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ABSTRACT
The ribonucleotide reductases (RNRs) catalyze the rate limiting step in DNA
biosynthesis, the conversion of ribonucleotides to 2'-deoxyribonucleotides. Four
classes of RNRs are currently acknowledged, with each class differing in cofactor
requirement. The two best-characterized reductases to date are the differic iron
center-tyrosyl radical-dependent reductase isolated from Escherichia coli (RDPR),
and the adenosylcobalamin-dependent reductase isolated from Lactobacillus
leichmannii (RTPR). Although these two enzymes differ in the cofactor used to
effect nucleotide reduction, numerous studies in our laboratory have suggested
that their mechanisms of catalysis are astonishingly similar. In the work
reported herein, the RNR from L. leichmannii was cloned, and its DNA and
protein sequences determined. In addition, the protein was hyperexpressed in
E. coli under the control of the tac promoter. The enzyme has been purified to
>95% homogeneity, yielding --90 mg of protein from 2.5 g of the recombinant
E. coli. Although the amino acid sequence of RTPR displays no statistical
homology with that of RDPR, a thorough review of the sequence by eye resulted
in the discovery of 4 cysteines which lay in sequence motifs similar to those of
cysteines previously found to be important in catalysis in RDPR. An additional
cysteine was implicated from early biochemical studies as being important in
catalysis. These five cysteines, as well as a control cysteine, were mutated to
serines, and the effect of the resulting mutant proteins on nucleotide reduction
was analyzed. Two of the mutant proteins were unable to catalyze nucleotide
reduction, but produced similar products to the wild-type enzyme when
incubated with the mechanism-based inhibitor 2'-chloro-2'-deoxyuridine
5'-triphosphate. One mutant protein produced no product at all. The mutated
cysteines from these proteins were assigned to the active site of RTPR. Two
additional cysteines were inactive in the presence of the in vivo reductant, the
protein thioredoxin, but catalyzed nucleotide reduction at the same rate as wild-
type RTPR when DTT, a small organic dithiol, was used as the reductant. These
cysteines were thus assigned the role of a redox shuttle. Their function in the cell
is to deliver reducing equivalents from thioredoxin into the active site disulfide
formed concomitant with nucleotide reduction.

Thesis Supervisor: Professor JoAnne Stubbe
Title: John C. Sheehan Professor of Chemistry and Biology
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Chapter 1:

The Ribonucleotide Reductases: Radical Enzymes

Employing Radically Differenct Cofactors.
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The de novo biosynthesis of DNA is a complex process involving several

metabolic pathways and many different enzymes (Figure 1.1). One well known

enzyme in this overall process is DNA polymerase. Using the parent strands as

templates, this enzyme constructs the nascent DNA polymer from four monomer

units, dATP, dTTP, dCTP, and dGTP, with the concomitant release of

pyrophosphate (PPi) upon the addition of each monomer. The action of this

enzyme is understandably dependent upon the presence of the monomer units,

or deoxyribonucleoside triphosphates (dNTPs); however, the fidelity of this

polymerization reaction, and hence the unflawed transmittance of genetic

information during cell division, is dependent not only upon the presence of the

four dNTPs, but upon a well-regulated balance of each (Reichard, 1988). Several

enzymes participate in the fine tuning of the cellular pools of dNTPs; however, in

all self sufficient organisms, as well as some viruses and phages, nature has

invented one and only one mechanism for the formation and regulation of the

dNTPs necessary for DNA biosynthesis. The enzyme that governs these

processes is ribonucleotide reductase.

The ribonucleotide reductases (RNRs) constitute a unique class of

metalloenzymes which catalyze the reduction, at a single active site, of all four

ribonucleotides to the corresponding 2'-deoxyribonucleotides (Thelander &

Reichard, 1979; Lammers & Follmann, 1983; Stubbe, 1990b). This transformation

is the first committed step in DNA biosynthesis, and as a consequence of being at

such a critical juncture in metabolism, RNRs are under very rigid regulation.

Indeed, several studies have shown that RNRs can be controlled at the

transcriptional level (Tuggle & Fuchs, 1986), the translational level (Noronha et

al., 1972; Standart et al., 1985), at the level of cofactor synthesis and destruction

(Barlow et al., 1983), and also by an astonishing network of allosteric interactions

28



Figure 1.1: Pathway for the de novo biosynthesis of DNA in L. leichmannii.
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(Singh et al., 1977; Eriksson & Sj6berg, 1989; Reichard, 1993b). Because of their

key role in producing the dNTPs for DNA biosynthesis, as well as regulating the

only pathway that the cell has for making these dNTPs, it might be presumed

that the reductases are extremely conserved. Surprisingly however, in contrast to

most other enzymes which govern key metabolic processes, the RNRs are not

conserved at all. This lack of homology applies to the level of the quarternary

structure of the enzymes, the cofactors employed in effecting substrate turnover,

and as will be shown in Chapter 2, in primary sequence (Stubbe, 1990a; Booker &

Stubbe, 1993; Reichard, 1993b).

The study of ribonucleotide reductases has developed into quite an

expansive area of biological science. Many scientists are interested in the enzyme

from an evolutionary standpoint, as it is presumed to be the major player in the

transformation from an RNA-based world to a DNA-based world (Benner et al.,

1989). There are those who are interested in the enzyme from a therapeutic

standpoint, as a target for antineoplastic and antiviral agents (Stubbe, 1990b).

Still, some researchers are interested in RNR as a model for allosteric regulation

while others want to understand its role in the regulation of the cell cycle. Lastly,

there are those scientists who are driven by its mode of catalysis. Although the

net transformation is ostensibly simple - the replacement of a hydroxyl group

with a hydrogen - the mechanism by which this is carried out is deceivingly

complicated (Ashley & Stubbe, 1985; Stubbe, 1990a). This introduction seeks to

provide an overview of the ribonucleotide reductase class of enzymes. However,

because of the broad scope of the subject, it will focus primarily on the structural

and mechanistic aspects of the enzymes, describing the initial characterization of

ribonucleotide reductase activity, the classes of RNR, and the mechanistic

similarities of the two RNRs that have been extensively studied.
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Characterization of Ribonucleotide Reductase Activity

Studies in the early 1950s by Hammarsten, Reichard, and Saluste,

suggested that ribonucleotides were the precursors to deoxyribonucleotides

(Hammarsten et al., 1950). Using whole rats in combination with 15N labeled

cytidine and uridine, these researchers showed that the isolated DNA contained

significant amounts of labeled cytosine and uridine. Earlier experiments by

Bendich, Getler, and Brown, revealed that the free base cytosine could not be

used for the synthesis of DNA (Bendich et al., 1949), and studies by Irwin Rose

showed that cytidine labeled in both the base and sugar did not change in

specific activity upon its incorporation into DNA (Rose & Schweigert, 1953). The

results of these investigations in combination with experiments that

demonstrated that RNA is not the direct precursor to DNA (Abrams, 1950), led to

the advancement of the hypothesis that deoxyribonucleotides were synthesized

directly from ribonucleotide precursors, and not from a free base and a

deoxyribose sugar. Relatively soon after, several laboratories were able to show

evidence in cell free extracts from several sources that deoxycytidine phosphates

could be formed from cytidine 5'-phosphate (Abrams et al., 1960; Moore &

Hurlbert, 1960; Reichard, 1961). The most extensive characterization of this

enzymatic activity came from studies in Sweden in the laboratory of Professor

Peter Reichard. Working in E. coli, he isolated two protein fractions which were

able to convert cytidine monophosphate (CMP) to deoxycytidine diphosphate

(dCDP) (Reichard, 1962). Fraction A was ideintified to be CMP kinase, a

previously characterized enzyme which phosphorylates CMP to cytidine

diphosphate (CDP). Fraction B, which could be fractionated further into two

proteins, B1 and B2, required the presence of fraction A for activity when CMP
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was used as substrate, but turnover could be achieved in the absence of fraction

A when CDP was used as the substrate.

Studies of nucleotide metabolism in the bacterium Lactobacillus leichmannii

suggested that a cofactor is required for deoxynucleotide production. Acting on

results from E.E. Snell's laboratory at the University of Wisconsin, which showed

that L. eichmannii needed vitamin B12 for growth in the absence of

deoxyribonucleosides (Kitay et al., 1950), R.L. Blakley and H.A. Barker (1964)

demonstrated that cell-free extracts of this bacterium synthesized deoxyribosides

from the corresponding riboside only in the presence of vitamin B12. Subsequent

studies by Blakley (1965) as well as Beck and Hardy (1965) led to the identificaion

of 5'-deoxyadenosylcobalamin, a derivative of vitamin B12, as the active cofactor

in the L. leichmannii reductase. Meanwhile, experiments in the laboratory of

P. Reichard demonstrated rather convincingly that the reductase isolated from

E. coli was not cobamide dependent (Moore & Reichard, 1963). In fact, the small

subunit, B2, was shown to contain two atoms of non-heme iron per mol of

protein, the removal of which resulted in loss of enzyme activity (Brown et al.,

1969). No labile sulfide was detected upon removal of the irons, suggesting that

the iron was not present as an Fe/S cluster. The UV-vis spectrum of protein B2

displayed a very broad feature at 360 nm, a very steep shoulder at 325 nm, and a

very sharp peak at 410 nm. The removal of iron from protein B2 resulted in the

loss of these features; the reconstituion of protein B2 with Fe2+ resulted in the

reappearance of these features (Brown et al., 1969). Subsequent electron spin

resonance (EPR) studies of protein B2 suggested that it also contained an organic

free radical, the presence of which was dependent upon the formation of the

diiron center (Ehrenberg & Reichard, 1972). In seminal experiments, EPR

spectroscopy was used in combination with protein B2 that had been expressed

in the presence of specifically deuterated amino acids to show that this organic
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radical resided on a tyrosine residue (Sjdberg et al., 1977). This was the first

example of a stable protein radical that played an essential role in an enzymatic

reaction.

As uncommon as it is for enzymes that play key roles in metabolism to

employ more than one cofactor, nature has devised at least three, and perhaps

four different classes of RNRs, each employing a unique cofactor for catalysis.

As will be discussed subsequently, a ribonucleotide reductase has been isolated

from E. coli grown under anaerobic conditions, that is distinct from the E. coli

reductase discussed above (Fontecave et al., 1989; Eliasson et al., 1990; Eliasson et

al., 1992). In addition, a RNR isolated from Brevibacterium ammoniagenes appears

to require manganese and not iron for catalytic activity (Willing et al., 1988b;

Willing et al., 1988a).

Classes of Ribonucleotide Reductase

E. coli Ribonucleotide Reductase

The RNR isolated from E. coli (EC 1.17.4.1) is by far the best characterized

of all the reductases - especially with respect to its structure and modes of

regulation. Although this is partly due to the novelty of this enzyme harboring a

stable organic radical, the fact that it is the prototype for reductases isolated from

viruses as well as mammalian systems has also intensified its study for medicinal

reasons (Stubbe, 1990b). This enzyme acts on nucleoside substrates that are

diphosphorylated, giving rise to the name ribonucleoside diphosphate reductase,

or simply RDPR. The newly-generated dNDPs are then phosphorylated to the

corresponding dNTP by nucleoside diphosphate kinase before being

incorporated into DNA via an appropriate polymerase. As mentioned

previously, RDPR is composed of two subunits, B1 and B2, which are now

universally known as R1 and R2. In the holoenzyme both of these subunits are
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dimeric, yielding a putative overall tetrameric 22 quarternary structure

(Thelander & Reichard, 1979; Eriksson & Sjbberg, 1989; Stubbe, 1990b). The R1

subunit is the larger of the two, having a monomeric molecular weight of 86 kDa.

It contains the binding site for NDP substrates, as well as binding sites for NTP

and dNTP allosteric effectors. Also, the R1 subunit contains catalytically

important cysteine residues which become oxidized concomitant with substrate

reduction (Thelander, 1974). In order to achieve multiple turnovers, the resulting

disulfide bond must be rereduced. This can be achieved in vitro with small

dithiols such as dithiothreitol (DTT) or dihydrolipoic acid (DHL), albeit at

concentrations around 25-30 mM. In vivo however, these cysteines are reduced

by a low molecular weight (12 kDa) protein, thioredoxin (TR), which derives its

reducing equivalents from thioredoxin reductase (TRR). TRR is a flavin-

containing protein which in turn obtains its reducing equivalents from the

oxidation of NADPH. This process is summarized in Scheme 1.1. The

Scheme 1.1: The reaction catalyzed by ribonucleotide reductase
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viability of E. coli mutants deficient in thioredoxin activity led to the discovery of

glutaredoxin as a hydrogen donor for RDPR (Holmgren, 1985). Glutaredoxin

derives its reducing equivalents ultimately from NADPH as well, via a system

coupled to glutathione reductase and glutathione.

The R1 subunit contains two different binding sites which regulate the

activity and substrate specificity of the enzymes (Eriksson & Sjdberg, 1989). The

high affinity site - named for its strong affinity for the allosteric effectors as

compared to the low affinity site - interacts with various NTPs and dNTPs to

determine which particular NDP will be turned over. The method of actual

allosteric regulation is complex, however a simple scenario is described below.

When ATP (or dATP at low concentrations) is bound the enzyme reduces CDP

and UDP. When dGTP is bound, the enzyme reduces ADP; and when dTTP is

bound, GDP is reduced. The low affinity site binds either ATP or dATP. When

ATP is bound to this site, the activity of the enzyme is enhanced. When dATP is

bound to this site, the enzyme is turned off. These interactions act in concert to

maintain a balanced level of the deoxynucleotides needed for DNA biosynthesis.

Although the R1 subunit of the E. coli reductase appears to be the business

end of the enzyme, catalysis cannot occur without the second subunit, R2. The

R2 subunit of the E. coli reductase is indeed a novel protein. Early spectroscopic

studies suggested that the protein contains two high-spin Fe(III) atoms that are

antiferromagnetically-coupled through a t-oxo bridge (Bunker et al., 1987;

Scarrow et al., 1987; Sj6berg et al., 1987; Backes et al., 1989). This fully-assembled

iron center is a necessary requirement for the maintenance of the tyrosyl radical,

which in turn is required for catalysis. This tyrosyl radical has a half-life that is

on the order of hours at room temperature, and years at -80°C. Based on an

alignment of sequences of the R2 protein from several diiron-requiring
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reductases, as well as the use of the mutant protein Y122F-R2, the tyrosyl radical

was assigned to tyrosine 122 of the E. coli RDPR (Sj6berg et al., 1977). Very recent

work by Nordlund and Eklund has resulted in the solving of the 3-dimensional

structure of the R2 protein, and the diiron cofactor (Scheme 1.2) (Nordlund et al.,

1990; Nordlund & Eklund, 1993). The two proteins of R2 fit together in an

arrangement which makes the dimeric protein appear heart-shaped. Each

monomeric subunit, contains 1 iron center and potentially 1 tyrosyl radical,

which are both situated deep within each protein. The tyrosyl radical is 5.3 A

from the nearest Fe(III) atom and 10 A away from the nearest surface of the R2

protein. Each Fe(III) atom is attached to the protein via histidine and carboxylate

ligands, and in addition to the t-oxo bridge, the carboxylate from glutamate 115

also bridges the two irons which are 3.3 A apart (Scheme 1.2).

Lactobacillus leichmannii Ribonucleotide Reductase

Although the enzyme isolated from E. coli is the best characterized

reductase to date, a resurgence in interest of the enzyme isolated from

L. eichmannii is taking place. This is no doubt due in large part to the fact that

the L. eichmannii reductase (EC 1.17.4.2) is structurally the simplest of all of the

known reductases, as well as the desire among scientists to explore the function

and catalytic capabilities of nature's only proven organometallic cofactor,

5'-deoxyadenosylcobalamin (AdoCbl). This cofactor is composed of a cobalt-

containing corrin ring, a dimethylbenzimidazole group, and a 5'-deoxyadenosine

moiety coordinated to the cobalt via a unique Co(III)-carbon bond (Figure 1.2).

The cobalt is held in place by four coordinating nitrogen atoms provided by the

corrin macrocycle. The nitrogen of the dimethylbenzimidazole group provides

the proximal ligand to the octahedral Co(III) atom, while the distal ligand is

provided by the 5' carbon of 5'-deoxyadenosine.
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Scheme 1.2: X-ray structure of the diferric iron center-tyrosyl radical cofactor of
the R2 subunit of RDPR. Adapted from Nordlund et al. (1990).
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Figure 1.2: Structure of coenzyme B1 2. The 5'-methylene carbon of

5'-deoxyadenosine is surrounded by a rectangle, as it is the carbon which forms

the unique organometallic bond in the cofactor. The four pyrroline rings are

labeled A, B, C, and D, and the chiral centers of the corrin macrocycle are

denoted with asterisks. Figure adapted from Vitamin B12 (Zagalak & Friedrich,

1979).
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The reductase from L. eichmannii catalyzes the reduction of

ribonucleotides that are triphosphorylated, giving rise to the name

ribonucleoside triphosphate reductase (RTPR). This enzyme is a single

polypeptide of Mr = 82,000 (Panagou et al., 1972; Booker & Stubbe, 1993).

Analogously to the E. coli reductase, RTPR is also allosterically regulated (Beck,

1967). Moreover, the pattern of allosteric regulation is similar to that of the E. coli

reductase; CTP reduction is stimulated by dATP, UTP reduction by dCTP, ATP

reduction by dGTP, and GTP reduction by dTTP (Beck, 1967). This elaborate

array of allosteric regulation can be abrogated in the presence of various cations

and anions (Jacobsen & Huennekens, 1969). When acetate is present as the anion,

the activating effect of cations is in the order Na+<K+<Rb+<Cs+<NH4<<Li+. In

the case of NaOAc, the maximum activating effect is obtained with a

concentration of 1 M. Also analogously to the E. coli reductase, RTPR contains

cysteines which become oxidized concomitant with substrate reduction.

Artificial reductants such as DTT and DHL can be used to rereduce the active site

disulfide so that multiple turnovers can occur. In vivo, however, L. eichmannii

contains a TR/TRR/NADPH reducing system which can re-reduce the active site

disulfide (Orr & Vitols, 1966). The E. coli TR is fully capable of supplying

reducing equivalents to RTPR, and displays a Km for substrate turnover of 4 ,M

(Blakley, 1978). The TR from L. eichmanni displays a Km that is only slightly

lower (Blakley, 1978). Because the E. coli TR and TRR have been cloned and

overexpressed, they are routinely used as the reductant for RTPR (Lunn et al.,

1984; Russel & Model, 1985).

RTPR catalyzes two other reactions in addition to deoxynucleotide

production. The first reaction is the equilibration with solvent of the 5'

methylene hydrogens of the cofactor (Abeles & Beck, 1967; Hogenkamp et al.,

1968). In a reaction requiring NTPs or dNTPs, and reductant, RTPR will catalyze
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the washout of tritium from [5'-3H]AdoCbl to solvent. Likewise, in a reaction

performed under similar conditions but in 3H2 0, RTPR will catalyze the washin

of tritium into unlabeled cofactor. When this reaction was allowed to proceed to

equilibrium, a maximum of 1.4 atoms of tritium per molecule of AdoCbl was

found to be incorporated (Hogenkamp et al., 1968). In the reverse direction,

[5'-3H]AdoCbl labeled by chemical means was found to transfer all of its tritium

to solvent. These results provide strong evidence that this exchange reaction

proceeds through an intermediate in which the two 5' methylene hydrogens are

equivalent. This intermediate is suspected to be cob(II)alamin and

5'-deoxyadenosine. The exchange reaction is the focus of Chapter 5, and a

detailed history and analysis of it will be presented therein.

Evidence which is highly suggestive of the

cob(II)alamin/5'-deoxyadenosine intermediate comes from the second reaction

that is catalyzed by RTPR. This reaction is the slow degradation of the cofactor

to cob(II)alamin and 5'-deoxyadenosine (Yamada et al., 1971). As in the exchange

reaction, this slow decomposition of the cofactor is also dependent upon the

presence of reductant and an NTP or dNTP. The products of this reaction bind

tightly to the enzyme in a mutally cooperative fashion, and display Kds of 37 iM

[cob(II)alamin] and 14 ptM (5'-deoxyadenosine) (Yamada et al., 1971).

Although the decomposition of the cofactor is too slow to be on the

catalytic pathway, stopped flow spectrophotometric studies by Tamao and

Blakley (1973) revealed that cob(II)alamin is also produced in a very rapid

reaction with a first order rate constant of 38-46s-1. This rapid reaction is also

contingent upon the presence of a dithiol and an NTP or dNTP, but unlike the

slow reaction, this rapid reaction is fully reversible, and upon cooling to 5°C the

UV-vis spectrum indicative of cob(II)alamin disappears. Confirmation that this

species is indeed cob(II)alamin was established by Orme-Johnson et al. (1974)
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using rapid freeze-quench EPR. The paramagnetic species formed was produced

with a rate constant similar to that observed in the spectrophotometric

experiments of Tamao and Blakley. The EPR spectrum differed from that of free

cob(II)alamin, and later studies suggested that it was consistent with a

cob(II)alamin species interacting with an organic radical (Hamilton et al., 1972).

All of the AdoCbl-dependent reductases are not monomeric enzymes.

Tsai and Hogenkamp (1980) have isolated an AdoCbl-dependent reductase from

Corynebacterium nephridii which is dimeric, and which uses nucleoside

diphosphorylated substrates. This enzyme is also allosterically regulated;

however, the the pattern of regulation is very complex. In general, as in the

enzyme from E. coli, it appears that dNTPs act as effectors (Tsai & Hogenkamp,

1980). The AdoCbl-dependent reductases appear to be restricted to prokaryotes,

with the exception of the enzyme isolated from Euglenophyta (Gleason & Frick,

1980).

Ribonucleotide Reductasefrom Anaerobically-grown Escherichia coli

The ability of E. coli to grow in the absence of oxygen necessitates that they

be able to anaerobically synthesize the dNTPs necessary for DNA biosynthesis.

Genetic experiments suggested that E. coli possessed a separate reductase for

anaerobic growth (Jamison & Adler, 1987; Hantke, 1988). This reductase, (which

constitutes the third class of RNRs) was subsequently isolated in the laboratory

of P. Reichard, and found to be a ribonucleoside triphosphate reductase. It

contains what appears to be a [4Fe-4S] cluster (Mulliez et al., 1993), and requires

S-adenosylmethionine (AdoMet) and other low molecular weight factors

(including K+ and HCO 2-) for catalytic activity (Eliasson et al., 1990; Eliasson et

al., 1992). The gene for this reductase has been cloned, and its primary sequence
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determined. The protein appears to be monomeric, and from the its primary

sequence, the molecular weight was determined to be 80.1 kDa (Sun et al., 1993).

The pattern of allosteric regulation of this enzyme is simlar to those

discussed above. Adenosine triphosphate promotes the reduction of CTP and

UTP, dTTP promotes the reduction of GTP, and dGTP promotes the reduction of

ATP. As in the E. coli RDPR, dATP is a general inhibitor of the enzyme

(Reichard, 1993a).

Although very little sequence homology exists between this reductase and

either of the subunits of the E. coli RDPR, the C terminus of the anaerobic

reductase contains a sequence (RVCGY) which is very similar to a sequence

(RVSGY) from the enzyme pyruvate formate-lyase (pfl). In pfl, a radical on

glycine-734 in the conserved sequence shown above has been shown to be

generated in the presence of AdoMet and 5-deazariboflavin (Wagner et al., 1992).

In the presence of oxygen, the radical is destroyed, and the protein is cleaved into

two fragments. The role of the glycyl residue in catalysis has not been clearly

defined in either protein, however oxygen similarly inactivates the anaerobic

ribonucleotide reductase.

Brevibacterium ammoniagenes Ribonucleotide Reductase

The enzyme isolated from B. ammoniagenes remains still relatively

uncharacterized. This has oftentimes resulted in its exclusion as a class of RNRs

(Reichard, 1993b). Early studies of B. ammoniagenes and Micrococcus luteus by

several labs showed that manganese deficiency in these organisms resulted in

unbalanced growth, filamentous morphology, and an arrest of DNA synthesis,

by not RNA synthesis nor protein synthesis. The addition of Mn(II) to these cells

restored DNA synthesis as well as the normal pattern of growth exhibited by
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these organisms. Further studies showed that the abrogation of DNA synthesis

caused by a deficiency in Mn was due to an inhibition of ribonucleotide

reduction and not DNA replication (Schimpff-Weiland et al., 1981). A Mn-

dependent reductase from Brevibacterium ammoniagenes was subsequently

isolated (Willing et al., 1988b). This enzyme contains two subunits, a large

monomeric subunit of Mr = 80,000, and a smaller dimeric subunit of Mr = 50,000

per monomer, giving rise to an overall c 2 quarternary structure (Willing et al.,

1988b). The growth of B. ammoniagenes in the presence of 54MnC12 and the

subsequent isolation of the reductase, in combination with non-

denaturing/denaturing gel electrophoresis, showed that 54Mn migrates with the

smaller subunit of the reductase (Willing et al., 1988b).

As in the L. leichmannii and aerobic E. coli reductases, a small protein,

thioredoxin, supplies the reducing equivalents necessary for multiple turnover in

the B. ammoniagenes reductase. The E. coli TR will also serve in the same capacity

(Willing et al., 1988a). The Mn-dependent enzyme is a ribonucleoside

diphosphate reductase, and a study of its nucletide specificity revealed a similar

pattern of allosteric regulation to that of the E. coli RDPR and the L. eichmanni

enzyme. The reduction of CDP (and to a lesser extent UDP) is stimulated by

dATP, ADP by dGTP, and GDP by dTTP (Willing et al., 1988a).

Although evidence for an organic radical is not presently available in this

reductase, several lines of reasoning might suggest that this enzyme is similar to

the E. coli RDPR. Firstly, the enzyme is inhibited by hydroxyurea, a compound

known to inhibit the E. coli RDPR presumably by scavenging the tyrosyl radical

(Willing et al., 1988b). Secondly, the R2 subunit of the E. coli RDPR has been

reconstituted with Mn(II), and the resulting structure characterized by

spectroscopic and crystallographic studies (Atta et al., 1992). Although this

protein does not contain a tyrosyl radical and is therefore not active, two Mn(II)
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ions occupy the iron-binding sites of the protein, and are bridged by E115 and

E238, with no oxygen bridge present. Thirdly, the UV-vis spectrum of the

B. ammoniagenes RDPR is similar to model compounds that contain two Mn(III)

atoms coupled through a pt-oxo bridge (Sheats et al., 1987). Whether this enzyme

contains a tyrosyl radical or perhaps some other organic radical awaits its further

characterization.

The Mechanism of Ribonucleotide Reduction

Models for the Mechanism of Ribonucleotide Reduction

Despite the difference in quarternary structure as well as cofactor

requirement, studies on the L. eichmannii and E. coli reductases have suggested

that these two ostensibly different enzymes may function by similar mechanisms

of catalysis (Stubbe, 1990b). This hypothesis stems from the fact that (1) in both

cases the hydrogen that replaces the 2' hydroxyl group is derived from solvent

with retention of configuration (2) both enzymes couple substrate reduction to

the oxidation of two cysteine residues on the protein to a disulfide (3) in both

enzymes the disulfide bond formed concomitant with substrate reduction can be

rereduced by a TR/TRR/NADPH reducing network, with the E. coli TR being

able to function with the L. leichmannii enzyme.

Although the presence of a tyrosyl radical in the E. coli RDPR suggested to

some that radicals might be involved in catalysis, at what stage they were

involved and in what capacity was a mystery. Studies by Walling and Johnson

(Walling & Johnson, 1975), as well as Gilbert et a. (Gilbert et al., 1972) on the

mechanism of Fenton's reagent [Fe(II)/H20 2] provided an initial clue as to how

this reaction might proceed (Scheme 1.3). When Fenton's reagent is reacted with

glycols or halohydrins, the primary products are aldehydes, although other
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Scheme 1.3: Proposed mechanism for the reaction of Fenton's reagent with
1,2-ethanediol.

Fe(II) + H202

HO + HO-CH 2 -CH 2 -OH

O- Fe(III) + HOo + HO-

HO-CH2 -CH-OH + H20

+ 0
H+ H2 0-CH2-CH-OH

CH+ .H C2H-+

CH2 -CH-OH - CH 2-CH=OH

Fe(II)

Fe(III)

CH3 -CH:O

products are generated due to side reactions. The reaction requires acid catalysis,

and is initiated by the reduction of H20 2 by Fe(II) to yield HO,HO-, and Fe(III).

The hydroxyl radical abstracts a hydrogen atom from substrate, which upon

protonation of the 0-hydroxyl, yields H20 and a radical-cation species which can

be drawn in the shown resonance forms. A subsequent e- reduction yields an
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enolate which subsequently affords the aldehyde upon tautomerization. This

resulting product is 2e- oxidized from the expected product of ribonucleotide

reduction. Since both the L. teichmannii and E. coli reductases were known to

couple substrate turnover to the oxidation of two protein cysteines to a disulfide

bond, the above model proved to be an attractive working hypothesis for the

reaction catalyzed by ribonucleotide reductase. Based on this model, X (some

oxidizing species) plays the role of the hydroxyl radical created by Fenton's

reagent. The first step in the reaction is the abstraction of a hydrogen atom from

the 3' position of the substrate. The 2' hydroxyl group is protonated - ultimately

by one of the redox-active cysteines on the protein - and the loss of a molecule of

H2 0 affords a radical-cation intermediate, as proposed in the mechanism of

Fenton's reagent with 1,2-ethanethiol. This radical-cation intermediate is

proposed to undergo two stepwise le- reductions by the redox-active cysteines,

the first of which affords a disulfide radical anion and a 3'-keto deoxynucleotide

upon the addition of a proton. The second le- reduction is followed by the

return of the initial hydrogen atom (Ha) abstracted back to the 3' position of the

deoxynucleotide product (Scheme 1.4).

The postulated mechanism for ribonucleotide reduction (Scheme 1.4)

makes several predictions that have been experimentally tested. The first

prediction is that the 3' C-H bond of the substrate is cleaved. This was tested

using substrates which were specifically tritiated at the 3' position of the

nucleotide. When [3'-3H]UD(T)P or [3'-3H]AD(T)P is used as substrate with

RDPR (RTPR), small V/K isotope effects are observed on the reduction of these

radiolabeled nucleotides (Stubbe et al., 1981; Stubbe et al., 1983; Ashley et al.,

1986). In the case of RTPR, these isotope effects are essentially invarient with pH

(1.6-1.8, pH 6.1-8.3, for UTP; 1.9-2.1 pH 8.3-5.5, for ATP); however, in the case of

RDPR the isotope effects vary from 1.4 to 1.9 (pH 8.6-6.6) for the reduction of
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Scheme 1.4: Working hypothesis for the mechanism of ribonucleotide reduction.
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ADP, and 2.8 to 4.7 (pH 8.4-6.6) for the reduction of UDP. In addition very small

but reproducible amounts (up to 1%) of 3H2 0 are produced in a time dependent
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fashion upon the incubation of these radiolabeled substrates with both of the

above RNRs. This result provides additional evidence that the above isotope

effects are indeed primary effects rather than secondary effects, unambiguously

establishing that the cleavage of the 3' C-H bond is required for nucleotide

reduction.

The second prediction that this model makes, is that at the end of

nucleotide reduction the hydrogen atom originally abstracted from the 3'

position of the substrate is returned to the 3' position of the product. This

prediction was investigated using nuclear magnetic resonance (NMR) techniques

in combination with substrates that were specifically deuterated at the 3' postion.

When substrate reduction is carried out with [3'-2H]UD(T)P, the NMR spectrum

of the isolated product shows that it is completely deuterated (Ashley & Stubbe,

1985).

Although none of the intermediates shown in Scheme 1.4 have been seen

during normal turnover, each step has precedent in the chemical literature [For a

recent review see Stubbe (1990)]. As discussed above, all steps leading to the

radical cation intermediate are supported by the chemistry of Fenton's reagent

with 1,2-ethanediol. Evidence supporting the 3'-keto intermediate comes from

work with the substrate analog 2'-chloro-2'-deoxyuridine 5'-di(tri)phosphate, as

well as studies with several RDPR protein analogs, and will be presented

subsequently. Furthermore, there is precendent for the reduction by e- transfer

of a formylmethyl radical by DTT at high pH (Stubbe, 1990b). This reduction

would afford a disulfide-radical anion and the 3'-keto intermediate as shown in

Scheme 1.2.
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The Nature of Xo

The mechanism in Scheme 1.4 presents a reasonable working hypothesis

for the reaction catalyzed by the ribonucleotide reductases. The burning

question thus becomes the nature of X°. From the standpoint of the E. coli

enzyme it appears that X * might be the tyrosyl radical on the R2 subunit. Recent

crystallographic studies by Nordlund and Eklund (1993) (1990) strongly suggest

that this is indeed not the case. As discussed above, the tyrosyl radical is buried

deep within the R2 subunit approximately 10 A from the surface of the protein,

and is therefore not capable of mediating 3' hydrogen atom abstraction unless

gross conformational changes occur. This corroborates the long-held hypothesis

by Stubbe and coworkers that the function of the R2 subunit is to generate a

radical on the R1 subunit (the subunit which binds substrates and allosteric

effectors, and which contains the redox-active cysteines) by long-range e-/H +

transfer (Stubbe, 1990b). It is then the radical on the R1 subunit which initiates

catalysis by abstracting the 3' hydrogen of the substrate. Evidence that suggests

that the transient radical formed on protein R1 is a thiyl radical will be provided

below.

That radical intermediates might be involved in the AdoCbl-dependent

reductase has huge precedent in the chemical literature [For a review see

Dolphin (1982)]. AdoCbl participates in a class of enzymes that carry out a

rearrangement between a hydrogen atom on one carbon, and some functional

group that is located on an adjacent carbon. The enzyme dioldehydrase is a

prototype for this class, and its reaction is shown in Scheme 1.5. The tremendous

amount of evidence in support of this scheme has been reviewed by Babior and

Krower (1979). The reaction is initiated upon the homolytic cleavage of the

cofactor and the abstraction of a hydrogen atom from substrate. The resulting

substrate radical rearranges (by a mechanism that is unclear to date) to give the
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product radical, which re-abstracts a hydrogen atom from XHa to give a geminal

diol. The geminal diol stereospecifically loses a molecule of H 20 in a reaction

which is catalyzed by the enzyme to afford the product aldehyde. Seminal

studies carried out in the Abeles laboratory on dioldehydrase showed that

AdoCbl functions as an intermediate hydrogen atom carrier. In the event that

the substrate [1,1-3H]DL-propanediol is incubated with the enzyme, tritium is

found to be located in the cofactor. If [5'-3 H]AdoCbl is incubated with enzyme

and substrate, tritium is found to be located in the product (Abeles & Zagalak,

1966; Frey et al., 1967). These studies show that AdoCbl can act as a hydrogen

carrier in this reaction; however, the degree to which it functions in this capacity

is uncertain. Indeed, studies have shown that kH/kT = 125 for the transfer of

tritium from cofactor to product (Essenberg et al., 1971). Cleland has proposed

that this anomalously high isotope effect could be explained by a pool of

hydrogen atoms on the enzyme with which the migrating hydrogen can

equilibrate, or by an alternate pathway (perhaps a protein radical?) with which

the hydrogen can be transferred (Cleland, 1982). In the event that the transfer

occurs through a protein residue 90% of the time, and through

5'-deoxyadenosine 10% of the time, the true isotope effect (12.5) would be in the

realm of what is normally observed for tritium.

These studies with dioldehydrase present a starting point to ask whether

AdoCbl functions in the same manner in the reaction catalyzed by RTPR. That

radical intermediates might be involved in the reaction catalyzed by RTPR was

evidenced by early biophysical studies on the enzyme. As previously mentioned

stopped flow UV-vis studies by Tamao and Blakley (1973) as well as rapid freeze-

quench EPR studies by Orme-Johnson, Beinert, and Blakley (1974) showed that

the L. leichmannii RNR catalyzes the homolytic cleavage of the Co-carbon bond of

AdoCbl with a first order rate constant of 38-46 s-1 in the presence of dGTP and

52



Scheme 1.5: Proposed mechanism for the enzyme dioldehydrase.
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reductant. The turnover number for this reductase is 1-3 s-1, suggesting that the

homolytic cleavage is kinetically competent to be on the reaction pathway. The

products of this homolytic cleavage of AdoCbl are cob(II)alamin, and

presumably a 5'-deoxyadenosyl radical. This rapid production of cob(II)alamin

could also be observed in the presence of substrate; however, in a slow process,

the concentration of cob(II)alamin declines until a steady state level is reached.

Interestingly, in the presence of [5'-2H2]AdoCbl a small primary isotope effect of

2.2 was observed on the second slow process (Tamao & Blakley, 1973). Efforts to

53

Xe

H

0 'Ha

Hb



observe the 5'-deoxyadenosyl radical, using [5'-2H2 ]AdoCbl and looking for

changes in the EPR spectrum were, however, unsuccessful (Orme-Johnson et al.,

1974).

If the 5'-deoxyadenosyl radical is involved in initiating catalysis by

abstracting the 3' hydrogen of the substrate, then tritium might be observed in

the cofactor upon incubation with substrates that are specifically tritiated at the 3'

position. When RTPR was incubated with [5'-3H]AdoCbl, tritium was found in

H20, and not in the resulting product (Beck et al., 1966; Abeles & Beck, 1967).

Likewise, when the reaction was carried out in 3H20 in the presence of unlabeled

AdoCbl, the cofactor was found to contain tritium (Abeles & Beck, 1967). This

equilibrium between solvent and cofactor is addressed in detail in Chapter 5.

Studies carried out in the Stubbe laboratory showed that no tritium is transferred

to AdoCbl or H2 0 under single turnover (pre-reduced enzyme in the absence of

reductant) or multiple turnover (in the presence of DTT) conditions when RTPR

is incubated with [3'-3H]ATP (Ashley et al., 1986). More than 99% of the tritium

is accounted for in the substrate and product. If AdoCbl were assuming a role

analogous to its role in the AdoCbl-rearrangement reactions, tritium should be

observed in the cofactor or in H2 0, with the relative ratios depending on the

on/off rate of the cofactor, and the rate of tritium exchange between the solvent

and the cofactor.

As proposed for the E. coli RDPR, the radical initially generated in RTPR is

not the radical that is reponsible for initiating catalysis by abstracting the 3'

hydrogen atom of the substrate. The sole function of the cofactor (R2 in RDPR,

AdoCbl in RTPR) in both cases is to generate a protein radical which is

subsequently responsible for initiating catalysis. In the case of RTPR, evidence

will be given in this thesis (Chapter 4) that this transient radical is formed on a

cysteine residue.
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Interaction of Ribonucleotide Reductase with 2'-Chloro-2'-deoxyuridine
5'-di(tri)phosphate

The mechanism of ribonucleotide reduction has also been investigated

with the aid of substrate analogs or mechanism-based inhibitors. Of the many

substrate analogs tested with RDPR or RTPR, 2'-chloro-2'-deoxyuridine

5'-di(tri)phosphate is the best characterized, and has provided a wealth of

information concerning the catalytic capabilities of both of these enzymes. In

1976, Thelander et al. (1976) reported that 2'-chloro-2'-dCDP and

2'-chloro-2'-dUDP irreversibly inactivated the R1 subunit of RDPR. Although the

R2 subunit was not inactivated, it was necessary for the inactivation of the R1

subunit. They also demonstrated that upon inactivation of RDPR, cytosine, Cl-,

and 2-deoxyribose 5-diphosphate was produced. In addition, they reported that

a chromophore at 320 nm formed slowly subsequent to inactivation, and was

also associated with the R1 subunit.

The inactivation of RDPR was reinvestigated by Stubbe and Kozarich,

(1980) (Stubbe & Kozarich, 1980), and revealed that PPi and not 2-deoxyribose

5-diphosphate was produced. Similar studies with the L. eichmannii reductase

showed a commonality with the E. coli RDPR in the reaction with

2'-chloro-2'-dUTP. Incubation of the inhibitor with RTPR resulted in the

production of PPPi, C1-, uracil, and the 320 nm chromophore (Harris et al., 1984).

However, unlike the case of the E. coli enzyme the cofactor (AdoCbl) was

destroyed during the inactivation reaction, yielding cob(II)alamin when the

reaction was carried out under anaerobic conditions. This observation suggests a

pathway that can be rationalized by a mechanism similar to that of the normal

reduction process, but not requiring protonation of the leaving group. In the

event that a 2e- reduction is prevented a 3'-keto species could result if the
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hydrogen atom initially abstracted from the 3' position is placed at the 2'

position. As shown in Scheme 1.6, this intermediate could collapse to form PPi,

uracil, and a furanone species.

Scheme 1.6: Postulated intermediate leading to inactivation of RDPR when
incubated with 2'-chloro-2'-dUTP.
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Based on this hypothesis, a mechanism was proposed to explain the inactivation

of RDPR by 2'-chloro-2'-dUTP (Scheme 1.7). The reaction is initiated in the same

fashion as turnover with the normal substrate with the abstraction of the 3'

hydrogen atom by X*. However, as determined by model studies (Walling and

Johnson, 1975), C1- can leave without the aid of general acid assistance. The

active site cysteines are subsequently left in the protonated state, which slows

down the reduction of the radical-cation intermediate by several orders of

magnitude (Stubbe, 1990b) The substrate radical at the 2' position of the

nucleotide is then quenched by the abstraction from XH of the hydrogen initially

present at the 3' position. As shown in Scheme 1.6, the resulting 3'-keto species

collapses to form PPi, uracil, and the reactive furanone species which can

56

I



inactivate the protein by alkylating some critical residue within the active site.

The mechanism shown in Scheme 1.7 makes several predictions which

have been tested experimentally. The first prediction is that the 3' C-H bond of

the inhibitor is cleaved. This was investigated with the aid of isotopically-labeled

inhibitors, specifically tritiated at the 3' position. When either reductase is

incubated with [3'-3H]-2'-chloro-dUD(T)P and the TR/TRR/NADPH reducing

system, tritium is shown to be transferred to solvent in a time dependent fashion

(Harris et al., 1984). In the case of RDPR, the amount of tritium reaches as high

as 4.7 equiv of 3H20 per equiv of inactivated R1. In the presence of DTT, as

much as 75% of the total tritium present in the substrate is recovered in the

solvent. The reasons for the higher amounts in the presence of DTT will become

apparent subsequently. These studies present unambiguous evidence for the

cleavage of the 3' C-H bond of the inhibitor.

The second prediction that the above mechanism makes is that a

3'-keto-2'-deoxynucleotide should be produced. In the case of RDPR, this

intermediate was effectively trapped when the inactivation reaction was run in

the presence of 100 mM NaBH4. In addition, incubation of RDPR with

[3'-3H]-2'-chloro-dUDP in the presence of NaBH4 resulted in the tritium being

transferred to H 2 0 as discussed above, or to the :-face (pro S position) of the 2'

position of the 3'-keto intermediate. In the case of RTPR, trapping experiments

were more complicated. When [3'-3H]-2'-chloro-dUTP was incubated with RTPR

in the presence of NaBH4, 85% of the tritium was found to be transferred to the

solvent, while 15% was found to be located in the pro S position of the trapped

nucleotide. A closer inspection of this reaction using [2'-3H]-2'-chloro-dUTP

showed an interesting difference between RDPR and RTPR upon inactivation

with the "chloro" inhibitor. In RTPR, the tritium at the 2' position is found to

undergo inversion of configuration 70% of the time, while in RDPR, this
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Scheme 1.7: Proposed mechanism for the inactivation of RDPR by
2'-chloro-2'-dUDP.
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inversion takes place 100% of the time (Stubbe, 1990b). This study provides a

compelling hypothesis for why the cofactor is destroyed in the case of RTPR, but

not RDPR. Turning again to Scheme 1.5, if reduction to give the 3'-keto species

occurs by re-abstraction of a hydrogen atom from XH, then inversion of

configuration at the 2' position would be expected, as well as regeneration of X*.

However, if reduction were to occur from the bottom face (perhaps by one of the

redox-active cysteines) then retention of configuration would be expected. In

addition, X would not be regenerated, resulting in destruction of the cofactor.

The results with RTPR suggest that 30% of the time the reduction takes place

from the bottom face of the nucleotide. This is in agreement with the

observation that AdoCbl is destroyed during the inactivation reaction, yielding

cob(II)alamin and 5'-deoxyadenosine.

A third prediction that this mechanism makes is that a 2-methylene-3(2H)-

furanone species is formed which alkylates and inactivates the enzyme. That a

convalent adduct is formed upon inactivation of RDPR or RTPR with C1UDP or

C1UTP was investigated with [5'-3H]-2'-chloro-2'-dUD(T)P. In both reductases

label is found to be associated with the protein. The number of equiv of label per

equiv of reductase varies from 1-5, and depends on the ratio of inhibitor to

enzyme (Harris et al., 1984).

Evidence for the intermediacy of a 2-methylene-3(2H)-furanone comes

from trapping experiments. DTT and other exogenous thiols protect the enzyme

from inactivation, suggesting that they might be trapping a reactive intermediate.

When the inactivation reaction is carried out with RTPR or RDPR in the presence

of ethanethiol, the resulting adduct is extractable into CHC13. NMR and infrared

(IR) spectra of this extractable material are identical to spectra of an ethanethiol

adduct of the furanone species synthesized by chemical methods. Further

studies using the ethanethiol-trapped furanone species shed light on the 320 nm

59



absorbance that grows in subsequent to inactivation. As shown in Scheme 1.8, if

the ethanethiol-adduct of the furanone species (which has a Xmax = 260 nm) is

treated with ethanolamine, the resulting species has an absorbance at

Xmax = 316 nm. These results suggest that inactivation is due to nucleophilic

addition onto the exocyclic methylene of the furanone species. In a slower step,

the £-amino group of a lysine does a 1,4 conjugate addition, which is followed by

ring opening and enamine formation (Ashley et al., 1988).

Scheme 1.8: Model study for the formation of the species giving rise to the

chromophore having a Xmax of -320 nm.
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In summary, the compound 2'-chloro-2'-deoxyuridine 5'-di(tri)phosphate

has provided an intricate look at the mechanism of ribonucleotide reduction, and

has supplied more evidence to support the hypothesis that although these two

enzymes use different cofactors, they operate by similar mechanisms of catalysis.

As shown unambigously in studies with this substrate analog, both enzymes

cleave the 3' C-H bond, and return the hydrogen to the 2' position of the

molecule. Both enzymes release PPi (PPPi), base, and a highly reactive furanone

species which is reponsible for inactivating the enzyme and which gives rise to

the absorbance at 320 nm. Lastly, RTPR gives rise to cofactor destruction. This in

combination with the mechanism for inactivation as shown in Scheme 1.7,
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corroborates the finding that the hydrogen at the 2' position of the 3'-keto

intermediate undergoes retention of configuration 30% of the time. The fact that

the tyrosyl radical of RDPR is not quenched during the inactivation, supports the

hypothesis that reduction to the 3'-keto species occurs from the top face of the

molecule via XH.

Attempts to Locate the Redox-active Cysteines of RNR

Given the similarities in mechanism between the E. coli RDPR and the

L. leichmannii RTPR, efforts were undertaken by the Stubbe laboratory to locate

the active sites of both of these reductases and determine whether these enzymes

are homologous with repect to their active site sequences (Lin et al., 1987). The

strategy for this experiment is outlined in Scheme 1.9. Each of the enzymes was

first incubated with DTT in order to ensure that the redox-active cysteines were

in the reduced state. The DTT was subsequently removed from the protein

fraction by chromatography on a size exclusion column. The protein was then

treated with substrate in the absence of reductant in what is termed a single-

turnover experiment. Upon completion, the redox-active cysteines are present as

a disulfide bond, and are therefore resistant to alkylation by iodoacetamide. The

protein was subsequently denatured and treated with unlabeled iodoacetamide,

and then separated from the excess iodoacetamide by size-exclusion

chromatography. The redox-active cysteines were then re-reduced by

subsequent treatment with DTT, and then alkylated in the same fashion as above

with [14C]iodoacetamide. The protein was then cleaved by treatment with

trypsin, and the radiolabeled peptides were isolated by HPLC and submitted for

sequencing by Edman degradation. A control experiment was also run in the

absence of substrate, which would identify disulfide bonds in both proteins that
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Scheme 1.9: Strategy for locating the cysteines which are oxidized concomitant
with substrate reduction.
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were not formed concomitant with substrate reduction. In the case of RDPR, 3

equiv of dCDP are produced upon interaction of the pre-reduced enzyme with

CDP, and 5 equiv of [14 C]iodoacetamide are found to be covalently attached to

the R1 subunit. In the case of RTPR, 1 equiv of dCTP is produced upon

interaction of the pre-reduced enzyme with CTP, and 2 equiv of

[14C]iodoacetamide are found to be covalently attached to the protein. The

results of the peptide-mapping studies are shown in Scheme 1.10 (Lin et al.,

1987). In the studies carried out with RTPR, analysis of the peptides shows that

all of the radioactivity can be accounted for in two different peptides, but among

three different cysteines. The peptide containing two cysteines, or 66% of the

radioactivity, has a significant degree of homology with peptide I isolated from

the E. coli enzyme. In addition, peptide I is known to be located at the extreme C

terminus of the R1 subunit by analysis of its gene sequence, and shares homology

with several other non-heme iron-dependent reductases (Stubbe, 1990b). As will

be apparent in the subsequent chapter, the homologous peptide in the

L. leichmannii enzyme is also located at the extreme C terminus of the protein.

Although the remaining peptide in each enzyme shares no homology with the

other, this experiment suggests that the labeled cysteine is close enough within

three-dimensional space to the C-terminal cysteines to allow it to undergo

disulfide interchange with them. The function of this cysteine in the E. coli

reductase will be discussed in the subsequent section, while the function of this

cysteine in the L. leichmannii reductase will be discussed in Chapter 4.

Investigation of the Mechanism of Ribonucleotide Reduction with Protein Analogs

Protein analogs or site-directed mutants have recently been used to probe

the mechanism of the E. coli ribonucleotide reductase, and assign more definitive

roles to the cysteines isolated in active-site labeling studies, as well as others in
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Scheme 1.10: Isolated peptides from active-site labeling studies.

the R1 subunit (Aberg et al., 1989; Mao et al., 1989; Mao et al., 1992a; Mao et al.,

1992b; Mao et al., 1992). Five cysteines were targeted for mutagenesis. Cysteines

754 and 759 were identified in active-site labeling studies discussed above, and

are located at the C-terminal end of the R1 subunit. Their sequence context

shares significant homology with other R1 subunits of the non-heme iron-

requiring reductases, as well as a peptide isolated from the L. leichmannii

reductase. Each cysteine was mutated to a serine, and the two single mutant

proteins as well as the double mutant protein were incubated with the normal

substrate (CDP) under varying conditions. In the presence of the

TR/TRR/NADPH reducing system, each of these mutants catalyzed the

reduction of CTP at a rate that was 3% that of the wild-type (wt) enzyme. In the

presence of DTT however, the rate of CTP reduction was calculated to be on the

order of the wt enzyme with each of the single mutants, and -4 times greater

than that of wt enzyme with the double mutant. These studies suggested that the

function of these two cysteines is to deliver reducing equivalents from TR into
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the active-site disulfide bond in order that multiple turnovers can be achieved.

Corroborating this hypothesis are the single-turnover experiments carried out

with these mutants. When pre-reduced wt-RDPR is treated with substrate in the

absence of external reductant, 2.6 equiv of dCTP per R1 dimer are observed.

Each single mutant as well as the double mutant produces only 1.2 equiv,

suggesting that one set of redox-active cysteines has been altered. Marring these

results as well as the subsequent ones to be discussed, is the significant level of

wt contamination in each of the mutant preparations. This is due to the fact that

ribonucleotide reductase is needed for cell growth and viability; therefore, it is

not possible to inactivate the chromosomal gene for the enzyme.

Cysteine 225 was also located on the basis of the above biochemical

studies, and mutated to a serine. When the resulting mutant protein is incubated

with the normal substrate, a very unusual sequence of events occurs. As seen

above with the mechanism-based inhibitor 2'-chloro-2'-dUTP, the substrate is

converted to cytosine, and PPi. In addition, a chromophore at 320 nm is

observed to be associated with the R1 subunit, suggesting that the furanone

species is produced. Unlike with the substrate analog 2'-chloro-2'-dUDP,

destruction of the tyrosyl radical is observed. Lastly, the protein cleaves itself

into two pieces. Given the many similarities of this protein analog with the

substrate analog, this cysteine was proposed to be one of the active site cysteines

directly involved in substrate reduction. The similarity in the products produced

upon incubation of this mutant protein with the normal substrate, suggests that

in the event that substrate reduction is uncoupled from 3' C-H bond cleavage the

substrate is turned into a mechanism-based inhibitor of the enzyme.

Cysteine 462 was targeted by analysis of its sequence with other

reductases in this class. The corresponding C--S mutant protein results in a

phenotype that is very similar to that of C225, with the exception that the protein
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is not cleaved in half. This result suggests that this cysteine is also at the active

site of RDPR, and supplies reducing equivalents directly to the substrate.

Lastly, C439 was identified by its homology with other cysteines in this

class of RNR. Under all conditions, the resulting C---S mutant protein has no

activity for the reduction of CDP to dCDP. In addition, no cytosine or any other

product is produced. This suggested that this cysteine might be the X, which is

responsible for initiating catalysis by abstracting the 3' C-H bond of the substrate.

Several experiments were carried out to show that the inactivity of this protein is

not due to a structural alteration. Its circular dichroism spectrum is identical to

that of the wt enzyme. In addition it is capable of binding substrate and effector

with approximately the same Kds as the wt enzyme.

These studies suggest a model in which five cysteines are required for

nucleotide reduction (Figure 1.3). Two cysteines shuttle electrons into the active

site disulfide from the TR/TRR/NADPH reducing system. Two cysteines are at

the active site and function to directly reduce the substrate. Lastly, cysteine 439

is proposed to be XP, the amino acid reponsible for initiating catalysis by

abstracting the 3' hydrogen atom of the substrate. As discussed above, the

presence of contaminating wt enzyme prevents the unambiguous establishment

of this hypothesis. Given the similarities in mechanism between the E. coli

enzyme and the L. leichmannii enzyme, it is reasonable to hypothesize that if the

above hypothesis is correct, then RTPR might also involve five cysteines in

catalysis as well. More importantly, the ability to express the L. eichmannii

enzyme in E. coli would preclude the problems of contaminating wt enzyme

since different cofactors as well as substrates are employed by the two enzymes.

This thesis describes the cloning, sequencing, and expression of the

Lactobacillus leichmannii ribonucleoside triphosphate reductase, and the

characterization of five cysteines on the protein believed to be involved in
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substrate reduction. In addition it reports our reinvestigation of the AdoCbl-

dependent exchange reaction as a model for the generation of X .
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Figure 1.3: Postulated role of 5 cysteines involved in nucleotide reduction in the

RDPR from E. coli. Cysteines 754 and 759 shuttle reducing equivalents from TR

into the active site disulfide. Cysteines 462 and 225 are at the active site, and

function to directly reduce the substrate. Cysteine 419 is the postulated X.
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The cloning of a gene refers to isolating a segment of DNA which encodes

the particular protein of interest, and placing it inside of a host (usually E. coli or

yeast) extrachromosomally such that the DNA can replicate autonomously with

respect to the replication of the host's own genome. This process usually entails

inserting the DNA into a self-replicating vehicle called a vector. The most

commonly used vectors are derivatives of naturally occurring plasmids (which

usually confer to a host the ability to grow in the presence of certain antibiotics),

or derivatives of certain bacteriophages which infect bacteria but do not lyse

them. The ability to clone DNA is without doubt the result of the exploitation of

a vast assortment of cellular enzymes that allow DNA to be modified in many

ways. This is manifested in the ability to cut DNA at specific locations based on

nucleotide sequence, join DNA fragments, and add or remove terminal

phosphate groups at will. The cloning and expression in high yield of these

DNA modifying enzymes have allowed them to be extensively purified in large

quantities. This has in turn enabled the cutting and pasting of DNA to be a

routine procedure for molecular biologists. This routine procedure of moving

defined sequences of DNA to and from various vectors is termed subcloning.

The rate-limiting step in cloning a gene from an organsim in which it is

present in only a single copy per genome is defining its location. This can seem

to be quite a daunting task given that a simple bacterium such as E. coli contains

-4x106 base pairs (bp) in its single chromosome. Eukaryotic genomes tend to be

more complex, with yeast having -1.6x107 bp, Drosophila having ~1.2x108 bp,

and mammals having 3x109 bp per haploid genome (Sambrook et al., 1989).

With the invention of several innovative techniques within the last 30 years, this

process is by no means insurmountable. In fact, because of the mind-boggling

progress that molecular biology has made within the last 3 decades, it is fair to

say that almost any gene for which a protein product can be isolated can be
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cloned today. This notion is supported by the recent isolation of some of the

"Holy Grails" of molecular biology such as the genes for cystic fibrosis and

Huntingtons disease (Riordan et al., 1989; Goldberg et al., 1993).

Before a gene can be cloned by any technique, there first must be a source

of DNA beyond the organism's chromosome that can be easily managed and

manipulated. This source is called a gene library. A gene library is an

assortment of DNA fragments from an organism's genome which is maintained

and propagated in a host as a vectoral insert. The most common way to create

genomic libraries is by cloning fragments of an organism's genome into a

suitable vector. These fragments are usually generated from partial digests of the

genomic DNA with a restriction enzyme that cuts relatively frequently (about

once every 256 nucleotides), such as Sau3A. Partial digests ensure that relatively

large fragments (-6-20 kb) can be obtained that are a series of overlapping

sequences of the organism's genome. Equation 2.1 relates the size of the insert

with the minimum number of clones that must be generated for a library to have

a certain probability (usually 95%) of containing the entire gene of interest.

N ln(1-P) Eq. 2.1
In (f)

The variable P represents the probability that N clones will contain any given

gene in a library. The variable f represents the average insert size in base pairs

divided by the total size of the organism's genome.

Because eukaryotes often contain many introns in their genomes, libraries

from these organisms are usually made in a different manner. Molecular

biologists have learned to exploit the fact that messenger RNA (mRNA) is the

direct template from which proteins are synthesized, and therefore contains no
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intervening sequences. Upon isolating mRNA from an organism, a DNA copy of

the mRNA can be made with the aid of an enzyme called reverse transcriptase in

combination with the enzymes ribonuclease H (RNase H) and DNA polymerase I

(Figure 2.1). This complementary DNA, or cDNA, can then be ligated into a

suitable vector to give a gene library containing the coding sequences for

proteins. Also included is upstream information such as the gene's promoter

and ribosome binding site, and downstream information such as termination

signals for RNA polymerase. Although this procedure is more tedious,

oftentimes growth conditions of the organism from which the gene will be

isolated can be altered in order to increase the production of the specific protein's

mRNA. This in turn decreases the number of clones that a library must contain

in order that the gene of interest be present at the 95% confidence level.

There are three basic techniques employed to screen a library, or locate a

clone of interest. The first and most common method is based on the ability of

oligonucleotides to hybridize to complementary sequences of single-stranded

DNA (Wallace et al., 1979; Wallace et al., 1981). Clones from a library are plated

on agar-containing petri dishes and allowed to grow. Colonies that appear are

then transferred to a solid support such as nitrocellulose or nylon by a technique

termed replica plating (Grunstein & Hogness, 1975; Sambrook et al., 1989). Two

copies of the master plate are made, and the newly generated colonies are then

lysed, and their DNA denatured by treatment with NaOH. Oligonucleotides

constructed from known sequence information are then tagged with a label

(usually 32 p), and allowed to hybridize with the membranes containing the

denatured DNA from colonies in the library. After proper washing, colonies

containing complementary sequences to the labeled oligonucleotides can be

visualized upon autoradiographic exposure (Figure 2.2) The corresponding

colony on the master plate giving rise to a positive hybridization signal is
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Figure 2.1: Generation of cDNA from isolated messenger RNA. An oligo(dT)

primer is allowed to hybridize to the poly(A) tail of isolated cellular mRNA. The

enzyme reverse transcriptase is then used to make a DNA copy of the mRNA.

The RNA strand of the DNA-RNA hybrid is digested with the enzyme RNase H,

while the concomitant use of DNA polymerase I fills in the gaps with the

appropriate deoxynucleotides using the RNA fragments as primers. Upon

completion a double-stranded DNA fragment is generated which contains almost

the full length of the original mRNA. Sequences at the extreme 5' terminus of the

RNA are not converted into DNA due to the lack of a primer in this region for

DNA pol I.
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located, and its plasmid DNA isolated and sequenced.

The second technique used to identify genes in a library is termed cloning

by complementation or phenotypic expression. This technique is based on a

clone's ability to confer a distinct and easily identifiable phenotype to a host.

Often this phenotype is the host's ability to grow in the absence of certain

compounds or nutrients. This method of cloning is exemplefied by the cloning of

the gene for -galactosidase from Lactobacillus bulgaricus (Schmidt et al., 1989).

Briefly, genomic DNA from L. bulgaricus was isolated, digested, and fractionated

by electrophoresis on a polyacrylamide gel. Fragments ranging in size from 2-

15 kb were ligated into a vector and transformed into E. coli. The colonies were

plated on media containing the chromogenic substrate 5-bromo-4-chloro-3-

indolyl-3-D-galactoside (X-Gal). Clones containing the entire gene for [3-

galactosidase expressed the functional protein which cleaved the chromogenic

substrate, turning the colony a blue color. These blue colonies were selected, and

their corresponding plasmid DNA was isolated and their inserts sequenced.

The last method used to identify genes in a library is based on the ability

of an antibody to recognize antigens produced by specific recombinants in the

library (Young & Davis, 1983; Helfman & Hughes, 1987). Specifically, cDNA

libraries are constructed and fused to a portion of the gene for the prokaryotic

protein 0-galactosidase. This fusion stabilizes foreign proteins which tend to be

degraded by cellular proteases. Clones are titered on agar plates, and transferred

to nitrocellulose as described for cloning a gene by hybridization. The colonies

are lysed and then incubated with an antibody that was raised against the

protein product for which the gene is being sought. After proper washing steps,
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Figure 2.2: Isolation of a gene by hybridization to a complementary probe. A

nitrocellulose filter 2 is pressed onto an agar plate (shown in 3) containing the

clones from a gene library of the organism of interest 1. The clones are

transferred to the nitrocellulose filter, generating a replica 4 of the master plate 1.

After the clones are lysed on the filter, the filter is placed inside of a pouch 5

containing the radiolabeled hybridization primer. The filter is removed, and

after appropriate washing steps, subjected to autoradiography 6. Positive clones

are identified 7, and the corresponding colonies from the master plate are

isolated 8 and grown in liquid culture. The plasmid DNA corresponding to the

positive colonies is isolated and sequenced.
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the membrane-antibody-antigen complex is allowed to react with an anti-IgG-

alkaline phosphatase conjugate. Alkaline phosphatase-specific color reagents are

then added, and positive clones turn a dark purple color. Other methods exist

for detecting antibody-antigen complexes, however the alkaline phosphatase

protocol tends to give more reliable results (Mierendorf et al., 1987).

With the above information in hand, a strategy for cloning the

L. eichmannii ribonucleotide reductase was formulated. Given the degree of

protein sequence information from previous active site labeling studies as well as

labeling studies designed to locate cysteine residues involved in catalysis (Lin et

al., 1987), it was decided that screening by hybridization would be the

appropriate choice. The second technique, cloning by complementation, suffers

from the difficulty in obtaining E. coli or yeast mutants deficient in the gene for

ribonucleotide reductase; and screening with antibodies suffers from inherent

background problems in antibody detection, and in the need to make cDNA

libraries fused to -galactosidase. This chapter describes the detailed methods

used to isolate and sequence the gene for ribonucleotide reductase isolated from

L. leichmannii.

Materials and Methods

Materials

Immobilon poly[vinylidene difluoride] (PVDF) membranes (0.45 tm pore)

were purchased from Millipore. Nitrocellulose membranes (BA-85, 0.45 m

pore) were purchased from Schleicher & Schuell. Trypticase was purchased from

BBL Microbiology Systems (Cockeysville, MD). Yeast extract, tryptose, and

tween-80 were from Difco Laboratories (Detroit, MI). Polyethylene glycol (PEG)

20M was from Baxter Scientific Products (McGaw Park, IL). Lysozyme (specific

activity, 63,000 units/mg), ampicillin, N-laurylsarcosine, mutanolysin (specific
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activity, 6600 units/mg), ethidium bromide, Ponceau S, ficoll 400, gelatin,

polyvinylpyrrolidone, bovine serum albumin (BSA) (fraction V), denatured

salmon sperm DNA, and cysteine were from Sigma. [y-32P]ATP (6000 Ci/mmol;

1 Ci = 37 GBq) was purchased from New England Nuclear. Nick columns were

from Pharmacia. Sequenase was purchased from United States Biochemical Co.

The dsDNA Cycle Sequencing system, T4 DNA ligase, agarose (Ultra Pure), and

competent DH5a and HB101 cells were from GIBCO/BRL. AmpliTaq DNA

polymerase was from Perkin-Elmer / Cetus. Centricons were purchased from

Amicon, and restriction endonucleases, DNA molecular size markers (Lambda

DNA-HindIII Digest), and T4 polynucleotide kinase were purchased from New

England Biolabs. Phosphoramidites and other reagents required for DNA

biosynthesis were supplied by Cruachem. All other reagents were of the highest

possible grade.

Peptide Mapping

RTPR (0.5 mg; specific activity, 1.3 units/mg) was subjected to SDS /

PAGE in a 3 mm-thick 10% (2.6% crosslinking) gel matrix. The gel was removed

and soaked in transfer buffer [10 mM 3-(cyclohexylamino)-1-propanesulfonic

acid, pH 11 / 10% methanol] for 30 min, assembled in a Hoeffer TE 70 SemiPhor

semi-dry transfer unit, and blotted to a nitrocellulose membrane (which had been

wetted with water and soaked in the aforementioned transfer buffer) at 100 mA

(constant current) for 3 h. The nitrocellulose membrane was removed and

stained for 90 s in 0.2% Ponceau S / 1% acetic acid, and destained for 90 s in 1%

acetic acid. The protein band corresponding to RTPR was excised with a razor

blade, rinsed with water, and submitted for peptide mapping at the Harvard

University microchemistry facility.
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Synthesis and Purification of Oligomers

Primers 1, 2, I-1, and I-2 (Table 2.1) were synthesized on a Biosearch 8600

DNA synthesizer using standard solid phase phosphoramidite chemistry

(Beaucage & Caruthers, 1981; Schott, 1985). The oligomers were cleaved from the

solid support upon treatment with concentrated NH4OH, and then heated

overnight at 55°C in concentrated NH4OH to remove the protecting groups on

the exocyclic amines of deoxyadenosine, deoxycytidine, and deoxyguanosine.

The oligomers were dried in vacuo, and then redissolved in H20. Approximately

1/3 of the oligomer was loaded onto a 15-20% acrylamide (0.8% Bis-

acrylamide) / 7M urea gel, and subjected to electrophoresis using Tris-

borate / EDTA buffer (9 mM Tris base, 9 mM boric acid, and 0.2 mM EDTA).

The oligomers were visualized against a fluorescent TLC plate by UV shadowing

(Biosystems, 1987), and the slowest migrating band was excised with a sterile

razor blade and placed in a 2 mL plastic vial. A 1 mL aliquot of TE buffer

[10 mM Tris-HCl (pH 8.0) / 1 mM EDTA] was added, and the acrylamide gel

fragment was crushed with a glass stirring rod. The solution was then agitated

overnight at 37°C to elute the oligomer. The acrylamide was pelleted by

centrifugation, and the supernatant was removed and filtered through a

membrane (0.45 im Millex GV, Millipore) which had been prewetted in TE. The

filter was washed further with a 1 mL aliquot of TE, and the two fractions were

combined and loaded onto a Sep-Pak cartridge (Millipore) that had been

pretreated with 10 mL of CH3CN followed by 10 mL of H20. The Sep-Pak was

washed with 10 mL of water, and the oligomer was eluted with a 50% solution of

CH 3CN in 50 mM triethylamine-acetate buffer [(TEA)OAc], pH 7.6. The

oligomer was dried in vacuo and redissolved in water to the approriate

concentration. Oligomer concentrations were estimated using a computer

program based on the algorithm of Cantor and Warshaw (Cantor & Warshaw,
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1970; Fasman, 1975). Total yields, based on the OD260 loaded onto the gel and

the OD2 60 obtained after purification, were typically 40%.

Table 2.1: Synthesized oligonucleotide primers used in cloning.

Isolation of High Molecular Weight Genomic DNA

Chromosomal DNA was isolated from L. leichmannii (ATCC 7830) grown

in Lactobacillus carrying medium (Table 2.2) (Efthymiou & Hansen, 1962)

supplemented with 1% dextrose and 20 mM D,L-threonine. One liter of

L. leichmannii was grown at 37°C (without aeration) to an OD600 of -7. The cells

were pelleted by centrifugation, washed in 0.02 M Tris-HCl (pH 8.2), and then

resuspended in 25 mL of the same buffer. Lysozyme (730 mg in 20 mL of the

above buffer), PEG [Mr, 20,000; 50 mL of a 24% (wt / vol) solution], and

mutanolysin (0.5 mg in 0.5 mL of the above buffer) were added to the

resuspended cells, and the resulting mixture was incubated for 1.5 h at 37°C. The

mixture was then centrifuged at 5000xg for 20 min. The supernatant was
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Primer e Sequence

1 5' d[CGC-GGA-TCC-GC(C/G/T/A)-GA(G/A)-TT(C/T)-AT(C/T/A)-

GA(C/T)-(C/A)G]3'

2 5' d[GCG-GAA-TTC-(G/A)CA-(G/A)TC-(C/G/T/A)GT-(C/T)TG-

(G/A)TC]3'

I-1 5' d[GAI-ITI-GAI-ITI-GTI-GAI-CAI-ACI-GAI-TGI-GAI-GGI-GGI-

GCI-TGI-CCI-ATI-AA]3'

I-2 5' d[GCI-GAI-TTI-ATI-GAI-(C/A)GI-GTI-AAI-GCI-(T/A)(C/G)I-

GTI-AAI-CCI-CA]3'



discarded and the pellet was resuspended in 40 mL of TE (10 mM Tris-HCl, pH

8.0 / mM EDTA). A 5 mL aliquot of 10% (wt / vol) N-laurylsarcosine was

Table 2.2: Recipe for 1 L of Lactobacillus carrying medium.

*100 mL of salt solution contains 0.68 g ferrous sulfate (heptahydrate), 2.4 g manganous sulfate
(monohydrate), and 11.5 g magnesium sulfate (heptahydrate)

added, and the resulting solution was incubated with agitation at 65°C for

15 min. Forty grams of CsCl and 4 mL of ethidium bromide at 10 mg/mL were

added to the supernatant, and the solution was spun in a clinical centrifuge for 5-

10 min. The resulting solution was underneath a layer of precipitate, and was

removed with a syringe fitted with a 15 gauge needle and placed into Beckman

polyallomer quick-seal ultracentrifuge tubes. The samples were spun in a

Beckman ultracentrifuge (model L-8) for 44 h at 48,000 rpm and 20°C. Genomic

DNA banded in the middle of the ultracentrifuge tube, and was removed with an

93

Ingredient Amount

Trypticase 10 g

Yeast extract 5 g

Tryptose 3 g

Dibasic potassium phosphate 3 g

Monobasic potassium phosphate 3 g

Ammonium citrate 2 g

Tween-80 g

Sodium acetate g

Cysteine 0.2 g

Salt solution* 5 mL



18 gauge needle. The ethidium bromide was removed by repeated extractions

with n-butanol. The volume of the resulting solution was doubled by addition of

TE, and the DNA was precipitated with 2 volumes of ethanol equilibrated at

room temperature. The DNA was hooked with a bent Pasteur pipet, and

subjected to a gentle stream of air to remove the residual ethanol. The DNA was

then dissolved in TE at a concentration of 1.2 mg/mL, determined by the

relationship: 1 A260 = 50 gg/mL of double-stranded DNA.

Southern Transfers

Approximately 10-20 gg of L. leichmannii genomic DNA was digested with

EcoRl (20 U), HindIII (20 U), PstI (40 U), or BamHI (30 U), in a volume of 100-

200 tL for 2 h. Another equal aliquot of the appropriate enzyme was added, and

the digestion was allowed to continue for 3 h. The reaction was terminated with

the addition of EDTA to a final concentration of 10 mM. The DNA was

precipitated overnight at -20°C with 3M (NH4)OAc and 2 volumes of absolute

ethanol. The DNA was dried in vacuo and redissolved in 20 4L of H 20. A 5 tL

aliquot of gel loading buffer (20 mL contains 3 g ficoll 400, 40 mg bromphenol

blue, 40 mg xylene cyanol, and 50 mM EDTA) was added and the samples were

subjected to electrophoresis in a 1% agarose matrix at 20 V for 12 h. The gel was

removed and the DNA was transferred to a Genescreen Plus hybridization

membrane (Dupont, New England Nuclear) by standard molecular biolgical

techniques (Ausubel et al., 1987) according to the orginal procedure of Southern

(1975). The acid depurination step was omitted as it was found to be

unnecessary for the efficient transfer of the DNA. Upon completion, the

hybridization membrane was removed and immersed in a solution of 0.4 N

NaOH for 1 min, and then neutralized in a solution of 0.2 M Tris-HCl (pH 7.5) /
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2xSSC (0.3 M NaCl / 0.03 M NaCitrate). The membrane was removed and

allowed to dry on a sheet of Whatmann 3MM paper at ambient temperature.

Radiolabeling of Oligomers

Oligonucleotides used for hybridization were 5' end-labeled with T4

polynucleotide kinase (PNK). The reaction consisted of 10-30 pmols of the

oligomer, 250 iiCi [- 3 2 P]ATP (6000 Ci/mmol), 4 tL of lOx PNK buffer [0.5 M

Tris-HCl (pH 7.6) / 0.1 M MgCl2 / 50 mM dithiothreitol / 1 mM spermidine /

1 mM EDTA (pH 8)], and 30-50 U of PNK. The final volume was adjusted to

40 L with H20, and the reaction was incubated at 37°C for 45-60 min. The

radiolabeled oligomer was separated from unreacted [y3 2P]ATP using a Nensorb

cartridge (Dupont / New England Nuclear) with the following modifications of

the manufacturer's specifications. After loading the reaction mixture onto the

Nensorb cartridge, the cartridge was washed with 50 mL of buffer A (100 mM

Tris-HCl (pH 7.7) / 10 mM triethylamine / 1 mM EDTA), followed by 3 mL of

H20. The oligomer was then eluted with a 1 mL aliquot of a 50% methanol /

50% buffer A solution. It was frozen in liquid nitrogen, dried in vacuo, and

redissolved in 500 gL of H2 0. A 1 L aliquot was subjected to scintillation

counting on a Packard 1500 liquid scintillation analyzer using 8 mL of S¢INT-AF

scintillation cocktail (Packard). A lower limit for the specific activity of the

labeled oligomer was calculated from the amount of oligomer used in the

labeling reaction, and was typically 3-15x108 cpm/pg.

Screening of L. leichmannii Genomic DNA

Filters bearing Southern transfers were placed inside of heat sealable

pouches (Kapak Co.), and prehybridized at 63-65°C for 10-15 h in 10 mL of

6xSSC / 50 mM sodium phosphate (pH 6.8) / 5x Denhardt's solution (lx contains
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ficoll, polyvinylpyrrolidone, and BSA, each at concentrations of 0.2 mg/mL) /

200 gg/mL denatured salmon sperm DNA / 1% sodium dodecyl sulfate (SDS) /

and 2 mM EDTA (pH 8). After prehybridization the solution was removed and

replaced with 10 mL of the same solution containing labeled probe at a

concentration of 2-20x106 cpm/mL. The filters were incubated with the probe for

36 h at 37-50°C. After hybridization, the filters were removed and washed twice

in 100 mL of 2xSSC at room temperature. They were again washed twice for

30 min each time in 500 mL of 2xSSC / 1% SDS at 50°C, and then twice at room

temperature in 100 mL of 0.1xSSC. The membranes were blotted dry of excess

liquid, secured in Saran Wrap, and exposed to a phosphorimager plate

(Molecular Dynamics) for 12 h.

Isolation of 6.6 kb HindIII Fragments and Construction of a Subgenomic Library

L. leichmannii genomic DNA (200 tg) was digested with HindIII (100 U) for

4-6 h in a total volume of 200 tL. The reaction was quenched by the addition of

EDTA (pH 8) to a final concentration of 12 mM, and divided into 10 equal

aliquots. Each sample was loaded into a separate well of a 1% agarose gel, and

the DNA was subjected to electrophoresis for 12 h at 30 V using Tris-acetate

EDTA (TAE) buffer. The gel was stained for 30 min in a 0.5 4g/mL solution of

ethidium bromide. The gel was visualized with a hand-held UV lamp, and the

region of the gel which contained DNA fragments that migrated with the 6.6-kb

molecular size marker (HindIII cut X DNA) was excised. This agarose plug was

placed inside of dialysis tubing (3000 M.W. cutoff) and TAE buffer was added to

just cover the plug. The dialysis bag was sealed and placed into a horizontal

electrophoresis chamber, and the assembly was subjected to 60 V for 4 h. Upon

completion, the leads from the power supply were reversed, and a potential

difference of 60 V was applied for 2 min. The dialysis bag was removed from the
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electrophoresis chamber and massaged to prevent DNA from adhering to its

walls. The buffer was removed with a Pasteur pipet and extracted twice with a

1:1 buffer-saturated solution of phenol / chloroform / isoamyl alcohol (25:24:1).

The DNA fragments were precipitated with ethanol (0.3 M NaOAc) and dried in

vacuo. The DNA was redissolved in 100 IL of H20 and then desalted on a

Pharmacia Nick column. A UV spectrum was recorded to check the

concentration and purity of the DNA fragments. The DNA solution was then

lyophilized to dryness and adjusted to the appropriate concentration with TE.

The Polymerase Chain Reaction (PCR)

The PCR mixture contained in a total volume of 100 AL: 0.5-1.5 gg of

genomic DNA, 58 pmol of primer 1, 29 pmol of primer 2, all four

deoxynucleoside triphosphates (dNTPs) (each at 0.2 mM), and 10 L of 10x PCR

buffer (500 mM KC / 100 mM Tris-HCl pH 8.3 / 15 mM MgC12 / 0.1% gelatin).

The mixture was overlaid with 100 L of paraffin oil and heated at 94°C for

5 min. Taq polymerase (2.5 U) was added under the oil layer, and 35 cycles of the

following program were run: 1 min at 94°C, 30 s at 37°C, 15 s at 50°C, and 2 min

at 72°C. Upon completion, the paraffin oil was extracted with 150 gL of CHC13,

and the DNA was precipitated with ethanol. The DNA was dissolved in water

and desalted by several dilutions and centrifugations in a Centricon 100. To

complete any unfinished sequences generated during the amplification, the PCR

mixture was treated with Sequenase in the following manner. The reaction

contained (in a final volume of 500 gL) all four dNTPs (each at 0.1 mM), lx

HindIII restriction buffer (50 mM NaCl / 10 mM Tris-HCl, pH 7.9 / 10 mM

MgCl2 / 1 mM DTT), 10 U of Sequenase, and the PCR product. The reaction was

incubated at 30°C for 30 min and stopped by the addition of EDTA to a final

concentration of 10 mM. The DNA was purified by electrophoresis in a 1%
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agarose gel, and the 2.1-kb piece was isolated by electroelution into dialysis

tubing as described for isolating the 6.6-kb HindIII fragments. The DNA was

concentrated and exchanged into TE using a Centricon 100, and its final

concentration was determined using the relationship that 1 A260 unit

corresponds to 50 tg/mL of double-stranded DNA.

Cloning and Sequencing of the Fragment Isolated by PCR

The blunt-ended PCR fragment was ligated into pUC19 that had been

digested with SmaI. The reaction mixture contained (in a final volume of 10 jiL)

100 ng of pUC19, 288 ng of the blunt-ended PCR fragment, 1 tL of 10x ligase

buffer [500 mM Tris-HCl (pH 7.8) / 100 mM MgCl2 / 200 mM DTT / 10 mM

ATP / BSA (500 mg/mL)], and 7 Weiss units of T4 DNA ligase. The reaction

mixture was incubated overnight at 16°C and then diluted to 200 PL with TE

buffer. A 5 L aliquot was used to transform competent E. coli DH5x. The

transformation reaction was plated on SOC agar (Sambrook et al., 1989)

containing X-Gal, and recombinants were identified by their white phenotype.

Plasmid DNA was isolated from overnight cultures of several of the white

colonies using a Qiagen plasmid Mini I kit according to the manufacturer's

specifications, and screened for inserts by appropriate restricition digestion and

agarose gel electrophoresis.

DNA sequencing was carried out using the dsDNA Cycle Sequencing

system. Oligonucleotide primers used for DNA sequencing (Tables 2.3 and 2.4)

were obtained from the MIT Biopolymers Laboratory, or Oligos Etc. of

Wilsonville, OR. The universal primer was used to initiate the sequencing

process. All subsequent primers (21-25 bases long) were designed using the new

sequence data from each successive round of sequencing. Approximately 200-

300 ng of either the cloned or uncloned PCR fragment and 1.5-5 pg of genomic
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DNA were used for each sequencing reaction mixture. The sequence of both

strands of the PCR fragment was determined.

Table 2.3: Forward oligonucleotide primers used in sequencing RTPR.

First base of Primer Sequence
RTPR added

Primer

Universal
(forward)

SPF1

SPF2

SPF3

SPF4

SPF5

SPF6

SPF7

SPF8

SPF9

SPF10

SPFll

SPF12

SPF13

SPF14

SPF15

1

276

544

NONE

603

691

877

1035

NONE

1202

1383

1494

1647

1837

2006

2145

5'd(CCC-AGT-CAC-GAC-GTT-GTA-AAA-CG)3'

5'd(AGC-GCT-CTA-CAA-GCT-GAT-CTA-CGG)3'

5'd(GCT-TCT-CAG-TIG-CCA-GAT-CCA-ACA)3'

5'd(GAT-GCT-GAC-AGC-ATC-TAC-TAC-CGC)3'

5 'd(GAA-TCC-TAC-GAC-GCT-TCC-GTC-AAG)3'

5 'd(GAT-ACC-CGG-GAG-GCT-GGG-TTT-TGG)3'

5 'd(ATG-CCC-TTG-ATC-TCC-ATG-CTG-CTG)3'

5'd(AAG-CAG-GAC-CAA-GAG-AAG-CTG)3'

5 'd(GCG-GAA-GGG-ACC-AAC-CCT-GCG)3'

5' d(CTA-CCA-GGC-TGG-AAT-TGA-CGG)3'

5' d(CAA-GCG-GGT-AAC-CTT-CAG-TCC)3'

5'd(GTT-ACC-GGC-TTC-AAG-GAT-GAC)3'

5' d(CAA-TCA-AGC-ACA-CCA-CGG-TCA-AG)3'

5' d(GCG-TGG-AAT-TCC-CGA-TCA-AGG)3'

5'd(GGT-TGA-ATC-CTT-GCT-CCG-CCA-GTA-CC)3'

5'd(CCG-GCA-ACG-TGG-AGG-AAG-TCT-TCA-G)3'
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Table 2.4: Reverse oligonucleotide primers used in sequencing RTPR.

100

Primer First base of Primer Sequence
RTPR added

SPR 1 184 5' d(GCT-CTG-CTT-CAG-TTC-CAG-ACT-TGG)3'

SPR2 351 5'd(CAT-ACT-TTT-GCG-GAC-GGA-TGG-CCA)3'

SPR3 483 5'd(GAT-CTG-GCA-ACT-GAG-AAG-CCA-ACC)3'

SPR4 607 5'd(GCG-GTA-GTA-GAT-GCT-GTC-AGC-ATC)3'

SPR5 809 5' d(CAG-CAG-CAT-GGA-GAT-CAA-GGG)3'

SPR6 1056 5'd(AGC-CGC-TGA-AGG-CTG-AAT-CAA-CTG)3'

SPR7 1249 5' d(GAA-GAC-TTC-AAA-GAG-GTT-GCA-AGG)3'

SPR8 1432 5' d(TTG-CCC-AGT-CTG-GTC-AAA-AGC-CAG)3'

SPR9 1643 5' d(CCA-ACT-TGG-CCA-CCG-TGC-CTG-ATG)3'

SPR 10 1844 5' d(AGC-TGA-GGC-AAA-GTT-AGG-GTT-GTC)3'

SPR 1 2026 5'd(CCA-ACT-TGG-CCA-CCG-TGC-CTG-ATG)3'

Universal
(Reverse) 2220 5' d(AGC-GGA-TAA-CAA-TTT-CAC-ACA-GGA)3'



Results

Peptide Mapping

Protein sequence information is required to clone a gene using

hybridization techniques. Several methods are generally employed to obtain

relevant protein sequence information. One method is to selectively alkylate an

active site residue with a mechanism-based inhibitor, photoaffinity label, or side

chain-specific reagent. As described in Chapter 1, this was indeed done for RTPR

(Lin et al., 1987). By exploiting the reversible disulfide formation during

turnover, cysteines which become oxidized concomitant with substrate reduction

were selectively alkylated with [14 C]iodoacetamide. The protein was then

cleaved with trypsin, and the peptides containing the radiolabeled cysteines were

isolated. The sequence of these peptides was then determined by automated

Edman degradation.

A second method involves performing Edman degradation on the intact

protein, and gives sequence information at the N terminus of the protein.

Although this is less labor intensive than obtaining sequence information from

the active site, the absence of a radioactive label necessitates that very pure

protein be isolated to ensure that the N-terminal sequence gained is from the

correct protein. In the previously described method the presence of a label

gained through a mechanism-based inactivator, photoaffinity label, or side chain-

specific reagent, provides confidence that the peptide sequence obtained is from

the relevant protein. Another drawback of performing Edman degradation on an

intact protein is that many proteins are blocked at the N terminus with

N-formylmethionine. This blocked amino acid makes the protein resistant to

N-terminal sequencing. Lastly, this procedure only gives information about one

region of the protein.
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Recent advances in protein and peptide microsequencing have resulted in

the ability to gain sequence information from many regions of a protein with a

much lower probability of sequencing contaminating proteins (Aebersold et al.,

1987; Lane et al., 1991). In this technique, the appropriate protein is first

subjected to SDS / PAGE to separate it from other proteins of different sizes. The

gel is then blotted to a PVDF or nitrocellulose membrane, and the membrane is

stained with a protein specific dye. The band corresponding to the appropriate

protein is excised, and the protein is digested with the protease, trypsin, while

still on the solid support. This treatment produces small peptides which have a

lower affinity for the membrane, and as a result elute into the buffer during

digestion. These peptides are then resolved by HPLC, and several well-

separated fragments are then subjected to Edman degradation. The major

advantage in this procedure is that a large amount of internal sequence

information can be gained. This greatly facilitates not only the cloning of a

particular gene, but also aids in maintaining the proper reading frame when

sequencing the gene.

This last procedure was used to gain sequence information from RTPR.

The protein was purified to near-homogeneity, and then subjected to

SDS / PAGE. It was electroblotted onto a PVDF membrane or a nitrocellulose

membrane. The N-terminal sequence of RTPR was determined by automated

Edman degradation from the protein on the PVDF membrane. Internal sequence

information, as described, was obtained by digesting the nitrocellulose-bound

protein with trypsin, separating the eluted peptide fragments by HPLC, and

sequencing several of the fragments by automated Edman degradation. Figure

2.3 is the peptide map of RTPR generated by trypsin digestion. Peptides A, B,

and C were isolated and their sequences determined. In all cases each isolated

peak gave very small amounts of secondary and / or tertiary sequences
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Figure 2.3: Peptide map of RTPR generated by trypsin digestion. RTPR was

blotted to a nitrocellulose membrane as described, and submitted to the Harvard

University Microchemistry Facility. It was digested with trypsin while still on

the membrane, and the eluted fragments were separted by HPLC. Peaks A, B,

and C were isolated and sequenced by Edman degradation.
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from similarly-migrating peptides. These extra sequences, in cases where the

amino acids were reported with a high confidence level, were an added bonus

and extended the amount of peptide sequence information. Table 2.5 lists the

sequence information obtained from peptide mapping, N-terminal sequencing,

and the active site labeling studies (Lin et al., 1987) previously described in

Chapter 1.

Table 2.5: Peptides of L. leichmannii RTPR.

Method Peptide Sequence

N-terminal sequencing SEEISLSAEFIDRVKASVKPH

Active site labeling studies TGDSLNNCWF

Active site labeling studies DLELVDQTDCEGGACPIK

Peptide mapping studies (peak B) RVTFSPYDWEISR

Peptide mapping studies (peak A) VVTGFKDDFDPETH(E)AIKVPVYDKR

Peptide mapping studies (peak C) SQEITGNVEEVFSQLDSDVK

Peptide mapping studies (peak C) LILDLS_I(R)PY

Peptide mapping studies (peak A) (L)GAV__DELVQDAD(W)IYI(R)

Parentheses indicate residues which are possible, but of low confidence

Design and Construction of Hybridization Probes and PCR Primers for the Polymerase

Chain Reaction (PCR)

Although isolating a gene may be somewhat akin to "searching for a

needle in a haystack," as described in the introduction to this chapter, the work of

Wallace and Wood (Wallace & Miyada, 1987; Wood, 1987) has resulted in a very
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elegant method of locating a gene based on making hybridization probes

complementary to sequences within it. Since these probes are generated from

peptide sequences, however, one obstacle becomes apparent. The degeneracy of

the genetic code requires that each amino acid in a peptide be represented by all

of its synonyms. This usually necessitates that a hybridization probe be actually

a mixture of all of the possible nucleic acid combinations that can encode a

particular peptide. Since the probability that a particular sequence will occur

more than once within a genome depends (to a first approximation) on the length

of the sequence, a hybridization probe must be at least 15-16 nucleotides in

length to confer the degree of specificity needed to isolate one particular gene

from thousands of others. This calculation is shown in Scheme 2.1, where 3x109

bp is the size of a mammalian genome, 4 is the number of different deoxynucleic

acid bases, and x is the length of an oligonucleotide.

Scheme 2.1: Calculation showing the minimum length of an oligonucleotide

necessary for its sequence to occur only one time in a mammalian genome.

4x = 3x109

x (log 4) = log 3x109

x (0.6021) = 9.477

x = 15.7

Contrarily, added length also increases the degeneracy of a hybridization

probe; the degree of which depends on the amino acid sequence. One method
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used to reduce the complexity of a probe is to choose peptide sequences with

stretches of amino acids having low or no degeneracy. This is certainly not

always possible, especially when limited peptide sequence information is

available. A second method used to overcome this problem is to substitute

deoxyinosine at positions of degeneracy (Ohtsuka et al., 1985; Takahashi et al.,

1985). Inosine has the unique ability to form hydrogen bonds with the other four

nucleic acids (Martin & Castro, 1985). Although this substitution does not confer

specificity, these probes are usually designed to be quite long, with specificity

being determined by the other non-degenerate base pairings.

Recently a new method based on the polymerase chain reaction (PCR) has

gained popularity as a tool for coping with the degeneracy of oligonucleotide

probes. The polymerase chain reaction is a technique which allows stretches of

DNA to be amplified several million fold (Bloch, 1991). This technique is based

on the ability of DNA polymerase I to elongate primers that are hybridized to

regions of genomic DNA. The procedure is usually performed under conditions

in which the primers are in vast excess over the template DNA. After each cycle,

the temperature of the reaction is raised and the newly synthesized strand

dissociates from the template DNA. Two new templates are thus generated for

each parental template, resulting in an exponential amplification of the target

sequence. Subsequent cooling of the reaction allows a new set of primers to

anneal, permitting the process to be repeated (Figure 2.4). The isolation of the

thermostable polymerase from the bacterium Thermus aquaticus has allowed PCR

to be automated, and indeed the procedure is now almost always carried out in

thermocyclers. Before the isolation of Taq polymerase, it was necessary to add

DNA polymerase I at the beginning of each cycle.
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Figure 2.4: Amplification of a target sequence by PCR. Double-stranded DNA

(1) is subjected to a heat denaturation step to melt the two strands. Subsequent

cooling allows primers (made such that polymerization takes place towards the

opposing primer) to hybridize to complementary sequences on the DNA target

molecule (2). The temperature is raised, and the primers are extended with Taq

polymerase until the end of the template is reached, or the polymerase falls off

(3). The newly-generated double stranded DNA is again melted by heat, and a

new set of primers are allowed to anneal (4). After extension, a second set of

double-stranded DNA is generated (5). This procedure is usually repeated for

thirty cycles, resulting in an exponential amplification of the region of the DNA

between the two primers.
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PCR has proved to be an invaluable tool for many involved in gene

cloning. Using sequence information gained from the various aforementioned

techniques, degenerate primers (-15-21 bp in length) to be used for PCR are

synthesized by standard techniques. The general strategy is to find conditions

(by modulating variables such as annealing times and temperatures, as well as

the various concentrations of the components in the reaction mixture) such that

only the correct primer anneals to the correct target sequence. This newly-

amplified DNA can be sequenced, and then subsequently used as a hybridization

probe to screen a gene library. An exact-match probe facilitates the screening of a

library because very stringent conditions can be used in the hybridization and

washing processes. This in turn greatly reduces the number of false positives, or

clones that have primers annealed incorrectly to portions of their DNA. Because

of the ease with which PCR can be performed, as well as the ability to do many

reactions (each with varying concentrations of the reaction components) at once,

with enough effort conditions can usually be found that result in the

amplification of the desired target sequence.

From the N-terminal sequence of RTPR, amino acids 8-13 (AEFIDR) were

chosen from which to construct a 192-fold degenerate PCR primer. A BamHI

restriction site was engineered at the 5' end of the primer to facilitate cloning any

PCR product generated. As well, a 3 base GC clamp was added to aid the

restriction endonuclease in cleaving at the extreme terminus of a DNA fragment.

Also from the N-terminal sequence (AEFIDRVKASVKPH), a 41 base

hybridization probe containing inosine at degenerate positions in the third base

of each codon was constructed. From the peptide sequence gained from active

site labeling studies (DQTDCE), a second PCR primer was constructed. This

primer was 64 fold degenerate and contained in addition to a 3 base GC clamp,

an EcoRl restriction site at its 5' end. Because the two PCR primers must anneal
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to opposite strands of the DNA in such a way that polymerizaton proceeds

towards the opposing primer, the sequence of primer 2 is actually the

complement of what its peptide sequence would predict, and its nucleic acid

sequence is reversed 5' to 3' (Scheme 2.2). A deoxyinosine-containing probe was

Scheme 2.2: Design of reverse PCR primer.
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5'd[GA(T,C) / CA(A,G) / AC(A,T,C,G) / GA(T,C) / TG(T,C) / GA]3'

Reverse 5' to 3'

5'd[AG(T,C) / GT(T,C) / AG(A,T,C,G) / CA(A,G) / AC(T,C) / AG]3'

Make the complementary strand

5'd[TC(A,G) / CA(A,G) / TC(A,T,C,G) / GT(T,C) / TG(A,G) / TC]3'

Add GC clamp and EcoRI restriction site

5'd[GCGGAATTCTC(A,G) / CA(A,G) / TC(A,T,C,G) / GT(T,C) / TG(A,G) / TC]3'

clamp EcoRl



also constructed from the active site labeling peptide

(DLELVDQTDCEGGACPIK). It is 53 bases long, and deoxyinosine is placed at

every position of degeneracy rather than just ones occuring in the wobble

position. Both PCR primers and both deoxyinosine probes were synthesized on a

Biosearch 8600 DNA synthesizer. The deoxyinosine-containing primers were

purified by PAGE before use. This was necessary because the stepwise nature of

the synthesis of oligomers results in failure sequences, the extent of which

depends to a large degree on the length of the oligomer. Shortened sequences in

combination with the non specific inosine nucleotide at one third of all bases in

the primer could lead to unacceptable background levels upon hybridization.

Initial Attempts to Clone the L. leichmannii Ribonucleotide Reductase

Early attempts to clone RTPR were centered around an L. leichmannii gene

library supplied by Dr. Steven Short of the Wellcome Research Laboratories in

Research Triangle Park, N.C. The genomic DNA library consisted of 23

independent libraries termed zoos. Each zoo was constructed by cloning

fragments from Sau3A partial digests of genomic DNA into the vector pUC13.

The vector had been pretreated with the enzyme calf-intestinal alkaline

phosphatase (CIP) to remove the 5' terminal phosphates. This treatment

prevents the vector from recircularizing; however, foreign DNA fragments can

be successfully inserted if their ends are compatible and if they contain 5'

terminal phosphates. Although the resulting chimera contains 2 nicks, (one on

each strand) it can be transformed into a suitable host without a significant loss

in efficiency.

Each zoo was transformed into E. coli DH5c, and plasmid DNA was

isolated by the boiling miniprep method (Ausubel et al., 1987). Large amounts of

exceptionally clean plasmid DNA were isolated by CsCl / ethidium bromide
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equilibrium centrifugation, subsequent to lysis by the boiling method (Ausubel et

al., 1987). DNA from each zoo was subjected to restriction digestion with the

endonucleases EcoRl, XbaI, and HindIII, and then analyzed by electrophoresis in

a 0.7-1% agarose gel. Figure 2.5 is a photograph of a restriction analysis of zoos

21, 22, and 23, and represents how the overwhelming majority of the other zoos

appear when they are treated in an analogous manner. What stands out is the

large band which is present when the plasmid DNA is untreated, or when it is

digested with either of the aforementioned restriction endonucleases. Since

closed-circular and supercoiled DNA migrate differently than linear DNA, this

band migrates at -3 kb when the DNA is linearized, and 2 kb when the DNA is

uncut. The presence of this fragment in both digested and undigested DNA, as

well as its difference in migration rate upon digestion, suggests that this

fragment is pUC13 containing no insert. Since pUC13 was treated with CIP to

avoid generating clones lacking inserts, it appears that many recombinant

plasmids lose their inserts at some point between their construction and their

isolation subsequent to transformation into E. coli DH5a.

Several of the zoos were subjected to restriction digestion and Southern

hybridization with the deoxyinosine-containing probes as described in the

experimental section for the screening of L. leichmannii genomic DNA. As seen in

Figure 2.6, two zoos (14, and 22), gave very distinct hybridization signals when

probed with primer I-1. In addition, zoo 22 gave a hybridization signal when

probed with primer I-2 (data not shown). Attention was thus focused on zoo 22

with the desire to find specific clones containing sequences complementary to the

deoxyinosine-containing probes. E. coli (DH5c) bacteria containing the zoo 22

clones were grown and plated on agar-containing media. Colonies were

transferred to nylon membranes, and prepared for colony hybridizations by

standard procedures (Ausubel et al., 1987; Sambrook et al., 1989). Approximately
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Figure 2.5: Restriction analysis and gel electrophoresis of zoos 21, 22, and 23

(ethidium bromide stained). Lane 1 is undigested DNA from zoo 21. Lane 2 is

DNA from zoo 21 digested with EcoRI. Lane 3 is undigested DNA from zoo 22.

Lane 4 is DNA from zoo 22 digested with EcoRI. Lane 5 is undigested DNA from

zoo 23. Lane 6 is zoo 23 digested with EcoRI. Lane 7 contains the molecular size

markers (HindIII digest of X DNA).
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Figure 2.6: Phosphorimage of Southern transfer and hybridization with primer

I-1. Lane 1 is zoo 14 digested with EcoRI. Lane 2 is zoo 22 digested with EcoRI.

The numbers at the perimeter of the phosphorimage indicate the approximate

positions of the molecular size markers (HindIII digest of X DNA).
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1500 colonies were screened with primer -2, but no true positive clones were

obtained.

Since agarose gel analysis of zoo 22 suggested that 30-50% of the clones

contained no sizeable insert, an attempt was made to enrich the relevant DNA in

this zoo by removing the region of hybridization and transforming it into a

bacterial host. Uncut plasmid DNA from zoo 22 was subjected to Southern

hybridization with primer -2, and the region of the agarose gel which migrated

similarly to the hybridization signal was removed. The DNA was purified and

transformed into competent E. coli HB101. Colony hybridizations were

performed as previously mentioned; however, again no true positive clones were

obtained. Miniprep analysis of several of the transformation mixtures showed

two bands. A thin band which migrated as a 5-kb piece of linear DNA, and a

huge band which migrated as a 3-kb piece of linear DNA were present. The thin

band did not hybridize to primer -2. This experiment with zoo 22 suggested

again that native L. leichmannii DNA is unstable in this particular construct.

Isolation of High Molecular Weight Genomic DNAfrom L. leichmannii

Many gram-positive bacteria, especially Lactobacillae, are resistant to most

common methods of lysing the bacterial cell wall. However, stable spheroplasts

of a variety of gram-positive bacteria can be prepared using lysozyme in a low

ionic strength buffer, and PEG as an osmotic stabilizer (Chassy, 1976). These

spheroplasts can then be lysed by treatment with a detergent such as SDS. High

molecular weight genomic DNA from L. leichmannii was isolated using

procedures developed by Bruce Chassy. L. eichmannii was grown in LCM to an

OD600 of -7. Care was taken to not allow the bacteria to remain in stationary

phase for extended periods, since stationary phase cells are more resistant to

lysis. In addition, D,L-threonine was added to the growth media as it has been
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purported to interfere with cell wall cross-linking, resulting in cells that are more

easily lysed (Chassy, 1976; Chassy & Giuffrida, 1980). Spheroplasts were

generated with the combined action of lysozyme and mutanolysin in 10 mM

Tris-HC / 12% PEG, and were lysed with the addition of N-laurylsarcosine to

the mixture with subsequent heating at 65°C for 15 min. DNA was then purified

by CsCl / equilibrium centrifugation. Alternatively, the spheroplasts were lysed

with the addition of SDS (5% wt/vol final concentration). DNA treated in this

manner was purified by multiple extractions with phenol and phenol / CHC13

followed by incubations with ribonuclease (RNase). Mutanolysin in combination

with lysozyme was critical for the reproducible recovery of high molecular

weight DNA which migrated as a fairly tight band above the 23-kb molecular

size marker when subjected to electrophoresis in a 1% agarose matrix. Figure 2.7

is a UV-vis spectrum of the isolated genomic DNA. The A260/A280 ratio of ~1.9,

as well as the ability of the genomic DNA to be digested with several different

restriction enzymes (Figure 2.8) suggests that the DNA is free of contaminating

proteins and other small molecules. Typical yields of genomic DNA from 1 L of

L. leichmannii grown in LCM varied from 1-2 mg.

Screening of L. eichmannii Genomic DNA

The failure to isolate positive clones from the zoos in the L. leichmannii

gene library provided by Dr. Short necessitated a revision in the strategy to be

used to clone RTPR. The successful isolation of intact high molecular weight

genomic DNA made it possible to consider constructing a new gene library. To

decrease the number of clones in the library necessary to have greater than a 95%

chance of containing the entire RTPR gene, it was decided that a subgenomic

DNA library would be made. The strategy consisted of digesting the genomic
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Figure 2.7: UV-visible spectrum of genomic DNA isolated from L. leichmannii.

The spectrum was taken on a Hewlett-Packard 8452A diode-array

spectrophotometer. The high A260/A 280 ratio (1.9) suggests that the DNA is

free of contaminating proteins.
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Figure 2.8: Restriction digest of L. leichmannii genomic DNA. Lane 1 contains

molecular size markers (HindIII digest of X DNA). Lane 2 contains genomic

DNA digested with PstI. Lane 3 contains genomic DNA digested with HindIII.

Lane 4 contains genomic DNA digested with EcoRI. Lane 5 contains genomic

DNA digested with BamHI.
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DNA with several enzymes in independent digests, and separating the fragments

by agarose gel electrophoresis. Next, the DNA fragments would be transferred

to a nylon membrane by the procedure of E.M. Southern (1975), and then

subjected to hybridization with the inosine-containing probes. DNA from

regions of the agarose gel giving rise to hybridization signals would be purified,

inserted into a pUC-based plasmid, and transformed into an appropriate E. coli

host strain. Using equation 2.1, and estimating the size of the L. leichmannii

chromosome to be about the size of the E. coli chromosome (4x106 bp), it can be

shown that by limiting the library to -10% of the total chromosomal DNA, only

one-tenth of the original number of clones would have to be generated in order

to have a 95% chance of the library containing the entire RTPR gene. This of

course assumes that the size of the inserted DNA remains the same. If the size of

the insert is increased, then the number of clones needed would decrease.

Likewise, if the size of the insert is decreased, the number of clones needed

would increase.

L. eichmannii genomic DNA was digested with BamHI, EcoRI, HindIII,

and / or PstI and screened by Southern hybridization with the two deoxyinosine-

containing probes radiolabeled with 32p at their 5' ends. Genomic DNA digested

with HindIII and EcoRI gave very clean signals when subjected to Southern

hybridization with primer I-2 (Figure 2.9). Hybridization signals with BamHI

and PstI-digested DNA were not as clean, and probably reflect poor cutting by

the respective restriction endonuclease rather than nonspecific hybridization.

This is especially true of the DNA digested with BamHI, as one of the two

strongest signals migrates with undigested genomic DNA. Another Southern

hybridization was done in the presence of labeled molecular size markers

(HindIII-digested X DNA), and a 4-fold lower amount of genomic DNA (5 tg) for

each restriction digest. From the phosphorimage of the Southern
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Figure 2.9: Phosphorimage of a Southern blot probed with primer -2. Lane 1

contains the approximate migrations of molecular size standards (HindIII digest

of X DNA). Lane 2 contains genomic DNA digested with BamHI. Lane 3

contains genomic DNA digested with EcoRI. Lane 4 contains genomic DNA

digested with HindIII. Lane 5 contains genomic DNA digested with PstI. The B

on the filter is present as an orientation mark.
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hybridization (Figure 2.10), it can be seen that the signal resulting from the

HindIII digested DNA migrates just slightly faster than the 6.6-kb molecular size

standard, and that the signal from the EcoRI-digested DNA migrates slightly

faster than the 4.4-kb molecular size standard. The fragment giving rise to the

hybridization signal in the BamHI digested DNA lane is very small, and is

estimated from its rate of migration to be less than 0.5 kb in size. Genomic DNA

digested with PstI appears to give rise to at least 2 bands. One band is estimated

to be -0.8 kb in size based on its rate of migration in relation to the BamHI signal

and the 2.0-kb molecular size marker. The other band migrates slightly faster

than the EcoRI hybridization signal, and is estimated to be ~4 kb in size. Under

more stringent washing conditions (58°C for 30 min in 2xSSC), the hybridization

pattern of the EcoRI-digested DNA changes somewhat (Figure 2.11). Although

the 4.4-kb band is present, the major hybridization signal is a doublet which

migrates approximately at the rate of a 3-kb piece of linear DNA. The signals

appear to be too intense under these restrictive conditions to be ascribed to

background non-specific hybridization.

In light of the very small size of the hybridizing fragment resulting from

the DNA digested with BamHI, as well as the multiple signals obtained from the

DNA digested with PstI, focus was shifted to the HindIII and EcoRI digests of

genomic DNA. Special attention was given to the HindIII digest of genomic

DNA since a fragment of 6.6 kb would have a better chance than a fragment of

4.4 kb of containing the entire RTPR gene. The RTPR gene was calculated to be

about 2 kb from its reported molecular weight of 76 kDa (Panagou et al., 1972).

Southern hybridizations using primer I-2 were repeated again with HindIII and

EcoRI digests of genomic DNA, and again the same signals were observed as

before (Figure 2.12). To confirm that the hybridization signals were due to RTPR,

hybridizations were also done with primer I-1, which was made from the
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Figure 2.10: Phosphorimage of a Southern blot probed with primer -2, and in

the presence of labeled molecular size markers. Lane 1 contains genomic DNA

digested with BamHI. Lane 2 contains genomic DNA digested with EcoRI. Lane

3 contains genomic DNA digested with HindIII. Lane 4 contains genomic DNA

digested with PstI. Lane 5 contains molecular size markers (HindIII digest of X

DNA) 5' end-labeled with 32p.
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Figure 2.11: Phosphorimage of a Southern blot probed with primer -2.

Hybridization and washing steps are as described in Materials and Methods.

This blot was subjected to an additional washing step at 58°C in 2xSSC for

30 min. Lane 1 contains the approximate migrations of molecular size standards

(HindIII digest of X DNA). Lane 2 contains genomic DNA digested with BamHI.

Lane 3 contains genomic DNA digested with EcoRI. Lane 4 contains genomic

DNA digested with HindIII. Lane 5 contains genomic DNA digested with PstI.
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Figure 2.12: Southern blot probed with primer I-2. Lane 1 contains uncut

L. leichmannii genomic DNA. Lane 2 contains genomic DNA digested with

HindIII. Lane 3 contains genomic DNA digested with EcoRI. Lane 4 contains

molecular size markers 5' end-labeled with 32p.
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peptide sequence gained from active site labeling studies. When the protein was

digested with EcoRl, a different type of hybridization signal was observed. A

huge band which migrates in the center (-2.9 kb) of the phosphorimage (Figure

2.13) is resolved into a doublet under more stringent washing conditions (Figure

2.14). This doublet migrates at the approximate location of the doublet in Figure

2.11, and appears to be from the same target DNA sequence. This occurence of a

doublet signal may be due to relatively close (-200 bp apart) EcoRI restriction

sites which have differing degrees of accessibility. If one is cleaved readily, and

the other only 50% of the time, then a doublet would result. The fact that

hybridizations with primer I-1 and primer -2 result in different signals suggests

that the sequences complementary to these primers are separated by at least one

EcoRI restriction site. Two Southern hybridizations to DNA digested with

HindIII were done using primer I-1, and in both cases a fragment of 6.6 kb

hybridized to the primer (data not shown). This result suggested that this 6.6-kb

fragment was relevant since it hybridized to the primers made from both the

N terminus of RTPR as well as the active site peptide of RTPR. Of course, it

could always be argued that since this is a restriction digest of genomic DNA,

that the two primers may be annealing to two different DNA fragments that

happen to be of similar size. In spite of this argument, a decision was made to

create a subgenomic library containing the fragments that migrate in the 6.6-kb

region of the agarose gel when the DNA is digested with HindIII.

Attempts to Create a Subgenomic Library

Given that a fragment of about 6.6 kb hybridizes with both inosine-

containing primers when genomic DNA is digested with HindIII, an attempt was

made to use these fragments to construct a subgenomic DNA library. The

strategy consisted of digesting genomic DNA with HindIII, isolating the
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Figure 2.13: Southern blot of L. leichmannii genomic DNA digested with EcoRI

and probed with primer I-1. Lane 1 is the approximate migrations of molecular

size markers (HindIII-digested X DNA). Lane 2 contains EcoRI-digested genomic

DNA.
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Figure 2.14: Southern blot of L. leichmannii genomic DNA digested with EcoRI

and probed with primer I-1. Hybridization and washing steps are as described

in Materials and Methods. However an additional washing step at 58°C in

2xSSC for 30 min was included. Lane 1 is the approximate migrations of

molecular size markers (HindIII-digested X DNA). Lane 2 contains EcoRI

digested genomic DNA.

137



1 2

138



fragments which migrated at approximately as a 6.6-kb piece of linear DNA, and

cloning the fragments into a suitable vector (Figure 2.15). Approximately 200 Ig

of genomic DNA was digested with HindIII and subjected to electrophoresis in a

1% agarose gel matrix. The gel was stained with ethidium bromide, and the

region of the gel containing the 6.6-kb fragment was excised. The gel was then

subjected to Southern analysis as a control to show that the correct region was

indeed removed. The DNA from the agarose gel slice was purified by

electroelution, and desalted by several dilutions and centrifugations in a

Centricon 100 apparatus. These fragments were ligated into the multicloning

region of both pUC19 and pBluescript (both of which had also been digested

with HindIII), and then transformed into a suitable host bacterium. When

ligations were performed with vectors that had been pretreated with CIP to

remove the 5' phosphate groups, the ligation ratio was 3 moles of vector per mole

of insert. When the ligation reactions were done with vectors not previously

treated with CIP, the ratio of vector to insert was 1:3. High insert to vector ratios

were used to minimize the recircularization of the vector.

Both pBluescript and pUC19 contain multicloning sites within the region

of the plasmid that encodes the enzyme -galactosidase. When foreign DNA is

inserted into this region, the 0-galactosidase gene is interrupted, and a functional

enzyme is not produced. This is used as a very good assay to determine which

clones contain inserts. When transformed into a proper host strain and plated on

media containing the chromogenic substrate X-Gal, recombinant clones are

white, while non-recombinant clones, which produce an active -galactosidase

protein, are blue. Based on this assay, recombinant colonies were isolated and

streaked in grid fashion on nylon membranes. Using equation 2.1, and assuming

an average insert size of 6.6 kb as well as a total DNA population of -20% of the

normal genome (from comparing the region of the gel removed to the remainder
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Figure 2.15: Strategy for creating a subgenomic DNA library. L. leichmannii

genomic DNA would be digested with HindIII. Fragments with sizes of

approximately 6.6 kb would be isolated and ligated into pUC18 that had been

previously linearized with HindIII. Recombinants would be isolated as judged

by their color when plated on selective media.
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of the gel), it was calculated that 1000 transformants would have to be

generated to have a 95% chance of finding the gene for RTPR. Colonies on the

nylon membranes were then subjected to several rounds of hybridization with

primer I-2. After approximately 200-300 colonies were screened, and no positive

signals observed, a closer look at these recombinants was taken. When the white

colonies were grown in liquid culture and their plasmid DNA isolated and

digested with HindIII, the restriction patterns looked quite different from what

was expected. In the case where the vector was dephosphorylated with CIP

before the ligation reaction, two bands were distinguishable. One band migrated

as if it were pUC19 without an insert (2.7 bp), while the other band appeared to

be 2.4 kb in size. Confusingly, this restriction pattern did not appear to be a

function of the -galactosidase assay. White colonies as well as blue colonies

both produced the same two bands when digested with HindIII. When the

ligation reaction was performed with pUC19 previously untreated with CIP, a

different restriction pattern was observed. Isolated plasmid DNA from several of

the colonies produced the same restriction pattern when digested with HindIII as

they did when not digested at all. This suggested that during the ligation or

subsequent transformation, the HindIII site was destroyed. This might be a

result of L. eichmannii native DNA being unstable in E. coli in this particular

vectoral construction. During the transformation and subsequent growth, the

insert comes out of the plasmid via a mechanism in which some of the base pairs

around the point of ligation into the plasmid are also removed, resulting in the

destruction of the HindIII site.

To test whether these anomalies were a result of errors in technique, an

attempt was made to do a control ligation reaction. One set of commercially

available molecular size markers is phage X DNA digested with the restriction

enzyme HindIII. This digestion produces several fragments which can be used as

142



standards to judge the size of any particular DNA fragment ranging from 0.5 to

23 kb. One fragment is 6.6 kb, the approximate size of the L. leichmannii

fragments which were used in an attempt to make a subgenomic DNA library.

The HindIII digest X DNA molecular size markers were subjected to

electrophoresis in a 1% agarose gel, and the 6.6-kb fragment was isolated and

purified by electroelution. This fragment was then used in a ligation reaction

with pUC19 which had not been treated with CIP, at a ratio of 3 moles of insert

per mole of vector. DNA was isolated from several of the recombinant colonies,

as judged by the -galactosidase assay, and then digested with HindIII. In all

cases, two fragments were produced, the 6.6 kb fragment of the molecular weight

markers, and the 2.7 kb fragment of the plasmid. The success of this control

suggested again that native L. leichmannii DNA was perhaps unstable in E. coli

DH5cx using the aforementioned plasmid construction.

Cloning of the L. leichmannii Genefor RTPR by PCR

Yet another approach was devised to clone the L. leichmannii gene for

ribonucleotide reductase. As discussed in Chapter 1, several experiments

suggested that despite the difference in the cofactors employed, the

L. Ieichmannii and E. coli enzymes use astonishingly similar mechanisms to carry

out deoxynucleotide production (Stubbe, 1990). Furthermore, studies on each

system which were designed to locate cysteine residues intimately involved in

substrate turnover, resulted in the isolation of a peptide from the L. eichmannii

enzyme which displayed a high degree of homology with a peptide isolated from

the E. coli enzyme (Lin et al., 1987). Because the gene for the E. coli enzyme had

been cloned, and its amino acid sequence subsequently deduced (Nilsson et al.,

1988), this peptide was known to be located at the extreme C terminus of the R1

subunit. It was thus reasoned that if these two enzymes are indeed homologous,
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this peptide might also occur at the extreme C terminus of the L. leichmannii

enzyme. Using polymerase chain reaction technology, in combination with

primers made from the N terminus of the protein as well as the homologous

active site labeling peptide, this would effectively result in the amplification of

the entire gene for the L. Ieichmannii RTPR.

Initial PCR reactions were done with equal amounts (50 pmol) of each of

the primers and a cycling protocol that included a 30 s annealing temperature at

50°C, and a 2 min extension at 72°C. No visible product was observed when up

to 50% of the entire reaction was subjected to electrophoresis in a 1.5% agarose

matrix and visualized by ethidium bromide staining. Another attempt in which

the annealing temperature was lowered to 45°C and the extension time extended

to 3 min produced identical results. A third attempt was made in which the

primer concentrations were changed to better reflect their differing degrees of

degeneracy. The cycling protocol was also altered to make the annealing

conditions less stringent. Primer 2 which was constructed from the active site

peptide is 64-fold degenerate, and 29 pmol was used in the PCR reaction. Primer

1 which was constructed from the N-terminal sequence is 192-fold degenerate,

and 58 pmol was used in the PCR reaction. The cycling protocol contained a

37°C annealing temperature for 30 s, followed by a 15 s incubation at 50°C. This

double annealing step was introduced to allow the correct primer to anneal, and

hopefully prevent incorrect annealing by quickly going to a higher temperature.

The correct primer would be elongated somewhat as Taq polymerase initiates the

extension reaction (albeit slowly), allowing the primer to be successfully

annealed to the template DNA at 50°C. However, mismatches might

significantly reduce the ability of Taq to extend incorrect primers of this size,

resulting in duplexes which are unstable at higher temperatures. As can be seen

in Figure 2.16, this protocol resulted in the successful amplification of a very
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Figure 2.16: Amplification of a 2.2-kb fragment from L. eichmannii genomic

DNA by PCR. Lane 1 contains molecular size markers (HindIII digest of X DNA).

Lane 2 contains an aliquot (1/5 of the total volume) of the PCR reaction.
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specific 2.2-kb fragment. Even more excitingly, based on the reported size of the

L. leichmannii reductase (76 kDa), a gene of approximately 2.1 kb would be

necessary to encode the protein. This experiment supported the hypothesis that

the peptide gained from active site labeling studies was at the C terminus of

RTPR, just as it was known from the amino acid sequence to be at the C terminus

of the R1 subunit of the enzyme from E. coli.

Partial Cloning of the Fragment Obtainedfrom the PCR Reaction

One of the many advantages of the PCR reaction is the ability to include at

the 5' ends of the primer, sequences which are recognized by certain restriction

enzymes, and have these sequences incorporated into the amplified fragment.

Upon amplification, these sites can conveniently be used to digest the fragment

with the appropriate enzyme(s), and ligate it into the appropriately digested

vector. As described earlier, primer 1 was engineered with a BamHI restriction

site at its 5' end, while primer 2 was engineered with an EcoRI restriction site at

its 5' end. Several PCR reactions were run, and the amplified fragment was

pooled, isolated, and subjected to restriction digestion and subsequent analysis

by agarose gel electrophoresis. As shown in Figure 2.17, the PCR fragment is

cleaved into a series of bands. Three or four of the bands migrate faster than the

500 bp molecular size marker, while 2 bands migrate above this molecular size

marker and appear to be 800-900 bp in size. The engineered restriction sites

were thus unhelpful in cloning the 2.1-kb fragment from the PCR reaction, as one

or both of the sites were represented multiple times within the amplified

fragment. This figure highlights the drawback in engineering restriction sites for

the cloning of a particular fragment of DNA when the sequence of the DNA is

unknown.
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Figure 2.17: Agarose gel analysis of PCR fragment after digestion with EcoRl

and BamHI. Lane 1 contains the molecular size markers (HindIII digest of X

DNA). Lane 2 contains the restriction enzyme digest.
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The inability to use the engineered restriction sites necessitated the

formulation of an alternative ligation strategy. It was decided that the PCR

fragment would be made blunt ended by treatment with T7 DNA polymerase

(Sequenase), and then ligated into a pUC19 vector previously linearized with

SmaI, a restriction enzyme that produces flush ends (Figure 2.18). Five PCR

reactions were performed and pooled, and the amplified 2.1-kb fragment was

isolated from a 1% agarose gel. The product was treated with Sequenase, and

then ligated into pUC19 which had been previously digested with SmaI. The

ligation was performed at a ratio of 3 moles of insert per mole of vector, since the

linearized pUC19 was not pretreated with CIP. Upon completion, 2.5%

(vol / vol) of the ligation mixture was used to transform E. coli DH5cX, and the

transformants were plated on selective media. Approximately 32 white colonies

were obtained, of which 20 were grown in liquid culture. Plasmid DNA was

isolated from the 20 colonies, and subjected to restriction digestion with HindIII,

and subsequent analysis by agarose gel electrophoresis. One plasmid (pTK-3)

contained a sizeable insert (1.1 kb), but not the entire PCR fragment. However,

since the insert contained the information needed to initiate the sequencing

process using the universal sequencing primer (which is complementary to all

pUC -based plasmids), no further attempts were made to clone the entire PCR

fragment, nor to transform the remainder of the ligation mixture.

Determination of the Gene Sequence of RTPR

A large scale isolation of plasmid pTK-3 was carried out by cesium

chloride / ethidium bromide centrifugation. Double-stranded sequencing was

carried out by the Sanger dideoxynucleotide sequencing method using a Taq

polymerase-based cycle sequencing method. The ability to use this particular

sequencing system obviated the need to subclone the insert into a vector from
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Figure 2.18: Cloning of the fragment amplified by PCR. The amplified

fragments were treated with sequenase and then ligated into SmaI-digested

pUC19 to generate the plasmid pTK-3.
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which single-stranded DNA could be isolated. Although double-stranded

sequencing can be achieved using the standard Sequenase system (US

Biochemicals), the template DNA must first be denatured by treatment with

NaOH, and the amount of template needed is a factor of 10 higher than for cycle

sequencing with Taq polymerase. Also, the elevated temperature at which cycle

sequencing is performed reduces the false stops generated from secondary

structures in the template DNA.

The sequencing process was initiated with the universal sequencing

primer, and the first 60 bases read from the cloned insert encoded 20 amino acids

(8-27) of the N-terminal end of RTPR. The first 18 nucleotides, as expected, were

those that encoded the N-terminal PCR primer. More importantly, the

subsequent nucleotides that were not part of the PCR primers encoded all of the

amino acids observed in the N-terminal peptide sequence (Table 2.5). Figure 2.19

shows the initial information obtained from sequencing with the universal

primer.

This sequence was however not devoid of peculiarities. The PCR

fragment was cloned into the SmaI site of pUC19, but the SmaI site was totally

missing in pTK-3. Also, several other nucleotides from the multi-cloning site of

pUC19 were missing, which destroyed the plasmid's KpnI restriction site. The

initial sequence should have read: GAA TTC GAG CTC CGG TTA CCC CGC

GGA TCC GCC, with the underlined bases denoting the missing region. One

explanation for this aberrant ligation reaction may be due to an activity recently

found for DNA polymerases. At the very 3' end of a template, several DNA

polymerases have been shown to leave a one nucleotide overhang (Clark et al.,

1987; Clark, 1988). The nucleotide base is almost always adenine, and the level at

which it is present usually depends on the 3'-5' exonuclease activity of the

polymerase used. Sequenase, which has an insignificant amount of this
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Figure 2.19: Initial sequence read from the insert of pTK-3. The bold letters are

the one letter codes for the amino acids. Amino acids VK...YK are residues not

encoded by the N-terminal PCR primer, but which are part of the N-terminal

peptide sequence.
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exonuclease activity, leaves the majority of the template with the "A" overhang,

while the Klenow fragment, which has significant 3'-5' exonuclease activity,

leaves little of the template with the "A" overhang. Since the PCR fragment was

treated with Sequenase with the intention of producing blunt-ended DNA, most

of the product generated probably contained the overhang, making it ineffective

in a blunt-ended ligation reaction. Ligations which did occur were probably

from aberrant chemistry, or from small amounts of shortened sequences

containing blunt ends. The absence of the nucleotides "CCC" between the EcoRl

site and the beginning of the primer, as well as the destruction of the KpnI site on

the vector, suggests that the plasmid pTK-3 may have arisen from an unstable

construction generated during the ligation reaction.

The sequence of the entire insert of pTK-3 was determined by successively

making new primers to the ends of the previously obtained sequence. Most

importantly, the entire sequence of the uncloned 2.1-kb PCR fragment could also

be determined with the double-stranded sequencing method. The sequence of

both strands of the 2.1-kb PCR fragment was determined. As well, the sequences

of the extreme terminii of the gene, which were not flanked by the PCR primers,

were determined using the purified 6.6-kb fragments from the HindIII digested

genomic DNA. Although Taq polymerase is reported to have an error frequency

of 1 in every 2000-10,000 bp (Bloch, 1991), by sequencing the uncloned PCR

fragment, any mistakes that Taq polymerase may have made are averaged out.

The gene sequence as well as the the deduced amino acid sequence of RTPR is

shown in Figure 2.20. Amino acids in bold face type are parts of the peptide

sequences shown in Table 2.5. The degree of peptide sequence information, as

well as the distribution of the peptide sequence information lends confidence to

the integrity of the sequence, especially with respect to major reading frame

errors.
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Figure 2.20: Nucleotide and deduced amino acid sequence of RTPR from

Lactobacillus leichmannii. Numbers in italics on the left refer to the amino acid

residues, beginning with the initial methionine. Nucleotide residues are counted

by the numbers on the right in plain script. Amino acids in bold type are

residues which were part of the protein sequence information outlined in Table

2.5. The underlined nucleotides at the beginning of the gene comprise the

putative ribosome binding site.
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Discussion

The sequence of the L. leichmanni RTPR is the first sequence to be reported

of a ribonucleotide reductase which does not require iron for catalysis. The

amplification and sequencing of the gene for RTPR resulted from the fact that

sequence information from both the N-terminal and C-terminal portions of the

protein was available. The C-terminal sequence is intriguing, given its putative

homology to the C-terminal end of the R1 subunit of the E. coli RDPR. In

addition, the C-termini were previously implicated as being involved in catalysis

by biochemical studies designed to identify the cysteines within the active site

that are oxidized concomitant with substrate reduction (Lin et al., 1987). Mixed

oligonucleotide probes corresponding to the C- and N-terminal ends resulted in

the amplification by PCR of a 2.1-kb piece of DNA that encoded almost the entire

reductase gene. The few amino acids (13 at the C terminus and 7 at the N

terminus) not encoded by this 2.1-kb piece were known from peptide sequence

information. Given the additional peptide sequence information (Table 2.5)

dispersed throughout the entire protein, and the fact that both strands of the

DNA were sequenced, the integrity of this sequence is believed to be high. This

protein sequence defines a molecular mass for RTPR of 82 kDa, which contrasts

with what was previously reported (76 kDa) based on SDS / PAGE and other

biophysical studies (Panagou et al., 1972). This value can be compared with the

molecular mass of 86.5 kDa for each protomer of the R1 subunit of the E. coli

reductase. A list of codon usage is presented in Table 2.6. The L. eichmannii

reductase contains 10 cysteine residues, while the reductase from E. coli contains

11 (Nilsson et al., 1988).
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Table 2.6: Codon usage for L. leichmannii RTPR

On the basis of extensive mechanistic studies using isotopically labeled

nucleotide substrates and mechanism-based inhibitors, it has been proposed that

the mechanisms of the E. coli and L. leichmannii ribonucleotide reductases are

very similar (Stubbe, 1990). This mechanistic information in conjunction with a

limited amount of protein sequence information suggested that the R1 subunit of

RDPR might be homologous to the monomeric RTPR. The amino acid sequence

of RDPR is shown in Figure 2.21. A sequence homology search between these

two reductases using a variety of programs, including BLAST, FASTA, and

CLUSTAL, failed to reveal any statistically significant sequence alignments. A

search of the entire protein data base (GenBank, PIR, and EMBL) failed to reveal

any significant sequence homology between RTPR and any
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TTT F 12 TCT S 4 TAT Y 4 TGT C 1
TTC F 15 TCC S 21 TAC Y 23 TGC C 9
TTA L 2 TCA S 9 TAA Z 1 TGA Z 0

TTG L 18 TCG S 3 TAG Z 0 TGG W 12I...... *~~ ~~ ~~. _...............

CTT L 7 CCT P 7 CAT H 2 CGT R 5
CTC L 7 CCC P 4 CAC H 7 CGC R 11
CTA L 0 CCA P 11 CAA Q 7 CGA R 0
CTG L 28 CCG P 9 CAG Q 27 CGG R 18

______________ _____________I...... ........

ATT I 12 ACT T 6 AAT N 7 AGT S 8
ATC I 31 ACC T 19 AAC N 26 AGC S 10
ATA I 2 ACA T 0 AAA K 2 AGA R 3
ATG M 10 ACG T 10 AAG K 40 AGG R 0

, , , , ~~~~~~~~~~~~~~~~~~. . .. . . ... .. . .. ., ,.,. ,, . .................................................. ... 1 I~~~~~~~~~~~~~~~~~~. ...........
GTT V 16 GCT A 11 GAT D 15 GGT G 4
GTC V 17 GCC A 31 GAC D 38 GGC G 32
GTA V 3 GCA A 6 GAA E 42 GGA G 3
GTG V 15 GCG A 10 GAG E 8 GGG G 19



Figure 2.21: Amino acid sequence of RDPR from E. coli. The five underlined and

bold-typed cysteines are those believed to be important during the catalytic

event.
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known protein. Furthermore, only non-E. coli R1 RDPRs were identified as being

homologous to E. coli R1. As mentioned in Chapter 1, a ribonucleotide reductase

from E. coli grown under anaerobic conditions has been cloned and sequenced

(Sun et al., 1993). Its amino acid sequence (Figure 2.22) shows no homology with

RTPR, and only a very small amount of homology with RDPR in the N-terminal

region of the proteins (Eliasson et al., 1992).

A comparison of the protein sequence of RTPR with those of the

methylmalonyl-CoA mutases (Ledley et al., 1988; Marsh et al., 1989) and

ethanolamine ammonia lyase (Faust et al., 1990), enzymes that catalyze AdoCbl-

dependent rearrangement reactions, failed to reveal any common vitamin B12

binding domain. For ethanolamine ammonia lyase, some sequence similarity

might have been anticipated given the similarity of its proposed mechanism (at

least in the first few steps) to the postulated mechanism of RTPR (O'Brien et al.,

1985; Stubbe, 1989). A sequence alignment of RTPR and methionine synthase

(done by Robert Suto and Dr. Richard Finke at the University of Oregon), an

enzyme that binds methylcobalamin (Banerjee et al., 1989), suggested several

amino acids that might be involved in B12 binding (Figure 2.23). In 1992 E. Neil

Marsh published the cloning and sequencing of glutamate mutase from

Clostridium tetanomorphum. His careful sequence alignment of this mutase with

methionine synthase, and methylmalonyl-CoA mutases from human,

P. shermanii, and mouse, revealed a motif that is shared with all of the genes

above as well as RTPR (Marsh & Holloway, 1992). A conserved histidine residue

is flanked by a conserved aspartate (glutamate in RTPR) two residues towards

the N terminus, and a conserved glycine three residues towards the C terminus

(Figure 2.24). A secondary structure prediction of glutamate mutase done by

Marsh, predicted an overall pattern of strands of -sheet alternating with ca-

helices, and suggested that the conserved sequence DXHXXG would lie at
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Figure 2.22: Deduced amino acid sequence of the ribonucleotide reductase from

E. coli grown under anaerobic conditions. The amino acid sequence in bold type

is homologous to a region in pyruvate formate-lyase, which has been shown to

contain a radical on the amino acid glycine.
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Figure 2.23: Sequence alignment of the cobalamin binding domain of methionine

synthase and RTPR. Amino acids in bold type are those which are identical in

each protein. (Courtesy of Robert Suto and Dr. Richard Finke)
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RTPR: 146VSMPFSFLFDELMKGGGVGFSVARSNISQIPRVDFAIDLQL
MetH: 639RGSKTDDTANAQQAEWRSWEVNKRLEYSLVKGITEFIEQDT

RTPR: 187WVDETSESYDASVKVGAVGKNELVQDADSIYYRLPDTREGW
MetH: 680EEARQQATRPIEVIEGPLMDGMNVVGDLFGEGKMFLPQVVK

RTPR: 228VLANALLIDLHFAQTNPDRKQKLILDLSDIRPYGAEIHGFG

MetH: 721SARVMKQAVAYLEPFIEASKEQGKTNGKMVIATVKGDVHEI

RTPR: 269GTASGPMPLISMLLDVNEVLNNKAGGRLTAVDAADICNLIG

MetH: 762GKNIVGVVLQCNNYEIVDLGVMVPAEKILRTAKEVNADLIG

RTPR: 310KAVVAGNVRRSAELALGSNDDQDFISMKQDQEKLMHHRWAS

MetH: 8 03 LSGLITPSLDEMVNVAKEMERQGFTIPLLIGGATTSKAHTA

RTPR: 351NNSVAVDSAFSGYQPIAAGIRENGEPGIVNLDLSKNYGRIV
MetH: 844VKIEQNYSGPTVYVQNASRTVGVVAALLSDEQRDDFVARTR

RTPR: 392 DGYQAGIDGDVEGTNPCGEISLANGEPCNL

MetH: 885KEYETVRIQMGRKKPRTPPVTLEAARDNDF
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Figure 2.24: Sequence alignment of a conserved motif from amino acid

sequences of methylmalonyl-CoA mutases, methionine synthase, and RTPR.

Amino acids in bold type are identical in all proteins.
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a S-turn between two strands of []sheet (Marsh & Holloway, 1992). A secondary

structure prediction of RTPR using a program written by Burkhard Rost and

Chris Sander, also predicted basically a pattern of strands of -sheet alternating

with ac-helices (Rost & Sander, 1993). The sequence EIHGFG lies in a loop region

separated by strands of P-sheet. Due to the lack of proteins displaying significant

homology with RTPR, the secondary structure prediction is only approximately

60-65% accurate. The exact location of the conserved sequence awaits the solving

of the three-dimensional structure of methionine synthase, the only B12

dependent protein for which diffraction quality crystals have been obtained

(Luschinsky et al., 1992).

While RTPR and E. coli RDPR do not exhibit any statistically significant

sequence homology, this does not preclude the possibility that sequence

fragments may be conserved by function. Our previous studies on the E. coli

RDPR have allowed us to propose a model in which five cysteines on the R1

subunit are involved in nucleotide reduction. Two cysteines (positions 754 and

759) at the C-terminal end of the R1 protein are proposed to shuttle electrons

from thioredoxin (the in vivo reductant) to the active-site cysteines (positions 225

and 462), which are proposed to be directly involved in nucleotide reduction

(Mao et al., 1992a; Mao et al., 1992b). A fifth cysteine (Cys 439) is proposed to be

converted into the protein radical that is required to initiate 3' hydrogen atom

abstraction from the nucleotide substrate (Mao et al., 1992). A search of the

protein sequence of RTPR was therefore made for cysteine-containing pepetides

with sequence similarities to the peptides surrounding the catalytically important

cysteines of the E. coli R1 subunit. This search revealed two fragment similarities

shown below.
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RTPR: DLELVDQTD_C7 31EGGAC7 36PIK

RDPR: DLVPSIQDDGC 7 54ESGAC759KI

RTPR: TNPC408GEISLA

RDPR: SNLC439LEIALP

The alignment of the cysteines in the C-terminal region of both reductases

suggests that Cys-731 and Cys-736 of RTPR might function to shuttle electrons

from the in vivo reductant (thioredoxin) to the active site cysteines. Consistent

with this proposal is the observation that the L. leichmannii reductase can be

reduced by the E. coli thioredoxin (Lin et al., 1987).

The alignment of Cys-408 in RTPR with a fragment containing Cys-439 of

RDPR is particularly intriguing. Cys-439 in RDPR has been proposed to be the

protein radical that initiates catalysis by hydrogen atom abstraction from the

nucleotide substrate. Given that the putative 5'-deoxyadenosyl radical generated

from homolysis of the carbon-cobalt bond of AdoCbl has been shown not to

directly initiate catalysis by 3' hydrogen atom abstraction (Stubbe, 1989), it is

interesting to speculate that its function is to generate the thiyl radical of RTPR

Cys-408, which then initiates the reduction process.

Efforts to locate by sequence gazing the two cysteines thought to be

oxidized directly concomitant with substrate reduction have been unsuccessful.

However, previous biochemical studies with RTPR have been interpreted to

indicate that Cys-119 is close in three-dimensional space to Cys-731 and Cys-736

(Lin et al., 1987). Analogy with similar studies on the E. coli RDPR indicating that

Cys-225 is directly involved in substrate reduction (Mao et al., 1989) suggests that

Cys-119 of RTPR might be an active-site reductant. A candidate for the second
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cysteine of RTPR directly involved in substrate reduction, Cys-419, is highly

speculative. This cysteine is 11 amino acids removed from Cys-408, while in the

E. coli RDPR Cys-462, the second cysteine involved in substrate reduction, is 23

residues removed from Cys-439. In a sequence alignment (done by Dr. Britt-

Marie Sj6berg of the University of Stockholm Sweden) (Figure 2.25) of the R1

subunits of all of the non-heme iron-requiring reductases, the region demarcated

by cysteines 439 and 462 in the E. coli enzyme is relatively conserved, but the

distance between the cysteines ranges from 13-22 amino acids.

Finally, the sequence search of RTPR revealed a third region with

sequence homology to RDPR:

RTPR: Y457DWEISREIIQ

RDPR: Y599 DWEALRESIK

The function of this region of RDPR is unknown, although the tryptophan is

conserved in all of the non-heme iron-requiring reductases sequenced to date

(Eriksson & Sj6berg, 1989).
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Figure 2.25: Alignment of a conserved region of several of the non-heme iron-

dependent reductases with RTPR of L. Ieichmannii. This region contains cysteines

419 and 462 of E. coli, which have been previously shown to be important in

catalysis. Amino acids in bold type are identical in all of the aligned proteins.
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Chapter 3:

Expression, Purification, and Characterization of

Ribonucleoside Triphosphate Reductase from

Lactobacillus leichmannii
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Recombinant DNA technology has greatly facilitated the understanding of

the structure, mechansim, and cellular regulation of enzymes. As described in

Chapter 2, genes for enzymes can be isolated and cloned, and from their

sequences the primary structures (i.e. amino acid sequences) of the

corresponding enzymes can be deduced. In Chapter 4 we shall see how a

technique that is termed site-directed mutagenesis can be used to alter any of the

amino acids which comprise an enzyme whose gene has been cloned. These

mutant proteins can then be analyzed to see what effect the mutation has on

catalysis, regulation, secretion, or a host of other cellular functions, perhaps

allowing distinct physiological roles to be assigned to specific amino acids.

However, these experiments, and particularly those which involve a variety of

biophysical techniques [e.g. electron paramagnetic resonance (EPR), M6ssbauer

spectroscopy, and X-ray crystallography] can require large quantities of pure

enzyme. Fortuitously, the wealth of knowledge that has accumulated within the

last three decades concerning the cellular and molecular biology of the Escherichia

coli bacterium has enabled biological scientists not only to clone genes for

proteins, but also to manipulate E. coli to produce large amounts of cloned

proteins.

The process of overproducing or overexpressing proteins in bacteria,

yeast, or even baculoviruses, is only an exploitation of the many mechanisms of

regulation which are already present within the organism. It is therefore

beneficial to understand how simple prokaryotes initiate and regulate protein

synthesis in order to appreciate the mechanisms and techniques by which they

can be made to synthesize foreign proteins at levels that can approach 40% of the

total protein in the cell. The biochemistry by which prokaryotes such as E. coli

transform a segment of DNA into one or more proteins is generally thought of as

a two-step process. It begins with the synthesis of an RNA transcript of the DNA

182



in a process that is termed transcription. In the second step, translation,

ribosomes use the RNA message to determine the sequence of amino acids that

must be assembled to give the corresponding protein (Figure 3.1). All of the

proteins which are encoded by an organism's DNA are not syntheisized

simultaneously however. E. coli, for example, have over 5000 genes, the products

of many of which enable the bacterium to survive and/or thrive under a wide

range of environmental conditions. It would be energetically costly for the

bacterium to constitutively synthesize proteins for which it has no immediate

need. Protein synthesis must therefore be regulated in diverse ways to allow

E. coli and other organisms to respond rapidly to environmental changes.

In prokaryotes most of the regulation of protein synthesis takes place at

the transcriptional level. Unlike eukaryotic genes, prokaryotic genes whose

protein products are involved in particular pathways are often found

contiguously grouped together in an operon. The basic layout of an operon

includes a group of structural genes which are all under the same system of

regulation, an upstream promoter region which is where RNA polymerase binds

the DNA and initiates transcription of the structural genes, and downstream

termination signals which alert RNA polymerase to cease transcription.

Although the RNA molecule is polycistronic (i.e. more than one gene is located

on one RNA molecule) each gene product has its own AUG start codon and stop

codon (UAA, UAG, or UGA). The promoter region of an operon usually plays

the central role in the regulation of the synthesis of the structural genes.

Promoters in E. coli are characterized by conserved sequences at positions -35 and

-10 (the first nucleotide transcribed into RNA is defined as +1). The consensus

sequences at these positions are:
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Figure 3.1: A simple schematic showing the process by which proteins are

synthesized from a DNA message. In the first step (1), the enzyme RNA

polymerase makes an RNA copy of the DNA template in a process called

transcription. In the second step (2), which is called translation, ribosomes use

the RNA message to assemble the sequence of amino acids that comprise a given

protein.
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position -35 T8 5 T 83 G81 A 61 C6 9 A5 2

position -10 T8 9 A81 T50 A6 5 A 65 To0 0

with the numbers in italics indicating how often (in percent) the specified

nucleotide occurs at the denoted position in promoter sequences of over 100

genes (Beebee & Burke, 1992). In general, the closer a promoter is to the above

consensus sequences, the stronger it is.

Although promoters can be strong, weak, or somewhere between these

two extremes, this form of regulation is not modulated by environmental

stimulii; protein synthesis is constitutive, and the concentration inside of the cell

of a given protein is dependent upon the strength of the promoter and the half-

lives of the mRNA transcript and the protein. Rigid regulation of protein

synthesis relys on the ability of various factors to make RNA polymerase more or

less specific for a given promoter. This is exemplified by the best characterized

operon - the lactose operon. The lactose or lac operon (shown in Figure 3.2) is

composed of 3 structural genes: lacZ, lacY, and lacA, which encode the proteins

f-galactosidase, lactose permease, and thiogalactoside transacetylase. In

addition, a repressor protein encoded by the lacI gene, and two non-protein-

encoding sequences, lacO and lacP (representing the operator and promoter

regions), are components of the lac operon. The lac repressor is generally present

at -40 copies per cell, and has an affinity for the operator that is -4x106 times that

of random DNA sequences (Beebee & Burke, 1992). Binding of the repressor (as

a tetramer) to the operator blocks the binding of RNA polymerase to the

promoter site, resulting in the inhibition of transcription. Mutations in the

operator sequence are dominant, and result in constitutive transcription of the

structural genes. Mutations in the lac repressor also result in constitutive

transcription of the structural genes; however, these mutations are recessive and
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Figure 3.2: The lac operon. The transcription of the structural genes on the lac

operon (lacZ, lacY, and lacA) is initiated with the binding of RNA polymerase to

the operon's promoter region - lacP (1). The acI gene is reponsible for making a

repressor protein (2) which binds to the operator sequence (lacO) as a tetramer (3-

4) and prevents the binding of RNA polymerase to the promoter. In the event

that sufficient allo-lactose is present in the cell, it binds to the repressor protein

(5) and prevents it from binding to the operator region (6). This subsequently

allows RNA polymerase to bind to the promoter and begin the process of

transcription. The lac operon is also positively stimulated. Under conditions of

low glucose, cyclic AMP associates with catabolite activator protein (CAP), and

this complex binds to a site near the promoter region (7). This association with

the CAP site subsequently stimulates the binding of RNA polymerase to the

promoter region.
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can be overcome by supplying wild-type repressor. The lac operon regulates a

bacterium's ability to use lactose as a carbon source rather than glucose which is

used normally. When glucose levels are sufficient, the lac operon is repressed.

When glucose levels are low, cyclic adenosine monphosphate (cAMP) associates

with catabolite activator protein (CAP), and this complex binds to another region

of the operon and induces the binding of RNA polymerase. However the ac

operon is still not activated unless the concentration of lactose inside of the cell is

sufficient enough for it to be used as a carbon source. In the event that enough

allo-lactose is present, it binds to the repressor and induces a conformational

change which causes the repressor to dissociate from the operator.

Experimentally, compounds that mimic allo-lactose, [e.g. isopropyl thio

[3-D-galactoside (IPTG)] are usually used since f3-galactosidase hydrolyzes allo-

lactose.

Because of the high degree to which the lac operon has been characterized,

vectors employing this system of regulation were among the first to be

constructed for the heterologous expression of cloned genes. The lacUV5

promoter has historically been the most important in terms of the overexpression

of foreign proteins in E. coli. It contains two mutations in the -10 consensus

sequence which strenghten protein synthesis and also allows it to be resistant to

repression by glucose (Reznikoff & Gold, 1986). Since multicopy plasmids tend

to titrate the ac repressor, the overexpression of cloned genes is often carried out

in E. coli strains (lacIQ) which have been engineered to overproduce the

repressor. This insures that overproduction is not initiated until the allotted

time. This is most important when expressing proteins such as insulin which are

lethal to E. coli.

Some of the most successful vectors for the heterologous expression of

cloned genes in E. coli have been those containing chimeras of the lacUV5
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promoter. The most celebrated of these promoters is the tac promoter, in which

the -35 region of the lacUV5 promoter is replaced with the -35 region of the

promoter from the tryptophan operon. As its name implies, this operon contains

the genes for the synthesis of this aromatic amino acid from the precursor

chorismate, and is another well-studied and beautiful example of transcriptional

regulation. The -35 region of the trp promoter, unlike that of the lac promoter,

bears the consensus sequence described above. The resulting chimera, in which

consensus sequences are present in both of the critical regions of the promoter,

affords a new promoter which is 10-fold stronger than the lacUV5. As with the

lacUV5 promoter, the tac promoter is repressed when expression is carried out in

E. coli strains that are lacIQ. In analogous fashion, the promoter is induced to full

strength with IPTG. The success of the tac promoter is highlighted by the many

genes that have been expressed with this system, and the many new expression

vectors that have been constructed which employ this promoter.

Recently a new expression system that is worth mention has been

developed, and is based on the RNA polymerase isolated from bacteriophage T7

(Tabor & Richardson, 1985). This bacteriophage RNA polymerase is very specific

for its own promoter sequence, and does not initiate the expression of any of the

E. coli chromosomal genes. In addition, it is highly processive, extremely active,

and can synthesize RNA transcripts at rates that are several fold higher than the

E. coli RNA polymerase (Ausubel et al., 1987). The gene to be expressed is cloned

into a vector that contains a T7 promoter (e.g. pT7 series or pET series) and the

resulting construct is transformed into E. coli lysogen BL21(DE3) which contains

an inducible T7 RNA polymerase gene (Tabor & Richardson, 1985; Studier &

Rosenberg, 1990). Alternatively, the T7 polymerase can be provided by an

additional plasmid that contains the T7 RNA polymerase gene under the control

of a separate promoter. One of the many advantages of this system is that it can
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be used to express genes that may be toxic to E. coli, since the cellular

polymerases do not recognize the T7 promoter. Another advantage is that the T7

RNA polymerase is not inhibited by rifampicin, a compound that binds to one of

the subunits of bacterial RNA polymerases, and prevents the initiation step of

transcription. This compound can be added to the growth media at a given time

to halt the synthesis of host proteins while having little effect on the synthesis of

the plasmid-encoded protein. Upon the addition of [35 S]methionine, expression

can be monitored in a time-dependent fashion by autoradiography.

As mentioned above, transcription is only half of the two-step process of

protein synthesis. As soon as the transcript is synthesized, ribosomes attach to

the mRNA and begin the process of translation. The initiation of translation is

often the rate-limiting step in protein expression. All of the factors that govern

this process are not completely understood; however, based on empirical data, a

set of rules has been developed as a guide for optimizing heterologous gene

expression in E. coli. Two of the most important interactions involved in the

initiation of translation are the interaction between the anticodon of the initiator

tRNA and the AUG start codon, and the interaction between the ribosome and a

sequence just upstream of the AUG start codon. This latter sequence is called the

Shine-Dalgarno sequence of the ribosome binding site. The first rule in

maximizing translation in E. coli, is to introduce a Shine-Dalgarno sequence of at

least four nucleotides that is as close as possible to the consensus sequence

AGGAGG. The optimal spacing between this sequence and the ATG start codon

is anywhere between 5 and 13 nucleotides, with 9 usually being a good first

approximation. Secondly, the region between the Shine-Dalgarno sequence and

the start codon should be AT rich. In addition, the two nucleotides preceeding

the ATG start codon (positions -1 and -2) should be T's, and the nucleotide

following the ATG start codon (position +4) should be A if possible, or G.
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Moreover, the nucleotide in position +5 should be G (MacFerrin et al., 1990).

These rules are very good guidelines for the overproduction of cloned proteins in

E. coli; however, they by no means guarantee the success of the process. In the

event that satisfactory expression is not achieved, other factors such as the

stability of the mRNA transcript as well as the codon usage of the foreign gene

need to be considered.

This chapter describes the procedures used to clone RTPR into plasmid

pKK223-3, and to overexpress it under the control of the tac promoter. In

addition, reported herein is the purification of RTPR to near-homogeneity, as

well as the characterization of the recombinant enzyme to show that it is

indistinguishable from that isolated from cultures of L. leichmannii.

Materials and Methods

Materials

Immobilon poly[vinylidene difluoride] (PVDF) membranes (0.45 ~m pore

were purchased from Millipore. Ampicillin, ethidium bromide, protamine

sulfate, ATP, and AdoCbl, were purchased from Sigma. Nick columns were

from Pharmacia. Dithiothreitol and D20 were purchased from Mallinckrodt.

DE-52 anion-exchange resin was from Whatman. Kanamycin was purchased

from United States Biochemical. The dsDNA Cycle Sequencing system, T4 DNA

ligase, isopropyl thio -D-galactoside (IPTG), and competent E. coti HB101 cells

were from GIBCO/BRL. AmpliTaq DNA polymerase was from Perkin-

Elmer/Cetus. The TA cloning system was purchased from Invitrogen.

Centricons, ultrafiltration devices, and membranes were purchased from

Amicon. Restriction endonucleases were purchased from New England Biolabs.

E. coli thioredoxin (TR) (specific activity, 50 units/mg) and thioredoxin

reductase (TRR) (specific activity, 800 units/mg) were isolated from
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overproducing strains SK3981 and K91/pMR14 (Lunn et al., 1984; Russel &

Model, 1985). E. coli strain JM105 was obtained from Pharmacia. Plasmid

pKK223-3 was a generous gift from Dr. Oliver Peoples of MIT. Oligonucleotide

primers used for expression-cassette PCR were obtained from the MIT

Biopolymers Laboratory, or Oligos Etc. of Wisonville, OR, and are listed in Table

3.1.

General UV-vis absorption spectra were recorded

8452A diode-array spectrophotometer.

on a Hewlett Packard

Table 3.1: Primers used for expression-cassette PCR.

Expression-Cassette Amplification of the N-terminal Half of the RTPR Gene

The nucleotide sequence of RTPR was used to generate PCR primers for

the amplification of the N-terminal half of the gene. The N-terminal primer 1,

was 49 bases in length, and contained in addition to the first 24 bases of the RTPR

gene, an 8-base transitional spacing element flanked by a consensus E. coli

ribosome binding site and the ATG start codon. The alternate strand primer 2

was 24 bases in length and complementary to a region of the RTPR gene (bp

1252-1275) 23 bases downstream of a unique Bgl II restriction site. The
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Primer Primer Sequence

1 5' d(GCC-GGC-GAA-TTC-AGG-AGA-AAA-TAT-TAT-GAG
-TGA-AGA-AAT-ATC-TCT-CTC-C)3'

2 5' d(GAA-GAC-TTC-AAA-GAG-GTT-GCA-AGG)3'

3 5' d(GGC-GCG-AAG-CTT-ACT-TAA-TTG-GGC-AGG-CGC-C)3'

4 5' d(CTA-CCA-GGC-TGG-AAT-TGA-CGG)3'



amplification reaction contained in a final volume of 100 gL: each primer at

1 pM, 10 gL of lOx PCR buffer (500 mM KCL / 100 mM Tris-HCl pH 8.3 / 15 mM

MgC12 / 0.15% gelatin), all four dNTPs (each at 0.2 mM), and 1.2 Rg of genomic

DNA. The reaction mixture was overlaid with 100 gL of paraffin oil and heated

to 94°C for 5 min. Taq polymerase (2.5 U) was added under the oil layer and 35

cycles of the following program were run: 94°C for 1 min, 45°C for 1 min, and

72°C for 3 min. Upon completion, an aliquot consisting of 1/4 of the total

reaction volume was removed for analysis of the amplification reaction by

electrophoresis in a 1% agarose gel.

The concentration of the 1.2-kb amplified fragment was estimated from

ethidium bromide staining of the agarose gel, and the fragment was ligated into

the Invitrogen TA vector (pCR1000) at a molar ratio of 1:4 (vector:insert). The

ligation reaction included in a total volume of 10 4L: 50 ng of pCR1000, 100 ng of

the amplified 1.2-kb fragment, 1 L of lOx T4 DNA ligase buffer (500 mM

Tris-HCl pH 7.8 / 100 mM MgC12 / 200 mM DTT / 10 mM ATP / 500 tg/mL

BSA), and 7 Weiss units of T4 DNA ligase. The reaction was allowed to proceed

at 12°C for 16 h, and a 1 gL aliquot of the ligation mixture was used to transform

competent E. coli DH5c (Sambrook et al., 1989). Approximately 1/5 of the

transformation mixture was spread on LB plates containing kanamycin

(50 gg/mL) and X-Gal (0.008% wt/vol). Clones that contained inserts were

identified by their white phenotype, and several were chosen for further

characterization by appropriate restriction digestion and subsequent

electrophoresis in a 1% agarose matrix. Several clones that contained plasmids

possessing the correct restriction pattern were subjected to sequencing around

the points of ligation into the vector. Of the clones that contained the correct

sequences, clone 6c4 was chosen to be used to construct the full-length RTPR

gene.

194



Expression-Cassette Amplification of the C-terminal Half of the RTPR Gene

The procedure for the amplification and isolation of the C-terminal half of

the gene is very similar to that described for the N-terminal half. The C-terminal

primer, 3, was 31 bases long. It contained a HindIII restriction site at its extreme

5' end, and the complementary sequence of the last 21 bases of the RTPR gene,

including the stop codon. The alternate strand primer, 4, was 21 bases long and

complementary to a sequence of the RTPR gene (bp 1179-1199) 30 bases upstream

of a unique Bgl II restriction site. A 1-kb fragment was amplified and ligated into

pCR1000 as described above for the N-terminal half of the RPTR gene.

Recombinant clones (as judged by their white phenotype when plated on X-Gal)

were screened for inserts by appropriate restriction digestion and subsequent

electrophoresis in a 1% agarose matrix. Several plasmids that possessed the

correct restriction pattern were screened further by DNA sequencing around the

point of ligation of the insert into the vector. Of the clones that contained the

correct sequences, clone 3(xl was chosen to use to construct the full-length RTPR

gene.

Cloning of the Full-length RTPR Gene into Plasmid pKK223-3

Plasmid DNA was isolated from 10-mL overnight cultures of clones 6(x4

and 3ac1 grown in LB media supplemented with kanamycin (50 tg/mL) using

Qiagen Midi columns according to the manufacturer's recommendations.

Plasmid 6(x4 (5.5 tg) was digested (in a total volume of 50 tL) with 16 U of Bgl II,

and 40 U of EcoRl in the buffer specified for the use of Bgl II (50 mM Tris-HCl,

pH 7.9 / 100 mM NaCl / 10 mM MgCl2 / 1 mM DTT). Plasmid 3cal (17 tg) was

digested (in a total volume of 50 pL) with 40 U of Bgl II and 20 U of HindIll in the

recommended buffer for HindIII (10 mM Tris-HCl, pH 7.9 / 10 mM MgCl2 /

50 mM NaCl / 1 mM DTT). The restriction digestions were allowed to proceed
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for 4 h at 37°C, and then were diluted to 200 iL and divided into 10 equal

portions which were loaded onto a 1.5% agarose gel. The DNA was subjected to

electrophoresis in Tris-acetate / EDTA (TAE) buffer for a period sufficiently long

such that the insert of plasmid 64 (1246 bp) could be resolved from the

Bgl II/EcoR1 fragment of the vector (1170 bp). The 6ac4 insert as well as the 3cl

insert was excised from the agarose gel with a sterile razor blade, and the DNA

was electroeluted from the agarose plug as described in Chapter 2 (Isolation of

the 6.6-kb HindIII Fragments). The DNA was concentrated using a Centricon

100, and then desalted on a Pharmacia Nick column. Plasmid pKK223-3 (10 g)

was digested for 3 h at 37°C (in a total volume of 200 tL) with 100 U of EcoRI and

200 U of HindIII in the recommended buffer for EcoRI (50 mM NaCl / 100 mM

Tris-HCl, pH 7.5 / 5 mM MgCl2 / 0.05% Triton X-100). The digestion reaction

was divided into 8 equal portions which were subsequently subjected to

electrophoresis in a 1% agarose matrix. The vector was excised from the agarose

gel with a sterile razor blade, and subsequently electroeluted from the plug and

purified as described above. It was then used in a three-fragment ligation

reaction along with the isolated inserts from plasmids 3x1 and 6cC4. The ligation

reaction contained in a volume of 10 pL: 100 ng of fragment 3c1, 100 ng of

fragment 6c4, 200 ng of pKK223-3, 2 1 of 5x ligase buffer [250 mM Tris-HCl

pH 7.6 / 50 mM MgC12 / 5 mM ATP / 5 mM DTT / 25% (wt/vol) polyethylene

glycol-8000], and 1 unit of T4 DNA ligase (BRL). The ligation reaction, in which

the molar concentration of each insert was twice that of the vector, was incubated

for 20 h at 16°C.

Expression of RTPR in E. coli HB101

Competent E. coli HB101 was thawed on ice, and a 100 gL aliquot of the

bacteria was placed into a sterile polypropylene Falcon tube (17x100 mm, Becton
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Dickinson). A 2 [tL aliquot of the ligation mixture was added to the competent

cells, and the resulting mixture was incubated on ice for 30 min. The mixture

was subsequently heated at 42°C for 45 s, and then allowed to stand at room

temperature for 2 min. A 500 gL aliquot of SOC media (Sambrook et al., 1989)

previously equilibrated to 37°C was added to the mixture, and the mixture was

incubated at 37°C for 1 h with aeration (300 rpms). A 400 gL aliquot of the

resulting transformation mixture was spread on large (150x15 mm) LB plates

supplemented with ampicillin (50 gg/mL), and then the plates were incubated at

37°C for 20 h. Of the nine colonies which were isolated, 3 were approximately

1/2 the size of the other 6. Each of the individual colonies was used to inoculate

5 mL of the above LB liquid media, and the resulting cultures were incubated at

37°C until a saturated culture was obtained (10-14 h). Plasmid DNA was isolated

from each of the colonies using Qiagen Mini I columns according to the

manufacturer's directions, and then digested with EcoRl. Upon subsequent

electrophoresis in a 1% agarose matrix, two of the fast-growing colonies and all

three of the slow-growing colonies were judged to have the correct construction.

Aliquots (100 AL) from cultures of these 5 colonies were used to inoculate 5 mL of

LB media supplemented with ampicillin (50 gg/mL) and 1 mM IPTG. The

cultures were grown to saturation, and a -mL aliquot of each was used for

analysis by SDS/PAGE according to the procedure of Laemmli (1970). Each

aliquot was pelleted by centrifugation, and the pellet was subsequently

resuspended in 100 gL of H 2 0 and 100 tL of 5x Laemmli buffer [0.3 M Tris-HCl,

pH 6.8 / 10% (wt/vol) SDS / 50% (vol/vol) glycerol / 25% (vol/vol)

2-mercaptoethanol / 0.005% (wt/vol) bromophenol blue]. Each sample was

boiled for 3-5 min and then subjected to SDS/PAGE in a 10% polyacrylamide

matrix. The three slow-growing colonies expressed a protein that migrated with
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RTPR isolated from L. leichmannii. One of the three (heretofore referred to as

pSQUIRE) expressed RTPR at a much greater level than the other two.

Purification of Recombinant RTPR

A 1-mL saturated culture of E. coli HB101/pSQUIRE was used to inoculate

500 mL of LB media. The culture was grown to 37°C with aeration to late

logarithmic phase (doubling time, 45 min). The bacteria were pelleted by

centrifugation at 9000xg for 25 min, and the pellet was resuspended in 20 mL of

buffer A (200 mM potassium phosphate, pH 7.2 / 1 mM 2-mercaptoethanol /

1 mM EDTA / 0.1 mM phenylmethylsulfonyl fluoride) equilibrated at 4°C. All

subsequent steps were performed at 4C, and all buffers contained 1 mM

2-mercaptoethanol. The cells were disrupted by passage through a French

pressure cell at 16,000 psi, and the suspension was recentrifuged at 9000xg for

25 min. Protamine sulfate (1% in buffer A) was added to the supernatant (22 mL)

to give a final concentration of 0.25%. Addition took place over 10 min, and the

resulting solution was stirred for an additional 20 min. The precipitate was

subsequently removed by centrifugation at 9000xg for 30 min. EDTA was added

to the supernatant (27 mL) to a final concentration of 5 mM, and the supernatant

was brought to 40% saturation with (NH4 )2SO4 (243 g/L) over 20 min. The

solution was stirred for an additional 50 min, and the precipitate was isolated by

centrifugation at 9000xg for 30 min. The pellet was dissolved in 1 mL of buffer B

(10 mM potassium phosphate, pH 7.2 / 1 mM 2-mercaptoethanol) and desalted

on a Sephadex G-25 column (1.6x45 cm), using buffer B as the eluate. The

protein-containing fractions were pooled (20 mL) and loaded onto a DE-52 anion-

exchange column (2.5x5.5 cm) equilibrated in buffer B. The column was washed

with 50 mL of buffer B, followed by 50 mL of 100 mM potassium phosphate (pH

7.2). RTPR was eluted with 150 mM potassium phosphate (pH 7.2). Fractions
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containing RTPR activity were pooled (41 mL) and exchanged into buffer C

(10 mM potassium phosphate, pH 6.8 / 1 mM 2-mercaptoethanol) by diluting

and concentrating the fractions in an Amicon ultrafiltration apparatus fitted with

a PM-30 membrane. The protein was loaded onto a hydroxylapatite column

(2.5x7 cm) equilibrated in buffer C, and the column was washed with 50 mL of

the same buffer. The protein was eluted with a 400-mL linear gradient from

10 mM to 200 mM potassium phosphate. RTPR eluted at 75 mM buffer. The

protein fractions were pooled, concentrated to 20 mg/mL, dialyzed against

100 mM sodium citrate, pH 5.5 / 1 mM dithiothreitol / 1 mM EDTA / 0.25%

sodium azide / 20% (vol/vol) glycerol, and stored in aliquots at -80°C.

RTPR Activity Determination

RTPR was assayed by a modification of the procedure of Blakley (Blakley,

1978). The assay mixture contained in a final volume of 500 tL: 50 mM

potassium phosphate (pH 7.5), 4 mM EDTA, 1 M NaOAc, 100 mM ATP (pH 7),

54 tM E. coli TR, 64 nM E. coli TRR, 0.2 mM NADPH, 8 tM AdoCbl, and 0.1-

0.2 nM RTPR. All components except AdoCbl were added to a 0.7-mL cuvette

and equilibrated in a 37°C water bath for 3-5 min. Subsequent to recording the

background rate of NADPH oxidation (=6220 M-1 cm-l), AdoCbl was added to

initiate the reaction. The specific activity of RTPR (mol of dATP formed per

min per mg of enzyme) was then calculated as the difference of these two rates.

Kinetic Characterization of Recombinant RTPR

Initial rates of dATP production were determined by the

spectrophotometric assay using TR/TRR/NADPH as described above. Each

assay was carried out at different concentrations of ATP (0.054 mM, 0.162 mM,

0.27 mM, 0.54 mM, 2.7 mM, and 4.0 mM), using 0.4 nM wild-type or recombinant
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RTPR. In order to obtain a Km value for AdoCbl, the ATP concentration in the

assay mixture was held constant at 10 mM, and each assay was performed at

different concentrations of AdoCbl (0.11 gM, 0.32 M, 0.54 ktM, 1.1 jtM, 2.2 M,

5.4 EM, 8.1 M, and 10.8 tM). The reciprocal initial velocities were plotted as a

function of the reciprocal substrate concentrations to insure that the double-

reciprocal plots were linear. The kinetic constants Vmax and Km were

determined from a fit of the initial velocities to a FORTRAN version of the

program HYPER (Cleland, 1979) to Eq 1, where v is the initial rate, Vmax is the

maximum velocity, and Km is the Michealis -Menton constant.

v Vmax[S] Eq
Km+ [S] Eq

Analysis of the Ability of dGTP to Stimulate the Reduction of ATP using Recombinant
RTPR

The reaction was carried out as described above for the analysis of dATP

production by the NADPH-dependent spectrophotometric assay, except that

NaOAc was replaced with varying concentrations of dGTP (0 gM, 2 gM, 6 gM,

10 pM, 20 M, 40 gM, 100 IM, 175 jIM, 200 pM, 350 jiM, and 700 jiM).

Transformation of pSQUIRE into E. coli JM105 and Expression of RTPR under the
Control of an Inducible System

E. coli JM105 was made competent by the following procedure. The

bacteria were streaked onto LB plates supplemented with streptomycin

(25 g/mL), and grown overnight at 37°C. A single colony was used to inoculate
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5 mL of the same liquid media, and the culture was grown to saturation at 37°C.

A 100-pL aliquot of this culture was used to inoculate 50 mL of LB media

(pH 7.2), which was subsequently grown to an OD600 of 0.3 (spectrophotometer

blanked with media) and then immediately placed on ice. A 20-mL aliquot was

removed and pelleted by centrifugation at 10,00Oxg for 20 min. The pellet was

resuspended in 7.5 mL of 50 mM CaCl2 that had been equilibrated to 4°C, and

the mixture was incubated on ice for 8 min. The mixture was centrifuged again

as described, and the pellet was resuspended in 1 mL of 50 mM CaC12. A 200-gtL

aliquot of the bacterial suspension was added to a Falcon tube (17x100 mm,

Becton Dickinson) containing 100 [tL of 100 mM Tris-HCl (pH 7.4). Plasmid

pSQUIRE (20 ng) was added, and the resulting mixture was incubated on ice for

10 min. The tube was removed from the ice, and immediately immersed in a

water bath equilibrated at 42°C, and incubated for 2 min at this temperature. The

mixture was allowed to stand at room temperature for 10 min, following which a

1-mL aliquot of LB media (pH 7) containing 0.2% dextrose was added. The

transformation mixture was incubated for 1 h without agitation in a water bath

equilibrated to 37°C. Subsequent to this incubation, a 200-gL aliquot was spread

on LB-agar plates supplemented with ampicillin (50 tg/mL).

A single colony was used to inoculate 5 mL of LB media supplemented

with ampicillin (50 tg/mL), which was subsequently grown to saturation at 37°C

with aeration. A 100-tL aliquot of this culture was subsequently used to

inoculate 60 mL of the above media, and the resulting culture was grown at 37°C

with aeration. Every 30-60 min an aliquot was removed to check the OD600. At

an OD600 of 0.9, IPTG was added to the culture through a 0.2 itm sterile filter

(Millipore) to a final concentration of 1 mM. Before the addition of IPTG, and

every hour subsequent to it, a 1-mL aliquot was removed and prepared for

SDS/PAGE as described above.
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Expression of RTPR in D20/Minimal Media and Purification of the Deuterated Protein

E. coli JM105/pSQUIRE was streaked onto M9 minimal media-agar plates

(Sambrook et al., 1989) supplemented with thiamine (0.00005%), MgSO4 (1 mM),

and ampicillin (50 gg/mL), and allowed to grow at 37°C overnight. A single

colony was used to inoculate 50 mL of the above liquid media, and the culture

was grown at 37°C with aeration. IPTG (1 mM final concentration) was added to

the culture once it had attained an OD660 of 0.5, and expression was allowed to

take place for 8 h. The expression of RTPR was monitored by SDS/PAGE before

induction with IPTG, and every 1-3 h after induction using the procedure of

Laemmli as described above.

A 100-gL aliquot of the above culture was then added to 5 mL of the above

minimal media containing 50% D20, and the resulting culture was allowed to

grow to saturation at 37°C. A 100-pL aliquot of this culture was removed and

added to 5 mL of minimal media containing 80 % D20, and this culture was

subsequently grown to saturation. Lastly, a 100-1tL aliquot of the 80% D2 0

culture was used to inoculate 100 mL of the above minimal media containing

>95% D20. This culture was grown at 37°C (doubling time 3 h), with the OD660

being monitored every 1-3 h. At an OD66 0 of 0.5, IPTG was added to a final

concentration of 1 mM, and the expression of RTPR was allowed to proceed for

15 h.

Deuterated RTPR was purified according to the procedures outlined

above with the following modifications. Upon the initial pelleting of the bacteria,

they were resuspended in 2 mL of buffer A. After precipitating the protein with

(NH4)2S04, the pellet was dissolved in 500 gL of buffer B, and the protein was

desalted on a Sephadex G-25 column (0.75x25 cm). The protein-containing

fractions (A280 ) were pooled and loaded onto a DE-52 column (1.25x5 cm)
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equilibrated in buffer B. The column was washed with 10 mL of buffer B,

followed by 10 mL of 100 mM potassium phosphate (pH 7.2). RTPR was then

eluted with 150 mM potassium phosphate (pH 7.2). It was concentrated and

dialyzed against 100 mM sodium citrate, pH 5.6 / 1 mM dithiothreitol / 1 mM

EDTA / 0.25% sodium azide / 20% (vol/vol) glycerol, and stored at -80°C.

Results

Expression-Cassette Cloning of the Entire RTPR Gene into Plasmid pKK223-3

The recent method by MacFerrin et al. (MacFerrin et al., 1990) for

maximizing the efficiency of translation of cloned genes in E. coli allowed the

formulation of the strategy outlined in Figure 3.3 for the cloning of the RTPR

gene. The polymerase chain reaction was used to incorporate at the front of the

gene necessary elements for efficient translation. These elements, which were

engineered into the N-terminal PCR primer, included an 8-base transitional

spacing element flanked by a consensus Shine-Dalgarno sequence and the ATG

start codon of the RTPR gene. In addition, the 5' terminus of the N-terminal

primer included an EcoRl restriction site to facilitate the cloning of the amplified

fragment, and a GC clamp to aid the restriction enzyme in cutting at the terminus

of the DNA (Figure 3.4). The C-terminal primer included the RTPR gene's

natural TAA stop codon as well as a HindIII restriction site at its 5' end.

The cloning process diverged somewhat from the traditional approach of

amplifying a segment of DNA and ligating it directly into the appropriately-

digested expression vector. The gene for RTPR was amplified in two halves,
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Figure 3.3: Strategy for the cloning of the RTPR gene. PCR primers containing

restriction sites at their 5' ends were constructed from the gene sequence of

RTPR. The N-terminal primer included the elements necessary for efficient

translation in E. coli, while the C-terminal primer included the gene's natural

TAA stop codon. The gene was amplified in two halves, each of which was

ligated into the Invitrogen vector pCR1000. Each vector was transformed into

E. coli DH5a and subsequently isolated in large quantities. The inserts were

removed by appropriate restriction digestion, and ligated together into plasmid

pKK223-3 to give pSQUIRE.
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Figure 3.4: Construction of the N-terminal PCR primer for expression-cassette

PCR.
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each of which was then ligated separately into the Invitrogen vector pCR1000.

The choice of this vector was governed by the high efficiency with which DNA

amplified by PCR can be ligated directly into it. In addition, the ligation reaction

requires no initial restriction digestion to create cohesive ends on either the

vector or the amplified fragment. The success of this vector is due to the fact that

it is commercially available in a linearized form such that both its 5' terminii have

T overhangs. As described in Chapter 2, many DNA polymerases (including Taq

polymerase) leave an A overhang at the 3' end of the template. The extent to

which this A overhang is present among a population of amplified fragments

depends largely upon the level of the 3'-5' exonuclease activity of the

polymerase (Clark et al., 1987; Clark, 1988). Taq polymerase possesses no

exonuclease activity; and ligations with DNA amplified with this polymerase are

50-fold more efficient using the Invitrogen vector pCR1000 than the

corresponding ligations with blunt-ended DNA (Mead et al., 1991). The plasmid

(6zx4) containing the N-terminal half of the gene, as well as the plasmid (3W1)

containing the C-terminal half of the gene, was transformed into E. coli and

isolated in large quantities. The inserts from these plasmids were then used to

construct the full-length RTPR gene, by exploiting a unique Bgl II restriction site

which each insert shared. Two lines of reasoning suggested this approach. The

first is that plasmid pKK223-3 often yields better expression when the

N terminus of the gene of interest is ligated into the EcoRI restriction site of the

plasmid (personal communication Dr. Oliver Peoples). The presence of an EcoRI

restriction site within the RTPR gene precludes a facile ligation into the

expression vector since the C-terminal EcoRI-HindIII fragment would be

expected to ligate much more efficiently than that which would give the correct

construction - an EcoRI/EcoRI - EcoRI/HindIII three-fragment ligation into

pKK223-3. The second line of reasoning is based on the anticipation of making
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mutants of cysteines that are believed to be important in catalysis. As mentioned

in Chapter 2, the two C-terminal cysteines (731 and 736) as well as C408 are

believed to be important in catalysis as determined from a sequence comparison

of RTPR with the E. coli RDPR. The C-terminal cysteines can easily be altered by

PCR with a mutant primer since they lie at the extreme C terminus of the gene.

However, the unique Bgl II restriction site within the RTPR gene that is present

on both plasmid 6a4 and 3x1 can be used to easily alter C408 and C419 by PCR

(For a detailed description of the mutagenesis of these cysteines, see Chapter 4).

In short, a C408X mutant primer containing the Bgl II restriction site can be used

in combination with primer 1 to amplify the N-terminal half of the gene

containing the mutated amino acid. The amplified fragment can then be ligated

into the expression vector along with the C-terminal half of the gene from

plasmid 3cl. Likewise, a C419X mutant can be made using a primer containing a

Bgl II restriction site in combination with primer 3 to amplify the C-terminal half

of RTPR containing the mutated amino acid. This fragment can then be ligated

into the expression vector in combination with the N-terminal half of the gene

from plasmid 6x4. By maintaining the two halves of RTPR on separate plasmids,

a well-characterized and ample source of the components of RTPR is always

available in a construct that can be easily manipulated.

Expression of RTPR in E. coli HB101

An aliquot of the three-fragment ligation into pKK223-3 was transformed

into E. coli strain HB101 - a strain which does not overproduce the lac repressor.

Two distinct phenotypes were observed upon plating the transformation

mixture. The resulting colonies either grew slowly (20-24 h vs 10-12 h to see a

colony which grows at a normal rate) and were small in size, or grew at normal

rates and were of the expected size. Of the 9 colonies which were obtained after
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transformation and plating, 6 were fast-growers, while 3 were slow-growers.

The slow growers maintained the same phenotype in liquid culture as well.

Another sample of the ligation mixture was again transformed into E. coli HB101

to determine if the occurence of two phenotypes was reproducible. In this case

twenty-six colonies were obtained, with most having the slow-growing

phenotype. Two of the fast-growers and all three of the slow growers from the

initial transformation were shown to have the correct construction upon

restriction digestion and subsequent electrophoresis of DNA preparations from

cultures of the 9 colonies. Cultures of these 5 colonies, in which IPTG (1 mM)

was added at the time of the initial inoculation, were subjected to SDS/PAGE by

the procedure of Laemmli (1970) to monitor the expression of RTPR. Neither of

the two fast-growers overproduced RTPR as determined by comparison of the

Coomassie Brilliant Blue-stained gel with that containing an authentic sample of

RTPR from L. leichmannii. All three of the slow-growers, however, exhibited

relatively large bands which migrated with the authentic RTPR sample (data not

shown). The overproduction of one of these slow-growers appeared to be twice

as good as the other two, and was accordingly chosen as the recombinant RTPR.

An experiment was carried out to determine the optimal time in which to

add IPTG to the culture. Three separate cultures of E. coli HB101 /pSQUIRE were

grown under varying conditions. Culture C was grown in the presence of 1 mM

IPTG. Culture B was grown in media containing no added IPTG, and culture A

was "induced" with the addition of IPTG to 1 mM at an OD660 of 0.5. Figures 3.5

and 3.6 show the results of this experiment. As can be visualized, there appears

to be no dependence of IPTG on expression of RTPR from pSQUIRE. All three

cultures confer the same amount of expression regardless of when IPTG is

added, or whether it is added at all. The only difference between the three

cultures is that C grew at a slower rate (slightly less than twofold) than A and B.
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Figure 3.5: Expression of RTPR (cultures A and B). Lanes 1-5 (culture A) contain

samples in which IPTG was added to the growing culture at an A600 of 0.9.

Aliquots were removed at 1 h intervals and monitored for expression by

SDS/PAGE. Lane 1 is a sample taken before the addition of IPTG. Lanes 2-5, are

1 h, 2 h, 3 h, and 4 h subsequent to the addition of IPTG. Lanes 6-10 (culture B)

contain samples in which no IPTG was added to the growing culture. Lane 6

contains a sample removed at an A600 of 0.6. Lanes 7-10 contain samples

removed at 1 h, 2 h, 3 h, and 4 h subsequent to the intial sample. Lane 11

contains a sample of RTPR isolated from cultures of L. leichmannii.
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Figure 3.6: Expression of RTPR (culture C). Lanes 1-5 contain samples which

were grown in the presence of IPTG from the inital inoculation. Lane 1 contains

a sample removed at an A600 of 0.45. Lanes 2-5 contain samples removed at 1 h,

2 h, 3 h, and 4 h subsequent to the initial sample. Lane 6 contains a sample of

RTPR isolated from cultures of L. leichmannii. Lane 7 contains a saturated culture

of RTPR grown in the absence of IPTG.
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A 50 mL culture of E. coli HB101/pSQUIRE was grown to saturation, and

a crude extract was prepared as described in the methods for the purification of

RTPR. The specific activity of the crude was determined to be 0.4 U/mg, which

is 10 to 20-fold greater than that from cultures of L. leichmannii (0.02-0.04 U/mg)

(Harris, 1984). Moreover, this activity was absolutely dependent upon the

addition of AdoCbl to the assay mixture.

Purification of Recombinant RTPR

Recombinant RTPR was purified using procedures very similar to those

used to purify RTPR from L. leichmannii (Ashley et al., 1986). Protamine sulfate at

0.1% (wt/vol) was much more effective in precipitating nucleic acids than

streptomycin sulfate, which is used routinely in the L. leichmannii isolation. Two

additional protease inhibitors other than PMSF were tested for their ability to

stabilize RTPR activity throughout the isolation. The addition of tosyllysine

chloromethylketone and tosylphenylalanine chloromethylketone to the crude

preparation (each at a concentration of 1 mM) resulted in a 70% loss of activity of

RTPR as determined by the TR/TRR/NADPH spectrophotometric assay. This

inhibition was not studied in detail, however, these compounds are inhibited by

alkylating agents. Therefore it is believed that inhibition of RTPR most likely

occurs via the alkylation of the C-terminal cysteines by the added compounds.

Table 3.2 summarizes a typical protein isolation from a 500-mL saturated

culture of E. coli HB101/pSQUIRE [2.5 g (wet wieght)]. Approximately 90 mg

of protein that is greater than 95% pure can be obtained from a half-liter culture

of the recombinant bacteria. This yield is comparable to what was obtained from

200 g of L. leichmannii cell paste (Harris, 1984; Ashley et al., 1986). Moreover, the

specific activity of 1.5 tmolmin-lomg-l is comparable to the best reported

specific activities of non-recombinant RTPR. Figure 3.7 illustrates again the high
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Figure 3.7: SDS/PAGE (10%) analysis of the purification of RTPR. Lane 1 is the

crude lysate. Lane 2 is after the protamine sulfate step. Lane 3 is after the

ammonium sulfate step. Lane 4 is after the DE-52 anion-exchange column. Lane

5 is after the hydroxylapatite column.
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level of heterologous expression that is conferred by plasmid pSQUIRE, and

indicates the purity of RTPR throughout each step of the purification as judged

by Coomassie Brilliant Blue staining. Elution profiles of both the DE-52 and

hydroxylapatite columns (data not shown) indicate that RTPR mutants can be

isolated by essentially pooling the huge peaks which elute at 150 mM potassium

phosphate (pH 7.2) for the DE-52 column, and 75 mM potassium phosphate

(pH 6.8) for the hydroxylapatite column. This is important since a good affinity

column for this protein is not available, and several of the mutants would be

expected to have no easily-assayable phenotypes.

Table 3.2: Purification of RTPR from E. coli HB101/pSQUIRE

Characterization of Recombinant RTPR

Recombinant RTPR was characterized in several different ways. Firstly,

the RTPR gene on plasmid pSQUIRE was sequenced to verify its identity to the

gene sequence reported in Chapter 2. Secondly, an amino acid analysis and

N-terminal sequence analysis of the recombinant protein was carried out
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Protein Specific activity
Step (mg) (units/mg) Total units

Crude | 660 0.4 230

Protamine sulfate 648 0.4 228

(NH4)2504/Sephadex G-25 272 0.6 171

DE-52 131 1 130

Hydroxylapatite 90 1.5 134



essentially as described in Chapter 2 for the non-recombinant RTPR. However,

the samples were submitted to the MIT Biopolymers Laboratory instead of the

Harvard Microchemistry Facility. Table 3.3 summarizes the amino acid

composition of recombinant RTPR, as well as the non-recombinant RTPR that

was used to obtain N-terminal sequence information for cloning. In addition,

previous determinations by Georgianna Harris (1984) and Panagou et al. (1972)

are included. The amino acid analysis by Harris agrees best with the amino acid

composition of RTPR deduced from its gene sequence, with the analysis by the

Harvard Microchemistry Facility of the non-recombinant RTPR agreeing the

least. The composition of the recombinant RTPR is in fair proximity with that

deduced from the gene sequence except in the cases of the amino acids

methionine and lysine. Methionine is often difficult to quantify by automated

methods, and is best characterized by treatment of the protein with cyanogen

bromide and isolation of the the resulting fragments by HPLC. The discrepancy

with respect to lysine is not understood at present, however, the variability

between the results of the two most recent determinations (Booker) suggests that

it could be due to experimental variance. The N-terminal sequence of the

recombinant RTPR (S-E-E-I-S-L-S-A-E-F) is identical with that of the non-

recombinant protein, as well as with the amino acid sequence deduced from the

gene sequence. It is interesting to note that the N-terminal methionine is also

processed, as it is in the enzyme isolated directly from L. leichmannii.

The third method employed to characterize recombinant RTPR consisted

of obtaining kinetic constants for both substrate (ATP) and cofactor (AdoCbl). A

comparison of these values to those of the non-recombinant enzyme which were

determined under the same set of conditions is listed in Table 3.4. Although

these constants were determined from a fit to the kinetic program HYPER as
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described in the methods, Lineweaver-Burk plots were also constructed (Figures

3.8 and 3.9) to show that the data were indeed linear. As can be seen in Table 3.4,

Table 3.3: Amino acid composition of recombinant RTPR.

Amino acid

ASX (8 6 )(f)

GLX (84)

SER (55)

GLY (58)

HIS (9)

ARG (37)

THR (35)

ALA (58)

PRO (31)

TYR (27)

VAL (51)

MET (10)

ILE (45)

LEU (62)

PHE (27)

LYS (42)

Booker Booker
Harris(a) Panagou(b) (non-recombinant)(C) (recombinant)(d)

83

80

44

57

10

78

78

54

56

8

35

33

33

32

58

27

55

31

25

47

10

24

46

8

40

n.d.

39

59

24 25

42 43

111 84

96 102

72

80

7

38

32

66

21

26

35

2

31

58

22

48

59

75

12

39

36

67

41

31

49

4

40

65

24

30

(a)(Harris, 1984). (b)(Panagou et al., 1972). (c, d)This work. (f)parentheses indicate
the number of residues as determined from the gene sequence.

219

- -

.



the KmS and VmaxS for the recombinant and non-recombinant enzymes are in

very good agreement for both the substrate and cofactor.

Table 3.4: aKinetic constants for recombinant and non-recombinant RTPRs.

aKinetic constants obtained with 1 M NaOAc, and TR/TRR/NADPH.

Additional studies were carried out to show the ability of the allosteric

effector (dGTP) to stimulate the reduction of substrate (ATP). Initial experiments

were focused on determining the concentration of dGTP that yields the

maximum rate of dATP production. Figure 3.10 is a plot of the initial rate of ATP

reduction as a function of dGTP concentration. RTPR exhibits turnover in the

absence of allosteric effector; however, dGTP at 150-200 jtM increases the rate of

ATP reduction by a factor of 6. Higher concentrations of dGTP appear to be

inhibitory. At a concentration of 350 jiM dGTP the rate is 69% of the maximum;

and at a concentration of 5.2 mM dGTP it is appromoxmately equal to the rate of

ATP reduction in the absence of allosteric effector (data not shown). This data

suggests that the allosteric effector is able to bind to the substrate site at high

concentrations. Further studies carried out to obtain a Km for substrate (ATP) in

the presence of 150 gM dGTP also showed an interrelatedness of substrate and

allosteric effector. Figure 3.11 shows that at high substrate concentrations the
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ATP AdoCbl

RTPR Km (mM) Vmax Km (MM) Vmax

Recombinant 1.2±0.11 1.1 U/mg 1.1±0.07 1.2 U/mg

Non-recombinant 11 1.1±0.12 0.85 U/mg 1.59±0.21 1.1 U/mg



8 12

1/[ATP] (1/mM)

Figure 3.8: Lineweaver-Burk plot of initial rate data vs [ATP].

Concentrations varied from 0.054 mM to 4.05 mM ATP.

Recombinant RTPR. (A) Non-recombinant RTPR.
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Figure 3.9: Lineweaver-Burk plot of initial rate data vs [AdoCbl].

Concentrations were varied from 0.11 to 10.8 gM AdoCbl.

Recombinant RTPR. (A) Non-recombinant RTPR.
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Figure 3.10: Initial rate of dATP production as a function of
[dGTP]. dGTP concentrations were varied from 0 to 350 gM.
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Figure 3.11: Initial rate of ATP reduction as a function of [ATP].
Initial rates were obtained in the presence of 150 gM dGTP. ATP

concentrations were varied from 0.08 to 8 mM.
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initial rates of ATP reduction begin to drop off. A previous study which was

initiated to characterize the kinetics of RTPR isolated from L. leichmannii also

reported non-Michaelis-Menten kinetics (Vitols et al., 1967). Interestingly, the

degree of substrate inhibition of turnover was found to be dependent upon the

concentration of the allosteric effector. In the case of CTP reduction, substrate

inhibition was observed at concentrations greater than 10 mM in the absence of

dATP - the allosteric effector for CTP reduction. In the presence of 1 mM dATP,

inhibition was observed at CTP concentrations of 2 mM. Similar results were

obtained with ATP and dGTP; however, the details of the data were not

reported. Nonetheless, these experiments reported herein show that the

recombinant RTPR is kinetically similar to the non-recombinant protein. Under

identical conditions, they each have approximately the same Kms and Vmaxs for

substrate and cofactor. The recombinant protein is stimulated by the allosteric

effector dGTP, and also exhibits substrate inhibition at sufficiently high

concentrations of ATP - characteristics which the non-recombinant protein also

portrays.

Inducible Expression of RTPR in E. coli JM105

The high level of expression of RTPR in E. coli HB101 places a great deal of

strain on the bacterium, since a large amount of its energy is used to produce a

foreign protein which has no bearing on its metabolism. Constitutive expression

of a protein at this level can lead to mutations which reduce or abolish the

expression of the foreign protein. Because these bacteria would be expected to

have normal doubling times (20 min vs 45-60 min for HB101/pSQUIRE), bacteria

which express RTPR at decent levels would be selected against. It was therefore

desirable to place plasmid pSQUIRE in an E. coli strain that would allow the

expression of RTPR to be induced at a given time. Unlike E. coli HB101, JM105
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contains the lacIQ genotype, which allows the bacterium to synthesize the lac

repressor in sufficient quantities to repress the expression of genes which are

controlled by a lac promoter. As described in the introduction to this chapter,

IPTG can then be added at the desired time to induce the expression of the

cloned gene.

Plasmid pSQUIRE was transformed into E. coli JM105, and grown in LB

media (doubling time, 30 min) supplemented with ampicillin (50 tg/mL).

Figure 3.12 is a Coomassie Brillian Blue-stained SDS/PAGE gel (10%) of the

progress of the induction experiment. Before induction, very little RTPR

production is exhibited. However, subsequent to the addition of 1 mM IPTG, the

levels of RTPR become quite substantial within the first hour. From a progress

curve of specific activities of crude cell lysates vs time after induction, it appears

that the highest specific activity of RTPR (0.2 U/mg) occurs after -3-4 h of

growth subsequent to induction.

Expression of RTPR in Minimal Media Containing D20 as the Solvent

One of the advantages in using E. coli JM105 to express RTPR from

pSQUIRE, is that the protein can be overproduced under a variety of conditions.

One set of conditions which is of interest is in minimal media. In this case,

specifically-labeled amino acids which might help deconvolute particular aspects

of the mechanism of catalysis could be added to the medium. In the same

fashion, it was of interest to produce totally-deuterated RTPR in order to look for

the participation of a protein backbone radical (perhaps glycine as in pyruvate

formate lyase) in catalysis. Initial efforts were focused on growing E. coli

HB101/pSQUIRE in minimal media; however, they were unsuccessful.

Although this bacterial strain is auxotrophic for leucine, addition of this amino

acid to the media did not stimulate growth. E. coli JM105/pSQUIRE was
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Inducible expression of RTPR in E. coli JM105. Lane 1 is before

induction. Lanes 2-4 are 1 h, 2 h, and 3 h after the addition of 1 mM IPTG to a

culture having an A600 of 0.9.
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therefore used to express RPTR in minimal media. Under the conditions

described in the methods, the bacteria had a doubling time of 1 h. These

bacteria were gradually adapted to minimal media which contained D2 0 (95%)

as the solvent. As shown in Figure 3.13, these D2 0-adapted bacteria could be

induced to express RTPR with the addition of 1 mM IPTG. To show that the

deuterated protein was indeed active, the bacteria were pelleted, and RTPR was

isolated through the DE-52 column as outlined in the methods. The specific

activity of the deuterated protein was determined using the TR/TRR/NADPH

assay, and was found to be 1.3 U/mg.

Discussion

The successful cloning and overexpression of RTPR in E. coli was largely

due to the isolation and sequencing of the RTPR gene. Using the rules outlined

in the introduction for maximizing the efficiency of translation of foreign

proteins in E. coli, a set of primers was constructed to be used to amplify and

clone the RTPR gene. The gene was amplified in two halves, and then ligated

into the vector pKK223-3, where the expression of RTPR was under control of the

tac promoter. Figure 3.14 shows a map of the resulting plasmid pSQUIRE,

containing important restriction sites that can be used for further subcloning or

the making of mutants. When pSQUIRE is transformed into E. coli strain HB101,

the expression of RTPR is consitutive. As mentioned in the introduction to this

chapter, this is due to this strain's inability to overproduce the lac repressor

protein. This strain overproduces pSQUIRE at levels that approach 30-40% of the

total cellular protein. In addition, the ability to express the protein at this level in

the absence of the inducer IPTG is an added benefit since this compound is
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Figure 3.13: Expression of RTPR in minimal media with D20 as the solvent.

Lane 1 is before induction. Lane 2 is 6 h after the addition of 1 mM IPTG to a

culture having an A600 of 0.5. Lane 3 is 15 h after induction.
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Figure 3.14: Circular map of plasmid pSQUIRE showing unique restriction sites

as well as those which may be important for subcloning.

232



pBR322 ori 4.4

Sph]

25

.50

1.70

1.84

10

2.24

bla

233

X . .



relatively expensive. When pSQUIRE is transformed into E. coli strain JM105 - a

strain which does produce the repressor in high quantities - the expression of

RTPR is minimal until IPTG is added. The ability to express RTPR in minimal

media with D20 as the solvent opens up several biophysical techiques that may

allow protein radicals to be observed during catalysis.

RTPR was purified using procedures that are very similar to that which

has been previously described. It is gratifying that from 500 mL of E. coli

HB101/pSQUIRE, greater than 80 mg of essentially pure protein can be obtained.

This is roughly equal to the amount of protein that was routinely obtained from a

300-L culture of Lactobacillus leichmannii. All means employed to characterize the

recombinant protein suggested that there was no difference between the

recombinant and non-recombinant forms of RTPR. Both proteins exhibited very

similar Km values for both the substrate (ATP) and cofactor (AdoCbl). In

addition, the N terminus of the recombinant protein is identical to the

N terminus of the non-recombinant protein. Their N-terminal identity is even

extended to the cellular processing of the N-formylmethionine, as both proteins

begin with the second amino acid serine.

The successful cloning, sequencing, and overexpression of RTPR has

opened up a wide variety of new techniques which can be used to explore the

mechanism of this amazing enzyme at an even more detailed level. As will be

described in the following two chapters, protein analogs or site-directed mutants

will be used to probe the function of several cysteines which are believed to be

involved in catalysis, as well as study the mechanism by which the tritium in

[5'-3H]AdoCbl equilibrates with water.
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Chapter 4:

Evidence for the Participation of Five Cysteine

Residues in Ribonucleotide Reduction
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The ribonucleotide reductases have been classified based on their cofactor

requirement and quarternary structure. Class I reductases are represented by the

ribonucleoside diphosphate reductase (RDPR) isolated from E. coli. Enzymes in

this class are tetramers constructed of two homodimeric proteins, R1 and R2.

The smaller protein, R2, houses a diferric iron center-tyrosyl radical cofactor

which is absolutely necessary for substrate turnover. Other reductases in this

class are from mammalian systems, as well as the Herpes Simplex viruses

(Averett et al., 1983; Dutia, 1986; Stubbe, 1990b; Reichard, 1993b). Class II

enzymes are structurally the simplest of all the reductases, and are represented

by the ribonucleoside triphosphate reductase (RTPR) from Lactobacillus

leichmannii (Blakley, 1978; Lammers & Follmann, 1983). RTPR functions as a

single polypeptide of 82 kDa (Booker & Stubbe, 1993), and requires coenzyme

B12 (AdoCbl) for dNTP production. The enzyme isolated from Brevibacterium

ammoniagenes is the prototype for class III reductases. This enzyme has an

absolute requirement for manganese, and is composed of two proteins, the

smaller of which is a dimer, and the larger a monomer (Willing et al., 1988b;

Willing et al., 1988a). Recently a ribonucleotide reductase from E. coli grown

under anaerobic conditions has been isolated. This class IV enzyme is a dimer,

and is proposed to use a [4Fe-4S] cluster in combination with

S-adenosylmethionine and other small molecules to carry out substrate reduction

(Eliasson et al., 1992; Reichard, 1993a; Reichard, 1993b).

Despite the differences in quarternary structure, cofactor requirement, as

well as primary sequence, evidence suggests that at least two reductases, those

from L. eichmannii and E. coli, operate by very similar mechanisms of catalysis.

Firstly, both enzymes contain cysteine residues which become oxidized to a

cystine concomitant with each substrate turnover event (Vitols et al., 1967b;
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Thelander, 1974). In both systems the redox-active disulfide can be rereduced by

an in vivo reductant, thioredoxin, or by small organic dithiols such as

dithiothreitol (DTT), a requirement for multiple turnovers. Secondly, both

enzymes initiate the catalytic event by a protein radical-mediated hydrogen atom

abstraction from the 3' carbon of the nucleotide substrate (Stubbe et al., 1981;

Stubbe et al., 1983). This hydrogen atom is subsequently returned back to the

same position in the deoxynucleotide product. In each system a protein radical is

postulated to be generated by the metallocofactor (Stubbe, 1990a). Thirdly, both

enzymes display remarkably similar phenotypes when presented with

2'-halogenated-2'-deoxynucleotides. Studies with the mechanism-based inhibitor

2'-chloro-2'-deoxyuridine di(tri)phosphate revealed that subsequent to 3' C-H

bond cleavage, each enzyme catalyzed the formation of 3'-keto-2'-deoxyuridine

5'-di(tri)phosphate in which the hydrogen originally at the 3' carbon of the sugar

is returned stereospecifically to the face of the 2' carbon of the sugar or is

transferred to the solvent (Scheme 4.1). This intermediate then collapses to

liberate free base (uracil), pyrophosphate (tripolyphosphate), and a 2-methylene-

3(2H)-furanone which in each case alkylates the protein yielding a chromophore

at 320 nm (Harris et al., 1984; Lin et al., 1987; Ashley et al., 1988).

The mechanism of ribonucleotide reduction has also been investigated

with the aid of protein analogs. Recent site-directed mutagenesis studies on the

RDPR from E. coli have allowed a model to be proposed in which five cysteine

residues act in concert to carry out the reduction process (Aberg et al., 1989; Mao

et al., 1989; Mao et al., 1992a; Mao et al., 1992b; Mao et al., 1992). All of these

catalytically important cysteines are located on the R1 subunit of the enzyme,

which is the subunit that binds the substrates as well as the allosteric effectors.

Two C-terminal cysteines (754 and 759), function to deliver reducing equivalents
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from thioredoxin into the active site disulfide of RDPR (formed concomitant with

substrate reduction) thus regenerating active enzyme. The active site cysteines

Scheme 4.1: Interaction of ribonucleoside di(tri)phosphate reductase with
2'-chloro-2'-deoxyuridine 5'-di(tri)phosphate

(

uracil

RDPR (P)P- H a + HaOH
(RTPR) 0 (P)PPiO(RTPR)

0 ~ (P)PMi
L

Enzyme I

(320 nm prote

(225 and 462) function to directly reduce the nucleotide substrate. Lastly, a fifth

cysteine is proposed to be converted into a thiyl radical via e-/H+ transfer to the

diferric iron center-tyrosyl radical cofactor on the second subunit, R2. This thiyl

radical is then proposed to initiate catalysis by abstracting the 3' hydrogen atom

of the substrate. While this model for the role of multiple cysteines in catalysis

by the E. coli reductase is moderately compelling, the interpretation of the results

was blemished by the presence of contaminating wildtype (wt) R1 in all of the

mutants examined (Aberg et al., 1989; Mao et al., 1992a; Mao et al., 1992b; Mao et

al., 1992). The cloning, sequencing, and expression, of the enzyme from
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L. leichmannii (Chapters 2 & 3) (Booker & Stubbe, 1993) have now made similar

studies possible on a different class of reductase. Furthermore, since the

L. leichmannii reductase uses ribonucleoside triphosphates as opposed to

ribonucleoside diphosphates, the ability to express it in E. coli has eliminated the

problem of contaminating wt in the mutants generated. The results of the studies

of the interactions of five C-S site-directed mutants of RTPR with CTP are

presented herein. The phenotypes of these mutants are strikingly similar to the

corresponding E. coli RDPR mutants providing convincing evidence in

conjunction with the mechanistic studies, that the active sites of these enzymes

are structurally similar.

Materials and Methods

Materials

Dithiothreitol was purchased from Mallinckrodt. [2-14 C]Cytidine

5'-diphosphate (CDP; 2.0 GBq/mmol), [1',2'-3 H]deoxyguanosine 5'-triphosphate

(dGTP; 1.3 TBq/mmol) and [- 32 P]ATP (222 Tbq/mmol) were purchased from

New England Nuclear. Pyruvate kinase (specific activity 470 U/mg), L-lactic

dehydrogenase (specific activity 925 units/mg), phosphoenolpyruvate (PEP),

5'-deoxyadenosine (5'-dA), cytidine 5'-triphosphate (CTP), CDP, deoxyadenosine

5'-triphosphate (dATP), cytosine, 2'-deoxycytidine (dC), NADPH, and coenzyme

B12 (AdoCbl) were purchased from Sigma. Alkaline phosphatase (specific

activity 3143 units/mg) from calf intestine (CIP) was purchased from Boehringer

Mannheim. Restriction endonucleases were purchased from New England

Biolabs. AmpliTaq DNA polymerase was from Perkin-Elmer/Cetus, and

ultrapure dNTPs were from Pharmacia. T4 DNA ligase was purchased from

GIBCO/BRL. Centricons and membranes for Amicon ultrafiltration devices

were obtained from Amicon. Anion-exchange resin AG1-X2 (50-100 mesh) was
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purchased from Bio-Rad. [5'-3H]AdoCbl (lx107 cpm/!tmol) was a generous gift

from Professor H.P.C. Hogenkamp of the University of Minnesota (Minneapolis).

UV-visible absorption spectra were recorded on a Hewlett-Packard 8452A

diode-array spectrophotometer. All scintillation counting was performed on a

Packard 1500 liquid scintillation analyzer using 8 mL of S¢INT-A XF scintillation

cocktail (Packard) per 1 mL of aqueous reaction. High Pressure Liquid

Chromatography (HPLC) was carried out using a Beckman 110 Solvent Delivery

Module, 421A Controller, and a 163 Variable Wavelength Detector, in

combination with an Alltech Econosil C18 column. SDS/PAGE was performed

as described by Laemmli (1970).

Wild-type L. leichmannii RTPR (specific activity 1.5 U/mg) was isolated

from the E. coli overproducing strain pSQUIRE/HB101 (Chapter 3). E. coli

thioredoxin (TR) (specific activity, 50 units/mg) and thioredoxin reductase (TRR)

(specific activity, 800 units/mg) were isolated from overproducing strains

SK3981 (Lunn et al., 1984) and K91/pMR14 (Russel & Model, 1985). E. coli strain

JM101 was obtained from Pharmacia. Chromosomal DNA from L. leichmannii

(ATCC 7830) was isolated as described in Chapter 2. Oligonucleotide primers

used for DNA sequencing, mutagenesis, and the polymerase chain reaction

(PCR) were obtained from the MIT Biopolymers Laboratory, or Oligos Etc. of

Wilsonville, OR.

Preparation of [2-14C]CTP

[14 C]CTP was not commercially available and therefore had to be

synthesized. [2-14C]CDP (50 tCi) was diluted with cold CDP to a specific

activity of 6.5x106 cpm/tmol, and the sample was lyophilized to dryness. The

reaction included in a volume of 1 mL: 10 mM CDP, 50 mM

phosphoenolpyruvate, 100 mM imidazole (pH 7.6), 62 mM MgSO4, 120 mM KCl,
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and 100 U of pyruvate kinase. The reaction was incubated at 37°C, and the

extent of reaction was measured by removing a 5-tL aliquot from the reaction

mixture and adding it to an assay mixture containing in a final volume of 1 mL:

80 kM NADH, 62 mM MgSO4, 120 mM KCl, 100 mM imidazole (pH 7.6), and

50 U of lactate dehydrogenase. The mixture was incubated for 5 min at 37°C, and

the absorbance at 340 nm ( = 6220 M-1cm-1) was recorded. Under these

conditions conversion of CDP to CTP was complete within 2 h. The reaction

mixture was diluted with H20 to 50 mL and loaded onto a DEAE Sephadex A25

column (2.5 x 7 cm) previously equilibrated in H20. The column was eluted with

a 200x200-mL linear gradient from 0 to 1 M triethylammonium bicarbonate

(TEAB) pH 7.4, and fractions of 8 mL were collected. The product-containing

fractions, which eluted at approximately 0.5 M TEAB, were pooled and

evaporated to dryness by rotary evaporation. The residue was redissolved in

1 mL of water, and then applied to a Sep-pak C18 cartridge (Millipore) which

had been pretreated with 10 mL of methanol followed by 10 mL of H20. The

cartridge was washed with H20 until the A260 of the filtrate dropped to below

0.1 (-10 mL). The filtrate was lyophilized to dryness, and then redissolved in

water.

Preparation of Site-Directed Mutants

All site-directed mutants were prepared by Dr. Joan Broderick. The

primers used for the preparation of the mutants are shown in Table 4.1. Mutants

C731S, C736S, and the double mutant C731&736S were constructed using a

single PCR. Since these cysteines are located at the extreme C terminus of RTPR,

the C-terminal half of the gene was amplified with the appropriate mutant

primer, 2, 3, or 4 (each of which contains a stop codon and a HindIII restriction

site at its 5' end), and an alternate strand primer, 1, which is complementary to a
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Table 4.1: Primers used for mutagenesis.

Range
Sequence (bp)Primer

1

2

3

4

5

6

7

8

9

10

5'd(GATCAAGTTGGAGATGTCGGC)-3'

5'-d(CTACCAGGCTGGAATTGACGG)-3'

5'-d(GGCGCGAAGCTACTTAATTGGGCAGGCGCC
GCCTTCAGAGTCGGTCTGGTC)-3'

5'-d(GGCGCGAAGCTTACTTAATTGGGGAGGCGCC
GCCTTCACAGTC)-3'

5'-d(GGCGCGAAGCTTACTTAATTGGGGAGGCGCC
GCCTTCAGAGTCGGTCTGGTC)-3'

5'-d(AACCCTrGCGGGGAGATCTCCCTGGCCAACG
GGGAACCTAGCAACCTCTTTGAA)-3'

5'-d(GGCGCGAAGCTTACTTAATrGGGC
AGGCGCC)-3'

5'-d(CCCGTTGGCCAGGGAGATCTCCCCGCTAGGG
TTGGTCCCTTC)-3'

5'-d(GCCGGCGAATTCAGGAGAAAATATTATGAGT
GAAGAAATATCTCTCTCC)-3'

5'-d(GATTCCTTGAACAACTCCTGGTTTG
TGGCCATC)-3'

5'-d(GAAGACTTCAAAGAGGTTGCAAGG)-3'

1179-1199

2177-2220

2186-2220

2177-2220

1216-1269

2199-2220

1205-1247

1-24

340-373

1251-1274

Underlined bases represent stop codons in primers 2,3,4, & 6, or the ribosome
binding site and start codon in primer 8. Bases in italics represent the Bgl II site
in primer 5 & 7, and the EcoRI site in primer 8. Bases in bold type represent the
appropriate mutation.
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region 39 bp upstream of a unique Bgl II site. This Bgl II site separates the gene

into two halves, each of which has been cloned separately into the Invitrogen

plasmid pCR1000 (Chapter 3). The plasmid containing the N-terminal half of the

gene is 64, and the plasmid containing the C-terminal half is 3oc1. The PCR

reaction included in a volume of 100 pL: 10 RL of lOx PCR buffer (500 mM KC1 /

100 mM Tris-HCl, pH 8.3 / 15 mM MgCl2 / 0.1% gelatin), 1.2 gg of genomic

DNA, 1 gM of each primer, and all four dNTPs each at 0.2 mM. The mixture was

overlaid with 100 gL of paraffin oil and heated at 94°C for 5 min. Taq polymerase

(5 U) was added under the oil layer, and 35 cycles of the following program were

run: 1 min at 94°C, 1 min at 60°C, and 3 min at 72°C. The last cycle included an

additional 10 min incubation at 72°C. Subsequent to amplification, the mutant

DNA was purified using the USBioclean kit (US Biochemicals) according to the

manufacturer's specifications. The purified DNA was digested with Bgl II and

HindIII and the resulting Bgl II/HindIII fragment, and the N-terminal EcoRI/Bgl

II fragment generated from plasmid 6c4, were ligated into the expression vector

pKK223-3 (which had been previously digested with EcoRI and HindIII).

Mutant C419S was constructed in a similar manner; however, the mutant

primer, 5, spanned the unique Bgl II restriction site of the RTPR gene. Primer 5

was used in combination with a primer, 6. Subsequent to amplification, this

C419S mutant fragment was digested, purified, and ligated into pKK223-3 as

described for the C-terminal mutants.

Mutant C408S was also constructed using a single PCR procedure.

However in this case the N-terminal half of the gene was amplified using the

mutant primer, 7. Primer 7 in analogous fashion to primer 5, also spanned the

unique Bgl II site of the RTPR gene. It was used in combination with a primer, 8,

which is complementary to the extreme N terminus of the RTPR gene sequence.

In addition to encoding the first 24 bases of the RTPR gene, primer 8 contained
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an EcoRI restriction site upstream of an E. coli consensus ribosome binding site.

Subsequent to amplification as already described, the resulting fragment was

digested with EcoRI and Bgl II. Upon purification from a 1% agarose gel using

USBioclean, this N-terminal EcoRI/Bgl II fragment and the C-terminal

BglII/Hind III fragment of RTPR from plasmid 3 were ligated into

EcoRI/HindIII-digested pKK223-3.

Cysteine 119 could not be easily accessed by a single PCR reaction because

it does not lie near a unique restriction site in the RTPR gene. It was therefore

necessary to perform two PCR reactions in order to amplify the mutant DNA

such that both of its ends contained unique restriction sites. The conditions for

the first PCR reaction were as previously described using a mutant primer, 9, and

an alternate strand primer 10. The first PCR reaction introduced the mutation at

C119, and amplified the region of the RTPR gene between C119 and the unique

Bgl II restriction site (bp 340-1229). The product was purified from a 1% agarose

gel and used as a primer in combination with primer 8 in a second PCR reaction.

The conditions for the amplification were as described above, except that the

concentration of the primers was 0.1 tM. The product of this second PCR

reaction, which amplified the N-terminal region of the gene from the EcoRI site to

the Bgt II site, was purified from a 1% agarose gel using USBioclean, and digested

with EcoRI and Bgl II. This E c oRI/Bgl II fragment and the C-terminal

Bgl II/HindIII fragment from plasmid 3acl, were then ligated into EcoRI/HindIII-

digested pKK223-3.

Mutant C305S was made with the Oligonucleotide-directed in vitro

Mutagenesis system (version 2.1) from Amersham, using the mutant primer, 11.

The mutagenesis was carried out on a 1685 bp EcoRI/Sph I fragment cloned into

M13mpl8. Subsequent to mutagenesis as described by the manufacturer, dsM13

containing the mutated RTPR fragment was isolated by standard methods and
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purified on a Qiagen plasmid Mini I column according to the manufacturer's

directions. The mutated codon was located on a 351 bp fragment defined by an

upstream Bgl II site, and a downstream Not I site. This fragment was isolated

subsequent to digestion with these restriction enzymes and electrophoresis in a

1% agarose matrix. Upon purification using USBioclean, this BglII/NotI

fragment was ligated into pSQUIRE from which the wt Bgl II/Not I fragment had

been removed.

The integrity of each mutant sequence was verified using the dideoxy

chain-termination method of Sanger (Sanger et al., 1977) in combination with the

dsDNA Cycle Sequencing system from GIBCO/BRL. Primers, which were

labeled with [y-32 P]ATP, were 21-24 bases in length, and spaced approximately

150 bp apart. The entire PCR-amplified portion of the mutated gene sequence of

each mutant was sequenced. In the case of the C305S mutant, the 351-bp

Bgl II/Not I fragment was sequenced.

Growth and Expression of Mutants

Plasmid pSQUIRE containing the appropriate mutant was transformed

into E. coli JM101 and grown to saturation (10-12 h) in Luria broth supplemented

with ampicillin (50 tg/mL). No isopropyl thio-[-D-galactoside was needed to

induce the expression of RTPR. The mutant RTPRs were isolated by procedures

identical to that which was previously described for wild type (wt)-RTPR

(Chapter 3) except that care was taken to insure that the column resins had never

previously been used to isolate the wt protein.

Enzyme Assays Using [2-14C]CTP and NaOAc

RTPR or the appropriate mutant was exchanged into 2 mM HEPES

(pH 7.5) using a Sephadex G-50 column, and its concentration was determined
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by UV absorption (E1%=13.3 at 280 nm) (Blakley, 1978). A typical assay

contained in a final volume of 510 gL: 50 mM HEPES (pH 7.5), 4 mM EDTA, 1 M

NaOAc, 30 mM DTT, 1 mM [2-14C]CTP (specific activity 7.5x105-

1.5x106 cpm/gmol), 8 gM AdoCbl, and 0.10-0.12 nmol of wt or mutant RTPR.

Alternatively, DTT was replaced with TR (108 rM), TRR (0.5 pM), and NADPH

(2 mM). The reaction mixture was incubated for 5 min at 37°C, and an aliquot

(100 AL) containing everything except AdoCbl was removed at the zero time

point. All assays were carried out in the dark under dim red light, and at various

times subsequent to the addition of AdoCbl, a 100 pL aliquot was removed and

quenched in 200 gL of 2% perchloric acid. The contents were neutralized with

180 pL of 0.2 N NaOH and 50 pL of 0.5 M Tris-HCl, pH 8.5 / 1 mM EDTA.

Subsequent to the addition of 10 U of CIP, the reaction was incubated at 37°C for

1.5 h. To each reaction vial was added 30 iL of carrier cytosine and dC

(120 nmol), and the reaction was diluted to -1.5 mL with H20. Each reaction

was loaded onto 0.75x7 cm AG1-X2 columns (borate form, 50-100 mesh)

prepared by the method of Steeper and Steuart (1970). Each column was washed

with 12 mL of H 20, and a 1-mL portion of the eluate was subjected to

scintillation counting. A 10-mL aliquot of the remaining 11 mL was concentrated

to -1 mL for reverse phase HPLC analysis using an Econosil C18 column with

H2 0 as the eluate. The column was washed with H2 0 at a flow rate of

1 mL/min, and 1-mL fractions were collected and analyzed by scintillation

counting. Cytosine and dC eluted isocratically in H20 at 7 and 20 min

respectively.

Enzyme Assays Using [2-1 4C]CTP and Allosteric Effector

Enzyme reaction mixtures were identical to that described above except

that NaOAc was replaced with 0.12 mM dATP and 1 mM MgCl2. Subsequent to
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the addition of AdoCbl to initiate the reaction, 100-gL aliquots were removed at

various time intervals and quenched in 50 gL of 2% perchloric acid. The contents

were neutralized with 45 pL of 0.2 N NaOH and 20 gL of 0.5 M Tris-HCl, pH

8.5 / 1 mM EDTA. CIP (5U) was added, and the reaction mixture was incubated

at 37°C for 1.5 h, and then analyzed for cytosine and dC formation as described

above.

Single-Turnover Experiments with Mutants C731S, C736S, and C731&736S

Wt- RTPR or the appropriate mutant (37 nmol) was pre-reduced (in a total

volume of 200 ,tL) for 20 min at 37°C with 30 mM DTT in 50 mM HEPES

(pH 7.5). This mixture was loaded onto a Sephadex G-50 column (0.75x7 cm)

equilibrated in 2 mM HEPES (pH 7.5) to remove the DTT. Fractions containing

protein (A280 nm) were pooled and concentrated. A 50-kL aliquot (9-12 nmol)

was added to the reaction mixture which contained in a final volume of 510 gL:

50 mM HEPES (pH 7.5), 4 mM EDTA, 1 mM [2-14C]CTP (specific activity

1.4x10 6 cpm/gmol), 0.12 mM dATP, 1 mM MgC12 and 50 tM AdoCbl.

Alternatively, 1 M NaOAc replaced the dATP and MgCl2. The reaction mixture

was incubated for 5 min at 37°C, and an aliquot (100 tL) containing everything

except AdoCbl was removed at the zero time point. Subsequent to the addition

of AdoCbl, 100-gL aliquots were removed at 1, 3, 10, and 20 min, quenched and

analyzed as described above.

Characterization of Oxidized RTPR

Pre-reduced RTPR (29 nmol) was added to a solution containing in a final

volume of 200 pL: 50 mM HEPES (pH 7.5), 4 mM EDTA, 1 mM CTP, 50 IM

AdoCbl, and 1 M NaOAc, and pre-incubated for 2 min at 37°C. The reaction was

initiated with AdoCbl and incubated for 3 min at 37°C. It was then loaded onto a
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Sephadex G-50 column (0.75x7 cm) equilibrated in 2 mM HEPES (pH 7.5). The

protein-containing fractions were pooled, and concentrated to -200 IL in a

Centricon 30 ultrafiltration device. A 150-gL aliquot (17 nmol) of this enzyme

was added to the single-turnover assay solution described above containing

1 mM [2-14C]CTP (specific activity 1.4x106 cpm/mol), and 1 M NaOAc.

Subsequent to the removal of a 100-gL aliquot (t=0 min), the assay was initiated

by the addition of AdoCbl. Additional 100-ItL aliquots were removed at 10, 20,

30, and 40 min, and quenched and worked up as described above.

Determination of Product Production with Mutants C119S and C419S

The assay contained in a final volume of 250 kL: 25 mM HEPES (pH 7.5),

1 M NaOAc, 4 mM EDTA, 1 mM [2-14C]CTP (specific activity

1.2x106 cpm/,mol), 20 tM TR, 0.12 tM TRR, 0.2 mM NADPH, 2.5 nmol of C419S

or C119S, and 80 gM AdoCbl. Alternatively, DTT (30 mM) replaced the

TR/TRR/NADPH reducing system, and/or dATP (0.12 mM) and MgC12 (1 mM)

was substituted for NaOAc. The reaction mixture was incubated for 5 min at

37°C, and an aliquot containing everything except AdoCbl, which was used to

initiate the reaction, was removed at the zero time point. After a 30 min

incubation at 37°C for C119S or a 60 min incubation for C419S, another 100-gL

aliquot was removed, quenched, and worked up as already described depending

on whether the assay was conducted with NaOAc or with dATP and MgCl2.

Analysis of the Ability of C408S to Catalyze Nucleotide Reduction

The assay solution contained in a final volume of 310 tL: 50 mM HEPES

(pH 7.5), 4 mM EDTA, 50 ,uM AdoCbl, 1 mM [2-14C]CTP (specific activity

1.5x106 cpm/,umol), 24 kM C408S RTPR, 0.12 mM dATP, 1 mM MgC12, 108 kM

TR, 0.5 kM TRR, and 2 mM NADPH. Alternatively, dATP and MgC12 were
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replaced with 1 M NaOAc, and/or TR/TRR/NADPH was replaced with 30 mM

DTT. Subsequent to a 5-min pre-incubation at 37°C, a 100-L aliquot was

withdrawn (t=0), and the reaction was initiated with the addition of AdoCbl.

Additional 100-RL aliquots were removed at 10 and 30 min, and quenched for

2 min in a boiling water bath. Cytosine and dC production was analyzed by

HPLC as described above.

Circular Dichroism Spectra

Circular dichroism (CD) spectra were recorded on an AVIV Model 62DS

Circular Dichroism Spectrometer (Lakewood, N.J.) attached to a CompuAdd 320

computer. Samples included 9 tM wt RTPR or 12 gM mutant C408S in 10 mM

potassium phosphate buffer (pH 7.2) / 1 mM DTT. A baseline containing all

components except protein was run, and then the protein spectrum was obtained

from 200-260 nm at 37°C using a 0.5 mm path-length cell.

Characterization of C305S RTPR

The assay solution contained in a final volume of 510 L: 50 mM HEPES

(pH 7.5), 4 mM EDTA, 2 mM NADPH, 108 gM TR, 0.5 jiM TRR, 1 mM

[2-1 4 C]CTP (specific activity 1.5x106 cpm/Lmol), 1 M NaOAc, 50 M AdoCbl,

and 0.2 M enzyme. Subsequent to a 5-min incubation at 37°C, a 100-IL aliquot

was removed (t=0), and the reaction was initiated with the addition of AdoCbl.

Additional 100-tL aliquots were removed at 2, 4, 6, and 8 min, and quenched in

2% perchloric acid. Cytosine and dC production was analyzed by HPLC as

described above. Assays were also performed in which NaOAc was replaced

with dATP (120 M) and MgCl2 (1 mM).
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Results

Preparation of Site Directed Mutants

Five cysteines have been targeted for mutagenesis so that a comparison

can be made between their phenotypes and those of the corresponding E. coli

mutants. Cysteines 119, 408, 419, 731, and 736, were converted to serines using

the PCR reaction as described in detail in the methods. Additionally, cysteine

305 was changed to a serine using an in vitro mutagenesis kit from Amersham.

All mutant plasmids were transformed into E. coli JM101, and individual

colonies were screened for the expression of RTPR by SDS/PAGE of saturated

overnight cultures (Laemmli, 1970). The integrity of each mutant was confirmed

by DNA sequencing. Mutant C736S was observed to contain an additional

mutation in which nucleotide 1619 was converted from an A to a T. This change

resulted in the conversion of amino acid 540 from a glutamine to a leucine. All

other mutants had the expected sequences. The mutant proteins were purified as

described previously and portrayed the same characteristics as the wt protein

throughout each step of the purification. Each mutant protein, except for C305S,

was purified to > 95% homogeneity, with typical yields ranging from 50-80 mg

per 500 mL of a saturated overnight culture.

At the outset of determining the phenotypes of each of these mutants, it

was noticed that there was variability in the level of product production among

different preparations of the same mutant protein when the assays were

performed with [14C]CTP of high specific activity. Control experiments revealed

that the variability was the result of small amounts of wt RTPR contamination in

the mutant preparation. This contamination resulted from isolating mutant

proteins on resin that was previously used to isolate wt RTPR. Although the

resin was routinely cleaned with high concentrations of various salts (1 M
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potassium phosphate or NaCl) these conditions were not stringent enough to

remove the trace amounts of wt protein. These results highlight the degree of

prudence that must be exercised when attempting to set very low limits of

detection for mutants that are expected to have no catalytic activity. The method

of cleaning the resin was therefore changed to mild acid and/or base washes;

and as a precaution, each distinct mutant was isolated on resin dedicated to that

particular protein.

RTPR Assays

One of the many unique aspects of both the L. leichmannii and E. coli

reductases is the pattern of allosteric regulation that governs which of the 4

nucleotide substrates is reduced (Reichard, 1988). The L. leichmannii enzyme

contains a single substrate site which binds each of the four ribonucleoside

triphosphates, and a separate allosteric site which binds TTP, dGTP, dATP, and

dCTP. Appropriate effector binding enhances the rate of substrate turnover -5

fold (Vitols et al., 1967a). The binding of dGTP stimulates the reduction of ATP.

Likewise, dATP stimulates dCTP production, TTP stimulates dGTP production,

and dCTP stimulates dUTP production (Beck, 1967; Chen et al., 1974). This

elaborate array of allosteric control of substrate turnover is abrogated with the

addition of high concentrations of certain ions such as acetate (Jacobsen &

Huennekens, 1969). One molar NaOAc allows each of the four NTPs to be

reduced to dNTPs in the absence of any effectors with turnover numbers that are

almost identical to those observed in the presence of effectors.

In addition to the requirement for an allosteric effector, RTPR also requires

a reductant that rereduces the active site disulfide generated concomitant with

substrate reduction. It is generally believed that in vivo, TR provides RTPR with

reducing equivalents which come ultimately from NADPH in a process that is
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mediated by the flavoprotein TRR (Moore et al., 1964). In vitro however, the

E. coli TR (which has been cloned and overexpressed) can serve this purpose.

Alternatively, reducing equivalents can be provided by small dithiol molecules

such as dihydrolipoic acid and dithiothreitol (Beck et al., 1966).

Because of the complexity of the reaction with regard to the mechanism of

substrate reduction and allosteric activation, the investigation of ribonucleotide

reduction presented herein is under a defined set of conditions. The reduction of

CTP is investigated in the presence of dATP or sodium acetate, using the E. coli

TR or DTT as the reductant. Each mutant (or wt protein) is thus assayed under

four different sets of conditions. The choice of [14C]CTP as substrate is dictated

by the ease of product analysis, and this substrate was synthesized from the

corresponding [14C]CDP using pyruvate kinase in conjunction with PEP as the

phosphate donor (Worthington, 1988).

Characterization of C731S, C736S, and the Double Mutant C731&736S

Previous studies of Mao et al. (1989; 1992a) using C754S and C759S R1

mutants of the E. coli RDPR suggested that the function of these C-terminal

cysteines was to shuttle reducing equivalents from TR into the active site via

disulfide interchange. The similarity in sequence between cysteines 754 and 759

of the E. coli RDPR and the C-terminal cysteines, 731 and 736 of RTPR, in

conjunction with biochemical studies of Lin et al. (1987) suggested that these

cysteines in the Lactobacillus enzyme might serve a similar function. If indeed

these cysteines provide a pathway for TR to rereduce the active site disulfide of

RTPR, then two phenotypic characteristics would be predicted. In the presence

of the TR/TRR/NADPH reducing system, a single turnover of CTP to dCTP

would be expected. Subsequent turnovers would be prohibited since the vehicle

for shuttling reducing equivalents into the active site has been destroyed. On the
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other hand, small organic dithiols such as DTT or dihydolipoic acid might be

expected to bypass these C-terminal cysteines providing reducing equivalents

directly to the active site disulfide.

Our model predicts that for wt RTPR under single-turnover conditions a

maximum of 2 equivalents of dCTP should be produced if the C-terminal

cysteines can completely rereduce the active site disulfide subsequent to

production of the first dCTP. In the same fashion, each of the C-terminal

mutants should only be capable of producing 1 dCTP. This prediction was tested

by pre-reducing the enzyme with DTT, and then removing the reductant by size-

exclusion chromatography. The enzyme was then treated with the substrate in

the absence of either reductant, and in the presence of dATP or NaOAc. These

experiments indicate that C731S, C736S, and C731&736S RTPRs all result in the

production of 0.6-0.8 equivalents of dCTP (Table 4.2). The wt RTPR on the other

hand results in the production of 1.4 equivalents of dCTP. The substoichiometric

amounts of dCTP for each of the mutants and the wt RTPR relative to the

predicted value is not understood. From control studies it is believed that this is

not a consequence of partial oxidation of the pre-reduced enzyme before the

initiation of the one-turnover experiment. It may be significant that in analogous

experiments using the E. coli RDPR 2.6 dCDPs are observed per R1 dimer in

which four sets of cysteines are available to produce a maximum of 4 dCDPs.

For each of the E. coli C-terminal mutants, as well as the C-terminal double

mutant, equivalents of dCDP ranged from 0.9-1.2 in single-turnover experiments

(Mao et al., 1989; Mao et al., 1992b). Despite the fact that the number of

equivalents of dNTP per equivalent of enzyme is lower than expected, it is

significant that in each C-terminal mutant, the number is approximately 1/2 of

that observed with the wt-RTPR.
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Table 4.2: Phenotypes of the C-terminal RTPR mutants.

Specific Activity Specific Activity
DTT TR/TRR/NADPH Single Turnover

Protein (condition) (gtmol/min/mg) (pgmol/min/mg) (equiv of dCTP)

Wildtype (acetate) 1.5a 1.2 1.4

Wildtype (dATP) 0.1 1.0 1.5

C731S (acetate) 0.9 < 5x10-5 0.8

C731S (dATP) 0.095 < 5x10-5 0.8

C736S (acetate) 1.6 < 5x10-5 0.6

C736S (dATP) 0.13 < 5x10-5 0.6

C731 & 736 (acetate) 1.8 < 5x10-5 0.7

C731 & 736S (dATP) 0.09 < 5x10-5 0.7

afreezing and thawing of RTPR results in loss of activity from 1.5 to 1.0 U/mg

Experiments carried out in the presence of reductant corroborate the

above hypothesis. Wt RTPR has a specific activity of 1-1.2 gmol-min-l.mg -1

when assayed in the presence of the thioredoxin reducing system using either the

allosteric effector (dATP) for CTP reduction, or in the presence of NaOAc.

Subsequent to the initial turnover, each of the C-terminal C--S mutants produce

dCTP at a rate that is less than 5x10-5 that of the wt RTPR. This rate represents

the lower limit of detection of this particular assay. When the assay is conducted

using DTT as the reductant, the rate of turnover for each of the mutants under a

defined set of conditions is similar to that of the wt protein. These results

provide strong support for the integrity of the enzyme (since it can generate

dCTP), and the role of the C-terminal thiols as redox shuttles.
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Studies of the kinetics of the single-turnover reaction using HPLC analysis

to examine product production provided some unexpected results (Figure 4.1).

After an initial burst of radioactivity, a second, much slower process occurs,

giving rise to biphasic kinetics. The amount of dCTP in the first time point

(1 min) however, is equivalent to the amount observed in the 20-min time point,

suggesting that nucleotide reduction is very fast. Based on HPLC analysis the

slow reaction is attributed to the production of cytosine and some yet

uncharacterized species which elutes at 14-15 min under the conditions described

in the methods section. This uncharacterized species is much more prevalent in

assays conducted in the presence of NaOAc, and is approximately equal to the

amount of cytosine observed after a 20-min incubation (Table 4.3). The amount

of cytosine and this uncharacterized peak is usually negligible in the first time

point of the assay, suggesting that it might be due to chemistry subsequent to

active site disulfide formation. In order to test this hypothesis, wt RTPR was

treated with substrate for 2 min at 37°C in a single-turnover experiment (absence

of reductant), and then the protein was separated from the small molecules by

size-exclusion chromatography. The pre-oxidized enzyme was then incubated

with the radioactive substrate and analyzed for the time-dependent production

of dCTP, cytosine, and the unknown species (Figure 4.2). After 40 min, 0.29 eq

of cytosine and 0.28 eq of the unknown species were produced, with no

detectable dC. The kinetics of cytosine and the unknown species are essentially

linear for the first 20 min, and then tapers off during the subsequent 20 min. The

structure of this unknown species is presently under investigation. A slow

formation of cytosine using oxidized E. coli RDPR has also been observed (G. Yu,

unpublished results). These results are also very similar to previous studies of

the interaction with C1UDP with oxidized E. coli RDPR. The oxidized enzyme

257



800

600

U 400U

200

A
Av
0 10 20 30

Time (min)

Figure 4.1: Time course for the production of dCTP under single-
turnover conditions using wt RTPR. The reaction was conducted as

described in the methods using (A) NaOAc, or ( ) dATP. HPLC

analysis for dCTP was performed on the 1 min and 20 min time
points.
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Table 4.3: Equivalents of dC, cytosine (cyt) and the mystery peak (Z) as a
function of time.

aEq=equivalents per mole of RTPR

also catalyzes formation of cytosine from C1UDP at 1/10 the rate of the reduced

RDPR (Ator & Stubbe, 1985).

Assays with C119S and C419S RTPR

Cysteines 119 and 419 are proposed to be the cysteines in the active site of

RTPR that are directly involved in substrate reduction. If indeed this is the case,

then the model presented herein would predict that upon mutating these amino

acids to serines and incubating the mutant enzymes with CTP, absolutely no

product (dCTP) should be produced. Detailed studies with the mechanism-
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1 min 20 min

Protein Eqa dC Eq cyt Eq Z Eq dC Eq cyt Eq Z
. . ... . ,... ....

(NaOAc)

wt 1.5 0.03 <0.01 1.4 0.2 0.2

C731S 0.8 0.02 <0.04 0.8 0.1 0.3

C736S 0.6 0.03 <0.03 0.6 0.2 0.3

C731&736S 0.7 0.02 <0.02 0.7 0.3 0.2

(dATP)N A M ~ ~~~~............... ...................... ......................... . ...........

wt 1.5 0.05 <0.01 1.6 0.4 <0.06

C731S 0.8 0.04 <0.04 0.8 0.2 <0.2

C736S 0.6 0.03 <0.03 0.6 0.2 <0.1

C731&736S 0.7 0.1 <0.04 0.7 0.3 <0.04
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Figure 4.2: Analysis of the production of cytosine and the mystery peak
with pre-oxidized wt RTPR. The reaction was carried out as described
in the methods section. HPLC analysis for dCTP, cytosine and the
mystery peak was carried out on the 40-min time point, and resulted in
0.29 eq of cytosine, 0.28 eq of the mystery peak, and no detectable dCTP.
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based inhibitor C1UTP, as well as with the C225S R1 and C462S R1 active site

mutants of the E. coli RDPR, suggest that in the event that 3' C-H bond cleavage

is uncoupled from the transfer of reducing equivalents to the substrate or

substrate analog, the substrate or analog becomes a mechanism-based inhibitor

of the enzyme (Harris et al., 1984; Ashley et al., 1988; Mao et al., 1989; Mao et al.,

1992a; Mao et al., 1992b; Mao et al., 1992). A set of experiments under various

assay conditions was therefore carried out to determine if cytosine or dCTP is

produced when these mutants are incubated with RTPR. The results of these

experiments are summarized in Table 4.4. As predicted for cysteines providing

reducing equivalents required for substrate reduction, no dCTP is produced that

is above the experimental limit of detection (0.02-0.08 dCTPs per equivalent of

RTPR).

Furthermore, based on the previous studies with C1UTP (Scheme 4.1),

removal of the active site reducing equivalents should result in conversion of

CTP to 3' keto-2'-deoxycytidine 5'-triphosphate which would subsequently

collapse nonenzymatically to generate cytosine, PPPi, and a 2 methylene-3-(2H)

furanone which could alkylate the enzyme. The alkylation has been shown to be

accompanied by a AA320 nm on the protein. As indicated in Table 4.4, cytosine

release is observed under all assay conditions. In addition isolation of the

protein from the assay mixtures containing the TR reducing system, revealed an

absorption feature at 320 nm (data not shown). From the numbers in Table 4.4, it

can be seen that the amount of cytosine released with DTT as the reductant is

several fold greater than that observed with the TR reducing system under the

same set of conditions. Again, based on the previous studies with C1UTP, this

difference is attributed to the ability of DTT to trap the highly reactive 2

methylene-3-(2H) furanone before it alkylates the enzyme, allowing further

turnovers to proceed.
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Table 4.4: Phenotypes of the active site C-S mutants: Equivalents of product
per equivalent of RTPR.

Lastly, when either C419S or C119S is treated with CTP in the presence of

DTT under anaerobic conditions, AdoCbl is partially destroyed resulting in the

production of cob(II)alamin (Bl2r), which can be observed

spectrophotometrically at 477 nm (data not shown). The details of the cofactor

destruction are currently under investigation; however, it is analogous to loss of

the tyrosyl radical with the corresponding E. coli active site mutants (Mao et al.,

1989; Mao et al., 1992a) (Scheme 4.2). The ability to catalyze cofactor destruction

in conjunction with the observation of cytosine release, suggests that each of

these mutants is structurally intact, as they are able to bind AdoCbl and CTP, and
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Mutant (equivalents of) j (equivalents of)

(Assay condition) Cytosine Deoxycytidine

C119S (30 min at 37°C)

DTT & NaOAc 14 <0.02

DTT & dATP 62 <0.02

TR/TRR & dATP 15 <0.02

TR/TRR & NaOAc 0.6 <0.08

C419S (60 min at 37°C)

DTT & NaOAc 10 <0.02

DTT & dATP 55 <0.02

TR/TRR & dATP 19.7 <0.02

TR/TRR & NaOAc 2.5 <0.02



catalyze chemistry ascribed to abstraction of the 3' hydrogen atom of the

substrate. The inability of these mutants to catalyze dCTP production, strongly

supports their function as the direct providers of reducing equivalents during

substrate reduction.

Scheme 4.2: Interaction of mutant C225SR1 of the E. coli reductase with cytidine
diphosphate.

P

3 H2 0

cytosine
RDPR +

RDP + Mtyrosyl radical loss

_25R _laai of RI int 2 I

Enzyme Inactivation
(320 nm absorbance)

Characterization of C408S RTPR

Cysteine 408 of RTPR was targeted for mutagenesis on the basis of

sequence homology with C439 of the E. coli RDPR (Chapter 2). Previous

mutagenesis studies on the E. coli enzyme have suggested that C439 might be the

amino acid residue responsible for initiating the reduction process by abstracting

the 3' hydrogen atom of the substrate (Mao et al., 1992). If C408 of RTPR is the

counterpart of C439 of RDPR, then the above model would predict that

absolutely no dCTP or cytosine should be produced, since both require 3' C-H
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bond cleavage for their production. The reaction of C408S RTPR with CTP was

therefore investigated using both reductants in combination with either the

allosteric effector or NaOAc. Under all four sets of conditions, neither dCTP nor

significant amounts of cytosine was produced in a 30 min incubation at 37°C.

Given the large amounts of enzyme (24 kM) and the use of CTP of high specific

activity, this mutant makes product at a rate that is less than 2x10-5 times that of

the wt protein. This is the lower limit of detection in this assay. Thus, C408S

RTPR is inactive with respect to nucleotide reduction.

Given that C408S RTPR possesses no detectable activity for the ability to

catalyze nucleotide reduction, circular dichroism spectra of both wt RTPR and

mutant C408S RTPR were recorded to show that no gross structural

perturbations were responsible for the mutant's loss of activity. Both proteins

exhibited almost identical ellipticities when normalized for the amount of

enzyme used in each determination (Figure 4.3).

Characterization of C305S RTPR

As a control experiment to insure that the choice of mutants was not

fortuitous, C305 was converted to a serine. This mutant was partially purified

and was shown to have a specific activity -60% that of wt RTPR. Furthermore,

characterization of the products produced on interaction with CTP revealed only

dCTP.

Discussion

The cloning, sequencing, and expression of RTPR (Booker & Stubbe, 1993)

(Chapters 2 & 3) has allowed an investigation of the complex role of the cysteines

involved in nucleotide reduction using site-directed mutagenesis. The studies

presented in this paper, in conjunction with earlier studies on the E. coli RDPR,
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Figure 4.3: Circular dichroism spectra of mutant C408S RTPR and wt RTPR.

Wild-type RTPR (top spectrum) or C408S RTPR (bottom spectrum) were diluted

to 9 tM and 12 gM respectively in 10 mM potassium phosphate buffer, pH 7.2

/1 mM DTT. Spectra were recorded from 200-260 nm at 37°C as described in the

methods section.
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provide strong support for a model in which five cysteines are required for

nucleotide reduction in each of these enzymes (Figure 4.4). The active site thiols

of RTPR and their E. coli counterparts are proposed to be C408 (C439), C119

(C225), and C419 (C462). Cysteines 119 and 419 are the residues which become

oxidized concomitant with substrate reduction. Cysteine 408 is postulated to be

oxidized to a thiyl radical by the products resulting from the homolysis of the

carbon-cobalt bond of AdoCbl. It is this thiyl radical which is then proposed to

initiate substrate reduction by abstracting its 3' hydrogen atom. Two additional

cysteines, C731 and C736 (C754 and C759 in the E. coli RDPR) are proposed to

shuttle reducing equivalents into the active site disulfide via disulfide

interchange from the in vivo protein reductant TR.

Both the E. coli and L. eichmannii reductases have C-terminal tails with

similar sequence contexts. The studies with the C-- S mutants of these

RTPR: DLELVDQTD_C 7 31EGGAC 736PIK

RDPR: DLVPSIQDDGC 754ESGAC 759KI

residues, besides providing strong support for their function, also shed light on

the protein's dynamics. Comparison of the results using TR and DTT as site.

Second, dATP, the allosteric effector required for CTP reduction, modulates the

flexibility of the C-terminal tail as evidenced by a drop in the reduction rate to

1/10 of that observed in the presence of NaOAc. Similar results have previously

been reported with the E. coli RDPR and these same reductants, again indicating

a dynamic C-terminal tail in both of these systems (Mao et al., 1992b).

As indicated earlier, the L. leichmannii and E. coli enzymes display very

little sequence homology with respect to each other (Booker & Stubbe, 1993)

(Chapter 2). This hampered the process of deciding which of the ten cysteines in
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Figure 4.4. Postulated model for the role of five cysteines in nucleotide

reduction. Sequence homology searches with other B12-requiring enzymes

suggest that the AdoCbl binding site lies between amino acids 169 and 413.
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reductants suggest that this C-terminal tail is flexible, and that the flexibility is

altered by the presence of allosteric effectors. For example, DTT can provide

reducing equivalents directly to the active site cysteines, by-passing the

C-terminal tail which must be sufficiently dynamic to allow access to the active

RTPR might be directly involved in the reduction of the NTP substrate. An

important clue to their assignment came from our earlier biochemical studies

which suggested that Cl19 was able to undergo disulfide interchange with the

C-terminal cysteines (Lin et al., 1987). The basis for selecting C419, however, was

not as obvious and requires additional comment. C419 was targeted based on its

primary sequence relationship relative to C408, 11 amino acids displaced

towards the C-terminal end. The corresponding cysteine in the E. coli RDPR,

C462, is 23 amino acids displaced from C439 in the same sense. A comparison of

the dinuclear-iron center reductases from 11 sources suggests that even though

C462 is conserved, its spacing relative to C439 is variable (Eriksson & Sj6berg,

1989; Chakrabarti et al., 1993). In human, yeast, and vaccinia virus RDPRs, these

cysteines are separated by 15 residues, while in the Epstein Barr virus, they are

displaced by 14 residues. The C419NL sequence found in RTPR has also been

identified in 9 of 11 non-heme iron-dependent reductases, with the E. coli and

phage T4 reductases having the sequence CTL. Thus, C419 and C119 were

targeted for mutation, the former being considered as the active site equivalent to

E. coli C462. As a control experiment, an additional cysteine, 305, was also

mutated to a serine.

The phenotypes of the serine mutants created from the two cysteines (119,

419) proposed to directly provide reducing equivalents to the nucleotide

substrate are very similar to those previously reported for the corresponding

E. coli RDPR equivalents (225 and 462). In contrast to these previous studies,

however, the present studies are unambiguous, as our heterologous expression
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system has avoided problems associated with contaminating wt protein. The

absence of dCTP and the presence of cytosine when these mutants are incubated

with CTP, indicates as our mechanism has proposed, an uncoupling of the

reduction step from the initiation step involving hydrogen atom abstraction from

the 3' position of the nucleotide (Chapter 1). The altered chemistry, including

cytosine release, which occurs when these steps are uncoupled has been well

documented (Mao et al., 1992a). The results in Table 4.4 and the control

experiment with C305S RTPR suggest that C419 and C119 are in fact in the active

site of RTPR.

The model in Fig. 4.4 also predicts that C408 should be close within three

dimensional space to C419 and C119. Its importance has been identified by

sequence context and by results with the E. coli C439S mutant (Mao et al., 1992).

As outlined above, this RTPR mutant is inactive with respect to catalysis of

RTPR: TNPC4 0 8 GEISLA

RDPR: SNLC439LEIALP

nucleotide reduction. The coenzyme B12-requiring reductases are unique in that

they catalyze two additional reactions which can be used as well to investigate

the importance of C408. The first reaction, which is the focus of Chapter 5, is the

equilibration with water of the 5' methylene hydrogens of AdoCbl. If the

cofactor is syntheiszed with tritium at the 5' position, the enzyme catalyzes the

release of all of the tritium to water (Abeles & Beck, 1967; Hogenkamp et al.,

1968). Both wt RTPR and mutant C408S were assayed for their ability to catalyze

this exchange (Chapter 5). Wt RTPR (0.06 nmol) catalyzes release of -5500 cpm

of 3 H2 0 in a 10-min incubation at 37°C. However, 6 nmol of mutant C408S

RTPR releases 60 cpm of 3 H20 in a 30-min incubation at 37°C, which is virtually
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indistinguishable from the results with the control in the absence of enzyme. The

results indicate that C408S RTPR has an activity for the exchange reaction that is

< 0.006% that of wt RTPR. The second reaction catalyzed by RTPR is a slow

decomposition of the cofactor to give 5'-dA and cob(II)alamin (B12r) when the

experiment is conducted under anaerobic conditions (Yamada et al., 1971). The

ability of mutant C408S RTPR to catalyze this slow cob(II)alamin formation was

investigated by Stuart Licht in the Stubbe laboratory. In a reaction containing

120-150 tM wt RTPR or mutant C408S RTPR, 100 gM AdoCbl, and the

TR/TRR/NADPH reducing system, 0.56 equivalents of Bl2r are formed with wt

RTPR after a 75-min incubation at 37°C, whereas no B12r is detectable with

mutant C408S. The limit of detection for this assay is 0.04 equivalents of B12r.

Thus, C408S RTPR is unable to catalyze two additional reactions characteristic of

wt-RTPR.

To conclude from these studies that C408 is essential for catalysis, it is

necessary to demonstrate that the mutant protein is properly folded. As

indicated above, the circular dichroism spectra of wt RTPR and mutant C408S

are virtually indistinguishable. A more definitive experiment to address the

folding of C408S RTPR is to examine its ability to bind AdoCbl, allosteric effector

(dGTP), and substrate. The ability of wt RTPR to catalyze a slow breakdown of

AdoCbl in the presence of dNTP and DTT has previously precluded an accurate

determination of a binding constant for the cofactor. The observation that C408S

RTPR does not catalyze this decomposition made it a prime candidate to allow a

measurement for the first time of a Kd for AdoCbl. Efforts by Stuart Licht to

make this determination using filter binding assays (Orm6 & Sjoberg, 1990) were,

however, unsuccessful. The data were very scattered, suggesting that the Kd is

high.
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Previous studies of Yamada et al. (1971) had indicated that wt-RTPR can

bind the putative intermediates in the RTPR catalyzed reaction [cob(II)alamin

and 5'-dA] in the presence of dGTP and DTT. These results suggested that the

apparent low Kms for AdoCbl may be a reflection of tight binding of the

"intermediates," and not the intact cofactor. C408S RTPR's inability to catalyze

formation of cob(II)alamin is perhaps due to the required coupling of this carbon-

cobalt bond homolysis to formation of the protein radical (Xo), where X is

proposed to be C408. This uncoupling would then prevent detection of tight

binding of AdoCbl; but if the model is correct, then binding of cob(II)alamin and

5'-dA should be detected. This hypothesis was tested by Stuart Licht. Mutant

C408S RTPR was incubated with cob(II)alamin, 5'-dA, and dGTP, and then

passed through a Sephadex G-50 column, and the UV-vis spectrum of the protein

was recorded (Figure 4.5). The results show that -0.5 equivalents are bound to

the mutant protein and control experiments reveal that both 5'-dA and dGTP are

required for this binding (Figure 4.5). A similar experiment with wt-RTPR

revealed 0.25 equivalents of cob(II)alamin bound. The quantitation and

structural characterization of the cob(II)alamin was carried out by allowing it to

oxidize to aquocobalamin (Figure 4.5). These studies establish the ability of

C408S RTPR to bind cofactor in its "active" form as well as the effector dGTP.

Binding of the latter was confirmed by Stuart using equilibrium dialysis with

[1',2'- 3 H]dGTP. A Scatchard plot revealed a Kd of 4 + 1.3 RM and 0.88 + 0.3

binding sites. These results compare with values of 5.8 + 0.4 .iM and 0.79 + 0.06

for wt RTPR determined by the same procedure, and 1.73 + 0.07 gM and 1.07 +

0.02 previously determined for RTPR isolated from L. leichmannii (Singh et al.,

1977). It is unclear why less than one site is observed for the wt RTPR, although

Chen et al. (1974) observed 0.85 sites for dGTP using wt enzyme at 25°C. It is

interesting to note that this number is similar to the number of active sites
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Figure 4.5. Analysis of cob(II)alamin binding to C408S RTPR. (A) Cob(II)alamin

binding in the presence of dGTP and 5'-dA. Additional spectra were obtained

2 min (1), 4 min (2), 6 min (3), 8 min (4), 10 min (5) and 12 min (6) after the initial

scan. (B) Cob(II)alamin binding in the absence of dGTP, and (C) in the absence

of 5'-dA.
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determined by the single-turnover experiments with the C-terminal mutants of

RTPR. Thus, while C408S RTPR possesses no detectable catalytic activity, it is

still capable of binding effectors and putative intermediates resulting from

AdoCbl. The coupling of carbon-cobalt bond homolysis of AdoCbl to formation

of the protein radical (Scheme 4.3) with the wt protein, could explain the

observed Km of 0.3 !tM for AdoCbl (Blakley, 1978) even though the Kd for

AdoCbl, under similar conditions is too large to measure. While Kds have not

yet been measured for 5'-dA or cob(II)alamin binding to C408S-RTPR due to the

unavailability of labeled materials, these binding studies, the ability to bind

effector, dGTP, and the inability of C408S RTPR to catalyze any reactions,

suggest that C408 plays an essential role in catalysis and is consistent with its role

as the X· in our proposed mechanism.

These studies support our hypothesis that AdoCbl required by RTPR for

catalysis is equivalent to the R2 subunit of the E. coli RDPR. Studies of Tamao

and Blakley (1973) have established that subsequent to AdoCbl binding, RTPR

catalyzes homolysis of its carbon-cobalt bond resulting in the production of

cob(II)alamin and a putative 5'-deoxyadenosyl radical (5'-dAo). This state of

RTPR would be equivalent to the tyrosyl radical and dinuclear-iron center of R2

of theE. coli RDPR. In neither case, however, is the initially generated radical

responsible for hydrogen atom abstraction from the substrate. In the case of

RDPR, the x-ray structure and biophysical studies suggest that nucleotide

reduction is initiated by long range e-/H + transfer from R1 to R2 to generate a

thiyl radical of C439 (Stubbe, 1990b; Mao et al., 1992b; Nordlund & Eklund, 1993;

Uhlin & Eklund, 1994). Our studies on RTPR required, as with the E. coli RDPR,

that the putative 5'-dA* does not directly mediate hydrogen atom abstraction

from the substrate (Ashley et al., 1986). The mutagenesis studies reported herein
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Scheme 4.3. Model for the generation of a protein radical upon binding AdoCbl.
XH is proposed to be C408 of RTPR.

suggest that the putative 5-dAo generates a protein radical, C408, which then

initiates catalysis.

What is striking about the studies reported herein is the remarkable

similarities of the phenotypes of the five mutants of RTPR in comparison with

those of RDPR. Inspite of the facts that the quarternary structures, primary

structures, and cofactor requirements for these reductases are unique, they

appear to have evolved strikingly similar chemical mechanisms as well as similar

roles for the five cysteines in catalysis. These data provide strong support for our

original hypothesis that the cofactors act as radical chain initiators, generating a

protein radical sufficiently removed from the cofactor binding site such that the

redox-active cysteines required for the reduction process would not interfere

with the radical-initiator cofactor.
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Chapter 5:

A Reinvestigation of the Adenosylcobalamin-

dependent Exchange Reaction Catalyzed by the

Ribonucleoside Triphosphate Reductase from

Lactobacillus leichmannii
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The studies outlined in Chapter 4 provide a compelling model for the

reduction of ribonucleotides to 2'-deoxyribonucletides by the L. leichmannii

reductase, and lend support to a similar model that is proposed for the

ribonucleoside diphosphate reductase (RDPR) isolated from E. coli (Mao et al.,

1992a; Mao et al., 1992b; Mao et al., 1992c). In both cases, five cysteines are

believed to be involved. Two cysteines, which are proposed to be located in

the active site, deliver reducing equivalents directly to the substrate molecule

that is undergoing reduction and are themselves oxidized to a disulfide bond

upon each turnover event. Two additional cysteines are believed to be located

on the exterior of both the E. coli and L. leichmannii reductases, and are

proposed to deliver reducing equivalents from the thioredoxin/thioredoxin

reductase/NADPH reducing system into the active site disulfide in order that

multiple turnovers can be achieved. A fifth cysteine is proposed to initiate

substrate turnover by abstracting the 3' hydrogen atom of the substrate. This is

hypothesized to occur via a thiyl radical (Xo) which is presumably formed

upon a one-electron oxidation of the cysteine in a process that is initiated by

the cofactor. The mechanism as well as the dynamics of how this reaction

takes place are unclear. In the case of the RDPR from E. coli, structural

information is now becoming available and may offer clues as to how this

radical transfer might be accomplished (Nordlund & Eklund, 1993; Uhlin &

Eklund, 1994). No such information is presently available or even impending

for any of the AdoCbl-dependent reductases. As a tool for trying to understand

this process, we have undertaken a study of a second reaction which is unique

to the AdoCbl-dependent ribonucleotide reductases, and which may be

relevant to the generation of Xo. This reaction is the equilibration with H2 0

of the 5' methylene hydrogens of coenzyme B12 (AdoCbl) (Figure 5.1).

285



Figure 5.1: Structure of Coenzyme B12. The 5' methylene carbon of

5'-deoxyadenosine is surrounded by a rectangle. The hydrogens on this carbon

undergo an enzyme-mediated equilibration with H20. The four pyrroline

rings are labeled A, B, C, and D, and the chiral centers of the corrin macrocycle

are denoted with asterisks. Figure adapted from Vitamin B12 (1979) (Zagalak &

Friedrich, 1979).
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This exchange reaction was first demonstrated in studies by Beck,

Abeles, and Robinson, which were designed to show a commonality in

function of the cofactor in AdoCbl-dependent enzymes (Beck et al., 1966a).

However, unlike the enzymes dioldehydrase and ethanolamine ammonia

lyase (Babior, 1968), the L. leichmannii ribonucleotide reductase (RTPR)

catalyzed an enzyme-dependent transfer of tritium from the 5' methylene

hydrogens of [5'-3H]AdoCbl to H2 0, and not to the corresponding product.

This reaction was shown to be dependent upon the presence of substrate (CTP)

and reductant (dihydrolipoate), and the omission of the allosteric effector

(dATP) had little effect on the amount of tritium transferred to H2 0 in a given

period of time. Subsequent studies by Abeles and Beck (1967) demonstrated

that AdoCbl becomes tritiated when the enzymatic reaction is carried out in

3 H2 0, providing evidence for an equilibration between the cofactor and

solvent protons. Moreover, the [5'-3H]AdoCbl isolated from the RTPR

reaction was shown to label propionaldehyde in the dioldehydrase reaction

when 1,2-propanediol is used as substrate, demonstrating that the tritium in

[5'-3H]AdoCbl is located in the 5' position of the cofactor.

An extensive characterization of the exchange reaction was carried out

by Hogenkamp et al. (1968), and revealed that not only is CTP effective in

promoting exchange, but most NTPs as well as dNTPs could serve in the same

capacity. In fact, dGTP was the most effective nucleotide for promoting this

reaction. Additionally, the effect of various thiols on the exchange reaction

was studied. Although monothiols were effective, dithiols such as

dithiothreitol and dihydrolipoic acid generated the greatest amount of 3H2 0 in

a given time period. The thioredoxin (TR)/thioredoxin reductase

(TRR)/NADPH reducing system was about twice as effective as monothiols,

and 1/2 as effective as dithiols. Conversely, glutathione produced very little
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exchange above background (Hogenkamp et al., 1968). Although reductant

was shown to be required, the role of the reductant was suggested to be

catalytic in nature; it was not consumed during the exchange reaction as it is

during substrate turnover. Hogenkamp et al. (1968) also studied the reverse

reaction - the incorporation of tritium into AdoCbl from 3H20. Interestingly,

when the exchange reaction was carried out with unlabeled AdoCbl (0.8 mM)

in a volume of 5 mL of 3H2 0 (70 mCi), an average of 1.4 atoms of tritium were

shown to be incorporated into each molecule of AdoCbl. In addition,

[5'-3H]AdoCbl labeled by chemical methods was shown to transfer all of its

label to H2 0. These results demonstrate unequivocally that both of the 5'

methylene hydrogens of AdoCbl are capable of participating in the exchange

reaction, suggesting that the cofactor is converted into an intermediate in

which the 5' methylene hydrogens are equivalent. A model for the exchange

reaction that is consistent with this data was put forth by Hogenkamp et al.

(1968). However, this model predated the seminal experiments of Tamao and

Blakley (Tamao & Blakley, 1973) and Orme-Johnson et al. (1974), which

showed that cob(II)alamin is produced in a kinetically-competent fashion

under conditions similar to those of the exchange reaction. This model also

predated the now-generally-accepted mechanism of nucleotide reduction

advanced by Stubbe and coworkers (Stubbe, 1990b). This original model is thus

inconsistent with available information and will therefore not be presented.

However, any model proposed for the exchange reaction must accommodate

the data of Hogenkamp et al. (1968).

The exchange reaction is not unique to the L. leichmannii reductase, as

several other AdoCbl-dependent reductases have also been shown to catalyze

an equilibration between the solvent and the cofactor (Abeles & Beck, 1967;

Ong et al., 1992). One such reductase is the ribonucleoside diphosphate
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reductase from Corynebacterium nephridii. This enzyme uses NDP substrates

like the enzyme from aerobically-grown E. coli, but the pattern of allosteric

regulation is complex, and at present incompletely understood (Tsai &

Hogenkamp, 1980). DeoxyGTP stimulates the reduction of ADP, and both

dGTP and dTTP stimulate the reduction of UDP. All other dNTPs or NTPs

examined were ineffective in stimulating the reduction of GDP or CDP. Very

recent work with this enzyme using 3'-C-methyl-ADP and 3'-C-methyl-UDP

analogs has led to a new model for the exchange reaction which needs to be

addressed (Ong et al., 1992). Both of these analogs would not be expected to be

substrates for ribonucleotide reductases due to the absence of a 3' hydrogen

atom. Indeed, this was found to be the case when these compounds were

incubated with the C. nephridii reductase in the presence of AdoCbl.

However, their ability to inhibit the reduction of ADP and UDP suggested to

the authors that the analogs were binding in the active site of the enzyme. In

addition, the inability of the analogs to promote the exchange reaction (as do

the corresponding substrates) led to the proposal that cleavage of the 3' C-H

bond is a prerequisite for the exchange reaction to occur. Significant to the

authors' argument are the results outlined in Table 5.1. The dNDPs, which

are the products of normal substrate turnover, are better promoters of the

exchange reaction than the corresponding dNTPs, suggesting that exchange is

due to an active site-mediated process. From these observations, the authors

propose a mechanism (Scheme 5.1) in which two protein radicals are believed

to be involved in nucleotide reduction. In their model, one protein radical

(X*) is generated upon the homolytic cleavage of AdoCbl and the abstraction

of a hydrogen atom of an amino acid residue by the concomitantly-formed

5'-deoxyadenosyl radical. This radical (Xo) then generates a second radical (Ye)

which during normal substrate turnover is reponsible for initiating the
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reduction process by abstracting the 3' hydrogen atom of the substrate. Protein

radical X- is accessible to solvent whereas Ye is not. The authors contend (and

it is necessary to quote due to an inability to fully follow their logic) "In the

absence of a ribonucleotide substrate or 2'-deoxynucleotide product, the

equilibria of the homolytic cleavage of the carbon-cobalt bond of the coenzyme

and the generation of a protein radical by the 5'-deoxyadenosyl radical lie

predominantly to the left (upper reaction). In the presence of a substrate,

product, or analog with an abstractable hydrogen at C-3', those equilibria are

shifted to the right, generating more protein-based radical X (upper line of

Scheme [5.1]) and thereby stimulating the exchange of hydrogen between

coenzyme and solvent (second line of Scheme [5.1])."

Table 5.1: dNTP/dNDP stimulation of the tritium exchange reaction between
[5'-3H]AdoCbl and solventa. Adapted from Ong et al (1992).

Nucleotide onc1 M 1 Activityb Nucleotide Conc M A ctivityb

dGTP 10 14.9 dADP 50 29.2

dGDP 10 54.7 dUTP 500 2.9

dCTP 100 10.9 dUDP 500 4.4

dCDP 100 16.7 dTTP 500 0

dATP 50 0 dTDP 500 4.5

aSamples incubated for 10 min at 37°C. Tritium exchange to solvent

was kept under 20% of the total tritium in each assay.

bcpm(x10- 5 )* mg -1 protein.
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The above mechanism is not in accord with several previously

established experimental facts as well as some of the data presented in the

Scheme 5.1: Model proposed by Ong et al. (1992) for the exchange reaction.
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paper (shown in Table 5.1). Firstly, studies of dNTP production in the

presence of the L. leichmannii RTPR in 3 H20, indicate that the 3' C-H bond of

dGTP is not cleaved. This was investigated by Hogenkamp et al. (1968), in an

experiment in which dGTP was shown to contain no significant radioactivity

after being isolated from an exchange reaction that was conducted in 7 mCi of

3H 20. Therefore, at least with the L. leichmannii RTPR, the 3' C-H bond
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cleavage of dGTP is not effected by the protein, but this nucleotide greatly

enhances the exchange reaction. A similar reaction with the C. nephridii

enzyme would be predicted to give very different results if the mechanism in

Scheme 5.1 is valid.

Secondly, and more disturbingly, the data in Table 5.1 show that both

dGTP and dCTP can catalyze exchange at appreciable rates. This is

contradictory to the premise that exchange is mediated by abstraction of the 3'

hydrogen bond (since these are allosteric effectors and not products of substrate

turnover), and was not addressed in the work of Ong et al. (1992). Therefore,

the only experimental results that are consistent with the model that 3'

hydrogen-atom abstraction is a prerequisite for exchange are those with the

3'-C-methyl analogs.

As indicated above, the early studies of Hogenkamp et al. (1968), as well

as those of Tamao and Blakley (1973) and Stubbe and coworkers, can now be

meshed into a working hypothesis for the exchange reaction. Tamao and

Blakley (1973) provided evidence for a cob(II)alamin intermediate which is

generated with a rate constant of 38-46 s-1, and which is dependent upon the

presence of a (deoxy)nucleoside triphosphate and reductant. Analogously to

the studies of Hogenkamp et al. (1968), dGTP was the nucleotide which

stimulated formation of the greatest amount of this intermediate. Tamao and

Blakley proposed that the exchange reaction is intricately connected to the

generation of this cobamide intermediate, and that it is due to the interaction

of the cob(II)alamin species with a thiol from the cysteines directly involved in

delivering reducing equivalents to the substrate, or perhaps another cysteine

on the protein. Stubbe and coworkers have modified this model, proposing

that exchange is due to the reversible formation of Xo, the protein radical

which is proposed to initiate substrate reduction by abstracting the 3' hydrogen
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of the substrate (Figure 5.2) (Stubbe, 1989). This mechanism accommodates all

available information. The proposal that Xo is a thiyl radical is one that has

been contested on thermodynamic grounds. The ability of a thiyl radical to

abstract a hydrogen atom from 5'-deoxyadenosine is thermodynamically

uphill by -14 kcal. Therefore in order for exchange to occur, it must be

coupled to Co-carbon bond reformation (30 kcal) (Finke, 1984; Halpern et al.,

1984). Herein we report our reevaluation of the exchange reaction as a test of

our proposed model, with special emphasis on the quantitation of the rates of

exchange under varying conditions in order to demonstrate its kinetic

competence. We also re-address the role of the reductant and the effector in

the exchange process. As discussed subsequently, we believe these studies will

provide important new insight into the mechanism of protein radical

formation, a key step in ribonucleotide reduction.

Materials and Methods

Materials

Sep-pak C18 cartridges were obtained from Millipore. Dithiothreitol was

purchased from United States Biochemicals. 2'-Deoxyguanosine

5'-triphosphate (dGTP) was purchased from Pharmacia. Adenosine

5'-triphosphate (ATP), cytosine, 2'-deoxycytidine (dC), -nicotinamide

adenine dinucleotide phosphate (reduced form) (- N ADPH),

phenylmethanesulfonyl fluoride (PMSF), tosyllysine chloromethylketone

(TLCK), tosylphenylalanine chloromethylketone (TPCK), and coenzyme B12

were purchased from Sigma. [5'-3 H]AdoCbl (specific activity 1-

10x107 cpm/jtmol) was a much-appreciated gift from Professor H.P.C.
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Figure 5.2: Working hypothesis for the RTPR-catalyzed exchange reaction.
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Hogenkamp of the University of Minnesota (Minneapolis), or was provided

by Stuart Licht. Alkaline phosphatase (specific activity 3143 units/mg) from

calf intestine (CIP) was purchased from Boehringer Mannheim. Anion-

exchange resin AG1-X2 (50-100 mesh) was purchased from Bio-Rad.

[2-1 4C]Cytidine 5'-triphosphate was prepared as described in Chapter 4.

Wild-type (specific activity 1.2 U/mg) and mutant RTPRs were purified

from E. coli strains HB101/pSquire and JM101/pSquire as described in

Chapters 3 and 4. E. coli thioredoxin (TR) and thioredoxin reductase (TRR)

were isolated from overproducing strains SK3981 (specific activity 50 U/mg)

and K91/pMR14 (specific activity 800 U/mg) (Lunn et al., 1984; Russel &

Model, 1985).

UV-vis absorption spectra were recorded on a Hewlett-Packard 8452A

diode-array spectrophotometer. All scintillation counting was performed on a

Packard 1500 liquid scintillation analyzer using 8 mL of SINT-A XF

scintillation cocktail (Packard) per 1 mL of aqueous reaction. High Pressure

Liquid Chromatography (HPLC) was carried out using a Beckman 110 Solvent

Delivery Module, 421A Controller, and a 163 Variable Wavelength Detector,

in combination with an Alltech Econosil C18 column.

Purification of [5'-3H]AdoCbl

[5'-3H]AdoCbl (0.17 mol; lx107 cpm/gmol) was loaded onto an Alltech

C18 column equilibrated in 20% CH3OH/80% H20. The column was washed

in the above solvent (flow rate 1 mL/min) for 10 min, followed by a gradient

from 20-100% CH3OH over a period of 20 min. The column was subsequently

washed for an additional 10 min with 100% CH3OH. [5'-3H]AdoCbl eluted at

35 min (75% CH3OH), with aquocobalamin and hydroxocobalamin eluting at

32 min and 44 min (65 and 100% CH3OH). [5'-3 H]AdoCbl was transferred to a
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pear-shaped flask, and the solvent was removed by rotary evaporation in the

dark. The product was redissolved in 0.5-1.0 mL of H20, and a portion of it

was used to determine its concentration (=8x10 3 at 522 nm) and specific

activity. The radioactive coenzyme B12 was diluted with cold material to a

concentration of 1-2 mM, and a specific activity of 7-100x105 cpm/gmol.

Assay for Tritium Exchange from [5'-3H]AdoCbl

RTPR was exchanged into 2 mM potassium phosphate (pH 7.5) using a

Sephadex G-50 column (0.75x10 cm), and its concentration was determined by

UV-vis absorption spectroscopy (E1%=13.3 at 280 nm) (Blakley, 1978). A typical

assay contained in a volume of 305 gL: 50 mM potassium phosphate (pH 7.5),

300 jtM dGTP, 4 mM EDTA, 50-300 nM wt RTPR, 50-200 kM [5'-3H]AdoCbl (7-

100x10 5 cpm/Lmol), 0.2 mM NADPH, 65 LM TR, and 0.5 tM TRR. All assays

were conducted using the TR/TRR/NADPH reducing system except where

specifically specified. In these cases, either reductant was omitted, or the

TR/TRR/NADPH reducing system was replaced with 30 mM DTT. All

reagents except [5'-3H]AdoCbl and RTPR were pre-incubated at 37°C for 3-

5 min. Subsequent to this pre-incubation, all manipulations except for

scintillation counting were carried out in the dark under dim red light.

[5'-3 H]AdoCbl was added, and a 50-tL aliquot of the reaction mixture was

removed and loaded onto a Sep-pak C18 cartridge which had been previously

washed with 10 mL of CH3CN followed by 10 mL of H20. The cartridge was

washed with 3 mL of H20, and a 1-mL aliquot of the eluate was subjected to

scintillation counting. The reaction was initiated by the addition of RTPR (5-

10 kL) to the reaction mixture. At 1-2-min time intervals, 50-kL aliquots were

removed and treated in the same manner as the zero time point. Rates of

exchange were calculated from least-squares fits of plots of the amount of
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radioactivity (cpm) released to water vs time. As an internal check, the

cofactor was isolated by washing each of the columns with 3 mL of CH3CN,

and a 1-mL aliquot was analyzed by scintillation counting.

Determination of a Kmfor AdoCbl in the Exchange Reaction with wt RTPR

The assay conditions for the Km determination for AdoCbl are as

described above. The concentrations of [5'-3H]AdoCbl were varied from 21 to

427 iM, and the concentration of RTPR was 63 nM. All components of the

reaction mixture except RTPR and [5'-3H]AdoCbl were premixed into a 2.1-mL

stock solution which was sufficient for 10 determinations. A 210-L aliquot of

the stock solution was removed and diluted to a final volume of 300 pL with

the appropriate amount of [5'-3H]AdoCbl (specific activity 1.1x107 cpm/Imol)

and H20. Subsequent to the removal of a 50-tL aliquot from the assay

mixture (t=0), the reaction was initiated with the addition of RTPR (2gL,

0.02 nmol), and the production of 3 H20 was monitored at various time points

as described above. The kinetic constants Vmax and Km were determined from

a fit to Eq 1 using a FORTRAN version of the program HYPER (Cleland, 1979),

where v is the initial rate, Vmax is the maximum velocity, and Km is the

Michealis-Menton constant.

Vmax[S]v = Vmax[S] Eq 1
Km +[S]
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Determination of a Km for dGTP in the RTPR-Catalyzed Exchange Reaction

The reaction mixture contained in a final volume of 300 pL: 50 mM

potassium phosphate, pH 7.5, 4 mM EDTA, 65 pM TR, 0.5 kM TRR, 200 gM

NADPH, 200 gM [5'-3H]AdoCbl, 0.17 kM RTPR, and dGTP (3 pM, 9 iM, 15 gM,

30 pM, 59 RM, 119 gM, or 222 gM). All components of the reaction mixture

except dGTP, [5'-3 H]AdoCbl, and RTPR, were combined into a stock solution

which was sufficient for 10 assays. [5'-3H]AdoCbl and dGTP were added, and

the reaction mixture was incubated at 37°C for 5 min. Subsequent to the

removal of a 50-L aliquot (t=0), RTPR (10 tL, 0.04 nmol) was added to initiate

the reaction. Additional aliquots were removed at 2, 4, 6, and 8 min, and 3H 20

was separated from [5'-3H]AdoCbl using Sep-pak C18 columns as described

previously. The kinetic constants were determined as described above.

Analysis of the Ability of NaOAc to Replace dGTP in the Exchange Reaction

Wild-type RTPR was pre-reduced with 30 mM DTT in 50 mM

potassium phosphate, pH 7.5. The protein was separated from the DTT and

exchanged into 2 mM potassium phosphate, pH 7.5, using a Sephadex G-50

column as described above, and then placed on ice. The reaction mixture was

as described above except that 1 M NaOAc replaced dGTP. A 50-gL aliquot of

the reaction mixture containing all components except RTPR (t=0) was

removed and incubated at 37°C for the duration of the assay. RTPR (10 pL,

9.4 kM) was added to initiate the reaction, and additional aliquots were

removed at 2, 4, 6, and 8 min, and analyzed for the production of 3 H20 as

described previously.
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Analysis for Consumption of Reductant during the Exchange Reaction

The reaction mixture was as described previously except that the

reaction volume was 500 ptL, and unlabeled AdoCbl (120 gM) was employed.

All components of the assay mixture, except enzyme, were placed in a 0.75 mL

cuvette, and incubated for 5 min at 37°C. The cuvette was placed in the cell

holder of a Cary 210 spectrophotometer, and the background rate of NADPH

oxidation was recorded at 340 nm (range, 2; chart speed, 50 s/cm). RTPR

(1 jiM) was added to the cuvette, and the enzyme-dependent rate of NADPH

oxidation was subsequently measured. The net rate of NADPH oxidation was

calculated as the difference between the observed rate and the background rate.

A control reaction using [5'-3H]AdoCbl was carried out with the same batch of

enzyme to show that the enzyme was indeed active. 3H 20 was monitored

using Sep-pak C18 columns as described above.

Analysis of the Ability of Mutants C119S and C419S to Catalyze the Exchange

Reaction

The reaction mixture contained in a final volume of 300kL: 50 mM

HEPES (pH 7.5), 300 tM dGTP, 4 mM EDTA, 200 4M [5'- 3 H]AdoCbl

(6.9x106 cpm/gmol), 0.2 mM NADPH, 65 gM TR, 0.5 jiM TRR, and C119S

(12 M), or C419S (23 M). All reagents except [5'-3H]AdoCbl and the mutant

protein were incubated for 3-5 min at 37°C. [5'-3H]AdoCbl was added as

described above, and a 100-jL aliquot (t=0) was removed and incubated at 37°C

for 20 min. The appropriate mutant RTPR (10 pL, 2 nmol C119S or 5 nmol

C419S) was added to the remaining 200 giL to initiate the reaction, and 100-jL

aliquots were removed at 10 min and 20 min, placed in a 10-mL pear-shaped

flask, and shell frozen on dry ice. The above control which lacked enzyme was

treated in the same fashion, and the volatile tritium from each of the three
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samples was separated from [5'-3 H]AdoCbl by bulb-to-bulb distillation. The

distillate containing the 3H20 and the residue containing [5'-3H]AdoCbl were

brought to a final volume of 1 mL with H20 and analyzed by scintillation

counting. Plots of the release of 3 H2 0 as a function of time, as well as the

decrease in the radioactivity of [5'- 3H]AdoCbl as a function of time were

constructed. Exchange rates of both mutants were calculated as the average of

these two rates.

Analysis of the Ability of Mutant C408S RTPR to Catalyze the Exchange

Reaction

The reaction mixture contained in a final volume of 210 gL: 50 mM

HEPES (pH 7.5), 0.3 mM dGTP, 4 mM EDTA, 65 4M TR, 0.21 4M TRR, 0.2 mM

NADPH, 200 iM [5'-3H]AdoCbl (specific activity 7.5x105 cpm/jmol), and

28 gM mutant C408S RTPR. All reaction components except dGTP were pre-

incubated for 5 min at 37°C. A 100-L aliquot (used as the control) was

removed and incubated at 37°C for the duration of the assay. DeoxyGTP was

added to initiate the reaction, and subsequent to a 30-min incubation at 37°C, a

100-pL aliquot was removed, placed in a 10-mL pear-shaped flask, and shell-

frozen in a dry ice/acetone bath. The control reaction was treated in the same

fashion, and both reactions were analyzed by bulb-to-bulb distillation as

described above for mutants C119S and C419S RTPRs.

Analysis of the Ability of Pre-reduced RTPR to Catalyze the Exchange Reaction

Wild-type or double mutant C731&736S RTPR (30 nmol) was pre-

reduced (in a total volume of 100 L) for 20 min at 37°C with 30 mM DTT in

50 mM HEPES (pH 7.5). This mixture was loaded onto a Sephadex G-50

column (0.75x7 cm) equilibrated in 2 mM HEPES (pH 7.5) to remove the DTT.
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Fractions containing protein (A280) were pooled, and the protein

concentration was determined from the UV-vis spectrum as described above.

A 10-gL aliquot (0.16 nmol) was used in the exchange assay which contained

(in a volume of 300 gL) 50 mM HEPES (pH 7.5), 4 mM EDTA, 300 gM dGTP,

and 200 gM [5'- 3H]AdoCbl (6.9x106 cpm/gmol). The reaction mixture was

incubated at 37°C for 3-5 min, and subsequent to the removal of a 50-pL

aliquot (t=0), the assay was initiated with the addition of the pre-reduced

RTPR.

The remaining pre-reduced RTPR was concentrated using a Centricon

30 ultrafiltration device and used to show that RTPR had been fully reduced.

A 50-L aliquot (6.6 nmol) was added to a reaction mixture which contained in

a final volume of 200 gL: 50 mM HEPES (pH 7.5), 4 mM EDTA, 1 M NaOAc,

1 mM [2-14C]CTP (2.3x106 cpm/gmol), and 60 M AdoCbl. The reaction

mixture was incubated for 3-5 min at 37°C, and an aliquot (100 iL) containing

everything except AdoCbl was removed at the zero time point. The reaction

was initiated with the addition of AdoCbl (2 pL) and subsequent to a 3 min

incubation, it was quenched by a 2-min incubation in a boiling water bath. A

10-L aliquot of 0.5 M Tris-HCl, pH 8.5 / 1 mM EDTA, and 10 U of CIP were

added, and the reaction mixture was incubated at 37°C for 1.5 h. Carrier

cytosine and dC (120 nmol each) were added, and the reaction mixture was

loaded onto 0.75x7 cm AG1-X2 columns (borate form 50-100 mesh). The

production of [2-14C]dCTP was analyzed by the method of Steeper and Steuart

(1970) as described in Chapter 4.
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Analysis of the Ability of Pre-oxidized RTPR to Catalyze the Exchange
Reaction

A portion (9 nmol) of the pre-reduced RTPR from the above

experiment was added to a reaction mixture containing in a volume of 200 gL:

50 mM HEPES (pH 7.5), 4 mM EDTA, 1 M NaOAc, 1 mM CTP, and 60 gM

AdoCbl. The reaction was initiated with AdoCbl (5 gL), and subsequent to a

3 min incubation at 37°C, was loaded onto a Sephadex G-50 column

equilibrated in 2 mM HEPES (pH 7.5). Fractions containing protein were

pooled (A280) and the protein concentration was determined from the UV-vis

spectrum as described above. A 20-pL aliquot (0.27 nmol) was used in the

exchange assay, which was carried out in a fashion that was identical to that

described for the exchange reaction with pre-reduced RTPR. A control

reaction with [2-14C]CTP was also carried out under single-turnover conditions

to show that the enzyme had undergone a full turnover. The production of

[2-14C]dCTP was analyzed for as described above.

Isolation of Mutant C32S TR

E. coli strain A291 was streaked onto LB agar plates supplemented with

ampicillin (50 pg/mL), and grown overnight at 37°C. A single colony was

used to inoculate 3 mL of the same liquid media, and the resulting culture was

allowed to grow to saturation at 37°C. This culture was used to inoculate 4x2 L

of KD media [per liter: 10 g of case amino acids, 5 g of Bacto yeast extract, 20 mL

of balanced salt solution (40.6 mM MgSO4 · 7H20, 476 mM citric acid, 2.9 M

K2HPO4 , 840 mM Na(NH4)HPO4 *4H2 0)] supplemented with ampicillin

(50 ig/mL). The bacteria were grown for 20 h at 37°C, and then pelleted by

centrifugation for 30 min at 4C and 10,000xg. Each of the 4 pellets was

resuspended in 40 mL of TE (50 mM Tris-HCl, pH 7.4 / 3 mM EDTA)
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containing 1 mM each of PMSF, TPCK, and TLCK, and the bacteria were lysed

by passage through a French pressure cell at 16,000 psi. The solution was

centrifuged, and streptomycin sulfate (5% in TE buffer) was added to the

supernatant (over a period of 20 min) to a final concentration of 1%. The

solution was stirred for an additional 20 min, and the precipitate was

subsequently removed by centrifugation. The resulting solution (182 mL) was

diluted with an equal volume of buffer A (20 mM potassium phosphate,

pH 7.3 / 3 mM EDTA), and then loaded onto a DE-52 anion-exchange column

(5x22 cm) equilibrated in the same buffer. The protein was eluted with a 2-L

linear gradient from 20 mM to 150 mM potassium phosphate, pH 7.3 / 3 mM

EDTA. Under these conditions, two major protein peaks (A280) eluted. The

second peak (-90 mM buffer) was pooled and concentrated to 20 mL using an

Amicon ultrafiltration apparatus fitted with a YM-5 membrane. This protein

solution was loaded onto a Sephadex G-75 column (2.5x110 cm) which was

equilibrated in 50 mM potassium phosphate pH 7.3 / 3 mM EDTA. Again, two

peaks were observed (A280). The second peak, which contained TR (by analysis

of its elution pattern with wild-type TR), was pooled and concentrated to

7 mg/mL (280=0.95 mL/mg), and stored in aliquots at -80°C.

Results

Assay for Exchange: Isolation and Quantitation of 3 H20

The successful measurement of rates of 3 H20 production requires the

establishment of a convenient method for separating [5'-3H]AdoCbl from

3H20. In the initial experiments, volatile tritium (3H20) was isolated by bulb-

to-bulb distillations. Although this procedure was reliable, it was not

conducive to analyzing the large numbers of samples required for time
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courses of reactions. A method using a Sep-pak C18 cartridge was therefore

developed as a means of rapidly separating [5'-3H]AdoCbl from 3H20. The

reactions were terminated at various times by the addition of the reaction

mixture to the Sep-pak cartridge, and the resulting 3 H20 was isolated by

subsequently washing the column with 3 mL of H20. Table 5.2 shows a typical

profile of 3H 20 per mL of eluate. Greater than 80% of the total tritium added

elutes in the first fraction, with the overall yield as calculated from the first 3

fractions being greater than 90%. Control experiments in which [5'-3H]AdoCbl

is applied to the cartridge, show that no leak through of the radioactive

cofactor occurs. For the calculation of initial rates, time courses were

Table 5.2: Profile of 3H20 elution from Sep-pak C18 cartridge.

Fraction # (1 mL)

1

2

3

4

5

3 H 20 (cpm)a

889.2

98.6

32

26

26

aTotal of 2100 cpm of 3 H20 added to column.

Counted 1/2 of each fraction.

employed in which no more than 10% of the tritium initially present as

[5'-3H]AdoCbl had exchanged to H20. The time dependent loss of tritium

from [5'-3H]AdoCbl could also be measured by washing the column with 3 mL
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of 100% CH3CN subsequent to the removal of the 3 H20. Figure 5.3 depicts an

exchange reaction in which Sep-pak columns were used to separate 3 H20 from

[5'-3H]AdoCbl. This reaction was allowed to proceed past the extent of reaction

used to calculate rates of exchange in order to show that the increase in 3 H20 is

concomitant with the decrease of tritium from [5'- 3H]AdoCbl. As expected the

rates of these two processes are very similar, with the rate of 3H 20 production

being 0.13 gmolomin-l1 mg -1 , and the rate of tritium loss from [5'-3 H]AdoCbl

being 0.11 mol*min-l1 mg - 1. These experiments show that this rapid

method of separating [5'-3 H]AdoCbl from 3 H2 0 is effective, and as a

consequence, it was used to determine the rate constants for the exchange

reaction in most of the subsequent experiments described.

Deleterious Effects of DTT on the Exchange Reaction

Hogenkamp et al. (1968) previously showed that a variety of thiols are

effective in stimulating the exchange reaction. The initial characterization of

the exchange reaction reported herein was carried out using DTT as the

reductant. During the course of these experiments however, it was observed

that DTT catalyzed a time-dependent loss of tritium from [5'-3 H]AdoCbl in

the absence of RTPR. The rate of this non-enzymatic reaction, as monitored

by the Sep-pak method, was dependent upon the concentration of

[5'-3H]AdoCbl in the reaction mixture. The cause of this background rate of

exchange in the presence of DTT is presently not understood. It is difficult to

understand from a chemical standpoint how DTT alone could catalyze

tritium exchange. A more reasonable explanation for the observed tritium in

the H20 wash might be that DTT can convert AdoCbl into a species that is not

retained on the C18 columns. This species would have to be considerably
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Figure 5.3: Time course for the exchange of tritium from
[5'-3 H]AdoCbl. The reaction contained 46 M [5'-3H]AdoCbl
(specific activity 9.4x105 cpm/gmol), 30 mM DTT, 150 jiM dGTP
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more polar than AdoCbl to be eluted with H20. In order to test this

hypothesis, exchange reactions were carried out in the presence of 30 mM DTT

but in the absence of RTPR, and volatile tritium was quantified using the bulb-

to-bulb distillation method. In this case, no significant volatile tritium over

background (-30 cpm) was isolated in a period of 40 min. The material eluting

from the Sep-pak cartridge with H20 is therefore not 3H20.

Thiol-mediated decomposition of AdoCbl in the presence of 200 mM

2-mercaptoethanol has been previously reported (Hogenkamp et al., 1987).

The pseudo-first-order rate constant for this decomposition at pH 9.5 and 70°C

is reported to be 0.14x10-4 S-1 (Hogenkamp et al., 1987). Studies using 13C NMR

identified the breakdown product of AdoCbl as S-adenosylmercaptoethanol.

Although the thiol-mediated decomposition of AdoCbl is slow in the presence

of 2-mercaptoethanol, it is several-fold faster in the presence of dithiols such

as dithioerythritol and dithiothreitol (Schrauzer et al., 1972). The details of the

reaction between DTT and AdoCbl to produce a polar compound which elutes

with H20 remains to be elucidated. However, as indicated in Figure 5.4, this

reaction is problematic in analyzing any exchange reactions carried out in the

presence of DTT. Table 5.3 shows how the background rate of exchange

compares to the actual enzyme-dependent rate at various concentrations of

[5'-3 H]AdoCbl. Because of this uncharacterized reaction, the

TR/TRR/NADPH reducing system was substituted for DTT in most of the

quantitative experiments reported herein. The concentration of thioredoxin

was maintained at 65 pM (the concentration that is saturating for substrate

turnover) throughout the characterization of the exchange reaction. The rate

constants for exchange at 13 pM and 65 pM TR were identical, indicating that

this concentration is also saturating for the exchange reaction.
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Figure 5.4: The background rate of exchange at varying
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4 mM EDTA, and the indicated amounts of [5'-3 H]AdoCbl.
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Dependence of the Exchange Reaction on the Choice of Buffer

Another aspect of the exchange reaction which deserves comment is the

choice of buffers. Initially, exchange studies were carried out in potassium

phosphate buffer, pH 7.5; however, the buffer was changed (due to the

interference of phosphate in the assay for nucleotide reduction) to HEPES,

pH 7.5, since this was the buffer used to characterize substrate turnover with

the various C S mutants (Chapter 4). In general, rates of exchange in

potassium phosphate buffer are 1.5-2 times faster than rates of exchange in

HEPES. Figure 5.5 depicts the results of exchange reactions carried out in

parallel using phosphate and HEPES buffers at identical pHs. From least-

Table 5.3: DTT-dependent background rate of exchange as a function of
[5'-3H]AdoCbl concentration.

Observed Rate (x106) Background Rate (x106) Net Rate (x106)

[Substrate] a(tmol min -1) (Amol * min -1) (gmol * min - 1)

9 IM 132 -0 132

19 IM 270 38 232

48 M 570 81 489

96 gM 885 165 720

240 gM 1440 225 1215

aExchange carried out in potassium phosphate buffer, pH 7.5, containing

150 gM dGTP and 30 mM DTT.

RTPR concentration was 0.2 tM
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Figure 5.5: Effect of buffer on the exchange reaction. Exchange

was carried out in () 50 mM HEPES, pH 7.5, or () 50 mM

potassium phosphate, pH 7.5, in a reaction mixture containing
200 gM [5'-3H]AdoCbl, 300 gM dGTP, 150 nM RTPR, and the
TR/TRR/NADPH reducing system.
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squares fits of the data, the rate of exchange for wt RTPR in phosphate buffer is

calculated to be 0.28 tmolomin-1 mg -1 while the rate of exchange in HEPES is

calculated to be 0.16 gmol min-1 mg-1.

Determination of an Apparent Km for dGTP in the Exchange Reaction

Experiments by Hogenkamp et al. (1968) showed a very interesting

dependence of the exchange reaction on the presence of nucleotides and

deoxynucleotides. Under a defined set of conditions the largest rate constant

for the formation of 3 H 20 was observed when RTPR, reductant, and

[5'-3 H]AdoCbl were incubated with 2 mM dGTP. Interestingly, the addition of

any other NTPs or dNTPs to an exchange reaction containing dGTP decreased

the amount of exchange observed relative to dGTP alone. The NTP substrates

generally conferred a greater degree of inhibition than the dNTP products and

allosteric effectors. These results suggested that a unique opportunity was at

hand to observe the exchange reaction without the complicating effects of

nucleotide reduction. As a first step in characterizing the exchange reaction,

we set out to determine the kinetic constants for dGTP and [5'-3H]AdoCbl.

Initially, a wide range of dGTP concentrations were investigated in order to

determine the range of dGTP concentrations required for determination of its

Km. A dGTP concentration of 150 iM was chosen as a starting point since this

concentration affords the maximal rate of turnover of ATP (Chapter 3). As

shown in Figure 5.6, higher concentrations of dGTP produced very little

change in the rate of exchange. Actual rates under these conditions were 0.11,

0.13, and 0.13 gmol*min -1-mg -1, for 150 M, 530 gM, and 1 mM dGTP.

Assuming that 150 jtM dGTP barely saturates the reaction, a Km determination

for dGTP in exchange was therefore carried out at concentrations ranging from

3-119 M. Figure 5.7 shows the Lineweaver-Burk for the initial rate data as a
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Figure 5.6: Initial rate of exchange as a function of [dGTP]. The
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RTPR, 30 mM DTT, 50 gM [5'-3H]AdoCbl (specific activity
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Figure 5.7: Determination of an apparent Km for dGTP in the
presence of the TR/TRR/NADPH reducing system. Initial rates
of exchange were obtained with dGTP concentrations of 3 gM,
9 gM, 15 IM, 30 gM, 59 gM, and 119 IM.
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function of dGTP concentration. From a fit to the program HYPER, the Km

and Vmax were determined to be 17.28+3.41 M and

0.21+0.01 gmol.min-lo1 mg-l. The Km for dGTP as determined in this study is

not in accordance with that previously obtained by Hogenkamp et al. (1968)

which was reported to be 100 gM. Whether this discrepancy is buffer

dependent (3,3-dimethylglutarate vs potassium phosphate) or whether it is

dependent on the concentration of AdoCbl (150 pM AdoCbl was used in the

Hogenkamp study), is presently not known. It must be mentioned however,

that the rates reported by Hogenkamp et al. were calculated from single fixed

time points rather than time courses, and thus are unreliable for determining

actual kinetic parameters. It is important to re-emphasize that the Km value

determined herein, as well as the Km value determined by Hogenkamp et al.

(1968) are apparent Kms, as the concentration of [5'-3 H]AdoCbl is not

saturating.

Determination of a Km for AdoCbl in the Exchange Reaction

The exchange reaction was also characterized with respect to the

Michaelis-Menton constant for AdoCbl. Initial determinations were carried

out in the presence of 30 mM DTT and suggested that the Km for AdoCbl was

between 70 and 150 M. The Km value was determined using the

TR/TRR/NADPH reducing system as reductant. Using the values from the

previous determinations with DTT as reductant as a guide, concentrations of

[5'-3H]AdoCbl were varied from 21-427 tM. The kinetic constants Km and

Vmax were obtained from a fit to HYPER and determined to be 60+19 gM and

0.31+0.03 gmol*min- 1 *mg-1 . A Lineweaver-Burk plot of the data is shown in

Figure 5.8.

316



12

-

0

0=.

-.,I4

toO~

10

8

6

4

I,

0.00 0.01 0.02 0.03 0.04 0.05

1/[AdoCbl] (L/pmol)
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Analysis of the Ability of NaOAc to Substitute for dGTP in the Exchange

Reaction

As already mentioned in Chapter 4, RTPR possesses a very unique

system of allosteric regulation. Specific dNTPs can stimulate the reduction of

specific NTP substrates (Beck et al., 1966b). In the presence of high

concentrations of certain salts (e.g. NaOAc), the enzyme can turnover all

substrates at maximal rates without the allosteric effectors, although the Km

for each substrate as well as the Km for AdoCbl is increased (Jacobsen &

Huennekens, 1969; Blakley, 1978). Since substrate is not needed to effect

exchange, the question arises as to whether the allosteric effector can be

replaced by NaOAc (as in substrate reduction), thereby circumventing any

need for a nucleotide in this reaction. Preliminary experiments carried out in

the presence of DTT suggested that the rate of exchange with NaOAc was very

slow, and too close to an artifactual background rate that DTT affords. Efforts

were therefore made to increase the sensitivity of the assay by using

[5'-3 H]AdoCbl of high specific activity, higher concentrations of RTPR

(9.4 gM), and conducting the assay in the presence of the TR/TRR/NADPH

reducing system. The results of this experiment are displayed in Table 5.4.

Although the radioactivity in 3H20 increases in the first 6 min of the reaction,

the low level of 3 H2 0 observed, coupled with the 8 min time point being

lower than the 6 min time point, suggests that substantial error is associated

with this experiment. A least-squares fit of the data however, results in a

specific activity of 0.19x10-3 cpmtmol-lmin -1 , which is approximately a

factor of 1000 lower than that of wt-RTPR in the presence of dGTP. This

experiment was repeated, in an attempt to show that the rate of exchange is

dependent upon the concentration of RTPR. Again, as shown in Table 5.5,

exchange appears to occur. However, it also appears that the
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Table 5.4: aTime course for exchange in a reaction in which 1 M NaOAc is

substituted for dGTP.

Time (min) Radioactivity (cpm) in H20

0 142

2 240

4 242

6 394

8 339

aExchange was carried out in potassium phosphate buffer, pH 7.5,

containing 200 gM [5'-3 H]AdoCbl (1.1x107 cpm·umol- 1 ), 9.4 gM

RTPR, and the TR/TRR/NADPH reducing system.

Table 5.5: aEffort to show enzyme dependence on an exchange reaction in

which 1 M NaOAc is substituted for dGTP.

l ~ Radioactivity (cpm) in H_!

Time (min) j 9 M RTPR 18 tM RTPR 27 tM RTPR

0 139 160 130

5 748 1191 1131

10 963 1274 1286

20 1181 1210 1186

aThe conditions are as described above in Table 5.3 unless otherwise specified.
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enzyme is inactivated during the process, with most of the inactivation

occurring within the first time point. The number of equivalents of 3H20

released in the first 5 min per equivalent of RTPR is 0.19 for the reaction

containing 18 piM RTPR, and 0.13 for the reaction containing 27 pM RTPR.

For the reaction containing 9 M RTPR, an estimate of the rate of exchange

was calculated using the 5 min time point. The rate of

0.52x10-3 gmol*min-1mg -1 is in fair agreement with the rate calculated from

the previous experiment (0.19x10-3 cpmepmol-1 mg-1).

Characterization of the Reductant Dependency on the Exchange Reaction

Previous studies of Hogenkamp et al. (1968) suggested that thiols are

required for the exchange of tritium from [5'-3 H]AdoCbl (Table 5.6). The

experiments were carried out using a fixed time point assay under arbitrarily

determined sets of conditions. These results can serve as a starting point to

ask two questions: firstly, is reductant required, and secondly, if it is required,

what is its function? The studies of Hogenkamp et al. (1968) suggested that the

role of the reductant was catalytic in nature. This was demonstrated by

showing that a 100 gM solution of dihydrolipoate could catalyze the washout

of all of the tritium from 470 iM [5'-3H]AdoCbl in 2 h at 37°C under anaerobic

conditions. DTT catalyzes the break down of [5'-3H]AdoCbl in an as yet

uncharacterized reaction, and dihydrolipoate would be expected to effect a

similar transformation. We have therefore re-addressed the question of the

catalytic nature of the reductant in the exchange reaction using the

TR/TRR/NADPH reducing system. In a reaction containing 200 iM NADPH,

150 gM dGTP, and 100 jiM AdoCbl, there is no change in the rate of oxidation

of NADPH upon the addition of RTPR to a final concentration of 1 LM (data

not shown). A conservative limit of detection of NADPH oxidation in this
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Table 5.6: aEffect of various thiols on the transfer of tritium from
[5'-3H]AdoCbl to H20. Table adapted from Hogenkamp et al. (1968).

Radioactivity in 3 H20 Specific Activity
Thiol Added (cpm) (gmol min-1* mg-l )

None 30 0

Dihydrolipoic acid 12,200 0.24

2-mercaptoethanol 2520 0.049

Cysteine 2410 0.047

Glutathione 160 0.002

Dithiothreitol 12,670 0.25

Dithioerythritol 11,675 0.23

Dihydrolipoate + lipoate 5355 0.10

TR/TRR/NADPH 5595 0.11

aThe concentration of all thiols was 30 mM. Thioredoxin isolated

from E. coli was present at 1.64 [tM, dGTP at 2 mM, RTPR at 5.4 jg,

and [5'-3 H]AdoCbl (630,000 cpmogmol-1) at 150 jM.

experiment is 0.06 imol min-lomg-l, whereas the rate of tritium exchange is

-0.2 tmolemin-lmg-l under these conditions. The rate of exchange of

hydrogen would be expected to be 10-20 times faster given a typical tritium

selection effect. Therefore if reductant were necessary for each exchange event,

the rate of oxidation of NADPH might be expected to be 2-

4 tmol.min-lmg-l. These results support the proposal that the reductant

acts in an "allosteric" capacity.

The allosteric nature of the reductant in the exchange reaction begs the

question as to its actual function. One conceivable scenario is that the
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reductant is directly involved in this process - whether it be TR or DTT.

Subsequent to cleavage of the Co-carbon bond of AdoCbl, a hydrogen atom

from one of the two cysteines on TR or one of the two sulfhydryls of DTT is

transferred to the 5'-deoxyadenosyl radical to afford 5'-deoxyadenosine and a

disulfide-radical anion. This disulfide-radical anion is then left with the

painstaking task of abstracting a hydrogen atom from 5'-deoxyadenosine to

form the 5'-deoxyadenosyl radical, which subsequently recombines with B12r

(Scheme 5.2). Alternatively, the data also support the model outlined in

Figure 5.2, in which reductant would play an allosteric role in which either

Scheme 5.2: A model for exchange which suggests that it might be mediated

through the reductant.

the binding of AdoCbl to RTPR or the cleavage of the Co-carbon bond of

AdoCbl is accelerated when the redox active cysteines are in the reduced state.

To distinguish between these two models, exchange studies were carried out

in the absence of reductant, with enzyme that had been pre-reduced. As
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described in detail in the methods, pre-reduction of wt RTPR involves

incubation with DTT, followed by its removal from the enzyme by gel

filtration. At the end of the exchange reaction, a control reaction, in which

the pre-reduced enzyme was treated with [2-14C]CTP, indicated that 1.5 dCTPs

were produced. This number is identical to that which was previously

determined in Chapter 4 for wt RTPR, and is consistent with the enzyme

being maintained in the reduced form during the course of the reaction.

Figure 5.9 shows the time courses for exchange under several conditions with

pre-reduced wt RTPR. From these time courses, rates of exchange were

calculated, and are presented in Table 5.7. The rate of exchange for pre-

reduced enzyme is 0.078 kimolmin-lomg-l. This number is approximately a

factor of 2 lower than the rate of exchange in the presence of the

TR/TRR/NADPH reducing system, which is 0.14 ktmolmin-lmg -1 under

similar conditions. We postulated that the dependence of the reducing

system on the rate of exchange might be due to the binding of reductant

Table 5.7: Characterization of the ability of pre-reduced RTPR to catalyze the

exchange reaction under several conditions.

aExchange Conditions Rate (mol-min-l*mg -l)

Pre-reduced 0.078

Pre-reduced TR (no TRR/NADPH) 0.03

Pre-reduced TR Mutant 0.081

aExchange carried out in 50 mM HEPES pH 7.5, 200 tM [5'-3 H]AdoCbl,

and 300 gM dGTP.
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Figure 5.9: Exchange of tritium from [5'-3 H]AdoCbl with pre-
reduced wt RTPR. Exchange was carried out with 200 jiM
[5'-3H]AdoCbl (lx107 cpmomol- 1 ), 50 mM HEPES, pH 7.5, and
300 jiM dGTP () in the presence of TR,, (A) in the presence of the

mutant TR C32S, and () in the absence of any added reductant.
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and its action as an allosteric effector. This hypothesis was investigated using

a mutant of TR in which one of the two redox-active cysteines is replaced by a

serine. This mutation destroys the ability of TR to act as a reductant during

substrate turnover, although its 3° structure is maintained, and presumably its

ability to act as an allosteric effector as well. However, when the exchange

reaction is performed with pre-reduced RTPR in the presence of the mutant

TR, no significant enhancement in the rate of 3H 20 production is observed

(Table 5.7).

An unexpected result which is also shown in Table 5.7, is that the

exchange reaction is inhibited when performed in the presence of wt TR

without the accompanying TRR and NADPH. This same phenomenon was

reproduced using a much lower concentration of [5'-3H]AdoCbl (22 M,

specific activity 6.6x106 cpmotmo1-l) in a reaction containing TR and TRR, but

no NADPH (Table 5.8) (Figure 5.10). These results suggest that if TR is acting

as an allosteric effector, then it is the reduced form that is essential for this

effect to occur, and that the C32S TR does not function as a good model for the

reduced wt TR.

These experiments show that reductant is clearly not essential for the

exchange reaction, thus ruling out the model shown in Scheme 5.2. However,

reduced wt RTPR is not sufficient for maximal exchange, and TR plays a role

which is over and above keeping RTPR in the reduced state.

Characterization of the Ability of Mutant C731&736S RTPR to Catalyze the

Exchange Reaction

An extension of the dependency of the exchange reaction on reductant

was also carried out with mutant C731&736S RTPR. A detailed

characterization of this mutant (Chapter 4), showed that the function of these
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Figure 5.10: Re-characterization of the ability of TR to inhibit the
exchange reaction. The reaction was carried out with 0.2 pM pre-
reduced RTPR, 22 pM [5'-3 H]AdoCbl (6.6x106 cpmogmol-), and

150 pM dGTP in the (), presence of TR/TRR/NADPH, (O)

presence of TR/TRR, and (A) with no added reductant.
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two C-terminal cysteines is to transfer reducing equivalents from TR into the

active-site disulfide of RTPR so that multiple turnovers can be achieved.

Table 5.8: Re-characterization of the ability of TR to inhibit the exchange
reaction in the absence of NADPH.

aExchange Conditions Rate (mol min- 1 *mg- 1)

Pre-reduced 0.006

Pre-reduced TR/TRR (no NADPH) 0.001

Pre-reduced TR/TRR/NADPH 0.02

aExchange carried out in 50 mM potassium phosphate buffer, pH 7.5,

22 gM [5'-3 H]AdoCbl, and 150 gM dGTP.

Based on the previous studies with the pre-reduced wt RTPR in conjunction

with our model for the exchange reaction, we anticipated that pre-reduced

C731&736S RTPR would catalyze exchange at the same rate as the pre-reduced

wt RTPR. Figure 5.11 displays the time course for the exchange reaction

catalyzed by the pre-reduced mutant C731&736S RTPR. The results of this

experiment are summarized in Table 5.9. As predicted, C731&736S RTPR

shows the expected behavior. The inability of the TR/TRR/NADPH reducing

system to increase the rate constant for exchange to that of wt RTPR suggests

that either this RTPR mutant is not able to bind to TR, or that the

enhancement of exchange by the TR/TRR/NADPH reducing system reflects

the thiol/disulfide equilibrium on RTPR, with NADPH being able to shift it to

the all-reduced state via TR and TRR. The specific activity of the mutant in

the absence of reductant is 0.18 tmol*min-l*mg -1 , while in the presence of
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Figure 5.11: Exchange studies carried out with pre-reduced
mutant C731&736S RTPR. Exchange reactions were performed in

the () presence of the TR/TRR/NADPH reducing system, ()

presence of C32S TR/TRR/NADPH, and (A) absence of any added
reductant.
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TR mutant/TRR/NADPH it is 0.19 gmolmin-l*mg - 1. In the presence of wt

TR/TRR/NADPH, the rate is slightly lower (0.16 jimolmin-l-mg- 1 ). A

control reaction was run under single turnover conditions upon completion

of the exchange reactions, and showed the production of 0.7 equiv of dCTP -

the quantity previously shown to be produced under single-turnover

conditions with mutant C731&736S-RTPR (Chapter 4). At first glance, these

rates appear to be higher than the rates for the pre-reduced wt-RTPR.

Table 5.9: Characterization of mutant C731&736S RTPR with respect to the

exchange reaction under pre-reduced conditions.

aExchange Conditions lRate (molmin- 1 0mg-1 )

Pre-reduced 0.18

Pre-reduced + TR/TRR/NADPH 0.16

Pre-reduced + TR mutant/TRR/NADPH 0.19

aExchange carried out in 50 mM potassium phosphate buffer, pH 7.5, with 200 gM

[5'-3 H]AdoCbl, and 300 gM dGTP.

However, the characterization of this mutant was conducted in 50 mM

potassium phosphate buffer, pH 7.5. As described earlier, rates in this buffer

tend to be 1.5-2 times faster than rates in 50 mM HEPES, pH 7.5, under

identical conditions.
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Characterization of the Ability of the Active-Site C--S Mutants to Catalyze the

Exchange Reaction

Chapter 4 presents a detailed analysis of the roles that five cysteines in

RTPR play during catalysis, which has allowed these residues to be classified

into three categories. The first category, which has already been touched upon

above, comprises cysteines 731 and 736. These cysteines are presumed to be on

the surface of RTPR, and function to transfer reducing equivalents from TR

into the active site disulfide. The next two categories contain cysteines that are

in the active site and which play a more intimate role in nucleotide reduction.

Cysteines 119 and 419 transfer reducing equivalents directly to the substrate,

and are the residues which form the disulfide bond that is reduced by cysteines

731 and 736. Cysteine 408 is postulated to be the amino acid residue that is

converted into a protein radical, and which initiates catalysis by abstracting the

3' hydrogen of the substrate. Our model, which is outlined in Figure 5.2,

proposes that C408 is essential for nucleotide reduction as well as exchange. In

the event that this amino acid is altered, our model predicts that the exchange

reaction would be abolished. As described in Chapter 4, our initial

characterization of these mutants revealed that wt RTPR was present in each

of our mutant preparations. This contamination was also reflected in the

exchange reaction for C408S, as a rate which was 0.33% that of wt RTPR was

observed. Upon removal of the contamination, the rate of exchange for C408S

was indistinguishable from background. In order to set a good lower limit for

mutant C408S RTPR-catalyzed exchange, 240 g of mutant was incubated for

30 min with 200 ~iM [5'-3 H]AdoCbl (7.5x105 cpmogmo1) in HEPES, pH 7.5,

and the 3H20 was isolated by bulb-to-bulb distillation. The primary data for

this experiment are displayed in Table 5.10. Very little 3H20 is observed in the

case of mutant C408S RTPR. The few counts above background that are
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detected are within the error of this technique, which is + 100 cpm with the

amount of radioactivity employed. The limit of detection in this particular

experiment is 0.9x10-5 tmolmin-l.mg -1, which is 0.006% the rate of wt-RTPR

when assayed under identical conditions (Table 5.11). Our model in its

simplest form also predicts that mutant C119S and C419S-RTPRs should have

Table 5.10: aCharacterization of the ability of mutant C408S to catalyze the

exchange reaction.

Background Actual Incubation
RTPR Concentration (Cpms) (Cpms) Time

C408S 28 tM 223 281.6 30 min

Wild-type 0.28 itM 160 5892 10 min

aln addition to the amounts of protein indicated in Table 5.10, the exchange reaction

included 200 ptM [5'-3H]AdoCbl (7.5x105 cpmogmol-1), the TR/TRR/NADPH

reducing system, 300 pM dGTP, and 50 mM HEPES, pH 7.5.

Table 5.11: Characterization of the ability of the active site RTPR mutants to
catalyze the exchange reaction.

Mutant RTPR Rate (tmolemin *.mg-i) % Wild-type RTPR

ac4 08S-RTPR 0.9xl 0-5 <0.006

bC119S-RTPR 0.002 1.3

bC419S-RTPR 0.001 0.7

aSee Table 5.10 for experimental conditions.

bThe experimental conditions are as described in Table 5.10 except that [5'- 3 H]AdoCbl,

6.9x106 cpmogmol-1 was used. Concentrations of C119S and C419S-RTPRs are 12 M

and 23 gM.
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no effect on the exchange reaction. Unexpectedly however, C119S and C419S

RTPRs catalyze rates of exchange that are 1.3 and 0.7% the rate of wt RTPR in

the presence of the TR/TRR/NADPH reducing system. The primary data for

the characterization of mutant C119S and C419S-RTPRs are listed in Table 5.12.

Plots of the appearance of 3 H2 0 vs time, as well as the loss of radioactivity

from [5'-3H]AdoCbl vs time were constructed. Rates of exchange for each

Table 5.12: aPrimary data for the characterization of mutants C119S and C419S

RTPRs.

Mutant C119S-RTPR Mutant C419S-RTPR
(Cpm) (Cpm)

Time (min) Cpm) 3H 20 [5'- 3H]AdoCbl (Cpm) 3H2 0 [5'- 3H]AdoCbl

0 481 129647 1664 128509

10 21348 118819 23609 118205

20 35698 103372 33283 94342

aThe experimental conditions are described in Table 5.10

mutant were calculated as an average of least-squares fits for both of these

processes, resulting in rates of 0.002 tmol*min- 1lmg-l for mutant C119S

RTPR, and 0.001 tmol min-1 mg -1 for mutant C419S RTPR.

Characterization of the Ability of Oxidized RTPR to Catalyze the Exchange

Reaction

The results reported for exchange with mutants C119S and C419S RTPR

are interesting, and suggest in combination with our model, that perhaps
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active site conformation - which might be mediated through these cysteines -

is important in the exchange process. In addition the results reported for pre-

reduced wt RTPR as well as pre-reduced mutant C731&736S RTPR, suggest

that RTPR in the completely reduced state is required to observe maximal

exchange rates. These results would predict that oxidized RTPR would have a

limited capacity to catalyze this exchange reaction. This prediction was

investigated by allowing both pre-reduced wt RTPR and pre-reduced mutant

C731&736S RTPR to undergo a single turnover, and then separating the

oxidized proteins from the other constituents of the reaction by gel filtration.

The pre-oxidized proteins were then concentrated by ultrafiltration, and

subsequently analyzed for their ability to catalyze exchange. The results of this

experiment are shown in Figures 5.12 and 5.13. From least-squares fits of the

plots, rates of exchange of 0.006 and 0.008 pmolomin-lomgl were calculated

for pre-oxidized RTPR in the absence and presence of the TR mutant (Table

5.13). This rate is a factor of 10 lower than the rate of exchange for pre-reduced

RTPR, and a factor of 27 lower than the rate of exchange in the presence of

reductant. The same trend is observed for the pre-oxidized mutant protein

(Table 5.13). The rates of exchange for the pre-oxidized mutant proteins are

-15 times lower than the rates for the pre-reduced C731&736S RTPR. Whether

the difference in rates between the pre-oxidized mutant and the pre-oxidized

wt proteins is significant is not presently known. Again, this difference may

reflect the fact that the mutant protein was characterized in potassium

phosphate buffer, while the wt protein was characterized in HEPES.

The low level of exchange that is observed in the presence of pre-

oxidized enzyme suggests an explanation for the inhibition of exchange of pre-

reduced wt-RTPR when TR is present without TRR and NADPH. TR is

isolated in the absence of reductant and has been shown to be fully oxidized to
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Figure 5.12: Characterization of exchange using pre-oxidized wt
RTPR. Exchange was carried out in 50 mM HEPES, pH 7.5,
containing 200 gM [5'-3 H]AdoCbl lx107 cpmo-,mol-l), and
300 pLM dGTP, (A) in the presence of C32S-TR, and () in the
absence of C32S-TR.
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Figure 5.13 Exchange studies with pre-oxidized mutant
C731&736S RTPR. Reactions were performed in 50 mM
potassium phosphate buffer, pH 7.5, containing 200 iM
[5'-3H]AdoCbl (lx107 cpmoimoll) in the () absence of reductant

or () presence of the TR/TRR/NADPH reducing system.
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the disulfide under these conditions (Laurent et al., 1964). When this oxidized

TR is added to the exchange reaction, it is conceivable that it can oxidize RTPR

via disulfide interchange with the C-terminal cysteines. As shown above, the

Table 5.13: Characterization of the ability of pre-oxidized wt RTPR and pre-

oxidized mutant C731&736S RTPR to catalyze the exchange reaction.

aExchange Conditions Rate (mo * min-1 * mg1)

Pre-oxidized (wt) 0.006

Pre-oxidized (wt)+ TR mutant 0.008

Pre-oxidized (C731&736S) 0.011

Pre-oxidized (C731&736S) + TR/TRR/NADPH 0.013

aWt-RTPR was characterized in 50 mM potassium phosphate buffer, pH 7.5, while

mutant C731&736S-RTPR was characterized in 50 mM HEPES, pH 7.5. The other

components of the reaction mixtures were identical, and included 200 gM

[5'-3 H]AdoCbl (1x107 cpmopmol), and 300 gM dGTP.

rate of exchange of fully oxidized RTPR is 10-fold lower than when RTPR is

fully pre-reduced. The observed 2-3-fold lower rate with TR may reflect the

amount of RTPR that was oxidized by TR at the beginning of the assay. Where

the equilibrium lies in the absence of electrons from the TR/TRR/NADPH

reducing system is presently unknown. These results however provide strong

evidence that although reductant is not needed, maximal exchange occurs in

the presence of TR/TRR/NADPH with wt RTPR. In addition, subtle

modifications within the active site - even those which might mimic pre-

reduced RTPR - reduce the level of RTPR-catalyzed exchange.
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Discussion

The reduction of ribonucleotides to 2'-deoxyribonucleotides is a very

complex process. Essential to this reduction is the cleavage of the 3' C-H bond

of the substrate in a reaction that is postulated to be mediated by a thiyl radical

(X*)(Stubbe, 1990a). In the RDPR from E. coli, this thiyl radical has been

proposed to be generated by long range electron transfer from C439 on the R1

subunit to Y122 on the R2 subunit (Mao et al., 1992b; Mao et al., 1992c;

Nordlund & Eklund, 1993). Recent crystallographic studies by Uhlin and

Eklund suggest however, that the generation of a protein radical on R1 may

involve both electron transfer as well as hydrogen atom transfer, or perhaps a

coupled e-/ H+ transfer (Uhlin & Eklund, 1994). In the RTPR from

L. eichmannii, the thiyl radical is proposed to be generated via the abstraction

of a hydrogen atom from C408 by the 5'-deoxyadenosyl radical which is

generated upon homolysis of the Co-carbon bond of AdoCbl. In an ongoing

effort to elucidate the detailed mechanism of ribonucleotide reduction, as well

as the more general question of how enzymes generate and utilize protein

radicals to carry out difficult reactions with amazing stereospecificity, we have

recently focused much attention on the generation of X, by AdoCbl. We have

chosen the exchange reaction as one avenue for addressing this issue. Our

model proposes that the exchange reaction is intimately connected to the

reversible formation of Xo, and is therefore an integral part of the pathway

leading to substrate reduction.

In our initial efforts to characterize the exchange reaction, dGTP was

chosen to satisfy the (deoxy)nucleotide requirement, and a Km value of 17 pM

was subsequently determined for this deoxynucleotide. The advantages

afforded by this deoxynucleotide are (1) it promotes the greatest rate of

337



exchange of all (deoxy)nucleotides tested, and (2) because it is not a substrate

for the enzyme, the kinetic scheme for the exchange reaction is much less

complex. One interesting observation that can be gleaned from the work of

Hogenkamp et al. (1968) is that the effect of (deoxy)nucleotides on the

exchange reaction closely parallels their effect on the amount of cob(II)alamin

detected at steady state by UV-vis stopped-flow spectroscopy (Tamao & Blakley,

1973). As summarized in Table 5.14, the rate of exchange follows the following

pattern (dGTP>GTP>ATP>CTP>ITP>UTP), which with the exception of ITP,

Table 5.14: Similarity of the nucleotide requirement for exchange and the
rapid production of cob(II)alamin.

(deoxy)nucleotide [ aRadioactivity of H 20 (cpm) bAA at 525 nm

dGTP 11665 0.07

GTP 5880 0.03

ATP 3545 0.025

CTP 1968 0.018

ITP 5455 0.018

UTP 1278 0.012

aHogenkamp et al. (1968). Assay included 30 mM dihydrolipoic acid, 2 mM each

(deoxy)nucleotide, 0.15 mM [5'-3 H]AdoCbl (630,000 cpmogmoll), and 5.4 gg of RTPR.

Single time points of the radioactivity released to H20 in a 15 min incubation at 37°C.

bTamao and Blakley (1973). Assay included 1 mM each (deoxy)nucleotide, 11.3 M

RTPR, 25 mM dihydrolipoic acid, and 100 M AdoCbl. Cob(II)alamin production

at steady state was measured as the decrease in absorbance of AdoCbl at 525 nm.

parallels the amount of cob(II)alamin observed at steady state. These

observations are consistent with the proposal that exchange occurs via the
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intermediate produced upon homolysis of the Co-carbon bond of AdoCbl, and

that the rate of exchange is dependent upon the concentration of this

intermediate.

Experiments carried out with NaOAc suggest that the (deoxy)nucleotide

requirement for exchange is fairly stringent. In the absence of

(deoxy)nucleotide and in the presence of NaOAc, the rate of exchange is

extremely slow (0.2-0.5x10-3 gmol-min-l-mg -1) and is 1/1000 that of wt RTPR.

The role of the (deoxy)nucleotide may therefore be to enhance the binding of

the cofactor to the enzyme, and/or induce homolysis of AdoCbl. Although

1 M NaOAc allows all of the four common ribonucleotides to be reduced at

maximal rates in the absence of a deoxynucleotide effector, the above result

suggests that NaOAc is not playing the role of an effector. What appears more

likely is that it permits each of the ribonucleotides to stimulate its own

reduction when present at sufficiently high concentrations. The inactivation

of the enzyme during exchange in the absence of (deoxy)nucleotide is very

interesting. Although this reaction has not yet been studied in detail, it may

provide clues to understanding the intricacies of the generation of X°. One

scenario to explain this inactivation is outlined in Scheme 5.3. Although a

(deoxy)nucleotide is needed in general to promote the exchange reaction, a

small amount of AdoCbl (which perhaps reflects the dissociation constant in

the absence of nucleotide) binds to RTPR and homolyses, generating Xv in the

process. In the absence of nucleotide however, cob(II)alamin and

5'-deoxyadenosine do not bind to the enzyme very well (Yamada et al., 1971),

and can easily dissociate, leaving a protein radical in the active site. The

amount of exchange perhaps reflects the partitioning between the back

reaction (regenerating cofactor), and dissociation of cob(II)alamin and

5'-deoxyadenosine from the enzyme. This scenario has precendent in the
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studies of Yamada et al. (1971), in which they show that the incubation of

AdoCbl with RTPR in the presence of dGTP and reductant results in a slow,

non-reversible formation of cob(II)alamin and 5'-deoxyadenosine.

A Km value of 60 tM was determined for [5'-3H]AdoCbl in the exchange

reaction using TR/TRR/NADPH as the reductant. Although this number is

high with respect to the Km value of AdoCbl during substrate turnover (2 gM,

Allison Walsh, unpulished results 1992) it is probably on the order of, or

much lower than the Kd for AdoCbl, which is unknown at this time. As

described in Chapter 4, efforts to obtain this number using various techniques

were unsuccessful. The data were very scattered, suggesting that the Kd is

high. Studies by Sando et al. (1975) in which the exchange reaction as well as

substrate turnover were investigated with various AdoCbl analogs, report that

the Km for AdoCbl for exchange as well as nucleotide reduction are similar

(4.7 gM, exchange; 4.0 M, reduction) in the presence of 2 and 10 mM ATP.

The requirement for reductant in the exchange reaction deserves special

attention, as our finding, that reductant is not required for exchange, is

contradictory to all previously reported findings concerning this aspect of the

reaction (Beck et al., 1966a; Abeles & Beck, 1967; Vitols et al., 1967b;

Hogenkamp et al., 1968). Our model predicts that if exchange is indeed related

to the generation of X*, then it should proceed in the absence of reductant.

Although the formation of cob(II)alamin has not been studied with pre-

reduced enzyme in the absence of reductant, the ability to carry out turnover

with pre-reduced RTPR- as in the single-turnover experiments described in

detail in Chapter 4 - suggests that X- can be formed in the absence of reductant.

We have approached this question with a battery of techniques, using pre-

reduced RTPR, pre-oxidized RTPR, and four RTPR analogs containing C->S

mutations of cysteines that have been determined to undergo redox cycling

340



Scheme 5.3: Hypothesis for the inactivation of RTPR during the exchange
reaction in the presence of NaOAc.
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Cob(ll)alamin + 5'-deoxyadenosine

during normal substrate turnover. Our results suggest strongly that in the

presence of dGTP exchange does occur in the absence of reductant. The rate of

exchange for pre-reduced wt RTPR (0.078 gmolminlmg - 1) is only a factor of

2 lower than exchange in the presence of the TR/TRR/NADPH reducing

system (0.16 itmolemin-lmg-l). In addition, pre-reduced mutant C731&736S

RTPR afforded a rate of exchange (0.18 gmol-min-1mg -1) that is only slightly

lower than that of wt RTPR under similar conditions

(0.28 tmolmin-lmg-l). The addition of the TR/TRR/NADPH reducing

system to the mutant reaction resulted in no increase in the rate of exchange,
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and actually decreased the rate slightly (0.16 pmolemin-lomg-l). This result

shows unambiguously that exchange is not occurring through the reductant as

proposed by Hogenkamp et al. (1968).

Why did Hogenkamp et al. not see exchange in the absence of

reductant? A clue to the answer of this question may be provided by our study

with oxidized RTPR. Pre-oxidized wt RTPR affords a rate of exchange that is

.-1/27 that of wt RTPR in the presence of the TR/TRR/NADPH reducing

system. Table 5.6 summarizes the results of a study carried out by Hogenkamp

et al. (1968) of the effect of various thiols on the rate of dGTP-mediated

exchange. From this table, TR/TRR/NADPH (the reducing system used in

these studies) mediates the washout of 5595 cpm compared to 30 cpm in the

absence of thiol. In the Hogenkamp et al. study, RTPR was purified by the

procedures of Vitols et al. (1967a), in which reductant is not added during the

enzyme preparation, and the RTPR is thus probably oxidized. From our

quantitative analysis, the amount of radioactivity detected in H20 should

have been -200 cpm. The reason for the discrepancy between our work and

theirs is not clear.

The characterization of the exchange reaction with RTPR analogs

containing C--S mutations of cysteines presumed to be in the active site,

supports our model outlined in Figure 5.2, and further refines it. Firstly,

C408S affords a rate of exchange that is less than 0.006% (our limit of detection)

that of wt RTPR. Based on our model, this result was actually predicted due to

the inability of this mutant to generate cob(II)alamin under various sets of

conditions (Stuart Licht, unpublished results). Unexpectedly, however, the

rate of exchange with each of the other active site mutant proteins is only 1%

that of wt RTPR. These reactions have not yet been studied in detail, and

various experiments need to be performed to see what step is rate-limiting. In

342



particular, the rate of cob(II)alamin formation as well as its steady-state level

need to be addressed. The fact that pre-oxidized RTPR affords a rate that is

~4% that of wt RTPR, in conjunction with the results of these mutant

proteins, suggests that active site conformation may play an important role in

the exchange reaction. These results may offer an explanation for the failure

of the 3'-methyl analogs of Ong et al. (1992) to catalyze exchange. The recent

crystal structure of the R1 subunit of the E. coli RDPR solved by Uhlin and

Eklund (1994), shows that the active site redox-active cysteines are only 6 A

away from C439 - the proposed Xo. By extrapolating to the AdoCbl systems, a

substitution of a methyl group on the nucleotide ring for a hydrogen atom

could sterically perturb the generation of Xe. Cob(II)alamin formation needs

to be addressed in the L. leichmannii system with the 3'-methyl analogs.

So what have we learned about the exchange reaction and the

generation of Xo? Firstly, the rate of exchange is not slow. The rate of

0.16 kmol*min-*mg- 1 is only a factor of 10 lower than the rate of nucleotide

reduction. In fact, normalizing for the statistical factor in that three 5'

hydrogens on 5'-deoxyadenosine are accessible for removal, brings the rate of

exchange within a factor of 3.5 of the rate of turnover. Given a normal tritium

selection effect of 10-20 on the exchange reaction, the rate of exchange (7-14 s-1)

becomes greater than the rate of turnover (2-3 s-l), and only a factor of 3-6 less

than cob(II)alamin production (38-48 s-1) (Tamao & Blakley, 1973). If AdoCbl

were particularly "sticky," the true rate of exchange would be masked due to

failure of AdoCbl to promptly dissociate so that the enzyme could pick up

another molecule of [5'-3 H]AdoCbl. This has recently been addressed by Stuart

Licht in our laboratory using rapid quench technology. In a reaction

containing 1 mM dGTP, and equimolar amounts of [5'-3H]AdoCbl and RTPR,

he demonstrated that the rate constants for exchange in the pre-steady state are
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very similar to those reported here under steady-state conditions. This

suggests that dissociation of AdoCbl is not rate-limiting. In addition, for the

first time, the other homolysis product - 5'-deoxyadenosine - has been

observed. The rate constant for the formation of this species is approximately

the same as the rate constant for the formation of cob(II)alamin. Moreover, no

other species (including 5',8-cycloadenosine) is observed under these

conditions. These studies by Stuart Licht in combination with the exchange

studies presented herein and our model, suggest that the formation of X, may

be a concerted process. Consistent with this proposal is the inability of mutant

C408S RTPR to generate cob(II)alamin, even though it binds the homolysis

products of AdoCbl [cob(II)alamin and 5'-deoxyadenosine] in the presence of

dGTP and reductant equally well as the wt RTPR.

The cloning, sequencing, and expression of RTPR has allowed us to take

a detailed look at the intricate workings of a very complex enzyme using

several techniques. Firstly, using site-directed mutagenesis, we have been able

to offer a compelling model for the roles in which five cysteines on RTPR play

during catalysis. In addition, we have been able to use these same mutants to

better clarify the role of the reductant in the exchange reaction, as well as

appreciate how subtleties in the active site conformation of RTPR can produce

fairly large effects on the rate of exchange. Lastly, due to the quantities of

enzyme that are now available, we are better equipped to characterize some of

the intermediates on the reaction coordinate of this enzyme using pre-steady

state techniques.
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