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Abstract

In this thesis we give a probabilistic proof of the Morse inequalities in the nondegen-
erate and degenerate case. For the nondegenerate case the kernel associated with the
Witten Laplacian has an expression via the Malliavin calculus. The first step is the
analysis of this heat kernel at a point away the critical set. Using Markov property,
an iteration procedure and estimates on exit times from balls, everything is reduced
to the estimation of a solution to a parabolic initial-boundary problem on a ball in
the Euclidean space. We achieve that by constructing a supersolution. For the case
the point is close to the critical set, we use an integration by parts in the Malliavin
calculus and split the analysis for paths staying inside a given distance from the crit-
ical point or exiting the corresponding ball. For the paths exiting, again an iterative
Markov property argument reduces the problem to a parabolic initial-boundary value
problem that can be handled by the construction of the supersolution mentioned
above. For the quantity involving the paths staying inside a given ball around the
critical point, we can reverse the argument, this time with the Euclidean space play-
ing the role of the original manifold and reduce the problem to one in the Euclidean
settings. This turns out to be an elementary harmonic oscillator problem that finishes
the argument.

The case of the degenerate Bott-Morse function requires a bit more work due to
the fact that the geometry near the critical submanifolds is in general not trivial.
After some standard constructions, we have two choices of the connection around
critical submanifolds. One is the Levi-Civita and the other is Bismut’s connection.
The main step in this analysis is to prove that the heat kernels of certain operators
with respect to Levi-Civita connection and the Bismut connection stay bounded when
the parameters involved become large. This is achieved by a fiberwise version of the
argument given in the nondegenerate case. Using the boundedness, one can prove the
basic comparison. Finally, the rest is just a fiberwise harmonic oscillator problem.
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Title: Simons Professor of Mathematics
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Chapter 1

Introduction

Let M be a d-dimensional compact manifold and A : M — R a Morse function
with isolated critical points. By the Morse Lemma one can find local coordinates
around the critical points such that the function A is quadratic in each of these. For
such neighborhoods we transfer the Euclidean metric and complete with an arbitrary
metric on the rest of the manifold. For a a positive number we consider on A (M)
the operators

dah _ e’”‘hde“", 5ah _ eahde—ah’ (101)
and the Witten Laplacian
0o = dahé-ah + 6ahdah- (102)
—ta=/2

We consider pf(t, z,y) the kernel of the operator e acting on k-forms and take

Qs(t) = / Trp(t, 7, 2)de,
M

where Tr stands for the trace on A*(M) and dz is the volume measure on M.
The starting point in proving Morse inequalities is the inequality

Qr(t) — Qe_1(t)+ -+ (-1)*Q§(t) = By — By—1 + -+ (=1)*By

which is true for any ¢ > 0,« > 0, where B stands for the k** Betti number of the
manifold. From this, the goal is to show that, for any fixed ¢t > 0 the limit when o
tends to infinity of the quantity Qg(t) is exactly my, the number of critical points of
index k. Then it follows that

Theorem (Non-degenerate Morse Inequalities).
me — Mgy 4+ (=1)*mg > By — By + -+~ + (1) By, (1.0.3)
with equality for k = d.

In order to achieve this program, we follow a probabilistic route. We interpret
the heat kernel p(t, z,y) via the Malliavin calculus and we analyze separately the
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cases of p¢(t, z, x) for z away the critical points and for z close to the critical points.
What we achieve by doing this is that as « tends to infinity, Q% (t) is computed only
as the integral of pf (¢, z, z) with z close to the critical points and that pZ (¢, z, z) is an
integral over the paths starting inside some small neighborhood of the critical points
and staying inside there up to time t. Now, we are left with a local computation, and
more than that, one within an Euclidean ball.

The last step in achieving the Morse inequalities is to reverse the argument given
for the manifold M in reducing the computation of Q¢(¢) to a local one, and to ex-
tend the computation from one in an Euclidean ball to a certain computation on the
whole Euclidean space. And this last thing comes down to nothing but a harmonic
oscillator calculation.

We now describe the degenerate case. Let h be a Bott-Morse function on the
compact manifold M with critical connected sub-manifolds M, M,, ..., M;. The
degenerate Morse Lemma says that, there are disjoint tubular neighborhoods E;, Es,
..., Eyof My, M,,..., My, opensets Vi, Vs,...,Vysuchthat M; CV, C E;,i=1,...,1,
and Euclidean bundles E of dimensions vf, such that E; = E; & E; . Using this
we can extend the metric to E; by declaring the sub-bundles EF orthogonal to each
other. In these data the function A restricted to V;, has the expression

1 _
h(z) = hla, + 5 (651 = 1w ) (1.0.4)

with y;': the Ef components of z; seen as a vector in (E;),,(z,), for p; : E; — M, the
canonical projection.

Now, the bundles E can be endowed with compatible vertical connections, and
thus each E; is also endowed with a vertical connection VV. Using this connection one
can lift T,(,,) (M;) to a subspace TZ (E;) of T, (E;). Naturally identifying (E;) () with
a subspace 17 (E;) of T, (E;), we get the decomposition T}, (E;) = TH(E) o Ty (E).
Now, if we choose a metric on T(M), then we can lift it to TH#(E;). Transferring the
metric from E; to TV(E;) and declaring the spaces T#(E;), TV (E;) orthogonal to
each other we get a metric on T'(E;).

Given this metric on F; and the Levi-Civita connection on M, one can construct
a connection VE on T(E,) (sometimes called Bismut connection), by defining the
associated parallel transportation. One can do this by first taking a curve a in T(£;)
and @ its projection on M;. For a vector at &(0), consider its corresponding vertical
and horizontal parts in Tpo)M;, (Ei)p(y, take their parallel transportation along f3
and lift these last vectors at the end point of @. Then declare the vector with these
components to be the parallel transportation of the original one.

The main advantage of this connection is that it preserves the horizontal and
vertical parts in F;, but the main unpleasant feature comes from the torsion of it,
which in general is non-trivial. On the other hand, compared with the Levi-Civita
connection on T'(E;), this new connection preserves many important properties, as for
example, the Laplacians with respect to both connections are the same on functions,
the Hessian of the function h on V; is the same in both connections and, another
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important one, they coincide on T,(E;) for any z € M,.
The main idea in this context is the following. Take an operator L on A(M) of
the form

d
L™ = —AY + ?|gradh|® — aAh + 2a(hessh) + > B(E;)Vg, + C (1.0.5)

i=1
where the data is subject to the following:
1. The connection V satisfies

(a) compatibility with the metric on M;
(b) V-Laplacian on functions is the same as the standard Laplacian;

(c) the Hessian of the function A is the same as the Hessian with respect to
Levi-Civita connection.

2. B, C are extensions of tensors with B(X) a skew-symmetric map.

Under these conditions, if p“ (¢, z,y) is the heat kernel associated to the operator
L, then there is a constant K (¢, B,C)) depending on ¢ and the data B, C in the
operator L®, such that for large o

[M o™ (¢, z,z)”A(M)dz < K(t,B,C). (1.0.6)

This is the key estimate in our approach. In fact, the proof is exactly on the same
line of ideas as in the non-degenerate case. The same reasoning as in there takes
the cases, z close or away the critical set. The single point one has to make is that
there is a representation of the Brownian motion near critical set as an independent
composition of the vertical and horizontal ones. This boils down the computation to
one on fibers, which is precisely one in Euclidean space. From here, we just use the
results gotten in the non-degenerate case.
For a given connection V set

d
dy =) (E}): AV,
i=1

(1.0.7)
dv,ah — e_“hdveah, 5V,ah — eahdve—ah
where 8V is the dual of dV. Define then
DV,a — dV,ahdv,ah + 5V,ahdv,ah (108)

With these at hand, for a given r > 0, choose a function ¢, that is 1 on each
{z; € E;; |y} < r/2} and 0 outside {z; € Ej;|y| > r}. Then consider the connection
V, = o, VE + (1 — 0, )VEC where V€ stands for the Levi-Civita connection. Set
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&% = OVre, Using this connection together with a min-max characterization of the
eigenvalues and the boundedness, one can prove that

’/ “(t,z,2) —p°T(t, z,2)) dz| < C(t)r (1.0.9)
for large o. With some work one can show
‘/ "(t,z,2) — P77 (t,2,2)) dz| < C(t)r (1.0.10)

for large o with the notation

vLC

0% = —AY" + o?|gradh|? — aAh + 2a(hessh) + @2 D*RY” + (1 — ¢,)?RV"°. (1.0.11)

Note here that, in fact, near the critical submanifolds this operator is given entirely
in terms of the Bismut connection, thus the computations can be reduced to one on
fibers.

Using (1.0.9), (1.0.10), and simple analysis, as it was done in the case of the
non-degenerate case, we arrive at

lim sup /Trp,c tzzdz—Z/ ta:z)da;
a—0o0
—tO>"
limsup/':[‘rp,c tzzdz—ZTre el < C)r
a—00 i=1
where in here the operator O}~ = (dyy, +903,)?, diy, is the differential operator acting

on A*(T*(M;) ® o(E7)), o(E;) the orientation bundle of £ and ph~(t,z,y) stands

1
for the heat kernel of the operator O; . Since the quantities under the limit are

independent of r, we just obtained

O
lim/Trpk tzzdz—Z/ ’I‘rp ta:xda:_ZTret’“"_. (1.0.12)

a—oQ
i=1

From here, if we let t tend to infinity, we get

Theorem (Degenerate Morse Inequalities).
My —Mp_y + -+ (=1)Fmg > By — By +--- (- 1)* By (1.0.13)

where ,
my = Zdim H*" (M;; 0(E])),
i=1
with H*(M;; o E")) standing for the dimension of the cohomology group of M, twisted
by the orientation bundle of E; . This inequality becomes equality for k = d.
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Chapter 2

Non-degenerate Morse Inequalities

Given a compact manifold M endowed with a Morse function h : M — R, we give
a proof of the Morse inequalities using the Witten deformation of the De Rham
complex. Our approach is based on the analysis of the heat kernel associated with
the Witten Laplacian acting on forms.

2.1 The Basic Inequality and The Witten Lapla-
cian

In this section we discuss the operator 0% and we write it in an appropriate way for
a probabilistic interpretation. We also give here the basic inequality we mentioned in
the introduction.

2.1.1 The Basic Inequality

We start with a d dimensional, compact Riemannian manifold M and an arbitrary
C™ function h : M — R. Then, consider the operators from definitions (1.0.1),
(1.0.2) and OF the operator (1.0.2) acting on k forms. We denote by H? the domain
of this operator considered as a self-adjoint operator in L2(M, A*(M)) the space of
square integrable sections in the bundle A*(M). Take p2(t, z,y) the C™ kernel of the
operator e "%/ acting on L? sections in A*(M) and denote

Qf(t)=-/M’IYp$(t,m,:r)d:1:. (2.1.1)

where the trace is the standard trace on A*(M). By well known results [8, chapter
2] (or Appendix B), such a kernel always exists. Moreover if ); is an increasing
enumeration of the spectrum of 02 as a self-adjoint operator on L2(M, A*(M)) with
all the multiplicities, then one can pick up {¢'}i=1.0 a smooth orthonormal basis of
L2 (M, A¥(M)) with O%p' = M’ For such a base one can write the formula for
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pe(t T, y) « Ap(M) — As(M)

PRt 2,y = Y e N, o)k,

i=1
for any v, € /\’;(M ). From this, we immediately deduce that

o0

Trpi(t o, 2) = ) e gLl

=1

and that

0

/ Try, pi (¢, x, 2)dx = Z eTtAi/2 (2.1.2)
M

=1

Now we state the following Theorem due to Bismut [1, Theorem 1.3] which is the
starting point for our analysis.

Theorem 2.1.3. For any a > 0, t > 0 we have
Qe(t) = Qi a®) + -+ (-1)*Q5() 2 Bi = Bi1 + - + (-1)"Bo

with equality for k = d, where By, stands for the k'™ Betti number of the manifold M.

Proof. For A > 0 define & = {p € HZ O%p = Ap}. Then each such space is finite
dimensional and for A > 0 we have the following exact sequence

Oﬁgg_Tgk..._,gi_,... (*)

In the first place, this is a sequence because the operator d2" sends space E)to &)y
and obviously the composition dg"*d¢", is 0 for any k. To see that this is indeed an
exact sequence, one only has to check that, if ¢ € £} and d¢" = 0 then there exits
W € &), such that ¢ = d¢* 4. This can be simply done by taking ¢’ = 36*".

Now, to distinguish the action of d** in the sequence (*) we denote by dg"|,
the corresponding operator appearing there. Because of the exactness we have the
isomorphism &£}/ ker d2|y = Im(d2"|,) = ker d2}, | which implies the dimensionality
equation,

dim(£}) = dim(ker d2"|5) + dim(ker d¢%, |5) (**)

Now we can restate (2.1.2) in this new frame:

Q(t) = _ dim(&)e™™™.

A20
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Making the alternated sum and using formula (x*) we eventually get,

k k

D (-1t = D (-1)* dim(ker (D))
i=0 =0
+ Z Z 1)* 7 (dim(ker d2*|,) + dim(ker d2,|,)e =2
A>0 =0

—1)*"* dim(ker(O%)) + dim (ker dg® e tM2
k+11A

0 A>0

'M*

1

= |

> ) (1) dim(ker(O%))

i

Il
=)

The above inequality becomes equality for & = d because in this case there is no
k+1
nonzero A" (M).

Now, standard Hodge theory shows that dim(ker(0O%)) is the same as the dimen-
sion of the cohomology associated to the twisted De Rham complex, (A*(M),d*").
But this last complex is conjugated to the usual De Rham complex, thus both co-
homologies are isomorphic, in particular, their dimensions, since are finite, as vector
spaces are the same. O

2.1.2 The Witten Laplacian

We now move to expressing O in terms of known quantities. First of all we mention
that d** = d + adhA and taking duals of this we also get that §%* = § + Olgradn Where
ix is the contraction operator by the vector field X. Now we can perform the first
steps in our computation as follows

0% = (d + adhA) (0w + igragnw) + (6 + Qlgraan)(dw + adh A w)
= doéw + adigaanw + adh A Sw + o*dh A TaradhW
+ ddw + addh A w + Qigagndw + o igraandh A w (2.1.4)
= Ow + a?dh A dgraanw + &¥igraandh A w
+ a(digradn + tgradnd)w + a(ddh A +dh A 6w

for any form w. Further
dh N tgragnt + tgraandh Aw = dh A tgraan + Ggraan(dh) A w — dh A gragnw = |gradh|®w.

Now, denote Lgradn = digradh + %gradnd and its dual by L;radh = ddh A +dh N 6. To
identify the quantities, we give here the following definition.

Definition 2.1.5.

1. If V 1s a connection on M, define the action of Vx, for X a vector field on M,
to AN(M).

15



(a) if f is a function, then Vx f = X f;
(b) if w is a 1-form then we set Vxw the 1-form given by:
(Vxw)(Y) = X(w(Y)) - w(VxY);

for any vector field Y.

(c) the extension to all forms is given as a derivation, namely
Vix(wi Aws) = (Vxw) Aws + wy A (Vixws),
for any two forms wy,ws.
2. A k-tensor is an assignment

£€ M — S, € L(Ty(M) x Ty(M) x --- Ty(M),R)

—

k times

such that for any Xy, Xo,- -+ , Xy € T(M) the map

r— SE((Xl)m'n (X2)$1 Tt (Xk)m)

is a smooth map.

3. If S is a 2k-tensor, we define its action on A(M), denoted D*S such that for

any point x € M, D*S, is

ad
Z SI(Ejn Ejy, - -- 7Ejz::)(E;1 A iEjZ) 00 (E;zk—l A iEizk)7

Ty dak=1
where (E;)j=14 15 any orthonormal basis of T,(M).
4. If 8 is a 2k + 1-tensor, we set forx € M, (D*S)(X.) to be the sum

72k

d
Z Sﬂﬂ(er Ejlv E]'z’ e 7Ej2k)(E;1 N iEjz) Q-+r0 (E;%_l Nig; )

FuseJae=l

where (E;)j=1,4 is any orthonormal basis of T,(M).

Note here that, in fact, the definitions just given do not depend on the basis chosen.
Also, the smoothness of the maps z — D*S, and z — D*S(X,),, if X € T(M),

follows because one can choose a local orthonormal basis around a point.

A O-tensor is nothing but a function defined on M. This way, its extension to

forms is the multiplication by the function.
If S is a 2-tensor, one can show that the extension D*S is a derivation.
If h: M — R is a function, we can define its Hessian by

hess h(X,,Y,) = Vyx, gradh,
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for any X,,Y, € T,(M), where V is the Levi-Civita connection associated with the
Riemannian structure on M. For this bilinear map we define its derivation on A(M)
and we will call D*hessh simply by hessh.

Another example of tensor extension is the extension of the curvature tensor.
Namely, if R is the curvature 4-tensor we will denote by D*R its extension as given
above.

Proposition 2.1.6. Within the notations above we have

Lgraar + Lgraan = —Ah + 2hessh. (2.1.7)

Proof. If X is a vector field on M then we will denote Ly = dix + ixd and L} its
adjoint. Then by a well known formula we can express the operator d in terms of the
Levi-Civita connection on the manifold as:

d

de =Y (E})s AV,
i=1

for any orthonormal basis ((£}),) at Tp(M). We take such an orthonormal basis

locally around a point and we do computations there. Then, using this expression,
we can write

I
B

Lx (E; /\VEjix +ixE; /\VEJ.)

<.
I
—

(B} AVgix + (X, E)Vg, —ixE} AVg,)

<
I
-

4= 1=

(Ej Nivg x + (X, E;) V)

~
Il
—

d
Vx+ Y (VX E)E] Aig,

k=1

where we have used the fact that Vxiy — iy Vx = ig,y for any two vector fields on
M. Thus, taking adjoint and reminding that V¥ = —div(X) — Vx, we get to

d
Ly =V + Y (Ve X, B)E; Aig,
Fk=1

d
= —div(X) - Vx + > (Vg X, E)E; A,

J.k=1

17



Adding up what we got, we arrive at

d
Ly + Ly = —div(X)+ Y (Ve X, Ex) + (VEX, E;)) B} Nig,.
])k::l

Finally one has to replace X by gradh and use the symmetry of the Hessians together
with the definition of the Laplacian to get the required statement. O

The above proposition fills in the gap left in the computation (2.1.4). Thus we
have the following decomposition of O,

0% = O + o|gradh|* — aAh + 2ahessh (2.1.8)

2.2 Heat Kernels and Brownian Motion

In this section we show how one gets an expression for the heat kernel in terms of the
Brownian motion on M, in fact in terms of the Malliavin calculus on the path space.

2.2.1 Orthonormal Frame Bundle and Laplacians

We refer to [7, Chapter 8] for more notations and elementary things about the or-
thonormal frame bundle O(M) over the manifold M.
We begin by reminding here a couple of notations. In the first place

O(M) = {(z,e(x)),e(z) = (e1, - - - , eq) orthonormal basis of T, M}.

We will identify such a pair (z, e(z)) with an isometry f from R? to T, M. The object
O(M) becomes a smooth bundle over M with the structural group O(d), the group
of orthogonal matrices in R? and the projection m : O(M) — M that takes (z, e(z))
into z.

The vertical subspace V;O(M) of TyO(M) at f consists of X € T3O(M) with
7.X = 0. The horizontal space, H;O(M) at § is constructed as follows. First, one
defines a horizontal lifting of a curve in M to a curve in O(M). Having a curve
p in M we can define its horizontal lift p(¢) = (p(¢t), (e1(t),- - - ,eq(t)) starting at
§ = (p(0), (f1,--- fa)) by requiring that ey(t) = Ty fk where 7pj04 denotes the
parallel transport along the curve p from p(0) to p(¢). Using this notion we can define
now the horizontal lift of a vector X, € T,(M). To this end, take any curve p with
p(0) = z, p(0) = X, and consider its lift p starting from §f. Then by definition set
9¢(X,) = p(0). According to [7, Lemma 8.6] this is indeed a well defined notion and if
X is a smooth vector field defined on an open set U around the point z, then the map
7N U) 3 f — H§(Xag) € T}O(M) is also a smooth map. We denote the collection of
all the horizontal lifts at the point § by H;O(M). Each of the distributions HO(M),
VO(M) is smooth and for any f there is the natural splitting

TO(M) = HO(M) & VO(M).
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We introduce now the canonical vector fields. Given €, a vector in R¢, we define

€(&)5 = $4(§¢) (2.2.1)

the horizontal lift at § of f£. From this definition we see that m,&(£); = §¢ for any &,
§.

One of the main properties these canonical vector fields have is that they transform
covariant derivatives of forms into just plain differentiation at the frame bundle level.

To be more precise, we start by defining the lift of a form w,s € /\’;f(M ) to a form
@5 € N*(R?). The recipe of & in terms of w is

(‘Df(éh U ,fk) = WTrf(ffla o 7f§k) (2.2.2)

We mention here another way of looking at this expression. In the first place f~! is
an isometry from Ty¢(M) into R that can be extended to an isometry from /\:f(M )

into /\k(]Rd) using the natural extension
Fror A Avp) = (F o) A A (F o)

for any v, -, v € Tre(M). Within these notations one can rephrase the lifting
definition as
5 = f wny (2.2.2)

Using this lifting of forms we are able to see the covariant derivatives of forms in
a simple way if we lift things to O(M). We state that for any smooth k-form w in M
defined around 7§ we have

fow = G(f)f& (223)
or equivalently,
Vx,w= ﬁ(X.,rf)fd) (2.2.3")

for any X5 € Trs(M).

Before going into the proof of this we define temporarily another extension of
the covariant derivatives on forms. Let V' be the action on forms given through the
following;:

1. Vs f = X, f for any function defined around the point z and any X, € T,(M);
2. if X, € T, (M), v is a curve with v(0) = z, ¥(0) = X, and w is a k-form locally

defined around z, then

(vfxlw)((yl):ra T (Yk)l‘) = %ww(t) (Twr[o,t](yl)a:, Ty Ty, (Yk):c)ltzo (224)

for any (Y1), -+, (Ya): € To(M).

In the first place one has to notice that in fact this definition depends on the curve
7. To clarify the issue, take any smooth extension of the vectors, (Y1), -, (Yi)z
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around the point z, then write

(V@) (V)z, -, (Ya)e) = %wv(t) (Ty110,0 (Y1) Tyito.g (Y2)z =+ Tiiog (Ye)z) =0
= %wv(t)(’fwrm,t} (Y1)e = (Y1)yn o) (Y2)a - -+ Tyio, (Ya)z) li=o
+ %wv(t)((yl)v(t)’Tfrl‘[ﬂ,t] (Y3), — (YZ)fy(t), S Tyloy) (Ye)e)|t=0 + - ..
+ %w'r(t)((yl)'r(t)’ (Yo)yys =+ s Trto) (Yie)z — (Yi)y()) le=o

d
+ %W'y(t)((}/l)‘y(t)y (Y2)yys -+ 5 (Ye)ye)) |e=0

= —we(Vx, Y1, (Y2)zs - 5 (Yi)z) — we((Y1)e Vi, Yo, -, (Yi)e) — - -
— we((Y1)z, Yo)zr -+ - Vi, Vi) + Xo(w(Y1, Yo, - -+, Y3)).

On the other hand, the map

Y1,Ys, - Ve = Xe(w((V)e, (Ya)z, oo, (Ya)e)) — we(Va Y1, (Ya)o, - (Yi)a)
-ttt ww((}/l):m VXIY27 Tty (Yk)m) - wz((yi)z, (Y2)za e avXIYrk)

is tensorial in Y7, Y5, - , Y., which shows that the right hand side depends only on
the values of Y’s at the point z. This proves that V' is well-defined. Notice here that,
for w a 1-form we get

(Vi w)(Y) = Xz (w(Y)) = wa(Vx,Y) = (Vxw)(Y),

which proves that V and V’ coincide on functions and one forms.

Turning back to the proof of (2.2.3), take p : R — O(M) the integral curve of
€(€) with p(0) = f and then for any vectors 7y, - , 7% € RY,

—————

V;EUJ(TIL e 777/6) = v,ffw(fnla tte 1fnk)

d
= Ezwqrp(t) (p(t)nh T p(t)nk)|t=0

d_
= awp(t)(lnla e 7nk)

= E(E)f‘:’(ﬂl,"' ) i) -

This proves at first that V' is a derivation and because it coincides with V we have
(2.2.3).

Next, we give the definitions of the Laplacian on M acting on C*°(M, A*(M)) and
of the Bochner Laplacian acting on C®(O(M), A*(R%)). For the sake of simplicity
we will drop any superscript referring to k. We only mention here that both operators
preserve the degree of a form.
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Definition 2.2.5. 1. Gwen z € M and a smooth w, the Laplacian is
d
(Aw)(z) = Z(V(Ej)IVij = V95, BW):
j=1

where (F;);=1,4 s an arbitrary local orthonormal basis around x and w is a local
form defined around x.

2. The Bochner Laplacian Ap is
d
AB = Z @(6]')2,
j=1

for any orthonormal basis (e;)j—1 4 in RY.

First of all one has to check that the definition of A does not depend on the local
orthonormal basis around z. In fact one can easily check that the map

(X,Y) — VXVY —_ VVXY

is a tensor, thus for a fixed point z it depends only on the values of X, Y at the point.
Then, it is easy to see that ultimately it does not depend on the choice of ((E;).);=1.4-

We record here an extension of the basic property from the scalar case that relates
the operators A and Apg.

Proposition 2.2.6. For any f and w locally defined around =f,

Aw(rf) = Aga(f)

Proof. As we mentioned above, V X Vy—Vy XY depends only on the values of X, Y
at wf. Consequently, in computing V X Vyw — Vy x, v, One can take any smooth
extensions of Xy, Yr;. Thus, choose a curve p so that p(0) = =f, p(0) = Xy, and
select Y to be a smooth vector field around 7§ such that along p it is given by parallel
transportation of Yz; along p. That is, Yy) = 7Tpjj0,9Yxs- Since this gives V XY =0,
we are left with Vx_Vyw. This can be computed using formula (2.2.3’} as

Vi, Vyw = €(f ' Xny)Vyw.

Take p, the horizontal lift of p, and use again (2.2.3’) to arrive at

P

Vv iy = e(p(t)_lyp(t))p(f)a)'
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The next step is

dN

E(F Xap)Vyw(m, -+ 1) = gV Ho@ U5 |e=o

d -
= a[e(p(t)_lyp(t))p(t)w](nl: e )| =0

Translating the parallel transportation as, p(t)™'Vyuy = p(0) Y0 = §'Yay, we
finally conclude that

—— 4
(X)) Vyw = a[e(f_ly-rrf)p(t)aj]lt=0
= €(j~ Xug)1€(F™ Yap),

and then o
Vx,, Vyw = E(f T X )i €(F Yoy

which ends the proof. O

Next in line, we want to say something about the lifts of tensors on M to tensors
on the frame bundle with values in R9.

If S; is a k-tensor on 1,(M) we define its lift &, at f with 7f = z, to be the
k-tensor on R? given by the prescription

Gf(Ely e ’fk) = S‘lrf(f&la e 7f€k) (227)

for any £1,..,& € R% If S is a k-tensor on M then we define its lift & given by the
above formula for each f € O(M).
Now, assume we are given & : O(M) — L(R* x R?... x R4 R). Then we can

i
k times

extend this to D*& : O(M) — L(AR?, AR?) in the same way we did for tensors on
M, namely

1. If k is even, set D*&; for

d
> Bilej e )€ Atey,) 000 (€], Adey, ), (2.2.8)
JaJzee Je=1
2. if k is odd, set (D*G);(§) for the expression
d
Z Gf(ga €710 €jzr """ ejk)(e;l A iejz) ©---0 (e;k_l A iejk)) (2'2'9)

Jugzyvaje=1

in any orthonormal basis (e;)i—1 4 of R% and any £ € Re.
The relation between the extensions to forms is given by the following. If S is a
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tensor on M, & its lift, then

If k is even, D' = D*Sprny, 22.10)
If k is odd, D*G(&)y = D*S(FE)nfins h

for any form wys € Trnf(M) and £ € R4

2.2.2 Semigroups and Kernels

We can now put to work all these formulae in computing the semi-group generated
by various operators subordinated to the Laplacian. We can do this sort of analysis
for operators of the form

d
A+ B(E;)Vg +C (2.2.11)

j=1

1
L ==
2

where B and C' are defined below by
B(Xa) = (D*S0)2(Xz) + (D*S1)2(Xe) + -+ - + (D" Si)(Xz)
C=D'Toy+D'T) +---+ DT
for any X, € T,(M), with respect to the following data:
e k>1,5,i=1,---,k odd tensors on M
j=1,---,l even tensors on M

and the corresponding meaning for D* given in definition (2.1.5).
For such an operator we consider its lift to O(M) given by

d
1
£=S0p+ > Ble)E(e;) +€, (2.2.12)
2 ‘=
where B, € are

B(&)g = D*Go(§)j+ D*G1(£)s + - - - + D*Br(€);

€ =DTy+ DT, +---+ D%,

with &; the lift of S;, T; the lift of 7; and D* stands for the corresponding extension
to the frame bundie.

We mention here one important relationship between these quantities, namely:

— e

B(E)is = Bf€)wns and €5 = Crwry,
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which are consequences of (2.2.10). These in particular imply that £;& = [:; for
any smooth form w defined around the point 7f.

We are going to use p(t,z,w) and p(¢, f, w) which are constructed in [7, Chapter
8]. Because the manifold is compact, there is no problem with the explosion. What is
important for us here is that the distribution of w — p(-, z, w) is the solution to the
martingale problem for —A starting at z, while the dlstrlbutlon of w— p(-,f,w) is
the solution to the martmgale problem for 1 7Qp starting at . Then, for any function
F € C®(R, x O(M); A(RY)), Ito’s formula in this context is:

d t
F(t,p(t,f,w )+ Zfé €5) (s w) (8, -)dw; ()
]=1

/(—+1ABF)(s,p( w))ds. (2.2.13)

Now, fix a function § € C®(O(M); A(R?)), and let &(t,f) be the solution to the

equation:
dw _ o~
{‘“( 0) = £w (2.2.14)

Fix a t > 0 and for 0 < s < t, take U(s,f) = w(t — s, f) and (s, f, w) the solution
to

d
did(s, f, w) = (s, f, w) (%(a,f,w)ds + El %(ej)p(s.f,w)dwj(s))
J=
£(0) = Ty

(2.2.15)

For the product (s, f, w)W(s,p(s,f, w)), apply integration by parts to get

L

1(5)T(s) = H(0)T(0) + / / d81(0)B(0) + (84(s), TB(s)),

= U(0)0 /sLl i@ (€;)p(o)D(0))dw; (o / (a—m —A3m>(o)do

s i d
'*'/ﬂ—( Ny o)d‘H‘Z%(eJ po)dW; (0 4‘/}-1 Z% €j)p(0) €(€;)p(e) B()do
0 0 7=1
d
/il Z 6J p(g)-'r-%(ej)p(a) dW] +/5.1 (— +S£U>( )dO’
Jj=1 0
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= Y(0)T(0) + M(s) +j U(o )(— +£m>( )do

where, M is an integrable martingale with M(0) = 0 and for simplicity we denoted
EF(s)(f,w) = F(s,p(s,f,w)), for a function. On the other hand, we know that U

satisfies %l + £9(s) = 0, so that we deduce 1(s)0(s) = U(0)B(0) + M(s). Thus,
taking expectations we obtain

E[(#)D(t)] = E[(0)D(0)].
Since B(0) = &(t), V(t) =  and L(0) = Id p(rey, we finally arrive at:
@(t, f) = BV, , w)B(p(t, f, w))] (2.2.16)
or in terms of the semi-group P generated by £

(P7O)(F) = E™[84(t, £, w)b(p(t, f, w))] (2.2.17)

Our next goal is to project this down to M. Take 8§ € A(M) and consider w(t, )
the solution to the equation:
= =Lw
( )=

Now, lift # and w to the frame bundle and denote their lifts by § and &(t,f). The
equation satisfled by @ is:
£ -5
w(0) = 6.
Now, by (2.2.16) we know that
@(t, ) = E™[8U(t, 5, w)O(p(t, f, w))] (22.18)

where Ll is the solution given in (2.2.15). The projection on M of this equality gives
w(t,z) by

w(t, z) = E™[fU(t, f, w)p(t, f, w) "'0(p(t, z, w))]
= B[t f, w)f ' fp(t, §, w) 6 (p(t, 2, w))] (2.2.19)
= EW« [U(t, x, W)‘Tp(.,z,w) r[t,o]g(p(t, x, W))],
with the notations pointed in (2.2.2’), f such that nf = z, U(t, z, w) = §u(t, f, w)f*
and Tp(. zwjo.g = P(E, f, w)f~!, the parallel transportation along the path p(-, z, w).

The task now is to identify what is the equation satisfied by UJ. For this purpose,
use the equation (2.2.15) to get the equation for U:
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d
dU(t,x,w) = fdid(t, f, w)f*I = ful(¢t, f, w) ((’.‘,p(t,f’w)dt + Z %(ej)p(t,f,w)dwj (t)) f_l

=1

d
=U(t,z,w)f (Q:p(t,f,w)dt + Z B(e;)p(,f,w)dW; (t)) §1

=1

d
= U(t, 2, W) Tp( 2w [[10] (Cpa,z,w)dHZ B(p(t,f, W)ej)p(t,z,w)de(t)) To(-z,w)0.1]-

=1

Now we interpret p(t,§, w)e; as Tp(. 2wy fe;- Also, we point out that E; = fe; is an
orthonormal basis at T,(3) that identifies it with R%. This way we can think of the
Brownian motion w as a Brownian motion in T3 (M) via this identification.

We further make some notations. For a path w in R?, set C(¢, z,w), B;(t,z, w),
for j =1,d, the L{A (M))-valued functions

C(t, z, W) = Tp(-\z,w)[[t,0] Cp(t,:c,w)Tp(-,a:,w)[[O,t]

(2.2.20)
Bj(t, 2, W) = Tp( 2 w)1it,0 B ((To(-.2,w) 10,4 E7 )p(t.2,w) Tp(- 2, w) 1[0,4]-

Thus, we can finally give the equation of U as the solution to the stochastic differential
equation in the space L(A_(M)).

dU(t,z,w) =Ul(t,z,w) (C(t,a:, w)dt + Zd: B,(t, :c,w)dwj(t)>

j=1

(2.2.21)
U(O, I, W) = Id/\z(M)

Conclude this section with the final formula stated as a proposition. The proof of
this is given in Appendix B in a more general situation.

Proposition 2.2.22. The semi-group PL generated by L is given by
(P70)(z) = EV[U(¢,x, W)Tp_(.l,x,w) [[O,t]g(p(tv z, w))]
and the heat kernel p*(t,x,y) corresponding to the operator L
pr(tz,y) = EM U 2, W) 0,00 (02 7, W),

where the integral is interpreted via the Malliavin calculus.

2.2.3 The Heat Kernel of O¢

Let h be a Morse function on M with isolated critical points ¢y, -+, ¢. Then, by the
Morse Lemma, one can find coordinates (U;, ¢;), with ¢; € U; such that p;(c;) = 0
and

ind(i) d
_ 1 1
h(‘pil(”’la‘“a$d))=h(ci)_§§i$]2-+§ > 4
i=1 k=ind(i)+1




where ind(7) is the index of ¢;. Using these coordinates we pull-back the metric from
R¢ around critical points. Then, we complete with an arbitrary metric on the rest of
the manifold.

Denote by p{(f,z,y) the heat kernel of the operator 0% acting on k-forms. In
order to express this heat kernel by (2.2.22) we recall here the Weitzenbick’s formula.
Define, using (2.1.5), the extension of the curvature tensor D*R to an operator on
forms. Then Weitzenbock’s formula states that

O=-A+D'R (2.2.23)

Then by (2.1.8) and (2.2.22) we can write

Pz (ta r, y) = EWd [Uf(t: z, W)TP(-,z,w) [‘[t,O](Sy (p(t) r, w))j|

where U is the solution to the ODE:

.

2
AU (1) = U (0.,) (= S lgradh(p(e 2, w))PT it + S np(t, 2. W)

1 *
+ Tp(-,a},w)[[t,o] (_ahessp(t!x|w)h’ + ED Rp(t,m,w)) Tp(-,x,w) T[O,t]dt)

\ U2(0,z,w) =1d

As(M)
After simple computations we arrive at the simpler form of pg(t, z,y) as

et | % { lemantetonPdo s § [ antelonds

Vi(t, z, W)Tcp;[t,o]fSy(SO(t))] (2.2.24)

with the following updates:

1. p¥ is the Wiener measure on M starting at . Otherwise stated, it is the
distribution under u of w € P(R?Y) — p(-,z, w) € P(M)

2. V& is the solution to the ODE on L(A*(M))

{Vk‘](t, z,) = Vit 2,9) (Toneo) (—ahessyh + Row) Toroy) (2.2.25)

Ve, z,p) = Id pk(ar

2.3 Away from the Critical Set Case

This is the first case, and in some sense, is the key to our estimates. Before starting
up the machinery involved in the analysis we want to state from the beginning what
is the goal of this section.

Theorem 2.3.1 (The z away case). For smallr > 0, setQ, = {z € M, dist(z,¢;) > r,Vi}.
Then, there exist constants ag(t,r) > 0, Ci(t,7) > 0, Co(t,7) > 0 depending on t and
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T such that for any a > ay(t, 1),
stz )]), , < Cit,r)e=C2ne

uniformly for x € Q, and y € M where the norm || - ||,. ts the Hilbert-Schmidt norm
on the space of linear maps from A (M) to A (M).

The whole section is devoted to proving this theorem, the formal proof appears
right after Theorem (2.3.15).

We estimate pg (¢, z,y) by first estimating the size of V}*. See for instance (A.2.11)
To estimate V& we will choose a smooth function fi such that

fx(z) = ind(2) for z close to ¢;,

—hess, h < fk(l‘)IdAk(M) for any point z € M. (2.3.2)
Then by (2.2.25), and (2.2.24) we get the first estimate
t
It 2l < Co | exp [ Hulwopio)o)] (233
0

where Cy is a dimensional constant and

a? a
Ho(v, ) = ——leradh(p(v))” + 5 Ak(p(0) + afi(p(0))
Next, we estimate this last integral.

Proposition 2.3.4. For any positive n there ezists P,.(a) a polynomial in o such

that )
t e
It 2l < Ao B e [ 0000 |
0

uniformly on M in x, y, where we use the notation
@ a2 2 a
H (v, 0) = (1+7)  ~ 5 lgradh(p() + S ARe(0) + efilp(v) ) . (235)

Proof. (Sketch) By the Malliavin calculus (see for details Appendix A), one can make
sense of the integral involving the Dirac function through a number of integration by
parts. Taking derivatives of the integrand we will be left with the exponential times
a couple of terms involving derivatives of the function h, and geometric quantities.
We mention in here that all these derivatives are in all LP(u}) and their norms are
uniformly bounded in z, y¥. Thus, by applying Holder’s inequality to the integral
with one term containing the exponential and the other term the polynomial in a
with coefficients the derivatives obtained from the integration by parts, we get the
estimates stated. In this manner we pick up the (1+7) Holder norm of the exponential
times some polynomial in a. O
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Denote .
gl (t, ) = BA [exp ( /0 H2(v, gD)d’U) } (2.3.6)

From the above Proposition it is clear that estimates on pg(t, z,y) are obtained from
estimates on g¢ (¢, z). In the next subsections we analyze the behavior of this quantity
when o gets large.

2.3.1 About Stopping Times

In this little section we want to recall a few things about stopping times. We give
them in a more general situation, when the manifold M is not necessary compact.
We start by stating a part of [7, Theorem 8.62]

Theorem 2.3.7. Let M be a complete Riemannian manifold with a fived point o such
that
Ric, X, > C(1 + dist(z, 0)*)| X,]|

foranyxz € M, X, € T,(M). Then, for a compact set K C M andt > 0, there exist
two constants C1; > 0, Cy > 0 depending on K, t, such that forr >0,t> 35> 0

2

sup /J,iw(’TT <s) < sz‘gz:f_ (2.3.8)
reK

where T, 1s the exit time from the ball B(x, ).

Proof. Because K is compact, there is a constant (' such that
Ric, X, > C(1 + dist(x, ¥)*)| Xz|
for any zx € M, X, € T,(M), y € K. Therefore, from the Theorem invoked above we
get two constants K, > (0, K> > 0, such that
2

sup 2 (1, < t) < Kye ek
reEK

for any r,t > 0. From this, the statement above follows at once. O

There are two important corollaries we need in our estimates.

Corollary 2.3.9. Within the assumption of the above Theorem, for K C M, a
compact set and t > 0, there exist two constants C; > 0, Cy > 0, depending on K
and t, such that fort > s>0,r>0and 3> 0

sup [E#=" [e=#6M)] < e7¢ 4 Oy (t)eC2 VB, (2.3.10)
zcK

In particular, there exist two constants C; > 0, Cy > 0 such that for any 8 > 0,
t>s>0,

sup B2 [¢776N)] < Oy (¢, r)e=CnVE. (2.3.11)
zeK
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Proof. First, split and estimate the integral above as:

B¢ [e_ﬁ(”\”)] = 4 e —Blente) > s] + Ers [e"ﬂ(SATT),Tr < s]
=e UMz, > 5) + E# [e—ﬂ(smr),,rr < S} .

We have in general
B (), < o = Fdt(n <) = [ Pt ((r < o)do

for any smooth function f. For f(¢) = e and the Theorem above we have
R+ [e"ﬂ(m”), T, < 8] = B+ [e#™, 7 < 3]

= e_ﬁsﬂzzw(Tr < 3) + ﬁ/(; B—BGHQJ((TT < J)dg
¢ r2cy

< e_ﬁsuﬁl(n < s)—i—ﬁCl/ e P~ do
0

<ePuM(r, <s)+ ﬁC'l/ _B"_ 2 do.

0

Now, for given a,b > 0 using the change of variable £ = ac'/? — bo~1/2 we have,

fo'e) ab =] 2
/ R R 2/ 0t dab+ ——— | et
0 202 J_ &2 + 4ab

ab oo
ab

<=/ " (161 + 2vab) eCg
K(1+2\/E)F,

from which with a = /3, b = rv/Cs, we get

EX [em P00 7, < t] < e P (r, < 1) + Cy(t)(1 +1y/B)e VP
and then the desired result follows. O
Corollary 2.3.12. Continuing with the assumptions above, let €2y, €2y be two open
sets in M, such that Qs C €y, dist(Q, ) > 0 and 0 is compact. Define o to be

the first exit time from Q and T the first hitting time of {1,. Set oy = 0 and define
for n > 1 the sequence of stopping times

Ta(p) = inf{t > 0a () | ¢(t) € o}
onr1(p) = Inf{t > 1, (p) | @(t) € S} (2.3.13)
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If 0o = liMyp_o0 On, then pM(oy < o0) = 0.

Proof. Fix ar < dist(Q¢, Q) and define the sequence of stopping times {, with (o = 0
and forn > 1
o = inf{t 2 oa(p) | dist(p(on), ¢(t) 2 7},

Coo = lim (.

Then, pM (04 < 00) < uM ({0 < 0), s0, it suffices to prove that u2((s < 00) = 0.
Now we have

T

0 02 T o 50] (1)

where we used repeatedly Markov property combined with the result from the previ-
ous Corollary applied for K = 89,. Taking 3 so that K;e "V#28 < ¢~! we get that
puM (¢, < t) < ePt~™, which ends the proof. O

2.3.2 The Iteration

The main idea in estimating (2.3.6) is to use the Markov property to break the inte-
gral into integrals on paths which either stay inside some neighborhoods of the critical
points or stay a certain distance from the critical set.

Let’s start up with a small » > 0 such that the balls B(c;,47),i=1,--- 1 are all
disjoint and the metric in each of them is flat. Then take the sets

0 = {z € M, dist(z,c;) > r/2,Vi}, Qo= {z € M, dist(z,¢;) > r,Vi}

and let 7,, and o, be given by (2.3.13). Using (2.3.12) we can justify that

n—eo

tAon
ge(t,z) = lim E#* {exp (/0 HZ (v, go)dv)] (2.3.14)

We record here the following theorem which is in fact the main idea of the estimation.

Theorem 2.3.15. There ezist no(t,7) > 0 and ao(t,7) > 0 such that, for any a >
ag(t, ), n <mo(t,r), n>1 and x € {1y

Er’ [exp ( fo e H(v, cp)dv)} < E# [exp ( /0 o Hf,“(v,go)dv)] (2.3.16)

The proof of this will be given in a sequence of steps and it will be the content of
the rest of this section. But, as we mentioned at the beginning of this section, given
Theorem (2.3.15) we have enough to prove Theorem (2.3.1).

Here is the proof.
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Proof of Theorem (2.3.1) Theorem (2.3.1) is just a corollary of (2.3.4), (2.3.14),
(2.3.16) and (2.3.10). To see this, one only has to apply (2.3.10) to (2.3.16). This
can be seen by pointing out that, for any z € (, any path ¢ starting at z stays
inside € up to time o(y). Now, because there is a constant ¢;(r) > 0 such that
lgrad, k| > c1(r) for y € Oy, one gets that

if p(0) € £y, then
H(v,9) < —c1(r)e® + cya < —c1(r)a®/2 (2.3.17)
for large enough o and any v < o(p),

where ¢; 1s a constant depending only on the bounds of the Hessian and the Laplacian
of h on M. Thus, by (2.3.14) and Theorem (2.3.15) we get (¢, z) bounded above

o ([ )] e [ (200

From here, Corollary (2.3.10) finishes the proof. O
Now we return to the business of proving Theorem (2.3.15).

Step 1. In this step we prove that

ut [efoM"“H"vw)dv] < E# [ef‘”" H"(w)dv]_ (2.3.18)

In order to see this, first apply the Markov property to justify that

o [ef(f,\d"“ H#(v,sa)dv] —
a(¥) —tATn(p) pa thrn(e) pra
// efo Winte=enmie HZ (v,¢)dv,uf£4(7-")(d¢)ef0 Hy (U,‘P)duui/l (dtp)

Now we remark that the path 1 starts at ¢(7,), hence in €5, and runs till o () A
(t =t ATa(p)). Then by (2.3.17) we get that for a large, HY(v,¢) < 0 for v <
a() A (t —t AT,()). This brings us to

\(dp)ei™ ™ H DM () < B [T Hr et

6f00(¢')/\(t—i/\7'n(v’)) H,? (v,2p)dv
l'l’(,a (Tn

from which we get (2.3.19).

Step 2. In this step we show that

R [efo“*" H::(v,w)dv] < e [efé“”" Hy(vp)dv | (2.3.19)
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To see this, start again with the Markov property to justify that

Exe [efotm" HY (v,p)dv
T{WIA(t—tron(e)) fra, - thon(e) g, .
// edo H (v,ap)d ui’{an)(dw)eff’ He(vp)d uiw(dtp).

Notice now that the point (o, ) is on the sphere S(¢;, r/2) for some i. Also notice that
each of the balls B(e;, ) is just an Euclidean ball with the corresponding Euclidean
metric on it. So, let’s fix a critical point and call it ¢. Define the function u :
R4 x Be,r) = R

ul(s,y) = / exp ( fo o H;(v,¢)du) " (dy) (2.3.20)

Because the integral inside runs up to the exit time from the ball, combined with
the invariance of the Brownian motion in the Euclidean space, we can make the
assumption that ¢ = 0.

At this stage, what we need is the following estimate.

Theorem 2.3.21. There ezist a(r,t) > 0 and n(r,t) > 0 such that

sup  up(s,y) <1
selofr/2<lyl<r

Using this theorem we complete the Step 2 and the proof of Theorem (2.3.15).
The proof of (2.3.21) is given in the next subsection.

2.3.3 The proof of Theorem (2.3.21)

In this section we work entirely in local coordinates. Moreover because the metric we
choose around the critical points is flat, we are in fact working in the Euclidean balls
in R%. Thus, everything in this section is done on an Euclidean ball centered at 0 in
R<.

For convenience we drop the dependence on a and 75 of u(s,y). We start by
identifying the quantity u(s,y) as a solution to a certain PDE.

Proposition 2.3.22. u is the solution to the initial-boundary problem on [0, 00) x
B(0,r)

dsu(s, z) = jAu(s, z) + 3((L + n)ad — (1 + n)a?|z|*)u(s, z)
w(0,z) = 14f = € B(0,7), (2.3.23)
u(s,y)=1if s >0, y € 9B(0,7).
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Proof. First, recall the choice of the function f; in (2.3.2) and then point out that
for a path ¢ that starts inside B(c,r) we have

H(v,0) = 5 (1 +n)ad - (1+n)ele()])

for v < 7(p).
Consider V(z) = ({1 + n)ad — (1 + n)a?|z|?). Then, by Ito’s formula, for any
smooth function f on R, x R¢

f(s’ (10(3))61-08 Vip(v))dv _ / (asf + %A]c + Vf)(’U, (,0('(]))6]; V(:p(u))dudv
0
is a local martingale. In particular,
SAT
Fls AT p(s Ar))els Vistne _ / (8 f + %Af + V)0, p(v))els Vietwdugy
0

is also a local martingale. Then by an easy extension we get that for any smooth
function f in R, x B(0,7) and continuous up to the boundary with 8,f + Af +V f
also bounded in [0,¢] x B(0,r) for any time ¢,

SAT
o A ipls ARO[ 0, 4 SAF V)0, p(0))eB VD
0

remains a martingale. Take now @ the solution to the PDE (2.3.23) and apply the
martingale property with f(s,z) = @(t — s,2) on [0,] to get that

at—sAT (s A 'r))efosM Vipw)dv

is a martingale. After taking the expectations, the function obtained will be inde-
pendent of s and this at s = 0 and s = ¢ gives that @(t, z) = u(t, ). O

Next we want to get estimates on the solution to the equation (2.3.23). We will do
this by constructing a supersolution. To compare the solution with a supersolution we
are going to use a comparison principle for parabolic equations which is an extension of
the classical comparison for the heat equation. To do this we start with the following
proposition.

Proposition 2.3.24. Suppose V € C(B(0,1)) is bounded above, v € C(([0,t] x
B(0, 7)) U ((0,t] x dB(0,7)); R) and assume there exists a closed subset A C B(0,2r)
with the following two properties:

1. we have
ve CH2((0,4] x (B(0,7)\A));R), (i)

2. and for any a € A there ezists a unitary vector w, such that for any fired
s € (0,1] the function ¥(c) = v(s,a + ow,) defined around 0 has left and right
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derivatives and

¥1(0) > ¢7(0). (i)
If v satisfies
(s, z) = 3Av(s,z) + V(z)v(s, ), for (s,z) € (0,t] x B(0,r)\A,

v(0,2) >0 for z € B(0,r), (2.3.25)
v(s,y) >0 for y € dB(0,r),

then v(s,z) > 0 for all (s,z) € [0,t] x B(0,r).

Proof. After taking %(s,z) = e“®v(s,z) with C > SUp,cp(o,r) V(Z), we can assume
without loss of generality that sup,cp,) V(z) < 0. Now we prove that v < 0 on
[0,¢] x B(0,r —€) for small €. The idea is the same as the proof of classical minimum
principle given in [3, Theorem 9, Chapter 7).

Replacing v(s, z) by v(s, z) + és, we may assume that

dsv(s, ) > %Av(s, z) + V(z)v(s, z) (*)

for all (s,z) € [0,] x B(0,7)\A.
Take then the point (s.,z.) to be the minimum point of v on the set [0,t] x
B(0,7 — €). We claim that

€ € > ] /\ . ok
U(S m)—([O,t]xBB(U,rEne)l)IEJ(DxB(O,T—e))(U 0) ( )

If this is not the case, then the point (s, z.) is not in ([0,¢] x dB(0,7 —¢)) U (0 x
B(0,r — €)). We distinguish three cases now

1. (8¢, xe) € (0,t) x B(0,7 — €)\A. In this case d;v(s., z.) = 0, Av(s., z.) > 0 and
if we plug in (*) we get a contradiction.

2. (se,ze) € {t} x B(0,r — ¢)\A. This is treated similarly, the only difference is
that we only get d;v(s., z.) < 0. This also leads to a contradiction with (*).

3. If zc € ANB(0,7—e¢) then certainly the point (s, z.) can not be a local minimum
because, if it were, then the function ¢ associated with (s, z.) would have a
local minimum at 0 and then

W 202>y
in contradiction with the assumption made.
Thus, having proved (**), we let € to 0 and get that v > 0 in [0,¢] x B(0, ). O

We give here the corollary of this proposition, which will be the backbone of our
construction of the supersolution.
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Corollary 2.3.26 (The comparison principle). Let V € C(B(0,7)) be a contin-
uwous bounded above function and suppose we are gwen the following data:

1. a function u in the set
ct?((0,t] x B(0,r)) N C(([0,#] x B(0,7)) U ((0,t] x 8B(0,7)))
2. a subset A of B(0,r) such that the function u belongs to
C2((0,t] x B(0,r\A) N C(([0,¢] x B(0,7)) U ((0,t] x dB(0,7)))
with the following property

3. for any a € A there ezists a unit vector w, such that for any s in(0,t] the
Junction (o) = v(s,a + ow,) defined around 0 has left and right derivatives

and
%1(0) > 147.(0). ™)
Further assume that,
i. on (0,t] x B(0,r)\A4,
1 1
dsu = §Au +Vu, dov> §A’U + Vo, (**)

ii. for any z € B(0,7), (s,9) € (0,t] x B(0,7)

u(0,z) <v(0,z), wuls,y) <v(s,y). (F**)

Then we have u < v on [0,t] x B(0,r).

Proof. Just take the difference v — u and apply Proposition (2.3.24). O

We are now prepared to begin the proof of Theorem (2.3.21).
Remark first that it suffices to deal with the case when r = 1. Indeed, if u(s, z) =
u(r?s,rz), then u satisfies

B,u(s, 7) = %Aﬂ(s,m) + ; (ady/ T 7~ 2laf?) (s, 2)

with @ equal to 1 on the parabolic boundary with @ = r2ay/1+ 7. Thus we will
assume that r = 1 and the final constants n(t,r), a(t,7) will be easily related to
those obtained from the case r = 1.

We split the proof of (2.3.21) in two separate lemmas.
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Lemma 2.3.27. If u is the solution in (0,00) x B(0,1) to

dsu(s, x) = 1 Au(s, z) + 3 (d (1 + €) a — o?|z|*) u(s, z)
)

u(0,z) = 1 — exp (ﬂ(lmg_l for |z| < 1, (2.3.28)

u(s,y) =0 for s >0,|y| =1,

then, for any K > 0, there ezist constants €y(t), ao(t) such that for 3 = a — K and
any € < eo(t), @ > ap(t),

u(s,z) <1—exp (w) (2.3.29)

when s € [0,1], 3 < |z] < 1.

Proof. Set
B(|z]* - 1))
2

2es \ % atanhas, ,
'LU(S,II?): m exXp —T|$I .

A simple computation shows that w is the solution on R? of the equation

bo) =1 exp (

and

(d(1+¢€)a—a?|z|?) w(s,z) (*)

[\

dsw(s,z) = %Aw(s,z) +

with the initial condition w(0,z) = 1.

Let ¢, be the unique solution of tanh ot = d;—aﬁ. The idea of the proof is to show
that for the time interval [0,%,], the solution u is bounded above by kw and for the
time interval [t,,¢] the solution u is bounded above by w itself. We do this in two
separate claims.

Claim 1. For s € [0,%,), z € B(0,1)
u(s, z) < k(z)w(s, ). (1)

Proof. We check that the right hand side of (i) is a supersolution on [0, ¢,] x B(0, 1).
This comes down to checking

ds(kw)(s, z) > =A(kw)(s, z) + % (d(1+¢€) a— a®z[*) k(z)w(s, z)

(S e
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which is equivalent to

k(z)0sw(s, x) > = (Ak)(z)w(s, z) + (Vk(z), Vw(s, z)) + %k(m)Aw(s,z)

+ oI~

| =

(d(1+€)a—a?|z]?) k(z)w(s, )

and further, because of (*) comes to

(Ak)(z)w(s,z) + 2(VEk(z), Vw(s,z)) <0 <
|z)?(2atanh as — 3) < d,

which is true for all z with |z] < 1 and 0 < s < {,. Since both u and kw have the
same initial-boundary values we get the claim by a simple application of (2.3.26) with
the set A the empty set.

Claim 2. For s € [t,,t], z € B(0, 1) we have
u(s, z) < w(s,z) (i)

Proof. Because w satisfies (*) and on the parabolic boundary it dominates w this is
again a simple application of (2.3.26) with the set A the empty set.
With these two claims at hand, we want to check (2.3.29).

Case (s € [0,1,]). By claim 1, we need to verify that k(z)w(s,z) < k(z) for
z < |z| < 1, which is the same with w(s,z) < 1 for that range of z. Using the
expression of w, we are down to checking under what conditions

d
2 (182 E t h
(1 +ee_2a3) exp (_a ag as) <1 (+*)

for s € [0, 4]

To deal with this, first remark that from tanhat, = %‘%ﬂ we obtain for large
enough a, tanh as < % if s € [0,t,]. In this case case we claim that for ¢ < 1 and o
large (**) is true. To see this, take ¢ = tanh as. Then e™2* = 1;—‘; and the expression
on the left hand side in (**) is
(1+0)"F .

—(e
(1- O’)dT

vy a de+2) de
¥lo) = (_5 T ire) Tano 0)) ¥(o)

and obviously on the interval [0, 2] this is negative for large enough o and ¢ less than
1. So, (o) < (0) = 1 which in turn proves (**).

Y(o) =

Now,
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Case (s € [ta,t]). By claim 2 one has the bounds on u in terms of bounds on w.
Thus, we need to show that for € small and a large we have w(s,z) < k(z) for
ta <8<t 1 <|z] <1. Indeed, for ; < |z| <1,

d
2e2s H atanh as d daet d+ [
< [EO— [ < 922 —_— e —
w(s,z) < <1+e_2as) exp( 3 ) <2 exp( 5 1 )

and

1-e % < k(z).

From these, if eo( ) € 13 nd ap(t) large enough we have w(s, z) < k(x) for (s,z) €
[ta,t] x {z,5 < |z| < 1} for € < e(t) and & > op(t), which ends the proof of this
case. o

Lemma 2.3.30. If u is the solution in (0,00) x B(0,1) to
Osu(s, z) = 1Au(s,z) + 1 (d (1 + €) & — a®|z]?) u(s, z)
z|?—
u(0, z) = exp (M) for x| < 1, (2.3.31)
u(s,y)=1 for s >0,|y| =1

then, there ezist dimensional constants C, K > 0 and constants, €g(t) and oo(t) such
that for = a — K and any € < ey(t), a > ag(t),

u(s, x) < exp (%12) (2.3.32)
for (s,z) € [0,¢] x {z, 3 < |z| <1}, and
u(s,z) < e~ (2.3.33)

for (s,2) € [0,4] x {z,0 < || < 1}.

Proof. The strategy of proving this lemma is to make use of Corollary (2.3.26) and
to construct our supersolution on pieces of the ball B(0,1).
Take first 0 < § a small number and fix m; < 1 and denote m, = %L, The set A

2
in Corollary (2.3.26) is chosen to be S(0,m;) U S(0, m,).

Region 1: {x:m; < |x| € 1}. In this region we take

(ﬁ—%MWF“U).

IR (2L

1. Checking
1 1 2.2
Osus (s, ) > QAul(s, x) + 5 (d(1+€)a—a®lz|*) ui(s, z)
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is equivalent to checking
0> [d(B —28) + |z|*(8 — 26)%] + [d(1 + €)a ~ &?|z|*],
for my < |z| < 1, which is further equivalent to
(@ — B+ 28)(a+ B —28)|z]> > d((1 + €)a + B — 26).
This is true for any m; < |z| < 1 iff

o d(2+¢€)a—d(K + 20)
m
1= 2(K +20)a — (K + 26)%’

which is true for K > %%, 0 <e <1, and «a large.

2. The initial-boundary condition is satisfied for s = 0, m; < |z| < 1 and also for
any s > 0, |z| = 1.

Region 2: {x:my < |x| <m;}. In this region we take

(8 —26) (mi—1)
).

ws(s,) = exp (6 — O)la] (Ja] — 1)) exp (
1. Checking

(d(1+€)a— a®|z]?) uy(s, z)

N =

1
Osuz(s, ) > iAug(s,:c) +

is equivalent to

0> (8-9) (2d -~ M—?%) + (8 — 6)(2]z| — m1)? + dafl + €) — o*|z)?

which will be fulfilled if
02 2d(8 — ) + (8 — 8)*(2lz| — m1)* + do(1 + €) — o®a*

for my < |z| < my. To check this out, observe that the right hand side of this
is a quadratic in |z| with dominant coefficient 4(3 — §)? — o®. Thus for « large,
this will be positive, and then, to check the above inequality for my < |z| < m,
it suffices to do this for |z| at the end points, namely at m;, my. This comes
down to verifying the following inequalities

o for |z| = my, 0 > 2d(B — ) + (8 — 8)*m} + da(l + €) — o®m? which is

equivalent to:
d(3 + €)a — d(2K + 20)

2K +8)a— (K +0)2

and this is true for K > 7‘11?’1, 0 <e <1 and a large.
1

m%Z
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o for [z| =ma =14, 02> 2d(B—0)+ (B — 5)2(%1)2 + da(l + €) — o’ (™)?
which is equivalent to:

mi\2 _ d(3 +e)a — d(2K + 26)
(?) = 2K +8)a— (K +6)?

and again this is true for K > 24 0 < e < 1 and « large.
1

2. The boundary condition is reduced here to checking that

Blz|* — 1))

u2(07$) 2 €xp ( 9

for my < |z| < my. This comes down to 2(3—8)|z|(|z|—m1)+(8—26)(m3-1) >
B(]z|? — 1) which can be written as 8(|z| — my)* > 26(|z|(|z] — 1) + (my — 1)),
certainly true for any 5> 0,6 > 0, |z| < m;.

3. Next in line is to check the conditions required in Corollary (2.3.26). First we

have to start pointing that us(s,x) = u,(s,z) for any s and z with |z| = m;.

Now for a given a € S(0,m;) we choose w, = -2 and

la|

(o) = ui(s,a+ow,) ifo >0
B us(s,a +ow,) if o <0.

Then

TPZ(O) = (Vuz(s,a),wa) = (/6 - 5)m1u2(s,a)
P1(0) = (Vui(s, a), we) = (8 — 28)myuy (s, a)

which shows that ;(0) > ¢/.(0).

Region 3: {x:0 < |x| < ma}. In this region we take the function

ualo,) = oxp (5 (1 exp(-22)) (3 — o) ) st )

2
1. Checking
1 1 21 12
dsua(s, z) > §Au3(s, x) + 3 (d(1+€)a—a®|z|*) us(s, z)
is equivalent to

2da 2ds
m—%(mg — |z|*) exp (—m—%) > (d(1+¢€)a—a’|z]?)

oo (-2 () e
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or a bit more explicitly

2ds 2d|z)? 2ds
dexp | —— | — 5 exp | ——5
m; m; my

4ds

2ds
> de — 2alz|?e - 2 -
> de |z| xp( m%)+a|:c| exp( m2)

2

Here is the last change for €y(t), small enough, less than exp (—3"%). Then the
2
inequality above is satisfied if the following is true:

for all 0 < s <, certainly true if « is large enough.

2. The initial-boundary comparison in this case is

Bl - 1))

u3(0,z) > exp ( 5

for 0 < |z} < ma, true in this case, because

130, 2) = (0, my) > exp (w) > exp (%w) .

3. We have to verify the conditions of Corollary (2.3.26). Observe that us(s,z) =
ug(s, ) for any s € [0,¢] and = with |z| = m,. Now for a given a € S(0, m2) we

choose w, = I%I and the function

V(o) = {uz(s,a—l-awa) if o >0

uz(s,a +ow,) if o <O.

Then

¥,(0) = (Vus(s,a), ws) = —mac (1 — exp (——2—;:—%8)) uy (8, a)
Yl(0) = (Vua(s, a), wa) = —ma(8 — d)ua(s, a)

Thus ¥}(0) > ¢}(0) iff & (1 - exp (~2)) < -8 for all s € [0,¢]. This last

one is true iff & > (1 + K) exp(2%), certainly the case for o large.
2

Define now
uy(s,z) ifm; <z,

vs(s, ) = ua(s,z) if my < x| < my,

uz(s,z) 1if |z| < ma.



Then vs satisfies all the requirements in Corollary (2.3.26), and this gives an upper
bound on u. Because this is true for all small enough ¢ we finally get

x 2_
exp (5(| |2 1)) my < |z| <1,
u(,2) < Y exp (§ (2l - 2lalmy +m?} - 1)) ma < |z < m,
exp (%(l — exp(—f—gg)) (m3 — |z]?) + % (5m3 — 1)) 0 < |z] < my.
(2.3.34)

From this we get (2.3.32).
To obtain (2.3.33) we need to analyze each case separately. If my < [z] < 3,

s € [0,t] we have
3
u(s,z) < exp (—5) .

If my < |z| < my, s €[0,¢, then

u(s,2) < exp (§ (@lal(l =)+ md = 1)) < exp (=),

At last for 0 < |z| €< my, s € [0,t] we get

31 28

for large 3. From all these cases and the fact that § = @ — K with K a dimensional
constant, we see that it is possible to choose a dimensional constant C' > 0 as required
in (2.3.33). O

2.4 Near the Critical Set Case

In this section we analyze the heat kernel p3(t, z, x) for z close to the critical set. The
analysis is based on the same line of ideas as in the away case, so we will point out
the basic ideas and differences.

In the away case we started by estimating the quantity V,* and then we estimated
a scalar expression, namelly ¢g(t,z,y) instead the original heat kernel p¢(t, z,z). In
this case we can not do this because it will be too rough and we can not get too much.

Here in the first place one uses integration by parts in the Malliavin calculus to
eliminate the Dirac function from the expression of the heat kernel. Thus, p¢(t, x, z)
equals

2 gt ¢
ol [Tz"(t, ) exp (_% / |gradh(<p(v))|2dv+% / Ah(tp(v))dv)} (2.4.1)
0 0
where T is a End(A, M)-valued Wiener functional that is in all LP(uM), p > 1.
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Moreover there exists a polynomial P,(t, &) such that

T2t ©)las £ RI(t, ) exp (a/O fk(cp(v))dv) (2.4.2)

with the function f given by (2.3.2) and
| Ra (t, @)l zoqurny < Bp(t, ) (2.4.3)

uniformly on = € M.

The integral on the right hand side of (2.4.1) can be written as a sum of two
terms, I (a) the integral taken over the paths staying inside the set z € {z :
Iz — ¢;| < 2r for some 2} up to time ¢ and 7¢*(a) the integral over paths exiting the
set € {z : |z — ¢;| < 2r for some i} before time t.

Proposition 2.4.4. For the integral, I:**(a) there exist two constants Cy(t,r) > 0,
Ca(t, ) > 0 such that for large o

(@) < Cit,r)em =00 ™)

uniformly for z € {z : |z — ¢;} < r for some i}.

Proof. To see this we follow the same route as the one in proving Theorem (2.3.1)
in the away case. First, from (2.4.2) and (2.4.3), a simple application of Holder’s
inequality reduces the estimate to the estimate of the following quantity

7()

g (t,x) = Exe’ [exp ( A H,‘;‘(v,go)dv) ,T(p) < t] , (2.4.5)

with the notation (3.4.10) and 7 the exit time from the set = € {z : |z — ¢ <
2r for some i}. To estimate this, let’s fix = in the ball B(c,r) for a critical point ¢
and then start the procedure we used in (2.3.15) for the away case. Theorem (2.3.15)
can be applied here. The last integral in the iteration is

Wy ()
E#= |exp Hy(v,p)dv |, 7(p) < t]|.
0

The key point is to replace the estimate on the exit time we used in the away case
with the estimate that is described now. Using local coordinates we identify B(c, 2r)
with the ball B(0,2r) in R Then, since H2(v, @) = (1+ n)ad — (14 n)a?|p(v)|* for
v < 7(p), we can describe, as in (2.3.22),

T()
exp ( Hﬁ(v,w)dv> 7(9) < ]
0
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as the solution to the initial-boundary problem in (0, co) x B(0, 2r):

Osu(s, ) = 1Au(s, z) + 5(1 + n)(ad — o?|z|*)u(s, z)
u(0,z) =0 for z € B(0,2r), (2.4.6)
u(s,y)=1 for s >0, y € 0B(0,2r).

Now, as we did before for the away case, we can reduce the problem to the problem
in (0,00) x B(0,1)

dsu(s, ) = 3Au(s, z) + %(d(l +e)o— a2|:c|2)v(s, )

v(0,z) =0 for |z| <1, (2.47)
vis,y) =1 for s >0,y =1,
and then (2.3.33), gives the bound
u(s,z) < Ky(r, t)e”2lnta
for (s,z) € [0,t] x B(0,r) which ends the proof of (2.4.4). O

We now turn to the integral I'"(a), with z € B(c;,r) for some 7. Remark that
this is an integral over paths staying up to time ¢ in B(c;, 2r) and that we are allowed
to think in local coordinates which are identified with Euclidean coordinates in the
ball B(0,2r) in R?. We think now of the function h as the Morse function in R given
by

1 ind(%) 1 d
hi(z) = -5 z2 + 5 Z zi.
j=1 k=ind(3)+1

Now we will reverse the roles. Namely we take the starting manifold to be R¢ and the
Morse function by the above expression. Then we can construct the operator O and
the heat kernel for this. The main important ingredient in the estimation of the heat
kernel on the compact manifold was boundedness of the curvature of the manifold.
We have that in this context as well and then the whole machinery can be applied
for the heat kernel analysis. Thus we can approximate the heat kernel pik(t, z,y) of
0% on R? up to an exponentially decaying term by I (a). Consequently,

Theorem 2.4.8. With the notations just given, there are constants C; > 0, Cy > 0,
depending on t, r, such that for large «

|| (t, =, z) — P(t, z,2)|| < Crexp(—aCy) (2.4.9)
for all x € U'_, B(c;,r) and, for some other constants Cy, Ca,

!
’/Trpf:(t,m,:c)dz - Z
H i=1

B

/ Trpi(t, z, z)dz| < Crexp(—aly) (2.4.10)
(c“'r')
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or otherwise

!
Qr(t) — Z / Trpgy(t, z, z)dz| < C)exp(—aCy). (2.4.11)
i=1

B(ci,r)

2.5 The Proof of the Non-degenerate Morse In-
equalities
We are now ready to give the proof of Morse Inequalities.
The kernel 55 (¢, «,y) in (2.4.8) is the heat kernel of the operator 30 where
0% = —A + &®|z|* — a(d — 2ind(i}) + 2hessh;

acting on k-forms in R?. Because

k k o ka o
N\ ®) = D N\ ®RO) A \TRRO), (2:5.1)
k) +kp=k
0<ki <d—ind(i),0<k2 <ind(3)
and the fact that the Hessians of h; is diagonal we can use the representation given
in (2.2.24) to arrive at the writing of Trpf,.(¢, 7, z) as the sum

o o2 [t
Z eta(—k1+k2—md(z))]E;/Vd |:exp (_ _?/0 ]cp(a)|2d0) 5. (Lp(t))]

k1+ko=k
0< k1 <d—ind(%)
0<ko<ind(z)

The integral above can be identified with the heat kernel of the operator 1A — 2|z
which by Mehler’s formula makes the expression above equal to

d
Z o 2 e—atanh(ta/Q)|a:|2+ta(—k1+k2—ind(i)).
(1 — e~2te)

k1+ka=k
0<k, <d—ind(s)
0<kz <ind(3)

Taking the integral over B(0,r) and changing r — ﬁzz we get that

Trp%(tz,2)dr = > exp(—ath — at(ind(i) — k»))A(a)

B(0,r) oy -+hez =k
0<k1 <d—ind(4)
0<kz <ind(i)

d
where A(a) = (w(Tel-tW) ’ fB(o,r\/M) e l#*dz.  Taking into account that
lim,_.., A(a) = 1, the integral above tends either to 0 or 1. It does tend to 1 only in
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the case k; = 0 and ky = ind(i) which is equivalent to k¥ = ind(4). Taking the sum
over all the critical points we arrive at the following theorem.

Theorem 2.5.2. Fort > 0,
lim Qg(t) = M.

From here and Theorem (2.1.3) we get to

Theorem 2.5.3 (Non-degenerate Morse Inequalities).
g —mi—1 + -+ (=1)*mg > By — Beoy + - + (=1)*By, (2.5.4)

with equality for k = d.

2.6 Refinements and Remarks

In this section we want to make some extensions of the Morse inequalities. The case
we would like to deal with is the case the critical points are isolated but the Hessian
may be degenerate. Even if we were not able to prove the Morse inequalities in this
general setting, we want to point out some direct consequences of the techniques
developed here.

The functions we want to deal with here are functions h : M — R with the set
of critical points, Crit, isolated, and with the property that for any ¢ € Crit, there
exists a local coordinate (U, ¢.) in which ¢(¢;) = 0 and the function A has the form

d
- 1 .
h(pz () = h(e) + 5 ; €] (2.6.1)
for any = € ¢.(U,), with ¢, = +1 and ¢; > 2 integer numbers for i = 1,--- ,d.
Without loss of generality we may assume that ¢, =2 fori=1,--- ,v(c) and ¢; > 3
for i = v(c), - ,d. Also denote here v~ (c) the number of ¢, = —1fori = 1,--- ,v{(c),

and v*(c) = v(c) — v~ (c). We then say that the critical point ¢ is an indez point if
all the powers g; in the above representation are even. If the critical point is an index
point then we define, using (2.6.1)

index(c) = the number of ¢ = 1,--- ,d such that ¢, = —1 (2.6.2)

Within these notations we set my, the number of index critical points of index k. Then,
we have the following refinements of Morse inequalities for the type of functions we
considered above.

Theorem 2.6.3 (Morse Inequalities). We have the following inequalities
Mk — Me—1 + -+ (=1)"mg > By — By_y + -+ - + (=1)* By, (2.6.4)

forany k=1, ,d with equality for k = d.
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Proof. We assume that the Hessian at every critical point ¢ has rank at least 1. At
the end of the proof we show how one can reduce the problem to this case.

The idea of proving this is the same as the proof of the Morse inequalities. We
will run through the steps of the proof and we will point out the main difference and
the necessary tuning to this situation.

In estimating the heat kernel we start with the same basic inequality as in (2.1.3),
and up to the section (2.3) nothing is changed, except the representation given by the
Morse Lemma which is replaced by (2.6.1). To state the corresponding of Theorem
(2.3.1), we need to adjust the choice of the balls around the critical points. Because
hessh(c) has the rank at least 1 for any critical point ¢, this means that v(c) > 1
at any critical point ¢. Since the metric around the critical points is flat, one can
choose instead of the balls we worked with in (2.3.1), a product B(c,r) x B(c, p(t,7))
with 7, p(t,r) < 1, where B(c,r) is a ball in the variables z1,- - - , z,( and B(c, p(r))
stands for the ball in the variables z,(c)+1, -+ , Zq¢ with the radius p(¢, ) to be chosen
appropriately below.

We state now

Theorem 2.6.5. For small r > 0, there exist constants p(t,7) > 0 ao(t,7) > 0,
Cyi(t,r) > 0, Ca(t,r) > 0 depending on t and r such that for any a > ap(t, ),

125 (¢, 2, ) llye < Cr(t, r)e” 200

uniformly for T outside the sets B(c,r) x B(c, p(t,r)) andy € M.

Proof. We give here the outline of the proof. We only mark the important changes
to this situation of the proof of Theorem (2.3.1).

We use Lemma (A.2.11) to estimate the associated V,*. Here we remark that the
properties of the function f; in (2.3.2) are replaced by

fe(z) v (c) + D(e)p(t, ) for z € Ble,7) x Bc, p(t, 7)),

2.6.6
—hess;h < fi(z)Idx ) for any point z € M, ( )

where D(c) is a constant depending only on the degrees ¢;, ¢ = v(c),...,d . This
choice comes naturally since the Hessian of the function h in B(e,r) x B(c, p(t, 7)) is
diagonal with v(c) elements on the diagonal equal to 1 and the rest bounded in terms
of p(t, 7). From here we get the estimate

26 .l < O [ ([ w0l )s,6et0)]  26)

where Cj; is a dimensional constant and

«

5 Ah(p(o)) + afi(p(a)).

Ha(v,p) = = leradh((v)” +
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Further we use (2.3.4) to get rid of the delta function. Then, denote

0t z) = B [exp ( /O B, fp)du) } | (2.6.8)

The iteration is basically the same with a few adjustments. First, the set {1; is the
complement of the set |J, .o, B(e,7/2) x Ble, p(t,7)/2) and Q, the complement of
the set U,cepie Ble, ) x B(c, p(t,7)). The statement of the Theorem (2.3.15) is the
same. Then the proof of Theorem (2.3.1) for this situation is the same. The same
is also the proof of Step 1 of Theorem (2.3.15). For Step 2 of the proof of Theorem
(2.3.15) we adapt a bit the situation. The main thing we do is we further estimate

[ ( / " o, w)dv> W (d)

~ T(Y)AT(P)As N - R.,(c) RE=4S) (g *
= cXp Hn (va 1¢ )d‘U (d¢) (d’l,b ) ( )

(v )/\T(W’)/\s
< [[ex ( / (v, )dv) i (o )

where we used ’ and ” to denote the dependence on the first v(c) variables respectively
for the last d — v(c) ones. Also we use the fact that up to the first exit time from a
product of two Euclidean balls, the Brownian motion is just the product of the two
corresponding Brownian motions. The last inequality in (*) is carried out by

d

HE (v, 9, 9") < ——02(1; D+ 3 gt
i=v{c)+1
d
+ a(l—;nz vie)-v(©Q+ Y wla-1EN"T
i=v{c)+1
N a(12+ n) (2v () + 2D(c)p(t, 7))
< - (1 1)y + a—(l—;i) ((c) + O(p(t, 7)) = Hyy(v,4)

for v € [0,7(¢") AT(¢") A s]. Now we take

(¥)ns
w(s,g) = / exp ( / F:(u,w’)dv) W ().

Then as in the section for the proof of Theorem (2.3.21) we identify u as the solution
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of the initial-boundary problem in (0, 00) x B(0,),

Duuls, 7) = Lau(s, 2) + H2(a(1 + O(p(t,r)))d — a?af?)u(s, 2)
u(0,z) =14f z € B(O,r), (2.6.9)
u(s,y)=1if s >0, y € 0B(0,r).

Using theorem (2.3.21) we can now choose p(t,r) small enough and a(r,t) > 0,
n(r,t) > 0 such that

sup g (s,y) <1 (2.6.10)
3€[0,¢]
r<|y|<2r
for a > a(r,t), n < n(r,t). This suffices to end the proof of the away case. O

For the second case, where we analyze the heat kernel for a point close to Crit,
we follow the same strategy as in section (2.4).

The set of points we work on now is the set B(c,r) x B{c, p(t,r)), with p(t,r)
chosen in such a way that solution to (2.6.9) satisfies the estimates given by Lemmas
(2.3.27), (2.3.30). Let’s fix a critical point ¢ € Crit and focus on the heat kernel on
the set B(c,7) x B(c, p(t,7)). We perform integration by parts and split the resulting
integral in two integrals, I (z) and I%,(z), according to whether or not the path has
left the set B(c,2r) x B(e,2p(t,7)).

The integral I2,(z) has an exponential decay in a. To proof goes exactly as in
the proof of (2.4.4) with the adjustments given above in the proof of the away case
for this situation. For the integral IZ,(z), we can prove by the same procedure as
in the standard case that the heat kernel is exponentially approximated by the heat
kernel of the operator O% on R? associated to the function

he(z) = ZQ i

on RY. We denote by B3 (t, z,y) the heat kernel of the operator %Dg with
= —A + o?|gradh.|® — aAh, + 2hessh,.

Theorem 2.6.11. With the notations just given, there are constants p, C; > 0,
Cy > 0, depending on t, v, such that for large «

< (e %%, (2.6.12)

’/”ﬁpz(t,z,z)d:v— > / T p2 (L, =, z)da
M

€T (o, r)x Ble,p)

or in other words

< Cie 9%, (2.6.13)

aw-Y [ Toutooe

CECTRB (0,r)x Blc,p)
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With this result at hand we have to do computations on R%. First note that
kod
/\ R = PRe,.
A

where the sum is taken over all subsets A of & elements of {1,--- d}, e; is the
standard basis of R? and ey = e, A --- A e, if A = {ij,- - ,u}. Also, write
h(z1, - ,zq) = 3% hi{z;). Then the Hessian of the function k is diagonal and
hess,h(ex) = > .ca hi(zi)ea. The operator OF restricted to Rey is given by

DgfeA = (-A + a2|gl‘adh,c|2 — aAhC +2 Z h'ij) f€A
icA

for any function f. From this one, we deduce

Trpli(t, z,z) = chAt:L‘fL'

with pZ, (t, z,y) the heat kernel of the operator —1A+ "‘72 |lgradhe|> — $Ahe+ 3 cp b
This implies

t Z, I HpCAj t $J7IJ)

where D7 4 ;(t, 7, y) is the heat kernel of the one dimensional operator

i

If h;(x) = z% then a simple scaling argument shows that

(h)2—% oifjéA
SR+ 2h! ifjeA

GRS
[~ L&

_I_
+

:o]»- mu—‘
N|Q 2[R,

1_ 2 1 1
ﬁZA,j(t, z, ZI) = Olqipc,Alj(aqi t,a%uT, o y)

with P, 5 ;(t, Z,7) the heat kernel of the operator

142 2 lypn . .

+ )2 — Ly A

Lenj =94 1% (’)2 i i I¢ (2.6.14)
—Siam +3(M)*+ k) ifjEA

From here, a standard argument shows that

lim pcAJ(t z,z)dz = lim T)C)A’j(aq%t, z,z)dz = dim(ker(La ;))

1 1
x—0o0 G— 00 " N
[—ri,73) [—a% i % Ti:l
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and that

d
lim p2At, 7, z)dz = | [ dim(ker(Lc,a ;). (2.6.15)
=X S B(0,r)x B(0,p(t,r)) j=1
To compute the dimension of the kernel of the operator L = —%a% +1¢)?-19"

for a given function g : R — R, one has to note that the solution to the equation
Lf =0 is given by

f(z) = e exp(—g(z)) + c2 exp(g )/ exp (29(y
and that for g(z) = ex? with e = £1, f is in L*(R) iff

f(z) crexp(—xz?) ifgisevenande=1
T) =
0 if ¢ is odd or, g is even and e = —1

which proves that

if gis even and € = 1

dim(ker(L)) = {(lj

if ¢ is odd or, g is even and € = —1
With this, one can finish the computation we were left with in (2.6.15) as

1 ifgjeven, j=1,...,d

d .
-1 ifj€A
[dimier(lan)) = | onds {1 A

0 otherwise.

For an index critical point ¢ € Crit, take the representation in (2.6.1) and denote
Ac={j5€{L,- ,d} ¢ =—-1} (2.6.16)
then we can finally compute
1 if cis an index point,

lim Poalt,7,T)dz = and A = A,

a0 JB(0,r)x B(0,p(t,r)) 0 otherwise

From this last relation and Theorem (2.6.11), we get that for a given k € {1,--- ,d}

lim | pi(t,z,z)dr =my
AT SM

which combined with (2.1.3) ends the proof of Theorem (2.6.3).
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The last trick is to use the case when at every critical point the Hessian has the
rank at least one. Thus we can replace M = M x R and the function h(z,£) =
h(z) +|€|*. This way we do not change any of the information about the cohomology
of M and also the index of the function h is the same as the index of the function
h. Now we have the rank of i at least one. Of course one has to worry a little bit
about the fact that the manifold M is not compact. This is not a real problem since
all we need it the compactness of the operators and the estimates on the heat kernel.
A careful examination of the techniques involved shows that the whole thing can be

carried on. ]

Remarks. 1. It seems reasonable that one can prove by these methods the Morse
inequalities for an arbitrary function, simply replacing the usual indez by Conley
index.

2. The fact that lim,—o QF(t) = my, can also be written in the following more
appealing way:

. —_ a
lim Tre @ =m,,

x— 00

for any t > 0, or equivalently

lim e ¥ uq(ds) =/ e " u(ds)
A= J10,00) [0,00)

where y, is the counting measure for the spectrum of O% and p is the measure
with mass M. concentrated at 0. From this interpretation one can prove that
o = (o in the weak sense. In particular this implies that, for any interval [a, b]
which does not contain 0, the operator 0% does not have any eigenvalue in it
for large enough «. This proves in particular that there are spectral gaps.

3. The spectral gaps are important in the Witten-Helffer-Sjostrand theory. The
spectral gap giwves a splitting of the De Rham complez in the complex of small
eigenvalues and the complex of large eigenvalues. The complex of small eigen-
values reduces in the limit to the complexr constructed in terms of the Morse
function. Thus the complex in dimension k is generated by the critical points
of index k, and the differential is given in terms of the trajectories between the
points. The ambition is to recover that on probabilistic grounds. It is not hard
to recover the complez itself from the analysis we done so far, because the mea-
sures p, alluded above are tending to the measure with mass my centered at 0.
What remains s the differential of this complex. We hope to recover this by
looking at the heat kernel not only on the diagonal but also off diagonal. The
main tdea 1s to investigate the differential with respect to the first variable of
the heat kernel. Appropriately integrating this quantity seems to be the key of
recovering the incidence numbers in the Morse-Smale complex.
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Chapter 3

Degenerate Morse Inequalities

Given a compact manifold M endowed with a Bott-Morse function A : M — R we will
give a proof of degenerate Morse inequalities. The approach is based on heat kernel
analysis of various operators, which in the end will prove to give the same result as
long as one is able to do computations with respect to one of them.

3.1 Geometric Preparations

In this section we prepare the necessary geometry. As we said in the introduction,
the main difficulty comes from the fact that the vector bundles constructed around
critical manifolds are not in general flat, the consequence of this is the existence of a
nontrivial torsion for the Bismut connection. So, we need to deal with a connection
on a manifold with a nontrivial torsion.

3.1.1 The Operator dV and Related Computations

The setup in this section is the following. We are given a Riemannian manifold M
endowed with a compatible connection V, in the sense that

(VxY,Z)+ (Y, VxZ) = X(Y, Z) (3.1.1)

for any vector fields, X,Y, Z, and a function A : M — R. We then extend the
connection V to a derivation given by (2.1.5). Now let us give the following

Definition 3.1.2.

1. For an orthonormal basis ((E;);) ;=14 at T,(M), set

d
4y =Y (E)z A Vg,

=1
2. 8V is the adjoint of dV.

8. dV" = e "dVel and its adjoint, 6V = eh§Veh.
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4. The associated Laplacian on forms, OV = dV§Y + 6VdV.

5. Finally, the Witten Laplacian corresponding to the couple (V,h)

DV,h — dV,haV,h + 6V,th,h.

Just remark that in fact the definition above does not depend on the basis ((E;)z) =14,
and also point out that if we choose a local orthonormal basis, we see that the de-
pendence of d sends smooth forms into smooth forms. Next we collect a number of
useful facts in the following proposition.

Proposition 3.1.3. Denote by T the torsion of the connection V. Then we have
1. Vxiy —iyVx = tv,v, for any vector fields X, Y.

2. (Vxw,n) + {w,Vxn) = X{w,n), for any vector field X and any forms w, n of
the same order.

3. 61? = _E}Ll Z.(Ej)::v(Ej)a: + Z?,k:l <T((Ek)$’ (EJ).'L')7 (Ek)w>(E])a:: fOT any or-
thonormal basis ((E;)z)j=14 at T,(M).

4. For any form w,

AV =dVw+dh Aw, VMo =6"w+ tgradhW

Proof. 1. We start by pointing out that ix is a anti-derivation on A(M). On the
other hand we also have that

(Vxiy — iy Vx)(wr Aws) = Vi ((iywr) Aws) + (1)1 (w1 Ady (w2))
— iy ((Vxwy) Awsa) — ty(wi A (Vyws))
= (Vxiyw;) Awy + (iywr) A (Vxws)
+ (=1)1lwy A (Vxiywa) + (=D (W xw)) A (iyws)
— (1y Vxwi) Aws — (—1)*Y(Vxw) A (ivwa)
— (iyw1) A (Vxws) — (—=1)Vwy A (1, V xws)
= ((Vxiy — iy Vx)wi) Awy 4+ (=1)thoy A (Vxiy — iy Vx)ws)

which shows that Vxiy — iy Vx is also an anti-derivation. Thus, in order
to verify the assertion it suffices to check it on 0-forms and on 1-forms. On
functions both sides of the identity to be checked are 0. For 1-forms we first
point out that it is enough to prove that if, X = E;, Y = EZ=1 wrEy and
w = fE}, where E; is a local orthonormal basis around the point we are working
near, then (Vxiy — iy Vx —ig,y)w = 0. It suffices to show this when w = E;
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and this is

d
(Vxiy —iyVx —ilyyy)w = Z (ijQDkiEkEl* — kig, Vi By — iVquokEkEf)
k=1

(Ej(fpk)iEkEi“ + oV i Bl — o Ve B — E;j(pr)ip E] — orivy 5 B )

I
ol
i MQ.
—

Pk (ij’iEk -El,‘c - Z‘Ek VEJ' El* - ?:VEJ- By El*)

ko

=1

Now,
d

d
Ve, E =Y (Vi E E)E; == (E,VgE,)E;, (3.1.4)

p=1 p=

because from definition, (Vg £}, E}) = (Vg )(E,) = —(E, Vg, E;). Hence,

-

ijZ.EkEl* - iEkVEjEl* - iVEjEkEl*
d d
= Vg,0u+in, Y B,V E)E;+> (B, Ve Ey)ip B

p=1 g=1

d d
Z(Ez, VE, Ep)oip + Z(Eq: VE; Ex)oq

=1 q=1

E, Vg, Ee) + (E;, Vg, E)

3

——

Il
o

}

where for the last equality we used the compatibility of the connection with the
metric.

. We only have to do it locally, thus we may assume that for a local orthonormal
basis F; around the point in discussion, w = fET A E}---ANE}, n = gE; A
Ej, ---AE; . Then, Vxw = X(f)EYAES - -NE{+ fVx(EfAE;---AEy) and
similarly, Vxn = X(9)E;, ANE}, - ANE; +gVx(E} ANE},---NE}).

From the above, the equality to be proven is:

X(f)g(Ef/\E;---/\E;,E;AE;Q---/\E;)C}
—|—fX(g)<Ei"/\E;---/\E:,EJ’-“1/\E;Z---/\E;-‘k>

+fg((VX(E’{ NE; -~ NEQ)E; NES - ANES)
+~(EINE; - NE;,Vx(E] /\Ejz---/\E;k)))
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= X(Fo(Bi A By BB A )
and since X (f)g + fX(g) = X(fg) everything reduces to proving that
(Vx(E{NES---NE}), EXANE - A E})
+(E{/\E2*---/\E;;,VX(E;1 NES - ANEZ)) =0.
or equivalently

k
Z((E;‘/\---/\VXE;---/\E;;‘,E;/\E;---/\E;)

r=1

+(E;/\E;---/\E,:,E;/\---/\VXE;---/\E;)) = 0.

If the sets {1,2,--- , k} and {ji, j2,- - - , jx } differ by more than one element then
the sum above is 0. Thus, we may assume that j; = 7 and j, = 2,---5r=k. By
(3.1.4) we get VxE; = — Ezzl(El, VxEg)E;, and if we plug this in the above
equality, we need to show

(Ep, VXE)(E{ A NE}-- AEj, EX AE} -+ AEL)

o
S| =9
¢

(Bp, VxE)NE; AEy - NELE}A---AE; - AE})

M- M-

p=2 q=
d
+) (B VxE)NE ANEy--- NEf,E AE; - AE})
g=1
d
+ (B;,VxE)(E} ANEj---NEj, B} AE3--- AEL) = 0.
q=1

We distinguish now two cases. If 7 # 1, the first and the second lines in the
above expression are 0, while the third is not 0 if ¢ = j and the forth is not 0 if
g = 1. In this way the calculation is collapsed to (E}, VxE;)+(E;, VxE) =0,
which is certainly true by compatibility. The other case is j = 1. Then, the
forth and third lines are 0 while the the first and second lines are not zero iff
g = p. But then what is left is a sum over p of terms of the form (Ep, VxEp),
again 0 because of the compatibility.

. Since V is a derivation we have at first
VEJ(E; /\w) = (VEJE;) Nw+ E; N (Vij)
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for any form w. Taking duals and using again (3.1.4) we get

On the other hand
[ (Vxwn)+ | @vsm = [ Xtwm - - [ div(x)w,m),

Vi = —Vy — div(X). (3.1.5)

thus

Continuing the above formula,
(E; A ij)* = _iEjij - le ’LE + Z VE Ek ZEk

Taking sum over 7 we arrive at
ZZE VE, — Zdw (Ej)ig, + Z Ey, Vi E;
7.k=1

Now, div(E;) = S, {Ek, [Ex, E;]), and plugging this in the above formula we
get

d d
v _ . - -
0" =— ZZEJ'VEJ' ~ Iy div(E))E; + Z (Ex, Vi, E;)ig,
i=1 k=1
= =215,V T v, (5 Vs By )in, + (B, BBy

= - 5 Ve, + U, (T(Ex E;) By E; -
j=1

where in passing to the last row we used that (Ex, Vg E;) = (Ex, Vg Ex +
[Ex, E;] + T(Ey, E;)) and that by compatibility (Ey, Vg, Ex) = 0.

4. This is coming from:

d d
d""w=e"Y E;AVgew=e") Ern("Ej(h)w+e"Vpw)

Jj=1 7=1

d
=d%w+ Y Ej(h)E; Aw=d"w+dh Aw.
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5. From formula in 3. we finally get

d
—h
w=e" Z Ve “’szk T ) B E; € W)

j:

d
—-h
Z “”‘ZZE VE““E% (T(Ex By B )E;€ W

7=1

=
6V w + zgradhw.

Next we want to express the operator OV>* in terms of OV and some other known

quantities. For this we start with the twin of (2.1.4)

OVhw = (dY + dhA) (8w + tgraahw) + (8Y + dgragn)(dw + dh A w)
= dV6%w + dVigraanw + dh A bw + dh A igraanw
+6Vd%w + 6V dh A w + igraandw + fgragndh A w
=0 +dh A tgradh@ + tgradndh A w
+ (dY igradn + tgraand” )w + (6Vdh A +dh A 8V )w
= 0%w + |gradh|w + LY gn@ + (LY 0qn)*w,

(3.1.6)

with the notation LY = dVix +ixd¥ where X is a vector field and its corresponding
adjoint. We have now

Proposition 3.1.7. We have

d
LY + (L) = —div(X) + Y _ ((Ve, X, Bk} + (Vi X, E)E} Nig,.
Jik=1

Proof. Basically it is a copy and paste of the proof of (2.1.7) and instead of the
classical identities for the Levi-Civita connection we use the above proposition for the
replacements. For completeness, here are the details. We mention that we will chose
a local orthonormal basis E; around a point and we do computations locally. Then,

d d

=Y (B AVigix+ixE]AVE) = Y (B} AVgix+(X,E;))Vg, —ixE] AVg,)
j=1 j=1

d d

= (B} Nivy x + (X, E))VE) =Vx + > (Ve X, E)E; Ni,

J,k=1

o

]:

where we have used the first item in Proposition (3.1.3). Thus, taking the adjoints



and reminding that V% = —div(X) — Vx, we get to

d
(LX) =Vi+ > (Ve X E)E{ Nig,

Jk=1

d
= —div(X) - Vx + > (Vg X, E)E} Aig,

jk=1
Adding up what we got, we arrive at
d
LY +(L3)" = —~div(X) + D> (Ve X, ) + (V5. X, E;) B} Aig,.
k=1

a

Definition 3.1.8. 1. We define the symmetric Hessian Shessh of the function h
with respect to the connection V by

(ShessYhX,,Y,) = %((szgradh, Y,) + (Xa, Vy, gradh))

for any point T and any vectors X,,Y, € T,(M)

2. The Hessian with respect to the connection V is given as

(hessy h) X, = Vx,gradh

3. The V-Laplacian on forms is given for any form w defined around the point z
by

d
(AVw)(z) = Z V(g;). VE;w — VV(Ej):Ej“}
j=1

for any orthonormal basis E; around the point z.

Note that the definition of the V-Laplacian does not depend on the choice of the
basis E; and is the same as the one given in (2.2.5) for the Levi-Civita connection.
With this definition we state

Corollary 3.1.9.
OV" =0V + |gradh|?> — Ah + 2Shess" A

where Shessh is the extension to forms of the symmetric Hessian given by (2.1.5).

Proof. One only has to notice that Ah = div(grad)h, the rest is just the definition
and the above proposition. ]

Next we want to find a replacement for the Wietzenbock’s formula from the usual
case of Levi-Civita connection.
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Theorem 3.1.10. If T, R are the torsion, respectively the curvature of the connection
V, then for any local orthonormal basis E; around a point x we have

DR+Z (Ej, Bx), EYE; Nip, Vi,

3,k
d d
+ Z (T(Ex, Ej), Ex)VE, + Z E} Nivy, (T(Bx B, En)E)
dk=1 Jkii=1

where D*R is defined in (2.1.5).

Proof. For simplicity we are going to use Einstein’s convention. So, any time an index
appears twice it is summed over it from 1 to d.

dVé¥ +6VdY = —E; AV, (i5,VE,) + E} AVEigE, 5505
- Z'EkVE,C(E* AVE,) + i, ), 506 E; A VE,
CDY B Nig Vi, Ve, — B} A tvs, 5 VB,
— g, (Ve EY) A Vi, — g, (B} AVE V)
+ B Nivg (r(sB).EoE) T B Nir, 5,508V E,
+(T(E, E;), Ex)VE, — Ej N2 (8,555 VE,
notice that, £ Aip, +ig, E;A = 05
= —Vg, Vg, — E'; A iEk(VEjka - kavE,-)
— (Vg Ex, BYE] Nig Vi,
- (VEkE';,E}:)VEj + (VEkE;,EI*)E{’ Nig, Vg,
+ E; A iij«T(Ek’El)ka)El) + <T(Ek’ Ej)7 Ek>VEJ"

The last line in this computation is the last line in the formula we want to prove.
Thus we have to deal with the first three lines in the above formula. Thus, further
using (Vg Ey, By) = —(Vg, Ey, Ey)

— Vg, Ve, — E; Nig (VE, Ve, — VEVE) — (VE ER, B)E] NiE VE,
= —AY — Vv, 5, — E} Nig R(Ej, Ey) — B Nig, Vi, 5
— Vg, By, B)E; Nig VE, +(VEEj, Ey)VE,
(VE,Ek, )E, Nig Ve,
=AY - —([E}, Ex], E1)E; Nig, Vi,
+ (Vg Ek, E,)E*f Nig Vg — (Vg E;, E)E; Nig, Vg,

—AY D*R+Z (T(E,, Ey), B)E; Nig,VE,

3.k,
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and this proves the theorem. O
An immediate corollary of this is

Corollary 3.1.11. If the torsion T satzsﬁes the condition that for any X € T,(M)
and any orthonormal basis E; at T,(M), E (T(E;, X),E;) = 0, then we get the
following shorter formula

=AY -D* R+Z (Ej, Ex), E)E! Nig,VE, (3.1.12)
7.kl

In these conditions we obtain the decomposition

d
OV* = —AY + |gradh|? — Ah + 2Shess"h + > (T(E;, Ex), E)E} Aig, Vi, — D*R
J.kd

(3.1.13)

3.1.2 The Connection on a Vector Bundle

In this section we will construct and analyze Bismut’s connection, as defined in [1],
on a vector bundle over a Riemannian manifold.

Let E be a v-dimensional vector bundle over a Riemannian manifold M of dimen-
sion m with the projection map p: £ — M. Assume that E is also endowed with
metrics on fibers such that the metric depends smoothly as we move from one point
to another in the base manifold M. Also we assume that we are given a compatible
connection V¥ : T(M) x T'(M, E) — I'(M, F) where ['(M, E) stands for the sections
in E. By definition VV satisfies the following properties:

l. X €T(M)— V%s € T'(M,E), and s € ['(M, E) — Vs € I'(M, E) are linear
maps for any X € T(M), s € I'(M, E);

2. V¥(fs) = X(f)s+ fV%s for any X € T(M), s € I'(M, E);
3. (V;Sl, 82> + <S], v;82> = X(Sl,82> for X € T(M), 81,89 € F(M, E)

Given this connection we will construct a connection on T(E). To start this, we
remind here that there is a well defined parallel transportation between fibers of E.
This can be done by first observing that if ¢ is a curve in M and X(t) € E,y is a
smooth section along ¢, then one can define Vi X = V:X (t) where X is any smooth
extension of X to a neighborhood of ¢(t). Then, the notion of parallel transport of
Xo € Ep) along the curve ¢ is a section X (t) along c(t) such that

Ve X = 0. (3.1.14)

Denote TX[D,t]XO:=XC(t) and call it the parallel transportation along the curve ¢ from
0tot.
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Notation. We will use z to denote a generic point on E and T, a generic point
on M, while y will stand for a generic point in a fiber of E. Thus, the point z will
be often identified with its corresponding coordinates (x,y) with z = p(z), and y its
wdentification as a vector in the fiber E,.

Now, given a curve ¢ in M and a point y € E, g we define its lift ¢ to a curve
in F starting at y by the prescription that

&) = ThoqY- (3.1.15)

Using this lifting we define the lifting of vectors in T'(M) to vectors in T(E). For
X; € T,(M) take a curve such that ¢(0) = z, ¢(0) = X, and its lift ¢ starting at
y € E;. Then the lifting of X, is defined by

XH = &0, (3.1.16)

and is called the horizontal lift of X,. We show that this definition is not curve
dependent. To do this we are going o express this in local coordinates. Choose a
local coordinate system (;)i=1.m on U C M and (y;);j=1,, a trivialization of E over
U. In this coordinates we have

v 9 0

\V T (z)—
(o%), 0y ”(I)@yq

(3.1.17)

where the summation is made in Einstein’s convention. If we represent the curve
é(t) = (c(t),v(®), and c(t) = (cl(t),...,c™(#)), v(t) = (v'(t),...,v*(t)) in these

coordinates, then the parallel transportation can be rephrased as

5}

Vv = Vi o
7

, o 3}
=0 (t) o + U (O)EOVY .\ o
¥ (t) 7 + 07 (t)e'(t) (%)cmayj

‘ij(c(t)>a—f/;

which gives A
¥ (t) + P (1) ()T (c(t)) = 0

for any 7 = 1,v. Notice here that the values of v7(0) depend only on the values of
17(0), ¢(0) and ¢?(0). In particular at ¢ = 0 we get the components of

. o - 0
H= %) . - j -
X7 =¢é(0) (axi)m + v (O)ay,-
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depending only on the values of ¢(0), ¢(0), v(0), thus the lifting is well defined.
Moreover we get the formula of the lifting

(ai)H B (a?c,)x - yjrﬁj(w)a—z; (3.1.18)

z

Denote by TH(E) the space of all horizontal lifts from T, (M) to T,(E) and by TY (E)
the space of vertical vectors at z in T,(E), namely the space of tangent vectors of
curves starting at z and staying in £;. From (3.1.18) we see that the maps

X e T,(M) —» X" ¢ TH(E)

and
XeE, - XY eTYV(E)

are bijective maps, thus we have the following smooth splitting
T.(E) =T, (E) ® T, (E).

The upshot of this decomposition is that we can lift the metric from T(M) to a metric
on TH (E), and also that the metric in the fiber E, can be naturally moved to a metric
on TV(E). In this way we construct the metric on T(E) by declaring the subspaces
TH(E) and TY (E) to be orthogonal. For a vector X € T,(E) we set XH, XV the
horizontal and vertical components of it. Moreover we will identify these vectors also
with the vectors on T,(M), respectively E;.

We now proceed to the construction of Bismut’s connection on £. We will do this
by prescribing the parallel transportation along curves in E. Take a curve a in E and
let 3 = pa be its projection on M. For a given Xy € Ty ) (£) we take its components
X3 € Tpay(M) respectively X € Ep@). Then we take their parallel transport in M
and vertically along the curve 3, thus obtaining X € Ty (M) XY € Egy. Then,
we obtain a vector field X, along a with its horizontal and vertical parts X2, X/.
We declare this to be the parallel transportation of Xy along « and we will use the
notation X; = 740, Xo. Now we are ready to define the connection as

Definition 3.1.19 (The connection on 7T(FE)). For X, € T,(E) we set

d
Vx,Y = 'd_tTa[[t,O]Ya(t)
for any curve o such that a(0) = z, &(0) = X, and any vector field Y defined along
.

Proposition 3.1.20. If Y is a vector field defined around z, then Vx,Y does not
depend on the curve a chosen. Moreover, V is a covariant derivative compatible with
the metric defined on T(E) and, if VH is the Levi-Civita connection on M, it is given
by

ViY = [VE Y] 4+ [V YY) + XV (vY) (3.1.21)
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where XY (YY) = 320 X7 (f)Fs if YV = 300_ fiF; is the representation of the
vector YV restricted to E, and F; ts any basis in E, (this is nothing but the usual
derivative in the Euclidean case).

Proof. Using the definition of the parallel transportation we have

H v
Ta[[t,O]Ya(t) = [Tg[t,O]YaI{t)] + [Tg[[t,O]Ya‘Zt)] (*)

where # = pa. Fix a basis F; in E,, an orthonormal basis E; at T;(M) and a geodesic
ball B(z,r) in M. Then identify the fibers of E over this ball in M with E, by using
paralle]l transportation along geodesics radiating from z. Extend E;, F; by parallel
transport along geodesics and note that we can write Y = 37" g, F; + Z;:I f;F; for
some functions g; : B(z,r) — R, f; : B(z,7) x E; — R. Then note that, in this
setting, we can write a(t) = (B(t), ¥(t)) where 7 is the curve in E, with ¥(0) = [&(0)]V.
So,

allt, U]Y Zgz (t)(Ei)s ) Zf] v(t)F;

and taking derivatives with respect to ¢ at 0 we get (3.1.21). This take care of the
well definition of V. The compatibility of a connection is equivalent to the fact that
the parallel transportation is unitary. This is coming in our case from (*), and the
fact that both horizontal and vertical parallel transportations are unitary on their
domains of definition. O

Next we want to describe a few properties of this connection. To distinguish
among various things we will denote by RY the curvature of the vertical connection,
namely RY(X,Y)Z = V¥V Z -VYVVZ - VE;{’Y]Z for X, Y vectorson M and Z a
section in E. Also we denote the curvature on M by R is the usual curvature tensor
for the Levi-Civita on M. We will call VL€, the Levi-Civita connection on T(E) with
respect to the metric on T'(E) and RFC, Ric*®, the curvature, respectively the Ricci
tensor on F for the Levi-Civita.

Theorem 3.1.22. 1. The torsion of the connection V 1is given by
T(X,Y) = [RV(XH, YyH)y]" (3.1.23)
for any X,Y in T,(E) and y is thought as a vector in TY (E).
2. The curvature of V s
R(X,Y)Z = [RY(X",y")zM" + [RV(X¥, v zV]¥ (3.1.24)
forany X, Y, Z in T,(E).
3. If M is a compact manifold then there is a constant C > 0 such that
IREC(X,Y)Z| < CQ + WyPIXLIYLLIZL. (3.1.25)
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forany X, Y, ZinT,(E), z € E and a fized point o in E. Moreover for n > 1,
(V37 (VR (VRIR) (X, Y)2) )|

for any X,,--- ,X,,X,Y,Z € T,(E)

. The Laplacians on functions with respect to the connection V and with respect
to the Levi- Civita connection on E are the same.

. Ifh : E — R is defined by h(z) = |y|?, then the Hessian of h on forms is
the same with respect to both connections V and VEC. In fact, the Hessian on
vector fields with respect to either connection is given by

(hess,h)X = 2XV (3.1.27)
for any vector X in T,(E). We further have on forms
(hess,h)w Aw? = 2deg(w) )w A wY ((3.1.27)")

for any horizontal form w and any vertical form wY, where the deg stands for
the degree of the form.

Proof. 1. Because of the tensoriality in X, Y it suffices to check it for vertical and

horizontal ones. To make the computations somehow nicer we take a normal
coordinate system on U C M based at the point £ € M and a trivialization of
E over U by vertical parallel transportation along geodesics in M. With these
preparations we are going to use

T

¥

v i =0,V 9 \" =0
= Hay- o %- oz; - (3.1.28)
. OYj

d a\"
Vi (ay:) =0 Ve (%;) -0

deduced from (3.1.21) and (3.1.18), to make computations in these coordinates.
We then take three cases.

(z) = 0, for any allowable ¢, 7, p,

(a) If both vectors are vertical,

(2 )=V vy L[ 2] 0
Oy, Oyp Bv; Oyp o dy; Oy Oyp
by (3.1.28).
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(b) Here we take a vector horizontal and the other vertical,

a\? o ) 8 8
—_ _ = — — 9 . _— =
g ((azi)z ’ 391‘) [3% Y Ff’q(sc)a?lp’ 3%} >

where we used (3.1.18) and (3.1.28).

(¢) For the last case, both vectors horizontal,

(@) Gn)) @) G
a’L’i 27 Bmk 2 - 8131' ’(6.@;6)
) 8 8 4o, .0
=- [Bmi - yqﬁq(m)@, 29_12 —y°Ty (I)@]
0

= aimi [ysﬁ,s(-’f) Byr] af;k [ ia(®) Byp]

0T, () 0 3F 0
dz; = Oyr e B:I:k ! Yy
g 0 O, 8

— __ e - *
Yo, (m)ay,, Y a, By )

=y’

On the other hand,

b5
B ( 2 5‘2—) =T VY 10 Y, VY
7 k :

= 0 —r
= V‘iﬁ-}_yqu q(m)_ - vviyqri,q(
8z

Ty, 0 0T, .0

=Y Wy~ 5, Doy,

which is the same as the last two lines in (*), thus the end of the case.

. Because of the tensoriality of both sides it is sufficient to check it for horizontal
and vertical vectors. Now we will use two properties deduced from (3.1.21).

VXHYV = 0 (**)

for any vertical vector X¥ and vertical vector YY. Also since we are going to
work in local coordinates we note that

9 _ -
Vyv 3 0 (***)

for any vertical vector YV and any vector %, j=1,v.
)

(a) X =Y = —,,’ then by (**) R(X,Y)Z = 0 for any vector Z.
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H
B HX= (L), v=2,
i. and if Z = %, then using (**), (***), (3.1.18) and (3.1.21)

R(X,Y)Z =VxVyZ ~ VyVxZ ~ VixyZ
8 8

=-V.,LT, +V_ 7~ =0
By ( )ayq 1":-1,,.(::) [yr%,%] Byp
H
ii. while if Z = %) , then using again (**) and (3.1.18) we get as

above that R(X,Y)Z = 0.

(c) IfX:(a‘Z) , (6) ,

i, and if Z = %, then using the fact that T(X,Y) = —[X,Y] is a
vertical vector, (**), (***) and (3.1.21)

R(X,Y)Z = [VyVyZ - V¥vk2]" = [RV(X", vH)zV]"
H
ii. while if Z = (aaT,) , then by the same argument we get that

R(X,Y)Z = [ViV§z - vEvEz")" = [RF(xH yH)zH)"
Thus in all cases we have checked that
R(X,Y)Z = [RV(X®, Y™ 27" 4 [R* (X" yH)zV]"

3. We show first that for any coordinate system on M and a corresponding trivi-
alization of E there is a constant Cy such that

|R:9(X,Y)Z| < Cu(1+ |y1)IX|:|Y | 2],

for any z € p7'U, X)Y,Z € T (E). For the coordinate system we take the
vectors (3 z) i=1,...,m, 3 o J=1,...,v, as the basis for the space T,(FE).
We will denote these generators 51mply as Za, a=1,..., m+ v. Denote by
r iy the Christoffel coefficients of the Levi-Civita connectlon

ViZs=T),2,

We study how these coefficients depend on y. For this purpose we recall here
the fact that

(VL0 75,2, = l{zawﬁ,z > + 22y, Za) — Zo{Zers 7s)
[ Zay Za), 2,) = ([Z3, 23], Za) + (|2, Za), Z3))

69



and from this

foﬂ(z& Z"r) = %{Za<zﬁv Z’Y) + Zﬂ<Z'Yv Za> - Z’Y<Za, Zﬂ)
+ ([Zav Zﬂ]v Z’Y) - ([Zﬂs Z‘y]= Za> + ([Z"r’ Za]: Zﬂ>}-

If gop = (Za, Zp) and (9°P)ap the inverse of the matrix (gap)aes, then we can
invert the above formula and arrive at

D = 5 ZalZs, 2,) + Z5(20, Za) — 2o\ Zas Z)
([ Zan 2] 2) ~ (176, 22 Zo) + (20, 2], T

The dependence on y of the above expression is reduced to the analysis of each
bracket. In the first place, one has to notice that by construction, g,s does not
depend on y, and is a smooth function in z. Also each vector field Z, has at
most a first order behavior in y. On the other hand the commutator of two
vectors [Z,, Zs] is also, as we had seen in the proof of part 1, a polynomial of
degree at most 1 in y. Thus all terms above are at most a degree 1 polynomial
in y. This implies that all F‘;ﬁ are polynomial of degree at most 1 in y. If we
write [Zy, Zg] = AL/;ZZ then

RLC(Zon Zp)Zy = Véfvé,fzv - Vféfvéfzv B V[LZC;,ZB]ZW
= VT Zi — VTR T — ALgV 5 Zy
= Za(T3) Zm + T3, V5 Zp

— Z9(T0 ) 2 — T V55 Zon — AlgT0, Zs
= Za(T%) Zm + T3 Tom Zs
~ Z(T0) 2 — T T, Z5 — AT Zs

(3.1.29)

This shows that (RY6(Z,, Z5)Z,, Zs) is a second order polynomial in y with
smooth coefficients in z. Hence, there exists a constant Cy > 0 such that,
(RfC(Zav ZB)Z'va Zﬁ)
L+ [y|?

< CulZal|Z3l| 24 Zsl-

This in turn implies that, for eventually another constant Cy,
(REC(Z1, Z2) Z3, Za) < Cu(l + yIP) 211221 Zs]| Za]

for any vector field Z, Zy, Z3, Zy € T,(E), z € p~'U. Using the compactness
of the manifold, from this we can deduce the required inequality for the Levi-
Civita curvature. To deal with the estimates on the derivatives, first observe
that again by compactness one can do this locally and locally it suffices to prove
them for Z, instead of X;. To carry this over we apply induction. To pass from
step n to n+ 1 we take n + 1 derivatives in (3.1.29) and use step n.
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4. On functions, we have AVf = z;z:l E;E; — (Vg;E;)f, for any connection V
and any local orthonormal basis E;. Then in order to prove that the Laplacians
are the same on functions it suffices to check that for a particular choice of
the basis £;. We will take a basis consisting in vertical and horizontal vectors.
For such a basis we will show that Vg E; = V,LEij for any j. Next step is
contained in the following

Lemma 3.1.30. If M is a Riemannian manifold and V a compatible connection
with torsion T, then for any vectors X, Y, Z

(VxY, Z) = %{X(Y, 2) +Y(2,X) — Z(X,Y)

+{X,Y],Z) — (Y, Z), X) + ([Z, X),Y) (3.1.31)
+(T(X,Y), 2) - (T(Y,2), X) + (T(Z,X),Y)}

Proof. The proof uses exactly the trick proving the similar formula for the Levi-
Civita. (W

Coming back to the proof we get that
(Vi Ej, Ex) = ([Ex, Ej], B;) + (T(Ey, Ej), Ej)
while for the Levi-Civita connection we have
(VE E;, Bv) = {(Ex, E;), Ey).

‘The main point here is that by the expression of the torsion we got at the first
point in this proof we have (T'(Ey, E;), E;) = 0. This can be seen by considering
two cases. One is the case E; vertical, then T(E}, E;) = 0, the other if Ej is
horizontal, in which case we have to point out that T'(Ey, E;) is always vertical,
thus (T'(Ex, E;), Ej) = 0. So we get the equality (Vg Ej, Ey) = (Véij,Ek)
for any vector Ej, which also ends the proof of this item.

5. We start first by computing the gradient of the function h(z) = |y|°. We are
going to show that
grad,h = 2y (3.1.32)

The proof of this goes in two steps.

e If X is a horizontal vector field at z then (grad,h, X} = 0. Indeed, if a is a
curve on M starting at x and such that «(0) = p, X, and 3 its lift starting
at z, then we have

d d
(grad,h, X) = Xh = ah(ﬁ(f))hzo = C—izlﬁ(t)|2|z=0 =0

since 3(t) is obtained by parallel transportation, hence it is of constant
length in fibers.
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o If X is a vertical vector at z, then take its identification v with a vector in
the fiber £, and consider the curve v(t) = y + tv. Then

d d
(grad,h, X) = Xh = Zh(Y(D)| o = =y + 0],y = 2(y, )

Putting together we obtain the result about the gradient. Returning to the
Hessian we start by writing that for any local vectors X, Y

((hessVR)X,Y) = (Vxgradh,Y)

{(hess¥ ") X,Y) = (VECgradh, V).
By (3.1.31), the difference between these two quantities is
(T'(X,Y), gradh) — (T(Y, gradh), X) + (T(gradh, X),Y).

Since gradh is vertical the first two terms in the above expression are zero. The
remaining one is reduced to

2(RY (X7, Y )y, y)
for the computation is made in £,. But this is 0, since we have in general that
(RV(XH, YH)Sl, Sg> = —(RV(XH, YH)S2, Sl>

for any sections s;, s and any curvature of a compatible vertical connection
on E. To verify this one has to extend the sections to some local sections, the
vectors X, Y# to some local commuting horizontal vectors, and then use the
definition of the curvature plus the compatibility of the connection. Finally this
brings in the identity (RV(X",Y#)y,y) = 0, which shows that the Hessians
are the same. Moreover, by definition we have that Vy(z,,y = 0. This together

with (3.1.21) give
((hessVh). X, Y;) = (Vx,gradh, Yy) = 2(Vx,y, Vz) = 2(X; (), Y2) = 2(X., V)

which is the end of the proof. O

3.2 Frame Bundles

3.2.1 V-Orthonormal Frame Bundle and V-Laplacians

In this subsection we are given a d dimensional Riemannian manifold M endowed
with a compatible connection V.

We begin by recalling the definition of the frame bundle
O(M) = {(z,e(z)),e(z) = (e1, -+ , eq) orthonormal basis of T, M}.
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The vertical space ViO{M) is defined as in section (2.2). We next turn to defining the
horizontal space of 7;0(M). To do this we mention only that there is a natural notion
of parallel transportation with respect to the connection V, and the parallel trans-
portation is an isometry because the connection is compatible with the Riemannian
metric. We point out here the main procedure. First, one defines the horizontal lift
of a curve in M. This is achieved by taking a curve p in M and defining the horizon-
tal lift starting at f = (p(0), (f1,- - f4)) to be the curve p(t) = (p(t), (e1(t),- - - ea(t))
with ex(t) = 7,104 fx and 7 stands for the parallel transportation with respect to the
connection V. The horizontal lift of a vector X, € T,(M) is defined as follows. Take
any curve p with p(0) = z, p(0) = X, and consider its lift p starting from §. Then by
definition set $Y(X;) = p(0). Following the same reasoning as in [7, Lemma 8.6] one
can show that this is a well defined notion, specifically, this does not depend on the
chosen curve and if X is a smooth vector field defined on an open set U around the
point z, then the map 7 '(U) 5 f — H{ (Xy5) € THO(M) is also a smooth map.
As in the standard case we have the splitting

TiO(M) = Hy O(M) & V;O(M).
The canonical vector fields are defined as usually, namely take £ € R% and set

€V (£); = $y (56) (3.2.1)

We record here the similar facts with those already given in section (2.2). We will
point out if necessary the main differences.

Using the definition given in (2.2.2), we get the corresponding version of (2.2.3).
For any smooth k-form w in M defined around 7nf we have

View = €7 (€)@ (3.2.2)
or equivalently,
Vixgw = 5" (Xag)@ ((3.2.2))

for any X5 € Trs(M).
The definition of the V-Laplacian was given in (3.1.8). We now give the definition
of the corresponding of the V-Bochner Laplacians as

Definition 3.2.3. The V-Bochner Laplacian Apg is
d

AY =) €%(e)?,
7=1

for any orthonormal basis (e;) ;=14 in R%.
With the same proof of (2.2.6), we also can show that
Proposition 3.2.4.
AVw(mf) = AZO(f)
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for any smooth form w locally defined around =f.

3.2.2 An Adapted Orthonormal Frame Bundle

In this section we take a m dimensional Riemannian manifold M and E a v di-
mensional vector bundle over M. Assume that the manifold M is endowed with a
compatible connection V and that F is an Euclidean vector bundle over M, i.e. we
are given a metric on fibers of E and a vertical connection VY compatible with the
metric on the fibers.
We set
O(M; E) = {(z,¢,f)}-

where e = (ey,---,e4), f = (f1,--, fx) are orthonormal basis of T, M respectively
E,. Take 7 the natural projection given by w((z,e,f) = z. One can identify the pair
(e,f) with an isometry u : R™ ® R¥ — T, M @ E, that sends R™ into T, M and R”
into £;. We will call an isometry with this property admissible.

The bundle O(M; E) is a bundle over M with structural group O(m) x O(v).
Thus for any O € O(m) x O(v) define

(Rou)(§) = u(0€)

for any € in R™* and any admissible u. Further for a € o(m) x o(v) the Lie algebra
of O(m) x O(v) we set

d
A(a‘)u = ERexp(ta) u | +=0

for any admissible u, and call it the vertical vector associated with a. With this
notation we define now the vertical subspace V,O(M; E) as the subspace of O(M; E)
consisting in all vectors A(a), for a € o(m) x o(v).

To define the horizontal space we can proceed as in the usual case. Namely take a
curve o in M with a(0) = z, u € 7~}(z) and define its horizontal lift 8 with 5(0) = u
B3(0) = u and if we identify 5(t) with an isometry from R™" into Ty M @ Euyy then,

3('5)5 = TaJ0,) 3

for any £ € R™, where the parallel transportation for a tangent vector at M is
transported with respect to the connection V and the vertical transportations is with
respect to VY. We now define the horizontal lift of a tangent vector X, € .M & E,
to a vector H,(X) € T,O(M; E). To do this, take a curve & in M such that a(0) = z
and &(0) = X, and take its lift 3 starting at u with m(u) = z, and set

Hu(X) = B(0)

the horizontal lift of X at «. This is a well defined notion since it can be shown it does
not depend on the curve chosen. Also the map X — $(X) is smooth if the vector X
is a smooth one. Denote H,Y O(M; E) the space of all horizontal vector fields.
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Definition 3.2.5. 1. The canonical vector fields €(§) are defined by
€V (€)= Hu((uf)T)
where T stands for the projection of u€ on T(M).

2. Set now the V-Bochner Laplacian in this contezt as
™m
AE,E = Z ev(ej)Q,
j=1

for any orthonormal basis (e;)j=1,m n R™.

With a few changes in the notation of section (2.2} one can prove the corresponding
of (2.2.6) as

Proposition 3.2.6. For any smooth form w we have
AVo(ru) = AY pi(u)
with the tilde here defined by

(L'u(‘fl, Tt af’r‘) = wwu((ufl)Ta Ty (Ufr)T) (327)
for any &1, ..., & € R™. In particular, for any smooth function f : M — R
AVf = AE,E(f o).

The proof is the same as the proof of proposition (2.2.6), the only ingredient that
one needs is the analog of (2.2.3) or (2.2.3’), here in the form:

Vauew = €Y (€)@ (3.2.8)

The proof of this is the same as the one for (2.2.3). Once we have this, the proof of
(3.2.6) is a repetition of the proof of (2.2.6).

3.2.3 A Split Frame Bundle

In this section we will construct and analyze the frame bundle on a manifold with a
particular structure on the tangent bundle. The difference from the classical case is
that we will not deal with the Levi-Civita connection but with a connection that has
torsion.

In this section we work on a d dimensional Riemannian manifold Z endowed with
two smooth distributions D, £ of the tangent bundle, of dimensions m, v, such that
at any point z € Z, D,, &, are orthogonal to each other and they generate the whole
space 1,2.
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Definition 3.2.9. A connection V is said to be compatible with the pair (D,€)
if it is compatible with the metric of Z and if the parallel transportation preserves
the distributions D, £. In other words if T denotes here the parallel transportation
operator associated to V, then for any curve v : [a,b] — Z, Toliad| Pyi@) € Dy,
Tytfasi€aa) C Exp)-

We mention here that a connection compatible with the Riemannian metric on 2
is compatible with the pair (D, £) iff for any tangent vector X, € T,Z, we have that
Vx,D C D, and also that Vx € C £,. From now on in this section, the connection
that is going to appear is compatible in the sense given by definition (3.2.9).

We now define O(Z; D, &) to be the set of triples (z,¢,f) with z € Z, and ¢, f
orthonormal basis in D, respectively £,. Then, as in the standard case, O(Z; D, ) is a
principal bundle over Z with the projection 7 : O(Z; D, £) — Z given by 7(z,¢,f) = z
and structural group O(m) x O(v) C O(d).

One can identify the pair (¢,f) with an isometry u : R4 = R™ ® R — T,Z such
that u sends R™ into D, and R into £,. We will call such an isometry u : R — T,Z
admissible if it has the above property.

If O € O(m) x O(v) we define

(Rou)(€§) = u(0¢)

for any £ in R? and any admissible u. For a € o(m) x o(v) the Lie algebra of
O(m) x O(v) we denote

d
)‘(a)u = aRexp(ta)U |t=0

for any admissible u, and call it the vertical vector associated with a. With this
notation define now the vertical subspace V,O(Z; D, £) as the space consisting in all
vectors A(a), for a € o(m) x o(v).

Next we define the lift of a curve in Z to a curve in O(Z; D, £). Take a curve e in
Z, with a(0) = z, u € O(Z; D, ) with m(u) = 2. Define the lift of & to be the curve
B such that 8(0) = u and if we identify 3(¢) with an isometry from R? into Tun2
then,

B(t)E = Taro,qué

for any £ € R

Note that 3 is well define due to the compatibility of V with the pair (D, £). Also
it follows that if the curve « is smooth then the curve (3 is smooth too.

We now define the horizontal lift of a tangent vector X € T, Z to a vector H,(X) €
T.O(Z; D, ). To do this, one takes a curve ¢ in Z such that a(0) = z and &(0) = X,
take its lift 3 starting at u with n(u) = z, and define

the horizontal lift of X at w. Remark that if the vector field X is a smooth vector
field on a neighborhood U of z then, as in the standard case, (see [7, Lemma 8.6]),
one can prove that the vector field (X) is also smooth vector field defined on n'U.
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Denote H,O(Z; D, £) the space of all horizontal lifts of vectors in Ty, Z. Then we
have the decomposition

T.0(Z;D,€) = H,O(Z; D, E) ® V,O(Z; D, £). (*)

Using this decomposition for tangent vector X € T,,0(Z; D, £) we denote by X, xV
the horizontal respectively the vertical part given by the decomposition in (*).

Definition 3.2.10. 1. The canonical form w : TO(Z;D,E) — o(m) x o(v) is
given by the prescription that for any X € T,0(Z;D,€£):

w(X) = a, (3.2.11)

where a € o(m) x o(v) has the property that M(a), = XV. Otherwise stated this
1s completely characterized by the relation

w(Aa)y) = a
for any a € o(m) x o(v).
2. The canonical form 8 : TO(Z;D,E) — R? is given by the recipe
(%) = u ' (n,%) (3.2.12)
for any X € T,0(Z;D,€).
8. For a given £ € RY, we define the canonical vector field &(&) by
E(&)w = Hu(ul). (3.2.13)
for anyu € O(Z;D,E).
We summarize the main properties of these just defined objects.
Proposition 3.2.14. 1. 6(€(£)) = £ for any £ € R4,
2. Ro€(€) = €(07Y), for O € O(m) x O(v), £ € R4,
3. If £ # 0, then E(&) never vanishes.
4. Fora € o(k) x o(m), £ € R, we have [A(a), €(£)] = &(af).
Proof. 1. Direct from the definitions.

2. Rp€&(¢) is a horizontal vector at Rou. Because m, Ro€(¢) = 7,E(£) and Roué =
uO¢, we get that Ro€(&)y = QE(f)Ralu is the horizontal lift of R;'ué = w0~

On the other hand, by definition, €(O~1¢), is the horizontal lift of uO~1¢, hence
Ro€(¢) = €(01¢).

3. If €(§), =0, then 0 = 7,&(£), = uf and from here since u is an isometry we
get £ =0.

77



4. We have [A(a), €(§)] = — § Rexpta) €(€)|,_o = — 2 E(exp(ta)f)|,_, = €(af). O

Remark 3.2.15. The canonical vector field €(£) can be characterized as the unigque
vector filed X € TO(Z;D,E) with the property that 6(X,) = £ and w(X,) = 0 for
any u € O(Z;D,E), £ € R This follows from proposition (3.2.14) and the fact that
f(X,)=0andw(X,) =0 ff X, =0.

We give now the definition of the torsion and curvature forms. These notions are
formally taken from [4].

Definition 3.2.16. 1. The torsion form s defined as © = DO, namely
O(x, ) = dI(x",9%) = 2H9(v") — 9T o(x") - 6([x*, "))
2. The curvature form is defined as § = Dw, or in other words
UX, D) = dw(X", D7) = 2w (™) - Dw(x") - w([X7, "))

The next theorem is, for the frame bundle case, given in [4, Theorem 5.1 Chapter
3.
Theorem 3.2.17. If XY, Z € T.Z and X, € T,0(Z; D, &) for admissible u with
w(u) = z, and such that m,X =X, m,PY =Y, then

T(X,Y) =u(O(X,9))
where T is the torsion of the connection V,
R(X,Y)Z = w(UZ, D)u"'Z)

where R denotes here the curvature of the connection V given by R(X,Y)Z = VxVyZ—
VyVxZ - Vixy 4.
Proof. See the proof of {4, Theorem 5.1 Chapter 3]. O

One important corollary of this theorem is the following.

Corollary 3.2.18. Let £, € R? such that Tr,(ué,un) = 0, Reu(ué,un) = 0 for any
admissible u. Then,

[€(£), €(n)] =
Proof. Using (3.2.17), one gets first that G(E(f) (n)) = 0, Q(€(&),€E(n)) = 0. By
definition and the fact that 0{€(£)) = &, 8(&(n)) = 7, we get that

0([€(£), €(m)]) = —dO(E(E), €(n)) = ~O(€(E), €(n)) = 0.

In the same way we get that

w([€(£), E(m)]) = —dw(€(E), €(n)) = —KUE(E), €(n)) =

From these two equalities we arrive immediately to the conclusion. O
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Now we move to the definition of the Laplacians corresponding to the distributions
D, £

Definition 3.2.19. 1. Given z € Z, the D-Laplacian is

(APw)(z) = Z(V(Ej)mijw - VV(E,-)zij)’

j=1

where (E;);=1,..m C D is an arbitrary local orthonormal basis around z in D
and w s a local form defined around z.
2. In the same way the £-Laplacian s

v

(Agw)(m) = Z(V(Fj)vajw - Vv(Fj)szw)’

=1

where (F});=1,..» C & is an arbitrary local orthonormal basis around z in € with
the same conditions for w.

3. The Bochner Laplacian A% is

Ag = Z E(e_’l)2'1
j=1
for any orthonormal basis (e;),=1,..m in R™

4. Similarly, Bochner Laplacian A% is

for any orthonormal basis (f;);=1,..

Then we can state the analog of (2.2.6)

Proposition 3.2.20. For any smooth form w we have
@E(m) = ABa(u)

and similarly .
Afw(mu) = ALD(u)

with the same notations given in (2.2.2)

Proof. The proof is basically the same as the one for (2.2.6). The only remark one has
to make here is about the choice of the vector fields X and Y we took in there. For
the choice of Y we point here the consistency given by the fact that the connection
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is compatible with the pair (D, £), thus the parallel transportation along the curve p
alluded in there gives a vector field Y that stays in one of the distributions D or £.
The rest is the same. O

Now we can apply all these considerations to the case of a vector bundle. To
make things more precisely, we take the manifold Z to be the vector bundle E over
the manifold M and the distributions to be D = TH(E), £ = TV(E). If we consider in
here the Bismut connection, then we have all the setup in the beginning of this section,
namely the compatibility of the connection with the pair (D, £). To distinguish this
particular case from the general case treated in this section we will denote OV (E) =
O(E;D,E). Also set AH = AT"(E) the horizontal Laplacian, AY = AT &) the
vertical Laplacian, A = AL"® and AY = AT"® . Then we have the following
corollary.

Corollary 3.2.21. In TO®V(E), for any £ € R™, n € RY,

[€(£), €(n)] = 0.

Proof. By theorem (3.1.22) we get that if X, or Y is a vertical vector, then T(X,Y) =
0 and R(X,Y) = 0. Then applying the above corollary we get the conclusion. O

We record here a rewriting of (3.2.20) on TO®V(E).

Corollary 3.2.22. Within these notations

o~

AHy(mu) = AR (u)

and

e

AVw(mu) = Aba(u).

In particular if f . E — R, then

Af=AE(fom) and AVf=AY(fom).

3.3 Brownian Motions and Parallel Transportation

In this section we introduce V-Brownian motion with respect to a compatible con-
nection on a Riemannian manifold and we will discuss the representation of the heat
kernels on differential forms of the corresponding Laplacians. Also we treat the par-
allel transportation along V-Brownian paths of the basis in a vector bundle. We give
the representation of the V-Brownian motion on a vector bundle endowed with the
Bismut connection.

3.3.1 V-Brownian Motion

In this section the V-Laplacians are taken on functions only.
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Following [7, Theorem 7.2 and 8.33], for a smooth path in P(R?) and f € O(M)
we denote here by pV (¢, §, w) the solution to

PVt 5, W) = €V (W(t)pv (g With pY(0,f, W) =F.
Take pV (t, nf, w) = 7pV (¢, f, w). Then we have,

Theorem 3.3.1. Given © € M and f € n7'(z), the martingale problem for AV
starting at x is well posed if and only if the martingale problem for LAY, starting at
f 15 well posed.

Moreover, if the martingale problem for AV starting at z is well posed, then
the solution to the martingale problem for %Ag starting at | is the Wy-distribution
of a measurable map P(R%) > w — pV(.,f,w) € P(O(M)) to which the sequence
{pV (-, f, wn)}S° converges in P(O(M)) for Wy-almost every w.

Finally if the martingale problem for %Av is well posed on M, then the mar-
tingale problem of 1AY is well posed on O(M) and there is a measurable P(R?) >
w — pY(, ¥, w) € CO([0,00) x O(M); O(M)) to which {pV (-, *, w,)} converges
in C9([0,00) x O(M); O(M)) for Wy-almost every w.

The proof is exactly the proof of [7, Theorem 8.33].
We will call from here V-Brownian motion starting at z, the W,-distribution pY ™
of
PRY >w — pY(-,z,w) € P(O(M))

Also denote by ufv’o(M) the W;-distribution of

P(Rd) DwW — pV(_’ fa W) € P(O(M))

Corollary 3.3.2. If Vy, V, are two compatible connections such that the associated
Laplacians coincide on functions then the martingale problem is well posed for any
of the Laplacians if it is well posed for one of them. In this situation, V-Brownian
motion is the same as Vy-Brownian motion.

3.3.2 About the Vector Bundle Case

In here we shortly discuss the analogous of Theorem (3.3.1) on a vector bundle. More
precisely we take the situation from sections (3.2.2) and (3.2.3). Then we have the
following theorem, in the same spirit with theorem (3.3.1).

With the notations in section (3.2.2), set p5(t, u, w) for a smooth path w € P(R?),
to be the solution to

pg(t7 u, W) = ev(w(t))pg(t,u,w) with pg(ov u, W) =u.

Set pV (¢, Tu, w) = mpu(t, u, w)
Then we have the following result.
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Theorem 3.3.3. Given ¢ € M and u € ©'(z), the martingale problem for AV
starting at = is well posed if and only if the martingale problem for %Ag’E starting at
u 15 well posed.

Moreover, if the martingale problem for %AV starting at x is well posed, then, the
solution to the martingale problem for %AE,E starting at u ts the Wy-distribution of
a measurable map P(R?) > w — pi(-,u,w) € P(O(M;E)) to which the sequence
{pY(-,u, wn)}° converges in P(O(M; E)) for Wy-almost every w.

Finally if the martingale problem for %AV s well posed on M, then the martingale
problem of 3AY i 1s well posed on O(M; E) and there is a measurable P(R%) 3 w —
pu (-, *, W) € C9°([0,00) x O(M; E); O(M; E)) to which {p%(-, %, w,)} converges
in C**([0,00) x O(M; E); O(M; E)) for Wy-almost every w.

Proof. By (3.2.6) the only problem with the existence of the solution to the martingale
problem is the explosion. Because a path p in P(O(M; E)) explodes if and only if the
projected path 7 (p) explodes, what is left is covered entirely by [7, Theorem 7.2]. O

Now we refer to the situation at the end of section (3.2.3) for notations. For a
smooth path w’ € P(R™) define p" (¢, u, w') to be the solution to

pr(t,u, W) = €V (W (1)) pruwy  With pP(0,u, W) =,
and for a smooth w” € P(R¥) define p*(¢,u, w”) to be the solution to
pY(t,u, w") = €V (W (1))prituwn with p’(0,u, w") = u.

Set now, p(t, z, w') = w(p"(t, u, w')), p(t, z, Ww') = 7w (p*(t, u, w')).
For a smooth path in P(R?) and u € P(O*Y(M))) we denote by p¥ (¢, u, w) the
solution to

pY(t,u,w) = €V (W(t))pviuw) With pY(0,u,w)=u.

Take then pY¥ (¢, 7u, w) = 7pV (¢, u, w).
Then we can state the theorem in this framework.

Theorem 3.3.4. 1. Given z € E and u € 7~ (2), the martingale problem for
TAH AAY) starting at z is well posed if and only if the martingale problem for
SAE (3AF) starting at u is well posed.

2. In the case of well posedness at z or u, the solution to the martingale problem for
LAHWY) starting at u is the Wing,)-distribution of a measurable map P(R™")) 3
2B )

w — phO (- u, w'(")) € P(OFV(M)) to which the sequence {pp" (-, u, w'("),)}&
converges in P(OTYV(M)) for Wi, -almost every w'(”).

3. If the martingale problems for A" and AV are well posed on E then the
martingale problems for 1AH and LAY, are well posed on P(O*Y(M)) and
there are measurable maps

P(R™) 3 W' — p"(-, x,w') € C*([0,00) x OV (M); O (M)
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and
PR") > w" - p*(,*,w") € CO’O"([O, 00) X (’)H’V(M); OH'V(M))

to which {pi(-, x, wl,)}& respectively {p% (-, *, w?)} converge in C*®([0, 00) x
OHV(M); OV (M) for Winwy-almost every w'(").

4. Moreover in the case the martingale problems for %AH and %/_\V are well posed
on E, then the martingale problem for %Av is well posed on E and

pY (t,u, (W, w")) = p"(t, p"(t,u, w"), W) = p"(¢t, p" (¢, u, w'), w") (3.3.5)
for Wy-almost every path w = (w', w").

Proof. The proofs of 1., 2. and 3. follow like the proof of Theorem (7, 7.2] and the
ohservation that the explosion of the path on the orthonormal level occurs iff the
projected path in the manifold E explodes.

To prove part 4. we state and prove here the following elementary fact.

Lemma 3.3.6. Let N be a manifold and [0,00) > t — A(t) € TN, [0,00) 2t —
B(t) € TN two families of piecewise constant vector fields such that [A(t), B(s)] =0
for any t,s. If oa(t,z) : [0,00) X N — N and pp(t,z) : [0,00) x N — N are the
continuous piecewise differentiable solutions to

(pA(ti CE) = (A(t))SDA(t,:c) with ‘10.4(01 LE) =T

and
(,bB(t,.T) = (B(t))tpg(t,a:) with ‘PB(O: .’L‘) =

then @(t,z) = pa(t, p(t,x)) is the continuous piecewise differentiable solution to
o(t, ) = (A(t,x) + B(t, 7))oz with ¢(0,2) =z (*)

Proof of Lemma. If A(t), B(t) are constant on the interval [0, a] then everything fol-
lows from the standard case of differential geometry. Thus, p(t,z) = pa(t, ¢5(t, z))
for t € [0, a].

Take the maximal @ with the property that on the interval [0,@) we have the
desired property for . Assume @ < co. We show that there is an interval [0, b] with
[0,@) C [0, b] such that on this interval ¢ satisfies (*).

Indeed take b such that for t € [a,b] the vector A(t), B(t) are constant. Then
consider a4, avp the solutions on [0,b — @] to

{aA(t,x) = (A@))an()

aA(O, SL‘) = (,DA(E, LE)

{aB(t, z) = (B(@))ap(t.c)

ag(0,z) = vp(a, x)
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and set G(¢t, ) = aa(t, ap(t,z)). By a simple calculation one sees that

{B(t, z) = (A(@) + B(@)p(q)
B(0,z) = ¢(a, x)

for any ¢ € [0,b — @]. Extending through

_Jelta)  teldd]
p(t,z) = {ﬂ(t—a,x) t € [a, ]

we get a contradiction. Thus @ = oo and the Lemma. O

Returning to the proof of the Theorem, we only have to mention here that for a
path w = (w', w”), by (3.2.21) &(w!,) and &(w?) satisfy the conditions in the Lemma.
Because p" and p?, play the role of p4 and pp while &(w,) = E(w)) + &(w”) and
by definition pV(t, u, w,) is the flow of &(wy,), we conclude that

PY (¢, u, (W, wi)) = p°(E, 97 (, u, W), wy) = p¥ (8, " (¢, u, Wy,), W)

From here the convergence in 3. finishes the argument. O

3.3.3 Parallel Transportation

As in the usual case one can interpret the parallel transportation along the V-
Brownian paths in the following way. For a given z € M, X, € T,(M) we iden-
tify p(t)(f~'1X,) with 'r:(pm()‘ﬂXm, us’O(M)—almost everywhere. Thus, the ufv’O(M)-
distribution of

P(O(M)) 3 p = p(t)(F Xz) € Tagpryy (M)

is the same as the py M-distribution of
P(M)) 3 p — 10,9 Xz € Ty (M).

With the notations in section (3.2.2) and Theorem (3.3.3) let M be a Riemannian
manifold endowed with a compatible connection and £ an Euclidean vector bundle
over M. If the martingale problem for AY on M is well posed, then there is a natural
notion of parallel transportation of sections in £ along paths on M. To be more
precise, we remind that if w is a smooth path, pg(t,u,w)ﬁ is nothing but parallel
transportation of the vector ué € T,M @ E, along the path pV(¢,z,w). On the
other hand because the Wy-distribution of P(R?) 3 w — pV(-,z,w) € P(M) is the
solution to the martingale problem for %AV starting at z, we can say that for any
(Xe, ) €T, MO FE,

Tx-,m,w) 10,2) (Xz, 8:) = Pg(t, u, wiu (X, sz).

is the parallel transportation along the path p(-, z,w). In particular we have a well
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defined notion of parallel transportation along V-Brownian paths in M for sections
in E.

Definition 3.3.7. For a V-Browmian path ¢ starting at x in M, we denote the
parallel transportation of s, € E; along ¢ by

14
Tollo,t) 52

3.3.4 The Brownian Motion on a Vector Bundle

By Theorem (3.3.4) it suffices to check that the martingale problems for A# and
AY are well posed. More than that we will get a representation of the V-Brownian

motion once we have the representation of the horizontal and vertical motions.
v

In the first place, fix a point z € E. By definition AY = ZI(V(FJ')EVFJ' _VV<F,-)IF;-)
]:
where (Fj)j=1, C TV(E) is an orthonormal basis around z. Now using (3.1.21), the
vertical Laplacian on functions is AY = 57 (F}).(F;). This immediately implies that
71=1

if we identify the fiber E, with R” using the basis F}, then the vertical Laplacian
is precisely the usual Laplacian in R”. Hence the vertical Brownian motion is the
Euclidean Brownian motion in the fiber F, starting at y. This takes care of the
vertical Brownian motion.

For the horizontal motion, we mention that we work with Levi-Civita connection
on M.

Proposition 3.3.8. Assume that the martingale problem at x for %AM s well posed
and take the associated map pp(t, x, w') with w' € P(RY). Then

pH(ta Zawl) = I:/M(',I,W’)[[O,t]y'

Proof. Take an isometry f : R? — T, (M) and an the isometry u : R — TH(E,) given
by f composed with the identification of T,(M) with the horizontal space TH(E,).
Then for a smooth path w’ in R?, pp(t, , w') is the path ¢ given by

P(t) = TorogfW'(t) with (0) ==z

where here the parallel transport stands for the one on M, while the path pf(t, z, w')
is the path ¢ given by

Y(t) = T quW(£)  with  $(0) = z

where here the parallel transportation is the one on E with respect to the Bismut
connection. Since uw’(t) is horizontal and is canonically identified with fw’, the
characterization of the Bismut connection gives that

p(p(t)) = ¢(t) and Y(t) = 70 4v-
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From here and the fact that the martingale problem for %AM is well posed, we get
the conclusion by taking limits of w/, for a generic path. O

Putting together the characterizations of the vertical and horizontal motions,
(3.3.2), point (4) of Theorem (3.1.22) and definition (3.3.7) we get

Theorem 3.3.9. If p(t, z, w) stands for the associated object constructed with respect
to the Laplacian of the Levi-Civita connection, then for Wy,,,-almost every w =
(w',w") path in P(R™*")

p(t, 2, W) = (pMi (tv T, W’), T],YM(',I,W') 10,2] (y + W”(t)))

where we identify the fiber E, with RY by an orthonormal basis.

3.4 Heat Kernel Estimates and Comparisons

3.4.1 The Boundedness

The setup in this case is the following. The class of the operators acting on forms for
which we prove the boundedness estimates is

d
L* = —AY + o?|gradh|’ — aAh + 2a(hessh) + > B(E;)Vg, +C (3.4.1)

=1
where the data obeys:
1. The connection V satisfies

(a) compatibility with the metric on M,
(b) V-Laplacian on functions is the same as the standard Laplacian;

(c) the Hessian of the function h is the same as the Hessian with respect to
the Levi-Civita connection.

2. B,(X.) = (D*S0)(X.) + (D*51)(X;) + -+ + (D*Sk)(X;) in the notations of
Definition 1.5 with the crucial supplementary condition that B,(X,) is skew
symmetric for any 2 € M, X, € T,(M);

3. C=D"Ty+ D*T + - - - + D*T, for some smooth tensors 7;.
Take the heat kernel of the operator %La,
P (t, 21, 22) 1 Ay (M) — A, (M) (3.4.2)

and denote
Q¥ () = / Teph(t, 2, z)dz. (3.4.3)
M
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Using the expression for the operator L* we can give the expression of the heat
kernel (cf. Appendix B) as

pLa (t, 2y, 2,'2) = ]Ewd [Ua(t, Z1, W)TX-,ZLW) 1[¢,0] (522 (p(t, 21, W))] (344)
where
( o o o’ 2 o
du®(t,z,w) = U(t, z, w)| — 7[gradh(p(t,z, w))|[*T dt + §Ah(p(t, z,w))I dt
-1
4 —a (T;X-,z,w) r[o,t]) (hessp(s,z w)h) T;:(7-,z,w)[[0,t]dt

d
+C¥(t,z,w)dt + Y BY (t, 2, W)dwj(t))

=1

\ UQ(O’ Z, W) = Id/\z(M)

or
chx (t, 21, 22) = FWa [eA(a,t,w)Va(t, Z].’WI)TZX',Z]_,W) [[t,0]622 (p(t, 21, W))] (345)
with
o [t o [t
Ala,t,w) = ~?/ lgradh(p(s, z, w))|*ds + 5/ Ah(p(s,z,w))ds
0 0
and

¢

o —1
dve(t,z,w) =Vt z, w) ( - (Tx,1z’w)”0'tl) (hessp(t,z,w)h) TX_)Z‘W) r[o,t]dt

d
+CV(t,z,w)dt + »_ BY(t,z, W)dwj(t))

Jj=1

\ V0, z,w) = Ida ()

Conform (B.1.6) the basic estimate of the heat kernel on k-forms as:
IPE" (¢ 21,22) e, < BV [e0t5905, (p(t, 21, ) (346)

for a constant depending on B, C in the definition of L* and with Ala,t, z, w) defined
as

2 t t t
=G [ ersahots, 2 w)Pds + 5 [ Aip(s, 2, w)ds o [ Fipts, 2 w)s
0 0 0
for a smooth function f such that

f(z) = v for z close to the critical submanifold M;,

4.7
—heSSZhI/\k(M) < f(I)IdAk(M) foranyz e M k=1, --- ,d. (3:4.7)
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Using this first estimate, the estimation of the heat kernel pL™ (¢, 21, z3) can be
done by estimating the quantity

P, 21, 22) = FWa [eﬁ(a,t,zl,w)cgzz (p(t, Zl,W))] (3.4.8)

on the right hand side of (3.4.6).
The first result of this section is the following.

Theorem 3.4.9 (The Away Case). For r > 0 small enough, set
Q= {ze M,dist(z, M;) >r, foralli=1,---,l}.

Then, there exist constants ao(t,r) > 0, C1(t,7) > 0, Ca(t,7) > 0 depending on t and
T such that for any a > aqg(t, ),

POt 21, 23) < Cy(t, r)e”C2lb)a
uniformly for z; € Q, and 2, € M.

Sketch of the Proof. Because the proof is merely a repetition of the argument we
gave in the non-degenerate case, we will point only the main steps. First we apply
the integration by parts and Holder’s inequality to the right hand side of (3.4.6) to
show that for any n > 0, there is a polynomial F, in o such that

uniformly in 2, € 2, 2, € M, with the notation

Hg (v, ) = (1+7) (—%igradh(w(v))lz + SAh(p(v) + af(so(‘v))) . (34.10)
Hence we need to estimate

¢*(t,z) = B* [exp (/Ot H,‘;(v,go)dv) } (3.4.11)

To do this, we use the same iterative argument as in the non-degenerate case. We
can run all the arguments replacing the critical points in there with the critical sub-
manifolds and the balls around critical points with the ball bundles B(M;,r) = {z €
E;;|z| € r}. Everything works just as in the non-degenerate case, the only thing one
has to worry about is the identification of the function » : Ry x B(M;,r) — R given
by

Uy (s, z) = /exp (/OT(MAS H,?(v,;b)dv)uy(dw) (3.4.12)

with 7 the exit time from the ball bundle B(M;,r). Because the function h near

M; is 3 (ly"]® — |y |?) and the Hessian is given by the formulas in (3.1.22), an easy
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calculation gives

Hy(oo) = 14 (-l ODF + 2.

Now we use the representation of the Brownian motion on the bundle F; given by
Theorem (3.3.9) as the parallel transportation of the vertical Brownian motion versus
the horizontal Brownian motion. Since the parallel transportation is an isometry in
fibers, an immediate consequence is that,

Un (8, 2) = ug,(s.9)

with , ,
Tr(w ' )As a " 2, ay;

) 1+n){ =S |y+w"(v)|*+—=* )dv
ue (s,y) = B | (14 (— S lyHw () >+ 251 )

where we identified the fiber (E;), with R and 7, is the exit time from the ball of
radius r. This is exactly the same thing as in the non-degenerate case, this time taken
on the fiber. O

For the close to the critical set case we follow the same route as in the non-
degenerate case in section (2.4) to reduce the estimation to one on the vector bundles
E;.

To deal with the near to the critical set case, we make some notations. On each
vector bundle F; we denote

a? " oty
Pt 21, 23) = B [E—Tfo‘lmw (Pt s ooy zl,w))] (3.4.13)

with w” standing for the Brownian motion starting at 0 on the fiber (E;);, (see
Theorem (3.3.9) for details).

Theorem 3.4.14 (The Near Case). With the notation in (3.4.8), for small r > 0
and any t > 0, there are constants Ci(t,r) > 0, Ca(t,7) > 0, a(t,r) > 0 such that for
any z € B(M;,r) = {z € E; | dist(z, M;) <1} and o > a(t,r),

|P(t,2,2) — P (£, 2, z)| < Ci(t, r)e @), (3.4.15)
Proof. The proof is on the same ideas we used to handle the non-degenerate case.

Here are some adjustments to that procedure due to the geometry of the vector
bundles.

First, we repeat the basic step of integrating by parts to write
P(t, z,2) = EMe [T(a, z, w)ez(“’t’z’w)] (3.4.16)
where (cf. Theorem (A.2.6)) T(a,z,w) is polynomial in & with coefficients in all
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LP(Wy) for any p > 1. We next split this integral into two parts

EW [T(Ol, z, W)Ez(a’t’ZYW)] = ™ [T(a7 Zy W)ez(ayt'z‘W)s Tor (p(': 25 w)) 2 t]

+ EWa [T(a, z,w)ez"(a’t’z'w)aT2r(p('a z,w)) < t]

= I7(a) + (o)
(3.4.17)

For the second integral one can use Holder’s inequality to justify that for a positive
n > 0 there is a constant C, > 0,

I7(@) < Gy {glu(t, )P/

where .
Q2 (t, z) = B# [exp (/ HY (v, 0)dv), 72, (ip) < t} .
0

Hence, estimates on the size of I3**(«) come down to estimates on the size of ¢2,,(t, z).
This is done in the non-degenerate case in Proposition (2.4.4). We now shortly
describe what the adjustment is here. The iteration works as the iteration in the
non-degenerate case with the only change that we discussed in the proof of the above
theorem. The last bit invoked in the proof of (2.4.4) is the estimation of the last term
of the iteration to an estimation of an initial-boundary problem (see (2.4.6)). In our
case here we have to write the last quantity in the iteration as

Tor\S
up (s, z) = s [exp (/ HX(v,0)dv), 72 (i0) < 3] .
0

The last thing here is the description of the Brownian motion in the vector bundle,
and an argument as the one in the proof of the above theorem to show that ud(s,z) =
Up (8, 9), with

Tor(w)ns 2

up,(s,y) = E™ {efu (1+n)(—%‘y+w,’(v)lz+a_gi)d”,Tzr(W") < SJ .

This last integral can be identified with the solution on the appropriate Euclidean
space of (2.4.6), we can use again the estimates given in Lemma (2.3.30) to finally
show that

I (a) < ¢y, r)eac2ltr) (3.4.18)

for some constants c;(t,7) > 0, cy(t,7) > 0 and for all a > a(t, 1), z € B(M;, r).
Now we turn to the integral I**(a). For this, we replace the manifold M with
the manifold £; and the function h with the function h(z) = 3 (ly™|2 — [y~|?). Notice
here that despite the fact E; is a noncompact manifold, the theory from Appendix A
justifies the integration by parts. Indeed, the curvature of the Levi-Civita connection
is well behaved (cf. (3.1.26)). The key observation is that the factors 7' in the
expressions of I**(a), on M and E; coincide if the path does not leave the ball
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B(M;,2r) and the same is true for A(a,t, 2, w). Thus we can say that the integral
I (a) can be thought of as the integral coming from the computation of P, on E;.
Also on F; one can prove the same estimates for the corresponding Ii™ (), so that
in the end, using again the representation of the Brownian motion on E; we get

lpa(t, z, 2) — 5;](@ z, Z)' < Cl(t, ,,.)e—aCQ(t,r)_

Now everything is reduced to the estimation of _?5? (t, z,2).

Proposition 3.4.19. There exist constants Cy(t) > 0, i = 1,--- 1, depending only
ont and the data of the submanifolds M;, such that for any z € E;,

D @ 521 —atanh(te/2)|y|?
Pi (t,z, Z) S Cz(t) (m) € vl . (3420)
In particular
/ P (t, 2, 2)dz < Cy(tyvol (M), (3.4.21)
B(M;,r)

where vol(N) denotes the volume of the manifold N with respect to the metric on it.

Proof. Recalling the representation of the Brownian motion given by Theorem (3.3.9),
we write for any compactly supported function f : E; — R,

[ Ptz (i
E;
al rt 7 atv,
= ]EWd [e_T fo ly+w” (s)|2ds+ > f(pMi(t’x’w,)’Tg/M‘(-,z,w’)[[O,t] (y + wll(t)))]

= Ewdiu‘l l: B) Q’? (tl Y, yl)f(pM‘t (tv z, W’)’ T;!Mi(-,z,w’)[[(),t] (yl)dy].:l (3422)

with Q%(t,y,v’) the heat kernel for the Hermite like operator A + "‘72|y|2 — % on R™,
given by the formula (see for example [9, page 390])

o Fl _ ocoth(ta)) 2 2wy 2
Q?(t, y, y’) = (m) é 2 (Iyl Cosh(t&)+|y ‘ ) (3423)

From this from this formula, if y, € B(y/, p), then

v

pelt}

2 h 2 4

« e_acot2(!a)) (lyIZ_ Igclglhy(tlc;")l?) +|y1|2_ply1|_p2)
7 (1 — e—2te)

< Q¥ t,u, )

v

2 ’ ,

o \F e (et aye o) 00
7 (1 — e~2%e)
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In particular if the function f has support in B(2’, p) then by the fact that the parallel
transportation is an isometry in fibers, we have the inequalitites

3

2 o coth{ta 2 !
o e__ Otz(t ) (|y|2— lgcl)glhy(tlc':).o]+|y/|2_p|y/|_pz)
7 (1 — e %)

CEWd-w [ /( . f(@a(t, 2, w'), TQ/Mi(-,m,w')r[o,tl (yl)dyl}

< ./E, f‘,:,i(t, z,u) f(u)du

vy

3 h(ta)) !

o e_“°°'2 ta) (|y|2+2§°s'h”’(m+)" +]y'|2+ply'|+pz)
T (1 _ e—2ta)

! EWd_ui I:/(E ) f(pM; (t7 I, wl)a T;/Mi(-,z,w')[[o,t] (yl)dy1:| .

Now for a given point 2’ in E; we choose the local trivialization of the bundle by
parallel transportation. Then we can choose a smooth compactly supported approxi-
mation f! in the distributional sense to the delta function é, in (£;),-.We extend this
in an obvious way to nearby fibers. Choose now an approximation f* with support
in a small neigborhood of z’ to the delta function 4, on M;. Finally one can define
fu(z,y) = f(z)f*(y). Then using this choice in the above inequality and letting n
tend to infinity, then p tend to 0, we get

v

s 3
o 2 _ acoth(ta)) (|y|2_ 2(ylly’]| +| ,|z)
2 cosh{ta) ¥ /
(77 (1- e‘m)) ‘ pan )

S 52,1’ (tv Z, Z’)

((_a—j) 2 e_clcoﬂ’::(tu)) (|y|z+c2olsyhléz:;l)+|y1|2)pMi (t, T, .T)’). (3-4_25)
K

1— e—?ta

To prove (3.4.21), one has to integrate the estimation we have already gotten to
justify that

- :
/ P? (t, z, 2)dz < Cyvol(M;) (_—ifim_> e—atanh(ta/2)|y|2dy
B(Myyr) pler \ (1 —e7%e)

and then changing y — , /my one gets

/ P(t,z, 2)dz < Cvol(M;) ( dy
B(M,,r) m

1 7 /
(1 + e—ta)2> ly|<r+/atanhta/2

which ends the proof. d

92




Putting together Theorem (3.4.9), Theorem (3.4.14) and the Proposition (3.4.19)
we prove the following main result of this section

Corollary 3.4.26 (The Boundedness). Assume we have continuous families u €
[0,1] — V4, u € [0,1] — B, and v € [0,1] — C, such that for each u € [0,1]
they satisfy the requirements at the beginning of this section. If LY is the corre-
sponding operator, then, there exist constants K(t, B,C, M;) and oo depending on t,
sUDyue(o.1] || Bull; SuPyeo,q) [ICell and the heat kernels of the submanifolds M; such that

/ sup [t (¢, 2,2)||, dz < K(t, B, C) (3.4.27)
M u€[0,1] ’

for all a > ay.

Proof. The proof consists in putting together the theorems proved so far in this
section. To wit, we first use (B.1.2) together with (A.2.11) as we used in (3.4.6) to
deduce that

sup [[pi (1, 2,2)],, < KEW [X0455, (p(t, z,w))] *)
ue[0,1] ’

with the same A as in the (3.4.6). We mention here that the constant K depends on
the bounds on B, and C, one gets from (B.1.2) and (A.2.11). Here the existence of
K is due to the fact that B, and C, depend continuously on u.

Now choose a particular 7y small enough. Next step is an invoice of (3.4.9) with
7 replaced by ro, to get the exponential decay of the integral

P(t, 2, 2)dz < K e oKz (**)
g

with Q. = {z € M | dist(z, M;) > roforalli =1,--- 1}
Next we use (3.4.21) to get to

/ ﬁ;‘l(tv Z, z)dz < C{UOZ(MZ'), (***)
B(M;,ro)

Now the result follows by putting together Theorem (3.4.14), (*), (**) and (**¥).
O

3.4.2 The Comparison

In this section we show how based on the results in the previous section, one can
prove that for certain operators the integrals of the heat kernels are close to each
other. In this section we will see that the crucial role will be played by the fact that
the Bismut connection and the Levi-Civita connection are close to each other.

We begin with a choice of a cut-off function ¢ on M which, for a small enough r is
0 outside the ball B(C'r(h), ro) of the critical set, 1 on B(Cr(h),r0/2) and 0 < ¢ < 1.
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Also we assume that ry is sufficiently small so that B(Cr(h),4ro) is in the union of
the sets V; defined in (1.0.4). For a small enough r > 0, denote

on(2) = ¢ (:c y;) . (3.4.28)
for z; € E; close to M;. Then, supp(p,) C Ul_ B(M;, 7).
Definition 3.4.29.
1. Define the connection V" on M by
V=0 (2) (VP), + (1 - ¢,(2)) VEC

if z € E;, where VP stands for the Bismut connection. Set T™ and R’ the
torsion respectively the curvature tensors of V7.

2. Define the operators
O = ¥ ahgV ah | §VT ok gV ah
where the operators d¥ " and 8V " are defined in (3.1.2).
The next proposition contains the key relationships between these connections.
Proposition 3.4.30.
1. There exzists a constant C > 0 such that for any unit vectors X,Y € T,(M),

|(Vx = V) Y| < Cpp(2)r

2. The torsion of the connection V" is given by
T;(X,Y) = oe(2) [ (X, Y ")yi]

for any X,Y € T,(E;) where the curvature on the right is the vertical curvature
on the bundle E;. In particular, there is a constant C' > 0 so that for any unit
vectors X,Y € T,(M),

|TzT(X7 Y)l < C‘P’r(z)r'

3. There is a constant C > 0 such that for any unit vectors X,Y,Z € T,(M)

IR'(X,Y)Z — R(X,Y)Z| < Con(2)r.

4. The Laplacian on functions of the connection V" is the same as the usual Lapla-
cian on functions.

5. The Hessian of the function h is the same in either connection V" or V€.
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6. There exists a constant C' > 0 such that for any form w € A(M) and o > 0,
|(@¥" " — d*M) w| € Coppr W] (3.4.31)

and
|(8V7 " — 5" w| < Coppr |w] . (3.4.32)

Proof. The main fact is that the difference between the connection V" and V¢ is a
tensor that can be expressed in terms of the torsion of the Bismut connection.

Denote S™ = V™ — VL. Using (3.1.30) we have a characterization of this tensor
as

(5%.Ye0 Z2) = 1 (X, V), 2) — (Vi 22, Xo) + (T2 X2), Vo))
(3.4.33)

for any vectors X,,Y,, Z, € T,{(M) with T, the torsion of the Bismut connection on
E; if z € E;. Further by (3.1.23) we see that

15%.1I < Cor(z)r X, (3.4.34)

where the constant C depends on the bounds of the vertical curvature on the bundles
E;. Using this observation, 1. follows immediately. The second statement is nothing
but a reflection of the fact that the torsion of the Levi-Civita connection is 0, the
definition of V7 and (3.1.23).

For the third item, a simple calculation shows that

R(X,Y)=¢?R¥(X,Y) + (1 — ¢.)?R”" — 0,(1 — ¢,)(SxSy — SySx). (3.4.35)

where V# is the Bismut connection on the bundles. From this it follows the estimate
about the difference of the curvatures.
Recalling the definition of the Laplacian, we have

(AY'R) (2) = 3 ((F):Fih = Vi), Fih)

1=1

for any local orthonormal basis F; around the point z. Now using the definition of ¥
and Theorem (3.1.22) item (4) we get the statement in (4).

Using the same argument we can prove that the Hessians are equal. To wit,
we observe that the Hessians of a function is (see for definitions (3.1.8)) is linear
as a function of the connection. Thus invoking again Theorem (3.1.22) we get the
statement in item (5).

'To prove the last statement, first observe that by Definition (3.1.2) and Proposi-

tion (3.1.3) we have
d

dVT,ah _ dah — Z(Fz*)z A S(TFZ.)Z
i=1
From this and the discussion at the beginning of the proof, the statement about d’s
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follows immediately. The statement about &’s follows the same way from Defini-
tion (3.1.2), Proposition (3.1.3) (items 3,4) and the estimate on the torsion of V" and
ST O

First Comparison. The next Theorem is the first step toward the comparison of
the integrals of the heat kernels for operators O and O, the latter one being defined
by (1.0.2).

Theorem 3.4.36. There exist, a constant C(t) > 0 depending on t and the data of
the manifold M but independent of v, and «(t,r) > 0 depending on t,r such that for
a > aft,r) we have

‘/ rI‘.rp,fﬁ(t,z,z)a’z—'/& Trp:g(t,z,z)dz < C(t)r. (3.4.37)
M M

Proof. First, exactly the way we did in deducing the formula (2.1.2), we have the
following two identities:

/ Trpy” (t, 2, 2)dz = Tre HOFW/2 = Z ot (@)/2
M =0

and }
/ Trpy (t,z,2)dz = Tre t9%/2 = Z p—thi(a)/2
u i=0

where M (a) and X;(«) are the eigenvalues arranged increasingly of the operators O
and O% acting on H? (see the beginning of section (2.1.1)).

The idea is to compare the eigenvalues by using the min-max principle. The min-
max principle gives the eigenvalues of an elliptic operator second order operator L on
k-forms bounded from below, by the formula

Mi(L) = viélffﬂ max {/ (Lu)(2),u(2))dz |u €V, |lu|| = 1}
dim(V)k—_-i M

where ||-|| here and during this proof, stands for the L? norm of sections in L*( A (M)).
To apply this formula to the operators OF and (O2) we first remark that for u € HE,
(OFu,u) = [ *uf" + |67 "]

and alike
(0%, u) = |d°hu\2 + |5°‘hul2.
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From this we get the inequality
(O, u)!? — (D%, u) /2|
< ’(‘dvr,ahu|2+ |6V",ahu|2)1/2 _ (|dahu|2 n |6ahu|2)1

S ‘dV“,ahu . dahu’ 4 lévr,ahu - 5ahu|

/2

where we have used the elementary inequality for real numbers,
1 1
| (@ +4°) = (B + 1)) [ Sz — 2] + |y —

to justify the passage to the last line. Now invoking the inequalities (3.4.31) and
(3.4.32) we arrive at the inequality

|(O2u, w2 — (0%, u)l/z) <Cr (*)

for any u with ||lu|| = 1 and any a > 0.

Armed with (*), we can prove that

V(@ - VA@)| < cr

for any positive o and any integer ¢ > 0. Next, we point the elementary inequality
for positive numbers

e — 7| < V2|Vz — | (7% + e 7V/?)

to use it in proving that

i e~ tAT(@)/2 _ i @12 < oy i ( e—tN(@)/4 | e—tAi(a)/4) _
1=0 i=0 i=0

This last inequality can be written in terms of heat kernels as
‘/ B‘p[fg(t7za z)dz _/ Tl'pfa(t, Z, Z)dZ
M M

<Cr (/ ’Ifrp;)g(t/Z,z,z)dz -f—/ Trp,?ﬂ(t/2,z,z)dz> :
M M

Now we want to prove that the last part in this inequality is bounded when « is large.
To do this we want to apply the boundedness that is granted by Corollary (3.4.26).
In order to be able to apply the alluded result, one has to check the conditions
required. Basically one has to make sure that the operators we are dealing with have
the form (3.4.1). Now, this is granted to us thanks to Proposition (3.4.30) item (2)
and the decomposition formula (3.1.13), provided that we prove that for any vector
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X € T,(M),
d

> (T"(Ej, Ex), X)E} Aig,
gk,

is a skew symmetric operator on forms. To check this last thing we need only to
say that T7(E;, Ex) = —T7(Ey, E;), implies the desired property. Now using Corol-
lary (3.4.26) for ¢/2 instead of ¢ we end the proof. O

As a remark here we give the expressions for the operators 0% and ¢¢. From
(3.1.13) and (3.4.35)

0% = —A + o®|gradh|* — aAh + 2ahess” h — D*R,
0% = —AY" + o®|gradh|® — @Ah + 2ahessh + @2D*RY" + (1 — ¢,)2D"R

d d
+, Y (T(Ej, E), B)E; Nig, Ve, — (1 — ;) Y (Sk, S5, — S5, Sg,) B} Aig,
Jak,t 1k

(3.4.38)

where here R stands for the curvature of the Levi-Civita connection and T for the
torsion of the Bismut connection.

Second Comparison. The first comparison left with the operators in (3.4.38).
Next in line is the reduction from the operator & to the operator

0% = —AY" + o?|gradh|? — aAh + 2ahessh + 2D*RY” + (1 — ¢,)*D*R. (3.4.39)

The improvement consists in the fact that the first order operator together with a 0%
order operator disappear, thus making the operator more amenable to computations.

Theorem 3.4.40. There ezist, a constant C(t) > 0 depending on t and the data of
the manifold M but independent of v, and a(t,r) > 0 depending on t, v such that for
a > a(t,r) we have

‘/ Trp,* (t, 2, Z)dz—/ Trpy' (t, 2, 2)dz| < C(t)r. (3.4.41)
M M

Proof. First, the operator goTD*RVB acting on forms is a self-adjoint operator. This
can be easily seen because we have at our disposal precise formulas given in Theo-
rem (3.1.22) item (3.1.24). On the other hand we know that the curvature D*R is
self-adjoint.

These remarks together with [8, Corollary 2.10] prove that the operator OF is
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self-adjoint. Take the first order operator

d d
A= > (T(E;, Eo), E)E; Nig Vi — (1= ,) > (Sk,Sk, — S,SE,)E} Nip,
3k l=1 3,k=1
d
ZE EJ E + =y
j=1
(3.4.42)

with the notation

[I]

d
)= > (T'(Bw, Er), X)E} A,
k=1

and

d
Eo=—¢r(l = ¢;) Y (SE,Se, — S5,SE,)E] Aig,.
7,k=1

Notice that A is formally self-adjoint, a very important property in what follows.

Consider the family of operators
L=0+uA for 0<u<l

Note that L§ = 02, LY = % and L{ is a formally self-adjoint operator.

Before starting the real proof, we note that (see for example [8, Proposition 2.44]),
the trace of a trace class operator X on k-forms with kernel ri(z1, 2) is given by

= / Tryi(z, 2)dz
M

We want to use Duhamel’s formula to estimate the size of the difference of the
integrals of the heat kernels. More precisely, start with

/ Trpy’ (t, 2, 2)dz — / Trp(t, 2, 2)dz = Tre HODM/2 _ Tre=tOF/2
M M

PO e
= A aTr (e u )du.

Then, using the consequence of Duhamel’s formula from [8, Corollary 2.50], one gets
the identity

(3.4.43)

0

O (emtonre) __Tr (aLu —tw-)k/z) _ _%T[ (AemHED/2)

Oou

Thus, everything comes down to the estimation of Tr (Ae *~©)%/2). Now, the kernel

~t(Le )k /2

of the operator Ae is Alpf3 (t, z1, 22) (with the meaning that A, is the action
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on the first variable evaluated at 21), so
Tr (Ae™#E0k/2) = / Tr Aipi* (2, -, 2)dz.
M

We also use the fact that
Tr (Ae_t(Lg)’“m) =Tr (e_t(Lﬁ)"/zA)

and the fact that the kernel of the latter one is A;pﬁ'ff (t, z1, z2) (with the meaning that
A, is the action on the second variable evaluated at z;) together with self-adjointness
to justify that

Tr (e—t(Lfi‘)k/?A) = / ’I&'A2pﬁ‘c‘( (t, z, 2)dz.
M

Summing things up we arrive at

@ 1 o
Tr (Ae*t(Lu)k/Z) = 5/ Tr (A + Ag)plk““ (t, 2, 2)dz.
M

Choose a p smaller than the injectivity radius of M. Then choose a finite covering
of M with finite balls Bg, of radius p, 8 = 1,---, N. For each [ choose a smooth

orthonormal basis (Fjﬂ ) in Bg. Extend the orthonormal basis (FJB ) to
j=1,d j=1d

orthonormal basis | F’ of AF(M ) over the set Bs. Take (15),_, v @ partition
7). (d 8 8)p=1,N
=1,(2

of unity subordinated to (Bg));_, - Then, write

/ Tr (Ay + Ag) pie(t, 2, 2)dz = Z 2)Tr (A; + Ao) pre(t, z, 2)dz
)

Il
™=
M;:

[ s, (4 + M) pi (e, 2)) Pz
B,

8

Il
o
MZ F
—_
=
M“

| P, 2 ), (o 2, ()i

B=1 J=1 j=1
v©
YYD / (0a(=2) P (), Ed(F)pEE 1, 2, 2) Vi, F(2)) dz
B=1 J=1 j=1
@
-+ Z /B FJ (2), (Eopfﬁ(t, z, 2) +p£5 (¢, z, z)EO) Ff(z))dz.
=1 J=1 <l

(3.4.44)
Replacing 1 (F;) V%, by A — Eo, and using the fact that A is self-adjoint we continue
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with
| &) F ). 205V, (i 0,2 A F )
:
o R O A CER IO
,3
N RCLACEN CEERL DS
Finally replacing back A by El(Fj)V}]_ + =y, the expression above is
/ EEE (9 FH) 10,2 )
v/ (Eos ) B 02, R )

_/B (hs(2)F(z), 2o (pfﬁ(t,z,z)Ff(z)))dz,

Returning with these at (3.4.44) we freed the heat kernel of derivatives. Moreover
among the quantities involved, for each integral we have at least one = or =, as one
term. Now we can estimate

‘/ Tr (A1 + A2) pfg‘ (t, 2, 2)dz
M

<cC /M (Zo(2)l| + 1B () [|pEE 2. 2, 2)) =

where the constant C' depends on the covering chosen and on the partition chosen.
Using the definition of 2o and Z; together with the estimates in (2) and (3.4.34) we
arrive at

/ Tr (A1+A2)p£3(t,z,z)dz < CT/ ||pfg(t,z,z)||dz
M M

This last relation, Theorem (3.4.26) and (3.4.43) end the proof the the comparison.
O

We can summarize the results of the two comparison steps so far in

Corollary 3.4.45. There ezist, a constant C(t) > 0 depending on t and the data of
the manifold M but independent of v, and a(t,r) > 0 depending on t,r such that for
a > alt,r) we have

‘/ Trpf:(t,z,z)dz—/ Trpf’?(t,z,z)dz < C(t)r. (3.4.46)
M M
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3.5 The Proof of the Degenerate Morse Inequali-
ties

In this section we prove Morse inequalities in the degenerate case. So far we were able
to prove the comparison which allows to perform the last computation. The advantage
of the comparison is that the concrete computations for the operator O¢ are more
amenable to the geometry at hand. Basically the main property this operator has
is that near critical submanifolds the curvature term is only the curvature of the
Bismut connection which behaves nicely under parallel transportation with respect
to the Bismut connection.

The main idea is to estimate the heat kernel on the complementary of the set
B(Cr(h),r/2) and on the set B(Cr(h),r/2).

The estimation of the heat kernel on the complementary of the set B(Cr(h),r/2)
is clear as a result of Theorem (3.4.9).

For the closed case we run exactly the same argument as the one in the proof of
Theorem (3.4.14) to justify that for 2 € B(M;,r/2) there are constants Ci(¢,7) > 0,
Ca(t,7) > 0 and a(t,r) > 0 depending on r and t so that for @ > a(t,r) and
z € B(M;,r/2)

[P ¢,z 2) = B (8,2, 2)| < Catt e =2 (35.1)

where here ]_)S? (t, z, z) stands for the heat kernel of the operator

0f = —AY? 4 o?|y|? — a(v;" — v;) + 2athessh + D’RY”° (3.5.2)

on \*(E;) with
1 _
hz) =5 (' =l 1").
The heat kernel for this operator has the form

at(u?'_

2'""v,:*(t,soﬁ:rﬁ,o]azz(w(t))] (35.3)

o 02
pfl (t, 21, z2) = [EH=a1 [e‘T o le(s)|2ds+

where where p, is the Wiener measure on E; starting at z and V (s, ¢) is the solution

- B »* B B
{ Ve(s, ) = Ve(s,9) (var[s,o] (—ahesssa(s)h +3D RZ(a)) Tcpvr[o,s])
Vka (0’ ‘10) = Id/\w(o)(M)
and V,2(s, ) is the restriction of V*(s, ¢) to /\i(o)(Ez-). In order to better understand
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this on forms, we first write the following decomposition

k
N (E) = &P /\ /\/\ (E;) /\/\ (3.5.4)
q+qt+q =k
0<g<dim(M;),
0<g+<uf 0<g™<uf

For shortness, denote /\g’q+‘q( E;)) = AL(M;) A /\q+(E+)/\/\q( E").

Conform (3.1.27), the Hessian hessh : T,(E;) — T,(E;) is block diagonal. More
precisely we write (see for details Section (3.1.2)) T,(E;) = (E}N), @ (E; )z ® T (M;)
and in this decomposition the Hessian has the following matrix block decomposition

I 0 0
0 -1 0 (3.5.5)
0 0 0

and from here it follows that the Hessian commutes with the parallel transportation
with respect to the Bismut connection. The Hessian has a particular form for w €

AT "9 ( ), namely
hesshw = (¢7 — ¢ )w (3.5.6)

Particularly, the Hessian of h preserves all /\Z‘q+’q— (E;). The crucial property of the
Bismut connection is that it preserves the horizontal and the vertical spaces, and in
particular the parallel transportation does not mixes up these spaces. On the other
hand using the definition given in (2.1.5) and (3.1.24) we have the following formula

vB vB
Torso D" Ry («or[Osl)
dim(M;)

Y (R (Fi(s,0), Fi(s, ) Fi(s, 0), F(s, )} (Ff Aig) o (FY Air,)

gk lm
dim(M;) U

+ Z ZRV (5,9), Fi(s,9)) FF (5,0), Fh (s,0)) (Fy Aig) o (B Ay

dlm(M‘l) Ui
+ 3 DR (E (9 Bls ) F (5, 0), F(s,0)) (F] Air) o ((F7) Aigs)
jk Im

(3.5.7)

where (F}),_, gim(a,) 15 @ny orthonormal basis of T}, () (M;), and (Fi) Lyt BTe

orthonormal basis of (E7),,(e(0)), With the notation Fy(s, @) = 7Y, [0 o ¥ and the ahke

1

the parallel transportation with respect to the Blsmut connectlon along the path .

Observe from this, that the curvature term in (3.5) also preserves the spaces
+ — -_
AP T (E;). Asa consequence, V,&(s, @) also preserves the spaces /\ZJ’(qO;’q (E;). Thus,
Ve(s, ) acting on /\Z(o)(Ei) is a diagonal map when is taken with respect to the
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decomposition (3.5.4). We denote V%, _(s,¢) the restriction of V(s,) to the

subspace fa’(qog’f (E)).

It follows in particular that pfg(t z1,2 ) sends /\q’q+ T(E;) to AY q+’q—(E) Call
this restriction p g (t, 21, z2) and point out that we have a similar expression, with
the replacement of V° by V;"q+ g

« ozt(u - )

0g¢ - s)|%ds
Py - (t, 21, 20) = B [ < [Elpls)2ds+ Vi o (8, )T oM, Ol5z2(g0(t))]
(3.5.8)

Hence Tr 119,c (t 2, z), the trace of the heat kernel is

o
Trp.' (¢, 2,2) = Z Trpq ot g (B 25 2). (3.5.9)
g+gt +q "=k
0<g<dim{M;),

0<gt <t 0<q <y
Next, we notice that on (0) 4 (E;), the Hessian and the curvature terms appear-
ing in (3.5) commute. Then, because of (3.5.6) we get
- + g
Vat}*.q‘ (t,p) =€ e~ )Wq,q+,q‘ (t, )

q,

with W, g+ 4- (¢, ¢) the solution to the ODE on /\q o(0) T(E)

WQ‘J*RQ’ (s, (P) Woata (Su(p)( [sO]D Rtp(s) cp[[()s])

(3.5.10)
an‘f"vq-( 3 QO) = Id/\z(qo*)'.q‘ (M)’
Therefore quZJr, - (t, 21, 22) equals the following expression
o u+—u.—g q+ =)
. vy~ 22 +2q Ela [ -5 fo |<P(S)|2dsW - (t ‘P) [to]dzz( ( ))] ' (3'5.11)

Now we want to estimate each term in (3.5.9). This is done in the following
theorem which is the backbone of this section.

Theorem 3.5.12. If0 < ¢* or ¢~ < v;, then there exists C(t,r) > 0, depending on
t and r, such that for any z,,z2 € E;, |z <71,

wls

e o —at(gt+v] —¢7) ,—atanh(ta/2)|y1 |
[Papea- 202, ., SC(m) T -
Ifqt =0 and g~ = v, then for z € B(M;, ) and some constant C > 0 depending
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ont, r,

og _ -C a z —atanh(ta/2)|y|?
Trp,,,-(82,2) = O™ (W_(TT%:!)) ¢ ’

we

2 r " @ : —atanh(ta 2
+ B T (W (8 6)75 1) S(6())] (m) R

where the integration s taken with respect to the Wiener measure on M;, 7~ here
stands for the parallel transportation on AJ o (Mi)®N" ((E; )y(o)) with respect to the
connection Vv~ = VC@VY and W (t,¢) is the solution to the ODE on N0y (M) ®

A" (B o) of

Wi (s,9) = Wy (s,9) (710 0" Byt i) (3.5.13)
=1 a

d -
A% oy (MDBA" (B )y(o))

Proof. For the first case we can use the (B.1.6) to derive a heat kernel comparison
based on bounds of the ODE involved in. Therefore in this case one can easily get
the estimate by saying that W, .+ .- (t, cp)T(PVFE’O] is bounded by a constant depending
on the manifold M; and ¢, ». Thus

at(u?’ _”1‘_ —2g9% 424~ )

) _ﬁ + $)|2ds
Hpq’;tq_(t, 21,22)||32“21 < Ce 2 k=1 [e = o le(s)|?d (522(90(,;))] .

The integral can be recognized in terms of P of (3.4.15). Using the estimates in
Proposition (3.4.19) we get the required inequality at once.

For the second part, one has to notice that almost everything comes from the
f)bservation that the action of TLZI[SS,()]D*RE(?)T:[E),S] as given in (3.5.7) on A**" (E;)
is reduced to

dim(M;)
> (R (F(5,9), Fu(5,9)) Fi(s, 9), Fu(s, 0)) (F} Aig) o (B Avig,)
Jke,bm
Indeed, what one has to check is the fact the the other two lines in (3.5.7) are 0 on

/\Z‘O’"i— (E;), which for the second line is clear since any form in the space at discussion
here is a linear combinations of elementary forms Fj A---AFj A(F7)* A A(F)*,

while for the third line in (3.5.7) one has to observe that because
- B - e
(Z , T ) - (Rg(s)(Fj(Sv (p),Fk(S,(,D))Z , T >

is an antl-symmetric map, the third line contains only terms of the form (Fj* A g pk) o
((F) A iF,;) with [ # m, thus its action on the elementary form is 0.

From this discussion, W,

0.~ (t,¢) acts only on the horizontal part of A (E).
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Now looking at W, - (¢, )T, [t o> @nd taking into account that A% (E7) is one di_

mensional, a little thinking leads to the conclusion that the trace of W, - (t, )Ty, T, ”t 0

is the same as the trace of W™ (2, ¥)7y, o
So far we obtained the equality

: — 22 [¢ lpls)[2ds+ 25 - -
Trps!:),ui_ (t, 2, z) = BF= [e=F Jolo@Pds+ Sty (Wq (t,T,[l)Twr[t)O]) (5z(¢(t))]

with 1 the projection of the path ¢ on the submanifold M;.

In order to obtain the estimates on the heat kernel we try to make a comparison
similar to the one used in the proof of (3.4.19). Denote first

aty;

2 _z_ _ —
q(t’ z, u) — ]El‘z [6 fu lo(s)|*ds+ Wq (t, d})Tw[[t,Oj 6u(¢(t)):|
Basically we start with a function f with compact support and then write the equality

aty.

L' q(t’ Z, u)f(u)du = ]E#Z [ T f |lp(8 12d3+‘1 ( 7¢)T1‘;r[t|olf(¢(t))]
— e [Wq—(t, DTl ’/(.E‘) Q7 (ty, y1)f (¥(t), 7o (1)) dyl] - (3.5.14)

From here, the idea is to use the same kind of reasoning as in the proof of Proposition
(3.4.19). To wit a little bit, we point out that for |y| = || < r we have the following
inequality

o 7
1Q2(t,y,y) — Q{t,y,y)| < Ce™@® ((—> —atanh(ta/2)|y|?

7 (1 — e 2e)

From here, a similar choice of the approximate identity as the one in the proof of
Proposition (3.4.19) gives the last ingredients for the required estimates. O

From this theorem, with integration on B(M;, r/2) and elementary computations,
one has that

/ Trp s ‘o _(t,2,2)dz
s/

<0 (rr=m)

< Ce—at(q++ui_—q’) )

NS

e—at(q++u;—q‘)/ g—artanh(ta/2)lyl? gy, (3.5.15)
lyl<r/2

Therefore it tends to zero in the case 0 < ¢* or ¢~ < ;. On the other hand, in
the remaining case, an integration on B(M;,r/2) followed by the change of variable
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y — W'g and some simple calculations gives

TrpD? _(t,2,2)dz
/B(Mi,r/Q) 704,

= O(e™%®) +/

M;

M; _ _
B [T (W (6,075 ) G(0(0)] dz (3.5.16)
for a constant depending on ¢ and r.

Our next goal is to interpret Er" [Tr (Wq‘(t,i,[))”r;”w]) 5x(¢(t))] The idea of

doing this is to take the bundles F¢ = AL(M;) @ A* ((E)q)- Topologically, these
bundle are the same as AJ(T(M;) ®o(E]")), with o(E]") the orientation bundle of E; .
On these topological bundles one can define the differential on forms as in [5, Chapter
I, section 7). Thus their cohomology is well defined and is by definition H(M;; o( E;")).

From the analytical side, one can realize this by putting a connection on them and
representing the differential in terms of this connection. The natural connection on
this is the tensor connection, called V¥~ of the Levi-Civita and the vertical connection

on A ((E;).). Remark here that the latter connection is flat, and the differential
operator can be written as

dyw@s)=((F)"AVrw)@s+ (F)*Aw® (ngs).
for an orthonormal basis (F;) in M;. Thus, we get the complex

0— F° F! FamM) __, )
d

M; das, M; dar,

with the cohomology H(M;; o(E;")).

Now the bundles F7 inherit the natural metric form the bundles A?(M) and
A ((E;)z)- Using this metric we can define the adjoint of dir,» Opr,- From here, the

1

idea is to express the heat kernel of the operator
O = dy, 85y + 0. diy, (3.5.17)

with the notation D;" for this operator on g-forms. First one has the similar Wiet-
zenbock formula in this framework as

Di,— _ _A‘i,— + D*(R—)

where A»~, R~ is the Laplacian and the curvature of the connection V»~. Then, the
heat kernel of this operator can be written as

P (6, y) = BE (W (¢, )6, ((t))]
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Taking its trace on the diagonal and integrating over M, one gets
/ Trpg’_(t, z,r)dr = Tre ™%
M;

and with this and (3.5.16) one arrives to

z,—

/ T.rng -t z,2)dz = Qe %) + Tre ™94, (3.5.18)
B(M;,r/2) s

Finally, putting this together with (3.5.9), Theorems (3.5.12) and (3.4.9), (3.5.1)
and Corollary (3.4.45) one proves that there are constants Cy(t) depending only on ¢
and Cy(t, 1) > 0, C3(t, ) > 0, a(t,r) > 0 depending on ¢, 7 so that
Drl

i—
k—v
i

< C(t)r + Cyt, r)e o2 (3.5.19)

!
U Tepl(t, 2, 2)dz — 3 Tre
M

i=1
for all @ > a(t, ).
Letting a tend to infinity we have

lim sup < C(t)r.

a—00

1 .
I
f Tr p% (¢, z,z)dz—ZTre Sl
M

=1

Since this is true for any r > 0 and the left hand side does not depend on r, we get
the following theorem.

Theorem 3.5.20. For anyt > 0,

4 i, —
b
lim [ Trpg(t, 2z, 2)dz = E Tre *=* .
a—oo far I

Therefore, by (2.1.3), for any t >0
mk(t) - mk_l(t) +---+ (—l)kmo(t) >Br—By_;+--- (—l)kBD
with

mi(t) = 3 Tre e

Now, if we let ¢ tend to oo and use Hodge theory for this situation we finally arrive
at

Theorem 3.5.21 (Degenerate Morse Inequalities).
My — Mkg—1 +---+ (—1)km0 > B, —Bp_1+--- (—l)kBo (3522)
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where

{
mi = > _ dim H¥™* (M;; 0(E])),
1=1

with H*(M;;0(E™—;)) standing for the dimension of the cohomology group of M;
twisted by the orientation bundle of E . This inequality becomes equality for k = d.
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Appendix A

The Malliavin Calculus

A.1 Integration by Parts I

This section is heavily based on [7, Chapter 10]. In order to avoid repetition we will
refer to the proofs in there for those that are essentially the same.

In this section we assume that M is a complete Riemannian manifold with the
Ricci curvature satisfying:

—C(1 +dist(z,0)?)| X |2 < Ricy( Xz, X,) (A.1.1)

for some positive constants C' > 0 and for any x € M, X, € T,(M) where o is a fixed
reference point.

Consider a smooth map & € C®(O(M), Hom(R¢, End(R%))). Our perturbation
is going to depend on this map and here we shortly describe how. Our choice of =
that appears in [7, Chapter 10] is simpler. We take h € H!(R?), thls is, we take
h : [0,4] — R? such that there is a function h € L2([0, oo]; R%) with h(s fo
and set Z,(¢, f,w) = h(t). We add to equations in [7, 10.7] the equatlon for a map
O.(t,§,w) € End(R?) given by

Ds(t7 f, W) = Ds(tv f, W)G‘fps(t,f,w) (W(ta f, W)) (A12)
The space H{™ in paragraph 10.2.3 of the invoiced reference is here replaced by
HM (M) = O(M) x WM™ (o(RY)) x WIM(RY) x W™ (End(R?)).

First we choose an orthonormal basis in R? and the vector fields

§(t.h) : HO(M) — WHO(M))
H(¢, h) : HY(M) —» WO(RY)
Q(t,h) : HO (M) — WO (o(RY))
Ax(t,h) : HO (M) — WO (End(R?))
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given by

§(t,h)s(f, a,v,0) = Fs(f, a, h(2))
H(t,h),(f,a,v,0) = [ O,4(a)h(c)do
0
Qo(t, h)s(f, a, v, 0) = Q(1,h), (fa,0,0) (H(E, )5 (f, 2, v), h(2)) (A.1.3)
Qk(tv h)s(f: a,v, 0) QS(t,h)g(f,a,v)(o ( )eka h(t)) 1<k<d
Ao(t, h)s(f, a, v, 0) = 0,8 5,1, (f,a,0,0) (H(E, h)s(f, @, v, 0))
Ax(t, h)s(f. a, v, 0) = 0:65(h), (1,0,0,0) (Os(a@)ex), 1<k

for s € {0,1] and (f, a,v) € HY(M). With these definitions at hand we continue by
defining the vector fields, {%,(t, h), - - -, {¥4(t,h)} on H™ (M) so that
xﬂ(t’ h)(f,a,u,o) = (aﬂo(t,h)s(f,a,v,o))a + (al'l(t,h)a(f,a,v,o))v + (aAo(t,h)s(f,a,u,a))u (A14)

and for 1 < k <d,
X (t,1) 54,0, = €(O0(@)er)s + (Oauwh)hame ot (90@er v + (OnythyGavn)o- (A-1.5)

We define now for a given £ € R the vector field
B(€) : O(M) x R* x End(R?%) — End(R%)

by
B(&)(f, v, 0) = 06(¢).

For a given £ € R? define the vector field 2)(€), 1 < k < d on O(M) x R? x End(R%)
by

Then, one can prove the following Lemma, which is the analog of Lemma 10.22
in the cited reference.

Lemma A.1.7. If h is a smooth function, then for each piecewise smooth function
w € P(R?), and f € O(M), there is a unique piecewise smooth path

t € [0,00) — (p(t), A1), W(t), D(t)) € HW (M)
which is the integral curve of the time-dependent vector field

e —

(W(t), 6k>Rdxk(t, h)

e

t — Xo(t,h) +

WE

=
Il

1

starting at (§,0,0,1). In fact, for each m > 1, this path is piecewise smooth map into
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H{™ (M). Next, set

ms(t) = ‘S(t’ h)s(p(t)a A(t),w(t),D(t)). (A'1'8)
Then i )
Ps(t) = E(Wi(t))p, 0
P (t) = €(h())p, ) + AMAs(t))sp,
%Ws(t) _h(t) - ( W (t) with Wo —w (A.1.9)
As(t)
Ds(t)

In particular,

——

(30 1)) Xo(t, D) g0, = EHLE B)(F, 0, 0))stems 1000 (A.1.10)

(S(tu h)s)*xk(t: h)(f,a,‘u,o) = e(()s(a)ek)s(t,h)_g(f,a,u,o), 1< k < d.

Proof. This is entirely based on [7, Lemma 10.11] and the reasoning given in the proof
of [7, Lemma 10.22]. 0O

Our next goal is to get to the perturbed Brownian motion. We put this in the
following Theorem, which is basically the same as [7, Theorem 10.26].

Theorem A.1.11. Assume that h is a smooth function and that § € O(M) is given.
For each n € N, use w, to denote the polygonal approzimation to w and

te [01 OO) - (.]J(t, fv Wn), A(t: f’ Wn)) W(ta f’ Wn) t fv Wn ﬂ H(m

m>1
to denote the integral curve of
—— d —————
— Xo(t,h) + Z ) ex)raXr(t, h) starting at (f§,0,0,1).
k=1

Then, there exists a {B; : t > 0} -progressively measurable map

(t,w) € [0,00) x P(RY) —
(p(t, f, w), A(t, §, w), W(t,f,w), (¢, f,w)) € [] H™ (M)

m>1

such that, for each m > 1,

(p(t, £, wn), A(t, §, wn), W(t, f, wn), O, f, wn)) —
(p(t.f, W), At f, w), W(t,f, w), D(t, f,w)) in H™ (M)
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for Wy-almost every w € P(R?). Moreover, the Wjy-distribution IE”;H of

w € P(RY) — (p(t,f,w), A(t, f, W), W(t,f,w), O(t,f, w)) € P([ ] H"™ (M)

m>1
solves the martingale problem starting at (f,0,0,1) for
R L . — 2
CF = %5(t,h) + 5 > it h) (A.1.12)

k=1

Finally after changes on a set of Wy-measure zero we have
W — (p( ,*,W) (',*,W),W(',*,W),D(-,*,W))

e O ([O,oo) x O(M); () H("’)(M)) .

m>1
Proof. The proof goes on the same line as [7, Theorem 10.26], the only difference is

that we have to use the non-explosion and the estimates given by (7, 8.62] for the
case the Ricci tensor is bounded below by the squared distance. d

As an immediate corollary we give here

Corollary A.1.13. Assuming that h is a smooth function, f € O(M) is given, and
B, is defined as in (A.1.8), then PP-almost surely

P (1) = €h(t)) g, o) + MA(D)p,,  (s,8) €[0,1] x [0,00). (A.1.14)

Moreover, for each s € [0,1] and ¢ € C2(R? x O(M) x End(R?)),

PWL(0), B0, 9,0 - | (m(bsv,sp,A))

5 a I?";H—martingale, for
1
2B, A) = [ Ons(Ae)) (W) + 9 oh(r) ) o (A115)

Proof. Clearly, (A.1.14) follows from (A.1.9). From the martingale property part, we
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need to show that

[E30] (W(r), 57, h)u(p(r), A(T), w(r), D4(r))
= (DOEPA)+ 35 D) )WL), Bu(r). 0.0

k=1

Using (A.1.10) and (A.1.6), we can write for 1 < k < d,

X4, 0) g 00,000 (05 F(7, 1)s(f, @, v, 0), 0)
= (D(0u(@)e)) (5, 3 (7, h)s(f, a,v, 0), 0),

and so
Xo(ro ) 0(W,, §(r, h),(p(r), A(r), w(7)), D,)
— (DEEBA) 305 DO )W) Bur), D:(0)),
k=1

where (cf. [7, 10.10] and (A.1.5)), c2 . (7,P, A) is taken equal to

/ O s (A(T)) U (r, 0o ((7), A(r), W(r)) 0o (A(r))ex do.

Finally, we point out that by the last equation of (A.1.3)

d

= (1, h)o(p(r), A7), W(7)) Oy (A(7))ex, = Rap, (ryh()
while
d d
Z Os(A(7))er)) Z
By (A.1.10),

xO(Ta h)(f,a,v,o)(p(vv S(Tv h)-?(f: av, 0)’ U)
= (@(H(T7 h)s(f’ a’ U’ 0))(70) (f’ &(T7 h)s(f) a7 v’ 0)7 o)’

and from this and (A.1.3) the result follows.

The next step is to find the Radon-Nikodym factor that eliminates the ”drift”
term in the expression of the operator above. In order to get started, for any R > 0,
choose a compactly supported smooth function ¥g : O(M) — R, such that v is
1 on Usgr = n1(B(0,2R)), where B(o,2R) is the ball of radius 2R in M and 7 is
the projection from O(M) to M. For P(¢,f,w) and A(t,f, w) given by (A.1.8) and

115



Theorem (A.1.11), set

B2 3,4) = o (- [ 070 A awo) - 5 [ 1 ar)

(A.1.16)
with dw taken in the sense of It6 and

55, A) = [ nBolr)Onel(r)) () + P h(r)) do

Theorem A.1.17. For any function ¢ € CHR? x O(M) x End(R%)),
B, ) (Wt o), B0 Outt o) = [ (909, 4)
d
Zl ) W(r, §,w), Bs(7, f, w), s(7',]‘,w))d'r] (A.1.18)

k=1

is @ Wy-martingale, for

2P A) = [ (1= (Balr)))0na ) (R0) + 380 o0(0) ) do

0

Proof. To show that (A.1.18) is a Wy-martingale, we use Ité’s formula and the rea-
soning given in the proof of (A.1.13) to get first that

(Wi, w). B0, D8 o) = [ (@(d?’R(ﬂ‘B, 4))
d

+30 5 (@)’

k=1

(;O(WS(T’ f, W),‘,BS(T, fa W), DS(T’ f, w))dT

N’

/t W, (7, f,w), B f, w)d(w(r), co)

Il
WMR

From here, using
dERR(t, P, A) = —EPT(t, P, A)ORF(7, P, A), dw)

and Itd’s formula one can prove the rest. ([l

From this result we get the following Corollary.

Corollary A.1.19. Denote by (r : P(O(M)) — [0,00), the first exit time from
the set Uz = m~'B(o, R). Then, for large enough R, s € [0,1] and ® : P(R?) x
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P(O(M)) x P(End(R?)) — R which is bounded and F;-measurable

IEWd [E;I‘R(' A CR)(I)(WS( A CR’ fa W)), ms(' A CRa f: W), ‘DS(' A CRa f’ W))]
= E™ [®(w,p(- AR, f, W), 0(- Alr, f,W))] (A.1.20)

where o(t, f, w) = Oo(t, f,w). Therefore,

dismwd [D(W( A Cry F, W) Bl A Cro o W), Ds(- A Crs W)

8=0

thCn
= B (8w, G ), A G fow)) [ )+ St ).

(A.1.21)
and if the function ® s also smooth, then
EM4 ([ X (h)®] (w,p(- A (g, f, W), 0(- A g, f, W))]
tACR
— [@(w,p(- NG fow),ol A G frw)) [ () + 3%wegh(r), dw(r)>] |
(A.1.22)
where
[X(h)‘I)] (Wa P( A CR: f: W)? 0(' A CR, f,W))
_ d%cp(ws(- A Gafow) Bl A G ) D A G fow))| - (A123)

Moreover if ®, VU are two bounded F;-measurable smooth functions then

8 — Ewd [@(Ws( A CR: fi W)), ;'ps(' A CR: f’ W)a DS( A CR) f7 W))
- U(w, p(- Alg, f,w),0(- A (g, §, W))]

15 differentiable at 0 if and only if

s — E™[®(w,p(- A (g, f, W), 0(- A g, §, W)
lIl("Afs( A CR: fa W)), ms( A CR} f)w)a Ds(' A (Ra fa W))]

15, in. which case we have the following integration by parts formula

EY4[[X (h)®] (W, p(- Alr, |, W), 0(- A Cry F, W))U(W, p(- A Cr, f, W), 0+ A Cr, T, w))]
- _EWd [q)(wv p( ACRa fa W)’ 0(' /\CRr fv W)) [ lI!] (W1 p( /\CR.* f) W), 0(' /\CR: f: W))]

X (h)
tACR .
+ BV [(@0)(w, p(- AR, §,w), 0(- Alr, f,w)) /0 <h(¢)+%%w)h(r),dw(r))]-
(A.1.24)
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Proof. Using Theorem (A.1.17), the second equation in (A.1.9), and the continuity of
the function h, one can show that for large R, (s,7) € [0, ]l_l x [0,¢] — Ps(r A LR, f, W)
is staying inside Usr and that under the probability QZ’, on P(R%) x P(O(M)) x
P(End(R?)) defined by

Qy(C) = EW [EMR(t, B, A), (W.(t, f, w), Bu(t, f, W), D,(t, f,w)) € C]

©(Ws(t ACr), Bs(t ACr), Os(t ACr))

th¢r 24
3] @) oWl Balr), Du(r)ar

isa @:'fR—martingale for any function ¢ € C2(R? x O(M) x P(End(R%)). On the other
hand one can show that the martingale problem for the operator 35_, (9(ex))* on
RIxO(M)xEnd(R?) is well posed, or equivalently stated w — (w, p(-, f, w), o(-, f, w))
does not explode. For more reference one can look at the proof of |7, Theorem 10.26}.
Hence, using [7, Theorem 4.37] we get that Qg’fR [ F¢r 18 the same as the distribution
of w € P(R?) — (w,p(t, f,w),0(-, f,w)) € P(RY) xP(O(M)xP(End(R?))) restricted
to F¢,. The rest is just a simple application of [6, Theorem 3.3.5] and standard
measure theory. O

A.2 Integration by parts II

In this section we try to make use of the formulas we got in so far. Especially the
idea is to show that stopping time can be eliminated under suitable conditions.
We begin with the following definition.

Definition A.2.1. We say that a map A: O(M)x N — V', where N is a smooth Rie-
mannian manifold and V' is a normed vector space, has at most polynomaial growth n

all its derivatives if for any positive integer n, there are N, > 0, C,, > 0 with the prop-

erty that for any vector fields X,,Xa,--- , X, € {(X,Y) e TOM) x TN ||n.X| < 1,|[Y| £ 1}
and any (f,y) € O(M) x N,

“(xl)ﬁ,y) Xz anH < Co(1 + dist(f, 0)) ™ (A.2.2)

with || - || standing for the norm on the vector space V.

Assumption 1.In this section we assume that the map & we considered is a map
in C°(O(M), Hom(R?, o(d))). Also we assume that & and Q are both of at most
polynomial growth in all their derivatives in the appropriate sense.

These assumptions will make the integrability conditions sufficient to pass to the
limit in Corollary (A.1.19).

We will work out here a case which is sufficient for our needs, nevertheless it can
be extended to other situation as well. For what we need we take a vector space V
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and a solution to the ODE

{L'Lt(p, 0) = U (p, 0)A(p(t), 0(t)) (A.2.3)

Hy = Iy.

for given paths p, o.

Assumption 2. We assume that A : O(M) x End(R?) — End(V) is a smooth
map of at most polynomial growth in all its derivatives. We assume that there are, a
smooth function ¢ : O(M) — R and a constant C > 0 such that for any §

(U(F,0)¢,8) < ¢(NEI*, for £ € V, (A.2.4)
¢(f) < Cdist(nf, o). (A.2.5)

The main result is the following.

Theorem A.2.6. Suppose f : M — R 4s a compactly supported smooth function, F :
O(M) — R its lift to the orthonormal frame bundle, G € C*°(End(R?, o(R?), End(V))
with at most polynomial growth in all its derivatives and X1, - , X,, smooth horizon-
tzl vector fields on O(M). Then there etists a function U(t) € (50 LP(Wa, V) so
that

IEWd [ﬂft(p(a f: W): 0('1 fv W))G(O(t, f, W) (xl e an) (p(tv f’ W))]
=E™[T(t, w)F(p(t,f,w))]. (A.2.7)

If, f € T C O(M), mo(w) = inf{t > 0,p(-,f,w) € '*}, then U(t) on the set {t < 1}
depends only on G [T, Q I T, A [ (T x R?) and the support of f. Moreover, there

ezists T(t) € (50 LP(Wa) with the property

19(t, w)ll < F(t, w) exp ( | ot w))da) | (A.2.8)

In addition assume that the function f depends on a parameter z € N with support
in K C M a compact set for all z, where N is a smooth manifold and the function A
also depends on this parameter z € N so that the conditions in (A.2.4) are fulfilled
untformly, then the maps

(f,2) € O(M) x N — ¥(t)

and
(f, 2) € O(M) x N — E" [¥(t, w) F(p(t, f, w))]
can be taken to be smooth maps.
Proof. The idea is to use the integration by parts as we established for the stopped

perturbation and then to show that we have enough integrability conditions to let
the stopping time go to infinity.
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First notice that because the function F has compact support, we can assume
that the vector fields X; have compact support. Next notice that for a compactly
supported horizontal vector field X, there are compactly supported smooth functions
ai, © = 1,---,d, such that ¥; = S7_, a;(f)€(ex)s. This reduces the problem to
the problem when all vector fields are of the form a@(e;), where a is a compactly
supported function.

The next observation is the fact that for any function a : O(M) — R

(X (b)) (5. f, w)
= (a2 ([ gt i) o ) o) (b, w)

where hy(s) = e, for s > 0 and ®,(p) = a(p(t)). For the function F, there is no
A part so that applying this repeatedly, we can freed the function F from all the
derivatives. We also point here that the derivatives on the left are easily controllable
for functions with compact support.

Now we are left with the estimation of the derivatives of stochastic differential
equations. Here we mention only two cases. One is when we have a purely stochastic
integral, for example like the one involving the Ricci curvature, where we say that

X(b, )+ X{h) [ {h(r) + 39, dwi(r)

1

=3 /0 ((€et)niriwy - - Elen)R) hi(7), dw(7)). (A.2.9)

The other case is the case when we have to estimate the derivatives of G(o(t, f, w))
or (p(-,f,w),0(-,f,w)). In this case we use induction to step from one case to
another.

We deal first with the case of o(¢, f, w). We start pointing out that because & is
skew-symmetric, the solution for o(¢, f, w) is orthogonal matrix. Set

o™(t)=X(h,,) - X(hy)o.
The equation for o! is given by
o' (t, f, W) = o' (t, f, W) Gy 5wy (0dw, (1, f, w))

ot o) (&) 43 ( [ Oyepmlew(r b)) ) 6 (oawltfw)

p(t,f,w)

+ 0(2, §, W) St 5.w) (h(t)dt — /0 Qpirfw) (0dW(T), i (7)) 0 dw (2, T, w)) . (A.2.10)

In general the solution to the stochastic differential equation
dXy = X,Gpiugon)(odwi(t, |, w)) + dZ(t)
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in the Stratonovich form is given by

/0 Z(t)o(r,f,w)*o(t, f, w).

From here, using Burkholder’s inequality, the assumptions in the beginning of this
paragraph and the estimates in (7, Theorem 8.62], we deduce that the o!(¢) is in
ﬂp>0 LP(W,, V).

In the same way we can estimate higher derivatives. The same thing works, with
the only change that at step k the equation satisfied by o* is written in terms of the
lower derivatives and derivatives of G and the curvature, we already know how to
control.

We point out the general structure of these derivatives, namely they are iterated
Stratonovich integrals where the integrands are polynomially bounded in terms of the
distance function on M.

In the case of i;, set

W = X(hy,,)- - X(hy ).
We give now a Lemma that shows us how one can estimate the size of ;.

Lemma A.2.11. Let (H,{(,)) be a finite dimensional vector space with an inner
product. Let s € [0,00) — X;,Y; € End(H) be two continuous maps. If Wy is the

solution to _
W, =W, X, + Y,

then,
2} H(o)do s - Jesry+var
IWel> < e® (||W0||2+/ Yo% @ )
0

for any s and for any local integrable function f with the property that (X.£,¢&) <
F(8)|E|? for s > 0.

Proof. The proof follows from the fact that W» = X*W? +Y,* and that for any vector
£ € H we have

d
ZIWIER = 2(W3¢, XIWIE + Y76) < (2f(s) + DIWZEP + Ye .

From here a standard argument ends the proof. O

Now using this Lemma with ¥ = 0 and Wy = I one can get the first estimates on
$1; as

Ue(p (-, f, w),0(,f,w)) < Cexp (/;¢(P(a,f,w))do) .

Next, taking the first derivative we get that

{dui = WAp(L, §,w), o(t, f, w)) + LA (p(t, f, w), o(t, f, w))
s =0
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where as in the equation (A.2.10) ! is written in terms of the derivatives of the vector
field *A the curvature and the derivatives of 0. To estimate this first derivative we use
the above Lemma with Y = 4,2 (p(¢,f, w), o(¢, f, w)) together with the estimate on
the 4l to get that

e < oo | (oo, fow))do ).

For higher derivatives we proceed in basically the same way. We point only that we
get some estimates of the form

s < 5t exp ([ otplot w))do

where T¥ is a multiple integral (involving eventually stochastic integrals) with each
integrand a polynomially bounded quantity in terms of the distance along the path
p(“i Z, W)

Using [7, Theorem 8.46] one can justify the integrability of the exponential of the

distance function, exp ( fot Cdist(p(o, f, w))da) for any positive constant C.

The proof ends with the remark that we can make the integration by parts with
the stopped path and then, because all our things are integrable, one can pass R to
infinity.

The rest of the proof is easy and is left to the reader. O

Remark A.2.12. One can estend the validity of this theorem if one replaces the
ordinary differential equation (A.2.3) corresponding to U by a stochastic differential
equation of the form

{ﬂt(w) = (W) (Ql(p(t, f,w),0(t,f,w)) + S, Bi(p(t, f, w), o(t, f, w))d(w(t), ei))
Uy = Iy,

with A, B;, ¢ = 1,---,d polynomially bounded in all thir derivatives and B; skew-
symmetric maps.

As a typical application of this theorem we point out the following case. Take a
Riemannian manifold and a compatible connection V which has the same Laplacian
on functions as the usual Laplacian. Assuming that the torsion of V and the curvature
of the Levi-Civita connection have at most polynomial growth at infinity, one can
apply the machine developed here to study integrals of the form

EYe [U(t, 2, )Ty 3w 111.0)0 (Pt 7, W))]

where 7V is the parallel transportation with respect to the connection V and U
satisfies a differential equation of the following form

dU(t,z, w) = U(t, 2, W)y, wyiieo A0 2, WNTY o vogdt
U(O, x, W) = Id/\r(M)-
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To give a hint here we only point out that in order to make this amenable by the
methods we developed here we can denote by

v
o(t, z, W) = Tp(z,w)I[t,0] Tp(-,z,w) [0,

where here the 7 is for the parallel translation with respect to the Levi-Civita con-
nection. Then we can rewrite everything in terms of the parallel transportation with
respect to Levi-Civita connection and this map o and lift things on the orthonormal
frame bundle. The last piece is the writing of the delta function in the distibutional

s€nse as
XIXZ cee Xdu

for a continuous function « (this a local Euclidean problem!}. Taking a smooth
approximation f, of u, we get an approximation of the delta function by smooth
functions. Then we just use the above theorem to justify the existence of the integral
with resprect to the delta function.
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Appendix B

About Semigroups and Heat
Kernels

B.1 General Results

The theme of this section is to give some statements about the existence of the heat
kernel of some operators. We also show here how one can get bound one heat kernels
by looking at the semigroup.

In this section we assume that we have a Riemannian manifold M with the cur-
vature at most polynomially growing at infinity and with

—C(1 +dist(z,0)%)| X |? < Ric.(X., X.).

This suffices for the existence of the Brownian motion on M.
We take the class of operators on forms on M

d
L=-AY+> B(E;)Vg +C (B.1.1)
j=1

where the data satisfies:
1. The connection V obeys

(a) compatibility with the metric on M;

(b) V-Laplacian on functions is the same as the standard Laplacian;

2. B,(X.) = (D*5p).(X.) + (D*S1).(X,) + -+ (D*Sk).(X,) in the notations of
Definition 1.5 with the crucial supplementary condition that B,(X,) is skew
symmetric for any z € M, X, € T,(M);

3. C=D*1y+ D*T\ + -+ + D*T, for some smooth tensors 7.
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4. there is constant K such that

(C.X.+ Y B(E)IX., X.) < K| X,

i=1

We have the following Lemma.

Lemma B.1.2. Let (H,{,)) be a finite dimensional vector space endowed with an
inner product and X,, Yi, i = 1,---,n locally bounded progressive measurable pro-

8

cesses End(H)-valued such that Y} is skew symmetric fori=1,--- n. Let V; be the
solution to the stochastic differential equation

4V, = Va(Xuds + Y0, Yidwi(s))
Vo = Id,

where dw; stands for the Ito stochastic differential. If T, s the solution to the
Stratonovich equation

dT, =T, 0d Y p Jo Yidw,(o)
Ty = Id,
and W the solution to the ODE

Ws = WSTS (XS - % Z?:] (},‘9{)2) Ts_l
WO = Id.

then T, is unitary for any s and
‘/3 = WsTs-

Thus, estimates on the size of V; reduces to estimates on the size of Wi,

Proof. Rewrite the equation for V in the Stratonovich form:

{st =V, X ds+V,0d> 1, f; Yidwi(o) — 2d(Vs, f; Son Yidwi(o))
Vp = Id.

Now because V, = Id + [; U, Y i, Yidwi(o) + [, VoX,do, we get that
Vo, [ Y Vadwo)) = (| 0.3 Veawi(o), [ 3" Vidwy(a))
0 =1 0 i=1 0 j=1
= / U,YiY}ido
i=1v9
n s

= f U, (YH2do.
0



Then the equation for V is

n s 1 n _
dV,=V, | od Yidwi(o)+ | Xs— =) (YH)?)ds]|.
(w3 i (=3 007 )
On the other hand taking T we can see that

dT; = (Od Z‘l 1 fo dW, 0)) T.:
Ty = Id,
and then
od (TsTy) = (odTs) Ty + Ty 0 dTy

=T, (odZ/ Yidw,(o )T*+T (odZ/ )*dw;(o )T;

=0
because (Y)* = =Y. This proves that T}, is an isometry.
Now if W is the solution to the ODE above then:
odW, Ty = (odW) Ty + W 0 dT;

m

=WS(T (X—EZ(W)) )T+WTodZ/ )*dw; (o

i=1

= W,T, (odifs Yidw(o) + (Xs — %zn:(yg)z) ds)

=1

with the starting WyT, = Id. Thus by uniqueness we get V, = W, T,. O

Theorem B.1.3. The semigroup of the operator exists and we have the following
formula. For any compactly supported function,

(Pf"‘)) (z) = EWd [U(t’ 2 W)TX-,z,w) f[t,O}w(p(t! Z W))]

where U satisfying

dU(t,z,w) =U(t, z,w) (C‘(t, 2, W)dt + i By(t, z,w)dwj(t))

U(O, z,w) = Id/\z(M)

with
Clt, 2, W) = Tyl oy 1100 Crttia ) oty iog» a0d (B.1.4)
BJ (t, x, W) = ‘Tpv(' " w)[[t,O]B (TX_J,W) 0.4 Ej)p(t,:r,w) TIZ'JHW)[[OJ] (B15)
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In this case the heat kernel p(t, z1, z3) : /\’;2 M — /\:1 M of such operator ezists.
Moreover, if the tensors B and C have at most polynomial growth at infinity in all
their derivatives, then the heat kernel has an expression via the Malliovin calculus

pL(ta 21, 52) = EWd [Ua (t! 21, W)TZ-,zl,w) 1t,0] 622 (p(ta 21, W))] :

Proof. Exactly as in section (2.2.2), we can prove that the expression of the semigroup
is given by that formula. Here we have to point out that in order to justify the
integrability, we use (B.1.2) together with (A.2.11) to show that U is a bounded map.

Now, the only thing that needs some explanation is that about the existence of
heat kernels. For this we mention that the proof outlined in {7, Theorem 6.25] works in
this case as well because the semigroup in discussion here enjoys the same properties
as the one dealt with in the reference. |

The following proposition shows how one can compare heat kernels based on com-
parison of the semigroups.

Proposition B.1.6. Let L be an operator in the class described. Assume that there
is a smooth function ¢ : M — R bounded from above such that with

(C:X. + > B(E)IX., X,) < ¢(2)|X|?
i=1
for any z € M. Then
”pL(tJ 21, ZZ)HZZ,ZI S p¢(t7 21, 22)

where the last one is the heat kernel of the operator A + ¢ on functions.

Proof. Using the expression for the semigroups we get the bounds on the semigroups.
Then by taking an approximate identity that tends to the delta function in distribu-
tions, it is an easy step to the heat kernel estimates. O

Remark B.1.7. Note here that we do not need the representation via the Malliavin
calculus for the heat kernels in this proposition. What we need is the existence of the
heat kernels and the integral representation of the semigroups.
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