects the structure, and then understand why

these structural changes result in the observed properties. For many functional

ceramics, the electrical, optical, or magnetic properties usually depend on their

defect structure, as reflected in the ceramic's electronic and ionic defects. This

defect structure can vary dramatically with doping and/or changes in

stoichiometry, leading to major changes in their properties. For example, the

ionic conductivity of Y2(TilxZrx)20 7 can vary over four orders of magnitude as

x varies from zero to one. 1 ,2 Similarly, up to 1% of chromium can be substituted

for aluminum to give colorless sapphire the deep red color of ruby.3

Unfortunately, the defect structures of functional ceramics are not easy to

determine, and often more than one defect structure model is consistent with the

experimental results. To distinguish between competing models, experimental

measurements of an independent nature are extremely useful. Electrical and

optical measurements are an example of such complementary measurements.

One of the main objectives of this thesis is to demonstrate how one may

quantitatively correlate electrical and optical measurements for the purpose of

identifying the defect structure of a material. Once this defect structure has

been determined, one can then study the effect of processing on this defect

structure, and on the resulting properties. The next step is to understand these

properties in terms of the defect structure changes. Finally, from an

understanding of these structure-property-processing relationships, one can

estimate the range of defect structure variations the system is capable of, the
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range of properties that are accessible, and the processing steps necessary to

obtain the desired defect structure and accompanying material properties.

We chose yttrium aluminum garnet (Y3AI5012) as the prototype material

system to demonstrate this concept of correlating electrical and optical

measurements. Yttrium aluminum garnet or YAG, as it is commonly referred to

has a number of properties that make it suitable for such a study. It is an optical

material system of technological interest, e.g. Nd:YAG is a high power solid-state

laser system. It has been studied for a number of years, so that data regarding

many of its properties are readily available. And finally, standard techniques for

growing large single crystals exist, so samples can be readily obtained.

Stan Rotman, a former student in our research group, demonstrated in his

PhD thesis that correlations of electrical and optical measurements were

extremely useful in determining the defect structure of YAG.4 His qualitative

correlations revealed that most YAG samples, both doped and undoped, had

defect structures consistent with a model based on background acceptors

controlling the defect structure. We sought to expand on his work in two primary

ways. First, we sought to extend the technique to quantitative correlations of

electrical and optical properties. As we will show, quantitative correlations will

allow us to estimate the positions of energy levels in the bandgap, as well as

allow us to discriminate between defect models which are qualitatively consistent

with both electrical and optical measurements. Second, we sought to explore

defect structures controlled by donors. We chose Zr and Ti as the donors. Both

these ions are commonly found in the +4 valence in oxides, consequently they

would indeed function as donors in this valence. Furthermore, in the +3 valence,

both of these ions have only one d-electron. Consequently their optical

properties would be much simpler to analyze. Finally, previous studies

suggested that solubilities of these ions approached 1%, suggesting that one
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could obtain samples with donor concentrations high enough to overwhelm

background impurity effects.5 ,6

We began our investigation by attempting to fabricate transparent

polycrystalline YAG ceramics. Such a process, if successful, would have

technological implications. Polycrystalline ceramics have a number of

advantages over single crystals: a) they tend to be more uniform, b) dopant

concentrations are easier to control, c) they are amenable to processing in

various shapes, and d) they are cheaper to process. We were somewhat

successful in our attempts, fabricating translucent polycrystalline ceramics with

>99% density. However, densities in excess of 99% proved difficult to achieve,

and probably could have constituted a thesis in itself. Unfortunately these

translucent ceramic samples weren't suitable for optical measurements.

Samples thin enough to obtain an optical signal from were generally too thin to

see any effects from the dopants. Consequently we looked for alternative ways

to make samples.

Toshihiro Kotani, a scientist from Sumitomo Electric who is currently

visiting us, employed John Haggerty's laser heated floating zone technique to

grow single crystal fibers from our dense ceramic samples. By using these

ceramic samples as feed rods, he grew single crystal fibers suitable for electrical

and optical measurements. A number of Ti:YAG and Zr:YAG fibers were grown

in this manner. We were also fortunate enough to obtain some large single

crystals of YAG grown by the Czochralski process to study and compare with our

fibers. John Haggerty of MIT donated some YAG and Nd:YAG crystals, while

Milan Kokta of Union Carbide donated some Ti:YAG crystals.

With these samples, we intend to fulfill the two primary objectives of this

thesis: a) to develop a technique for quantitatively correlating the electrical and

optical measurements of YAG, and b) to determine the defect structure of donor
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doped YAG. As seen in the following thesis, these objectives were largely met.

The next chapter, Chapter 2, covers some general background material, and

Chapter 3 is a short literature review of previous work. Chapter 4 covers the

experimental details, and Chapters 5, 6, & 7 cover the experimental results of

YAG & Nd:YAG, Ti:YAG, and Zr:YAG respectively. Finally, we summarize all of

our results in Chapter 8, the conclusion.
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CHAPTER 2: BACKGROUND

2.1: OPTICAL PROPERTIES OF OXIDES

2.1.1: Energy Levels in Atoms & Solids:

Any discussion of the optical properties of a material must begin with a

discussion of the electron energy levels of the material, since the optical

properties typically involve electronic transitions between these levels. In the

case of the simplest system, the hydrogen atom, these levels can be determined

exactly by applying Schrodinger's equation to the central field problem of the

electrostatic attraction between the proton and the electron.7 -9 The electron

orbitals derived from this calculation are characterized by three quantum

numbers, n, I, and ml, which describe the orbital energy, the orbital angular

momentum and shape, and the z-component of the angular momentum

respectively. All these quantum numbers must be integers, with n=1,2,3...,

1=0,1,2...n-1, and ml=-I,-+l ,...0,...I-1,1. The I quantum numbers are often labeled

with letters, with s,p,d,f,g,h,l,.... for 1=0,1,2... A fourth quantum number ms=±'/2

describes the spin of the electron occupying a certain orbital, and these four

quantum numbers fully specify the electronic structure of the hydrogen atom, or

hydrogen-like atoms that have only one electron. For a give n shell, all of the

orbitals are degenerate in energy, with E=-13.6 eV/n2.10

For multi-electron atoms, two additional forces become relevant, the

electrostatic electron-electron repulsion, and the magnetic spin-orbit coupling

between the magnetic moments of the electron spin and the orbit it occupies.

These additional forces dramatically complicate the calculations for the atomic

orbitals, such that exact solutions are no longer possible.1 1 These forces also

split the energy degeneracy, so much so that inversion of energy levels may

occur, with for example the 4s levels being lower in energy that the 3d levels.7
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These levels are filled starting with the lowest energy level according to the Pauli

Exclusion Principle, no more than two electrons per electron orbital. Because

the levels are no longer degenerate within a given n shell, the different electronic

structures within a given n shell will have different energies. To distinguish,

label, and describe these different structures, term symbols are used. The term

symbol designation is 2 S+1L2 J+1 all in capital letters to designate that we are

describing the electronic structure of the whole atom, and not the atomic orbital

of a particular electron, which we designated by lower case letters.7 The

notation is consistent and converges for the hydrogen atom where we have only

one electron. The relation between s and S, I and L, and j and J for the term

symbol is as follows:

L= m, =0,1,2,3,4,5.... ; S= sj ; J= L+S,L+S-1, ..... L-S

= S, P, D, F,G, H....

The atomic orbital calculations are greatly simplified for the limiting cases, where

the electrostatic electron-electron repulsion is either much greater or much

smaller than the magnetic spin-orbital coupling. Russell-Sanders coupling

designates the former case, and is valid when the atomic number, z <40. The

inverse case is referred to as j-j coupling, and is valid for the heavy atoms,

z>40.7 In both cases the ground state is determined by Hund's rules of

maximum multiplicity.7,9

When atoms are brought close together, the outer valence electrons of

the atoms interact, and molecular orbitals incorporating this interaction are

formed. These molecular orbitals tend to split the energy of the corresponding

atomic orbitals, so that one is lower in energy than the atomic orbital (bonding

molecular orbital), and one is higher in energy (anti-bonding molecular

orbital).9 ,11 As more and more atoms are added as in a solid, the number of
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these molecular orbitals increase until bands of orbitals in energy space are

formed. The width of the band depends on the nature of the atomic orbitals

contributing to the molecular orbital. S and p states tend to have broad bands

while d and f states tend to have narrow bands. If the fermi energy (the energy

above which all the electronic states are empty and below which they are filled at

T=0°K) lies in one of these energy bands, the material is a metal. If the fermi

energy lies between these bands, the material is an insulator or semiconductor,

depending on the magnitude of the bandgap. Large bandgap materials with

bandgaps of > -3 eV are typically insulators.

2.1.2: Energy Levels in Large Bandgap Oxides:

In an oxide, the valence band, the highest occupied energy band of

"molecular orbitals" below the fermi energy, is typically the oxygen 2p band, and

the conduction band, the lowest energy band of "molecular orbitals" above the

fermi energy, is typically the empty cation band. In YAG for example, the

conduction band is presumably the 4d band of yttrium. If the oxide was perfect,

then no energy levels would be present between the valence and conduction

band. At higher temperatures, entropic forces induce defects such as atomic

vacancies or interstitials, and these defects often create energy levels within the

bandgap. Another source of levels within the bandgap are impurities. Transition

metal and rare earth impurities often have energy levels within the bandgap of

oxides. These levels are typically due to the d and f electron orbitals,

respectively.

The effect of the oxide lattice on these free ion orbitals can be very

dramatic, especially for the d orbitals which extend farther out into the host lattice

and can interact more strongly with the electrons of the host atoms.1 1 Two

related theories have been developed to describe these interactions
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quantitatively. The simpler theory, known as crystal field theory, models the

oxide lattice interaction as point negative charges arranged in the symmetry of

the site occupied by the impurity. These point negative charges perturb the free

ion orbitals with their electrostatic fields, and new orbitals are calculated

accordingly.1 1,12 Since these new orbitals are critically dependent upon the

symmetry of these point charges, which represent the symmetry of the site,

group theory notation is used to describe these orbitals. The magnitude of the

crystal field is often labeled 1 ODq or A, and is of the order of a few eV for most

oxides.1 1 The related but more complicated ligand field theory fully models the

complete interaction of the impurity atom's orbitals with its nearest neighbor's

orbitals, to generate molecular orbitals for the "molecule." Group theory notation

is also used for these orbitals.1 2 ,1 3 Clearly crystal field theory is more suitable

for describing ionic bonds between the impurity atom and its host, whereas

ligand field theory is needed if significant covalent bond nature is present.

Crystal field theory has been used with remarkable success for a number of

)oxides. 1

Crystal field calculations are simplest to do for Ti+3, since it involves only

one d-electron, and is consequently hydrogen-like in nature. Such calculations

reveal that the five degenerate d-electron orbitals for a free ion are split into two

degenerate sets in an octahedral field, the triply degenerate t2g ground state

orbitals, and the doubly degenerate eg excited state orbitals, as shown in Figure

2.1.3 Other site symmetries are also shown. Note in particular that the

tetrahedral symmetry is qualitatively the inverse of the octahedral symmetry.

This inversion stems from the fact that six negative charges at the faces of a

cube is qualitatively the same as four positive charges placed at alternate cube

vertices. Also note that qualitatively the cubic field splitting is the same as the
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tetrahedral field splitting. Quantitatively, for the same strength ligands and

interionic distance, the magnitude of the splitting follows the relation:

Aoct=9/4Atet=9/8Acubic. 1

These orbitals are then the starting base for atoms with more than one d-

electron. Similar to the hydrogen atom, when more than one d-electron is filled

into these orbitals, we have to factor in the electron-electron repulsion of the d-

electrons into our calculations.1 1 These calculations were made by Tanabe and

Sugano, and their results are shown in Figure 2.2 as a function of the crystal

field strength for octahedral sites.14-16 As in the free atom case discussed

above, consideration of the electron-electron repulsion of the d-electrons gives

rise to additional terms. Also in analogy to the free atom case, the ground state

is dictated by Hund's maximum multiplicity rules. In these Tanabe-Sugano

diagrams, the spin-orbit energy is assumed to be much less than the crystal field

energy, as is the case for transition metals in the first row.1 4-16 Both

coordinates are normalized against the Racah parameter B, which is a measure

of the interelectronic repulsion. As seen in the Tanabe-Sugano diagrams, when

1 ODq gets very large, Hund's maximum multiplicity relations break down, and a

lower spin state then becomes the ground state.

Another process by which energy levels in the band gap can be split is the

Jahn-Teller effect. For orbitally degenerate electronic states, any distortions of a

non-linear molecule which will split the states and create lower energy states

thereby lowering the overall energy of the system, will spontaneously

Occur.1 1 ,12, 17 For example, Ti+ 3 in a number of octahedral complexes is

observed to have a double band in absorption as shown in Figure 2.3 for

Ti:sapphire, whereas crystal field theory predicts only one band, the T2g to Eg

transition.1 8 This double band can be understood by a tetragonal distortion of

the octahedral site by Jahn-Teller splitting, which splits both the triply degenerate
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ground state T2g and the doubly degenerate Eg levels. However, the T2g

levelsare split only slightly, so we observe two peaks in absorption at room

temperature.1 7, 18 It is important to realize that because of the Jahn-Teller effect

and other crystal lattice interactions (e.g. magnetic coupling between electron

spins), a perfect cubic symmetry is seldom found for any site. These crystal field

considerations plus spin-orbital coupling means that few crystal field states are

degenerate in the absolute sense, even for the case of only one d-electron.1 1

2.1.3: Line Shapes & Peak Heights:

The lineshapes of an optical absorption or emission peak is ultimately

determined by the mechanism that has the widest peak. Mechanisms can be

classified into two categories, homogeneous mechanisms which affect every

atom the same way, and inhomogeneous mechanisms which affect each atom

differently.19 Homogeneous mechanisms include 1) lifetime broadening, which

is caused by the decay mechanisms of the atomic system, 2) dipolar broadening,

which is caused by interactions between the magnetic or electric dipolar fields of

neighboring atoms; and 3) thermal broadening, which is caused by the effect of

phonons on atomic transitions. Homogeneous mechanisms lead to a Lorentzian

lineshape: 19,20

g(V) =(V ) Av / 2 )
(V-V0) 2 +(Av / 2)2

where Av is the full width at half maximum, and vo is the central frequency of the

peak. Inhomogeneous mechanisms include 1) doppler broadening, and 2)

crystal inhomogeneities such as dislocations and oxygen vacancies.

Inhomogeneous mechanisms lead to a Gaussian lineshape: 19, 20

2 (n 2' 2 F _V 2(ln 2 ex[ Av In 21g(v) = /--v 2------

30



Ilnhomogeneous mechanisms generally have a wider peak with the result that

most lineshapes are gaussian.1 1,2 1

Many optical transitions are found to follow the Beer-Lambert Law:10

I f = Ioe- E d

where o1 is the incident light intensity, If the exiting light intensity, £' the

absorption strength parameter, c the molar concentration of the absorbing

species, and I the sample thickness in cm. The same law in base 10 defines the

molar extinction coefficient £:

If = Io10- c

where the other parameters are the same as before. Clearly, the larger the

maximum molar extinction coefficient £max is, the stronger the transition.

However, the absolute absorption intensity depends on the total area under an

absorption curve, not just its peak height. This quantity is termed the oscillator

strength f:

f=4.32x10O-9 dv 4.6x10 ma, Av

where Av is the full width at half maximum of the peak in units of cm- 1, and £max

is the molar extinction coefficient at the central frequency in units of

[liters/mole-cm].

Consequently, both £max and f are a direct measure of the intensity of the

transition, which ultimately reflects to what extent the transition is allowed.

Whether a transition is allowed or forbidden depends on the selection rules for

that transition. For an electric-dipole transition of a free ion, these selection rules

are: 11

AS=O, AL = 0,+1, AJ = O,+1, butnot J =Oto J=O

Allowed transitions of this type are extremely intense, £max=103-106, f0. 1.11,12

The mixture of atomic states by a crystal field allows these rules to be broken,

although the less rules are broken, the stronger the transition will be. Typical
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transitions between octahedrally split crystal field states that are spin-allowed

have £max=l, f=10-5. 1 1 ,1 2 If the symmetry of the site does not possess an

inversion center as in the case of a tetrahedral site, the intensity of the transition

is generally stronger by ten to a hundred times.11,1 2 This arises because the

non-centrosymmetric crystal field removes the centrosymmetric nature of the

original atomic orbitals, allowing electric-dipole transitions to occur.

Another common way by which atomic states are mixed and transition

intensities increased is by temporarily removing the center of symmetry with a

phonon.12 ,22 Such vibronically-coupled transitions are especially common when

the transitions are between bonding and non-bonding or anti-bonding orbitals,

and involve a change in the equilibrium interatomic distance.11 Vibronically-

coupled transitions typically have £max-10-100, f-10-4.11, 12 Rare earth

f-electron transitions are weakly perturbed by crystal field or vibrational

interaction. Consequently their transitions typically have f=10-6-10-7.11

As a final note, transitions between atoms are also possible. Such charge

transfer processes are fully allowed and consequently extremely intense, with

£max- 1 0 3-106 and f-0.1.11 For example, the charge transfer spectra of an

electron from oxygen to Fe+ 3 in sapphire is shown in Figure 2.4.23

2.2: DEFECT STRUCTURE OF OXIDES

As we stated in Section 2.1.2, entropic forces will induce the formation of

defects at any T>0°K, and these defects can often be detected optically because

of the energy levels they create in the bandgap. We will employ Kroger-Vink

notation to describe these defects, and a primer on this notation can be found in
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reference 24. Alternative ways to induce defects in an oxide is a) by doping, and

b) by changing the oxide stoichiometry.

Doping is typically achieved by doping the oxide melt directly, or by

diffusing in desired dopants, usually at high temperatures. In addition, aliovalent

dopants will generate additional charge compensating defects. For example,

calcium in sapphire could generate the compensating ionic defects of a oxygen

vacancy or metal interstitial, or the compensating electronic defect of a hole, as

shown below:

2CaO Al20 Ca, 2 20 + VO" K, = [CaA] [V "] = Ket )

(-AH2 

Ca 3Ca + 2e' K 2 = [Cai,]n2 = K2Oe k )

[Ca2 2 [AH2Ca0+- A2 A01 )32Ca' +30 +2h K2 = = K3e 

for conditions when A120 3 is in equilibrium with pure CaO or Ca. Which of these

compensating defects will actually occur depends on their respective energies.

The defect with the lowest energy will compensate the calcium.

Changing the oxide stoichiometry is usually achieved by annealing the

oxide in a gas with an excess or depletion of one of its components, typically

oxygen. These anneals will then remove or incorporate the component,

generating defects in the process. For example, a reducing anneal could

remove oxygen from the oxide by the following reaction:
1

00 VO, + 2e' +-2 Kr = [V"]n2PO/2

and generate oxygen vacancies in the process.

Consequently the equilibrium defect structure of an oxide is a function of

many things, among them temperature, oxygen partial pressure (PO2), and

dopants. In principle, we could quantitatively predict the functional dependence

of this defect structure if we knew certain parameters, e.g. the free energy
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change associated with the various defect reactions, the effective density of

states for the conduction band, the concentration level of the impurities, etc.

Without this data, we can still make certain assumptions and model the

functional dependence of the defect structure based on these assumptions.

For example, let us model an ideally pure YAG, and assume that the

Schottky mechanism is the only relevant intrinsic defect reaction for the ionic

defects (i.e. no interstitials). Then,

0 - 3V¢y+ 5V + 12V" K = [V,] [VA [Vo ]

If we further assume for simplicity that the aluminum and yttrium vacancies are

identical, and represented by a generalized metal vacancy VM"', then:

K = [VZ]a[Vo"]

Other relevant defect reactions are the redox reaction for oxygen, and the

electronic excitation across the bandgap.
1

00 > VO + 2e' + -O Kr = [Vo"]n2pO/2

0 >e' + h' Ke = np

Finally, the overall electroneutrality relation would be:

3[V] + n = p + 2[Vo" ]

A second assumption we will make is that the formation energy for the Schottky

reaction is much less than the formation energy for the electron-hole pairs, i.e.

AHe=Eg>>AHs, where Eg is the bandgap. Thus the number of ionic defects

should greatly outnumber the electronic defects, and the electroneutrality relation

at the stoichiometric P0 2 is primarily:
3[V:] = 2[Vo"]

Thus the concentration of cation vacancies is independent of P02 over the P0 2

range where the above electroneutrality is valid. The P02 and temperature
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dependence of the other components are shown in regime (b) of Table 2.1.

Under heavily reduced conditions, we would move away from the ideal cation to

anion stoichiometry and generate more and more oxygen vacancies, until these

oxygen vacancies and their accompanying electrons exceed those generated by

the Schottky mechanism. For this case, the electroneutrality relation becomes

n=2[V,"] and the temperature and P02 dependence of the various defects are

shown in regime (a) of Table 2.1. Under extremely oxidizing conditions, oxygen

is added to the lattice via the crystal surface. This process actually builds up the

lattice, reducing the oxygen vacancy concentration and increasing the cation

vacancy concentration. The resulting electroneutrality relation then becomes:

3[v] = p

The resulting temperature and P0 2 dependencies of the defects are shown in

regime (c) of Table 2.1. An isothermal diagram of the defect concentration as a

function of P0 2 is shown in Figure 2.5 for the three regimes.

Similar diagrams and tables can be derived for acceptor and donor doped

YAG. Schuh performed a number of theoretical calculations of defect energies

in YAG, and concluded that Schottky vacancies are the favored intrinsic defect,

with an average energy of 5.3 eV per vacancy. 2 5, 2 6 He also concluded that

interstitials, both cation and anion interstitials had very high formation energies,

and consequently were unlikely in the tightly packed YAG structure.25 Geller

arrived at similar conclusions.2 7 Thus the most likely compensating defects for

acceptor or donor doped YAG are ionic vacancies or electronic defects.

A defect model based on acceptor doped YAG compensated by doubly

charged oxygen vacancies is shown in Figure 2.6, with corresponding

temperature and P0 2 dependencies in Table 2.2. [A'] stands for the

concentration of negatively charged acceptors, which is constant for a given

sample. For simplicity, we again assume that the formation energies of the
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aluminum and yttrium vacancies are the same, that the Schottky mechanism is

the primary intrinsic defect mechanism for ionic defects, and that the formation

energy for the Schottky reaction is much less than the formation energy for the

electron-hole pairs. Note regime (b) in particular, where p and n vary as P0 2

respectively, and the oxygen vacancy concentration is P02 independent. We

will refer to this regime later in the thesis.

A defect model based on donor doped YAG compensated by cation

vacancies is shown in Figure 2.7, with the corresponding temperature and P0 2

dependencies in Table 2.3. [D'] stands for the concentration of positively

charged donors, which is constant for a given sample. Again we assume that

the formation energies of the aluminum and yttrium vacancies are the same.

Note that regime (c) in this figure also has a P0 2 independent ionic regime with p

and n varying as P0 2 respectively, just as in regime (b) of Figure 2.6. One

way of distinguishing between these two regimes is by varying the donor and

acceptor concentration. Increasing the donor concentration in acceptor doped

YAG will decrease the concentration of the oxygen vacancies, whereas it will

increase the cation vacancy in donor doped YAG.

A related defect model is shown in Figure 2.8, where the valence of the

donor changes over the measured P0 2 range. In this model, the valence of the

donor is +4 in regime (d), and +3 in regime (c). Notice that over the P0 2 range

where the donor changes its valence, the conductivity isotherm has a very

peculiar shape. The temperature and P0 2 dependencies of the various

components in this model is listed in Table 2.4. The optical properties of

acceptor and donor doped YAG will depend in general on both the acceptor and

donor ions themselves, acting as optical centers, as well as the compensating

defects these dopants generate, e.g. V and F color centers in alkali halides.28
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2.3: ELECTRICAL PROPERTIES IN OXIDES:

The defects described above will not only affect the optical properties of

the oxide, but also the electrical properties. For example, because of

compensating oxygen vacancies, the acceptor doped YAG in Figure 2.6 should

have a higher ionic conductivity than the undoped YAG in Figure 2.5, due to its

higher concentration of mobile oxygen vacancies. Electrical measurements thus

provide a means of monitoring the change in defect concentration of the majority

species, as long as the difference in defect concentration between the majority

and minority species overwhelm any differences in their mobility. Electronic

mobilities are typically orders of magnitude larger than ionic mobilities, so the

electrical properties of an oxide can in fact change with the concentration of the

electronic defects, even when they are the minority species, as long as they

make a significant contribution to the total conductivity:

6 tot = Zij = cjezj j
J i

where cj is the concentration of the jth species, ezj is the charge of the jth

species, and j is the mobility of the jth species.

Electrical measurements of oxides are typically done at high temperatures

so that defect reactions are equilibrated within a reasonable time, and the defect

concentrations and mobilities are large enough to bring the sample resistance

within the measurement range of the instrumentation. The relation between the

resistance, defect concentration, and mobility is shown below:
Il

R
Ao tot Alcjez j j

where /I is the length of the sample, and A its cross-sectional area. Standard two

probe dc current-voltage measurements often include significant contributions

from electrode polarization. Two probe ac measurements can be used to isolate
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the electrode contribution, provided the time constant for the electrical relaxation

process of the electrode is significantly different from that for the sample.

The ac response of many oxide materials can be modeled by a parallel

RC circuit as shown in Figure 2.9, where the resistive and reactive response of

the sample is modeled by a resistor and capacitor.30 The impedance plot of a

parallel RC circuit is a semicircle as shown in Figure 2.10, where the imaginary

axis is inverted so that the semicircle sits in the first quadrant. The intersection

of the semicircle with the real axis gives us the value of R, the resistance for the

RC circuit which occurs at small values of the frequency co --> 0. The apex of the

semicircle occurs at the resonance frequency, w2/21c=1/I(RC), the inverse of

the electrical relaxation time constant . Similarly, the electrode and grain

boundary (if the sample is polycrystalline) impedance can be modeled by

additional parallel RC circuits in series with the RC circuit for the bulk, as shown

in Figure 2.11. If the RC time constants of the sample, electrode, and grain

boundary are very different, 2100, then the three semicircles belonging to the

three RC circuits can be clearly resolved, as shown in Figure 2.12 for the

pyrochlore Gd2(ZrO.6Tio.4)2O7. 29 Careful measurements using different

electrodes and electrode areas can be used to determine which semicircle

belongs to the sample and which to the electrode.

A series of such measurements at different temperature and P02 are then

used to construct conductivity isotherms as shown in Figure 2.13 for Ce:YAG.31

Such isotherms yield a great deal of information about the defect structure of the

sample. These isotherms are used to construct a defect model for the sample,

one which can explain the various features of the isotherm. When comparing

defect models with measured isotherms, it is important to remember that the

measured isotherms represent the total conductivity. Thus a defect model such

as that shown in Figure 2.6 should be mentally multiplied by a mobility factor
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Figure 2.9 Equivalent Circuit Model for a single crystal oxide
ceramic. [30]
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Figure 2.10 Schematic complex impedance plot of the equivalent
circuit in Figure 2.9.
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Ce: YAG Isotherms
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Figure 2.13 AC conductivity isotherms for Ce:YAG as a function of P02.[31]
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for the various components and then all the conductivity components added

together to generate a predicted conductivity isotherm, as seen in

Figures 2.5-2.8.

For example, Ce:YAG isotherms in Figure 2.13 were modeled as being

acceptor doped, with the defect model of Figure 2.6.4,31 The P02 range of the

isotherm in Figure 2.13 corresponds to regime (b) in Figure 2.6, where the

conductivity increase under oxidizing and reducing conditions is interpreted in

terms of increases in the hole and electron concentration respectively. Even

though the hole and electron concentration is much smaller than the oxygen

vacancy concentration, the higher mobilities of these electronic carriers make

them a significant part of the total conductivity. The deconvolution of the

Ce:YAG isotherm into a P02 dependent and P02 independent part is shown in

Figure 2.14.31 As seen in regime (b) of Figure 2.6, the defect model's prediction

of a 1/4 power law dependence with P02 for the concentration of electronic

carriers is consistent with the de-convoluted P02 dependence of the measured

conductivity isotherm.4 ,31 The defect model also allows us to ascribe defect

reaction energies to the measured activation energies of the conductivity

isotherms. For example, the activation energies of the components of the

Ce:YAG isotherms are shown in Figure 2.15.31 If the activation energies for the

electronic mobilities are assumed to be negligible (large polaron), then the

activation energies for the n and p branches are primarily associated with defect

generation and recombination processes, and from regime (b) of Table 2.2, we

see that they correspond to:31

= 3.9 eV (n branch)
2

Eg- 2 = 2.2 eV (p branch)

==> E = 6.1 eV
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Figure 2.14 AC conductivity isotherms for Ce:YAG separated into n-type and
ionic components, as a function of P0 2.[31]
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Figure 2.15 Temperature dependence of p-type, n-type, and ionic conductivity of
Ce:YAG.[31]
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The optical bandgap has been reported to be =6 eV,32 in close agreement with

the value derived from electrical measurements, supporting the defect model and

its associated assumptions.

In constructing defect models from conductivity isotherms, it is immensely

helpful to know what fraction of the total conductivity is ionic, and what fraction

electronic. To this end, ionic transference measurements are often employed.

Ionic transference measurements enable one to establish the degree of ionic

conductivity at a given temperature and P0 2 by measuring the voltage induced

across a cell in which the sample serves as an electrolyte between two

chambers of different oxygen partial pressure. If we define the transference

number t to be the ratio of the ionic conductivity to the total conductivity, the

voltage E generated across the transference cell is approximated by
kT PO I

E = (t i ) In PO2
4q 2PO2

where <ti> is the average ionic transference number within that P0 2 gradient, k

is; Boltzmann's constant, q is the charge of an electron, and P0 2 1 and P0 2 1

correspond to the partial pressures of oxygen on either side of the crystal. Ionic

transference measurements of Ce:YAG are shown in Figure 2.16.4,31 These

measurements reveal that Ce:YAG is a mixed ionic electronic conductor, further

supporting the acceptor doped defect model of Figure 2.6.

2.4: CRYSTAL STRUCTURE OF YAG

YAG is a member of the garnet crystal system, a crystal system found in

many natural minerals. Garnets have a chemical formula A3B2C3012 , with eight

formula units per unit cell, and the cubic space group la3d.27 ,33-35 The A cations

occupy the 8-fold dodecahedral site, a distorted cube polyhedron with a local

symmetry of D2. The B cations occupy the 6-fold octahedral site with a local

symmetry of 3. The C cations occupy the 4-fold tetrahedral site with a
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local symmetry of 4.27,33-35 Drawings of these polyhedra are seen in Figure

2. 17.3 5 The 8-fold site is the largest, occupying the space group position 24c,

followed by the six-fold site in position 16a, and the smallest 4-fold site in

position 24d. All three of these space group positions are "special positions" in

that they occur at an intersection of symmetry elements of the space group, and

consequently have symmetrical constraints on the types of distortions that the

coordination polyhedra can have. The oxygen anion in contrast, occupies the

"general" space group position 96h, and consequently has no symmetrical

constraints on its position. Thus the exact position of the anion is flexible, and

can change so as to best accommodate the distortions permitted by the cation

special positions above. This flexibility is a primary reason why garnets occur in

so many natural minerals, and why synthetic garnets have been developed with

most of the first row transition metals, as well as most of the rare earths.27 ,33-35

The garnet crystal system can be built up from these cation coordination

polyhedra using a variety of schemes. One scheme is to form two linearly

repetitive chains, a) chains of alternating dodecahedra and tetrahedra along

[C)01] with shared edges, and b) chains of octahedra sharing corners along [1 11].

Dodecahedra are also situated at the point of closest approach between

adjacent chains.33 Drawings of these polyhedra in the garnet structure are seen

in Figure 2.18 & 2.19.34,36 Each tetrahedron shares two edges with

dodecahedra, and each octahedron shares six edges with dedecahedra. The

dodecahedron has three types of shared edges. Each dodecahedron shares

two edges with tetrahedra, four edges with octahedra, and four edges with other

dodecahedra. Tetrahedra share only corners with octahedra.35 The different

edges for the polyhedra tend to distort along Pauling's rules, the shared edges of

each polyhedra tend to be shorter than the unshared edges.33 ,34 Consequently

all the polyhedra are distorted from regular polyhedra. Two non-equivalent
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(a)

(b)

(c)

Figure 2.17 Anion polyhedra in YAG. (a) dodecahedron, (b) octahedron,
(c) tetrahedron.[35]
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(a)

(b)

Figure 2.18 Drawings of the octahedral and tetrahedral polyhedra in YAG
viewed down 3 (a) and along z (b). Dodecahedral polyhedra have
been ommitted for clarity, and polyhedra may have been displaced
slightly to avoid superposition.[34]
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Figure 2.19 Drawing of the garnet structure projected down z.[36]
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octahedral sites and six non-equivalent dedecahedral sites result from these

distortions for yttrium iron garnet.35 Note that the site symmetry of these non-

equivalent sites is still the same, 3and D2 respectively, so optical measurements

of crystal field states in these sites would be insensitive to their inequivalency,

whereas magnetic measurements like paramagnetic resonance would detect

these inequivalencies. Representative inter-atomic distances are shown in

Figure 2.20 for the garnet andradite, Ca3Fe2Si301 2, which has a lattice

parameter of ao=1.2058 nm.3 4

In YAG, yttrium occupies the 8-fold site while aluminum occupies both the

6-fold and 4-fold sites.27 ,33 YAG's lattice parameter is ao=1.0220 nm, and

interionic distances are shown in Figure 2.21.27,33 These interionic distances

should be compared with the ionic radii of the matrix ions, as well as the ionic

radii of some potential impurities and dopants as seen in Table 2.5.37,38 In

garnets, site preference of impurities or dopants depend primarily on relative

ionic sizes.2 7 ,34-35 The large dopants tend to go into the large 8-fold

dodecahedral site, whereas the smallest dopants tend to go into the small 4-fold

tetrahedral site. Thus Nd+ 3 with its large ionic radius of 1.12 angstroms goes

into the dodecahedral sites exclusively.27 A secondary but important factor for

site preference is the crystal field stabilization energy (CFSE), the reduction in

ground state energy of the incorporated ion relative to that of the free ion due to

crystal field splitting of the degenerate electronic states. Differences in CFSE for

the octahedral and tetrahedral sites have been used successfully in the past to

explain site occupancy of transition metals in normal and inverted spinels.3 9 An

extrapolation of these results to garnets helped explain some anomalous results

with respect to the ionic size criterion. For example, Cr+ 3 substitutions in yttrium

iron garnet (YIG) and yttrium gallium garnet were found to enter the octahedral

site exclusively, despite its smaller size with respect to Fe+ 3 and Ga+ 3, as seen
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Z-O 0.1643 nm average
Y-O 0.2024 nm average
X-O 0.2433 nm average
X-Y 0.3370 nm edge-shared X0 8 and Y0 6
X-Z 0.3692 nm edge-shared X0 8 and Z0 4
X-Z 0.3015 nm edge-shared X0 8 and Z0 4
X-X 0.3692 nm edge-shared X0 8
Y-Z 0.3370 nm corner-shared Y0 6 and Z0 4

Figure 2.20 Garnet structure projected down z with interatomic distances for
andradite, Ca3 Fe2Si 3O1 2 .[34]
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(a

Figure 2.21 (a) Arrangement of the anion polyhedra in garnets.[33]
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Figure 2.21(b) Interatomic distances in rare-earth garnets R3 M5 0 1 2 as a
function of the atomic number of the rare-earths. Notation refers to
Figure 2.21 (a).[33]
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Ionic Radii* vs. Cation Valence / Coordination Number

Cation: VIII

1.019

Nd+3

Zr+4

1.12

0.84

AI+3

VI IV

0.90

0.98

0.72 0.59

0.54

Ti+4

0.39

0.61

Ti+3

0.42

0.67

0.86Ti+2

Fe+2

Fe+3

Cr+2

Cr+3

1.42

0.61 (LS)
0.78 (HS)

0.55 (LS)
0.65 (HS)
0.73 (LS)
0.82 (HS)

0.62

1.40

0.63 (HS)

0.49 (HS)

1.38

*( in Angstroms) LS: Low Spin HS: High Spin

Table 2.5. Ionic radii vs. cation valence and coordination number.[37,38]
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in Table 2.5.27,37-38 This result can be understood in terms of the octahedral

site preference energy, the difference between the CFSE for the octahedral and

tetrahedral sites. In spinels, this preference energy is 2.0 eV/atom for Cr+ 3,

and 0 eV for Fe+ 3 as shown in Table 2.6.3 9

From both size and CFSE considerations, (see Table 2.5 & 2.6) we see

that Ti+3 should enter the octahedral site in YAG. In fact, Ti+3 has been found in

octahedral sites in a large number of hosts including YAG, as evidenced by the

spectroscopic data of Ti+3 in octahedrally split crystal field states.1 1,18 ,40- 42 No

evidence for Ti+3 entering the dodecahedra site in garnets has been found, and

would be unexpected from size considerations. Ti+4 on the other hand, has no

CFSE, and its ionic radii is very close to Al+3 for 4-fold coordination as seen in

Table 2.6.37,38 Thus, Ti+4 may enter the tetrahedral sites, and has been found

to do so in YIG and YGaG, as evidenced by crystallographic and magnetic

data.4 3, 4 4

From size considerations, we would expect Zr+4 to enter the

dodecahedral or octahedral site in YAG, its ionic radii being a bit small for the

dodecahedral site, and a bit large for the octahedral site. See Table 2.5. Zr+4

has been found in both types of sites in other oxides. For example, in

pyrochlores such as Gd2(ZrxTil-x) 20 7, Zr+4 occupies an 8-fold-like site,4 5 while

in perovskites such as Pb(Zr,Ti)0 3, Zr+ 4 occupies a 6-fold site.4 6 Similarly, Zr+ 4

has been found in both types of sites in garnets, in the dodecahedral site for

Ca2. 5 Zr2. 5 Ga30 1 2 , and the octahedral site for Ca3Zr2 (V 0.5Ga 2 .5)0 1 2, as

evidenced by both crystallographic and magnetic data.4 7 ,4 8 If Zr+4 were to be

reduced to a +3 valence state however, it would have a significantly larger ionic

radii, and consequently be expected to occupy the dodecahedral site exclusively.

Zr+3 occupying the dodecahedral site exclusively has been observed in Zr:YAG

from electron spin resonance data.5
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Number Free ion Octahedral Tetrahedral Oct. site
of ground field field Dq cm-' Dq cm- ' Stabilization, kcal preferenm

d-elec- Ion state ground ground oct. tetr. oct. tetr. energy
trons state state kcd/mnole

I Ti,+++ 'D 'T., 'E, 2030 900 23-1 15-4 7'7

2 'V +++ 'F &Tte 46 1800 840 307 28-7 24

V++ 'F 'AS 'T,, 1180 520 40'2 8 7 31'S
3

Cr + 'F 'At, 'T, 1760 780 60-0 13-3 467

Cr++ 'D 'E, 'T, 1400 620 240 7 0 170
4

Mn++ + D 'E, 'T, 2100 930 35-9 10-6 25S3

Mn++ 'S 'A,, 'A, 750 330 0 0 0

Fe+++ 'S 'A,, 'A,, 1400 620 0 0 0

Fe++ &D T,,r 'E, 1000 440 11-4 75 3-9
6

*Co++ 'D 'tA, 'E, 780 45 26 19

7 Co++ 'F 'T, '4,r 1000 440 17-1 15-0 2-1

8 Ni ++ 'F 'AS, 'T, 860 380 29-3 6-5 22'8

9 Cu++ D 'E, IT, 1300 580 22-2 6-6 15-6

10 Zn++ 'S 'A 'AI 0 0 0 0 0

Table 2.6 Crystal field stabilization energy for transition metal ions.[39]
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Under reducing conditions, Ti and Zr solubilities in YAG have been

reported to be as high as 5 weight percent (w/o) TiO2 ,6 and 2 w/o ZrO 2
5

respectively, without affecting the optical quality of the crystals. Nd solubilities of

up to 1.5 atomic percent (a/o) have been reported for high quality optical

crystals.19
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CHAPTER 3: LITERATURE REVIEW

3.1: Introduction

In this chapter we will review previous work done on the optical and

transport properties of YAG and doped YAG, with emphasis on our particular

systems of interest, Ti:YAG and Zr:YAG. As we will see, despite the voluminous

research done on YAG, much is still not known and controversial, such as the

source of the ultraviolet (UV) absorption in "undoped" YAG. Furthermore, there

has been no systematic quantitative explanation of YAG's electrical and optical

properties in terms of its defect structure to date, nor has any defect structure

other than an acceptor dominated defect structure for YAG been found. This

oversight is unfortunate, as the properties of donor doped YAG may yet prove

very interesting.

3.2: Optical Properties

3.2.1: YAG:

At room temperature, undoped YAG has a transmission window from the

end of the lattice multiphonon bands at 4.2 m to the beginning of the UV region

at =300 nm. 3 2 Consequently YAG is transparent and colorless in the visible

range. YAG's optical bandgap is -6.6 eV, with the valence band comprised of

filled oxygen 2p orbitals, and the conduction band comprised of empty yttrium 4d

orbitals. 4 ,32 The UV absorption between 300 nm and the bandedge at 190 nm

varies dramatically from crystal to crystal as seen in Figure 3.1.32 This

absorption also changes with oxidizing and reducing anneals, as well as with

irradiation of all types, e.g. UV, x-ray, neutron, and y radiation. 4 ,49 -5 4

This UV absorption has traditionally been ascribed to a) trace impurities,

especially of transition metal elements like iron,32 52 54- 55 and b) oxygen vacancy
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color centers.4 However, the identification of these trace impurities and their

energy levels in YAG, as well as the energy level of the oxygen vacancy in YAG,

remain uncertain. For example, Mori places the Vo0 level at greater than 3.7eV

below the conduction band, with internal Vo0 transitions at 1, 2, and 3 eV as

shown in Figure 3.2 & 3.3.4 He attributes the UV absorption to charge transfer

from the oxygen 2p band to Fe+ 3 impurities with a Fe+ 3 level at 4.9 eV above the

valence band (E4 in Figure 3.3). Rotman, on the other hand, places the V<o level

at 1 eV below the conduction band, and ascribes part of the UV absorption to

internal Vo * transitions with peaks at 220 and 270 nm as seen in Figure 3.4 &

3.5.4 It has generally been observed that this UV absorption decreases

dramatically with a reducing anneal, and this has often been interpreted in terms

of removal of charge transfer bands from oxygen 2p to impurity ions via

reduction of the impurity ion's valence. 4,52

One such impurity that has been extensively investigated is Fe, a

common impurity found in YAG crystals. The Fe+ 3 level has been located at

-5 eV above the oxygen 2p band.52, 54 Upon reduction, this band disappears,

and a new band at -300 nm appears as seen in Figure 3.6. Mori and

Akhmadullin assign this band to charge transfer from a Fe+ 2 ion to the

conduction band.52, 54

Thus the optical properties of "pure" YAG exhibit considerable variance,

especially in the UV range. This no doubt stems from slight differences in the

crystal growth conditions, e.g. raw material purity, stoichiometry, etc.

Consequently experimental studies of pure YAG may really be detecting

"background effects" that reflect differences in processing, and the variance in

properties simply reflecting the differences in the "background." Doped YAG,

where the doping concentration is high enough to overwhelm any background
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effects, is expected to yield more consistent properties, properties which are

directly attributable to the system, rather than to background effects. Thus

doped YAG results are often more meaningful than those of "pure YAG."

3.2.2: Nd:YAG

When Nd is added to YAG, new absorption bands appear from the UV to

the near infra-red (NIR), as shown in Figure 3.7.19 These bands are due to

internal transitions of the three 4f electrons of Nd+ 3. The f orbitals tend to lie

close to the nucleus, and are consequently shielded from interactions with the

lattice, such as crystal field effects or vibronic coupling. Thus the f-states tend to

be more atom-like with narrow peaks, and transitions between these states are

very characteristic of the doping rare-earth ion, irrespective of the particular

host. 19,56

The primary lasing transition is from the 4 F3/2 level to the 4111/2 level as

shown in Figure 3.8.19 Since the 4f internal transitions are parity-forbidden, the

spontaneous radiative lifetime is =230 gsec at 300° K, compared with typical

lifetimes of 10-8 sec.1 9 This long radiative lifetime greatly facilitates the

attainment of a population inversion with a resulting low lasing threshold, as low

as 1 mW. Many investigators noted though that radiation induced defects from

the pumping source detracted from laser efficiency. 5 4 ,5 7-5 9 Mori did a systematic

study of these defects, and identified oxygen vacancies as the primary defect.54

He concluded that control of the defect structure of Nd:YAG is important for

improving its laser characteristic. As mentioned in Chapter 1, Nd:YAG is best

known as a high power solid state laser system, and continuous wave power

output of several hundred Watts has been achieved.1 9
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These are the primary optical properties of interest for our purpose. The

interested reader is referred to additional references which review the

voluminous research done on the optical properties of Nd:YAG.19, 56

3.2.3: Ti:Doped Systems:

As discussed in Section 2.1.2, Ti+3 has only one d-electron, and

consequently its crystal field states are the easiest to calculate. Ti+ 3 tends to

enter the octahedral site in a number of hosts, from Ti:sapphire to Ti:MgAI20 4.

Under the action of an octahedral crystal field, its 5-fold degenerate d-orbitals are

split into a 3-fold degenerate T2g ground state, and a 2-fold degenerate Eg

excited state, as shown in Figure 2.1 & 3.9.3,11 Thus only one peak should be

observed in absorption and emission, and the wavelength of that transition will

depend on the magnitude of the crystal field strength, A or 1 ODq. For oxides, A

is usually on the order of a few eV, so transitions between crystal field states of

Tii+3 tend to be in the visible range.11 The Jahn-Teller effect however, typically

splits these crystal field states, -200 cm-1 for the T2g ground state and

=3,000 cm-1 for the Eg excited state in A1203, as seen in the configuration

coordinate diagram in Figure 3.10.60 The T2g splitting is typically too small to

be resolved by room temperature measurements, so two absorption bands

(Eab+ & Eab- in Figure 3.10) which are often overlapped, are typically seen in

Ti:doped systems, as seen in Figure 3.11 & 3.12 for Ti:glass4 1 and Ti:YA10 3
6 1

respectively. Another important point to note is that the minimum energy of the

T2g and Eg paraboloids occur at different values of the configuration coordinate,

or interatomic distance. This arises because the Eg orbitals have antibonding

character while the T2g orbitals have non-bonding character.1 1 Consequently

the equilibrium interatomic distance for the Eg orbitals are naturally larger than

the T2g orbitals. This displacement of the paraboloid minimum for the ground
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Figure 3.10 Schematic diagram of configuration coordinates of Ti+3.[60]
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Figure 3.12 Ground-state absorption spectrum of Ti:YAI0 3 at 300°K.[61]
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state and excited state means that optical transitions between these states occur

over a range of vibrational frequencies, resulting in transitions over a range of

energies. Consequently both absorption and emission peaks are vibronically-

coupled, and quite broad as seen in Figures 3.12 & 3.13 for Ti:YAIO3. 6 1

3.2.3.1: Ti:sapphire:

As mentioned in the introduction, Ti:sapphire has received much attention

lately because of its utility as a tunable IR laser. The Ti:sapphire laser crystals

are usually grown by the Czochralski method in an inert atmosphere like N2.

They typically contain =0.1 w/o Ti, with those in excess of 0.1 w/o Ti producing

crystals of poor optical quality.62

The addition of Ti to sapphire results in a number of spectroscopic

features as seen in Figure 3.14.63 The apparent bandedge shifts to between

200-300 nm, a much higher wavelength than that of undoped sapphire at

140 nm.63 Furthermore, Ti:sapphire now contains optical transitions in the

visible region; a double band between 500-550 nm which has been universally

assigned to crystal field transitions of the Ti+3 ion substituting for aluminum in

the octahedral site.18 ,63 Typical values of the molar extinction coefficient,

£max=1 4 0 and the oscillator strength, f=1.9x10-4 are consistent with this

assignment, since the octahedral site in sapphire does not possess a center of

inversion. 1 8, 64 Finally, there is a very broad band in the NIR centered at

=800 nm. These features give as-grown Ti:sapphire a pink color.

The UV absorption edge shifts from 200 nm to 300 nm for oxidizing

anneals, and thus Albers assigned this absorption to charge transfer from the

oxygen 2p band to Ti+ 4. The remaining absorption between 200 nm and the

intrinsic band edge at 140 nm was assigned to charge transfer from the oxygen

2p band to Ti+ 3 .63,65 Tippins found similar bands in the UV spectra of his
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Figure 3.13 3000K fluorescence spectrum of Ti+3:YAIO03 at 488 nm Ar laser
excitation. [61 ]

88

4000

g3
®

4.1

caC4aC
I-I

3000

2000

1000

0



a (cm-l')

80

60-

40

20

· I I - I T I I I

100 200 300 400 500 600 800 1000 1500

Figure 3.14 Absorption of Ti+3:AI203 at 300°K.[63]

89

I
scale:20

__~ .~. ~0~oo

`I
2000

A Inml

l

I 



as-grown crystal as seen in Figure 3.15, but assigned the band at 4.7 eV

(:260 nm) to charge transfer from oxygen to Fe+3 impurities, and the band above

6 eV (below 190 nm) as due to charge transfer from oxygen to Ti+ 3 .23 The

change in the UV absorption with oxidizing and reducing anneals, correlated with

the change in intensity of the Ti + 3 peaks at =500 nm as seen in Figure 3.14,

offer compelling evidence that UV absorption between 200-300 nm is directly

associated with the concentration of Ti+4. Since Ti+4 has no valence electrons,

intraband transitions within the Ti+ 4 ion are unlikely. Consequently, charge

transfer from the oxygen 2p band to the Ti+4 ion is the most probable

mechanism for the 200-300 nm absorption. Furthermore, a two-photon

photoconductivity experiment as seen in Figure 3.16 estimated the position of

the Eg and T2g levels below the conduction band at 2.4 eV<AEEg< 3.7eV and

4.4 eV<AET2g<5.7 eV respectively.66 If we assume that the oxygen charge

transfer occurs to a generalized Ti+3 level between the Eg and T2g levels as

depicted in Figure 2.1, then this Ti + 3 level would be between 3.9 and 5.2 eV

below the conduction band. Sapphire's bandgap is =1 0 eV1 00, which places this

Ti+3 level around 5-6 eV above the oxygen 2p valence band, in agreement with

the 200-300 nm absorption assignment for oxygen 2p to Ti+4 charge transfer.

An energy diagram for the Ti+3 ion in sapphire based on these results is shown

in Figure 3.17. It is interesting to note that a similar behavior and assignment

was observed in Ti:glass, with a peak at =250 nm as seen in Figure 3.18.41 This

suggests that the Ti+ 3 level is typically around 5 eV above the oxygen 2p

valence band.

The source of the 800 nm NIR band in Ti:sapphire is still not understood.

Lacovara attributes this absorption to Ti+3 on low symmetry sites caused by

adjacent point defects.62 Powell attributes the absorption to charge transfer

between Fe+ 3 and Ti+3 .67 Moulton suggests that Ti+ 3 to Ti+4 charge transfer
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might be another possibility.18 Active research is still on-going to determine the

cause of this absorption and if possible, eliminate it, as it directly reduces the

laser efficiency as shown below.

When the absorption bands of the Ti+3 ion are pumped, fluorescence is

observed at -750 nm as seen in Figure 3.19.18 This fluorescence is ascribed to

the Stokes-shifted Eg-->T2g optical relaxation, Eem in the configuration diagram

of Figure 3.10.60 It is this fluorescence which leads to lasing in Ti:sapphire

lasers, with a tuning range of 660-968 nm. This is also the absorption range of

the NIR absorption at 800 nm mention above. Consequently this absorption

directly detracts from the laser performance. When the UV band at 200-300 nm

is pumped, two fluorescence peaks are observed, as shown in Figure 3.20, the

750 nm peak of Ti + 3 as before, and a new peak at -450 nm, a blue

emission. 67, 68 The origin of this blue emission is unknown, but it is interesting to

note that such an emission has also been observed in Ti:MgAI20 4 and

Ti-activated stannates and zirconates when pumped at 200-300 nm. This

luminescence has been attributed to a Ti+ 4 octahedral complex. 4 2 ,69 (See

Figures 3.21 & 3.22) Such an assignment for Ti:sapphire would be consistent

with the oxygen 2p to Ti+ 4 charge transfer assignment for the 200-300 nm

absorption as discussed earlier. Thus it appears reasonable that the blue

emission from sapphire is indeed due to a octahedrally coordinated Ti+4.

3.2.3.2: Ti:YAG:

Ti:YAG crystals have been successfully grown by the Czochralski6 and

Bridgman-Stockbarger 70 methods. Growth is usually carried out in an inert or

reducing atmosphere to reduce the Ti ion to a +3 valence and facilitate its

incorporation into the YAG lattice. Consequently most of the Ti should be in the

octahedral sites as discussed in section 2.4. Growth in air or an oxidizing
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Figure 3.22

5
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Spectral energy distribution of emissions at 5K in
Mg 2 Sn0.99Ti0.0104. Full line, excited at 4.96 eV. Dashed line,
excited at 4.13 eV. Dash-dotted line, excited at 4.13 eV after firing
in N2 . Dashed-crossed line, 5% excess of SnO2 excited at 4.13
eV.[69]

99

- -



atmosphere results in inclusions of yttrium pyrotitanate, Y2Ti2 07.6 As grown

Ti:YAG crystals have a brown color whose intensity increases with increasing Ti

concentration in the melt and decreasing P0 2 in the growth atmosphere.6

The brown color comes from the spectroscopic features that Ti adds to

YAG as seen in Figure 3.23 for an as-grown crystal.40 The apparent band edge

is now at 300 nm compared to a band edge of =200 nm for undoped YAG.

Furthermore, Ti:YAG now has three bands in the visible region, at =400, 500, &

600 nm. The 500 and 600 nm peaks are universally assigned to crystal field

transitions of the Ti+3 ion substituting for aluminum in the octahedral

site.40 , 60, 66, 71 Annealing in an oxidizing environment removes these peaks,

presumably changing the Ti from a +3 to a +4 valence. Analogously, a reducing

anneal restores these peaks.6

The source of the 400 nm peak in uncertain. Karpov noted that the ratio

of the optical densities of the 400, 500, & 600 nm peaks remain constant for

different growth conditions, suggesting that all three peaks are due to the same

center.72 Most of the other investigators have simply noted its existence without

commenting on its source. It is interesting to note that Bausa observed a peak

at 450 nm in Ti:glass, and attributed it to charge transfer between Ti+3 and Ti+ 4,

as evidenced by a quadratic dependence of the oscillator strength on the Ti

concentration, as seen in Figure 3.24.41

Similarly, the UV absorption at 300 nm has not been fully investigated,

and no explanations published as to its source. The similarity between Ti:YAG

and Ti:sapphire though suggests that the absorption may be due to charge

transfer from the oxygen 2p band to Ti+ 4 , as in the case for Ti:sapphire. Basun

did a two-step photoionization experiment of Ti+ 3 ions in Ti:YAG, similar to the

experiment for Ti:sapphire described earlier in Figure 3.16, and concluded that

the distance between the conduction band and the Eg state of Ti+3 , AEe<2 eV,
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Figure 3.23 Absorption spectra of Ti+3:YAG at room temperature.[40]

101

<C



10

8

a

z

Cr_
O0
(/)
m

6

4

2

0
0.0 0.5 1.0 1.5

°/o wt TiO2

Figure 3.24 Areas of absorption bands versus TiO2 content in phosphate
glass.[41]

102

2.0



i.e. the pumping source used to excite electrons from the T2g state to the Eg

state of Ti+3, also excited electrons from the Eg state to the conduction band,

with a resulting photoelectric current. 6 6 If the 500 and 600 nm peaks are indeed

due to T2g-->Eg transitions of the Ti+ 3 ion, this implies that the Eg state should

lie below the conduction band, i.e. AEe>0. These two limits define the range for

the generalized Ti+ 3 level in YAG, as illustrated in Figure 3.25. These two limits

also define the range for the energy of the 02p-->Ti+ 4 charge transfer transition,

AEC.T., 3.24 eV<AEC.T.<5.24 eV for a optical bandgap of 6.6 eV for YAG.32

Thus the UV absorption beginning at 300 nm <==> 4.13 eV is within the range of

AEC.T., and the 02p-->Ti + 4 charge transfer may be responsible for the 200-300

nm absorption in Ti:YAG.

When the 500 and 600 nm bands in Ti:YAG are pumped, a fluorescence

peak similar to Ti:sapphire at 800 nm is observed, as seen in Figure 3.26. 4 0

This peak is attributed to the Stokes-shifted Eg-->T2g optical relaxation of Ti+3 ,

as in the case of Ti:sapphire. When the UV band is pumped, a fluorescence

peak at 550 nm is observed as seen in Figure 3.27.7 3 No assignment was made

for this fluorescence peak, but a measurement of the angular dependence of the

degree of polarization of this fluorescence suggest that the fluorescence

originates from the edges of the octahedral and tetrahedral sites, and not their

centers, i.e. the oxygen part of the YAG lattice.7 3

The 550 nm fluorescence peak in Ti:YAG is analogous to the blue

emission of Ti:sapphire,67 ,68 Ti:MgAI204,42 and Ti-activated stannates and

zirconates.69 All fluoresce when pumped in the UV, and in the case of the

Ti-activated stannates and zirconates and Ti:MgAI2 0 4 , this fluorescence is

attributed to a Ti+ 4 octahedron complex. 4 2 ,6 9 Such an assignment also seems

reasonable in the case of Ti:sapphire, as discussed earlier. If the 200-300 nm

absorption in Ti:YAG is also due to charge transfer from the 02p band to the
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Figure 3.25 Energy band diagram for Ti:YAG as suggested by the
literature survey.[3,40,60,66,71]
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Ti+4 ion, as in the case of Ti:sapphire, Ti:MgAI20 4, and the Ti-activated

stannates and zirconates, then it seems reasonable to also assign the 550 nm

fluorescence peak in Ti:YAG to a Ti+ 4 octahedron complex. However, in

contrast to Ti:sapphire, there is currently no substantive evidence to assign the

200-300 nm absorption in Ti:YAG to charge transfer from the 02p band to Ti+4.

A table summarizing the absorption and emission bands in Ti:YAG and

Ti:Sapphire is shown in Table 3.1 & 3.2, along with their assignments by

previous investigators.

It seems appropriate to conclude this section with a quick comparison of

Ti:YAG and Ti:sapphire, especially with regard to their suitability as laser

systems. Ti:sapphire is already a proven IR laser system as described earlier.

Unfortunately, its low Ti concentration and a small Eg lifetime of 3gsec at 300°K

makes the lasing threshold rather high.62, 63 Despite this fact, both pulse and

continuous-wave lasing operation have been established.62 ,74 High optical

quality crystals of Ti:YAG can be grown with a higher Ti concentration than

Ti:sapphire.6,4 0, 71 Furthermore, the symmetry of its distorted octahedral site is

C3i versus C3 for sapphire.4 0 The preservation of the inversion symmetry for the

octahedral site in YAG means that the parity selection rule is in force, and that

the lifetime of the Eg state should be larger in YAG than in sapphire. Indeed, the

radiative lifetime of Ti:YAG is 50 gsec vs. 3.9 gsec for Ti:sapphire at 4.20K, more

than an order of magnitude larger.40 ,63 Unfortunately by 3000K, this lifetime has

dropped to 2 gsec vs. 3 sec for Ti:sapphire, primarily because of the onset of

non-radiative decay mechanisms.40 ,60 ,63 YAG's smaller bandgap also makes

excited state absorption a major problem for Ti:YAG, as suggested by

Figure 3.25.66 Despite this limitation, pulsed laser action has been achieved in

Ti:YAG. 7 5
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Absorption & Emission Bands
in Ti:Sapphire

Aborption Bands:

Wavelength:
Literature
Assignments:

Intensity: Molar
Extinction Coeff.

200-300 nm

500 & 550 nm

800 nm

Emission Bands:

Wavelength:

02p-->Ti+ 4, Ti+3 [62,63,65]
O2p-->Fe+ 3 [23]

T2g-->Eg of Ti+ 3 (oct. sites)
[18,63,64,67]

Ti+ 3 low symmetry sites [62]
Ti+3-Ti+4 charge transfer [18,64]
Fe+3+Ti+ 3-->Fe+2+Ti + 4 [67]

Literature
Assignments:

>140
8000

liters/cm-mole
II

140

Excitation Peaks:

Eg-->T 2 a of Ti+ 3 (oct. sites)
[18,64,60,67]

200-300 nm
500 & 550 nm

450 nm ?? 200-300 nm

Table 3.1 Literature survey of absorption and emission bands in Ti:sapphire.
[18,23,60,62-65,67]
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Absorption & Emission Bands
in Ti:YAG

Aborption Bands:

Wavelength:
Literature
Assignments:

Intensity: Molar
Extinction Coeff.

200-300 nm

400 nm

500 & 600 nm

Emission Bands:

Wavelength:

T2 g-->Eg of Ti+3 (oct. sites)
[40,60,66,71 ]

Literature
Assignments: Excitation Peaks:

800 nm

550

Eg-->T2g of Ti+ 3 (oct. sites)
[40,60,7T]

500 & 600 nm

200-300 nm

Table 3.2 Literature survey of absorption and emission bands in Ti:YAG.
[40,60,66,71]
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3.2.4: Zr:YAG

The optical properties of Zr:YAG deal exclusively with Zr in the +3

valence, as the +4 valence has no valence electrons for optical transitions.

Crystals of Zr doped YAG was found to have properties that depended strongly

on the growth atmosphere. Crystals grown under a reducing environment had a

red color, whose intensity increased with increasing Zr concentration, and

decreasing P0 2. The spectra of such a crystal is shown in Figure 3.28. 5

Crystals grown under an oxidizing environment had no red color. Neither did

crystals do-doped with compensating ions like Ca+ 2 or Mg+ 2. Electron spin

resonance of colored Zr:YAG suggested the presence of unpaired electrons on

the 8-fold dodecahedral site, which was assigned to Zr+ 3 ions substituting for y.5

As we discussed in section 2.4, this assignment is reasonable from ion size

considerations. The intensity of the optical absorption peaks and the electron

spin resonance for Zr+3 were found to be well correlated, and the optical

absorption spectrum of Figure 3.28 was interpreted in terms of crystal field

splitting of the Zr+ 3 ion in a dodecahedral site, as seen in Figure 3.29, with a

resulting 1 ODq = 2.02 eV.5 This is in agreement with typical values of crystal

field splitting for the octahedral site in YAG, which have 1 ODq = 2.03 eV.76

The primary difficulty with the above interpretation is the absence of

information regarding previous observation of Zr+3 in literature. For almost all

the oxides in which Zr was a major or minor component, Zr was found in the +4

valence. Only in irradiated Zr:YPO 4 and Zr:Y 2 03 at 770K were Zr found in a +3

valence, as evidenced by electron spin resonance.77 ,78 Thus it seems possible

that when a large number of electrons are excited into the conduction band by

irradiation, some of these electrons can be trapped by a Zr+ 4 ion, changing its

valence to Zr+ 3 , and the Zr+3 ions are kinetically stable at 770K. This also

suggests that the Zr+ 3 level is below the conduction band of Y2 03 and YPO4.
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Figure 3.28 (a) Optical absorption spectra of YAG:Zr single crystals, and
(b) correlation of esr and optical absorption intensities.[5]
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Figure 3.29 Splitting scheme of energy levels of the Zr +3 ion in YAG
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Monoclinic ZrO2 has a bandgap of =5 eV,79 while yttria stabilized zirconia has a

bandgap of =4.6 eV.80 Since the conduction band in both these systems is

presumably the Zr 4d band, and the valence band the oxygen 2p band, these

bandgaps suggest that the Zr+3 level is =5 eV above the oxygen 2p band in

oxides. Since Y2 03 has a bandgap of =5.6 eV,81 it seems probable that the Zr+3

level lies below the Y2 03 conduction band, and that Zr+ 4 ions trap electrons

irradiated into the conduction band. Similarly, the Zr+3 level would also be

expected to lie below the conduction band in YAG, which has a optical bandgap

of =6.6 eV.32 This suggests that under heavily reduced conditions, when

electrons start populating the conduction band in significant numbers, Zr+4 ions

in YAG may start trapping some of these electrons, as in the case of irradiated

Zr:YPO 4 and Zr:Y 2 03 , and that Zr+ 3 ions may indeed be a stable species in

Zr:YAG.

3.3: Transport Properties

The transport properties of YAG have been studied by a number of

investigators, typically by electrical measurements or by diffusion experiments.

Mori did the first transport studies of YAG in 1977 by studying the motion of color

fronts in heavily reduced single crystal YAG. He applied an anion diffusion

model to the color front motion, and arrived at the following equation:54

-4.7eV 2 / SeC

( ~lkT ) [cm2/sec ]

Neiman did the first electrical measurements of YAG in 1978 by studying its ionic

transference number and electrical conductivity. He found YAG to be a mixed

ionic-electronic conductor with an activation energy of =4 eV, as seen in

Figure 3.30.82 He also concluded that in YAG,

DO>>DAI>>Dy.
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Bates and Garnier did electrical measurements of YAG up to 1000°C, and found

two regions of transport as seen in Figure 3.31, separated by an anomalous

region between 627°C and 7270C.83 The two regions were independent of P02

and had activation energies of 3.4 eV and 2.32 eV for the high and low

temperature regions, respectively. Haneda did systematic studies of oxygen

diffusion in YAG by studying 180 diffusion, and arrived at the following

expression: 84

D = 5.24xl 0-7 exp( [m2 / sec

He also found that for heavily reduced crystals, the oxygen exchange rate was

significantly dependent on the exchange reaction at the specimen surface.

Finally, Rotman and Schuh studied electrical transport in single crystal and

polycrystalline YAG respectively. They also observed that YAG was a mixed

conductor with an n-type electronic activation energy of =4 eV and an ionic

activation energy of 2-3 eV as seen in Tables 3.3 & 3.4.4,25,31,85-88 One should

note that Rotman believes oxygen vacancies to be the ionically conducting

species, whereas Schuh believes that the ionic conductivity is due to aluminum

vacancies. Schuh's interpretation relies heavily on the observation of alumina

inclusions in his ceramic samples fabricated from a stoichiometric starting

composition. Consequently his results may be unique to his samples.25 ,88

3.4: Defect Structure Studies:

To date, only Rotman and Schuh have published defect structure studies

of YAG. Rotman found that most of his samples: Ce:YAG, Ni:YAG, Ni:Zr:YAG,

Ca:YAG, and Fe:YAG had defect structures dominated by inadvertent

background acceptors compensated by oxygen vacancies.4 , 31 ,86 The defect
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Figure 3.31 Electrical conductivity of YAG showing time and oxygen pressure
anomalies between 900 and 10000K.[83]
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Activation Energy for
N-type Conductivity

Investigator:

Rotman [4,31]

Rotman [4,86]

Schuh [25]

Schuh [25,87]

Schuh [25]

Crystal: Activation Energy:

Ce:YAG (single crystal) 3.9 eV

Ni:Zr:YAG (single crystal) 3.8 eV

YAG (single crystal) 3.7 eV

Zr:YAG (50 ppm Zr, polycrystalline) 3.4 eV

Zr:YAG (500 ppm Zr, polycrystalline) 2.7 eV

Table 3.3 Literature survey of activation energies for n-type conductivity.
[4,25,31,86,87]
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Activation Energy for
Ionic Conductivity

Investigator:

Rotman [4,31]

Rotman [4]

Rotman [4,86]

Rotman [4,86]

Rotman [4,85]

Schuh [25]

Schuh [25,88]

Schuh [25,87]

Schuh [25]

Crystal: Activation Energy:

Ce:YAG (single crystal) 2.3 eV

Ca:YAG (single crystal) 4.0 eV

Ni:YAG (single crystal) 2.2 eV

Ni:Zr:YAG (single crystal) 3.0 eV

Fe:YAG (single crystal) 2.6-2.8 eV

YAG (single crystal) 2.1 eV

Ca:YAG (polycrystalline) 2.7 eV

Zr:YAG (50 ppm Zr, polycrystalline) 3.0 eV

Zr:YAG (500 ppm Zr, polycrystalline) 2.8 eV

Table 3.4 Literature survey of activation energies for ionic conductivity.
[4,25,31,85-88]
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model he derived was described in detail in section 2.2. (It is interesting to note

that Mori's optical studies of YAG also identified oxygen vacancies as the main

crystalline defect detracting from the laser performance of Nd:YAG.54 See

section 3.2.2.) Rotman's conductivity isotherms for Ni:Zr:YAG are shown in

Figure 3.32, and their de-convolution in Figure 3.33.4 The measured Ni and Zr

concentrations were very close, and the Ni and Zr were believed to compensate

each other. The final defect structure was ultimately controlled by inadvertent

background acceptors, following the defect model in Figure 2.6, regime (b).

Schuh in contrast developed a defect model based on aluminum

vacancies for his polycrystalline YAG ceramics including Zr:YAG.25 ,88 The Zr

doping concentration of 50 and 500 ppm Zr represented the first attempt to study

donor doped YAG, and his Zr:YAG isotherm is shown in Figure 3.34.25

Unfortunately the appearance of alumina inclusions in his stoichiometric samples

of both acceptor and donor doped ceramics directed a defect model based on

aluminum vacancies for all his samples. Consequently his model may not be

generally applicable, and we will not consider it further. It is interesting to note

though that his one measurement on a single crystal YAG sample had an

isotherm very similar to those measured by Rotman as seen in Figure 3.35.25

He also interpreted the isotherm in terms of Rotman's defect model, a defect

structure controlled by inadvertent background acceptors compensated by

oxygen vacancies.

Thus we see that to date, a typical YAG conductivity isotherm consists of

a P02 independent part surrounded by p-type and n-type branches that vary as

PO2+1/ 4 respectively. These isotherms were interpreted in terms of the acceptor

dominated defect model in Figure 2.6. Studies of variable-valence Ni:YAG

supported this interpretation.4 ,85 ,8 6 Thus no isotherms have so far been
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measured which can be interpreted in terms of an undoped or donor doped

YAG.
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CHAPTER 4: EXPERIMENTAL

Chapter 4.1: Introduction:

As described in the introduction, two types of samples were used for our

experiments. One type was single crystal YAG fibers grown at MIT using the

Laser Heated Floating Zone technique. The other type was YAG boules grown

by the Czochralski method. The single crystal fibers provided a much longer

path length for optical measurements, since fibers as long as 10 cm long could

be grown in a day. Furthermore, since these fibers were grown from ceramic

feed, fibers of various dopants and dopant concentrations were readily

accessible. Unfortunately their small diameters made coupling of the probe light

difficult and irreproducible, so quantitative optical measurements were nearly

impossible. These small diameters also posed problems for electrical

measurements, since the small cross-sectional area often resulted in high

resistances comparable to our alumina sample holders. In contrast, the large

single crystal boules grown by the Czochralski method were easy to measure,

both optically and electrically. Unfortunately these donated crystals were of a

limited composition, and their optical path lengths were generally smaller than

the fibers. However by utilizing the strengths of each type of sample, we were

able to extract meaningful data for a range of compositions for both Ti:YAG and

Zr:YAG. This chapter will cover experimental details of the processing and

electrical and optical measurements for these two types of samples. The

following chapters will present the results.
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4.2: Processing:

4.2.1: Single Crystal Fibers

To make dense ceramic feed rods for growing single crystal fibers, doped

and undoped YAG powder was made using a modified Pechini process, as

described in Appendix 1. This process has the advantages of excellent control

over dopant concentration and near atomic scale mixing of the cations.

Furthermore, the only equipment requirements are standard laboratory

glassware, hot plates, and a calcining furnace. The major disadvantage of this

technique is poor powder characteristics, and low yield, typically =1 volume

percent (v/o) of the starting solutions. YAG, Ti:YAG, and Zr:YAG powders were

successfully made with this process. All the powders were single phase. A

typical x-ray diffraction pattern is shown in Figure 4.1. An SEM micrograph of

representative powders is shown in Figure 4.2. As is clearly evident, the

powders have a large size distribution, with the larger particles tending toward a

planar shape, and the smaller particles tending to be more spherical. The

average particle size is = 0.5 gm. Powder agglomeration is also a major

problem. However, spectrochemical analysis of powders with a systematic

variation of over three orders of magnitude in doping concentration revealed that

doping concentrations were within a factor of two of the starting composition.

Since the error associated with spectrochemical analyses is usually a factor of

two, the Pechini process provides remarkable control over doping

concentrations.

4.2.1.2: Polycrystalline Ceramics

The YAG powders were dried at 110°C overnight to remove residual

moisture before pressing. The powders were then pressed at = 4000 psi on a

vertical bench press, and then isostatically pressed at 40,000 psi for a few
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SEM micrograph of YAG powder made from the modified
Pechini process.
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minutes to make pellets. The green strength of these pellets was quite good,

and they could be handled readily without crumbling. The pellets were then

sintered in vacuum in a graphite furnace at 18000 C for two hours in a powder

bed. This sintering temperature was arrived at through a systematic study of the

densification rate at various temperatures. Densification rates below 1700°C

were negligible. However at 1800°C, the densification rate increased

dramatically. This change in densification rate was attributed to liquid phase

sintering at 1800°C by the alumina rich eutectic at 17600 C, as seen in the phase

diagram in Figure 4.3.101 Typical pellet densities were =95%.

4..2.1.3: Fibers

Small bars were cut from these polycrystalline ceramic pellets and used

as feed material for the laser heated floating zone technique as shown in

Figure 4.4. Using this technique, Toshihiro Kotani, a member of our laboratory

visiting from Sumitomo Electric Industries was able to grow single crystal fibers

from 250 gim to 2 mm in diameter, with lengths from 1 to 10 cm.

Ti:YAG fibers with concentrations of y=0.001, 0.01, 0.05, and 0.10 for

Y3(All yTiy)5012 were grown in an atmosphere of Ar+5%H 2 gas. These dopant

concentrations were determined by inductively coupled plasma (ICP) or

microprobe, as seen in Table 4.1. SEM analysis revealed only single phase

Ti:YAG, with few physical defects, e.g. bubbles, cracks, etc. Crystals grown

under more oxidizing conditions had white precipitates that were identified by

their compositions as Y2Ti2 07 as measured by microprobe. A micrograph of the

precipitates is seen in Figure 4.5. The higher the P0 2, the lower the Ti

concentrations above which precipitates were found. The as-grown crystals

were brown, and the intensity of the brown color increased with increasing Ti

concentration and decreasing P02.
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Vinogradova, Ir'. Akad. NVauk SSSR, Ser. Khim., No. 7, 1162 (1964).

Figure 4.3 The A12 0 3 -Y2 03 Phase Diagram.[101]
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SCHEMATIC DIAGRAM OF LHFZ GROWTH APPARATUS

100W, 2-Beam Laser

1500W, 4-beam Laser

GAS OUTL£

Zn

For Fiber( 100-200gm x 30cm Long)

For 1-10mm Dia. x 20cm Long Crystal

'IEWING WINDOW

TELESCOPE

TO ROTA
VACUUN

GAS INLET

Figure 4.4 Schematic Diagram of the Laser Heated Floating Zone Growth
Apparatus.
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Dopant Concentration of Doped YAG Samples

Crystals Grown by the Czochralski Method:

Concentration:

Nd:YAG
(Y1 -xNdx)AI5012

x=0.01

x=1.4x10 3

Method of
Determination:

Microprobe

ICP

Single Crystal Fibers Grown by the Laser Heated Floating Zone Method:

Concentration:
Method of
Determination:

Ti:YAG
Y3(Al1 -xTix)5012

Zr:YAG
(Y1 -xZrx)3AI5012

x=O.001 4

x=0.01, 0.05, 0.10

x=0.001

x<0.001
x=0.004, 0.008

ICP

Microprobe

ICP

Microprobe
Microprobe

Table 4.1 Dopant concentration of doped YAG samples.
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Figure 4.5 SEM micrograph of Y 2 Ti2 0 7 precipitates in Ti:YAG single
crystal fibers (Backscattered Image).
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Zr:YAG fibers with concentrations of x<0.001, x=0.001, 0.004, and 0.008

for (Y1 xZrx)3 AI50 12 were grown in an atmosphere of Ar+5%H 2 gas. These

doping concentrations were determined by a combination of ICP and microprobe

as seen in Table 4.1. SEM analysis revealed only single phase Zr:YAG with few

physical defects for x<0.004. For x>0.004, precipitates were observed as seen

in Figure 4.6 . These precipitates had a composition of YZr2 Ox as measured by

microprobe. Crystals grown under more oxidizing conditions tended to have

precipitates at a lower Zr concentration. The as-grown fibers were red, and the

intensity of the red color increased with increasing Zr concentration and

decreasing P02.

4.2.2: Czochralski Crystals:

As mentioned in the introduction, all our crystals grown by the Czochralski

method were donated. John Haggerty of MIT generously donated some YAG

and Nd:YAG crystals, while Milan Kokta of Union Carbide donated some Ti:YAG

crystals. All the crystals were grown in an Ar atmosphere. The as-grown YAG

crystal was colorless, the as-grown Ti:YAG brown, and the as-grown Nd:YAG

pink. The results of glow discharge mass spectroscopy of the YAG and Ti:YAG

crystals are shown in Table 4.2. Microprobe analysis of the Nd:YAG crystal

revealed a Nd concentration of x=0.01 for (Y1-xNdx)3Al5O12 .

4.3: Electrical Measurements:

High temperature two probe dc and impedance spectroscopy

measurements were performed on the samples. The dc measurements

134



Figure 4.6 SEM micrograph of YZr2Ox precipitates in Zr:YAG single
crystal fibers (Backscattered Image).
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Chemical Analysis of YAG and Ti:YAG
Crystals Grown by the Czochralski Process

YAG Impuritites
PPM by weight

32

15

5.0

0.9

8.4

4.6

0.5

3.3

1.6

200

1.9

<0.1

Ti:YAG Impurities
PPM by weight

37

10

26

1

14

560

0.2

1.8

0.2

27

0.5

<0.1

2.3

<0.1

13

<0.2

Table 4.2 Chemical analysis of YAG and Ti:YAG crystals grown by the
Czochralski process.
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Na

Mg

Si

P

Ca

Ti

V

Cr

Mn

Fe

Ni

Co

Zn

Ce



were made using a HP4140b picoammeter, and the impedance measurements

were made using a HP4192a impedance analyzer. A typical i-v curve and

impedance plot for YAG is shown in Figures 4.7 & 4.8. As discussed in

section 2.3, the various resistive and reactive responses of the sample can often

be modeled by an equivalent circuit of resistors and capacitors. For a single

crystal dielectric material such as YAG, a common equivalent circuit is a parallel

RC circuit, with possibly another RC circuit for the electrode, as shown in

Figure 2.11.30 A single RC circuit yields a single semicircle in the complex

impedance plane, with the low frequency intercept of that semicircle with the real

axis being equal to the resistance, the desired quantity. From this resistance, we

can determine the conductivity from a knowledge of the geometric length and

cross-sectional area of the sample. All the samples we measured exhibited

single semicircles as shown in Figure 4.9.

The furnace was an in-house built globar tube furnace with a Eurotherm

controller model #818. Oxygen partial pressures, established with CO/C02 gas

mixtures, were monitored with a yttria stabilized zirconia cell, and calibrated with

an in-situ TiO2 sensor. The furnace controller, thermocouples, zirconia cell, and

measuring equipment were all controlled and monitored with a computer.

Automated measurements were made every hour. Achievement of "equilibrium"

was arbitrarily defined as three consecutive measurements whose values

differed by less than 2%.

The Czochralski grown crystals were cut into thin plates for electrical

measurements, typically 1 mm thick by = 1 cm2 area. These crystals were

wedged into slots in alumina rods with platinum (Pt) foil as shown in Figure 4.9.

This foil was then spot welded to Pt leads that were fed through the alumina

rocds, with only one lead per sample fed through the same alumina rod to
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eliminate potential parallel electrical pathways through the alumina. Electrodes

consisted of sputtered Pt followed by painting with Pt ink 6926 from Engelhard.

The resistance of the sample holder without any samples was measured for

calibration.

The YAG fibers were cut into thin disks typically 0.5 mm thick by 1.0 mm

in diameter. Pt ink electrodes were used to sinter thin strips of Pt foil to the disks

as leads. The disk and foil setup was then rigidly attached to a flattened alumina

rod with alumina cement as shown in Figure 4.10. Pt wire fed through the

alumina was then spot welded to the foil as before. Again, only one lead per

sample was fed through the same alumina rod. This resistance of the sample

holder without any samples attached was also measured for calibration.

4.4: Optical Measurements:

Samples for optical measurements were polished with diamond paste of

successively smaller grit sizes. The final polish was done with 0.25 gm diamond

particles. If the samples were annealed, optical measurements were made

immediately after the anneal, re-polished, and measured again. These two

measurements were almost always identical, suggesting that thermal etching of

the YAG single crystal polished surfaces was minimal.

To establish the same defect structure as the high temperature electrical

measurements, optical samples were annealed under the same temperature and

PO2 conditions as the electrical samples, and then quenched. Quenching was

achieved by withdrawing the alumina crucible containing the samples from the

hot zone of the furnace. To maintain the gas flow conditions of the anneal during

the quench, the crucible was suspended with Pt wire from an alumina rod which

extended out of the furnace tube. This rod was sealed with silicone gaskets to
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the furnace endcaps. Estimated quench rates associated with withdrawing this

alumina rod and crucible was =70°C/minute.

The optical transmission of Czochralski grown crystals was measured with

a Perkin-Elmer Lambda 19 spectrophotometer. All measurements were

calibrated with a standard YAG sample for reference, to remove day to day

instrument fluctuations. The optical transmission of the YAG fibers was

measured with a specially designed fiber attachment for the Lambda 19. A

schematic of this attachment is seen in Figure 4.11. With this attachment we

were able to measure fibers from 250 gim to 2 mm in diameter, with lengths of up

to 40 cm. This was accomplished by using pairs of parabolic mirrors to transmit

and focus the light as shown in Figure 4.11. The incident light was focused onto

one polished end of the fiber, and collected out the other polished end. To

permit semi-quantitative measurements, the fiber accessory itself without any

fibers was calibrated before every measurement.

Excitation and emission spectra were measured at GTE Labs by Roger

Hunt. A SPEX 1902 spectrophotometer with a xenon arc lamp and computer

controlled double monochromator was used for these measurements.
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CHAPTER 5: EXPERIMENTAL MEASUREMENTS OF YAG AND Nd:YAG

5.1: Introduction:

Experimental measurements were first performed on YAG and Nd:YAG to

establish a set of references for the undoped and isovalently doped crystals. As

mentioned in chapter 4, both these crystals were grown by the Czochralski

method. Consequently their electrical and optical properties were easier to

measure because of the larger size of these crystals. Changes in defect

structure were induced by high temperature anneals under oxidizing and

reducing conditions, and these changes were monitored by their effect on the

electrical and optical properties. Oxygen partial pressures were controlled by

02/Ar and CO/CO2 gas mixtures, and correlations between electrical and optical

measurements were made by quenching a sample for optical measurement from

the temperature and P0 2 where the high temperature electrical measurements

were made.

5.2: Results:

5.2.1: Electrical:

The electrical conductivity of YAG & Nd:YAG measured as a function of

P02 for a series of isotherms is shown in Figures 5.1 & 5.2 respectively. Both

crystals exhibit an n-type like behavior at reduced P02's and a trend towards

P0 2 independence under oxidizing conditions. If these isotherms are caused by

a defect structure similar to those measured by Rotman4 ,3 1, then we would

expect the isotherm to consist of branches of electronic conductivity with a 11/4 1

slope separated by a region of ionic conductivity which is P02 independent,
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Nd:YAG Conductivity Isotherms
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Figure 5.2 Nd:YAG conductivity isotherms fitted by an equation assuming a PO2

independent part and a PO2 dependent part that varies as P02
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as shown in Figure 2.6. The lines connecting the data points are a best fit of this

model. As seen in Figures 5.1 & 5.2, the model fits the data quite well. Using

the fitting parameters of this model, we can generate de-convoluted isotherms as

shown in Figures 5.3 & 5.4. Activation energies of the n-type electronic branch

and the P02 independent ionic segment can then be calculated from these de-

convoluted isotherms as shown in Figures 5.5 & 5.6 for YAG and Nd:YAG

respectively. N-type activation energies are 3.0 and 2.9 eV for YAG and

Nd:YAG respectively. The P02 independent ionic activation energies are 2.3

and 2.5 eV for YAG and Nd:YAG respectively.

5.2.2: Optical:

The spectra of the as-grown YAG and Nd:YAG crystals are shown in

Figures 5.7 & 5.8 respectively. Undoped YAG has the expected flat transmission

window for -300 nm < < 3200 nm, with absorption increasing rapidly as one

approaches YAG's band edge at = 200 nm. Nd:YAG has the typical spectra of

the 4f electronic transitions of Nd+3 as seen in Figure 3.7. The spectra of

oxidized and reduced YAG and Nd:YAG are shown in Figures 5.9 & 5.10

respectively. As seen in Figure 5.9 for YAG, the band centered at 250 nm

decreases with reduction and increases with oxidation, while the band at

.310 nm increases with reduction and decreases with oxidation. These spectra

are similar to those observed by Mori54 and Akhmadullin5 2 for undoped YAG,

and has been attributed to iron impurities as described in section 3.2.1. For

Nd:YAG on the other hand, the reduced and oxidized spectra are essentially

identical with the as-grown crystal. However, a difference spectra as
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Figure 5.3 Component analysis of the YAG conductivity isotherms.
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Analysis of Nd:YAG
Conductivity Isotherm
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Figure 5.4 Component analysis of the Nd:YAG conductivity isotherms.
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YAG Activation Energy in 0 2
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Figure 5.5 Activation energy of YAG conductivity components.
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Nd:YAG Activation Energy in 02
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Figure 5.6 Activation energy of Nd:YAG conductivity components.
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shown in Figure 5.1 1 reveals the same pattern as observed above for YAG, a

peak at =250 nm that increases with oxidation, and a peak at =310 nm that

increases with reduction.

5.3: Discussion:

The good fit between our measured isotherm and the defect model of

Figure 2.6 as seen in Figure 5.1 & 5.2 suggests that both our YAG and Nd:YAG

crystals have defect structures controlled by background acceptors which are

compensated by oxygen vacancies. This is the same defect structure observed

by Rotman4, 31 for most of his doped and undoped YAG samples, as mentioned

in section 3.4. Thus it seems that we have verified Rotman's defect model. The

one difficulty lies in the activation energies. N-type and ionic activation energies

measured by Rotman4, 31, 85, 86 and Schuh25, 87, 88 are listed in Tables 3.3 & 3.4

respectively. For our YAG crystal, the n-type and ionic activation energies are

3.0 and 2.3 eV respectively, while for our Nd:YAG crystal they are 2.9 and

2.5 eV respectively. Our ionic activation energies are comparable to those

measured by Rotman and Schuh, and are attributed to the migration energy of

oxygen vacancies compensating the background acceptors.4, 25 In contrast, our

n-type activation energies are significantly less than those measured by Rotman

and Schuh, as seen in Table 3.2.

We can rationalize this difference if we assume that iron is involved in our

redox reaction. (Fe was not listed as an impurity in Rotman's samples which

exhibited an n-type conductivity branch.4 ,3 1) Rotman's4 ,31 n-type activation

energy of 3.9 eV resulted in a reduction enthalpy of 7.8 eV for the following

reduction reaction (See Table 2.2):
1

00, ---> V" + 2e'+ 0 2 KR = [Vo]n2 P02 2 AHR =7.8 eV
2
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If the reduction process in our samples involves the reduction of Fe+3 to Fe+2,

then the pertinent reduction equation for our sample is:
1

o --> V" + 2e'+ ()2 K [Vo"]n2pOl /2 AHR = 7.8 eV

2'FeAl + 2e' -> 2FeA1 Ki [Fx ]2 2AH i[FeA1]2n

1 [Fe 1]2 [Vo"]PO 2 1/2
2FeXA + OO - V" + 2Fee + 0 KR2 = 2 AHR = H + 2AHA02 [FXA]R2 2

As mentioned in section 3.2.1, an absorption band at -5 eV has been observed

in a number of undoped YAG samples, and has been attributed to a charge

transfer process from the oxygen 2p band to Fe+3. 52 ,54 Since YAG has a

thermal bandgap of =6 eV,4 ,31 this implies that the Fe+2 level is =1 eV below the

conduction band, or that for the above equation, AHj = -1 eV. This in turn

suggests that AHR2 = 5.8 eV, and that the n-type activation energy for this redox

reaction is 2.9 eV as we in fact observed.

The optical properties of YAG and Nd:YAG are consistent with the above

explanation. As seen in Figures 5.9 & 5.11, a peak in the same position as the

charge transfer process from oxygen to Fe+3 is observed in our spectra at

=250 nm.4 ,52 ,54 In addition to YAG, similar charge transfer peaks have been

observed in Fe:AI203
2 3 ,8 9 and Fe:YGG.9 9 The observation that the intensity of

this peak increases with oxidation, and decreases with reduction is consistent

with this charge transfer assignment. A reducing anneal would change Fe+ 3 to

Fe+ 2 and remove this band as observed. Chemical analysis does indeed reveal

Fe as the primary impurity in the YAG sample, as seen in Table 4.1. Microprobe

analysis of the Nd:YAG sample did not reveal any Fe, but that simply implies that

the Fe concentration is less that =200 ppm. If we assume that an 02 anneal
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fixes all the Fe in the +3 valence, we can calculate the molar extinction

coefficient and oscillator strength for the peak:10 ,11

A = 0.8 = Em,,cl c = concentration = 200ppm = 1.63x10-2 moles / liter

> max = 164 liter / cm- mole 1 = crystal thickness = 0.3 cm

f = 4.6x10-9 maxAv Av = 1.01x10 4 cm -1

==> f = 7.6x10-3

This value of Emax and f is at the low end of charge transfer processes, as

described in section 2.1.3. However, these values represent the minimum

values, since we assumed that all the Fe was in the +3 valence. If some of the

Fe was actually in the +2 valence, then max and f would be larger. It's

interesting to note that Akhmadullin's52 values for £max and f were of the same

order of magnitude as the ones we calculated above. Finally, a luminescence

experiment was done as shown in Figure 5.12. Pumping at 240 nm results in the

characteristic 800 nm emission of Fe+3 for the as-grown YAG.4 For the reduced

YAG, no luminescence was observed.

Thus the electrical and optical measurements of our YAG and Nd:YAG

crystals are consistent with an acceptor dominated defect structure where Fe

impurities play a significant role for the minority electronic carriers. Our n-type

conductivity isotherms correspond to regime (b) of the defect model shown in

Figure 2.6. Detailed quantitative correlations between these electrical and

optical properties, guided by our defect model in Figure 2.6 will allow us to

estimate the position of the Fe+ 2 and Nd+2 ground state in the YAG bandgap.

As seen in Figure 2.6, at a particular P02, the "stoichiometric" P0 2: PO2,s, n=p,

and at that P0 2 the Fermi level is at midgap. For P0 2 <PO2, s , n>p and
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the Fermi level is above midgap. Similarly for P0 2>PO2,s, n<p and the Fermi

level is below midgap. By comparing our measured conductivity isotherms in

Figure 5.1 & 5.2 with the schematic isotherm in regime (b) of Figure 2.6, we see

that the Fermi level is probably above midgap, even for the most oxidizing P0 2

in our measurements, an 02 anneal. Thus the Fermi level, Ef2Eg/2 after an 02

anneal, where Eg is the YAG bandgap. Using the defect model as a guide, we

can estimate the Fermi level shift for the range of P0 2 's covered in our

conductivity measurements. As seen in regime (b), of Figure 2.6 and Table 2.2,

noPO2 -1 /4. For our conductivity measurements, P02 varies from roughly 1 atm

to 10-12 atm. Thus n varies by three orders of magnitude over this P0 2 range,

and this corresponds to a Fermi level shift upward of = 1 eV relative to an 02

anneal at 1400°C as shown below:

n = Ncex (Ef -EN = Effective Density of States in Conduction Band

n Ef - EC===> 2.31og - fkT E = Energy of Fermi Level

Ec = Energy of Conduction Band Level

.'. If n2 (PO2 1 atm)= 10- 3 n,(PO 2 = 10-12 atm)

=-=> AEf 2.3kTlog(103) 1 eV at T = 1673°K

Since the thermal bandgap in YAG is =6 eV, 4 ,31 this implies that at 14000

C, PO2=10 - 12 atm, the Fermi level Ef>(Eg/2)+leV=4 eV above the oxygen 2p

valence band. Similarly, an anneal in Ar gas with P0 2 =10- 4 atm shifts the Fermi

level upward by 1/3 eV relative to an oxygen anneal, so after such an anneal,

Ef23.3 eV above the oxygen 2p valence band. From Figure 5.9, we see that the

charge transfer peak from oxygen 2p to Fe+3 disappears after an anneal at

1400°C, P0 2=10-12 atm. However, a significant amount of this peak is still

present after a 14000C anneal in Ar gas, with P0 2 =10- 4 atm. This suggests that
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the Fe+ 2 level is significantly higher than 3.3 eV above the oxygen 2p valence

band, and is consistent with our earlier assignment of =5 eV above the valence

band to explain our measured n-type activation energies. This analysis also

allows us to comment on the location of the Vo level. Our model requires that

the Vo level be above the Fe+2 level. This suggests that the Vo level is greater

than 5 eV above the oxygen 2p valence band. From Figure 5.10, we see that

peaks associated with the 4f electronic transitions of Nd+ 3 are unchanged by

both oxidizing and reducing anneals. This suggests that the Nd+2 level is

significantly higher than 4 eV above the valence band, and may even be in the

conduction band.

This analysis also allows us to comment on the 310 nm peak observed in

our samples after a reducing anneal. Mori,54 Masumoto,53 and Akhmadullin5 2

assign this peak to charge transfer from Fe+ 2 to the conduction band as seen in

Figure 5.13.52 We disagree with this assignment. Our electrical and optical

measurements suggest that the ground state of the Fe+ 2 level is at most

probably 1-2 eV below the conduction band, and not 4-5 eV as suggested by

these investigators: 313 nm ==> 4 eV, 258 nm ==> 5 eV. We propose that the

310 nm band is more likely a charge transfer process between Fe+ 3 and Fe+ 2.

As the crystal is reduced, Fe+ 2 ions are produced, and Fe+ 3 to Fe+ 2 charge

transfer then becomes a viable process. In yttrium iron garnets, such charge

transfer processes can only occur for ;<-370 nm, as no evidence for their

presence has been observed for k>370 nm,90 so our 310 nm band is consistent

with this condition. Our explanation however requires that the Fe ions are
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paired, as charge transfer processes are extremely unlikely between atoms more

than two interatomic distances apart, and the concentration of Fe in our samples

is small. Such pairing of Fe impurity ions have been observed in sapphire.9 1

Thus by quantitatively correlating the electrical and optical properties, we have

been able to gain a much deeper insight into the position of the Fe+2 impurity

level in the YAG bandgap, as well as the relative position of the V and

Nd+ 2 levels.

5.4: Conclusion:

Electrical conductivity isotherms of YAG and Nd:YAG exhibit n-type like

behavior that is consistent with a defect structure controlled by background

acceptors and compensated by oxygen vacancies. Derived activation energies

are -2.9 eV for the n-type electronic branch, and =2.4 eV for the P0 2

independent ionic branch. Fe impurities were found to play a significant role in

the redox reaction of both crystals. Fe impurities were also found to play a role

in the optical properties, inducing an absorption band at 250 nm assigned to

charge transfer from oxygen 2p to Fe+ 3 , and a band at 310 nm assigned to

charge transfer between Fe+3 and Fe+2. Quantitative correlations of the

electrical and optical properties suggest that the Fe+ 2 level is 5 eV above the

oxygen 2p valence band, the VO° level is higher than 5 eV above the valence

band, and the Nd+ 2 level is much higher than 5 eV above the valence band.
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CHAPTER 6: EXPERIMENTAL MEASUREMENTS OF Ti:YAG

6.1: Introduction:

Electrical and optical measurements were performed on the Ti:YAG

crystals next. As described earlier, Ti is the simplest of the transition metal

dopants to study in YAG with this technique, since Ti+3 has only one d-electron,

and Ti+4 has no d-electrons, greatly simplifying the optical analysis.

Furthermore, we were interested in the defect structure of donor doped YAG,

and the ability of Ti to have a +4 valence makes Ti:YAG a potential system to

study a donor controlled defect structure.

High temperature anneals of the Ti:YAG fibers at all P0 2>10 -12 atm and

T=1400°C resulted in precipitation of Y2Ti2 0 7, similar to the precipitates

observed when the fibers were grown under oxidizing conditions. The density of

the precipitates increased dramatically with increasing Ti doping concentration

and increasing P0 2, so that precipitates in the Y3(Al0.9Ti0 .1)512 fiber after an

02 anneal changed the fiber appearance from a transparent single crystal to an

opaque polycrystalline ceramic. Only at 1550°C and PO2=8x10-14 atm were we

able to suppress the bulk precipitation in Y3 (Al0.9Ti0 .1)5 12 . Even then,

precipitates of Y2Ti2 07 still occurred at the surface. This precipitation reaction

presented a major problem. High temperature electrical measurements become

extremely difficult for T>15000C. Above this temperature, surface and gas

conduction contribute significantly to the total conduction.9 2 As we were not set

up to handle these type of measurements, and as precipitation would probably

still occur under oxidizing conditions even at these temperatures, we decided to

complete the bulk of our electrical and optical measurements on the Ti:YAG

crystal grown by the Czochralski method. This crystal had a much lower Ti

concentration, and precipitate densities did not exceed 1.4 volume percent (v/o),
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even for anneals that lasted three months. From this precipitation density and

the composition of the precipitates, we estimated that the Ti concentration in the

bulk of the samples decreased by =10% because of the Y2Ti20 7 precipitation.

6.2: Results:

6.2.1: Electrical:

The conductivity isotherms of Ti:YAG are shown in Figure 6.1. The

isotherms appear n-type at the more reducing P02's, with a slope of =-1/4, and

begin to flatten out at the more oxidizing P02's. This isotherm is well fitted by an

equation assuming a P0 2 independent part and a P0 2 dependent part with a

slope of -1/4. Separating these components, we can de-convolute the isotherm

as seen in Figure 6.2. Activation energies for these two parts can then be

calculated as seen in Figure 6.3, with 4.7 eV for the n-type P0 2 dependent part,

and 3.2 eV for the P0 2 independent part.

6.2.2: Optical

The optical spectra of the as-grown Ti:YAG is shown in Figure 6.4,

overlapped with the spectra of an undoped YAG for comparison. Similar to

spectra obtained by other investigators,6 ,40 our as-grown Ti:YAG has a band

edge at =300 nm compared with 200 nm for undoped YAG, and now has three

peaks in the visible at =400, 500, & 600 nm. As described earlier, the source of

the absorption in the UV and at 400 nm is unknown, whereas the peaks at 500

and 600 nm have been assigned to transitions between the crystal field states

T2g-->Eg of Ti+3 ions in an octahedral site40 ,60 ,66 ,71. The two peaks result from

Jahn-Teller splitting of the excited Eg state.

The spectra of oxidized (PO2=1 atm) and reduced (PO2=2.7x10 -1 3 atm)
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Ti:YAG Conductivity Isotherms
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Figure 6.1 Ti:YAG conductivity isotherms fitted by an equation assuming a PO2

independent part and a PO2 dependent part that varies as P02- 4 .
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Analysis of Ti:YAG
Conductivity Isotherms
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Figure 6.2 Component analysis of the Ti:YAG conductivity isotherms.
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Ti:YAG Activation Energy in 02
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Figure 6.3 Activation energy of the Ti:YAG conductivity components.
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Ti:YAG is shown in Figure 6.5. As clearly evident, the 400, 500, and 600 nm

peaks disappear with an 02 anneal, and re-appear with a reducing anneal.

Clearly we are able to change the Ti valence from +3 to +4 with an oxidizing

anneal, and reverse it with a reducing anneal, as was observed by Karpov.6 The

effective band edge at 300 nm does not seem to be much affected by these

anneals, as shown in Figure 6.6. However, a more reducing anneal in H2 with

an effective P0 2 of =1 0-20 atm dramatically reduced the UV absorption as seen

in Figure 6.7. An oxidizing anneal brings the UV absorption back, as well as

removing the 400, 500, and 600 nm peaks as before. When the UV band is

pumped after an oxidizing anneal, a fluorescence is observed as shown in

Figure 6.8. The excitation spectrum for this fluorescence is seen in Figure 6.9.

As seen in Figure 6.9, there appears to be an excitation peak at = 270 nm.

6.3: Discussion:

A conductivity isotherm as shown in Figure 6.1 can arise from both a

donor dominated defect structure (regime "c" of Figure 2.7), or an acceptor

dominated defect structure (regime "b" of Figure 2.6), as discussed in

Section 2.2. Fortunately, our ability to change the Ti valence as evidenced by

the optical measurements allows us to distinguish between these two cases as

shown below.

For both the donor dominated and the acceptor dominated case, the ionic

defects are constant over regimes "c" and "b" respectively, these defects being

fixed by a constant acceptor and donor concentration. The n-type -1/4 power

law in both cases is due to the increasing concentration of electrons in the

conduction band as the crystal is reduced. As seen in Figure 6.5, anneals under

the highest and lowest P0 2 of the 1400°C conductivity isotherm induce dramatic

changes in the concentration of Ti+3, as witnessed by the change in area of the
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TIYRAG AS RECEIVED
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Figure 6.6 Absorption spectra of oxidized and reduced Ti:YAG.
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500 and 600 nm peaks. We find that these peak areas grow to a limiting

maximum with reducing anneals, so that by the lowest P0 2 of our isotherms, the

peak areas have essentially saturated. This suggest that most of the Ti is

present as Ti+3 after such an anneal. After an 02 anneal, these same peak

areas are roughly one tenth of the areas after the lowest P0 2 anneal. This

implies that most of the Ti is now Ti+ 4, and that the donor concentration, [Ti+4]

has changed by roughly an order of magnitude over the P0 2 range of our

conductivity measurement. This clearly rules out the fixed valence donor

dominated defect model, and suggests that the appropriate defect model is the

fixed valence acceptor dominated defect model, where the concentration of

background acceptors is much greater than the concentration of Ti, so that the

valence changes of Ti have a negligible effect on the defect structure. Another

relevant defect model to consider is the variable valence donor dominated defect

model, as seen in Figure 2.8. However such a model cannot yield a n-type

branch with a -1/4 power law dependence over a P0 2 range where the donor

concentration is changing by a factor of =10. Thus the most appropriate model is

an acceptor dominated defect model as shown in Figure 2.6, where our

conductivity isotherm lies to the reducing half of regime "b".

Our value of the ionic activation energy at 3.2 eV is slightly higher than

those measured by other investigators, as seen in Table 3.4. However, this

difference is small compared to the range of values listed in Table 3.4, which

range from 2.2 to 3.0 eV. Thus our value may be considered comparable to

those measured before. Our activation energy for the n branch at 4.7 eV

however, is larger than those measured by other investigators, which are

typically =3.9 eV, as seen in Table 3.3. It may be that Ti ions are providing

trapping states for these electrons, and restricting their mobility. At a Ti

concentration of 560 ppm, this would correspond to a trap every 3.5 nm if the Ti
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ions were uniformly distributed. Some evidence for this reduction in electron

mobility can be seen by comparing Rotman's conductivity isotherm for Ce:YAG

in Figure 2.1331 and our conductivity isotherm for Ti:YAG in Figure 6.1. At

1300°C, the minimum in Rotman's conductivity isotherm occurs at

PO2 =10-6 atm=PO 2 ,s, while in ours, the minimum is at PO2 1 atm =PO2, s .

For the sake of comparison, let us assume that our minimum occurs at

P0 2=1 atm. As we described in section 5.3, this minimum is related to the point

where n=p in Figure 2.6, and the Fermi level is at midgap. Consequently the

concentration of n and p at this point is a function of temperature only, and is

equal to the concentration of intrinsic electronic defects at that temperature, no

(i.e. n=p=no). Thus at the minimum of the 1300°C conductivity isotherms, both

Rotman's Ce:YAG sample and our Ti:YAG sample have the same concentration

of electrons, n=no. For P02 <PO2,s , the electron concentration will increase as

PO2-1/4 as seen in regime (b) of Figure 2.6 & Table 2.2. This implies that at

P0 2 =1 0-6 atm, our electron concentration will be one and a half orders of

magnitude or =32 times larger than no , and 32 times larger than Rotman's

electron concentration. If we compare the de-convoluted isotherms in

Figure 2.14 and Figure 6.2, we see that our electronic conductivity is only 4 times

higher than Rotman's electronic conductivity at 1300°C for a given P0 2. A

reduction in electron mobility for our Ti:YAG samples relative to Rotman's

Ce:YAG samples might explain some of this difference.

Let us now focus on the optical properties. The dramatic reduction of the

UV absorption at 300 nm with a reducing anneal as seen in Figure 6.7 strongly

supports charge transfer from the oxygen 2p band to Ti+4 as the source of this

absorption. Similar absorption and assignments have been made for

Ti:sapphire,63 ,65 Ti:MgAI 204,4 2 and Ti-activated stannates and zirconates,6 9 as

mentioned in the literature review. This assignment is also consistent with the
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energy diagram of Figure 3.25 in Section 3.2.3.2. The fluorescence peak

observed when this band is pumped is analogous to the fluorescence peak

observed for these other Ti doped systems when pumped in the UV, and further

supports this assignment.42 ,67-69 This fluorescence center has been ascribed to

a Ti+4 octahedron as described earlier.42 ,69 Karpov's work on the polarization

dependence of this fluorescence revealed that this fluorescence originates from

the edges of the octahedral and tetrahedral sites in YAG, and not their centers,

further supporting the notion of a charge transfer process responsible for the UV

absorption and subsequent fluorescence.7 3 In fact, the 270 nm peak in the

excitation spectrum of Figure 6.9 suggests that the generalized Ti+3 level is

=4.6 eV above the oxygen 2p band, specifying the position of the generalized

Ti+ 3 level in the YAG energy diagram of Figure 3.25 in Section 3.2.3.2. This

energy is within the range suggested earlier from the literature review, 6 6 and is

comparable to the position of the Ti+ 3 level in Ti:sapphire at 5 eV above the

oxygen 2p band.6 3 ,6 5

Let us now consider the optical properties of Ti:YAG in the visible range.

As discussed in the literature review, Bantien, 4 0 Albers, 7 1 ,93 and Yamaga 6 0 have

assigned the 500 and 600 nm peaks to the crystal field transitions of the Ti+3 ion

in an octahedral site. Similar transitions have been observed in a number of Ti

doped systems, and the magnitude of the crystal field splitting is comparable to

those measured for other ions in the octahedral site of YAG. For example, 10 ODq

for Cr+ 3 is =2.0 eV7 6 while a fit to the 500 and 600 nm peaks of Ti:YAG yield

1 0Dq=2.3 eV.60 Furthermore, the magnitude of the molar extinction coefficient

and oscillator strengths for these two peaks are in the range of those expected

for forbidden d-d transitions, as shown below: 18, 4 1, 42, 61

From Table 4.2, we know that the Ti concentration is 560 ppm by weight.

This concentration translates into a molar concentration of 5.32x10-2 moles
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of Ti/liter. The 500 and 600 nm peaks of the as-grown crystal in Figure 6.4 have

absorbances of 0.024 and 0.023, and half widths Av of 1.5x103 cm-1 and

1.6x1 03 cm-1 respectively, after removal of the background. Our crystal is 0.6 cm

thick, so the molar extinction coefficients are:10 ,11

£m - Al A = Absorbance
cl

c = Concentration [moles/liter]

1 = thickness [cm]

= 0.75 for the 500 nm peak

= 0.72 for the 600 nm peak

The resulting oscillator strengths are:

f = 4.32x10-9 £dv 4.6x10-9 EmAv

= 5.2x10 -6 for the 500 nm peak

= 5.3x10 -6 for the 600 nm peak

These values are in the range of oscillator strengths expected for d-d transitions

in an octahedral site containing a center of inversion.1 0 ,11 They represent a

lower limit since not all of the Ti is in the +3 valence for the as-grown crystal. An

anneal in log P02 = -12.57 at 1400°C actually increased the oscillator strength of

the 500 nm peak by 14% with respect to the as-grown crystal.

The presence of the 400 nm peak presents a problem with this

interpretation of the 500 and 600 nm peaks. As we discussed in the literature

review, no assignments have been proposed for this peak, although many

investigators have noted its existence. 6 ,4 0 Furthermore, the ratios of the

absorbance for the 400, 500, and 600 nm peaks were found to remain constant

alter various oxidizing and reducing anneals, collaborating Karpov's results for

crystals grown under different conditions.6 This suggests that the 400 nm peak
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is also associated with d-d transitions of the Ti+3 ion. I propose that this

absorption as well as the absorption of the 500 and 600 nm peaks are primarily

due to Ti+3 in the 8-fold dodecahedral site. I base this proposal on two key

observations. First, three peaks for Ti+3 in an octahedral site can only occur for

a tetragonally distorted octahedral site. 11 To account for these three peaks in

Ti:YAG at 400, 500, and 600 nm, the distortion would have to be severe, as

illustrated in Figure 6.10,3 so that the T2g ground state is now split by =2.1 eV to

explain the 600 nm absorption. A distortion of this magnitude is unlikely, and

has not been observed in the spectra of other dopants believed to enter the

octahedral site in YAG, such as Cr:YAG. 7 6 Furthermore, structural refinement

studies of YAG have not revealed any distortion of this magnitude for the

octahedral site.2 7 ,33 Second, three peaks with these same approximate

positions have been observed in another transitional metal dopant with only 1-d

electron, Zr+3:YAG as discussed in section 3.2.4.5 Electron spin resonance (esr)

has confirmed that Zr+3 enters the dodecahedral sites, and correlations between

these optical peaks and the esr signal suggest that d-d transitions of Zr+3 in the

dodecahedral site are responsible for these peaks. As discussed in section 2.4,

Ti+3 should prefer the octahedral sites. However, since the dodecahedral site

has no center of inversion, d-d transitions would be -100 times stronger in this

site, so even if only a fraction of the Ti+3 were to enter the dodecahedral sites,

the signal from these optical transitions would swamp out those from Ti+3 in

octahedral sites. There is also evidence for three peaks in other Ti:garnets, such

as Ti:GSAG as seen in Figure 6.11. The oscillator strength of these three peaks

are comparable to those calculated for the Ti:YAG peaks above.

It may be possible though given the breadth of the peaks at 400, 500, and

600 nm, that some of the signal may be due to Ti+3 on octahedral sites. As

stated earlier, crystal field splitting of Ti+3 levels in an octahedral site would yield
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absorption peaks in the same vicinity. This is in contrast to crystal field splitting

of Ti+3 levels in a tetrahedral site. Unlike crystal field strengths of dodecahedral

and octahedral sites which are about the same magnitude

((8/9)Aoctahedral=Adodecahedral), the crystal field strength of the tetrahedral site

is roughly one half that of the octahedral site,

(4/9)Aoctahedral=Atetrahedral.3 Consequently, all crystal field transitions of Ti in

a tetrahedral site should be in the NIR. It should be mentioned that we did

attempt to look for peaks in the NIR. However, optical measurements of very

thick crystals, as well as the heavily doped Ti:YAG single crystal fibers revealed

no peaks. Such peaks may still be present, but just too weak to see.

It is interesting to note that Ti has been found in 8-fold coordination in Ti

doped ZrO2 as well as disorderd pyrochlores with the flourite structure.9 4

Examples of these disordered pyrochlores include Gd2(Zr0.3Ti0.7)207 and

Y2(ZrO.3Ti0.7)207 .29 ,95 In the case of Gd2(Zr0.3Ti0.7 )2 07 , the bandgap is 4.1

eV.2 9 This suggests that the Ti + 3 level in 8-fold coordination is = 4 eV above the

oxygen 2p valence band. In contrast, Ti in 6-fold coordination as in rutile and

Ba0O03 Sr0 .97 TiO3 have bandgaps of 3.1.96,97 This suggests that the Ti+3 level

in 6-fold coordination is typically = 3 eV above the oxygen 2p valence band.

Thus the Ti+3 level in octahedral sites seem to be at a lower energy than the

Ti+ 3 level in dodecahedral sites, typically around 0.5-1.0 eV difference. For the

three defect models relevant to this system: the fixed valence acceptor

controlled (See Figure 2.6), the fixed valence donor controlled (See Figure 2.7),

and the variable valence donor controlled defect model (See Figure 2.8), a

n-type isotherm as we observed in Figure 6.1 can only occur when n>p, i.e. the

Fermi Level is above midgap throughout the conductivity measurements and

increases as the P0 2 of the anneal decreases. For a thermal bandgap of 6 eV

in YAG,4 ,31 this means that if the Ti+ 3 level for octahedral sites is indeed at
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3 eV above the oxygen 2p level as suggested above, then the majority of these

ions will remain +3 throughout the P0 2 range of our conductivity measurements.

Since most of the Ti is on octahedral sites as mentioned in section 2.4, this

means that most of the Ti is essentially isovalent with the host throughout our

conductivity measurements, and the only potential Ti donors are the small

fraction of Ti ions sitting on the dodecahedral sites, the same ions we are

detecting with our optical measurements. This explains why the Ti:YAG crystal

with a Ti concentration of 560 ppm by weight has a defect structure controlled by

inadvertent background acceptors, as found in chapter 5 for YAG and Nd:YAG.

The majority of the Ti ions are deep level donors, whose levels are so deep that

they don't affect the defect structure for the range of temperatures and P0 2

measured. Thus although we are measuring only a fraction of the Ti ions with

our optical measurements, we are in fact measuring the Ti ions that directly

affect the defect structure, and all the previous analysis we did earlier remains

valid. Furthermore, we have now demonstrated that it is important to utilize

shallow donors if one intends to study donor controlled defect structures.

We conclude this section by quantitatively correlating the electrical and

optical measurements, and demonstrating the complementary power of these

measurements. Incorporating Ti into the acceptor dominated defect model

derived in section 2.6 allows us to quantitatively predict the P0 2 dependence of

the Ti+3 concentration as shown below:

For an acceptor dominated defect structure, the Brouwer approximation

for the regime of interest is 2[Vo]=[A'] where [A'] is the concentration of

background acceptors and is constant. The relevant defect reactions are:
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0 -- e' + h K = np

00 - VO, + 2e'+ 22 K = [VO2n PO1/22] 2 o Kr = [V]11/2
[A']

with [V"] = 2 constant -C, Kr = Cn2PO2 L'

K 1/2
==> n = 1

C1/2p021/4

Ti doping adds the additional equations of:

Tixy _. Ti'y + e'

[Ti] ]+[TixY]= [Ti]= [Ti

[Ti'y]n
[TiXy]

[Ti'y]Kr 1/2 {[Tiy] [Tixy ]Kr 1/2
--- > Ki - [Tixy]C/2po2/4 [TiXy]Cl/ 2P0 1/4

1 =y[FTixyl K1 1
4 l1ogPO2 = log [[Ti Ty t +l K"iC2

==> logPO 2 =4logTi - [Tixy +constant
[Tixy] 6(a)

at a given temperature, where Tiy refers now only to Ti on dodecahedral sites.

Since the 400, 500, and 600 nm peaks are a measure of [TiyX], a plot of the log

of the area under these peaks vs. log P02 should follow the schematic curve

shown in Figure 6.12. To test this prediction, two crystals 6 mm and 12 mm thick

were measured after successive equilibration anneals at 1400°C in

log P02's of -12.6, -8.6, -4.6, -2.6, and -0.70. After each equilibration anneal,

the samples were quenched from high temperature as described in the
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Section 4.4. The areas under the 400, 500, and 600 nm peaks were measured,

and the integrity of the Gaussian peak fit tested by checking that the area of the

12 mm crystal was two times that of the 6 mm crystal. For all the measurements,

the integrity of the gaussian peak fit was verified. The resulting 400, 500, and

600 nm peaks for the 12 mm crystal are shown in Figure 6.13. The peak areas

versus P0 2 are shown in Figure 6.14, fitted by equation 6(a). As seen in

Figure 6.14, the fit is reasonably good. We observed that at low P02's,

equilibration was difficult to achieve, supporting Haneda's observation that the

oxygen exchange rate for reduced YAG was significantly dependent upon the

exchange reaction at the sample surface, in addition to the normal oxygen

diffusion rate.84 Thus we have more confidence that the data points taken under

oxidizing conditions were equilibrated. If we focus on these points, we see that

the defect model predicts a -1/4 power law dependence as shown below: Under

oxidizing conditions where almost all of the Ti is in the +4 valence state, we

would expect:

[Ti'y]n [Tiy ]tota, Kr 2

[Tixy] [Tixy]C 1 12 p021/4

[Tiy]ioal K /2
==> [Tixy] - PO2-1/4 6(b)

KiC/221/4

A plot of the peak areas vs. P0 2 is shown in Figure 6.15 for the oxidizing

anneals. As evident, all three peaks follow the -1/4 power law, verifying the

prediction of the defect model, and supporting our conclusion that the Ti:YAG

crystals are acceptor controlled, despite a Ti doping level of 560 ppm by weight

as seen in Table 4.2.

Furthermore, detailed quantitative correlations between the electrical and

optical properties allows us to estimate the position of the Ti+ 3 level in the YAG

bandgap for Ti ions in the dodecahedral site, as was done earlier for the Fe+2
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Schematic Plot of Area of
Absorption Peak as a Function of PO2

([Ti]tot-[Ti 3])

log10PO2= 4oglo ,,+ Constant
[Ti 3 ]

I
-10

-
-5 I0

1og1 P0 2

Figure 6.12 Schematic absorption of area of absorption peak of Ti+3 as a
function of PO2, after equation 6(a).
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Area of Absorption Peaks
as a Function of PO2

..... . -.. .............. . .. ,

·... ........ ,

Fit to:

([Ti]tot-[Ti+3])
Iog10PO2= 41og1o [Ti+3] + Con
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Figure 6.14 Area of Ti:YAG absorption peaks as a function of P02, fitted by
equation 6(a).

191

A
V., -

0.2 -

0.0 -

-0.2 -

G)

CL

Ow
0

-0.4 -

-0.6 -

-0.8 -

-1.0 -

-1.2 -

-1.4 -

-1.6 -
-15

_



level in section 5.3. Since the area under the 400, 500, and 600 nm peaks begin

to saturate for reducing anneals approaching P02-1 2 atm, this implies that the

Fermi Level has risen above this Ti+3 level during the course of our conductivity

measurements. The saturation seems to start at P02 -10-8 atm at 1400°C, as

seen in Figure 6.14. As discussed above, the Fermi Level is actually above

midgap for all anneals in our conductivity measurements, even for the 02

anneal. However, if we assume that the Fermi Level was at midgap for the 02

anneal, then an anneal at P02=10-8 would induce an upward shift of =0.66 eV

as described earlier in section 5.3 for an acceptor controlled defect structure, and

the Ti+ 3 level should be =3.66 eV above the oxygen 2p band, for Ti+3 ions in the

dodecahedral site. This value is close to the value of the bandgap of

Gd2 (Zr 0. 3 Ti0. 7 )2 0 7 at 4.1 eV, where the Ti+ 4 ions also sit in 8-fold-like sites,

and the conduction band represents the Ti+ 3 levels.2 9 Since the Fermi Level is

actually above midgap for the 02 anneal as mentioned above, the agreement is

even closer. This agreement further supports our interpretation that Ti+3 ions on

dodecahedral sites are responsible for the 400, 500, and 600 nm peaks in

Ti:YAG.

6.4: Conclusion:

Under reducing atmospheres, the solubility of Ti in YAG can approach

10%, resulting in Y3(Al0. Ti0 .1)5012 for crystals grown from the melt. However,

high temperature anneals at 1400°C resulted in precipitation of Y 2 Ti 2 0 7 . The

precipitation density increased with increasing Ti concentration and increasing

P0 2 of the anneal. Electrical conductivity isotherms of Ti:YAG exhibit n-type

behavior that is consistent with a defect structure controlled by background

acceptors and compensated by oxygen vacancies. Derived activation energies

are 4.7 eV for the n-type electronic branch, and 3.2 eV for the P0 2 independent
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PO, Dependence of the Area

Under the 400, 500, & 600 nm Peaks
in Ti:YAG

* 500 nm Peak
600 nm Peak

\1~ \ \~A 400 nm

Linear Regression:
yscale(Y) = A + B * xscale(X)

Value
-0.89605
-0.2523

sd
0.00479
0.00157

-1.20592 0.04483
-0.25301 0.01468

-1.00137 0.01269
-0.24666 0.00416
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Figure 6.15 Area of Ti:YAG absorption peaks as a function of PO2, fitted by

equation 6(b).
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ionic branch. Ti doping induced optical peaks at 400, 500, and 600 nm in YAG,

as well as producing an effective band edge at 300 nm. Oxidation removed the

optical peaks, while reduction restored them. Severe reducing anneals were

required to move the band edge back to that of undoped YAG at 200 nm. The

optical peaks were attributed to Ti+3 on dodecahedral sites, while the UV

absorption was attributed to charge transfer from the oxygen 2p valence band to

the Ti+4. Quantitative correlations of the electrical and optical properties places

the Ti+3 level of the octahedral and dodecahedral site at -3 and =3.7 eV,

respectively above the oxygen 2p valence band.
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CHAPTER 7: EXPERIMENTAL MEASUREMENTS OF Zr:YAG

7.1: Introduction:

Electrical and optical measurements were next made on Zr:YAG single

crystal fibers. As discussed in section 4.1, electrical and optical measurements

of fibers were difficult because of their small size. This small size resulted in

large resistances, even at 1400°C. However, higher temperatures were avoided

because of the fragile nature of the electrodes. Below 1400°C, the sample

resistance quickly exceeded the measurement range of our instruments.

Consequently we were confined to a narrow temperature range for our electrical

measurements. Furthermore, the sample resistance was often of the same

order as our alumina sample holders, so careful calibration of the sample holder

was required, and under oxidizing conditions where the resistance of the sample

holder was comparable to that of the sample, the data was discarded.

The optical measurements also had problems. The small fibers made

coupling of the probe light difficult, so quantitative comparisons of spectra taken

before and after an anneal was difficult. However, semi-quantitative

measurements of a given spectra were possible.

Fibers of two different concentrations were measured, one with

x<1000ppm, and one with x=3000ppm for (Y1.-xZrx)3 AI5012. Zirconium is

typically found in the +4 valence, and thus Zr doping at a concentration of

x.-3000 ppm represents the first study of donor doped YAG at this high a

concentration of donors. As we will see, the defect structure of this sample may

be the first YAG sample that is not dominated by background acceptors.
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-7.2: Results:

7.2.1: Electrical:

The conductivity isotherms of Zr:YAG are shown in Figure 7.1 & 7.2. The

isotherms appear n-type, with slopes of =-1/6 and --1/4 for the heavily and lightly

doped Zr:YAG sample respectively, as seen from the fitted lines. From these

fitted lines, we calculated an activation energy for each P0 2 condition measured,

at each temperature. We then averaged these activation energies, obtaining 4.1

and 3.9 eV for the heavily and lightly doped Zr:YAG respectively, as shown in

Figure 7.3(a)&(b). As seen by these figures, the final averaged activation energy

is very close to those obtained for each P02 . Thus, although only two isotherms

were measured for the heavily doped Zr:YAG sample, this value of the activation

energy actually represents several data points taken over several orders of

magnitude of P0 2 , so we have a high confidence level in its validity.

7.2.2: Optical:

As grown Zr:YAG had a red color whose intensity increased with

increasing Zr concentration and decreasing P0 2 of the growth chamber. The

optical spectra of an as-grown Zr:YAG fiber is shown in Figure 7.4. High

temperature anneals at 1400°C at P0 2=2.7x10-1 3 lead to a significant reduction

in intensity of all the peaks, as shown in Figure 7.5. The higher the P0 2 of the

anneal, the smaller the peaks. An analysis of the peak areas revealed that an

anneal at 1400°C and P0 2=2.7x10-1 3 atm results in a peak area on the order of

one tenth of the as-grown peak area.

Oxidizing and reducing anneals of Zr:YAG did not result in any

precipitation in the fibers. However, the fiber surfaces did appear less

transparent after each anneal, possibly due to surface precipitates or thermal

etching.
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Conductivity Isotherms of
Heavily Doped Zr:YAG

-15 -14 -13 -12 -11 -10 -9 -8 -7 -6 -5

log 10 PO2 [atms]

Figure 7.1 Conductivity isotherms of heavily doped Zr:YAG.
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Lightly Doped Zr:YAG
Conductivity Isotherms

I I I I

-16 -14 -12 -10
I I I

-8 -6 -4

1og1 PO2

Figure 7.2 Conductivity isotherms of lightly doped Zr:YAG.
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7.3: Discussion:

Our measured spectra of Zr:YAG is nearly identical with those reported by

Asatryan. 5 (Figure 3.28.) The spectra can be de-convoluted into three

Gaussian peaks at 394, 491, and 643 nm as shown in Figure 7.4 and also

reported by Asatryan.5 Similarly, we found that the intensity of these peaks

increased with increasing Zr concentration and decreasing P0 2, all consistent

with their assignment of the optical peaks to Zr+3 ions in dodecahedral sites. If

their assignment is correct, then we seem to be changing the Zr ion valence with

oxidizing and reducing anneals as shown in Figure 7.5. The small magnitude of

these optical peaks even after our most reducing anneal suggests that the

optical center responsible for these peaks is not easy to stabilize. This

observation further supports the Zr+3 assignment, since Zr+3 ions are indeed

very rare, as evidenced by the lack of literature on its properties. The

magnitudes of the molar extinction coefficient and oscillator strength for these

peaks are consistent with this assignment as shown below for the 491 nm peak.

The Zr concentration was measured by microprobe, and if we assume that all the

Zr is present as Zr+ 3, then:

A5 00 = -Emacl = 0.96 c = 20.7x10-2 moles / liter, 1 = 3.5 cm

> £max =11.91

f = 4.6x 0-9 maxAV Av = 4890 cm-'

--- > f = 2.67x10' 4

These values are of the magnitude expected for forbidden d-d transitions as

described in section 2.1.3. The challenge now is to develop a defect model that
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explains the isotherms of Figure 7.1 & 7.2 in terms of changes in the Zr

concentration and Zr valence.

The optical spectra of Figure 7.5 suggests that most of the Zr ions are in

the +4 valence for the range of P02's used in our conductivity measurements.

An anneal at the lowest P02 of the 1400°C conductivity isotherm leads to a

significant reduction of the optical peaks attributed to the Zr+3 ion, compared to

the as-grown crystal. If most of the Zr ions are in the +4 valence throughout our

conductivity measurements, then our defect model must account for the following

observations for the conductivity isotherm:

i) the more heavily doped Zr sample has a -1/6 slope, while the lightly

doped Zr sample has a -1/4 slope,

ii) the magnitude of the conductivity at a given temperature and P0 2 is

larger in the lightly doped Zr sample, and

iii) the activation energy of the heavily doped Zr sample is 4.1 eV, while

that of the lightly doped Zr sample is 3.9 eV.

Let us start by considering that these two samples represent different regimes of

the same defect structure. As seen in Figure 2.7, a donor dominated defect

structure is clearly not appropriate. Such a defect structure cannot account for

observations (ii) or (iii) above. Moreover, from Table 2.3, such a defect model

requires that the activation energies of the two samples be related by the

following equation:

2Ea(Lightly doped Zr:YAG)=3Ea(Heavily doped Zr:YAG)=AHr

The measured activation energies of 3.9 eV and 4.1 eV for the light and heavily

doped Zr:YAG respectively, clearly do not satisfy this equation. For similar

reasons, a compensated or acceptor doped defect structure as seen in Figure

2.5 & Figure 2.6 is not appropriate either. Thus we are force to conclude that

these two samples have different defect structures. The obvious candidates are
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that the lightly doped sample is acceptor dominated and the heavily doped

sample compensated, or that the lightly doped sample is compensated and the

heavily doped sample donor dominated. Unfortunately, neither of these

scenarios can account for observations (ii) & (iii) above either. Thus we must

develop a new defect model.

Conductivity isotherms of pyrochlore ceramic samples made by the

Pechini process reveal that compensation of background acceptors typically

occur when donor concentrations approach 0.1-1%. This suggests that our

heavily doped Zr:YAG sample with a Zr concentration of -3000 ppm has a

compensated defect structure, while the lightly doped Zr:YAG sample has an

acceptor dominated defect structure. Thus the defect model for the lightly doped

Zr:YAG is Figure 2.6, where the measured isotherm is the reduced half of regime

(b), and the -1/4 slope comes from the increasing electronic contribution to the

total conductivity, arising from the increasing concentration of "n" as the sample

is reduced. The total Zr concentration is much less than the background

acceptor concentration, so the change in valence of Zr has a negligible effect on

the defect structure.

Furthermore, detailed quantitative correlations of the electrical and optical

properties allows us to estimate the location of the Zr + 3 level in the YAG

bandgap, as was done earlier for the Fe+ 2 level in section 5.3 and the Ti+3 level

in section 6.3. Again the Fermi Level is probably above midgap for all the

conductivity measurements, even those in 02 which had a resistance

comparable to the sample holder. Then an anneal in PO2=10 -1 2 atm at 1400°C

would shift the Fermi Level up by 1 eV as discussed earlier. For a thermal

bandgap of 6 eV in YAG, 4,31 this places the Fermi Level at -4 eV above the

oxygen 2p valence band after such an anneal. However, the optical spectra in

Figure 7.5 indicates that there is very little Zr+3 after such an anneal. Thus the
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Zr+3 level must be significantly higher than the Fermi Level after such an anneal,

or significantly higher than 4 eV above the oxygen 2p valence band. This

conclusion is consistent with the location of the Zr +3 level as estimated from the

bandgap of ZrO2. As discussed in section 3.2.4, such an estimate places the

Zr+3 level at 5 eV above the oxygen 2p valence band.

Now for the -1/6 slope of the heavily doped Zr:YAG sample. Another

method of getting a -1/6 slope for a compensated defect structure other than the

electronic one in regime (a) of Figure 2.5 is an ionic one, where the -1/6 slope

arises from a change in the valence state of a dopant, as in the Ni:YAG case

measured by Rotman. 4 ,8 6 If we assume that Zr +4 ions compensate the

background acceptors, then as Zr goes to a +3 valence with reducing anneals,

oxygen vacancies must now compensate the background acceptors, and

consequently the oxygen vacancy concentration will increase as we go to more

and more reducing gases. The relevant defect reactions are:

1
0 - V + 2e +02o2 KK = [V"]n2pO 1/2 (a)

[Zry]n
ryx ---> Zr' + e' K [Zry] (b)

[ZryX] + [Zry ]= [Zry ]to (c)

and the relevant Brouwer approximation of the electroneutrality equation is:

[A'] = [Zry ] + 2[V ] (d)

From the optical measurements we know that [Zry']=[Zry]tot throughout the P0 2

range of the conductivity measurements. Furthermore for the compensated

case,
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[ZrY]o t [A']

Equations (c), (d), and (e) imply:

[Zryx] = [Zry]ot - [Zry'] = 2[Vo-]

From equations (a) and (e) we know:

Kr1/2

n =[V]1/2 Po 21/4

[Zr']n
[ZryX] 

[Zry']K , "2

[Zr x][V.]1/2po 1/4z~, j[Vo j~~

KzPO2 "4[ZryX][VO ] = [Zry ']Kr1 /2 [Zry]tot Kr1 2 [A"]Kr 2

From equations (f) & (g):

KPO 2 '/4[ZryX][Vo] 1/2= K uP01/4 2[V]3/2 = [A']Kr 1/2
2 Lo.

[A3Kr 1/2

2KP0, 2 "

[A'] 2/3 Krl/3 O - 1/ 6

'-> [Vo] = 22/3K 2/3P 1 6 P022 2/3Kz 2/3 PO 2

The activation energy and P02 dependence of the remaining components

throughout the P02 range are shown in Table 7.1, and our derived defect model

is drawn in Figure 7.6.

Thus both observation (i) and (ii) for the conductivity isotherms above are

satisfied. The lower magnitude of the conductivity for the heavily doped Zr:YAG
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sample is due to a low oxygen vacancy concentration and a low ionic mobility,

versus electronic conduction for the lightly doped Zr:YAG sample. Finally,

observation (iii) can be rationalized. For the lightly doped Zr:YAG sample, the n-

type activation energy of 3.9 eV is equal to one half of the redox enthalpy as

seen in Table 2.2. This value is very close to other measured activation energies

for the same defect model as seen in Table 3.3. For the heavily doped Zr:YAG

sample, our defect model assigns the activation energy to:

E = AH 2AHz
a = 3 3 /Emigration

We know from Rotman's work that AHr-7.8 eV, and AEmigration-2.2 to 3 eV for

oxygen vacancies as seen in Table 3.4.4,86,98 AHz can be estimated from the

bandgap of ZrO2 and quantitative correlations of the electrical and optical

properties as discussed above. These estimations place the Zr+3 level at 5 eV

above the oxygen 2p valence band. For a thermal bandgap of 6 eV in YAG,4 ,31

this implies that AHz 1 eV. Thus Ea-4 .1-4 .9 eV, which is in the range of our

measured activation energy at 4.1 eV. Thus our derived defect model also

accounts for observation (iii) of the conductivity isotherms. Consequently this

defect model is consistent with all the features of the conductivity isotherms in

Figure 7.2, and we believe is the appropriate defect model for the heavily doped

Zr:YAG sample. These conductivity measurements of the heavily doped Zr:YAG

sample are the first measurements of a YAG sample whose defect structure is

not dominated by background acceptors.

7.4: Conclusions:

The optical properties of Zr:YAG single crystal fibers were measured. Zr

induces absorption peaks at 394, 491, and 643 nm. These peaks were found to
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increase with increasing Zr concentration, and decreasing P0 2. These peaks

were assigned to d-d transitions between crystal field states of Zr + 3 in a

dodecahedral site. Lightly doped Zr:YAG had a defect structure controlled by

background acceptors compensated by oxygen vacancies. Its n-type activation

energy was 3.9 eV. Heavily doped Zr:YAG fibers were found to have an

extrinsically compensated defect structure. Its n-type activation energy was

4.1 eV. Quantitative correlations of the electrical and optical properties suggest

that the Zr+ 3 level is at 5 eV above the oxygen 2p valence band.
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CHAPTER 8: CONCLUSION

Single phase undoped, Ti doped, and Zr doped YAG powders were

successfully made with the Pechini process. These powders were successfully

processed into dense ceramics with greater than 99% theoretical density by

sintering at 18000C for 2 hours in vacuum. The densification mechanism is

believed to be liquid phase sintering of an alumina rich eutectic at 17600C.

These ceramics were successfully used as feed material for growing single

crystal fibers by the laser heated floating zone technique. In a reducing

environment of Ar+5% H2 , Ti solubilities of up to 10% and Zr solubilities of up to

1% were successfully incorporated into the YAG structure without precipitation.

At higher solubilities or higher P02's, Y2Ti2 07 precipitates were observed in the

Ti:YAG fibers, and YZr2Ox precipitates were observed in the Zr:YAG fibers.

Electrical measurements were done on YAG, Nd:YAG, Ti:YAG, and

Zr:YAG samples. All the conductivity isotherms were n-type, and all the

isotherms except those for the heavily doped Zr:YAG could be fit by an equation

involving an n-type component that varied at P02 -1 /
4 and a ionic component

that was P0 2 independent. The heavily doped Zr:YAG sample in contrast, had

a n-type like component which varied as P02-1 / 6 . Activation energies for these

components in the various samples are shown in Table 8.1 and 8.2. The ionic

activation energy varies by =1 eV for the three systems studied. This is

comparable to the variation reported in the literature, as seen in Table 3.4. The

reason for this variation is unclear, and it would be interesting to explore this

issue further. The n-type activation energy varies by -2 eV for the four systems

studied. This differs from literature where the variation is only =1 eV. The

reason for this variation is also unclear. The reduction of the Fe impurities in our
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Ionic Activation Energies

YAG 2.3 eV

Nd:YAG 2.5 eV

Ti:YAG 3.2 eV

T-able 8.1 Ionic activation energies in YAG.
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N-Type Activation Energies

YAG

Nd:YAG

Ti:YAG

Lightly Doped Zr:YAG

Heavily Doped Zr:YAG

Table 8.2 N-type activation energies in YAG.
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undoped YAG, and the restriction of the electronic mobility in our Ti:YAG may

explain some of this variation, but more work is clearly needed before we can

understand this difference.

Optical measurements were done on YAG, Nd:YAG, Ti:YAG, and Zr:YAG

samples. The YAG sample had peaks at 250 and 310 nm. The 250 nm peak

was found to increase with oxidizing anneals and decrease with reducing

anneals, while the 310 nm peak was found to do just the opposite. The 250 nm

peak was attributed to charge transfer from the oxygen 2p valence band to Fe+3

impurities. The 310 nm peak was attributed to charge transfer between Fe+3

and Fe+ 2 ions. The Nd:YAG sample had peaks throughout the UV, VIS, and

NIR, and all the peaks were attributed to the three 4-f electrons of Nd+ 3. These

peaks were unchanged by oxidizing and reducing anneals. However, a

difference spectra revealed the same peaks as observed in the YAG sample

above, with the same P0 2 dependencies. The Ti:YAG sample had peaks at

400, 500, and 600 nm, along with intense UV absorption that shifted the effective

bandedge to 300 nm, from 200 nm for undoped YAG. The three peaks in the

visible were found to decrease with oxidizing anneals and increase with reducing

anneals, while the UV absorption was found to be unaffected, except for

extremely reducing anneals where the UV absorption decreased dramatically.

All these absorption peaks increase with increasing Ti concentration. The 400,

500, and 600 nm peaks were attributed to crystal field transitions of the Ti+ 3 ion

in the 8-fold dodecahedral site, while the UV absorption was attributed to charge

transfer from oxygen 2p to Ti + 4 . The Zr:YAG sample had peaks at 394, 491,

and 643 nm. All three peaks increased with increasing Zr concentration and

decreasing P02. These peaks were attributed to crystal field transitions of Zr+3

ions in the 8-fold dodecahedral site.
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Quantitative correlations of the electrical and optical properties of all the

samples except the heavily doped Zr:YAG sample were found to be consistent

with a defect structure controlled by inadvertent background acceptors and

compensated by oxygen vacancies. The heavily doped Zr:YAG sample was

found to have a defect structure where the Zr+4 ions compensated the

background acceptors. This compensation suggests that the concentration of

background acceptors is typically -0.3%. Thus to study donor controlled defect

structures in YAG, the concentration of shallow donors must be >>0.3%. Finally,

quantitative correlations of electrical and optical measurements also suggest the

location of the Vol, Fe+ 2 , Ti+ 3 , and Zr + 3 levels in the YAG bandgap, as

illustrated in Figure 8.1. Following convention, the energy level is labeled with

the valence that the ion would have if that level was occupied.
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Chapter 9: Future Work

The short term future work should be to explicitly verify the models

developed in this thesis. Specifically, esr experiments should be done on

Ti:YAG to verify the presence of Ti+3 on the 8-fold dodecahedral sites, and

quantitative correlations of the intensity of the esr signal with the intensity of the

400, 500, and 600 nm optical absorption peaks should be made to conclusively

demonstrate that Ti+3 ions on these sites are responsible for the optical

properties. Another interesting experiment would be to pump Ti:YAG at 400 nm

to see what the fluorescence spectrum looks like, and see if it changes when

pumped at 500 and 600 nm.

For the Zr:YAG samples, short term future work should involve a

transference measurement, to verify that the lightly doped Zr:YAG sample is

indeed electronically conducting, and that the heavily doped Zr:YAG sample is

indeed ionically conducting. Another interesting experiment would be to pump

the optical absorption bands of Zr:YAG and see what the fluorescence spectrum

looks like.

Long term future work should involve searching for an effective donor in

YAG, one that would induce a donor controlled defect structure. This defect

structure may yield some interesting transport and optical properties. Such a

donor should be a shallow donor, as well as one with a high solubility in the YAG

structure. Possible donors included Hf, Si, and Ta.
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APPENDIX 1

Modified Pechini Process:

The Pechini process utilizes the ability of citric acid to form polybasic

chelates with a number of metal cations, among them Y, Al, Ti, and Zr. The

chelates can undergo polyesterization when heated with a polyhydroxl alcohol,

thereby locking the cations in the same intimately mixed state as the solution.

The organics are then burned off to form the oxide powder.

A typical process following a recipe developed by Peter Moon,29 involves

dissolving a metal salt such as Y(NO3)3 in distilled water and precipitating out

Y(OH3)3 by adding ammonia (NH40H). The precipitate is filtered and washed,

and then dissolved in a solution of citric acid and ethylene glycol. This solution is

then assayed to determine the Y concentration.

Citric acid solutions of Y and Al, as well as any dopants are then mixed

together in the appropriate ratios for the desired composition. The mixed

solution is then dried into a hard resin, and the resin ashed in a box furnace in

flowing 02 at = 600°C. The amorphous ash is then calcined to the oxide phase

at -900°C. The final powder characteristics (e.g. size, size distribution, shape,

etc.) are largely determined by the characteristics of the ash.
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