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Introduction

In this paper we introduce the 2-typical de Rham-Witt complex for arbitrary com-
mutative, unital rings and log-rings. We describe this complex for the rings Z and
Zyy, for the log-ring (Z), M) with the canonical log-structure, and we describe its
behaviour under polynomial extensions. In an appendix we also describe the p-typical
de Rham-Witt complex of (Z,, M) for p odd.

The p-typical de Rham-Witt complex was introduced by Bloch, Deligne, and
Hlusie for Fp-algebras (see (1], [6]). The definition was generalized by Hesselholt
and Madsen to Z)-algebras, for p odd (see [4], [5], [3]). Hesselholt and Madsen’s
construction was motivated by the effort to understand TR, an object that appears
in algebraic topology and is related to topological cyclic homology and to higher
algebraic K-theory. More precisely, for a fixed prime p and a Z;)-algebra A, one
defines:

TR (4;p) = mo(T(A)%),

where T(A) is the topological Hochschild spectrum associated to A4, and C, <€ S!
is the cyclic group of order . As n and q vary these groups are related by certain
operators F,V, R, d, . which satisfy several relations. One notes that ¢ 1s induced by
the multiplication with the element n € 755° from stable homotopy. This element
has order 2, so the operator ¢ is trivial if 2 is invertible. This is the case if A is a
Z(p)y-algebra with p odd, and this explains why the case p = 2 is different from p odd.

A first step in understanding TR is to understand the universal example of an
object that has the same algebraic structure as TR. The algebraic structure of TR
is captured by the notion of a Witt complex, that we will give shortly. The fact that
TR is a Witt complex was proved by Hesselholt in [3]. Before giving the definition
we make precise what we mean by a pro-object and a strict map of pro-objects. We
let Z be the category associated with the poset (Z, >); a pro-object in a category C is
a covariant functor X : Z — C, in other words a sequence of objects { X, },ez and of
morphisms R : X,, — X,,_;. A strict map of pro-objects is a natural transformation

of functors, that is a sequence of maps f, : X,, — Y, that commutes with the maps
R.

Definition 0.0.1. A 2-typical Witt complex consists of:

(1) a graded-commutative pro-graded ring {E:, R : E} — E_ }ncz, such that
EY =0 for alln < 0. The indez n is called the level.

(1) a strict map of pro-rings A : W.(A) — E? from the pro-ring of Witt vectors of
A.



(ii1) a strict map of pro-graded rings
F:E} - E;

o1

such that M\F' = F').

(iv) a strict map of pro-graded E}-modules
V:FE — E',
such that \V = V) and FV = 2. The linearity of V means that V(z)y =
V{zE(y)), Vs € By y € Eay,.

(vi) a strict map of pro-graded abelian groups d : E} — E}*!, which is a derivation,
in the sense that
d(zy) = d(z)y + (~1)*Fzd(y)

The operator . : EX — EX*Y 1s by definition multiplication by the element "%L__—lﬁ]f,
where [a], = (a,0,...,0) € W,(A) is the multiplicative representative.

The operators F, V, d, and ¢ are required to satisfy the following relations:

FdV =d+.,
dd = di = ud,
FdX{[al.) = A[a]n-1)dX([a]n-1]), for alla € A.

Visually, a Witt complex is a two dimensional array:

L
F{|lR|V F| RV
_ d d
A A — 2 R E! — B?

L t

A map of 2-typical Witt complexes is a map f : E} — E', of pro-graded rings
such that X = fA, fd=df, F'f = fF,and V'f = fV.

The thesis is organized in two chapters. In the first chapter we discuss Witt
vectors, the de Rham complex, and Witt complexes in general. We derive the identity
that expresses the Teichmiiller representative of an integer as a combination of a
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system of generators:

H i—1
a2 - 0,2

ol = alth + Y S5Vl

We will use this identity a number of times in the second chapter. In the second
section of the first chapter we prove, using category theory, that the category of
2-typical Witt complexes over a given ring admits an initial object, and that by
definition is the de Rham-Witt complex of the ring. A similar result holds for the
more general notion of a log-ring.

The second chapter contains three calculations. In the first section the result is
the structure theorem of the de Rham-Witt complex of the ring of rational integers Z.
It states that in degree zero it is the pro-ring of Witt vectors of the integers, in degree
one it is generated by the elements dV*(1), and in degrees above one it vanishes:

n—1

w0y = @Bz vi), (1)
1=0
n—-1

W. = @z/27.-dvi1), (2)
i=1

W, = 0, fori>2 (3)

The product rule and the action of the operators are given in Theorem 2.1.1 below.
We note that, additively, the formula for the 2-typical de Rham-Witt complex is
similar to the one for the p-typical de Rham-Witt complex for p odd. The differences
appear in the product rule and the action of the operators d, F, and, of course, ¢. In
a remark at the end of the section we note that a very similar result holds for the de
Rham-Witt complex of the ring Zy).

In the second section we describe the behaviour of the de Rham-Witt complex
under polynomial extensions. Again the result is similar to the one in the p-typical
case, for p odd, which is found in Section 4.2 in [4]. The de Rham-Witt complex of
the ring A[X] consists of formal sums of four types of elements:

e Type 1: elements of the form a[X]’, where ¢ € W,0%,,
e Type 2: elements of the form b[X)*~'d[X], where b € W, Q%!

e Type 3: elements of the form V7(c[X)'}, where r > 0, ¢ € W,,_,0%, and ! is
odd,

Type 4: elements of the form dV*(e[X]™), where s > 0, e € W,,_,Q% ', and m
is odd.

The product rule and the action of the operators are given explicitely.
In the final section we define the notion of a Witt complex for log-rings and
we compute the 2-typical de Rham-Witt complex of the log-ring (Zy), M), where
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M = Q* N Zp) — Zg is the canonical log-structure. The difference from the 2-
typical de Rham-Witt complex of Z) and of (Zs), M) is the element dlog[2] :

Wl a0y = Walg,, = Wa(Ze), (4)
WnQ%Z(z),M) = Wnﬂé,(z) & Z/2"Zdlog[2],, (5)
W”Q%Z(g),M) = O,fOI' all ) 2 2. (6)

An interesting formula in this context is:
V(dlog[2],) = 2dlog[2]nt1 + dV 1], — dV?[l]n_1 + 4dV3[1],-s.

The thesis has two appendices. In the first one we describe the structure of the
p-typical de Rham-Witt complex of the log ring (Z;), M), with p odd. This result is
very similar to the one for p = 2, the difference being in the product formulas and
the action of the operator V. We note here that there are two distinct cases for p odd,
namely p = 3 and p > 5. For example, the mentioned formula becomes:

3d1og[3]ns1 + dV[1]n + 3dV 1]y, if p=3,
pdlog[p)ns1 + dV[1],, if p > 5.

V{dloglp.) = {

In the second appendix, which is rather technical, we verify the associativity of
the multiplication defined in the second section of Chapter 2.

In this thesis all rings are associative, commutative, and unital. Graded rings are
graded commutative, or anti-symmetric, meaning that, for every two elements x, % of
degrees |z|, |y|, respectively, one has

Ty = (—1)Wlyg.

12




Chapter 1

(Generalities

1.1 Witt vectors, the de Rham complex, and Witt
complexes

In this section we recall the Witt vectors and the de Rham complex. The standard
references for these are [12], [11], respectively. Then we derive some elementary results
for Witt vectors and Witt complexes.

The de Rham complex of a ring A is the exterior algebra on the module of Kaehler
differentials over A. More precisely, if I is the kernel of the multiplication AQ A — A,
the module of Kaehler differentials is defined to be Q4 = I/I% the map d: A — Q}
defined by da = a®1—1®a+ I? is the universal derivation from A to an A-module.
The de Rham-complex is the exterior algebra

= ALY
with differential
d(aopda; . . . day,) = dagda, . . . day,
where the exterior algebra of an A-module M is
AN(M)=Ts(M)/[(m@m |me M).

In this paper we will need a related construction, that of a universal anti-symmetric
differential graded algebra over the ring A. By this we mean a graded algebra over A
which is commutative in the graded sense and is endowed with a Z-linear differential
of degree 1, which is also a derivation. We will denote this by QZ. Explicitly,

Qj‘l = ]\TAQ}A’

where: :
AMM)=T(M)/m@n+n®m|m,nc M)

13



is the universal anti-symmetric graded A-algebra generated by the A-module M.
When 2 is invertible in A the two constructions give the same result as the ideals
(m@m|méeM)and (m@n+n®m | m,n € M) are the same. In this paper we
cannot assume that 2 is invertible and this is why we need the second construction.

The ring W,,(A) of Witt vectors of length n in A is the set of n-tuples in A with
the following ring structure. One defines the “ghost” map

w: Wy(A4) — A"

with components: _
wi(ag, .., ,) = a2 +2a¥ 7 +... 2%,
To add or multiply two vectors a and b one maps them via w in A", adds or multiplies
them componentwise, then uses w™! to map them back in W,(A). Of course one has
to check that the sum or product of w(a) and w(b) are in the image of the ghost map
and that their preimage is unique. That they are in the image follows from a lemma
of Dwork; the uniqueness of the preimage is true only when A has no 2-torsion, which
will be the case for the rings considered in this paper. When A has 2-torsion one has
to give a canonical element in the preimage, and this is done requiring that the ghost
map be a natural transformation of functors from rings to rings. )
The projection onto the first » — 1 factors is a ring homomorphism

R Wo(A) = Wa_1(A),

called restriction, and this makes W,(A) a pro-ring. There is a second ring homo-

morphism, the Frobenius,
F:W,(A) - W,..(4),

'U.)(F(CLO, tey an—l)) = (wl(a’)a v 5wn—1(a'))1
and a W, (A)-linear map, Verschiebung,

V: F.Wa_1(A) = Wa(A)

V(CL(], - ,an_g) = (O,CL[), ceey an_z)

The notation F,W, _,(A) indicates that W,_;(A) is considered a W,,(A)-module via
the Frobenius map F : W,,(A) — W,_1(A). The linearity of V means therefore that
zV(y) = V(F(x)y), for all z € W,,(A4) and y € W,,_1(A), formula known as Frobenius
reciprocity. Both Frobenius and Verschiebung commute with the restriction maps.
The Teichmiiller map is the multiplicative map

[ |n: A— Wh(A),

[a)n = (a,0,...,0).

We list now a few numerical results, some of which are not available in the odd
prime case.
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Proposition 1.1.1. In the ring of 2-typical Witt vectors of length n, W,(A),
[—l]n = _[l]n + V[l]n—l-
Proof. 1t is enough to prove this relation for A = Z. In ghost coordinates,

w([_l]ﬂ) = (-11 1! IR ]')J
w([1].) =(1,1,...,1),
w(V[Uoot) = 0,2, ..,2).

The relation follows from the fact that addition is done component-wise in these
coordinates and the ghost map is injective for A = Z. O

Proposition 1.1.2. In the ring of 2-typical Witt vectors of length n, W,(Z), there
are 4 square roots of unity, [1n, [—1]n, —[1n, ~[—1]..

Proof. Let a = (ag,. .., an-1) € W,(A) be a square root of unity. Let (wy,...,w,_)
be its ghost coordinates. Then (wg,...,w2_;) = (1,...,1). From w2 = 1 we get
af = 1, hence ag = +1. Equating the second ghost coordinate we obtain: (a2+2a;)? =
1= (1+2a;)2=1=q; =0o0r a; = —~1. We will prove by induction that for s > 1,

as; = ay. Assume this is true for s — 1. We have two cases, a; = 0 and a; = —1.

(i) a; = 0: w? = (a2’ +---+2°%a? +2°a,)? = 1, s0 (1+2%,)? = 1 and the unique
integral solution is a; = 0.

(i) ay = —L w?=(af +---+2""a +2%,)2 =1= (1 +2+-- -+ 2571+ 2°q,)% =
1= (2°— 1+ 2%a,)? = 1 and the unique integral solution is a; = —1.

Therefore the solutions of the equation a® = 1 are the vectors (+1,0, ..,0) and
(£1,-1,---,=1). An examination of these vectors shows that they are exactly those
listed in the statement. |

Proposition 1.1.3. In the ring of p-typical Witt vectors of length n, W,(Z), the
vectors {{Un, V([1n-1, ..., V™1 ([1]1)} form a Z-basis. A vector a = (ay,...,0,_,) €

Wo(Z) with ghost coordinates (wo, ..., Wy 1) can be written in this basis as:
n—1
a=) ¢V*([lns),
s=0
where
c. = Wo if s =10
Tt (ws —ws) fl<s<n—l.

The multiplication in this basis is given by the rule:
Vi{{Uni)VI (Uney) = PV ([Uny), o i< 5

15



Proof. In ghost coordinates, V*[1],,_s = (0,...,0,p°,...,p%), the first s coordinates
being zero. Since the addition is component-wise it follows that these vectors are
linearly independent. The multiplication is also component-wise and the product
formula follows.

We show that they form a system of generators. For a vector a = (ag,...,an-1) €
W, (Z) with ghost coordinates (wy, ..., wn_1) we find the coefficients ¢; by induction.
Equating the first ghost coordinate we get ¢g = wy = ag. Assume we have found
Co, . ..,Cs,- We equate the s-th ghost coordinate

8 s—-1

. i 1 s ]

Ws = E &Gp = ;S c;p + CeD” = W1 +p Cs
1=0 1=0

and therefore, ¢, = p~*(ws — ws—1). These numbers are a priori rational. To finish
the proof we need to show that they are integers.

Cs = p—s(ws - ws—l)
s . s—1 .
=p () _pal =D pdd )
1=0 1=0

1—1

s—1
=p(pla, + Y " —af" )

i=0
5—1 . :
. i—s ps—1—1 p.!-t_ps—l—i
= qay + E P oa (af -1)
=0

It remains to show that for every integer a and every non-negative integer n:

n—1 n—1

aP (ap“—p

—1)=0 (mod p")
There are two cases. If v,(a) > 1, then v,(a” ') > p*! > n, and if v,(a) = 0, then
@ P —1=a%P™) —1=0 (mod p"). O
Corollary 1.1.4. In the ring of 2-typical Witt vectors of length n, W, (Z), for every
integer a, one has:

[aln = collln + clVUacy + -+ + e VITHIL,

. i i—1
where cg = a and ¢; = 27 (a? —a?" ).

Proposition 1.1.5. In every 2-typical Witt complex E the following relations hold:

Vd = 2dV,
dF = 2Fd,
V(z)dV (y) = V(zdy) + 1V (zy).

16




Proof. We will use the relations from the definition of a Witt complex:

V(eF(y) =V(z)y, FdV=d+i FV =2

We have:
Vd(z) =
dF(z) =
V(z)dV (y)

i

V(d+ 1+ )(z) = V(FdV + 1)(z)
V(1)dV{(z) + Vi(z)

dV(1)V{(z)) —dV(1)V(z) + Vi(z)
d(V(FV(1)x)) — V(FdV(1)z) + Vi(z)
dv(2z) - V((d + )(1)z) + V()
2dV(z) — V(d(1)z) — V{(ez) + V(wz)
2dV.

(d+ )F(z) — oF(z) = FdVF(z) — F(z)

Fd(V(1)z) — Fu(z) = F(dV(1)z + V(1)d(z)) — Fi(z)
FdV(1)F(z) + FV(1Fdz) — Fu(z)

(d+)(1)F(z) + FVFdz — Fu(x)

F(2dr) = 2Fdx.

V(sFdV(y))
Vi{z(d + t)y) = V(zdy) + V(zy).

O

Proposition 1.1.6. +([1],) = Y277} 25 1dV*([Un_s).

Proof. Since 2u([1],) = 0, we we’ll prove that ¢([1],) = — Sor—] 2°~'dV*([1]n_s). The
proof is by induction on n, starting with the case n = 1 which is trivial. Assume the
statement for n — 1. We will use the relations d([1],) = 0 and {[—1],)% = [1]..

=1
d([—1])
d((=1]») _  dV({l]a1)

—{n + V{[thn-),
dV([l]n—l):

[~1]n
L([l]n)

[71]11 = [_l]ndv([l]n~1)a

[—l]ndv([l]n—l)

(= + V([L]a-1))dV ({1]n-1)
_dv([l]n 1) + V(de([l]n 1))
—dV ([1la-1) + V{(d + ¢)([1]n-1)
)+

wnmonn

—dV ([1n-1) + V(([1]n-1))
= —dV([ln1) - 225—1Vdvs([1]n_3)-

17



The statement now follows from Vd = 24V. O
Proposition 1.1.7. 2 = 0.

Proof. Again it is enough to prove ¢*([1],) = 0. We do this by induction. The case
n = 1 is trivial. Assume the statement for n — 1.

2 d([—1),) d([-1].
) = 5
= (d([-1]))"
= (d(~[Un + V([1]n-2))?
= dV([l]n—l)dV([]-]n—l)
(V([Un-1)adV([Un-1)) = V([L]n-1)ddV ([1}n-1)
( (FdV([1}5-1))) — V(FdV([l]n-1))
=d(V((d+ )([1}n-1))) = V(@ + }e([1]n-1)))
= dV”(ll]n—l)) - V(L([l]n—l)l‘([l]n—l))'

The second summand is zero by induction. We show that the first summand is also
zero. For this we will use the previous lemma and the relations Vd = 2dV, 2¢ = 0,
and dd = dv:”

V([T]pr)) = V(3 27 V(1)

s=1
n—2

= 2%ddVt([1n-s)

s=1

= S @AV (aer) = 0

This completes the proof. [

1.2 The de Rham-Witt complex

The Witt complexes over a ring A form a category W,. We will prove that this
category has an initial object. We call this object the de Rham-Witt complex of
A and denote it W,% To prove the existence of an initial object we use the Freyd
adjoint functor theorem [10, p.116].

Theorem 1.2.1. The category Wa of Witt complezes over A has an initial object.

Proof. The category W, has all small limits, so we need to prove that the solution
set condition is verified. First we note that at each level a Witt complex is also a
DG-ring. The differential is defined as follows:

18




D:Er— ErH D= d, %fn:even;
d+¢, ifn=odd

Proposition 1.2.2. The operator D is both a differential and a derivation.

Proof. We show first that D is a differential, that is D? : E? — E™*? is zero. If n is
even, D? = (d+ t)d = dd + dv = 2d. = 0, the same if n is odd. Let’s see that D is a
derivation, that is D(zy) = D(z)y + (—1)38&zD(y). There are three cases.

1. Both deg(z) and deg(y) even:

D(zy) = d(zy) = d(z)y + zd(y) = D(z)y + zD(y)

2. deg(z) even, deg(y) odd:

D(zy) = (d+)(zy) = d(zy) + wzy
(d(z)y + zd(y)) + wxy = d(z)y + (zd(y) + wzy)
(

= D(z)y +zD(y)

3. Both deg(z) and deg(y) odd:

D(zy) = d{zy) = d(z)y + zd(y) = d(z)y + zd(y) + 2uzy
(d(z)y + wxy) + (zd(y) + vxy)
D(z)y + zD(y).

i

For the last case we used the relation 2: = 0. O

To prove that the category W4 has an initial object we have to show that the
solution set condition is satisfied. That means we have to find a set of objects {O; }ier,
such that for any other object X in the category, there is an index ¢ € I and a map
¢+ O; — X, not necessarily unique. Since at each level, a Witt complex £ = E¥
is also a complex, there is a map A : Q*W_( 4) — £, which in degree zero is the map
A W.(A) — E? prescribed in the definition of a Witt complex. We prove that the
image of A is a sub-Witt complex of E7. Since the isomorphisms classes of such objects
form a set (they are all quotients of ﬁ;v.( A)), the solution set condition is satisfied
and the proposition is proved.

First of all we have to see that ¢({1],) € Im(}\). But this is so because

d(Al-1}s) _ D(A[=1]n)

R 5 RS V=
é)-fi[L:l—lll—nEIm()\).

Since +([1},) € Im(X) we see that Im(A) is closed under . It is also closed under
d because it is closed under D and d = D or d = D —  depending on the degree. It
remains to see that it is closed under F and V.

19



We start with F. The Frobenius operator is multiplicative and each element in
the image of A is of the form A(a®da’ ... da"™) = A(a®)d(A(al))...d(Xa™), so it suffices
to show that F(A(a)) and F(d(A(a)) are in the image of the canonical map. Part of
the definition of a Witt complex is that AF' = F for all a € A. So F(A(a)) € Im()).
Let us prove that F(d(A\(a))) € Im(\). We use the formula:

a = [ao)n + V([ar}n-1) + - + V™ H[an-1]1),
which shows that
F(dX(a)) = F(dX\([aoln)) + F(aMV ([a1]n-1))) + - + F(AMV™ ([an-111))-

Recall from the definition of a Witt complex that FdA([a].) = A([a]n-1)dA([a}n-1])-
and that both F' and V commute with A.

F(dA(a)) = F(dA\([ao]n)) + F(dVA(laa]n-1)) + - - + FA(V* " A([an-1]1))
A[aoln-1)dA{[ao)n-1]) + (d+ ) (AM(lar)nr) + - +
(d+ V"2 M([an-1]1);

and this sum clearly is in the image of A.
Now we prove that ImA is closed under V. This follows from the Frobenius
reciprocity formula. For example

V(MaldA(ah)) = V(A (@®)dVIMal)) — oV (\(a%e)).

More generally

V(Ma%a' ... da") =) V(a%) ] av(ra')).

i=1 1<j#isn

This again 18 in the image of A. (W

Definition 1.2.3. The initial object in the category W4 of Witt complezes over A is
called the de Rham Witt complex of A and is denoted W,Q0}.

Proposition 1.2.4. For every ring A the following assertions hold:
(i) the canonical map Q*W.(A) — W, is surjective,
(1) the canonical map A : W,(A) — W,QY is an isomorphism.
Proof. Denote for the moment by E} the image of the map A : Q;v,( a — Wy Itisa

sub-Witt complex of W2}, in particular it is an object of the category Wj4. Therefore
it admits a unique map from the initial object. We consider the composition:

W.Q% — Ef — WO
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Being an endomorphism of the initial object, it has to be the identity map. So the
second map is surjective, which amounts to the same thing as the map Q{,V_( a4 —
W,(2% being surjective.

In degree zero this means that the map W.(A) — W.QY is surjective. To prove
that it is also injective, we consider the Witt complex E; defined by E° = W,(A) and
Ei =0, for all : > 1. As W, (0% is initial in the category W,, there is a morphism
p W, — E7. The fact that p is a morphism means among other conditions that
the diagram

Wi,

commutes. By the definition of £} the corresponding A is the identity morphism, so
u% o X =1 and it follows that X is injective. 0

1.3 The standard filtration
On every Witt complex E; there is a standard filtration (see also [6]):
Fil* E2 = V’E2_, + dV*EI_L.

This filtration can be used to set up inductive arguments when computing de Rham-
Witt complexes. The important result that allows this is the following.

Lemma 1.3.1. The following sequence is exact:
0 — Fil* W% — W04 25 w04 -0

Proof. First we show that the composition of the two morphisms is zero. Actually the
composition is zero for all Witt complexes. This is so because R commutes with the
other operators and any Witt complex is by definition zero in levels zero and below:

RV (Fil° E?) = R 5(V°EL_, + dVSEI"))
= V*R"E!_, +dV°R"EI_}!
CV°Ey+dV*E{" =0
Once we know that this composition is zero it follows that R™* induces a mor-

phism
EZ/Fil*(EZ) — R"°EY.

To end the proof of the lemma we need to show that this morphism is an isomorphism

21



for E} = W,Q*. Fix a value of n — s and define
Wi, = Wo Q8 /Fil° W, Q5.

We prove that this is a Witt complex over 4. We only need to check that the opera-
tors are well defined, then the relations are automatically satisfied. To show that R
and F induce operators R, F : W%, — W._,Q% we need to show R(Fil* W,0%) C
Fil*~' W,_,Q% and F(Fil* W,Q%) C Fil* ' W,,_19%. The first relation follows from
VR = RV and dR = Rd and the second from FV = 2 and FdV = d + . Sim-
ilarly V induces an operator on W% if V(Fil® W,Q%) C FiI**' W, 1, QY% and this
follows from Vd = 2dV. + and d induce operators if «(Fil* W,0%) C Fil° W,,Q%" and
d(Fil* W, Q%) C Fil W04, The fist follows from ¢V = Vi and td = dv and the
second from dd = d..

We show now that W/} is an initial object in the category of 2-typical Witt
complexes over A and hence the morphism induced by R*™°, W/Qy — W,Q} is an
isomorphism and hence the sequence is exact.

Consider E} a 2-typical Witt complex over A. We construct a morphism W/Q% —
E} and show that it is unique. Since the standard filtration is natural we have maps:

WGk = W, /Fil* W04, — EL/Fil B2 27, Bt

To show that this homomorphism of Witt complexes is unique we first show that
the map Q(W,(A)) — W!QY is surjective. This is immediate from the diagram

(W, (4)) — W,.Q,

| i

QHW,(A)) — W,

Now in the diagram
Q(Wa(4) —= EL

s

consider in the category of pro-DGA the top map is unique, therefore the oblique
map is unique. O

1.4 An additivity result

As far as we know, the relations in the definition of a Witt complex are independent.
However, one relation can be partially deduced from the others. We make this precise
in the following Lemma.

Lemma 1.4.1. Let A be an arbitrary ring, and E} a pro-graded ring. Assume that
E* is endowed with all the operators in the definition of a Witt complez, and all
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the relations are sastisfied with the exception of the last relation. Assume that this
relation holds for two given elements f,g € A, that is

FdA([fln) = M{fln-1)dA([f]n-1]),

FdA([g)n) = M[9gln-1)dA([g]n-1])-
Then it also holds for their sum, f+g¢€ A:

FAA[f + g]n) = M[f + gln1)dA([f + g]n-1])-

Proof. The proof is inspired by the proof of Proposition 1.3 in [9].
Since there is no danger of confusion, we omit A.

We prove the statement by induction on the level n. If n = 1 the relation holds
trivially. Assume we have proved the Lemma for n — 1. We know that

Fd[f]n = [f]'n—ld[f]n—l])

Fdlgln = [g]n-1d[g)n-1],

and if we apply R to these relations we obtain
Fd[fln-1= [fln-2d[f]n2],

Fd[g]n—l = [g]n—zd[g]n—Z]-
By the induction hypothesis, we have

Fd[f + gln-1 = [f + gln—2d[f + gln2-
We define 7 € W,,_1(A) by the formula:
[f + gl = [fln + [gln + V7.
We apply R to both sides of this identity:
[f + gln-1 = [fln-1 + [gln-1 + VR
We square both sides:
[f +glas = [flacs + lglaos + (VBT + 2([fln-1 + [gln-1)V RT + 2[fgla_s,
and, since (VR7)? = V(RTFVRr) = 2V R(1?), we get:
F(If + gln + [fln = [9]n) = 2(VET + [fgla-1 + ([fln-1 + [g]n-1)V RT).

The left hand side of this identity is F(V7) = 27, thus we obtain:

27 = 2(VR7 + [fgln-1 + ([fln-1 + [g]n-1)V RT).
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This identity is true in the ring W,_,(R) for any ring R, in particular for the ring
of polynomials in two variables R = Z[f, g]. For this ring the multiplication by 2 in
W,_1(R) is injective, therefore the following identity is true for this particular ring:

7 =VRT + [fgln-1 + ([fln-t + [g]a-1)VRT.

Taking Witt vectors of length n — 1 is functorial, and it follows that the identity is
true for arbitrary rings R and elements f and g.
Once we proved this formula we return to the identity we want to prove:

Fd[f + g]n = [f + g]n—‘ld[f + g]n-la
or equivalently:

Fd([fln + [gln + V7) = ({[fln-1 + [gln1 + VRT)(d[f]n1 + dlgln-1 + dV RT).
We expand the right hand side:

Fd[f]n + Fd[g]n + FdVT = {f]n-—ld[f}n—l + [g]n-—ld’[g}n—l
+d([fgln-1+ ([fln—s + lg]n-1)VRT) + VRrdV Rr.

Using the hypothesis that Fd[f], = [f]n-1d[f]n-1 and Fdlgl, = [g]n-1d[g]n-1, and
the formula for 7, the previous identity becomes equivalent to:

FdVr =d(r — VR7*)+ VRrdVRr

or:
dr + o = dr — dVR7* + VRrdV R7T.

We reduced the problem to proving the following formula:
vr = —dV Rt?> + VRrdV Rr.

We prove this separately in the next Lemma. O

Lemma 1.4.2. For every ring A and every element v € Wi(A), the following identity
holds:
dVR7* = VRrdVRT + 17

Remark: This lemma, says that . measures the failure of d to be a PD-derivation.
To explain this we need to recall what a PD-structure on a ring is and what a PD-
derivation is.

If A is a commutative and unital ring and [ is and ideal, a PD-structure on (A, I)
is a family of maps v, : { — A, n € N which morally behave like dividing the n’th
power by n!. More precisely they are required to satisfy five conditions:

(i) vlz) =1, niz) =z, wlz)e I, Vz €I,
(1) Yalz +y) = 2 r %@ ms(y), Yo,y € 1,

24




(iil) vn(az) = a™y,(z),Va € A,z € I,

(V) 7p(2)79(z) = (*1) Vp+o(@), VP, g €N,z € T,

(V) Yplv(z)) = ;(!—(’%VPQ(IE),VP,Q eN,zel
If A is a Z,-algebra, there is a canonical PD-structure on (W,(A), VIW,_1(A)),
namely:
Ym @ VWo_1(A) — W,(A4)
1 ifm=0
™ Vv = r,'n—l ,
m(V2) {p V(z™), fm>1

m!

If (A,7) is a ring with a PD-structure and d : A — M is a derivation of A into
an A-module M, then d is called a PD-derivation if d{vy,(z)) = vn—1(z)dz, for all
z € I. If we consider W(A), the inverse limit of the pro-ring W.(A), elements in it
are sequences of elements z,, € W, (4), andR : W(A) — W(A) becomes the identity
morphism. So the identity in the lemma reads: if z € VW(A) C W(A), z = Vr,
then:

d(1a(2)) = m(z)dr + o7

If we did not have 7 in this relation, then Lemma 1.2 of Langer, Zink [9] would show
that d is a PD-derivation. We will now prove the lemma.

Proof. The proof is in three steps. First we show that the identity holds for all
elements 7 = [¢]x, for ¢ € A[X]. Then we show that once it holds for 7 it also holds
for V7. Finally we show that if the identity holds for two elements 71, 7 it also holds
for their sum 7 + 7.

We begin with 7 = [¢],, for some ¢ € A[X]. We manipulate the left hand side of
the identity that we want to prove:

dV(dle_ = AV (F([#le)) = d(V([1]e-1)[¢]k)
= dV([1]e-1)[¢]e + V{([1k-1)d[o]x
= dV ([1)x-1) (8] + V(Fd[g]}),

and using the induction hypothesis that Fd[¢|r = [@|x_1d[p]s-1 for k <n -1
dV{gli_y = (AV[le-1)[6lk + V ([@le-rd[@]k1).
The right hand side is

V[¢]k—1dv[¢]k—1 + L[Cb]k = V([¢]k—1FdV[¢‘]k—1) + L[¢]k
= V([#le adlplk-1) + V(e[@l5_1) + t[¢le-

Therefore the equality of the two members is equivalent to the equality
dV{Ue-a[dle = V(e [l]e-1)[@]n + ¢[¢ls,
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which is certainly true if

AV ko1 = V[Uks) + Uk

This last identity follows from Lemma 1.1.6 which gives the formula for ¢[(1].

Now we assume we know the relation for T and we want to prove it for V(7). We
know:

dVRt? = VRrdV Rt + 17,
we apply V to this:
V(dVRr?) = V(VRrdVR7) + V(i7);
The left hand side of this equation is:

V{dVRr?) = 2dV2Rr? = dVX(RrFV Rr)
= dV(V(R7)V(Rr)) = dVR(V(r)?)

We want to prove:
dVR(V(1)?) = VRVTdVRV T + V7.

We notice that the left hand side of this equation is equal to the left hand side of the
previous equation, so it is sufficient for us to prove:

V(VRTdVR7)+ V(i) = VRVTdVRVT + .V,
or:

V(VRrdVR7) = VRVrdVRV7

V(VRrdV Rr) = V((RVT)FdVRVT)

V(VRrdV Rr) = V((RVT)dRVT) + V((RVT) (RVT))
0= (V((VR)*)
0 = (V(RTFVR7))

which is true since F'V =2 and 2. = 0.

Finally we want to prove that if the relation holds for 7; and 73, it also holds for
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71 + T2. We know:

RdV1¥ = RV dRV'T + 17y,
RdV'rz2 = RVndRV 1 + 11y

and we want:
RAV(m + 1) = RV(n, + T)dRV (11 + 72) + (11 + 72),
or equivalently:

RdVle 4 RdV’FZ2 + 2RdV(nimy) = RVnidRV 7 + RV7dRV
+d(RVT RV 1) + try + 7o,

After cancelling six terms the equation reduces to:

ZRdV’Tsz = RdV‘TlV’Tg,
QRAV 17y = RAV (1 FVy),

which is true since F'V = 2.
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Chapter 2

Computations

2.1 The 2-typical de Rham-Witt vectors of the in-

tegers

Before we state the structure theorem for W,Q; we introduce a bit of notation. We

denote by V(1) € W,QY the element V*([1],-;).
Theorem 2.1.1. The structure of W, 25 is as follows
(1) As abelian groups
n—1
w.0p = Pz -via),
=0
n—1
W, = Pz/2z-dvi(l),
i=1
W,y = 0, fori>2.
(i) The product is given by

Vi) -VI(1) = 2VI(1), if i<},

. . 21dVI(1) + 3n0 1 257N dVE(L),
Vi) -avi(1) = { n_l( ;s_EVZH)I W

s=1i+1

(i11) The operator V acts as follows

Il

V(Vi(1)) Viti(1),
V(dVv*(1)) = 24v*t(1).
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fl<i<y

ifl<j<i

(2.1)

(2.2)

(2.3)

(2.7)
(2.8)



(iv) The operator F' acts as follows
F(V'(1) = 2v*7(u), (2.9)

F(dVi(1)) = dvi~Y( +Zzs 1dve(1 (2.10)

(v) The operator d acts by d(V*(1)) = dV*(1) when i > 1 and d(1) = 0, and the
action of the operator ¢ is given by

n—1

VP) = ) 2lavE(Ql). (2.11)

s=i+1

(vi) The operator R : W,Q3 — W,_1Q acts as follows

; _Jvi) dfi<n-2
RV*(1) = {0 Jimn -1 (2.12)
RAV'(1) = {gw(n Z:i;:i (2.13)

Proof. We begin with the fifth assertion and then we prove the others in the stated

order.
(v) We already know the formula (see 1.1.6):

1, = 225 ldve(1

which is the particular case for the relation we want to prove when i = 0. For other
i we have:

Vi) = V(u[1fns)

n—i—1
= Vl( Z 25—1dvs([l]nmi—s—l)
s=1
n—i—1
— Z 2s+i-1dvs+i([l]n_‘i_s_1)
=1
n—2
= Y 27dV{[Lns).
s=i+1

(1),(i1)The isomorphism described in the first relation follows from the previous the-
orem. The second relation follows from the fact that the map A : Q4 — W2}
is surjective and from the product relations that we now prove. The first product
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relation is the product rule described in 1.1.3 in the case p = 2. The second product
relation:

e If1<i<y:

Vi(1)-dVvi(1) = VH(F'dVI(1)) = V'((d+ V7 (1)
= VdVITH(1) + V(1))

n—j—1
= 24V + V(D 271dVE(1))
s=1
n—j—1
= 2dVI(1)+ Y 2HTlavIt(1)
s=1
n—1
= 2dVi(1)+ Y 227NdVe(1).
s=j+1

o Ifl<j<i

d(V*(1)VI(1)) — dV (1)VI(1)
= d(2Vi(1)) - Vi{1)adv*(1)

Vi) -dVi(1)

n—1
= 2dVi(1) - 2dVi(1) - ) 27dve(1)

s=i+1

= nz—l 27 1dVs(1).

s=i+1

We note here that one can give a unified product relation for V*(1) - dV4(1),
namely:

Vi(l)-dVi(1) = 2'dVi(1) + ni: 2°71dVe(1)

s=max(1,7)+1
(ii1) The first relation is trivial and the second follows from Vd = 2dV'.
(iv) The first relation follows from F'V = 2. The second relation:
F(avi(1)) = (d+)V (1)
= dVH1) + (V1)
n—2
dviTi (1) + D 20dveri(1).

s=i—1

Once we have these relations and the fact that 2'dVi(1) = V'd(1) = 0, it follows
that A factors through a surjective map @ Z/2'Z - dVi(1) — W,QL.
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We prove now that W, = 0, for 1 > 2. We will prove this by induction on the
level using the standard filtration.

The first step of the induction, that W1Q7 = 0, forall ¢ > 2 follows from the
surjectivity of the map A : Qf, 5y = Q7 — W17, and fact that the domain of the
map is zero whenever ¢ > 1. Assuming that W, 2} = 0 for all ¢ > 2 we prove that
W,H_IQ% = (, for all ¢ > 2. This is so because in the short exact sequence

0 — Fil" ! W,08 — Wol & W,,02 -0

the right term is zero by induction and the left term is zero because Fil*™! W, Q% =
VW, Q2 + dVr W03 and both Wi, and W} are zero as seen above.

To finish the description of the groups that form the de Rham-Witt complex W,
we consider the pro-graded ring G, defined by the groups on the right hand side of
the relations (1) — (3), that is:

n—1
G(T)L = @Z ’ Vl(l)a
=0

n—1

Gy = Pz/2rz-avi(),
i=1

G =0, fori>2.

The product is defined by the relations in (ii) , the operators F, V, d, «, R are given by
the relations in (iii)- (vi). We check that with these definitions G? is indeed a Witt
complex.

The only non-trivial relation to verify is that FdA([a],) = M[a]a—1)dA({a]n-1]),
for all integers a. Using the additivity result 1.4.1, we see that we need to check this
relation only for the integers a = 1 and a = —1. It is trivially satisfied in the first case,
and easy to see in the second, once we recall from 1.1.1 that [—1], = —[1],+ V[1]n-1:

Fd]-1], = Fd(-[1], + V[1]a-1) = FdV[1], 1
= (d+ ¢)[Ln-1 = [lns
= [-1]p1d[~1]n-1.
To prove now that W, = G we define a morphism of Witt complexes
G, — W.0;
Vi(1) — V(1)
dVi(1) — dV*(1)
The composition W,Q2; — G; — W,Q3 is an endomorphism of the initial object in
the category W, and as so it is the identity. The composition G, — W3 — G} is

an endomorphism of G; it is not hard to see that the only endomorphism of G is the
identity: being a morphism of pro-rings it maps [1}, to itself, and since it commutes
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with V and d it will also map V*(1) and dV*(1) to themselves. 0O
Remark: The same proof works to give us the structure of W.Qim :

(1) As abelian groups:

n—1

Wa, = Pz - Vi), (2.14)
i=0
n—1

WaQs, = EDZ/2Z-dvi(1), (2.15)
i=1

Walyg = 0, fori>2. (2.16)

(ii) The product formulas and the actions of the various operators are the same as
in Theorem 2.1.1.

Indeed, the only thing we have to check is that szm =0 for all 2 > 2. To

see this we need to prove that d(x) = 0 for all m € Z odd. This follows from
0 =d(1) = d(mX) = md(}), since m € Z is a unit.

2.2 The 2-typical de Rham-Witt complex for poly-
nomial extensions

In this chapter we describe the relationship between the 2-typical de Rham-Witt
complex of the ring of polynomials in one variable over a Z,-algebra A and the
2-typical de Rham-Witt complex of the ring A. In order to do that we will identify
the left adjoint of the forgetful functor Wax; — Wa. We call this functor P : Wy —
Wax), and since it commutes with colimits, it will carry W, into W.Qj;[ xX]-

In order to define the functor P we first analyze the Witt complex W.Q;[X}.
Inside it we find the image of the map W,(% — W.Q*A[X] induced by the inclusion
A — A[X]. Besides this image we can certainly identify the elements [X]:. If we play
with the multiplication and with the operators R, F', V, d, and ¢+ we will find new
elements, but because of the relations that hold in every Witt complex, we will see
that all these elements can be classified in four types. The first obvious type is the
elements of the form a[X],, where o € Im(W,Q%), i € N, and n > 1. When there is
no danger of confusion, we omit the subscript n, and also write a € W, . This type
1s closed under multiplication and also under the action of R, F', and ¢. If we apply
d and V we will get two new types: elements of the form b[X]*~1d[X] and elements
of the form V7 (c[X]"), where b, c € W,Q%, and k, 7,1 > 0. Special attention has to be
paid to the latter type, as some elements of that form were already listed as elements
of the first type. An example is V(c[X]?) = V(cF([X])) = V(c)[X]. The restriction
that we have to impose is [ be odd. Finally, if we apply V and then d we obtain a
new type, of elements of the form dV*(e[X]™), where s > 0, e € W.Q%, and m is
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odd. If we multiply elements of any of these two types together we will get a sum of
elemtents of these types. The key observation is the following:

Lemma 2.2.1. In any Witt complex over A[X] the following relation holds:
d[X]d[X] = ((1])[X]d[X].
Proaf.

dX|d[X] = d([X)d[X]) — [X]dd[X] = d(Fd[X]) — [X]de[X]
= 2Fdd[X] + ([I)IX)d[X) = 2Fde[X] + o((1]){X]d[X]
= (([1])[X}d[X].

O

Using this observation we can see for example that the product of two elements
of the second type is again an element of second type:

BIX)F [ X [ X% 1] X] = o) [ X]FHF -1 X).

The other products and the action of the different operators on the elements can also
be derived. The formulas that we obtain will be exactly the formulas that we plug in
the definition of the functor P.

Before we define the functor P we need to recall a result of Hesselholt, Madsen
that describes the ring of p-typical Witt vectors over the ring A[X]: every element
f € W,(A[X]) can be written uniquely as a sum:

n—1
F=Y a0, XE+30 ST Vo(an,ix1,),
J€N s=1 (j,p)=1

with as ; € Wy,_s(4) and all but finitely many a, ; zero (see Lemma 4.1.1 in [3]). In the
case p = 2 this results read: every element f € W,(A[X]) can be written uniquely as
a finite sum of elements of two types, that we will call type 1 and type 3, for reasons
that will soon become clear:

o Type 1: elements of the form a[X]/, where a € W09,
o Type 3: elements of the form V7 (c[X]"), where r > 0, c € W,_,09, and [ is odd.

Now we are ready to define the functor P : W4 — Wyx}. On objects it is defined as
follows: for a Witt complex E} € Wy, P(E)?2 consists of formal sums of four types
of elements:

e Type 1: elements of the form a[X}’, where a € E7,
e Type 2: elements of the form b[X]*~1d(X], where b € EI1,

e Type 3: elements of the form V7 (c[X]'), where r > 0, c € E_,, and ! is odd,
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e Type 4: elements of the form dV*(e[X|™), where s > 0, ¢ € E?"} and m is
odd.

The product is graded commutative, and is given by the following ten formulas:
P1.1: a[XVd[ X} = ad [ X+,

P1.2: a[XVb[X]F~1d[X] = ab[X ) +*-1d[ X],

P13 a[XPV™(e[X]) = V(F(a)c|X]Z7+),

P1.4:

al X V(e[ X]™) =(‘1)'a|mdvs(F”"(a)e[X]PHm)

= (~)PV*((F*(da)e — d(F*(a)e))[X]*7*™),

J
257 4+m

P2.2: b[XF 1 XV [ X)L X] = o(bb)[X]FH¥ 1d[ X],

P2.3:
-1 T Iy __ 1 T r 27 k+
BXT* XNV (elX]) = = (=DM VT (d(F (b)) X
+ (CDM—L v (5 () X4,
P2.4:
B[X]*1d[X]dV* (e X|™) = - (-1)""ﬁvswswb + k(b)) de[ X]*F™)
1 a(f s 2%k+m
+ ()M dVe (e ()de[ X H),
P3.3:

V(e[ XHVT(¢[X]") =
V(T () XTI, i s

= 2VTV () XPTHDY, ifr =7 and v = v(l + ), v < 7,
2’V‘"(cc’)[X]27T“H’), if r=7r"and v > r,
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P3.4:

V7 (e X)aV? (el X]™) =
(-1l 2 LAV (P (C)el X T ifr<s,
VIV (e(d + ) (@)X )
+( 1)| el 2Tm mdvr(ce[X]IZ l+m)
—(- 1)":|2 myT=v(dV?(ce) [ X ]2 " tHm))  ifr=sv=u(l+m)<r,
= (V7 ({c(d+ L)(e))[X]z_r(Hm))

+(=1D)lEmyr{ce)[X]*Hm-1d[X], ifr=sv=w(l+m)>r,
VT (cFm*((d + L) )X

+(=1) dVT(cF ™ (e) [ X]¥ ™)

| (D V@ XTI, i,

2rs +l

P4.4:
dV*(e[X]™)aV* (e[ X]™) =
(—(~1)flav (F~*((d+ ) (e)e) + 2—5—_;;”:—@(?’—5@)@'))[x12”"*’m+m’)
+VE((F*~%(de)ule’) + Fo'=%(e)de(e") [ X]¥ ™ mmyif s < 8,
Ver((Vo(edu(e)) + AV (eule))) X))
= 4dVer (VP (e(d + 1)) + dV¥(ee )[X]? ™)) if s = &, v = va(l +m) < s,
(V2 (eu(e))) + (=1)¢ m'dV*(ee)[ X"+ 1)
+ V3 (edu(e)[X]> " mHmD)
L+dV3(e(d + 1) () [ X]?Somrm)), ifs=¢,v=u(l+m)>s

The definition of A, R, and ¢ are obvious, the action of V is given by the following
four formulas:

VI:
i JV(@[XP), ifjodd,
V(G[X] ) - {V(CL)[X]J/Zi lfj even,
V2:

. DLV ((db)[X)F) — (—1)P 24V (B[ X]F), if k odd,
V(bX]* d[X])={§,(b))[Xk]k/£El d)[[X]]’) (CORav O i  even,

V3 V(VT(c[X]) = V([ X]),
Vd: V(dV(e[X]™)) = 2dVs+ (e[ X]™)).
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The action of F is given by:
FI: F(a[X)) = F(a)[X]¥,
F2: F(B[X]E1d[X]) = F(5)[X]*-1d[X],
F3: F(V"([X]) = 2V (cX]),
F4: F(AV*(e[X]™) = aV*-1 (e[ X]™) + Vo= (o) X]™
The action of d is given by:
di: d(a[XV) = d(@)[X} + (~1)ja[X}-1d[x],
d2: d(b[X)*d[X]) = d(B)[ X1 dX] + ku(B)[X]*d[X],
d3: d(V7(c[X]") = dV7(c[X]},
dd: d(dV*(elX]™) = dV*(u(e) X]™).

On morphisms the functor P is defined in the obvious way: if § : E} — F} is a
morphisms of Witt complexes over A, then P(f) : P(EY) — P(F?) is defined on
elements of type 1 by the formula P(#)(a[X]*) = 8(a)[X]* and similarly for elements
of the other three types.

Theorem 2.2.2. The functor P : W4 — Wyx) is well defined and is a left adjoint
of the forgetful functor Wy x) — Wh.

Proof. The fact that the functor P is well defined means that for any Witt complex
over the ring A, the complex P(E) is indeed a Witt complex over A[X]. We need to
prove that the six conditions in the definition of a Witt complex and the three supple-
mentary relations are satisfied. Only two of these conditions and relations are hard to
verify, the associativity and the relation FdA([f],) = A[fln_1)dA([f]n_1]), for all f €
A[X]. The associativity requires a straightforward verifiction, that we will do in an
appendix.

We will prove the relation FdA([f]n) = A([fla=1)dA([fln=1]), for all f € A[X]
using induction by the level. For the level n = 1 the identity is trivial, as both sides
are equal to zero. Assume we know that the identity is true for the level n — 1. We
notice that the relation is easily verified for monomials, that is elements of the form
f=aX™ € A[X].

Lemma 2.2.3. The relation
FdA([aX™]n) = M[aX™]a_1)dA([eX™]n-1)

holds for all aX™ & A[X].
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Proof. Because there is no danger of confusion we will drop A and the subscript index
indicating the level.

FdlaX™] = Fd([a][X]™) = F((d]a])[X]™ + [a}d[X]™F)
= F(da) F([X]™) + F([a]) F (d[X]™)
= ([a]d[a])[X}*™ + mla)*F([X]™ " d[X])

and using the formula F2:
FdlaX™) = [o][X)*™d]a] + m[a]?[X]"™d[X]
= [a[X]™([X]™dla] + [a]d[X]™) = [aX™]d[aX™],
which is what we wanted to prove. O

The relation follows for arbitrary polynomials from the additivity result 1.4.1.
With this we proved that P : W4 — Wax) is well defined. To prove that it is the
left adjoint of the forgetful functor U : Wyx) — W4 we need to show that:

Homyy, , (P(E), E') & Homw, (E,U(E")).

The morphism from left to right takes a map f : P(E) — E’ to its restriction to
E »» U(P(E)). The morphism from right to left takes g : E — U(E’) to its unique
extension § : P(E) — E’ defined such that g{[X],) = X([X]s). The two morphisms
are inverse to each other. O

2.3 The 2-typical de Rham-Witt complex of the
log-ring Z( with the canonical log-structure

In this section we define the notion of a 2-typical de Rham-Witt complex associ-
ated to a log-ring and we compute this complex for the ring Z) with the canonical
log-structure. We first recall the notions of log-rings and of differentials with log-
structures. The standard reference is [§].

Definition 2.3.1. A log-ring is a ring R together with a map of monoids
a:M— R,

where R is considered a monoid under the multiplication. We will denote this log-ring
be (R, M).

The map « itself is called a “pre-log structure”.
Definition 2.3.2. A derivation of a log-ring (R, M) into an R-module E is a pair of

maps
(D,Dlog) : (R, M) — E,
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where D : R — E is a dertvation and Dlog : M — R is a map of monoids such that
foralla e M,
a(a)Dlog(a) = Da.

There is a universal example of a derivation of a log-ring (R, M) giver by the
R-module
QU = (R & (R®z M®))/ < dafa) — ala) ® a >,

where M8 is the group completion of the monoid M. The structure maps are :

d:R—>Q(1R‘M), da = da@® 0,
dlog:MﬁQ%R’M), dloga=0&(1®a).

Definition 2.3.3. A log-differential graded ring (E*, M) consists of a differential
graded ring E*, a pre-log structure @« : M — E°, and a derivation (D, Dlog) :
(E°, M) — E' such that D is equal to the differential d : E° — E' and such that
doDlog = 0.

The universal example of an anti-symmetric log-differential graded ring is:
(rary = Ar(Qran)-

Here AR(N) = To(N)/(m®n +n®m | m,n € N) is the universal anti-symmetric
graded R-algebra generated by the R-module N.

If (R, M) is a log-ring, then for each n € N the ring of length-n Witt vectors,
Wa(R) over R becomes part of the data that gives a log-ring (W, (R), M): the map
of monoids M — W, (R) is just the composition of the map a : M — R and the
Teichmiller map [—], : R — W,(R).

Definition 2.3.4. A Witt complez (E}, Mg) over a log-ring (R, M) is a Witt complez
E} over R together with pre-log structures on : Mg — EQ and an extension of
A Wo(R) — E? to a strict map of pro-log-rings A : (W.(R), M) — (E° Mg), such
that:

(i) the pre-log structures o, are compatible, in the sense that Ro ap = an_; ,

(i) dodlogla], =0, for alla € M,
(iii) Fdloglal, = dlogla],-1, for alla € M.

Proposition 2.3.5. The category of (2-typical) Witt complezes over a log-ring (R, M)
has an wnitial object WaSdlp 1), called the (2-typical) de Rham-Witt complez of (R, M),

Proof. The proof is an application of the Freyd's adjoint functor theorem, entirely

similar to the proof of Theorem 1.2.1 that asserts the existence of an initial object in
the category of 2-typical Witt complexes over a ring. a
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Remark: We note that if M is the trivial monoid, then the 2-typical de Rham-
Witt complex associated to (R, M) is the 2-typical de Rham-Witt complex associated
to R, so the notion of a 2-typical de Rham-Witt complex is a generalization of the
notion of a 2-typical de Rham-Witt complex.

In this section we will describe the 2-typical de Rham-Witt complex of (Z 2y, M),
where M = Q* NZw)y — %) is the canonical log-structure. The strategy is the same
as in the previous calculations of de Rham-Witt complexes: we find a candidate G
described explicitely by generators and relations and by formulas for the product and
the actions of the various operators, and we prove that this candidate is isomorphic
to W.QE‘R' M)-

In degree zero the de Rham-Witt complex is again the Witt vectors of the ring
R, this following from a proof similar to the proof of Proposition 1.2.4. In degree
one, the only new generator that we have in the de Rham-Witt complex of (Zy), M),
which is not in the de Rham-Witt complex of Z(,) is dlog[2]. The product formulas
are the same for the elements that already existed in the de Rham-Witt complex of
Zyg), so the only product formulas that we have to derive are V*(1)d log[2].

Proposition 2.3.6. i)The element dlog[2], € WnQ(lZ(z)'M) is annihilated by 2.
i) V(1]p-1dlog[2], = 2dlog[2], (mod dV(Wn-IQ‘(’Z(Z) )

Proof. The proof of both assertions is by induction. 1)The case n = 1 : 2dlog[2], =
d(2) = 0. Assuming 2'dlog|2}; = 0 for all ¢ < n we will prove that 2"*'d log[2],,; = 0.
We use the formula [2],11d10g[2]n+1 = d[2],+1 and the Corollary 1.1.4 which says

that
n+1 Z Ci Vl

where ¢; = 274(22 — 2%,
We have:

n

¢ Vi(1)dlog[2)ns1 = Z cdVi(1)

1=0 =1
We use that V*(1)dlog[2),+1 = V*(F¥(dlog[2],41)) = Vi(dlog[2]n1-s) :

n

2dlog[2lns1 = Y _(—V*(dlog[2ns1-1) + cdV(1)),
=1
Now if we multiply this relation by 2” we obtain:

n

2 dlog[2ni = Y (~V (2" d10g2lns1-s) + 2" edVE(1),

i=1

which is zero by the induction hypothesis and the fact that 2!{dV(1) = 0.
ii) For n = 1 the congruence is trivial as both members are zero. Assuming that
the congruence holds for n, we want to prove that it holds for n + 1. Firs, by an easy
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induction, we see that:
Vi[1]nidlog[2], = 2'dlog[2], (mod dV)
Then we use the formula [2],,41dlog[2],.+1 = d[2],+1 combined with Corrolary 1.1.4:
2d10g[2ni1 + » eV [Un +1 - idlog2lner = Y 6dV [1]p1—i =0 (mod dV).
i=1 i=1
This gives:
n -
2d10g[2ns1 + Y V(eV T Un — (i - 1)dlogl2],) =0 (mod dV),
i=1
or, using the formula described abave for V*~![1]n — (i — 1)dlog[2], :
2dlog[2]ns1 + V(D 2" 'dlogl2]n) =0 (mod dV),
=1

2d10g[2)ns1 + V(27 = 1)dlog[2],) =0 (mod dV).

Since 22" is always divisible by 2", which annihilates dlog[2],, we get the desired
result.

O

The second part of this Proposition together with Proposition 1.1.3, which de-
scribes a basis of W,,(Z), tell us that the product formula we are trying to derive is
of the form:

V[l]ndlog[Z]n = 2d 10g[2]n + ﬂ.ldV[l]n_l + angz [1]71—-—2 + -+ an_ldV”_l[l]l.

We note that the coefficients a;, don't depend on n, as we can apply R to the
relation in level nn + 1 to obtain the relation in level n.

Lemma 2.3.7. Assuming the previous product formula, the following formulas hold:

Vi(1)dlog,(2) = 2'dlog,(2)+2"  (ay+- - +a)dVi (1) +- - 427 @i+ - Aan_ )V ().

Proof. The proof is by induction. The case 7 = 1 is obvious. We prove that if the
formula is true for ¢ then it must be true for ¢ + 1.
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Vi (1)dlog,(2) = V(V'(1)dlog,_1(2)
= V(2'dlog,_1(2) + 2" May + -+ as)dVi (1) + -
o+ 2 Y an g+ ansa)dVTH(D))
= 2V(1)dlog,(2) + 27 ar + - - + a) VAV (1)+
o 27l e+ g g) VAV
— 2itldlog, (2) + 2ardV (1) + - - - + 2'aidV(1) + 2'aia dVI (L) + -
4 2a,  dVPHA) + 2ag + o+ @)dVITH () +
4 2aniog F 0t Gn2)dVTH(D)
= 2+ dlog (2)2(ay + -+ + g1 AV D) + -+ 2 (@pia + o F an-1)dV™ ().

We used the fact that 2¢dV (1) = - - - = 2:dV(1) = 0, which follows from 2dV = Vd
and d(1) = 0. O

We will now compute the coefficients a;. We start with the relation
[Z]ndIOg[z]n = d[2],

This gives:

n-=1

Z c;(V*(1)dlog,(2 Z cdVi(1

i=0

and we use the formula that we just derived for V*(1)dlog,(2):

Codlogn,(2)+nici(2’dlogn +Z( Z ag)dV(1 )—chdV"(l)-

i=0 j=1 k=j—itl =1

We regroup the sums and we obtain:

-1 7 J n-1

Z dlogn(2)+zz G Y. advi(l) = cdVI(1).

i=0 j=1 i=1 k=j—i+1 j=1

The first term in the left hand side member is zero because Yy 2'c; = 2% " and
dlog, (2) is annihilated by 2". We equate the coeficients of dVJ( ) modulo 27 and
obtain:

3 j
S (@a D, a)=¢ (mod2),
i=1 k=j—i+1
or: '
J j
Z Z 2 ¢)a = ¢;  (mod 27).
k=1 i=j—k+1
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Let us call By, =31, ., 21¢;, if j > k, and By, = 0, ifj < k. We obtain therefore
a system of equations:

J
ZBjkak =c¢; (mod 29).
k=1

We need to make a comment about this system. A priori the unknowns a; are in
different rings, namely a; € Z/2*Z. So the system as it stands doesn’t really make
sense. However we can think of 2/~%a; as an element of Z/27Z, and we notice that
By is divisible by 297, because Bjx = $1_;_, .12 e, = 271 —2¥71 if j > k.
and By = 0, ifj < k. To solve this system, we lift it to a system over the ring of
ntegers Z, we solve that system, and then take classes of congruence modulo the
corresponding power of 2. ‘

We observe that By, = 2%-1 — 22 7% -1 = _p2/7—1 (mod 27), and that ¢; = 1,
cz = —1 (mod 2%), ¢3 = —2 (mod 2%); and ¢; =0 (mod 2), for < > 3. We find thus
convenient to lift the previous system of equation to the following system over Z:

J

/
E bjkak = cj)
k=1

with by, = 227" -1 for j > k, bir =0for y <k ¢} =1,¢c), = -1, c§ = -2, and
¢; =0, forz > 3.

The matrix of the system is lower triangular and it has only —1 on the diagonal.
We can invert it using, for example, Gauss-Jordan’s method. The inverse matrix F
is also lower triangular and it has entries:

g, itz <y,
fi; = ¢ -1, if 1 =7,
Zi:io)il)--->'is=j bioil biliz o bis—ﬁs) lf Z > .7
A direct computation shows that by = by = byg = —2, byy = by = —2% and using

this that fo; = faz = fa3 = 2 and fa; = f43 = —22. These entries of the matrix F are
all we need to compute the first three coeficients in the product formula. We obtain:
a1 =1 (mod 2),a; = —1 (mod 4),a3 = 4 (mod 8). We will prove that all the other
coeflicients are zero.

For all 1 > 3 we have:

ai = fac + fiach + fiacs = fir — fia — 2fis (mod 2i)

We remark first that vy(b;;) > i — 7, with equality if and only if 7 = j + 1. Using this
observation we see that all the terms that add up to give f;, are divisible by 2i~!, and
the only one that is not divisible by 2° is by_1b;_1; 0 -by = (—1)=12-1. Therefore
fi = (=1)""12""! (mod 2¢). Similarly, fi» is divisible by 22 and the terms in the
sum that makes up fi» that are not divisible by 2 are of two forms:

- one product b;;_1b;_1;_p - -bgp = (—1)22¢2
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- (2—3) pI‘OdUCtS of the form by;_1b;_1;_9 - - - bey1xbrr—2bk_ok_3 - - b3z = (—l)i_32i_1.

We obtain fip = (—1)72272 4 (1 — 3)(-1)"%2""! (mod 2).
We treat fi3 in the same way:

2fia = 2(bii—1bi—1i—2- - bz + Zbii—lbi—li—2 so o brpakbik—2bk—2k-3 -+ - b
k
=2[(=1)"%22 4+ (i — 4)2*"% (mod 2)
With these formulas we can compute a; for 7 > 3:

ai=fa— fio —2fis
= (_1)1—121'—1 _ (_1)1‘—221’—2 _ (’i _ 3)(__1)i—32i—1 _ 2[(_1)-i—32i—3 4+ (i _ 4)21‘—2]
=0 (mod 2"

We have:
Lemma 2.3.8. The following product formula holds for all n:
V[l.dlog[2], = 2d1og[2], + dV[1],_1 — dV?[1}_n + 4dV3[1]),_s.

Now we can state the structure theorem for the 2-typical de Rham-Witt complex
of (Zy, M), where M = Ziy-

Theorem 2.3.9. The structure of W'Q?Z(g),M) is:

(i) As abelian groups

n—1
WSz, 21y = Pz - Vi), (2.17)
=0
n—1
Wz, 1) = Z/2"Z.dog[2], ® D Z/2°Z - dV*(1), (2.18)
=1
WHQT(:Z(Z),M) = O,fOT all'i 2 2. (219)

The product relations and the actions of the various operators are the ones from
Theorem 2.1.1, in addition to which we also have:

(i1) the product formulas:
V[Tnsdlogl2]n = 2d10g[Z]n + dV{Ijn s — dV?[1]n_s + 44V (13,

Vi[1)n_idlog[2], = 2'dlog[2], — 271 dV* T 1]y + 2TV (1] s,

44




(111) the action of the operator V :
V(dlog[2),) = 2d1og[2lns1 + dV (1], — AV 1oy + 4dV3{1]n-s,
(iv) the action of the operator F:
F(dlog[2]s) = dlog[2]n_1.
Proof. The proof is similar to the proof of Theorem 2.1.1, which describes the struc-

ture of the 2-typical de Rham-Witt complex of the integers. More precisely we define
the pro-graded ring G} to be:

n—1
Go =P Ze Vi), (2.20)
1=0
n—1 ‘
Gl =Z/2"Z.dlog|2], & D Z/2'Z - dV*(1), (2.21)
i=1
Gl =0,foralli>?2, (2.22)

with the product rule and the action of the operators as in the theorem. We want to
prove that W-Wz(g), = G. We will show that we have morphisms

QB : W'QE‘Z(Z),M) - G:)
'(,D . G: — W.Qz‘z(2),M),

and that they are inverse to each other.

The existence (and uniqueness) of the morphism ¢ follows from the fact that G is
a 2-typical Witt complex. The definition of ¢ is forced by the requirements that it is
a morphism of 2-typical Witt complexes: [1], — (1]» (since % is a morphism of rings),
Vi1]nei = V1], dVi1],y — dV*[1],—; (¥ commutes with V and d), [2], — [2],
(because (2], = 377 ¢;V¥[1]u~; by Prop 1.1.4 and v is additive), dlog[2], — dlog[2],
(because ¢ commutes with dlog).

In order to see that 7 is well defined we need to show that W"QZZ(Z,,M) =0
for iz 2 This is proven by induction on n. The first step of the iduction, that
Wiz, ary = 0 follows from the fact t'jhat Q‘('Z(z) My = 0 for all + > 2 {which follows
from d o dnlog = 0) and thg fact that Q;z(g,,M) — WlQm(z(Z,,M) is surjective. |

Assumlng that Wn—IQEZ(z), wy = 0for i > 2, we want to prove that WHQZ(Z(;_.). iy =0
for 1 > 2. We use the standard filtration:

18 i — /s i s i-1
Fil W"Q(vaM) =V W”‘iQ(Z(:UIM) +adv W”Q(Z(Z)'M)'
The sequence:
an—1 i i i
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is exact by exactly the same argument used to prove Lemma 1.3.1. For i > 2 the last
term in this short exact sequence is zero by the induction hypothesis. The first term

15:
n— i _ /-1 1 n—1 i—1
Fll 1 WnQ(Z(z),M) = V Wﬂ—‘iQ(Z(g),M) + dV WHQ(Z(Q),M)
= V" 10) + dV™"Y(Z/2Z dlog(2]1).

This is zero if dV™1(dlog[2];) = 0. We have:

dv™1(dlog(2):) = d(V""}([1]:)d log(2}x)
= d(2" *dlog[2], + dV(z))
= 2""1d o dlog[2], + ddV (z)
= ddV (z),

where z € W, _1925(22),””. Too see that ddV(z) = 0 we use the following trick:
W'Q’(.'Z(z),M) is a Witt complex over the log-ring (Zz), M), so in particular it is a
Witt complex over the ring Z), and as such it is the target of a unique homomor-
phism from the de Rham-Witt complex W.Q3, . The element ddV (z) is in the image
of this homomorphism, but W-Q%(g) = 0 for i > 2, therefore ddV (z) = 0. This finishes
the proof that W"Q%Z(z)- ay = 0if i > 2, and thus ¢ is well defined.

Too see that ¢ and 7 are inverse to each other we check that ¢ o9 = 1 and
®o¢ = 1. The first follows from the fact that ¢ o is a morphism of Witt complexes,
and therefore [Ln — [, V[Unei — Viln-i, @V {1 AVl [2]n — [2]n,
and dlog[2], — dlog[2],, and the second from the fact that o ¢ is an endomorphism
of an initial object in a category. O
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Appendix A

The p-typical de Rham-Witt
complex of Z(p> with the canonical
log-structure, p odd

In this appendix we give the structure of the p-typical de Rham-Witt complex of the
log-ring (Zp), M), for p odd. Here M = Q*NZ, — Zy) is the canonical log-structure
on Zgp. The computations are exactly the same as for the case p = 2, but the results
are a little different. We first recall the structure of the p-typical de Rahm-Witt
complex of Z, from Example 1.2.4 of [2].

Proposition A.0.10. The structure of W.Qi(p) for p odd is:

(i) As abelian groups:

n—1

Wa = Pz - Vi), (A1)
1=0
n—1

W. . = PZ/rL-dvi(), (A.2)
i=1

Wolpp = 0, fori>2 (A.3)

(i) The product is given by:
VIOVI(1) = p'VI(1), 4 1 < 5 (A-4)

WMﬂqnzﬁwmm gi?
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(1t) The action of the operators F' and V is given by:

FVi(1) = pV* (1), (A.6)
FdVi(1) = dViY(1), (A.7)
V(Vi(1)) = VY1), (A.8)

V(dVi(1)) = pdV(1). (A.9)

The structure of W-QFZ(F), M) is different for p =3 and p > 5.
Theorem A.0.11. The structure of W-sz(p),M) with p odd is:

(1) As additive groups:

an?z(p)rM) = W"'QF)Z(F) = Wn(Z(p))v (A].U)
Wallly, ary = WaQlh | @ Z/p"Zd logfp, (A.11)
WanZ(p)'M) = 0, fOT all i > 2. (A12)

(11) The product is given by the formulas in the previous theorem and the following
formula that involves dlog|p):
3'dlog[3]n + 37 dV [1ns + BdV 1oy, fp=3,

Vi 1 n_idlo n= . ; i
[ ] g[p] {pz 105[?]71 + pz—ldvz[l]n_i’ pr 2 5

(ii) The action of F and V on dloglp|, is:

F(dlog[p].) = dloglp]n-1, (A.13)

V(dloglgly) = {Bd 10g[3]ns1 + V(U + 3dV[1ny, ifp=3,

A.14
pd10g]phss + AV{1]n, ip>s5. (A14)

The proof of this theorem is entirely similar to the proof of the structure theorem
for W°sz(2),M)-
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Appendix B
Associativity

In this appendix we discuss the associativity of the multiplication rule defined in
Section 2 of the second chapter. We recall that the functor P : W4 — Wy x) is
defined on objects as follows: for a a Witt complex E; € Wa, P(E)4 consists of
formal sums of four types of elements:

e Type 1: elements of the form a[X}?, where a € EY,
o Type 2: elements of the form b[X]|*~1d[X], where b € EI" !,
» Type 3: elements of the form V7" (c[X]!), where r > 0, c € E?_,, and [ is odd,

Type 4: elements of the form dV*(e[X]|™), where s > 0, e € EIZ} and m is
odd.

The product is given by ten formulas, from P1.1 to P1.4.

We make now the convention that, for example, A1.3.4 means the statement that
says that (zy)z = z(yz), where z is an element of the first type, ¥ an element of the
third type, and z an element of the fourth type. In order to prove the associativity
one has to check twenty relations like this, from Al.1.1 to A4.4.4.

Since there are three product formulas given in “cases” format, the associativity
relations involving these formulas will be a little more tedious to verify. Ten out of
the twenty relations that we want to check contain at least a product given in cases
format. Out of the remaining ten, five are more or less trivial, namely A1.1.1, A1.1.2,
A1.1.3, A1.2.2, and A2.2.2. The five formulas that don’t involve products with the
cases format are Al.1.4, A1.2.3, A1.2.4, A2.2.3, and A2.2.4. The hardest seems to
be the first, even if it doesn’t involve the operator ¢. We will show how it is derived,
and then we will also show Al.2.4, where ¢ is involved.

Among the ten cases where at least one product is in the cases format, one is
almost trivial, A1.3.3. The other nine require all some extensive computations. The
most dificult of them are A3.3.4 and A3.4.4 'We will show how A3.3.4 is derived.
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We start with the relation A1.14. Let = aX’, y = a' X7, and z = dV:(eX™).
Then:
(zy)z = aa' X7 AV (eX™)
) m
—(_ )laul L
( 2(+J)+

— (=1l lVe((Fe(d(aa’ ————j+j’ s(aa’ 29 (j44')+m
(=) Ve ((F(d(aa)e = G ay 3 m AF (@)D X rmy.

dV“(Fs(aa')eXT (+3)+m;

Ofl the other hand:

z(yz) =aX?{(-1)* AVe(Fs(a')eX > +m)

=t

2]+

— (=)Ve((F*(da’)e — d(F*(a)e)) X"}

J
257 4+ m
If we denote E = F(a')e, M = 2°j' + m, and P = 2°(j + j') + m, we obtain:

o(y2) =aXH{(~LF1 T2V (EXY) - ()FV(E - L d(F)e) X))
— (1)1 (1) '“'%dV’(Fs(a)EXP)
— (1) ((F(da)B - —I;d(FS( ))E)X7)}
— (VP (ada)e — L (@) @)e) X )
;lm

—(-1)1T

where U is the expression:

dV*(F*(aa)eX P}y + VH{UXT),

U :(—1)Imﬂ X;Fs(daa Je + (— l)laall%}]—jd(F’(aa')e)
~ (=11 F*(ada’)e + (=1)1¥ F*(a)d( F*(a')e)).
Using the fact that d is a derivation and that dF? = 2°F*d, we obtain:
U=-— (—1)'“‘” Fs(da e — (1) 'lmFs(ada)
+ Jipj_ps (aa")de

which agrees with the expression we find inside V? for the elemtent (zy)z.
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We prove now Al.2.4. Let z = aX?, y = bX*1dX, and 2z = dV*(eX™). We have:

(zy)z =(abXTT* 1 X)dV (e X™)
1

— _ (_1)labl s( s : 2¢(j+k)+m
O T (F(dlab) + ( + K)u(ab)deX )
1 |
bl - 8 ( 8 29 (j+k)+m
+ 1) PGk T mey (Fr(ab)deX )-

On the other hand:

z{yz) =aX’{—~(-1)" V(F*(db+ (§ + k)u(b)deX " ™))

2°k +m

1 .
(P (D)Yde X2 Ft™)Y,
S AV (P (b)deX >+ ™))

We denote by M = 2°k + m, and P = 2°(j + k) + m, we obtain:

+(~1)®

]' Ll L]
T(yz) = — (_1)'bIMV (F*(adb+ ki(ab))deX®)

+ (DM (-1

5 dVe(F*(ab)deXT)
— (=Dl ((F*(da) F*(b)de — %d

:(_1)|abl.}lstS(Fs(ab)deXP) +VHWXP).

(F*(ab)de)) X ™)}

We compute separately the expression W :

'blﬂllFs(a db)de + kF*°(1(ab))de

W=—(-1)
- (-1)'@"'%1?3(@ b)de + (—1)IablMLd(F5(ab)de)
=—(-1 )Ia"' Fs(d,(ab))de + F3(ki(ab))de

+ (- 1)'”1’| =J pe(d(ab) )de+—F“‘(ab)dde

MP MP

The last term in this sum is H%FS (ab)dde = 1= F*(i(ab))de. We make the observation
that for any odd number m € Z we have %L = ¢, so the last term in the sum becomes
simply jF*(.(ab))de. Therefore:

W= — (4)'”'%5‘8( (ab))de + F*((j + k)i(ab))de
- (-1)"""715F’(d(ab) + (5 + k)e(ab))de,

which agrees with the expression we find inside V* in the product (zy)z.
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We show now how to derive the associativity relation A3.3.4. Let z = V" (cX!),
y = V(¢ X"), and z = dV*(eX™). Since the product formulas depend on the or-
dering of the exponents r, v/, and s, it follows that verifying this relation involves
checking 13 different cases, from 7 < 7' < st0 s < ' < r. We will verify the case
s<r<r

We make the notations C = cF™"(c/), C' = ¢ F7'~*((d+ )(e)), E = ¢'F"~*(e),
L=2""1+l, M=2""m+1 and P = 2""°m + 2"~"'l' + I. We have:

(zy)z =(V (cXHV (¢ X ))dVE(eX™)
=2r’vr (CFr-r’(C/)er‘f'l’ﬂ)dvs (eXm)
=2"VT(C X )dV e (eX™)
=2"{V(CF™°((d + )(e) XT) + (-1)
- (-1

-z

/|2m

dVT(CF™*(e) XP)

1ZVI(d(CF () X))

T AV (cFm" (¢)FT* () XP) + V(U XP),
where the expression U is:

Ilm

U =2"{cF" " (¢)F"*((d +)(€)) ~ (-1)!* ST ()F*(e))}

On the other hand:
z(yz) =V (eXH(V (€ X )dV(eX™))
=V (eXD{VT (CF5((d + 1)()) X ¥ " +)

+ (—1)'5"27—%L~dVT (F7=5(e)X¥ "4
B A e A CCT A O Siaas )
=V (XN {VT(C'XM) 4 (-1)] ’Iszdvr (EXM)
&My
— (-1 (B X))
—27 VT (FT (O XP) + (~1)1 m{vr( Frr((d + ) E)XP)
+(—1)iC!Mdvr(cF’"-r’(E)xP) (1M V’(d(cFT"(E))XP)}
— (- 1)l°1A”:,27 VT (cFTT (dE)XT).

The second and the fifth term in this sum cancel each other, since 27 = 0. We have:

e 277 m

r(yz) = (—1) LAV (cFTT (¢)FT () XP) + V(W XF),
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where the expression W is:

[
C,'ZT m

W =2"{cF™ " ()7 (d(e)) + (-1)I =P (@ F 0 )

/|m

P

T(
|c/!2 m

— (=)l Zd(cFT T (F7 0 (e))) ~ (1) WcFT_"(d(C'FT"”(E)))-

The second and the fourth term cancel, and we see that W = U, hence (zy)z = x(yz).
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