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Abstract
In this thesis, a brief review of Chern-Simons theory is given. Two physical appli-
cations of Chern-Simons theory are studied. First, the dynamics of non-relativistic
Chern-Simons solitons are investigated. We show that in absence of background den-
sity these solitons move freely; however, when a background density is present, these
solitons feel a Magnus force. In the second application, we study QCD in the high
temperature limit. In this limit, the dominant effect is due to so called "hard thermal
loop", which is shown to be an angular average of a Chern-Simons eikonal. In our in-
vestigation, we first show that this effect does not support soliton configurations and
how the hard thermal loop arises from the stationary requirement of the composite
effective action. Then, starting from classical transport theory, we demonstrate that
the hard thermal loop is a classical effect. In addition, various problems related to
classical transport theory, such as phase space and gauge structure of the theory, are
addressed.
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Chapter 1

Introduction

Chern-Simons theory was introduced into physics over ten years ago as a possible

cure for the infra-red problem of high-temperature gauge theory [1]. During the sub-

sequent years, it has been widely studied by the theoretical physics community. It

was discovered that the Chern-Simons action can induce spin transmutation, convert-

ing spin-zero bosons into particles carrying fractional spin, i.e. anyons [2] and this

phenomenon is closely related to the quantum Hall effect and high-temperature su-

perconductivity. Chern-Simons theory can be used to construct knot polynomials [3]

as well as provides a unifying view point for two-dimensional conformal field theory

[4].

More recently, two new applications of Chern-Simons theory were discovered.

First, in a series of seminal papers, Jackiw et al. discovered that by coupling to

ordinary scalar fields, both relativistic field and non-relativistic field, and choosing

appropriate potentials, the Chern-Simons term can support soliton solutions [5, 6].

Later, the existence of soliton solutions in various generalizations of the original mod-

els was further investigated [7]. In particular, by adding background density to the

original non-relativistic model, Barashenkov et al. found soliton solutions which ex-

hibit distinct boundary behavior from their original counterparts. The second field

in which Chern-Simons theory plays a role is high-temperature QCD. In a study of

perturbative high-temperature QCD, Pisarski et al. observed that in order to have a

consistent perturbation series, a resummation involving a subset of one-loop diagrams,
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the so-called "Hard Thermal Loops", is necessary [8]. Soon after that[9], Efraty and

Nair showed that these Hard Thermal Loop effects can be elegantly summarized by

a Chern-Simons eikonal. This discovery provides new insight on the gauge structure

and dynamical nature of Hard Thermal Loops [9].

In this thesis, we will explore the physics of these two applications. More specif-

ically, we will discuss the dynamics of two types of non-relativistic Chern-Simons

solitons, as well as the physical nature and dynamical implication of Hard Thermal

Loops. The thesis is structured as follows. Section 1.1 is a brief review of Chern-

Simons theory. In Section 1.2, we give an overview of the two types of non-relativistic

Chern-Simons solitons studied in this thesis. Section 1.3 presents the background

materials of Hard Thermal Loops and its connection to the Chern-Simons eikonal.

Chapters 2-4 are devoted to the study of these two topics. In Chapter 2, we study the

dynamics of these Chern-Simons solitons. Chapter 3 is a discussion of the dynam-

ical implication of hard thermal loops. In Chapter 4, we show that Hard Thermal

Loops are a classical transport phenomenon and address some problems related to

the classical formulation of Hard Thermal Loops. Finally, we end with conclusions in

Chapter 5.

1.1 Review of Chern-Simons Theory

In this section, we shall give a brief review of Chern-Simons gauge theory [10]. Con-

sider in 2 + 1 dimensions, the Lagrange density for the Abelian Chern-Simons theory

[1, 10]

/Ccs = 4 eaPAaFa4

FV = ~A, -A 1 , (1.1)

here t. is a constant, ,, denotes the derivative with respect to x" and A, is a gauge

field.

We start by reviewing the symmetry properties of this theory. First, we note that
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the Chern-Simons action I,, = f d3xc,, is a topological invariant [11]. Hence it is

invariant against all coordinate transformations. This can be checked by computing

the change of I,, under an arbitrary coordinate transformation

A -+ A,
aXv

A.,(x) = A,(X) Oaxe' (1.2)

Secondly, we consider the transformation of the Chern-Simons Lagrange density

C,, under a gauge transformation

A.A -+ A + g0. (1.3)

A straightforward calculation yields

£Ccs £C, + 2 (e"PFa) . (1.4)
2

Thus I, changes by a total derivative under a gauge transformation. This guarantees

that the equation of motion obtained from varying I is gauge invariant.

In addition to these nice symmetry properties possessed by the Chern-Simons

term (1.1), what makes it more interesting is the observation that it can be used as

a gauge-invariant mass term for gauge fields [1]. Consider the following Lagrangian,

composed of both the Chern-Simons term and the ordinary Maxwell term

1
IC = C-aAaF - FuF . (1.5)

4 4

Dimensional argument shows that has a dimension of mass.

Varying the above Lagrangian (1.5) with respect to the gauge field A, we obtain

the equation of motion

,OF/'V + 2t eva'Fap = 0 . (1.6)
2
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Define the dual field FT"

2

Fad = efp. (1.7)

Note that the dual field F" is identically conserved

, Y = o, (1.8)

which is the consequence of the Bianchi identity

OaFY + F + YFa + F = 0 (1.9)

Using the dual field definition (1.7), we can rewrite the equation of motion (1.6)

in terms of the dual field

(Kg' °' + e "°~O)Fa = 0. (1.10)

Multiplying this with the differential operator (g"" - e"sY'y), we have

(o + K2)Fv = 0 . (1.11)

We see clearly that the gauge field excitation is massive and the Chern-Simons term

plays the role of a mass term.

We can also formulate this theory in Hamiltonian formalism [2]. To do that, we

first need to fix the gauge. For convenience, we choose to work in the Weyl gauge,

i.e. Ao = 0. The canonical variables in this gauge are A. The canonically conjugate

momenta H can be determined by taking the functional derivatives of the Lagrangian

with respect to A

Ili = -Ai - -EiA . (1.12)
2
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Then the Hamiltonian H can be obtained by using H = f d2 x( · A -C)

H = 2 d2x(E2 + B2), (1.13)

where the electric fields E and the magnetic fields B are defined as

E = -A-VAo,

B = V x A = iAj . (1.14)

Note that the Chern-Simons term makes no contribution to the energy (the Hamil-

tonian). This can be understood as a consequence of the topological nature of the

Chern-Simons term [1, 10]: the Chern-Simons term (1.1) does not depend on the

metric tensor g,,; as a result, when we vary the action with respect to g,, to obtain

the energy-momentum tensor, we see no contribution from £cs.

The Hamiltonian equation that follow from (1.13) must be supplemented by the

Gauss's Law [2], which, in terms of E and B, can be written as

V E-KB = . (1.15)

When there is an external charge density p, the Gauss's Law is modified

V E-KB = p. (1.16)

Integrating (1.16) over the whole space yields

- K Jd2xB = Jd2xp= Q. (1.17)

The contribution from the electric fields E vanishes since E, being massive, decrease

exponentially at large distances. We see that the magnetic flux in the two-dimensional

space is proportional to the external charge Q. This further implies that the magnetic
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fields A becomes long range when there is external charge, i.e.

A - - Q tan 2 (1.18)
27rr xl

This is very similar to the soliton configuration in the Higgs model [13].

The Chern-Simons term (1.1) can be easily generalized to the non-Abelian case.

The Lagrange density in that case is [10]

£ = n ~tr(F~,~A~ 2
SC =-2 C etr(FA, A- -A,A, A) . (1.19)

2g2 3

Here we use a matrix notation

A, = gT'aA,>

F,, = gTaFp> = ,A - A,, + [A, ,A] , (1.20)

where T is an anti-hermitian representation of some gauge grotup which satisfies

the commutation relation [T" ,Tb] = fabCTc, g is the coupling constant and is

dimensionless.

Most of the results we obtained for the Abelian Chern-Simons theory can be

straightforwardly generalized to the non-Abelian case. However, there is one novel fea-

ture of the non-Abelian theory. The non-Abelian Chern-Simons action ICs = f d3x2s,

is not invariant against a finite gauge transformation

A, U- 1A U + U- 1O,U, (1.21)

here U is a matrix and we shall only consider those U's satisfying U(x) x- I.

Indeed, a detailed calculation shows that under (1.21), the non-Abelian Chern-

Simons action transforms as

3 d3XC3 -Id8 + 2 w(U), (1.22)
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where w(U) is the winding number of U

w(U) = 2412 J d3 xe-tr[(U 1 9 U)(U-U)(U U) (1.23)

and only takes an integer value corresponding to the homotopy class of U [12]. While

this property of the non-Abelian Chern-Simons action does not affect the classical

equation of motion, it does impose severe restriction on the parameter Is of the theory

upon quantization [1, 10]. This is because in quantum theory, what really matters is

the exponential of the Chern-Simons action I,,. Therefore the requirement of gauge

invariance at quantum level translates to the condition that I,, can only change by

a multiple of 27r under gauge transformations. This, together with equation (1.22),

leads to a quantization condition of the coefficients of the non-Abelian Chern-Simons

term

47r- = n, n = 1,2,..., (1.24)

which has no Abelian analog.

We close this review of Chern-Simons theory with a brief discussion of the Chern-

Simons eikonal [14]. Consider the quantization of the Chern-Simons term (1.19) in

the Schrodinger picture. First we rewrite the Lagrangian as

L = 4 2 J d2x(A2A + AoF,2) , (1.25)

here we have indicated time differentiation by an over dot. Examining the Lagrangian,

we see that Aa and Aa are a conjugated pair while Aa plays a role of Lagrangian

multiplier, which forces F' 2 to vanish (the Gauss's Law).

Next, we postulate equal-time commutation relations

[Aa(r, t), A(r', t)] = iabS(r - r') . (1.26)

In addition, in order to satisfy the constraint enforced by AO, we demand that the
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physical states be annihilated by Fa2, i.e.

Fa2 >= 0. (1.27)

To solve this equation, we choose our representation so that the state to be a func-

tional of Aa. The operators Al and Aa are realized by multiplications and functional

differentiations respectively

I>~- (Aa),

1 1 1

A2 > i A(A) . (1.28)

(91 - 2A + fabcA) . ,,(A1)=. (1.29)
i 6A~ 26A

If we define S by = eis, we can rewrite (1.29) as

a 6a1 S -, 2Aa + fabcAb , S = 0. (1.30)

Recall that in ordinary quantum mechanics the wave function 4' - eifpdx, we see

that S is just the field theory analog of the ordinary quantum mechanical eikonal

f pdx. Thus we call S the Chern-Simons eikonal. An analytic form for S can then

be obtained by solving equation (1.30) [14]. In Section 1.3, We will see that it has

unexpected use in high-temperature QCD.

1.2 Non-relativistic Chern-Simons Solitons

Since 1990, a lot of work has gone into Chern-Simons solitons [15]. Soliton solutions

have been found in both relativistic and non-relativistic models [5, 6]. In this thesis,
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we will mainly study two kinds of Chern-Simons solitons, both of which are non-

relativistic.

1.2.1 Chern-Simons Solitons in Absence of Background Den-

sity

The first kind of Chern-Simons solitons was discovered by Jackiw and Pi [6]. In a

seminal paper, Jackiw and Pi studied a theory described by the following Lagrangian

2L = J d2x( zaAaF: + i1b*Dtb- ID12 + (0*)2) (1.31)

where Dt = t + iAo, D = V - iA. The Hamiltonian can be derived in the standard

way

H = d2x(ID021 (1.32)

By varying the action I = f dtL, we obtain the equations of motion

I zia, = _(D2 + AO - g*),
2

-C" OF = r,2
(1.33)

here J' = (p,J) is defined as

P = *',

J = Im(0*D ). (1.34)

It is worth mentioning that this theory can also be formulated solely in terms of the

matter field t) [6]. In that case, the Lagrangian L' is

L' = J d2xi* a,9t - H, (1.35)

where H is given by (1.32) except that the vector potentials A, are functionals of b,

15
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i.e.

Ao(x, t) = i/ d2x'G(x - x'). J(x', t),

A(x, t) = J d 2x'G(x - x')O*(x', t)(x', t) (1.36)

with G satisfying

V x G(x)= -6 2 (x) . (1.37)

Before presenting the solitons solutions of this model, we would like to record

some useful transformations that can be performed on this Lagrangian [6, 15]. We

shall only give the transformation properties of 4 since those for the vector potentials

can then be derived from equations (1.36). First, it is easy to see that the Jackiw-Pi

model possesses the conventional translation and rotation symmetries, i.e.

x - x+a, t-4t+to, O(x,t) -4(x+a,t+to),
x - R lx, t - t, (x, t) -'(Rx, t), (1.38)

where 71 is a two-dimensional matrix implementing a rotation by angle qp: R(c) =

6i'cos(qp) - eJsin(qp). Moreover, there exists the Galileo symmetry commonly found

in non-relativistic models

V2 t
x - x - vt, t -+ t, 4(x,t) -+ ei(Xv- 2 )(x - vt, t). (1.39)

Besides all these conventional symmetries, the Jackiw-Pi theory is also invariant

under some special coordinate transformations. Consider the following transformation

t -T = T(t),

x -X = Tx ,

' - , +(x,t) = Tt)e 4T (X, T) . (1.40)

It is straightforward to show that the Jackiw-Pi action I is invariant when T is either

16



T(t) = at or T(t) = 1tat'

For an arbitrary T, transformation (1.40) is not a symmetry of the Jackiw-Pi

theory. Rather it maps the model to a model with an external harmonic force with a

time-dependent frequency w given by

2(t) = - d-~ V/1.Aw2(t) = t-dt2 1 (1.41)

One can generalize this idea and construct transformations relating the Jackiw-Pi

model to models with external electric and magnetic fields [16].

Now let us discuss the static solutions of the Jackiw-Pi model. Instead of solving

the equations of motion (1.33) in the static case, we take an indirect approach. Using

the identity

IDl12 = I(D1 - i(K)D 2)0b2 - q1(m)(Bp + V x J), q(K) = sign(,), (1.42)

we rewrite the Hamiltonian (1.32) as

H = I / d2x[l(D - i(I)D 2) 2 - (g - )p ], (1.43)

here we have dropped f d2 xV x J by assuming J is well behaved at large distances.

From (1.43), we notice that when g = 1l, the Hamiltonian is non-negative and attains

its minimum, i.e. zero, when 4' satisfies the self-dual condition

(D 1 - i(r)D 2)4b = 0 . (1.44)

Henceforth we choose g = il and without loss of generality, take r, to be positive.

In this case, equation (1.44) becomes

(D1 - iD2)' = 0 . (1.45)
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Eq. (1.45), together with the Gauss's Law

1
V x A =--p, (1.46)

K

is equivalent to the equations of motion (1.33), as can be confirmed by explicit com-

putation.

To solve equations (1.45), we write = p2 ewi. Then by setting the real part and

the imaginary part of (1.45) to zero separately, we have

1
A= -- V xlnp + Vw. (1.47)

2

Inserting equation (1.47) into the Gauss's Law (1.46), leads to a constraint for p

V 2lnp = -- p . (1.48)

This is just the Liouville equation [6]. However, we have no equation to determine

the phase w. Rather we fix it by requiring that A be regular everywhere on the plane.

Solving the equation (1.48) and imposing the regularity requirement as described

above, we finally obtain the N-soliton solution

= p2eiw (1.49)

with
4 lf'1 2

P= 4. + r 1)2 w = Arg(f'V 2 ), (1.50)I (1+ f2) 2'

where
N c m N

f(z) E Z am V(z)= (z - am), (1.51)
m=l Z am=l

here z = xl + ix 2, f' = -, am is the location of the mth soliton and cm describes its

phase and scale.
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1.2.2 Chern-Simons Solitons in the Presence of Background

Density

Now we turn our discussion to a model studied by Barashenkov and Harin [7]. The

Lagrangian is

L = d2x (eO13A,Fo + Aopo + i*Dt- ID-lD- (-* - po)2) . (1.52)
4 2 2

It differs from the Jackiw-Pi model in two aspects: (1) there is a background density

po in this model; (2) the potential here is repulsive while the potential in the Jackiw-Pi

model is attractive. The equations of motion can be obtained in the usual way

iat = [D2 + A' + -p)]¢,
2 K

Eta3FoO =J, (1.53)
2

where J is the same as (1.34) except that p is replaced by p - p. The vacuum

solution: = V/JSei",Ao = 0 and A = fee with tanO = ~ and r2 = x2 + x2, whichr x1

will serve as asymptotes for our soliton solutions at infinity, exhibits spontaneous

symmetry breaking [7]. This implies the magnetic flux of the soliton solution is

quantized, i.e.

J d2xB = 27rn . (1.54)

As in the Jackiw-Pi case, we also write down the Hamiltonian for this model

1 21
H = d2x[lD1 2 + -(p-po) 2] (1.55)

By virtue of the identity (1.42), (1.55) can be rewritten as

H = d2x[l(D + iD2)¢12 + Bp + po)] (1.56)
2 

With the help of the Gauss's Law B = -(p - po) and the quantization condition/q
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(1.54), we have

H = 2 J d2 xl(Di + iD 2)1P12 + 27rpon , (1.57)

here an infinite constant has been dropped. The lower bound of energy, 27pon, is

saturated when 4 = ie in O satisfies the following self-dual conditions

(D1 + iD2)4 = 0,

B = -- (p - Po) (1.58)

Following an approach similar to the one used in solving the Jackiw-Pi model, we

finally obtain

V21np =--(p -Po) (1.59)

Equation (1.59) has been studied numerically [17] and is known to possess topological

soliton solutions with asymptotic behavior: p --- po as r - oo and p(r) r2n near

the origin.

It is interesting to compare the boundary behavior of the soliton solution in this

model with that of the Jackiw-Pi soliton. As can be seen from (1.49), (1.50), (1.51),

the Jackiw-Pi soliton vanishes at infinity; while the soliton in this model approaches

a non-zero value po when r - oo. In Chapter two, we shall demonstrate that this

difference in boundary behavior leads to drastically different dynamical behavior of

the solitons.

1.3 Hard Thermal Loops and Chern-Simons The-

ory

In the present section, we review recent works on Hard Thermal Loops (HTLs) in

high-temperature QCD and its relevance to Chern-Simons theory [18, 19, 20, 21].

The motivation which leads to the discovery of HTL was the observation that

physical quantities (such as the damping rate of the quark-gluon plasma) in high-

temperature QCD is gauge-dependent when computed using the usual loop expansion
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[22]. The solution to this problem was first proposed by Pisarski [8]. He realized that

in order to obtain consistent results in high-temperature QCD computations, it is

necessary to perform a resummation procedure before doing perturbative expansion.

The necessity of such a procedure can be understood from the following example:

Consider a one-loop amplitude Hl(p)

n1(p) = j dkI (p, k), (1.60)

given by the graph

p

k

Fig. 1-1. One-loop amplitude HI(p).

Compare I(p) to a two-loop amplitude 112(p)

n2(p) = dkI 2(p, k), (1.61)

given by

p

g

Fig. 1-2. Two-loop amplitude [I2(p).
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Following Pisarski [8], we can estimate the relative importance of H2 to Hl by the

ratio of their integrands
112 12 g2 H(k)
l =, Ig (1.62)

Here g is the coupling constant and we assume that the mass of the particles are

negligible. For small k and large T, we find that 111(k) T2 , thus 92

Therefore when k is O(gT) or smaller, the two-loop amplitude H2 is not negligible

compared to Ili. It needs to be included in the computation.

In the subsequent development, Pisarski et al. identified the graphs needed to

be resumed in SU(N) gauge theory at high-temperature limit. Their results can be

summarized as follows [18]:

(i) In the leading order of g, only a subset of one-loop graphs with "soft" external

momenta [ O(gT) or smaller ] and "hard" internal momenta [ T ] need to be

resumed. And these so called "Hard Thermal Loops" are graphs with either none or

two fermionic legs.

(ii) The HTLs are proportional to T2 in the high temperature limit. The contri-

bution from HTLs with fermionic legs and that from HTLs without fermionic legs are

gauge-invariant separately.

In addition, generating functionals can be written down for HTLs with only glu-

onic legs and HTLs with fermionic legs separately [23]. The generating functional for

HTLs with purely gluonic legs FHTL exhibits remarkable simplicity. To explain this,

we define two light-like vectors Q±

1
Q ( = 1 ) (1.63)

where q is a unit 3-vector, pointing in an arbitrary direction. Using Q', we can

project coordinates and gauge fields accordingly

xi = Qf, = Q+ , A± = QiA. (1.64)

The additional simplicity related to FHTL is that: (1) rHTL is a sum of an ultra-local
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contribution and an average over the angles of j of a functional W that depends only

on A+; (2) this functional W is non-local only on the two-dimensional x± plane and

ultra-local in the remaining directions. Explicitly

1 g
2

T
2 r r 1

rHTL = (N + NF)12 [2rJd 4 xA(x)A'(x) + dQ4W(A+)J (1.65)

where NF is the number of fermion species, a is the color index and dQ4 denotes an

integration over the solid angle of j.

Knowing (1.65), we can present the condition of gauge invariance of rHTL as [23, 9]

/ d"qbW = 4J d4xAow. , (1.66)

here 6A = ,w+[A ,, w] where wa parametrizes an infinitesimal gauge transformation.

Equation (1.66) is realized by

6W = d4xAwa. (1.67)

Indeed, the analysis of HTL graphs shows this is the way equation (1.66) is satisfied.

To relate FHTL to Chern-Simons theory, we define a new quantity S

S(A+) =W(A+) + - J d4xAA(x)A.A(x) . (1.68)

In terms of S, equation (1.67) can be rewritten as

6 a b b 
&AaS - A+ + faAAbcA S = O. (1.69)

Identifying +, - with 1, 2, we immediately recognize that equation (1.69) is nothing

but the constraint (1.30) satisfied by the Chern-Simons eikonal. Thus the generating

functional for HTLs is essentially given by the Chern-Simons eikonal [9].

As a final note, we would like to mention an interesting observation by Frenkel and

Taylor. They discovered that HTLs can be derived from an eikonal approximation of

one-loop Feynman diagrams [24].
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Chapter 2

Dynamics of Chern-Simons

Vortices

2.1 Dynamics of Chern-Simons Vortices in Ab-

sence of Background Density

Recently, there has been a lot of study on Chern-Simons solitons [15]. Topological

and non-topological solitons are found in a relativistic theory [5], and non-topological

solitons exist in a non-relativistic model [6]. Since Chern-Simons dynamics is closely

related to the quantum Hall effect and perhaps to high-T, superconductivity, it is

very interesting to study these solitons [25, 26]. Here, we analyze the dynamics of

non-relativistic Chern-Simons solitons in modular parameter space.

Manton originally proposed a method for studying soliton dynamics with specific

application to monopole scattering [27]. His idea can be summarized as follows: if

there are no forces between static solitons, then at low energies, the dynamics of the

full field theory can be described approximately on a finite dimensional space, where

the degrees of freedom are the modular parameters of the general static solution.

This method has been widely applied to many other systems [25, 28, 29, 30, 31]. In

a recent application, the statistical interaction among non-relativistic Chern-Simons

solitons has been obtained [26].
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However, since only first-order time derivatives appear in non-relativistic Chern-

Simons theory, it is not clear that Manton's method is directly applicable. Here

this question is analyzed and we find that in order to find the correct dynamical

behavior of non-relativistic Chern-Simons solitons, a phase, related to the 1- cocycle

of the Galileo group, must be introduced when applying the collective coordinate

method. Moreover, we use this modified method to study interactions both among

well-separated solitons and between these solitons and external fields.

Let us define the notation: we shall use superscripts m,n = 1,..., N as soliton

indices, and subscripts i,j = 1,2 as space indices, for which a summation convention

is employed.

We first introduce the Jackiw-Pi Lagragian [15],

L = d2r(NE-aYAFOy + i*DtO - ID' 2 +L (2.1)

where Dt = Ot + iAo, D = V - iA.

The static solution for N solitons is

= peiw (2.2)

with
4 [f '12

P W(+If)2 c = Arg(f'V 2 ) , (2.3)(1 + fl2) 2 '

where
N cm N

f(z) = . za V (z) -(zam) , (2.4)
m=l m=1

here z = x + iy, f' = and w is defined in (2.3) to make the solution nonsingular.dz

Physically, am is the position of the mth soliton, and cm parameterizes its size and

phase. Note, the static solution ¢, satisfies the self-dual equation [15],

(D1 - iD 2)s = 0O (2.5)
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and the action I = f dtL can also be written as [15]

I = dtd2r(i*Ot -2 (D- - iD2)1 2)) (2.6)

Now we discuss the dynamics of these solitons. For sake of simplicity, we hold the

cm's time-independent, and let the am's be time-dependent. First, we notice: because

of the Galileo invariance of our model, the static one-soliton solution acquires a phase

O = v r - v2 t when boosted with a constant velocity v [15]. Motivated by this

fact, we consider the following function,

= 4se"e , (2.7)

where ¢s is the self-dual solution (2.2) and 0 is a function of am , am, t and r.

We assume that the time-evolution of well-separated Chern-Simons solitons at low

energies is approximately described by the effective Lagrangian for the am's, which is

obtained by substituting (2.7) into the original action I (2.6). Notice that 4s continues

to satisfy equation (2.5) even with time-dependent parameters, hence we obtain

Ieff = f dtd2r(-pOtO - p + tp - ai0) (2.8)
· ·=/·v · · · pw · 2 2

Since f d2 rp = 0,

2If= J dz~dtd r(-patO -apt - Pajoajo) (2.9)

In order to determine 0, we shall require that near the center of each soliton b

satisfy the equation of motion of the original Lagrangian to order a; we also assume

that ii is much smaller than . This leads to

0 = y(am(t)Gm(r)) . r (2.10)
m

and, Gm(r) · 1, when r is near am; while Gm(r) ) 0, when r is far away from

am. Also the derivatives of Gm are order (a)2, hence can be set to zero. Thus, the
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effective action becomes,

Ieff = 2 ddr- pat(A rGm) - tw- L Ep(a m Gm ) ( Gm )),
m m

(2.11)

or after an integration by parts,

2f/d·(ap.C)-aCpmCG 1Ieff = dtd 2 r( Otp(Am Gm ) r - potw - - E p(.a m Gm ) (G m ))
m m

(2.12)

Here an end point contribution has been dropped. Thus, our effective Lagrangian is,

Leff = J 1
d2r(E tp(am Gm) .r - ptw - p(am Gm) (m Gm)) 

m 2m
(2.13)

We divide Leff into two parts, L1 and L2, in which L1 is the part induced by the

phase O and L2 is the part obtained by direct application of Manton's prescription.

Leff = L1 + L2

L1 - E d2r(atp(amGm) r
m

L2 = - d2rpOtw .

We first evaluate L1. Using the above described properties of Gm, we obtain,

(2.14)

L1 = 
m

= E
m

am -/d2rOt(pGmr) - 2am.a~~~~~~

am d d2r1dt 2

where pm is the spherically symmetric one-soliton density for the mth soliton. Finally,

using f d2rpmr = 41ram and f d2 rpm = 4ir, leaves

L1 = 2rKC am ia m (2.16)
m

Not surprisingly, the familiar kinetic energy term for non-relativistic particles is re-

covered and the mass 47rKc is exactly what we expect from a consideration of the
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amJ d2rpm (2.15)

I
p(.imG m) ( m))
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single-soliton momentum [15].

Now we evaluate L2. Notice that f'V 2 can always be written as,

N 2N-2
f'V 2 = -(Z cm) (b - z) , (2.17)

m=1 n=l

where each b solves the following equation,

N N

Z(c m 71 (z - an)) = 0. (2.18)
m=l nAm,n=l

Thus, we have,
2N-2

w = Arg(f'V 2) = E Arg(bn - z) + const . (2.19)
n=l

Using the correspondence between a complex number z and a real 2-dimensional

vector r as well as the formula Arg(z) = 0(r) tan- 1 (t), we have,

2N-2
L2 = - E JdrpOt(b -r)

n=1
2N-2

- E bn. Jd2r a (bn - r)p . (2.20)
n=l

Recall that in the original theory the Chern-Simons vector potential is given by [15],

A(r, t) = - J d2r'VO(r - r')p(r', t) (2.21)

and we see that (2.20) becomes,

2N-2
L2 = 27rn, E bn . A(bn, t) . (2.22)

n=l

The interaction among the non-relativistic Chern-Simons solitons is mediated by an

effective Chern-Simons vector potential induced by these solitons. A similar result

was obtained in the relativistic Chern-Simons model by Kim and Min [25].
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We can further simplify (2.22). As shown in Ref. [15], for the self-dual solution,

1
A =- V x lnp + Vw . (2.23)

2

Defining (r) = (IV12 + IfV 2 ), we get,

2N-2
L2 = 27rK A, b' (V x ln4((r))lr=bn . (2.24)

n=l1

Combining (2.16) with (2.24), we have,

2N-2
Leff = 27r< Zi m + 27r E bn (V x ln4(r))r=bn , (2.25)

m n=1

where bn is determined by solving (2.18).

In principle, the interaction term L2 for a fixed N can be simplified with the aid

of (2.18). As an example, we shall make the simplification for two solitons in their

center of mass frame, a' = -a 2 = a, and arbitrary constants c and c2. In this case,

equation (2.18) becomes,

(c1 + C2)(Z2 + 2dza + a2) = 0O (2.26)

where d = C1 c2

Equation (2.26) has two roots bl'2 = a(-dv/ 2 - 1) while b,2 = (-d± 2 - 1).

Substituting these into the effective Lagrangian and using the explicit form of I· for

two solitons, we obtain, in complex notation,

2

L2 = -4rrc Im(bn4zln(I(z))lz=bn
n=1l

2 a* (1)nd(d)
-47rK E Im( a-2 ( d / +

nl= _aJ2 1--- I2 + 1)

/na*
= -8l7rtIm( -2 )

la(
d d

= -8iri-Arg(a) = -87rrn O(a) . (2.27)dt dt
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Recalling that (a) is the relative angle between two solitons, we see that (2.27) is

the statistical interaction with spin S = -4irr, [32]. This coincides with the result

obtained by Hua and Chou with numerical integration [26]. Thus, classically, our

Lagrangian describes two free-moving non-relativistic particles with statistical inter-

action.

As another interesting example, we apply our method to a single Chern-Simons

soliton in the presence of external fields. To be specific, we consider one soliton either

in a constant external electric field or in a constant external magnetic field or in a

harmonic potential or in any combination of these three. The most general action is

I. 1D
I =] dtd2r(i/*Ot$-O *b- kr2*-- -I(D- - iD)4l2) , (2.28)

2

where De = V - iA - iAe, A = - rjB, A = -r E and k is the strength of the

harmonic potential .

In this case, we choose the phase O as follows,

1 t
0 = a r - B2 dt'a(t'). a(t') (2.29)

Then we substitute the trial function (2.7) with this new into (2.28), following

similar procedures, we obtain,

Le = 2 a J d2 rp + Jd2rpE.r- k d2rpr2 + Jd2rpa. Ae(r) . (2.30)

By using the spherical symmetry of the one-soliton solution and the explicit form of

Ae , we have,

Leff = 2ri i + 4rca E - 47rn. Ae(a) - 2rklal2 . (2.31)

Here an irrelevant constant term is dropped.

Thus, we see that the Chern-Simons soliton behaves like a non-relativistic point-

like particle with charge 4r and mass 47r in these external fields. In fact, exact
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soliton solutions in the presence of these fields can be found by a coordinate trans-

formation [16]. Our result agrees with the behavior of these solutions.

In summary, we comment on the phase . From our work, it is clear that this

phase plays a very important role in the dynamics of non-relativistic Chern-Simons

solitons. However, we have not determined this phase exactly. Thus, it would be very

interesting to look for some method to find this phase.

2.2 Dynamics of Chern-Simons Vortices in Pres-

ence of Background Density

In a recent letter, Barashenkov and Harin studied a non-relativistic Chern-Simons

theory in the presence of a background density [7]. A similar model was also studied by

Lozano [7]. As found by Barashenkov and Harin, this model admits vortex solutions

with a non-vanishing field configuration at infinity, in contrast to the theory without

the background density [15]. In this brief report, we study the dynamics of these non-

relativistic vortices and show that the background density induces a Magnus force [33]

on moving Chern-Simons vortices, a force that vanishes when the background density

is absent [26, 34].

We start by reminding the reader of the conclusions of Ref. [7] that are essential

to the present discussion. First, the authors of Ref. [7] have formulated a 2 + 1

dimensional Chern-Simons theory in which the matter density is finite at infinity, and

have found that the Euler-Lagrange equations corresponding to that theory admit

vortex solutions. These equations can be derived from a Lagrangian written solely in

terms of the matter field . The Lagrangian can be put in the form

L = J d2r(i*0t, - -(23)) (232)

where 7t() is the energy density of the system and has no explicit time dependence.
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Second, the one-vortex solution centered at R has the following form

k1l(r; R) = pleis (2.33)

with r = (x,y) and R = (X,Y). Here p and 0 are functions of r - R where the

latter is given by 0 = arctan ( ). The density p vanishes continuously at r = R

and approaches the background density p0o as Ir - R I - oo.

Following the standard Manton procedure [27], we reduce the Lagrangian (2.32)

to a Lagrangian of a single degree of freedom, that of the vortex' center, R. This

is done by regarding R as time dependent and substituting (2.33) into (2.32). The

Lagrangian thus obtained effectively describes the dynamics of the vortex center. For

convenience, we consider the two terms in (2.32) separately. The second term, when

integrated, gives the rest energy of the vortex and is irrelevant to our discussion of

the Magnus force. On the other hand, the first term leads to

Ll = Jd2r [(Otp(r - R(t)) -p(r -R(t))&tO(r -R(t))] (2.34)

Since f d2rp = 0, (2.34) can be simplified to

Llf = - d2rp(r-R(t))t(r - R(t))

= R* d2rp(r- R(t))VrO(r- R(t)) .(2.35)

Here we have used the fact that 0 only depends on r - R. The subscripts r and

R denote the argument of the differentiation. Recalling that R is the velocity of

the vortex, we observe that L f describes an interaction of the vortex with a vector

potential. The force F experienced by the vortex due to this interaction can then be

obtained by varying (2.35) with respect to R

Fi = eiRj B . (2.36)
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The field strength B is given by

B = VR J d2 rp(r - R(t))Vrr R())V) (2.37)

The evaluation of B is straightforward. Since the integrand only depends on r- R,

we write

B = - d2rVr x (p(r - R(t))VrO(r - R(t))) (2.38)

Using Stoke's theorem and the asymptotic behavior of p, we finally have

B = -2 rpo . (2.39)

Thus, a force is exerted on the vortex when it moves relative to the background

density po. This force is proportional and perpendicular to the vortex velocity, and

proportional to the background density. It is the Magnus force. The Magnus force

makes the vortex dynamics similar to that of charged particles in a magnetic field,

with the role of the magnetic field played by the background density. We point

out that in our derivation the essential inputs are the asymptotic behavior of the

vortex at infinity and the non-relativistic nature of the theory. This suggests that the

existence of the Magnus force is a universal feature for non-relativistic vortices with

non-vanishing field configuration at large distances. We also note that the effective

action obtained by integrating (2.35) can be obtained by a Berry phase analysis as

carried out for the case of vortices in superconductors in Ref. [33]. Finally, we note

that non-relativistic Chern-Simons theories can be viewed as a low-energy effective

field theory of their relativistic counterparts [6]. It would then be of interest to

study the relevance of our work to the dynamics of vortices in the extensively studied

relativistic Chern-Simons theories [25].
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Chapter 3

Hard Thermal Loops, Static

Response and the Composite

Effective Action

3.1 Introduction

When it was realized [9] that the gauge invariance condition [23] on the generat-

ing functional (A) for hard thermal loops in a gauge theory [18] (with or without

fermions) coincides with a similar requirement on the wave functional of Chern-Simons

theory, one could use the known solution for the latter, non-thermal problem [14] to

give a construction of F(A) relevant in the former, thermal context. The expression

for (A) is non-local and not very explicit: (A) can be presented either as a power

series in the gauge field A [9] [the O(An) contribution determines the hard thermal

gauge field (and fermion) loop with n external gauge field lines] or as an explicit

functional of path ordered variables P exp f dx4 A, [14].

More accessible is the expression for the induced current -_t(A) Tar(A)

which enters (high-temperature) response theory, in a non-Abelian generalization of
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Kubo's formula (in Minkowski space-time) [20]:

Dv FVI(x) = 5A(x))- 2 j(x) . (3.1)

T a is an anti-hermitian representation of the Lie algebra, the gauge covariant deriva-

tive is defined as D, = 0, + g[A,, ], and m is the Debye mass determined by the

matter content: in an SU(N) gauge theory at temperature T, with fermions in the

representation T a, and Tr (TaTb) = _ESab where NF counts the number of flavors,

the Debye mass satisfies

m2 _g2T2 (N + N (3.2)3 -\2·
Henceforth, through Section 3.2, we scale the gauge coupling constant to unity. The

functional form of ju can be given as [20]

j() = { (a_(x) - A(x)) + Q (a+(x) - A+(x)) } (3.3)

Here Q: are the light-like 4-vectors (1, ±4), with q2 = 1, A± are the light-like

projections A± = Q[ A,,, while a+ are given by [14, 20]

a+ = g-' + g, a_ = h- l O_ h (-± Q 0,) (3.4)

when A± are parameterized as

A+ = h- 1l0+ h , A_ = g-1 &- . (3.5)

In other words, a± satisfy the equations

0+a_ - A+ + [A+,a_] = 0,

a+A_ - O_a+ + [a+,A_] = 0, (3.6)

whose solution can be presented as in (3.4) when A± are parameterized as in (3.5) -

evidently g and h involve path ordered exponential integrals of A±. (Alternatively
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a± may be given by a power series in A: [9].) Finally (3.3) requires averaging over

the directions of .

It is easy to verify that (3.6) ensure covariant conservation of j". Moreover, gauge

invariance is maintained: for (3.1) to be gauge covariant, it is necessary that j'

transform gauge covariantly. That the expression in (3.3) possesses this property

is seen as follows. When A+ transform by U- 1A± U + U-'±U, Eqs. (3.4) - (3.6)

show that a± transform similarly, hence the differences a± - A± transform covariantly.

The manifest gauge covariance of (3.1) ensures that m is a gauge invariant parameter;

that it also has the interpretation of an electric (Debye) mass will be evident when

we consider the static limit.

It is of obvious interest to discuss solutions of (3.1). In the Abelian, electrody-

namical case this is easy to do, since (3.6) can be readily solved for a, and the

solutions of the linear problem are the well-known plasma waves [35]. The non-linear

problem of finding non-Abelian plasma waves is much more formidable. Also, one

inquires whether the non-linear equations support soliton solutions, and (after an ap-

propriate continuation to imaginary time) instanton solutions. [The time-dependent

equation (3.1) in Minkowski space-time must be supplemented with boundary condi-

tions, which are determined by the physical context. For example, response theory

requires retarded boundary conditions, which in fact preclude deriving (3.1) varia-

tionally [20]. Here we shall not be concerned with this issue.]

Our paper concerns the following two topics. In Section 3.2, we analyze (3.1) for

static fields. It turns out that in the time-independent case (3.6) can be solved for

a± and (3.1) is presented in closed form. We prove that the resulting equation does

not possess finite-energy solutions, thereby establishing that gauge theories do not

support hard thermal solitons. Also some negative conclusions about instantons are

given. In Section 3.3 we present an alternative derivation of (3.1), which relies on the

composite effective action [36], and makes use of approximations recently developed

in an analysis of hard thermal loops based on the Schwinger-Dyson equations [21].
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3.2 Static Response

When A± are time-independent, we seek solutions of (3.6) that are also time-independent.

Acting on static fields, the derivatives 0 become +Jr . V ± =a, and (3.6) may be

written as the equations

a, A± + [A±, A] = 0 (3.7)

for the unknowns A± = A+ + aT. These are solved trivially by A± = 0, that is

aT = -A+ . (3.8)

This solution is also the one that is deduced from the perturbative series expression

for a±, when restricted to static A+.

[A non trivial solution can be constructed with the help of representations similar

to (3.5). Upon defining in the static case

A+ = ho-' ho,

A_ = -go l go

(ho and go involve path-ordered exponentials along the path r + ar), we find

,4+ = ho-l I+ ho,

A- =go- Igo ,

where I are arbitrary Lie algebra elements, independent of r: * VI± = 0. Since

these solutions involve the arbitrary quantities I, and since they do not arise in

the perturbative series, we do not consider them further and remain with the trivial

solution (3.8), which corresponds to I± = 0.]

From (3.8) it follows that the current for static fields is

(r= - J 4 (QA + Qi) (A+(r) + A_(r)
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= - (Q + Q) (Q + Q )Av(r). (3.9)

With Q+ + Q_ = 0 and Q + Q = , we compute j =-2 A°6Ao. The response

equations (3.1) then become, in the static limit:

DiEi + m2Ao = 0 , (3.10)

6ijkD3 Bk = [Ao, Ei] , (3.11)

where Ei _ F ° and F j _- iJkBk. Eqs. (3.10), (3.11) give clear indication that m

plays the role of a gauge invariant, electric mass. The fact that the static current is

linear in the vector potential implies the vanishing of hard thermal loops with more

that two external gauge-field lines, and zero energy - a fact which can be checked

from the relevant graphs.

Unfortunately, Eqs. (3.10), (3.11) do not possess any finite energy solutions. This

is established by a variant of the argument relevant to the m2 = 0 case [37].

Consider the symmetric tensor

0ij - 2 Tr EiEj + B'Bj - (E2 +B2 +m2A()) . (3.12)

Using (3.10), (3.11) one verifies that for static fields j j3' = 0. Therefore

J d3r " = J d3r aj(xi i) = J dS'xi'Oi . (3.13)

Moreover, the energy of a massive gauge field (with no mass for the spatial compo-

nents) can be written as

= d3r{-Tr (E2 +B 2+ 2(DiE)2)+ Tr (mAo+ DiE } (3.14)

The second trace in the integrand enforces the constraint (3.10). Consequently, on
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the constrained surface the energy is a sum of positive terms [38]:

£ = J d3r - Tr (E2 + B2 + m2A2)} (3.15)

and E, B and Ao must decrease at large distances sufficiently rapidly so that each of

them is square integrable. This in turn ensures that the surface integral at infinity in

(3.13) vanishes, so that static solutions require

J d3rOii = 0 (3.16)

On the other hand, from (3.12), we see that "ii is a sum of positive terms

ii = - Tr (E2 + B2 + 3m2A) , (3.17)

hence (3.16),(3.17 imply the vanishing of E, B and Ao.

The absence of finite energy static solutions can also be understood from the

differential equations (3.10), (3.11). Eq. (3.10), (3.11) possesses solutions for Ao that

are either exponentially increasing or decreasing at infinity. Rejecting the former

removes the freedom of imposing further conditions at the origin, and necessarily the

exponentially damped solution evolves into one that is singular (not integrable) at

the origin; see the Appendix A. (This situation can be contrasted with, e.g., the

magnetic dyon solution [39], where absence of the mass term allows solutions for Ao

with unconstrained large-r behavior, leaving the freedom to select the solution that

is regular at the origin.)

A similar argument shows that there are no "static" instanton solutions. These

would be solutions for which t is replaced by -ix 4 , A by iA 4 and presumably one

would seek solutions periodic in 4 with period /3= T = 2 . An 4-

independent solution is necessarily periodic; it would satisfy (3.10), (3.11) with A4

replacing Ao and opposite sign in the right side of (3.11). But analysis similar to the

above shows that finite-action solutions do not exist.
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3.3 Hard Thermal Loops from the Composite Ef-

fective Action

In this Section, we present a derivation of the non-Abelian Kubo equation (3.1)

based on the composite effective action of [36], a generalization of the usual effective

action (obtained by coupling local sources to the fields) in which one additionally

introduces bilocal sources. In the QCD case, the composite effective action is given

by S(A) + F(A, Gk), where Go(x, y) are (undetermined) two-point functions, and the

labels = A, ¢, ( denote either gluons, or fermions-antifermions, or ghosts-antighosts,

respectively (in the end, ghosts play no dynamical role, beyond maintaining gauge

covariance of the final result). S(A) is the pure Yang-Mills action, and

C(A, GO) = ( Tr lnG G 1+ Tr DGA)

-i( Tr lnG;, + Tr DI1 G + Tr lnG - I + Tr DG) (3.18)

when 2PI contributions are omitted (this comprises the first approximation we make).

The trace is over space-time arguments as well as over Lorentz and group indices. The

gauge coupling constant g, which was previously scaled to unity, is here reinserted.

D 1 is computed from the usual QCD action SQCD (e.g. in the Feynman gauge):

62 SQCDiDl(x, Y)= ) c( (3.19)

The fields carry group and space-time indices, which are symbolically subsumed into

the space-time labels x, y.

As indicated in [36], S + rc is stationary for physical processes. This yields the

conditions

D,F' = J , (3.20)

Go1 = , = A, (3.21)
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Computing the local induced current J(x) = - involves differentiating D-1

with respect to A,. Since the D' 1 depend locally on A, the resulting current is the

local limit of a bilocal expression constructed from the two-point functions Gk(x, y):

J(x) = lim J(x, y), (3.22)
y-*x

where the bilocal current J(x, y) = TaJj(x, y) is given by

J(x, y) = g (raI DOG OA'(X, y) + 'G((x, y)) + igTa tr f"TaGp(x, y) (3.23)

withr =, 2gg -l gg - gga. The trace "tr" is taken over Dirac spinor as well

as internal symmetry indices, and we have defined GA,C(x, Y) = [Ta, Tb]GA,( ab(, y)

with DxGA(x, y) = aOGA(x, y) + g[[A(x), Tb], TC]GAbc(x, Y).

We now use eqs. (3.20) - (3.23) to study "soft" plasma excitations. "Soft" means

that both the energy and the momentum carried by a particle are of order gT, for a

coupling constant g <K 1, while particles with energy or momentum of order T are

called hard (see e.g. [18]). The strategy is to solve the system of coupled equations

(3.20), (3.21), in order to derive from (3.23) the expression (3.3) for the local current

J". We approximate eqs. (3.20), (3.21) by expanding them in powers of g. The

approximation scheme we use was first proposed in [21]. Accordingly, we introduce

relative and center of mass coordinates, s = x - y and X = (x + y), respectively.

Note that in the new variables the partial derivatives carry different dependences on

g: 0, - T and Ox gT. This comes from the fact that , corresponds to hard loop

momenta, whereas Ax is related to soft external momenta.

Next, we expand GO in powers of g:

G = G(° ) + gG(1 ) + g2G(2) + (3.24)

where G(°) is just the free propagator at temperature T and G( ), i > 1 are determined

by (3.21). At leading order in g (to which we restrict ourselves in the sequel), the
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bilocal current (3.23) depends on G(°) and G(1)

J(X, bs) = g2fbc [ Av G(l)o (X, s) + fbdeA (x)GA7 ) I(X, S)) (bl( )

+ig2 tr yT aG )(X, s) + 6J(X, s), (3.25)

where Gq(X,s) _ G(X + ,X - ) [and similarly for J(X,s)]. We have added

the term Jj(X,s) in order to compensate for the loss of gauge covariance due to

non-locality:

J(X, s) = g2s Ab(X) [facefc (3 ,() O G de(s)) +itrTbTa7 G() (s)].

(3.26)

Note that this term vanishes in the local limit.

Now, we derive from (3.21) a condition on Gl). [It turns out to be convenient to

expand, instead of (3.21), the equivalent equations D¢ 1GO = GD 1 = I, in which

we disregard temperature-independent contributions.] The O(g)-condition does not

fix G(1) uniquely; hence we need to go to O(g2 ). The condition so obtained on G(1)

is then used to derive a constraint on the bilocal current. The subsequent analysis is

straightforward and lengthy (it is similar to the one given in [21], to which we refer

the reader); momentum space is most convenient, i.e.

GO(X, k) = J d4s eik"G,(X, s), (3.27)

the explicit forms for the thermal parts of the free propagators being (e.g. in Feynman

gauge):

G(°)a (k) = -27 abg",(k) nB(k0),

G) mn(k) = -2mnP6(k 2)nF(ko)

G()ab(k) = 27r 6ab(k2)ns(ko) , (3.28)
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where nB,F(ko) = 1/(ePl kO1: 1) are the bosonic and fermionic probability distributions.

Similarly, for the bilocal current in momentum space one writes

J(X, k) = J d's eiksJ(X, s).

In the limit s O, or equivalently y - z, where X = x,

J(x) = J'(X) = f (X, k)I (27r) 4

The resulting constraint on the bilocal current is [21]:

Q Dx J"(X, k) = 4g 2Q'QPko Fpo 6(k2) [Nns l(ko)
dkoe

+ NF nF(ko)],

where Q = k = (1, Q). We integrate this equation over kl and ko > 0
k0 m

Due to the

6(k2 ) on the right side, the bilocal current is non-vanishing only when ko = kl; hence

Q can be replaced by a unit vector q - -k The integration thus yields:= kj tgaintu ils

Q+ Dx J (X, ) = -2'2 7r3 m 2Q Q Fo , (3.32)

where we have defined

j+ (X, ) = J k12 dIkl J dko J M(X, k) . (3.33)

Similarly, upon introducing

/J k 2dlkl fL
dko J(X, k), (3.34)

the integration of (3.31) over kl and ko < 0 gives:

Q_- Dx .7_(X, ) = -2V- r3 m 2 Q-QP Fpo, (3.35)

wherefrom one sees that Jf(X, -) satisfies the same equation (3.32) as Jf(X, ).
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Now, using f d4k = f dQlkl2 dlkldko, we rewrite the expression (3.30) for the local

current as J'(X) = f d24 [J+(X, 4) ± J(X, 4)]. Here, can be replaced by - in
(2i') 4

each term of the integrand separately, since spans the whole solid angle. Therefore,

we can write

J"(X) = J
(27r)4 (X, q)

(3.36)

(3.37)

where J(X, 4) is defined as

j(X, 4) -= (X, 4) + J (X, -4),

and satisfies, as a consequence of (3.32) and (3.35),

Q+ Dx J(X,4) = -4/ r3m2Q+QP+Fpo. (3.38)

From this, after decomposing

,J'(X, ) = ,j'(X, ) - 4 r3m2Q Ao, (3.39)

we get as our final condition on the bilocal current:

Q+ Dx j'(X, ) = 4 7r3 2Q+0X(Q+ A) . (3.40)

Let us now assume that .j'(X, 4) can be obtained from a functional W(A, 4) as

A (X,)= -6W(A, )
J4(X') = A,(X) (3.41)

Equation (3.40) then implies that W(A, ) depends only on A+, i.e. W(A, ) =

W(A+), and 7j = IWRA+ Q-. In turn, W(A+) satisfies, as a consequence of (3.40),

6W(A+) 
Q+'Dx A-

6A+
4 v2 7 3 m2 A+ .
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By introducing new coordinates (x+, x_, xl),

x+ = Q ., x = Q+. x, XI . = 0, (3.43)

we can rewrite Q+. Ox as 9+ and (3.42) becomes

6W(A+) g[ (A (3.44)+ + A =W(A+) = 4V`2r3m2 oA+ . (3.44)
6A+ A+ 

This equation was first derived in [23], as an expression of gauge invariance of the

generating functional for hard thermal loops, and has since then been studied by

several authors. Here, it is seen to be a consequence of the stationarity requirement

on the composite effective action.

It has been shown in [9] that W(A+) is given by the eikonal of a Chern-Simons

gauge theory. This observation is our last step towards deriving the approximate

expression for the local current J(x) in eq. (3.20). The subsequent development

follows [20] and the result is exactly the non-Abelian Kubo equation (3.1) with the

form (3.3) for the induced current.

3.4 Conclusions

The behavior of the quark-gluon plasma at high temperature is described by the

non-Abelian Kubo equation (3.1) - (3.3). We have studied the static response of

such a plasma and proved that there are no hard thermal solitons. The absence

of "static" instantons is established by invoking a similar argument. In addition,

the static non-Abelian Kubo equation indicates that the non-Abelian electric field

is screened by a gauge invariant Debye mass m = gT /N+N/. Furthermore, we

have derived the non-Abelian Kubo equation from the composite effective action

formalism. Indeed, the requirement that the composite effective action be stationary

leads, within a kinematical approximation scheme taken at the leading order, to the

equation obtained in [23] by imposing gauge invariance on the generating functional

of hard thermal loops.
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Let us mention some problems deserving further investigation. Finding non-static

solutions to the non-Abelian Kubo equation is an appealing - if difficult - task,

since such solutions would correspond to collective excitations of the quark-gluon

plasma at high temperature. Also, it would be interesting to investigate the next-to-

leading order effects in the kinematical approximation and to see if they are gauge

invariant. It is clear that Fr(A, G,), when evaluated on the solution for GO obtained

from (3.21) and (3.24), coincides with the F(A) constructed from the Chern-Simons

eikonal. While our derivation establishes this fact indirectly, an explicit evaluation of

the relevant functional determinants in the hard thermal limit would be welcome.

NOTE ADDED

We have now seen two papers [41] wherein the static response equations (3.10),

(3.11) are also obtained. Moreover, a local equation is found (and analyzed) for

time-dependent, but space-independent gauge fields. The starting point of these

investigations is a non-local expression for the induced current (see [41]),

·ind2 d bX _V 
i] a(x) = 3wp J - v, j du Uab(X, x - vu)v b(x - vu) , (3.45)

which appears different from our local, but coupled, form (3.3) - (3.6). Here we

exhibit the steps that explicitly relate the two. We also derive the time-dependent,

space-independent equations from our formalism.

Beginning with our form for the induced current, (3.3) - (3.6), we observe that,

owing to the integration over the angles of q, we may collapse these expressions into

2 j(x) = m2J Q (a(x)-A(x)) , (3.46)
2 2 

where

O+a_ + [A+, a_] = a_A+ . (3.47)
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Eq. (3.47) may be integrated, yielding

a_(x) = j du Uab(X, X - Q+u) _A(x - Q+u) (3.48)

Here Uab satisfies

Uab(X, - Q+u) = Uac(X, X - Q+u) fcbd A(x - Q+u)au +

Uab(X, X) = ab . (3.49)

Also Aa may be presented as

A((x)= - du dud {Uab(X, X - Q+u) Ab (x - Q+u)}
ro du

= j duUab(X,X - Q+u){a+A(x - Q+u)

_ fbcd Ac (x - Q+u) A (X - Qu)}. (3.50)

[We have assumed that no contributions arise at infinity.] From (3.46), (3.48) and

(3.50), it follows that the induced current can be written as

2 4I(x) = m2 j Q du Uab(X, - Q+u) Fb+(x - Q+u) , (3.51)

which coincides with the expression (3.45) derived in [41], after the notational re-

placements m -+ Vw, d - dQ, Q - v and F_ -+ v E are performed.

The time-dependent, space-independent equation found in [41] is easily derived in

our formalism, also. When there is no space dependence, eqs. (3.6) can be written as

+ (a: - A±) + [A±, a - A±] = 0 (3.52)

and are solved by a = A±. Hence:

2 j= m2 Q (+ - Q)(Q+ - Q_)'A, (3.53)
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of which only the spatial component is non-vanishing:

/2
-jm

2 i 221 = 2
,j d ijA =_4 m2A .

_47 3

This is the result obtained in [41].
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Chapter 4

Classical Transport Theory and

Hard Thermal Loops in the

Quark-gluon Plasma

Following a recent Letter [42], we present an expanded and self-contained account

of the derivation of the hard thermal loops (HTLs) of QCD from classical transport

theory. In addition, we justify the use of the ad hoc phase-space integration measure

for classical colored particles. This justification is based on the phase-space symplectic

structure, and relates directly the (dependent) color charges to a set of (independent)

Darboux variables. We also discuss formally the gauge invariance properties of the

system of coupled non-Abelian Vlasov equations, and exploit the gauge principle to

justify the approximation scheme we use. In order to show how physical information

can be extracted, we analyze color polarization of the quark-gluon plasma in a plane-

wave Ansatz.

We start by reviewing the work relevant to hard thermal loops in QCD. The

motivation that led to their discovery was that physical quantities (such as damp-

ing rates) in hot QCD were gauge-dependent when computed using the usual loop

expansion [22]. The solution to this puzzle was first proposed by Pisarski [8]. Sub-

sequent development was carried out by Braaten and Pisarski [18], and by Frenkel

and Taylor [19]. These authors realized that, in the diagrammatic approach to high-
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temperature QCD, a resummation procedure is necessary in order to take into account

consistently all contributions at leading-order in the coupling constant. Such contri-

butions were found to arise only from one-loop diagrams with "soft" external and

"hard" internal momenta. "Soft" denotes a scale gT and "hard" refers to one

, T, where g < 1 is the coupling constant, and T denotes the plasma temperature.

Such diagrams were called "hard thermal loops" in [8, 18]. The HTL approach was

successful in providing gauge-invariant results for physical quantities. Identifying the

momentum scales that are relevant to the study of a hot quark-gluon plasma, as was

done in [8, 18], was an essential step for all further developments on HTLs.

An effective action for HTLs was given by Taylor and Wong [23] who, after im-

posing gauge invariance, solved the resulting condition on the generating functional.

Efraty and Nair [9] have identified this gauge invariance condition with the equation

of motion for the topological Chern-Simons theory at zero temperature, thereby pro-

viding a non-thermal framework for studying hard thermal physics. Along the same

line of research, the eikonal for a Chern-Simons theory has been used by Jackiw and

Nair [20] to obtain a non-Abelian generalization of the Kubo formula, which governs,

through the current induced by HTLs, the response of a hot quark-gluon plasma.

Another description of hard thermal loops in QCD has been proposed by Blaizot

and Iancu [21]. It is based on a truncation of the Schwinger-Dyson hierarchy and

yields quantum kinetic equations for the QCD induced color current. These kinetic

equations, as well as the generating functional for HTLs, were obtained in [21] by

performing a consistent expansion in the coupling constant, which amounts to tak-

ing into account the coupling constant dependence carried by the space-time deriva-

tives. This dependence is extracted by going to a coordinate system which separates

long-wavelength, collective excitations carrying soft momenta from the typical hard

energies of plasma particles.

Alternatively, Jackiw, Liu and Lucchesi [43] have shown how HTLs can be derived

from the Cornwall-Jackiw-Tomboulis composite effective action [36] by requiring its

stationarity, and by using the approximation scheme developed in [21].

The resummation prescription of Braaten-Pisarski and Frenkel-Taylor, as well
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as the consistent expansion in the coupling constant developed by Blaizot-Iancu,

although remarkably insightful, are technically very involved and necessitate lengthy

computations. Furthermore, they are puzzling with respect to the very nature of

hard thermal loops. One wonders if a quantum field theoretical description of hard

thermal loops (involving gauge-fixing and ghost fields) is required. Indeed, we are

faced with the following situation: in the resummation approach, HTLs emerge from

loop diagrams., and in Blaizot and Iancu's work, they arise from the Schwinger-Dyson

equations. However, hard thermal effects are UV-finite since they are due exclusively

to thermal fluctuations. One might therefore be able to describe such effects within

a classical, more transparent, context.

This motivated us to develop a classical formalism [42] for hard thermal loops in

QCD, the natural starting point being the classical transport theory of plasmas (see

for instance [35]). Our effort was encouraged by the fact that for an Abelian plasma

of electrons and ions, the dielectric tensor computed [35] from classical transport

theory is the same as that extracted from the hard thermal corrections to the vacuum

polarization tensor [18, 19, 20]. Moreover, the same situation is encountered for non-

Abelian plasmas [40, 44].

The classical transport theory for non-Abelian plasmas has been established by

Elze and Heinz [40], before hard thermal effects were an issue. The HTLs of QCD

were not uncovered in these early works, mainly due to the lack of a motivation to

do so and because the transport equations had been linearized, thereby neglecting

non-Abelian contributions. There has not been, to the best of our knowledge, any

attempt to derive the complete set of HTLs for QCD from classical transport theory.

The aim of the present paper is to give a detailed account of this derivation, the

results of which have already appeared recently in a Letter [42].

In our approach, the generating functional of HTLs (with an arbitrary number of

soft external bosonic legs) arises as a leading-order effect in the coupling constant. We

start by reviewing the Wong equations for classical colored particles. Following [40],

these are substituted into the transport equation, which governs the time evolution of

the one-particle distribution function, thereby yielding the so-called Boltzmann equa-
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tion. The latter, augmented with the Yang-Mills equation relating the field strength

to the color current, form a consistent set of coupled, gauge-invariant differential

equations known as non-Abelian Vlasov equations.

Expanding the distribution function in powers of the coupling constant and con-

sidering the lowest-order effects, we obtain a constraint on the color current. The

latter constraint is equivalent to the condition found in [43], and previously in [21],

on the induced current. The constraint on the color current leads to the generating

functional of hard thermal loops.

This work is structured as follows. Section 4.1 describes classical transport theory

for the quark--gluon plasma. The latter is reviewed in Subsection 4.1.1. In Subsec-

tion 4.1.2, we discuss and justify the ad hoc phase-space integration measure, using

Darboux variables. Subsection 4.1.3 presents an analysis of the gauge invariance of

the system of non-Abelian Vlasov equations. Section 4.2 contains the derivation of

the hard thermal loops of QCD. As a consequence of constraints satisfied by the

induced current (which are derived in Subsection 4.2.1), we obtain the generating

functional of hard thermal loops (Subsection 4.2.2). In Section 4.3, we compute the

polarization tensor from classical transport theory (at leading-order in g) and extract

the expression for Landau damping. The consistency of our result with previous ones

is discussed. Section 4.4 states our conclusions. In particular, we discuss there the

validity of our approximations. In Appendix B, we check the validity of the Boltz-

mann equation. Appendix C presents a proof of the covariant conservation of the

color current.

4.1 Classical Transport Theory for a Non-Abelian

Plasma

4.1.1 Classical motion and non-Abelian Vlasov equations

The classical transport theory for the QCD plasma was developed in [40], which we

follow in this subsection. Consider a particle bearing a non-Abelian SU(N) color
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charge Qa, a = 1, ..., N2 - 1, traversing a worldline xO (r), where r denotes the proper

time. The dynamical effects of the spin of the particles shall be ignored, as they are

typically small. The Wong equations [45] describe the dynamical evolution of the

variables' x", p" and Qa:

dx"
m d = p (4.1)

dp"
m - = g QaFp p, (4.2)

dT

m d--_g fabepb n (4.3)

The fabc are the structure constants of the group, F2a denotes the field strength, g is

the coupling constant, and we set c = h = kB = 1 henceforth. Equation (4.2) is the

non-Abelian generalization of the Lorentz force law, and (4.3) describes the precession

in color space of the charge in an an external color field A. It is noteworthy that the

color charge Qa' is itself subject to dynamical evolution, a feature which distinguishes

the non-Abelian theory from electromagnetism.

The usual (x, p) phase-space is now enlarged to (x, p, Q) by including into it color

degrees of freedom for colored particles. Physical constraints are enforced by insert-

ing delta-functions in the phase-space volume element dx dP dQ. The momentum

measure

dP= d4p 2 0(po) 6(p2 _ m 2 ) (4.4)
(27r )3

guarantees positivity of the energy and on-shell evolution. The color charge measure

enforces the conservation of the group invariants, e.g., for SU(3),

dQ = d8Q 6(QaQa - q2) 6(dabcQaQbQc - q3), (4.5)

where the constants q2 and q3 fix the values of the Casimirs and dabc are the totally

symmetric group constants. The color charges which now span the phase-space are
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dependent variables. These can be formally related to a set of independent phase-

space Darboux variables. This derivation is presented in Subsection 4.1.2 below.

The one-particle distribution function f(x, p, Q) denotes the probability for finding

the particle in the state (x, p, Q). It evolves in time via a transport equation,

df(x, p, Q)m dQ) = C[f](,p,Q) , (4.6)
dr

where C[f](x, p, Q) denotes the collision integral, which we henceforth set to zero.

Using the equations of motion (4.1), (4.2), (4.3), (4.6) becomes, in the collisionless

case, the Boltzmann equation:

) [Oxm gQaF p 9fabcAMQ 0Q J ff(xp, Q) = 0 (4.7)

In Appendix 13, an explicit microscopic distribution function is presented and used

to check the validity of (4.7).

A complete, self-consistent set of non-Abelian Vlasov equations for the distribution

function and the mean color field is obtained by augmenting the Boltzmann equation

with the Yang-Mills equations:

[DFV"]"a(x) = J""(x) . (4.8)

The covariant derivative is defined as DaC = 5,ac + g fabcAb. The total color current

J"a(x) is given by the sum of all contributions from particle species and helicities,

Joa(x) = E E j"a(x). (4.9)
species helicities

Each j~a(x) (species and spin indices are implicit) is computed from the corresponding

distribution function as

jIa() = g J dPdQ pQa f(x,p, Q) (4.10)
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and it is covariantly conserved,

(Dj')a (x) = , (4.11)

as can be checked by using the Boltzmann equation (a detailed proof is presented

in Appendix C). For later convenience, we define the total and individual current

momentum-densities:

J'a(x p) = j'a(x,p) ja(x p) g fdQ ppQaf(xpQ) . (4.12)
species helicities

Note that a solution to the set of Vlasov equations (4.7)-(4.8) is specified by giving

the forms for the gauge potential A,1(x) and for the distribution function f(x, p, Q).

4.1.2 Phase-space for colored particles

In order to carry out the transport theory analysis for classical colored particles, it

has been necessary to extend phase-space by the addition of the color charges. In

(4.5), the charges are constrained to remain within the group manifold by means of

delta-functions which fix the values of the (representation-dependent) group Casimirs.

In fact, at an operational level, this is the approach adopted in the rest of the present

paper. In this subsection, we formally justify this approach by analysis of the sym-

plectic structure of the group manifold [47, 46]. We work out explicitly the SU(2)

and SU(3) cases.

The group SU(2), is generated by three charges, (Q1, Q2, Q3), and has one Casimir,

QaQa. The structure constants are fab, = abca, while dabc = 0. From the point of view

adopted throughout the rest of this paper the phase-space color measure is

dQ = dQ1 dQ 2 dQ3 6(QaQa - q2) , (4.13)

where q2 denotes the value of the quadratic Casimir.
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New coordinates (, 7r, J) may be introduced by the following transformation [46]:

Q1 = co s /J2 - 7r2, Q2 = sin J 2 - 7r2 , Q 3 = 7r. (4.14)

Note that r is bounded, -J < r < J. That the group manifold has spherical

geometry is readily apparent if one chooses = J cos 0. The variables q and 7r form

a canonically conjugate pair; the Poisson bracket may be formed in the conventional

manner:
OAB OA&B

{A, B}p =B = 0:-r (4.15)

It is easily verified that the charges as given by (4.14) form a representation of SU(2)

under the Poisson bracket, i.e.,

{Qa, Qb}PB = abc Q (4.16)

The above Poisson bracket structure allows one to identify and 7r as Darboux

variables (see for instance [47]). The Jacobian of the transformation from (Q1, Q2, Q3)

to (, 7r, J) takes the value
O(Q1, Q2, Q3) = (4.17)

= . (4.17)
7(q , J)

Performing the change of variables (4.14) in (4.13) and substituting the value of the

quadratic Casimir, QaQa = J2 , the color measure reads

dQ = do dr dJ J 6(J2 - q2), (4.18)

which, upon integration over the constrained variable J, is just the proper, canonical

volume element do dir, up to an irrelevant constant.

The group SU(3) has eight charges, (Q1,..., Qs) and two conserved quantities,

the quadratic and the cubic Casimirs, QaQa and dabcQaQbQc, respectively. The phase-

space color measure is quoted above in (4.5).

As in the SU(2) case, new coordinates (1, 0 2, 3, r1,72,7r3 , J, J2 ) may be intro-
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duced by means of the following transformations [46]:

Q = COS l. 7r+7r_,

Q3

Q2 = sinl r+_ 
-= 7rl,

Q4 = C++ r+ A + C+_ rB ,

Q6 = C_+ rA-C__7r+B ,

Q5 = S++ + A+S+Tr B ,

Q7 = S_+rA- S__r+ B B, ,

Q8

in which we have used the definitions:

71+ = ';3 71I 7r_ = V73 --' 1 ,

= cos [ ( S + 2 ± 3)] = sin [l(±qi 1 + V32±

and A, B are given by

J'v - J2 2 73 + + 2 
3 3 3 V3- 3

A = I
27r3 \

1
B = 2

27r3 
J 2 - J1

3 + ' 3
jr2)0)

J1 + 2J2

3
- r3 + r3)

Note that in this representation, the set (Q1, Q2, Q3) forms an SU(2) subgroup with

quadratic Casimir Q2 + Q2 + Q2 = 3r2. It can be verified that the expressions above

for Q1,..., Q8 form a representation of the group SU(3):

{Qa, Qb}PB = fabcQc , (4.22)

under the Poisson bracket

{A, B}PB = E Y~. ci

where the canonical pairs are {i, 7ri}i=1,2,3-

'ai 0i (4.23)
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C+ 03)] ,
(4.20)

2J1 + J2

3
2)+ 7r3- 1

(4.21)

w

-- 712 ,



As is implicit in the above, the two Casimirs depend only on J1 and J2. They can

be computed, using the values given in the table below, as:

1 2
Q a = (J12 + J1 J2 + J2),

1
dabcQ Q Q (J1 - J2 )(J1 + 2J2)(2J 1 + J2) (4.24)

18

dabc d 18 d 14 6 d15 7 d2 28 d2 4 7 d2 56 d33 8 d34 4 d3 55 d36 6 d3 77 d4 48 d558 d668

Value 1 1 1 1 1 1 1 1 1 1 1 1 1 1Vau 2 2 / 2 2 /3 2 2 2 2 2 V 2,/5 2V5

Table: Values of the (non-zero) SU(3) totally symmetric constants.

The phase-space color measure for SU(3), given in (4.5), may be transformed to

the new coordinates through use of (4.24) and evaluation of the Jacobian

O(Q1, Q2,...,Q)
(51,Q12, 3,w 21, J-J2) J1 J 2 (J1 + J2). (4.25)

a((1, (2i , 1,712, 73, J1, 22) 48

The measure reads:

dQ = dql d~b2 dq 3 diridw 2 dw3 dJidJ 2Ži J J2 (J1 + J2) 6( (J1 2 + J1J2 + J22) - q2) 
48 3

6( ( J - J2)(J1 + 2J2 )(2J1 + J 2) - q3) (4.26)

Since the two Casimirs are linearly independent, the delta-functions uniquely fix both

J1 and J2 to be representation-dependent constants. Upon integrating over J1 and J2,

(4.26) reduces to a constant times the proper canonical volume element H 3 di dri.

The construction of the canonical phase-space measure for the general SU(N)

case is a departure from our purposes and will not be undertaken here. Nevertheless,

based on the examples we treated explicitly, it is apparent that no difficulties will

arise for N > 3 [47].

In principle, the classical transport theory analysis should be carried out using

canonical, independent integration variables and the phase-space volume element
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should be taken to be the proper canonical volume element. In this subsection,

we have shown the equivalence of the ad hoc phase-space color measure and the

proper canonical volume element. Hence, the use of the color charges as phase-space

coordinates is justified.

4.1.3 Gauge invariance of the non-Abelian Vlasov equations

Before addressing the question of the gauge invariance of the system of Vlasov equa-

tions, we consider the Wong equations (4.1), (4.2),(4.3). They are invariant under

the finite gauge transformations 2:

_ ppH = pH,

Q = UQU-,

A = U AA U-- g U U - (4.27)

where U(x) = exp[-g "a(x) ta] is a group element.

Accordingly, the derivatives appearing in the Boltzmann equation (4.7) transform

as:

xa = o --- _2 Tr ([ (k0-U)U -1, Q ] )

a a

U- aU. (4.28)oQ =- aQ

Consequently, the Boltzmann equation (rewritten here in terms of traces):

[ pz 0 + 2gp pTr (QFv,)a +2g pTr ([Am, Q IaQ ) f(x,p,Q) =O (429)
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becomes, in the new coordinates:

gp'- Tr (L (a U)U- 1 ]Q ) + 2gm' Tr (QF,,)aL Oq+2gpTr (QF[+i 0 0]
+2 p Tr ([ A + - ) , ] ) f(, pQ) = =0, (4.30)

where we have defined

f(x, , Q) = f(x(x,p, Q),p(x,D, Q), Q(,p, Q)) . (4.31)

Simplifying (4.30), we obtain:

[pH,3a + 2g pA Tr (QF,,) + 2 Tr ([A , Q ]aQ ,pQ)= 

(4.32)

This proves that the Boltzmann equation is invariant under gauge transformations.

On the other hand, the Yang-Mills equation (4.8) is gauge-covariant. Indeed, the color

current (4.10) transforms under (4.27) as a gauge covariant vector: j(x) - j'(x ) =

f dP dQ pi Q f(x, p, Q). Due to the gauge-invariance of the phase-space measure, to

the transformation property of f (4.31), and to (4.27), j(x) may be rewritten as:

j'() = J dP dQ p U Q U-1 f(x, p, Q) U j(x) U . (4.33)

Hence, the system of non-Abelian Vlasov equations is gauge-covariant, with the dis-

tribution function f(x,p, Q) transforming as a scalar. Note that the gauge symme-

try also implies that the gauge transform {A(x), f(x,p, Q)} of a set of solutions

{A,(x), f(x,p, Q)} to the Vlasov equations:

A,(x) = U A,(x) -1 - U a U

f(x,p,Q) = f(x,p,UQU -1 ) (4.34)

is still a solution.
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4.2 Emergence of Hard Thermal Loops

4.2.1 Constraint on the color current

Classical transport theory is now employed to study soft excitations in a hot, color-

neutral quark-gluon plasma. In the high-temperature limit, the masses of the parti-

cles can be neglected and shall henceforth be assumed to vanish. The wavelength of

a soft excitation is of order 1iAI and the coupling constant g is assumed to be small.

We then expand the distribution function f(x,p, Q) in powers of g:

f = f(O) + gf(l) + g2f(2) + ... , (4.35)

where f(O) is the equilibrium distribution function in the absence of a net color field,

and is given by:

f(O)(po) = C nB,F(po) (4.36)

Here C is a normalization constant and nB,F(po) = 1/(ePlPol F 1) is the bosonic, resp.

fermionic, probability distribution.

At leading-order in g, the color current (4.12) is

ja(X,p) = g2 dQ pQaf(l)(x,p, Q) , (4.37)

while the Boltzmann equation (4.7) reduces to

P (i - g f bcAbQcaQa) f)(x,p, Q) = p'QaFavp f(°po) (4.38)

Due to the softness of the excitation, the 0 in the above equation is of order g Al, so

we are taking into account consistently all contributions of order g. The approxima-

tion we use guarantees that the non-Abelian gauge symmetry of the exact Boltzmann

equation (4.7) is preserved in the approximate equation (4.38). As a consequence f(O)

and f(l), like f, transform separately as gauge-invariant scalars. Other approxima-

tions, which have been carried out in the past [40], have discarded the non-Abelian
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contributions, thereby breaking the non-Abelian gauge symmetry of the Boltzmann

equation.

The equations (4.37) and (4.38) yield the following constraint on the color current:

[p D j(x,p)]a = g2 p b ('p QaQ (p )) (4.39)

where, from color symmetry, we havef dQ QaQbf()(po) = CB,F nB,F(PO) b with

CB = N, CF = for gluons, resp. fermions. Thus, upon summation over all species

(NF quarks, NA antiquarks and one [(N 2 - 1)-plet] gluon) and helicities (2 for quarks-

antiquarks and for the massless gluon), (4.39) yields,

[P . D JU(x,p)]a = 2 g2 p pvFVOd [N nB(o) + NF nF(Po)] (4.40)

Similar results have been obtained in [21, 43], in a quantum field theoretic setting.

4.2.2 Derivation of hard thermal loops

Subsequent steps which lead to the generating functional of HTLs have been described

in [43], the results of which were used straightforwardly in [42], for the sake of brevity.

Here, we present a simpler derivation of HTLs by exploiting fully the structure of the

momentum integration measure (4.4).

We first integrate equation (4.40) over IPI and po using the massless limit of

the momentum measure dP (4.4). Therefore, the (massless) mass-shell constraint

enforces IPI = p0, and we thus introduce the unit vector P - p/ll-. Introducing also

v (1, p), the integration of (4.40) yields (group indices are henceforth omitted):

v D JM(x, v) = -2 r2 m 2 VA VP Fo() (4.41)

where mD is the Debye screening mass

mD = gT N + NF2 (4.42)
3
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and we have defined

J"(x, V) = / Ipl2 dip dpo 2 0(po) 6(p2) J(x, p) . (4.43)

Notice (for later use) that, using f dP = f pl2dlpldpo 20(po) 6(p2), where dQ

denotes integration over all angular directions of the unit vector , we can rewrite

the expression J(x) = f dPJ(x, p) for the color current as

J(x)= J dQ A (X, V) 
(2ir)3

(4.44)

After decomposing J(x, v) as

J"(x, v) = J"(x, v) - 2 2 m v"Ao(x) ,

we get as our final condition on the color current:

v* D jJ(x,v) = 2 2 mD v 9o (v.

(4.45)

(4.46)A(x))

It has been shown that solutions to (4.46) can be obtained from a functional

W(A, v) as [23]

6W(A,v)
3(xv) -= 6AA

5A~,(x)
(4.47)

Equation (4.46) then implies that W(A, v) depends only on A+ vA, i.e. W(A, v) =

W(A+), and fJ = SW(A+) v In turn, W(A+) satisfies, as a consequence of (4.46),"A+

v .D6W(A+)
6A+

= 2 r2 m> o A+
MD OX0

By introducing new coordinates (x+, x_, x),

X- = V , xI = x-(i-x)O,
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X+ = v-X , (4.49)



with v = (1, -f) and xl = O0, we can rewrite v as O+ and (4.48) becomes:

5W(A+) +g W(A+) =2 2

0+ + [A+ , =27r mD A+ (4.50)
6A+ ]A+ 9XO

Now using (4.44), (4.45) and (4.47), we define an effective action r that generates

the color current, i.e., J'(x) = [A(x)] where r takes the form:
SA, (x)

r = 2D f d4x A'(x)A'(x) - dQ W(A+) . (4.51)
2 J J 1 (27r)3

This is the expression for the effective action generating hard thermal loops [18,

19], while equation (4.50) represents the condition of gauge invariance [23] for this

generating functional. By solving (4.50), Taylor and Wong [23], as well as Efraty and

Nair [9], have given an explicit form for the functional W(A+) in the second term of

(4.51). The first term is a mass term for Aa(x) and describes Debye screening.

This concludes our derivation of the hard thermal loops of QCD from classical

transport theory.

4.3 Application: Color Polarization

As an application of the classical transport formalism presented above, we solve the

approximate Boltzmann equation (4.38) for plane-wave excitations in a collisionless

isotropic plasma of quarks and gluons. Recall that in the case of a collisionless plasma

of electrons and ions the Abelian version of equation (4.38) has been solved exactly

for an electromagnetic plane-wave [35], making it possible to study the response of

an Abelian plasma to a weak field. We shall proceed analogously in the non-Abelian

case. We consider a plane-wave Ansatz in which the vector gauge fields only depend

on x through the combination x k, where k = (w, k) is the wave vector, i.e.,

Aa(x) - A(k x). With this Ansatz (which has been used in [41] to study the
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non-Abelian Kubo equation) the solution of (4.38) is

coPp dpo f°)(Po) . (4.52)f(1)(x,p, Q) = Qa (A(x)- - 1. ) A (4.52)

Hence, the color current is given by

w A6(x) dpo f(°)(Po)' (4.53)jla(x) = g /dPdQP'QaQb (Ao(X) - p -(3) (d)

The integration over color charges can be done by using f dQ QaQb = CB,F fb with

CB = N, CF = for gluons, resp. fermions. The integration over po and p is

straightforward as well. Upon summation over all species and helicities (see Section

III for notations and conventions), we get the following expression for the total color

current:

2 = m d v 4 v () - A(x) (4.54)Jar(x) = I V ( a

The polarization tensor HBI can be computed from (4.54) by using the relation

J(x) = J d4y IIb (x - y) Ab(y) . (4.55)

It reads:

Hbf(k) = mj (_g2 OgvO + w I(w, k)) , (4.56)

where Iuv is defined as

PIp"(w,fk) = dQ V vkv (4.57)IM (w,k)L I 4r w -kv]

To avoid the poles in the above integrand, we impose retarded boundary conditions,

i.e., we replace w by w + i. Using the identity

1 1

= P- - ir (z), (4.58)
zwhere stands for the principal value, the real and imaginary parts of the z

where X stands for the principal value, the real and imaginary parts of the polarization
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tensor are

Re II 'b(w, k)

Im IIb (w, k)

-5ab mD (_gg9 +

6abm7r w J v- b. D f4
W PJI4nr w-k v

v b(w - k v) .

The imaginary part of the polarization tensor (4.59) describes Landau damping

in the quark-gluon plasma. Explicitly:

Im [ab(w, k)

m Ilab(w, k)

Im Wlab(w, k)

-ab m r 2 1 (lk2-w2) ,
.; 2 k i

= -ab m 7r 0 (lk12 - w2),
= - ab mD r 21k12 jkj

27 kIW2 Jkl k w2

= -6ab mDr .Pi kJ ~ .3 Pikj ]

-ikl + 21kl3 kl2 0(Ik2 -w2) .

(4.60)

From the above 0-functions it is apparent that Landau damping only occurs for color

fields with space-like wave vectors. This is also true for an Abelian plasma [35].

Evaluation of the real part of the polarization tensor (4.59) yields

Re Ilab(w, k)

Re HIIi(w, k)

Re II ab(, k)

= babl(w, k) ,

= &ab W i2 n(w,k) ,

= Sab [ i j -l tl(wk) + 2 2 IIl((w,k)]k 2 2 ]kl 2

I(w,k) = m2 ln I-lkl

n(w, k) = -m 2 [1 + ( (4.62)

-1) 

lkl l + l kl|]

Equations (4.61)-(4.62) characterize Debye screening, as well as longitudinal and

transverse plasma waves.
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Our results for the HTLs of the polarization tensor agree with those obtained in

the high temperature limit using quantum field theoretic techniques3 [44, 18, 19, 20,

21, 41]. We emphasize that the above results are gauge-independent, and obey the

Ward identity

k, HII = 0, (4.63)

as should be expected from the gauge invariance of our formalism.

Previous applications of classical transport theory to QCD have utilized an Abelian-

dominance approximation to compute the polarization tensor [40]. It is noteworthy

that there one recovers the same values of the polarization tensor that we found here.

The reason for this agreement is that the leading-order contribution to the color

current is made linear in the gauge field by the plane-wave Ansatz [41], exactly as

happens in the Abelian-dominance approximation. However, the Abelian-dominance

approximation cannot give a proper account of the whole set of HTLs, such as thermal

corrections to n-point functions, n > 3.

4.4 Conclusions

In this paper, we have shown how classical transport theory can be used to derive the

hard thermal loops of QCD. This formalism, we believe, is more direct and transparent

than previous approaches based on perturbative quantum field theory. Indeed, hard

thermal loops represent UV-finite thermal corrections to propagators and vertices.

They arise from thermal scattering within a hot assembly of particles, and one may

reasonably expect them to be describable in terms of classical physics.

The fact that we are modeling the high-temperature, deconfined, phase of QCD

allows us to treat color classically, and enables the colored constituents of the plasma

to be identified as quarks and gluons. Employing classical transport theory to study

colored particles requires incorporating the color degrees of freedom into phase-space.

A consistent measure must be defined over the new color coordinates. Furthermore,
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conservation of the group Casimirs under the dynamical evolution must be ensured.

One means to accomplish these goals is to include delta-function constraints into

the phase-space volume element. We have formally justified this ad hoc procedure

by relating the dependent color degrees of freedom to a set of independent Dar-

boux canonical variables, and by proving that the corresponding volume elements are

equivalent.

A system of non-Abelian Vlasov equations describes transport phenomena in the

QCD plasma. This system governs the evolution of both the single-particle phase-

space distribution functions and the mean color fields. It would be a formidable task to

solve the transport equation in the most general case, hence suitable approximations

must be made.,

First, we specialize to a collisionless plasma, in which there is no direct scattering

between particles. This situation is not devoid of interest since collective mean-field

effects can, and indeed do, arise.

Second, we employ a perturbative approximation scheme. We assume that the

plasma is near equilibrium and expand the phase-space distribution function in powers

of g, the gauge coupling constant. At the high temperature which must prevail

for the formation of a quark-gluon plasma, the thermal energies of the particles

are sufficiently large that the effects of the interactions with the gauge fields are

comparatively small, and we expect perturbation theory to be valid.

Taking the high temperature limit constitutes our third approximation. In this

limit, the masses of the particles can be neglected. Furthermore, the plasma is in a

highly degenerate state, so that the equilibrium distribution functions are determined

by the spin-statistics theorem.

We demand that gauge invariance be preserved by our perturbative expansion.

In its lowest, non-trivial, order this expansion leads to the generating functional of

HTLs. That gauge invariance is the appropriate guiding principle in uncovering hard

thermal loops is not surprising. To apply this principle to the quantum field theoretic

calculation of HTLs involves gauge fixing, ghosts, and resummation of classes of

Feynman diagrams. In contrast, the route that one has to follow in order to adhere
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to the gauge principle is straightforward within classical physics. Therefore, the gauge

invariance property of hard thermal loops is self-evident in our formalism.
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Chapter 5

Conclusions

In this last chapter, we would like to summarize the results we obtained in the previous

chapters:

1) In the first part of the thesis, we applied Manton's procedure to study the

dynamics of non-relativistic Chern-Simons solitons. We found that by using the un-

modified soliton solution as the trial function, this procedure only yields information

linear in v, where v is the velocity of the solitons. In this order, the dynamics of

solitons depends crucially on the existence of a background density: when there is

a background density present, the solitons can interact with the background density

and feel the Magnus force; while in absence of such a density, the solitons only exhibit

statistical interaction between themselves.

2) We showed in the first part how to improve Manton's procedure to obtain

information about the soliton dynamics at higher orders of v. The basic idea is to

modify the soliton solution by using equations of motion and use the modified solution

as the trial function. We successfully applied this modified Manton's procedure to the

Chern-Simons solitons in absence of background densities, i.e. the Jackiw-Pi solitons.

We found that at order v2, the soliton solution is modified by a phase, which is related

to the 1-cocyle of the Galileo group. This modification gives the correct dynamical

behavior of these solitons, e.g. the mass of the soliton.

3) In the second part of the thesis, we studied Hard Thermal Loops, a phenomena

closely related to the Chern-Simons eikonal. We first studied the static response of
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the gauge fields in presence of HTLs and proved that HTLs do not support solitons

or instantons. Then, we investigated the physical origin of HTLs. By using classical

transport theory, we successfully rederived HTLs. This shows that HTLs are classical

effects. Furthermore, we clarified several problems related to classical transport the-

ory, such as phase space and gauge invariance. In particular, we showed that gauge

invariance is the guiding principle in uncovering the HTLs.

71



Appendix A

Numerical Solutions of (3.10) and

(3.11)

In this Appendix we analyze in greater detail and integrate numerically the radially

symmetric version of the static response equations (3.10), (3.11), in the SU(2) case.

Radially symmetric SU(2) gauge potentials take the forms:

A? - (5bai _ ¢') ¢2(r) + eaij j 1 - d1(r)
Ai _ pt) r+ ga3 r3r r

Aa = pa g(r) (A.1)r

where a residual gauge freedom has been used to eliminate a term proportional to

We substitute the Ansatz (A.1) into (3.10), (3.11). The resulting equations give

us the freedom to set one of the two Xi's to zero; we obtain,

d2

X 2 J = (x2 +2K 2) J,
d 2

x2 K = (K2 J2 1)K, (A.2)

where we have set 2 to zero, rescaled x = mr and defined J(x) = g(r), K(x) = (r).

We now investigate this system of coupled second-order differential equations.
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First, we see that they possess the following two exact solutions:

J = 0, K=±1, (A.3)

J = Joe-x, K =0. (A.4)

Eq. (A.3) corresponds to the Yang-Mills vacuum, while (A.4) is the celebrated Wu-

Yang monopole plus a screened electric field.

In the asymptotic region x -- o, the regular solution of the system (A.2) tends

to (A.3), with J approaching its asymptote exponentially. (Of course there is also

the solution with J growing exponentially, which we do not consider.)

Near the origin, J and K behave either like the vacuum (A.3) or approach the

monopole solution (A.4) as follows,

J(x) Jo+...,

K(x) - Ko V/vcos In--) + ..., (A.5)
\ XO/

where r is correlated with Jo as

4ir
T = are (A.6)

/4J0 + 3

Only the vacuum alternative at the origin leads to finite energy. However, since we

must choose one of two possible solutions at infinity (obviously we pick the regular

one), the behavior at the origin is determined and can be exhibited explicitly by inte-

grating the equations (A.2) numerically. Starting with regular boundary conditions

at infinity, we find the profiles presented in Figure A-1.
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Fig. A-1. Profiles for eqs. (A.2). The plain and dashed lines represent two different

rates of approach to the asymptotes (A.3) at x = oo (with K = 1).

They show that the monopole solution (A.4) is reached at the origin, with K

vanishing as in (A.5) - (A.6), a result consistent with our analytic proof that there

are no finite energy static solutions in hard thermal gauge theories.
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Appendix B

Microscopic description

In a microscopic description, the particle's trajectory in phase-space is known exactly.

With this knowledge, we can construct a distribution function f(x, p, Q) (without loss

of generality, we shall consider only one particle):

f(x,p,Q) = / ad(4)(x - X(T)) 6(4)(p _p(T)) (N2_1)(Q _ Q( )) (B.l)

where x(r), p(r) and Q(r) obey the Wong equations (4.1),(4.2),(4.3), i.e. they natu-

rally fulfill the mass-shell and Casimir constraints. For convenience, those constraints

are here subsumed into the distribution function instead of being contained in the

phase-space volume element. Had we not done this, (B.1) would have to be written

in terms of both a 3-dimensional 6-function in momentum space, and an N(N - 1)-

dimensional 6--function in color space.

We now prove that the expression (B.1) for f satisfies the collisionless Boltzmann

equation (4.7). The first term in (4.7) can be rewritten, by using the properties of

the 6-function, as:

pa f _ dT P(7) a 6(4)(x- X(T))] 6(4)(p _ p()) (N2 -1)(Q _ Q())t - ./ m xt(r) - x()) - p()) 6 k - (r
(B.2)

From this, after using the Wong equation for the variable x"(r) and applying the
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chain rule, we get:

pd Aaf=--Jd [d 6(4)(X_ X(T))] (4) (p_ p(r)) (N-1) (Q _ Q()) (B.3)

Similar arguments yield, for the second term in the Boltzmann equation:

-gP QaFa df ]= dr -(4)(-x(r)) [d (4)(p-p(T))] 6 (N2-1)(Q Q(r)) -

(B.4)

and for the third term:

-g PfabcALQ Qf = 1 dT6(4)(X-X(T)) 5(4) (p-p(T)) [d 6(N2 -1)(Q Q(T))]
(B.5)

Adding together the equations (B.3), (B.4) and (B.5), we observe that the left hand

side - the T-integral of a total r-derivative - vanishes, thereby yielding the collisionless

Boltzmann equation (4.7).
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Appendix C

Conservation of the Color Current

Let us verify that the color current (4.10) is covariantly conserved. Using the colli-

sionless transport equation, one can compute

j'a(x) = g dP dQ p QO, f (x, p, Q)

= 92 dPdQpmQ (QbFa(x) + fdb AMb()Qcd ) f(x, p,Q),

(C.1)

where the color measure is dQ - d(N2-1)Q C(Q), and C(Q) specifies the color con-

straints in phase-space. Integrating by parts and discarding surface terms, one gets

aji() = -g J dPL [ dQ ( QaQgFb() + pcdfdbc A b(X)Qa + ptifdbcA b(X)baQc)

+ d(N2-1)Q pt'Ab(x)fdbQcaQC(Q)]f(,P,Q) (C.2)

Among the four terms in the right side, only the third one survives. The first two

terms cancel due to antisymmetry of F, and fdbc, respectively. The last term also

cancels, since the constraints C(Q) are gauge-invariant, i.e.,

c(Q) a aC(Q) (C.3)= Qa = - gf b(X)Q , (C.3)bQa 9Q
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where Qa denotes an infinitesimal gauge transformation with arbitrary parameter

eb(x). (For SU(3) this last property can be explicitly checked by using the Jacobi-like

identity fabcddec + fadcdebc + faecdbdc = 0.) Finally, one obtains the expression for the

covariant conservation of the color current: O, ja(x) + gfabcAb(x)j c(x) = 0.
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