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ABSTRACT

A recent analysis by the Tufis Center for the Study of Drug Development estimates that the cost
of developing a single new chemical entity (NCE) into a successful therapeutic agent is $302
million. This figure is largely dependent on the expense of investigating NCEs that ultimately fail
to be approved for use: between 70 — 90% of NCEs do not achieve New Drug Application (NDA)
approval, and many of these failures are identified during the later, more costly phases of drug
development. The exponential growth in the number of putative NCEs as a result of
combinatorial chemistry and high-throughput screening has only confounded this problem by
significantly increasing the number of early-phase NCEs under consideration for further costly
development in human clinical trials.

[t is widely agreed upon that there are 3 major categories of reasons for drug failure: safety
(toxicity), efficacy, and economics. This thesis is concerned with developing a Bayesian domain-
knowledge probabilistic mode] (called Pharminator) to address the first two of these categories,
with a goal of predicting clinical success of an NCE. Pharmacoeconomic modeling is a vastly
different domain compared to Pharminator’s clinical trial domain, and is beyond the scope of this
thesis. While several clinical predictive models have been described in the literature over the past
10 years, the ongoing costly failure rate in drug development warrants developing more reliable
predictors of NCE clinical success. The number of NDA approvals in 2002 fell to a 5-year low of
18, compared to 30, 35, 27, and 24 in 1998, 1999, 2000, and 2001 respectively, despite rapidly
increasing numbers of NCEs as a result of high-throughput screening and combinatorial
chemistry, Therefore, previous decision models have had no apparent impact on this problem.
The Pharminator model combines knowledge of drug development logistics, existing data on
NCE attrition rates, and Bayesian decision theory in a manner that may improve upon the
performance of previously described models.

The product of this model is an application to be used by drug development teams at the Phase
[/Phase Ila time point for a given NCE that has passed the FDA Investigational New Drug (IND)
screening process. The users are prompted to answer several key questions about the NCE. The
answers provide information regarding which prior probabilities and conditional probability
tables are to be used in the model, as well as the observed data upon which prediction will be
made. The output is a numeric and graphical (distribution plot) report of the prior and posterior
probability distributions for clinical success, safety and efficacy. The application is demonstrated
on one fictional agent and one real agent designed to demonstrate key behaviors of the model.
Retrospective and prospective testing and validation will continue beyond the completion of this
thesis in order to optimize the performance of this model.

Thesis Supervisor: Isaac S. Kohane, MD, PhD
Title: Director, Children’s Hospital Informatics Program, and Associate Professor of Pediatrics,
Harvard Medical School



A Background

Al. New Chemical Entities: Selection and Development

The USA is known as a world-leader in innovation. The drug development domain is an excellent
example of America’s innovative potential, with many breakthrough medications having been
discovered and developed in the USA. This degree of innovation requires consistently huge
research and development expenses, and much of this cost is borne by patients and their insurance
plans. A recent analysis by the Tufts Center for the Study of Drug Development estimates that the
cost of developing a single new chemical entity (NCE) into a successful therapeutic agent is $802
million (in 2000 dollars), with clinical phase costs of $467 million, and taking into account “time
costs” related to the length of time from Investigational New Drug (IND) approval to New Drug

Application (NDA) marketing approval '. The $802 million figure is crucially dependent on the

proportion of NCEs that fail during the clinical trial development phase *°. Confounding this

problem is the relatively recent adoption of combinatorial chemistry and high-throughput
screening for potential NCEs, significantly increasing the number of early-phase NCEs under
consideration for further costly development in human clinical trials. Despite the recent explosion
of potential new drugs, the annual rate of NDA approval hit a 5-year low in 2002, with only 18
NDA approvals, compared to 30, 35, 27, and 24 in 1998, 1999, 2000, and 2001 respectively *.
The only recent improvements in the drug development process are the decreases in mean
residence time (the time between IND and NDA approval) by 1.5 years and in median time to
research abandonment by 0.8 years, suggesting that drug developers are making faster decisions

regarding research failures °.

The drug development process consists of several phases and milestones: pre-clinical studies,
IND approval, clinical trial phases VII/III, NDA approval, and phase 1V (post-marketing
surveillance for idiosyncratic adverse events and potential alternate indications). The patent life

of a given NCE typically begins at the time of IND approval and lasts for 20 years, but financial



return does not commence until NDA approval is granted and may be short-lived if competitors
release similar agents. It is therefore in the pharmaceutical industry’s interest to terminate failures
early, and to accomplish successful development phases as quickly as possible without
compromising the quality of the clinical trials. This is a delicate balance between financial
constraints, proper conduct of clinical trials & good clinical practices, and ensuring that
regulatory requirements for approval will be met. It is important to note the difference between
the innovative development of an NCE and the development of more efficient medications, The
latter involves improving on already successful medications by (any or all of) reducing toxicity,
increasing potency, reducing the dosing schedule, or by changing to an easier route of
administration. Improving a successful agent’s efficiency is clearly not as risky as is the

development of an NCE, and is rarely a major source of lost revenue.

Analyses of drug development failure consistently reveal that safety, toxicity and economics are

the three most important causes of drug failure °. Pharmacoeconomic modeling is a vastly

different domain compared to the clinical trial domain of the approach described herein, and is

bevyond the scope of this thesis. However, the impact of safety and toxicity on NCE failure is

significant. The cost of an NCE that will ultimately fail is directly proportional to the length of

time between IND approval and termination of development. It follows that earlier termination of

NCEs destined for failure results in significantly more savings with the added benefits of limiting

patient exposure to potentially unsafe and/or ineffective investigational agents. as well as freeing

up clinical trial resources for other more promising agents in the development pipeline. Analyses

of the distribution of research terminations by clinical phase have shown that over 60% of
terminations occur during phases II and I1I; that is, later in the drug development process °. Also,
because the later phases are more costly, earlier termination of even a fraction of later phase
failures results in a factoring of savings: terminating only 5% of all phase III clinical failures in

phase I would reduce out-of-pocket clinical costs by 5.5 —7.1% ©. However, over-zealous



termination of NCEs will impede the development of innovative, breakthrough therapies. The

decision process must balance the cost of terminating what would be a successful NCE against

allowing an eventual failure to proceed through phase ITI. Pharmacovigilance is a difficult and

risky task.

A2. Published Approaches to Decision Analysis in Drug Development

The aim of this thesis is to devise a Bayesian belief network model (called Pharminator), to
calculate the posterior probability that a specific NCE will succeed or fail based on (1) prior data
regarding success rates for NCEs of the same therapeutic class and source, and (2) the NCE’s
therapeutic indices, iz vitro/ in vivo proof of concept data, and proof of concept data in humans

from Phase I and early Phase IT studies. The main distinction between Pharminator and

previously described models is that Pharminator focuses on predicting the outcome of a

specific NCE. Other models ***""'® have taken more of a population-based analysis approach,
yielding valuable data on overall success rates, but not really addressing the needs of drug
developers concerned with the termination decision for a single, specific NCE. Other Bayesian
approaches described in the literature differ from Pharminator with respect to the domain to
which Bayes theorem is applied. Published Bayesian approaches to pharmacovigilance compare
the benefits of Bayesian statistics over frequentist approaches and focus on the utilization of
Bayesian statistics for the analysis of clinical trial data which is in turn used to define “stopping

» 11-14

boundaries (explored in detail below). Bayesian theory has also been used to facilitate drug

development-related tasks such as determining clinical trial sample size '

and designing
clinical trials . Yet another proposed use for Bayes theorem is as an alternate approach to
utilizing population pharmacokinetic data to predict toxicity in ongoing clinical trials ®, These
are all clearly different tasks from the aim of this thesis, which is neither concerned with the long-

standing Bayesian-frequentist debate, nor with the utilization of Bayes theorem to analyze clinical

trial results. Pharminator is specific to individual NCEs rather than individual patients or




individual studies, and is much more broad in scope in that it aims to predict safety, efficacy

and NCE clinical success for a specific NCE in question.

At the time of this writing, a review of the literature for decision analytic approaches to
pharmacovigilance yields several publications of interest. Berry et al adopted a Bayesian
decision-theoretic approach to determine “stopping boundaries™ for the development of an NCE
" Their approach utilizes accumulating information on the NCE’s performance to determine at
which point the clinical trial’s evidence of efficacy is sufficiently negative that the trial should be
stopped. The authors argue that if prior data are “positive, then one should be willing to tolerate
somewhat more negative results in the current clinical trial than if previous evidence is also
negative.” Given that this manuscript was published in 1988, without the benefit of hindsight of

the past 15 years’ 70-90% NCE failure rate, the authors’ argument is representative of a

dangerous and costly assumption: that the NCE’s clinical trial data can be ignored if it is negative

in the context of positive prior data. A counter-argument could demand that the posterior

probability distribution should be relied upon to reflect the updated belief that incorporates prior

data and the NCE’s most current evidence, and that if this posterior probability distribution

reveals poor performance, serious consideration should be given to terminating the NCE’s

development. Another difference between Berry’s approach and Pharminator is that Berry’s
approach focuses on efficacy in isolation. Pharminator utilizes a Bayesian belief network to relate
safety and efficacy as independent variables, conditional on the common parent (root) node,
clinical success. The root node’s prior probability distribution is constructed based upon
extensive data on NCE failure rates stratified by therapeutic class and NCE source (described in

detail in Section B). Berry et al also state “the prior distribution is subjective where the ‘subject’

is the pharmaceutical company.” This forces one to predict the posterior probability for a

pharmaceutical company rather than for a specific NCE.




Spiegelhalter et al make a cogent argument for the superiority of Bayesian over frequentist

models for the analysis of clinical trial data " The authors’ are promoting the use of Bayesian

statistics to analyze the outcome of specific ongoing clinical trials. Their argument is not relevant

to the model of this thesis. Pharminator utilizes the NCE’s characteristics within the framework

of a Bayes network to predict the outcome for a given NCE; clearly a different use of Bayes

theorem compared to approach advocated by Spiegelhalter. Similarly to Spiegelhalter, Johns and
Andersen describe the utility of predictive probabilities for interim analyses of phase II and phase
111 clinical trials . Pharminator focuses on carlier phase decisions so as to avoid costly phase 11

and phase 1I1 trials. Pallay describes the use of Bayes theorem for economically oriented futility

analyses of ongoing phase I clinical trials *°. This is vastly different from the conditional

dependencies incorporated into Pharminator, which relates clinical success, efficacy, safety,

therapeutic indices and proof of concept data to update prior beliefs pertaining to the NCE’s

therapeutic class and source. Taken together, the persistently high rate of NCE failures is the

strongest evidence that these previously published and widely adopted approaches do not appear

to enable drug developers to be sufficiently accurate in their pharmacovigilance decisions.

A3. Aim

The aim of this thesis is to devise an approach that will facilitate improving the efficiency of

development of NCEs. The product of this model is an application (Pharminator) to be used by

the drug development team at the phase I/early phase Ila time point for a given NCE that has
already passed the IND screening process. The user is prompted to answer several key questions
about the NCE (detailed below). The answers provide information regarding which prior
probabilities and conditional probability tables are to be used in the model, as well as the
observed data upon which prediction will be made. The output is a numeric and graphical
(binomial distribution plot) report of the prior and posterior probability distributions for clinical

success, safety and efficacy.



B. Model and Algorithm

Bl. Network Structure and Rationale

21

A Bayesian Network (often referred to as a Bayesian Belief Network (BBN) or a ‘Bayes Net’)

is defined as a directed acyclic graph encoding assumptions of conditional independence, with

stochastic variables represented as nodes within the network, and inter-variable dependencies

represented as inter-nodal links. In addition to a graphical model, a BBN also requires certain

parameters to be defined in order to be utilized for probabilistic inference. Therefore, it is

necessary to specify the conditional probability distribution for each node. For distributions with

a binary outcome (i.e. 2 states), the conditional probability distribution can be represented as a

2x2 conditional probability table (CPT). These tables specify the probabilities that the node is

in state (0,1) given that its parent is in state (0,1). The CPT for the top (root) node, which has no
parent node, is that root node’s prior probability distribution. Assuming conditional
independence, and utilizing the chain rule of probability, the joint probability for a network

consisting of a root node, R, that has n child nodes, C, C;, ... C, can be calculated:;

P(R, Cy, Ca, ...Co) = P(R) * P(C, | R) * P(C4| R) * ... P(C,, | R)

Likewise, for the 3-layer BBN in Figure 1 below in which the root node has 2 child nodes and

each child node has 2 child nodes (i.e. that are “grandchildren” to the root node), the joint

probability for the network can be calculated as in Formula | below:



Figure 1. An example of a 3-layer BBN. R = root, C= child, G= grandchild

Formula 1: Calculation of the Joint Probability Over a Bayesian Belief Network

PR, € Crnlyy Gy Gy Gy

=PR}*PCIR *PIC, IR * PIG, 1C ) * P(G L, 1C ) * PGy, 1€, 1 ¥ PG, 1Cy)
f

= I P(node, | parent)
i=0 i

for n nodes

The inner-layer nodes for this network are referred to as hidden nodes, and the lowest layer

nodes as leaf nodes. Calculating the Bayesian posterior probability distribution of the root node

given that the leaf nodes are in a specified state is a ratio of the sum of joint distributions. For the
example network described above, calculating the probability that the root node is in state ‘F”

(false), given that all 4 leaf nodes are in state ‘“T” (true) is achieved as follows:

Formula 2: Example Calculation of Root Node Posterior Probability
PR=FC).Cp, G, =T. Gy =TG,,=T. Gy =T

= £ PR=F.C=v G, G, = TGy =T. Gy =T, Gy = T)
vE(T,F} welT, F}

b z Z PR=x.C=nCpu, G =T, Gy =T. Gy =T. Gy =)
X€T, F} vE(T, F} welT, F}
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Each of the joint probability distributions in Formula 2 can be calculated utilizing Formula 1.

In this way, Bayes theorem can be applied to a given BBN. At the core of the Pharminator
algorithm is a BBN encompassing the most crucial clinical variables in pharmacovigilance
(Figure 2). The structure of this network is designed to include only those variables believed to be
most critical to predicting NCE failure, based on the literature, the author’s training, and

consultation with drug development experts.

Clinical Success

Efficacy

v
TE_Vital ’ i vitro signal | | it vive Signal | Signal in bumans

LEGEND:

Ti= therapeutic index

TE_Vital=lowest T1 for toxicity involving any vitalorgan ofher than liver or kidney
TI_Ds= towest T1 involving target disease systemveomplication

Figure 2, Clinical variables believed to be most crucial to clinical success for an NCE. This

diagram represents a BBN, with implicit assumptions of conditional independence.

The downward direction of the arrows encodes the NCE’s deep or hidden knowledge within

“Clinical Success” that is manifested as “Safety” and “Efficacy”. The knowledge embedded
within each of these two hidden nodes is in turn manifested as therapeutic indices or proof-of-
concept signals, respectively. This may seem counter-intuitive, since it may seem logical to

believe that safety and efficacy cause clinical success (or failure) rather than represent a



manifestation of an unknown degree of clinical success. However, the goal of Pharminator is to

predict the clinical success inherent in the NCE, rather than to identify causes of clinical success.

The NCE has an inherent true degree of “Safety” and “Efficacy”. A major goal of clinical trials is

to determine what these true values are by studying samples and by assuming that the safety or
efficacy in the studied samples are accurate estimates of the NCE’s true safety and efficacy. The
same explanation can be used to justify the links going from Safety to the therapeutic index

nodes, and from Efficacy to the signal nodes. It is this representation that allows Pharminator to

predict what the NCE’s inherent clinical success is based upon the observed therapeutic indices

and proof-of-concept signal data. As this is a BBN, the assumption of conditional independence is

required. Therefore, TI_Vital is assumed to be independent of TI_Disease (see Figure 2 and
Section B2 for definitions) conditional on the common parent node, Safety. The same is true for

the in vitro, in vivo and human signal nodes, and their common parent, Efficacy.

Figure 2 is designed to be a “best guess” representation of those variables deemed most important

in predicting clinical success. It is likely that future versions of Pharminator will encode a BBN

with slightly different leaf nodes, based upon accumulated data on NCE failure specific to

therapeutic classes. Also absent from the BBN is a representation of idiosyncratic severe adverse

gvents which are unpredictable, by definition. Future versions of Pharminator will

undoubtedly include pharmacogenomic markers of adverse events and drug resistance.

B2. Definitions
Several terms require definition in order to understand the Pharminator algorithm:
- Clinical Success: An NCE is clinically successful if it is still on the market 1 year
after NDA approval.
- Efficacy: An NCE is efficacious if it produces a “sufficient” degree of change in a

surrogate or true marker, compared to control (placebo or current gold standard

13



therapy). What constitutes a “sufficient” degree of change depends on (1) the clinical
indication and (2) the development phase (during Phase II, the signal need not be
statistically significant, while Phase III studies must show statistical significance in at
least two separate trials). Certain indications may require only modest effect from an
NCE in order to be successful (¢.g. acute, relatively benign disorders), while others
may require extreme effects (e.g. life-saving therapies).
Life-saving: An NCE is considered life-saving if

1. the disease for which it is indicated is fatal and,

2. there are no alternate life-extending therapies.
The Pharminator model utilizes the life-saving status of the NCE to determine the
influence that the Safety data will have on the calculation of the posterior probability
of Clinical Success. The assumption is that a higher degree of toxicity is tolerated for
an NCE that is truly life-saving, as defined above, thereby making the probability of
clinical success largely dependent on efficacy. For example, an NCE that truly
extends life expectancy but causes acute renal failure may still have a high
probability of success because it is assumed that the initiation of dialysis is preferable
to death. This assumption is open to argument from the point of view of quality of
life issues, since truly curative therapies for lethal disorders are rare, however
assuming that supportive therapies are preferable to death is reasonable.

Markers- surrogate vs. frue: A marker is an indicator of response to therapy. A

surrogate marker is a marker that is not directly or primarily involved in the
pathogenesis of the disease, whereas a true marker is primarily integral to the disease
mechanism. An example of a surrogate marker is the CD4 count in HIV. A true
marker for HIV is viral load.

NCE source- acquired, self-origin: abroad, self-origin: USA : An acquired NCE is an

NCE that a pharmaceutical company has licensed-in from another company, such as

14



a biotechnology firm, or that has been acquired from some other source. A self-
originated NCE is an NCE for which the initial pre-clinical development occurred
within the same pharmacentical company that will assume responsibility for
conducting clinical trials. The prior probability of success differs significantly
between acquired and self-originated NCEs ® Not surprisingly, NCEs that have
undergone initial clinical testing abroad (and demonstrate potential effectiveness in
humans) are more likely to succeed.

Prior bias: Pharminator gives the user the option of selecting whether the prior
probability should be optimistic or pessimistic. As described in detail in Section B3
“Prior Probabilities and Conditional Probability Tables”, the NCE’s intended
therapeutic class affects the selection of the NCE’s prior probability of clinical
success. Prior data on NCE success rates are stratified by therapeutic source, and
include the total number of NCEs within each therapeutic class, the fraction of the
total NCEs that have failed, and the fraction of the total NCEs that are still under
development, for a total of 671 NCEs spanning IND filing dates from 1981 to 1992 °.
However, it should be noted that if an NCE is sufficiently safe and effective, the
NCE’s posterior probability of success will be high, regardless of the prior
probability. The Tufts Center for the Study of Drug Development’s (TCSDD)
published reports provide the prior probability of failure based on the current failure
rate, as well as the probability of failure assuming that all NCEs still under
development are successful (i.e. a more optimistic prior probability of failure). When
the user sets Pharminator’s prior bias to “pessimistic” (the default setting), the former
prior probability is used- i.e. the prior probability of failure based on the current
failure rate. When the user sets Pharminator’s prior bias to “optimistic”, the latter
prior probability is used- i.e. the prior probability of failure based on the assumption

that all NCEs still under development will not fail.

15



Safety: An NCE’s safety is essentially synonymous with toxicity. Every NCE that is
not an inert placebo has some degree of “toxicity” in that even the desired effects of
an NCE become toxic if a large enough dose is given, An NCE’s safety is therefore
defined as a degree of toxicity that is an acceptable balance against the benefit to the
patient, Ultimately, an NCE can only be deemed safe once it has undergone Phase IV
post-marketing surveillance. Prior to Phase IV, insufficient numbers of patients have
received the NCE such that rare but severe idiosyncratic reactions would not likely be
detected.

Therapeutic class: The therapeutic class is the organ system affected by the disease

process for which the NCE is indicated. This definition of therapeutic class is utilized
rather than the more traditional chemical class because prior probabilities of success
are known for a total of 671 NCEs, stratified by therapeutic class °, and stratifying by
chemical class would fractionate the data beyond use with too many categories and
too few NCEs in each category. The therapeutic classes included in Pharminator are:
Analgesic/Anesthetic, Antimicrobial, Antineoplastic, Cardiovascular, Central
Nervous System (CNS), Endocrine, Gastrointestinal (G1), Immunologic, Respiratory,
and Miscellaneous. Clearly these are less specific categories than those used by
clinicians (e.g. Calcium channel blockers, ACE inhibitors, mono-amine oxidase
inhibitors etc.) however. as stated above, there do not appear to be sufficient data to
allow for a more specific stratification without fractionating the data beyond utility.

Therapeutic index- vital organ, disease: The therapeutic index (TI) is the ratio of the

NCE dose that produces an undesired effect to the NCE dose that produces the
desired effect in a proportion of the study population. The numerator is the TD,
(toxic dose in x% of the population) and the denominator is the EC, (effective dose in
y% of the population). Each NCE has several therapeutic indices, depending on the

number of specific adverse events (e.g. the TI for hepatotoxicity is different from the

16



TI for nephrotoxicity), the number of specific desired effects (e.g. ACE inhibitors
reduce blood pressure and reduce proteinuria), and depending on the definition of the
proportion of the study population (i.e. the values of x and y). A larger TI represents
a generally safer NCE. A smaller TI will be either too unsafe to be used clinically, or
will require very close therapeutic drug monitoring in order to ensure safety (e.g.
digoxin). The Pharminator model is designed to be inherently pessimistic, given the
high rate of NCE failures to date, and the extreme costs associated with these
failures. Therefore, the current implementation of Pharminator requires input for two
specific Tls: the lowest TI for an undesired effect on any vital organ (brain, heart,
lungs, liver, kidney, exocrine pancreas, bone marrow), and the lowest TI for an
undesired effect on any organ or system that is already adversely affected by the
disease/system for which the NCE is indicated. An example of the latter is retinal
toxicity caused by an NCE indicated for the treatment of diabetes mellitus. It is likely

that as Pharminator evolves, additional or alternate TI variables will be added to the

model.

It is important to note the reasons why therapeutic class and NCE source are included in the

model as “prior probability modifiers” and not as stochastic variables (nodes) in Figure 2:

1.

As discussed in section B1. “Network Structure and Rationale”, Safety and Efficacy do
not “cause” clinical success in the Pharminator model. The Safety and Efficacy nodes

(and indeed all child nodes in the model) are in fact manifestations of the inherent degree

of clinical success of the NCE. Contrary to this. therapeutic class and NCE source have a

direct impact on NCE clinical success °.

While the NCE’s true safety, therapeutic indices, efficacy and proof-of-concept signals

are not known, the NCE’s intended therapeutic class and source are known with

certainty. It is therefore nonsensical to represent therapeutic class and NCE source as

17



stochastic variables. However, Figure 3 is provided below as an adjunct to Figure 2, in

order to

a. demonstrate the dependencies between therapeutic class, NCE source and clinical

success, and

22,23

b. demonstrate that the noisy-or assumption can be utilized to calculate the

prior probability of clinical success from the prior data on NCE failure rates

stratified by therapeutic class and NCE source 5

Therapeutic Class NCE Source

Clinical Success

Figure 3. lllustration of how Therapeutic Class and NCE Source relate to Clinical Success (see
Figure 2 as well). The direction of the arrows indicates that Therapeutic Class and NCE Source

have a causal effect on Clinical Success. Determining P(Clinical Success | Therapeutic Class,

NCE Source) is therefore not a Bayesian posterior probability and the noisy-or assumption_is

applicable (see text for details).

B3. Prior Probabilities and Conditional Probability Tables

Prior Probability: Source & Selection

TCSDD publications are the most extensive, accessible, and reliable source of the prior
probability of NCE success (and failure). DiMasi recently analyzed the causes of failure and
reported the success rates for 671 NCEs for which INDs were filed between 1981 and 1992 °. In

his report, he provides “current and maximum possible success rates” stratified by therapeutic



class for 503 self-originated NCEs. The “current success rate” is the fraction of the number of
NCE:s (in that class) that have been successful over all NCEs in that class. This is in fact a
pessimistic prior because the implicit assumption is that all open NCEs (i.e. NCEs still in
development) will fail. The “maximum possible success rate” is the success rate assuming that
“all open NCEs will eventually be approved” — an optimistic assumption. DiMasi also provides
probabilities of NCE success stratified by NCE source (see definition above, in section B2),
Pharminator asks the user to indicate the NCE’s therapeutic class, NCE source, as well as the
user’s desired “prior bias”, which may be either pessimistic or optimistic. The prior bias
determines which therapeutic class prior probability is utilized: if the user selects “pessimistic”
(the default setting), the current success rate is used to calculate the NCE’s prior probability of

success. Conversely, if the user selects “optimistic”, the maximum possible success rate is used.

Although DiMasi’s analysis is quite informative, he did not sub-stratify by therapeutic class and

NCE source combinations. In order to allow Pharminator to choose a prior probability that most

accurately reflects the NCE’s therapeutic class and its source, the algorithm utilizes the noisy-or
assumption . Paraphrasing Szolovits »*, the noisy-or assumption states that the probability that
some set of variables causes an outcome equals the probability that at least one of the variables
does so. The probability of interest is P{Clinical Success | Therapeutic Class, NCE Source). For
an explanation as to why this is not a posterior probability distribution, see section B2 and Figure

3. Given the noisy-or assumption, the probability of interest can be calculated:



Formula 3: Noisy-Or
1 - P(Clinical Success | Therapeutic Class, Source)

= (1 — P(Clinical Success | Therapeutic Class)) * (1 — P(Clinical Success | Source))

Therefore, P(Clinical Success | Therapeutic Class, Source)

=1 —[(1 — P(Clinical Success | Therapeutic Class)) * (1 — P(Clinical Success | Source))]

=~ the prior probability, P(Clinical Success) for the NCE in question

and P(Clinical Failure) = 1- P(Clinical Success)

Pharminator utilizes the prior bias selected by the user to determine which prior probability of
success to utilize for the selected therapeutic class, then uses this probability along with the
probability of success for the selected NCE source to calculate P(Clinical Success | Therapeutic
Class, Source), given the noisy-or assumption as in Formuia 3 above. This calculated probability

is utilized as the prior probability of Clinical Success for the NCE in question (Figure 4).

pessimistic op timdstic

Clinical Success
Prior Probability Distribution

NCE Source

Figure 4, Flowchart depicting how the prior probability of Clinical Success is determined. See

text for details.
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Conditional Probability Tables

As described in section B1, a BBN requires CPTs for each node in order to be utilized for
probabilistic inference. Although the data provided in the TCSDD reports is valuable, the format
of those reports is not directly applicable to the construction of BBN conditional probability

tables. The main limitation of Pharminator is the absence of appropriate conditional

probability data and the need to make certain assumptions to allow utilization of the data

from the TCSDD published reports. Future versions and revisions of Pharminator will

focus on the task of obtaining appropriate data to populate the CPTs. These assumptions will

be tested by sensitivity analyses once characteristics and outcomes for specific successful and
failed NCEs become available. In the absence of such data, the methods by which the CPTs are

currently constructed are described in this section.

DiMasi analyzed the causes of failure for 348 NCEs that were withdrawn from development °. It

should be noted that NCEs that proceeded through all clinical trial phases but failed to achieve

NDA approval are not included in DiMasi’s analysis. As well, DiMasi stratified the causes of

failure by “primary” cause, thereby not disclosing any degree of overlap — i.e. NCEs that failed

primarily due to one reason, but may have also failed for another reason (e.g. an NCE that failed

because it was not safe, but was also not very effective). His analysis demonstrated that of a total
of 348 NCEs that were terminated, the primary reason for termination was efficacy in 121, safety
in 72, economics in 109, and “other” in 46. Since Pharminator is concerned only with safety and

efficacy, the probability that safety is the primary cause of failure is 72/(72 +121) = 0.37, and the

probability that efficacy is the primary cause of failure is 121/(72 + 121) = 0.63. Assuming that

the proportions of causes of failure are consistent across the withdrawn drugs, the CPT

probabilities, P(Safety=F | Clinical Success = F) and P(Efficacy=F | Clinical Success =F), can be

calculated by an “gverlap” function, as follows:
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Formula 4: “Overlap” Function
P(Safety=F | Clinical Success = F)
= total number of primary safety failures +
(total number of primary safety failures * proportion of primary efficacy failures)

=72+ (72 * 121/193) = 0.606

P(Efficacy=F | Clinical Success = F)
= total number of primary efficacy failures +
(total number of primary efficacy failures * proportion of primary safety failures)

=121 + (121 * 72/193) = 0.860

These values (and their respective complement values) occupy the first rows of their respective

CPTs.

While the overlap function permits estimation of the first row of each of the Safety and Efficacy

CPTs (i.e. P(node = F | parent = F) and P(node = T | parent = F)), currently, there are no adequate,

available data for the second rows of the Safety and Efficacy CPTs (P(node = F | parent = T) and

P(node = T | parent = T)). For now. these values are currently set as pessimistic estimates. For

the Efficacy CPT, the probability P(Efficacy = F | Clinical Success = T), i.e. the probability that

an NCE is not efficacious given that it is clinically successful, is logically estimated to be very

low. Until data for sensitivity analyses become available, this value is set at 0.01, and its
complement, P(Efficacy = T | Clinical Success = T) is therefore 1 — 0.01 = 0.99. For the Safety
CPT, the probability P(Safety = F | Clinical Success = T), i.e. the probability that an NCE is not

safe given that it is clinically successful is also estimated to be low, but likely not as low as for

P{Efficacy=F | Clinical Success = T). Until data for sensitivity analyses become available, this

value is set at 0.05 for NCEs that are not life-saving, and for NCEs that are life-saving, this value
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is set at 0.5. This difference is to reduce the influence that TIs have on the posterior probability of

clinical success for life-saving NCEs.

The construction of the hidden nodes’ CPTs is depicted in Figure 5.

Life-saving Not life-saving

Effieacy CPT| Safety CPT

v\\

| Overlap function

"~

Data: safety as 17 ata: efficacy ax 1°
cause of failure cause of failure

Figure 5. Algorithm demonstrating how the overlap function (Formula 4) and the life-saving

preference are utilized to determine the CPTs for the Safety and Efficacy nodes.

Just as for the hidden nodes (Safety and Efficacy), there are no easily accessible data on
therapeutic indices and proof of concept signal data for NCEs that have failed. Once again, the

task of acquiring appropriate data to inform the CPTs will be the major focus for future

versions and optimization of Pharminator. However, devising models that approximate these

relationships is a somewhat less arduous task than for Safety and Efficacy. With respect to the

relationship between TI and Safety, it is known that T is directly proportional to the degree of

safety because a larger T1 simply means more prescribing “room” between the effective dose and
the toxic dose. Most prescription medications have TIs that are in the 8-10 range. Given that TT is

a ratio, and that the lowest rational value for a Tl is 1, the relationship between TI and safety can

be approximated by a logistic sigmoid model (Formula 5, Figure 6):
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Formula 5: Logistic Sigmoid Function

a1
P(TI | Safety) = Tre e
x=TI
5 = slope

[ = intercept
The slope and intercept of this model were selected to reflect what is believed to be an accurate

approximation of the relationship between TI and P(TI | Safety).

P(T1 | Sataty=T} BTL | Salety=F)

~a—P[TIe T | Safety»¥)
© P{TI= F | Safely= F}

~4—PTI-T ¢ Satety= Tt
FoTI= § | SalutyeTs

PCT | Satety = T) =

S 111 Safets = F =
|+ o025 0x- i1y PCTT | Safety =~ F) L o (03 *te- 1)

Figure 6. Graphs showing the logistic sigmoid functions that are used to approximate the P(T[ |

Safety) CPT values from the TI values.

A similar assumption is made for the proof-of-concept signal data in that the guantity of the

signal is proportional to the degree of efficacy. In contrast to the sigmoid relationship between TI

and safety, the relationship between proof-of-concept signal and efficacy is assumed to be a

simple linear function (v = mx + #). However, the signal data must first be transformed to a

standardized measure so that different ranges and scales will not influence the interpretation of

the signal. For this purpose a modified signal-to-noise ratio is used (Formula 6), requiring the

user to enter the mean and variance (S.D.”) for the control and experimental groups, for each
experimental environment (in vitro, in vivo — highest-order species, human), as well as whether
each signal is a true or surrogate marker. This formula provides a variance-corrected measure of

the degree of signal as a value between 0 and 1. The resultant signal-to-noise ratio value is
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utilized by the linear models to estimate P(Signal | Efficacy) for in vitro, in vivo and human

signals, stratified by true and surrogate markers. The slopes (and intercepts) of the linear models

are adjusted to reflect differences between in vitro. in vivo and human signals, and between true

and surrogate markers (Figure 7). Specifically, the slope of the function is proportionate to:
a) the environment order (in vitro < in vivo < human), and

b) the marker (surrogate < true)

Formula 6: Modified Signal:Noise Ratio

| (NCE- contrel ) |

Modified signal:noise =
max (NCE 25% UCL, control 95% UCL)

UCL = upper confidence limit

(Figure 7 shown on next page)
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Figure 7. Linear functions demonstrating how the modified signal:noise ratio value is utilized to

approximate P(signal | Efficacy) for a series of randomly-generated NCE & control means &

variances. The linear functions are stratified by experimental environment (in vitro, in vivo,

human), and type of marker (surrogate vs. true marker). The slopes and intercepts are adjusted to

reflect what is believed to be an adequate approximation (remains to be validated).

The entire algorithm for constructing the leaf node CPTs is summarized in Figure 8.

26



i vitro invive  human True marker  Surrogaie marker

dope, intercepl

Moditted
Ni ata Linear function - S
Sigoal data 1" Signal 1 neise ratio — ¥ : 7| | Stgoal CPTs

— . Logisti¢ sigmoid N
T1 data funclion TICPTs

Figure 8. Overview of algorithm for constructing leaf node CPTs.

The default state for all leaf nodes is “True”, and it is the leaf node CPTs that change in response

to the TI and signal data entered by the user. This represents one major departure from BBN

methodology: Pharminator’s use of the input data to determine the specific CPT to be used for a

given set of fixed leaf node states. The acquisition of data on NCEs that have failed will facilitate

the modification of the linear and sigmoid functions rather than direct changes to the leaf node

CPTs. Justification for this approach is that this can actually work to the advantage of each drug

development institution that utilizes Pharminator: Many pharmaceutical companies develop

medications in a small number of therapeutic classes and therefore have NCE failure data that is
highly specific to that pharmaceutical company’s future development projects. Therefore the use
of these data to modify Pharminator’s CPT functions will result in a company-specific

implementation of Pharminator, the predictive accuracy of which will be directly proportionate to

the specific company’s development historv and prior investments in NCE failures (i.e. accuracy

proportionate to their losses). Smaller companies with little or no development history will not

have the ability to implement a company-specific implementation, but will benefit from the prior
knowledge of the entire industry, excluding confidential and privileged information from other

companies. Data from a larger pharmaceutical company will remain exclusive to that specific
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pharmaceutical company unless that company agrees to allow Pharminator to utilize their data for
the benefit of the entire industry, always maintaining confidentiality regarding specific NCEs that

have failed.

B4. Data Input and Qutput

Pharminator requires the following input from the user:
- NCE “demographics™: NCE name, therapeutic class, source, life-saving status
- User’s prior bias preference (pessimistic vs. optimistic; default is pessimistic)

- Signal data- for each of in vitro, in vivo (highest-order species) and human, the

following data are entered for the maximal dose given, regardless of toxicity.

Therefore, toxicity (safety) is not taken into account for signal data because Safety
and Efficacy are assumed to be independent variables, conditional on the common
parent, Clinical Success. The signal nodes’ inputs include:
o NCE mean & variance
o Control mean & variance
o Type of marker: true or surrogate
- Minimum TI_Vital (see section B2 for definition)

- Minimum TI Disease (see section B2 for definition)

The current implementation of Pharminator requires all of these values to be entered in order for

the posterior probability to be calculated. Future versions of Pharminator will perform probability

inference on partial nets (i.e. nets that are missing one or more leaf node variables).

With this information, Pharminator selects the appropriate prior probability of clinical success,

and calculates the posterior probability distribution for Clinical Success, Safety, and Efficacy.
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The hidden node “prior” probabilities are required in order to calculate hidden node posterior
probabilities. These “prior” probabilities are calculated from the hidden and root nodes’ CPTs:
Formula 7: Calculating a Hidden Node’s “Prior” Probability:

P(Hidden Node) = X [P(Hidden Node | Parent Node) * P(Parent Node)]

The prior and posterior probability distributions are displayed graphically as binomial
distributions. The “n” for the Clinical Success prior probability distribution (*‘prior N”) is the total
number of NCEs from which the prior data were attained. The “n” for the Clinical Success
posterior probability distribution (post N) is (prior N + 1). This is likewise for the prior N and
post N for the Safety and Efficacy probability distributions (see section C. “Implementation and

Examples™ for a pictorial demonstration).

B5. Algorithm

Conglomerating Sections B1 through B4, including Figures 4,5 and 8 and Formula 2 results in the

algorithm shown in Figure 9.

Input
e Clinical Suecess prior

+ Therapentic class 3 P
. NCE source Figure 4 prabability distribution

Prior bias and prier N

Clinical Success
pusterior probability
distribulion

Formula 2

Input
_ﬂ&u&_mmg atatus ] Fimure 5 o] satety & Efficacy CPTy

-

Inpu
Signal Data:

o Envirenment 1 Wital, T1 Ds, in vitre,
o Marker type in vive, humun CP1x

+ T1_Vital

*» TI_Disease

Figure 9. Overview algorithm, combining the components described in Sections Bl through B4.
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C. Implementation and Examples

C1. Implementation

Pharminator is implemented in Java 1.4, using Apple ProjectBuilder v2.1, on Apple OS X.2
Jaguar. An object-oriented, model-view approach > was utilized to structure to the program. The

accuracy of the BBN was validated against Bayesware Discoverer® (http://bayesware.com).

C2. Example 1: CurOnc (fictional)

CurOnc is a fictional anti-neoplastic agent devised solely for the purpose of illustrating some key
features of Pharminator. CurOnc is self-originated in the USA and meets the definition of “life-
saving”. The signal inputs, TI inputs, and Clinical Success probability distribution plots are
shown in Figure 10. The Safety and Efficacy probability distribution plots are shown in Figure
11. The effect of changing the life-saving option to “Not Life-Saving” is shown in Figure 12. The

effect of changing the prior bias to optimistic is shown in Figure 13. Overall, the probability

distributions generated by Pharminator suggest that CurOnc has a high probability of
efficaciousness (0.7872), but is also very likely to have significant toxicity (P(Safety=T) =
0.0645). Therefore, if CurOnc is indeed “life-saving”, it has a probability of Clinical Success of
0.4951 with little overlap between the Clinical Success prior (0.2304) and posterior probability
distributions. However, if CurOnc is not truly life-saving, its probability of Clinical Success is
0.2016 (less than the prior probability) when prior bias is pessimistic, and at best (prior bias =
optimistic), the probability of Clinical Success is 0.3359, which is still less than the prior

probability. Given these results, development of CurOnc should be continued only if it is deemed

to be truly life-saving.
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Figure 12. The effect of selecting the “Not Life-Saving” option on the posterior probability
distribution for Clinical Success is shown for the fictional antineoplastic agent, CurQnc. Note
that the posterior probability distribution has shifted to the left compared with Figure 10,
suggesting that CurOnc is likely not safe- confirmed by the low probability of Safety shown in
Figure 11.

(Figure 13 shown on next page)
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Figure 13. The effect of setting the prior bias to “aptimistic” on the prior and posterior
probability distribution for Clinical Success is shown for the fictional antineoplastic agent,
CurOnc. Note that both probability distributions have shifted to the right, compared with Figure

12,

C3. Example 2: 1L.Y203638 (rhAPC)

Recombinant human activated protein C (thAPC) is a relatively novel agent that is known for its
anti-coagulant, pro-fibrinolytic, and anti-inflammatory properties. Eli Lilly™ Research
laboratories has developed LY203638 (thAPC) as a novel therapy for sepsis (Clinical
Investigator’s Brochure kindly provided by Dr. Robert Rubin). In general, this example is limited
in that several unpublished pre-clinical efficacy studies are listed in the Clinical Investigator’s
Brochure, but no data are accessible. The most relevant in vitro study was used; this in vitro study
was performed prior to the go/no-go decision time point »*. Bajzar et al reported dose-dependent
lysis times, but did not include any measures of variability. Therefore, in vifro variance is set to 0

for both the NCE and control (the in vitro variance entries are actually set to 0.000001 because
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the program’s current implementation will not calculate posterior probabilities if any value is 0.
This minor problem will be resolved with future implementations). Published ir vive studies
performed prior to the go/no-go decision time point evaluated pre-clinical efficacy in primates,
canines, guinea pigs, and rats. The primate data * are used for this example because primates are
the highest-order species studied. Early phase II study data in humans were provided in the

Clinical Investigator’s Brochure. This example is an approximation based upon the accessible

information only. Note that the true outcome marker is successful treatment of sepsis. The Phase
[1 endpoints reported are therefore all surrogate markers: organ failure-free days, number of
transfusion requirements, [CU-, Hospital-, and Ventilator-free days, and 28-day all-cause
mortality. For the purpose of this example, organ failure-free days (shock) was chosen as a good
sepsis-specific surrogate marker in that multi-organ failure and sepsis-related morbidity are very
tightly correlated. No specific data on therapeutic indices could be found either in the Clinical
Investigator’s Brochure or in the literature from the go/no-go decision time point. However, the
Clinical Investigator’s Brochure contains data from Phase I studies at doses ranging from 12 — 48
ug/kg/hour suggesting that the Tl is at least 4 (48/12). Toxicology studies in primates
demonstrated that the “no-observed-adverse-effect level” was 2 mg/m*/hour with toxic effects
observed at a dose of 8 mg/m?/hour. Taken together, these data suggest that the TI is
approximately 4. In the absence of more accurate TI data, this value is used in the example.
LY203638 is classified as a cardiovascular agent (since there are no prior data for hematologic

agents and it is not antimicrobial). The limitations in acquiring appropriate data for LY203638

underscores the requirement to have unfettered access to the NCE’s data in order to optimize

Pharminator’s predictive accuracy.

Figure 14 demonstrates that LY203638 has a very low probability of Clinical Success of 0.0521,
much lower than the prior probability of 0.246. Figure 15 shows that the probabilities of safety

and efficacy are both very low (0.0211 and 0.0667, respectively). Even when the prior bias is set
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to optimistic (Figure 16), the probability of clinical success is only 0.0526, also much lower than

the optimistic prior probability of 0.2916. Therefore, based only on data available prior to later

Phase I studies: even as a life-saving NCE, and when assuming an optimistic prior probability of

success, LY203638 has a very low probability of clinical success based only on data available

prior to Phase III studies. Of interest, after L Y203638 received NDA approval, subsequent post-

approval studies raised several concerns about LY203638’s safety and efficacy, calling for Phase

IV studies to be performed®’.
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Figure 14. The prior and posterior probability distributions for Clinical Success are shown for

LY203638 (rhAPC).
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D. Future Directions: Plans for Testing, Validation and Optimization
While Pharminator is an apparently novel model for pharmacovigilance, it is unknown how
accurate the model is. As stated several times above, Pharminator’s major limitation is the lack of

access to appropriate data to populate the CPTs. The specific types of data needed include safety

and efficacy data from:

o NCEs: IND-approved but withdrawn prior to NDA filing
o NCEs: IND-approved but NDA denied (and not subsequently approved)

o Successful NCEs

Fortunately, Pharminator will continue development as the primary focus of a Sloan Industry

Fellowship at the Program on the Pharmaceutical Industry at MIT, (7/2003 — 6/2004). The

predominant aims of the Sloan Fellowship are (1) to acquire data on NCESs that have failed, (2) to
validate Pharminator, and (3) to optimize Pharminator. Along the lines of Aim (3), Pharminator

can be optimized for a specific pharmaceutical company, leveraging the strengths and extent of

the company’s development history. As stated in Section B3, Pharminator could be trained on
company-specific data such that its predictive accuracy will be directly proportional to the

company’s development history and prior investments in NCE failures - i.e. the accuracy may be

proportional to the extent of capital lost in NCE failures.

E. Summary and Conclusions

In summary, NCE failure rates are increasing despite concomitant increases in research &
development expenditures. Previously utilized approaches to pharmacovigilance have not been

successful. Pharminator’s approach is novel in that individual NCE characteristics are modeled

on the background of prior data specific to those characteristics. Pharminator does not include

pharmacoeconomic parameters in its model, and therefore Pharminator should be used in
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conjunction with pharmacoeconomic analyses. Pharminator’s main limitation is the lack of

appropriate data for populating CPTs; this limitation may be leveraged to optimize company-

specific implementations of Pharminator. Acquisition of appropriate data, validation and

optimization are the aims that will be addressed during a Sloan Industry Fellowship at the

Program on the Pharmaceutical Industry at MIT.
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