
January, 1991 LIDS-P 2040

Research Supported By:

NSF NCR 8802991
ARO DAAL03-86-K-0171

A Generalized Processor Sharing Approach to Flow Control in
Integrated Services Networks: The Single Node Case*

Parekh, A.K.J.

Gallager, R.G.

July 1991 LIDS-P-2040

A Generalized Processor Sharing Approach to

Flow Control in Integrated Services Networks:
The Single Node Case.'

Abhay K. Parekh 2 3 and Robert G. Gallager 4

Laboratory for Information and Decision Systems

Massachusetts Institute of Technology

Abstract

The problem of allocating network resources to the users of an integrated services net-

work is investigated in the context of rate-based flow control. The network is assumed to

be a virtual circuit, connection-based packet network. We propose a flexible and efficient

multiplexing scheme called Generalized Processor Sharing (GPS) that when combined with

leaky bucket admission control allows the network to make worst-case performance guaran-

tees on throughput and delay. The scheme is flexible in that different users may be given

widely different performance guarantees, and is efficient in that each of the servers is work

conserving. We then present a practical packet-by-packet service discipline (PGPS) that

closely approximates GPS. This allows us to relate results for GPS to the packet-by-packet

scheme in a precise manner. The schemes GPS and PGPS were suggested earlier by De-

mers, Shenker and Keshav [4] in the context of controlling congestion at network gateway

nodes.

In this paper, the performance of a single server GPS system is analyzed exactly from

the standpoint of worst-case packet delay and burstiness when the sources are constrained

by leaky buckets. The worst-case session backlogs are also determined. In the sequel to this

paper these results are extended to arbitrary topology networks with multiple nodes.

1 An abridged version of the results in this paper is to be presented at IEEE INFOCOM '92.
2 Research partly funded by a Vinton Hayes Fellowship and a Center for Intelligent Control Systems

Fellowship.
3 Current Address: Laboratory for Computer Science, MIT Room NE43-510, Cambridge MA 02139.
4 Research Funded by the National Science Foundation under 8802991-NCR and by the Army Research

Office under DAAL03-86-K-0171.

1 INTRODUCTION 1

1 Introduction

This paper and its sequel [10] focus on a central problem in the control of congestion in high

speed integrated services networks. Traditionally, the flexibility of data networks has been

traded off with the performance guarantees given to its users. For example, the telephone

network provides good performance guarantees but poor flexibility, while packet switched

networks are more flexible, but only provide marginal performance guarantees. Integrated

services networks must carry a wide range of traffic types and still be able to provide

performance guarantees to real-time sessions such as voice and video. We will investigate

an approach to reconcile these apparently conflicting demands when the short-term demand

for link usage frequently exceeds the usable capacity.

We propose the use of a packet service discipline at the nodes of the network that is

based on a multiplexing scheme called generalized processor sharing. This service discipline

is combined with leaky bucket rate admission control to provide flexible, efficient and fair

use of the links. A major part of our work is to analyze networks of arbitrary topology using

these specialized servers, and to show how the analysis leads to implementable schemes for

guaranteeing worst-case packet delay. In this paper, however, we will restrict our attention

to sessions at a single node, and postpone the analysis of arbitrary topologies to the sequel.

Our approach can be described as a strategy for rate-based flow control. Under rate-

based schemes, a source's traffic is parametrized by a set of statistics such as average rate,

maximum rate, burstiness etc., and is assigned a vector of values corresponding to these

parameters. The user also requests a certain quality of service, that might be characterized,

for example, by tolerance to worst-case or average delay. The network checks to see if a

new source can be accommodated, and if so, it takes actions (such as reserving transmission

links or switching capacity) to ensure the quality of service desired. Once a source begins

sending traffic, the network ensures that the agreed upon values of traffic parameters are

not violated.

Our analysis will concentrate on providing guarantees on throughput and worst-case

packet delay. While packet delay in the network can be expressed as the sum of the pro-

cessing, queueing, transmission and propagation delays, we will focus exclusively on how to

limit queueing delay.

We will assume that rate admission control is done through leaky buckets [13]. An

important advantage of using leaky buckets is that this allows us to separate the packet

delay into two components-delay in the leaky bucket and delay in the network. The first

of these components is independent of the other active sessions, and can be estimated by

the user if the statistical characterization of the incoming data is sufficiently simple (see

2 OUTLINE 2

Section 6.3 of [1] for an example). The traffic entering the network has been "shaped" by

the leaky bucket in a manner that can be succinctly characterized (we will do this in Section

6), and so the network can upper bound the second component of packet delay through this

characterization. This upper bound is independent of the statistics of the incoming data,

which is helpful in the usual case where these statistics are either complex or unknown. A

similar approach to the analysis of interconnection networks has been taken by Cruz [2].

From this point on, we will not consider the delay in the leaky bucket.

2 Outline

Generalized Processor Sharing (GPS) is defined and explained in Section 3. In Section 4 we

present a packet-based scheme, PGPS, and show that it closely approximates GPS. Results

obtained in this section allow us to translate session delay and buffer requirement bounds

derived for a GPS server system to a PGPS server system. We propose a virtual clock

implementation of PGPS in the next subsection. Then PGPS is compared to weighted

round robin, virtual clock multiplexing [14] and stop-and-wait queueing [5, 6, 7].

Having established PGPS as a desirable multiplexing scheme we turn our attention to

the rate enforcement function in Section 6. The leaky bucket is described and proposed as

a desirable strategy for admission control. We then proceed with an analysis, in Sections 7

to 9, of a single GPS server system in which the sessions are constrained by leaky buckets.

Conclusions are in Section 10.

3 GPS Multiplexing

The choice of an appropriate service discipline at the nodes of the network is key to provid-

ing effective flow control. A good scheme should allow the network to treat users differently,

in accordance with their desired quality of service. However, this flexibility should not com-

promise the fairness of the scheme, i.e. a few classes of users should not be able to degrade

service to other classes, to the extent that performance guarantees are violated. Also, if one

assumes that the demand for high bandwidth services is likely to keep pace with the increase

in usable link bandwidth, time and frequency multiplexing are too wasteful of the network

resources to be considered as candidate multiplexing disciplines. Finally, the service dis-

cipline must be analyzable so that performance guarantees can be made in the first place.

We now present a flow-based multiplexing discipline called Generalized Processor Sharing

that is efficient, flexible, fair and analyzable, and that therefore seems very appropriate for

integrated services networks. However, it has the significant drawback of not transmitting

3 GPS MULTIPLEXING 3

packets as entities. In Section 4 we will present a packet-based multiplexing discipline that

is an excellent approximation to GPS even when the packets are of variable length.

A Generalized Processor Sharing (GPS) server is work conserving and operates at a

fixed rate r. It is characterized by positive real numbers /1, 02, --- , ON. Let Si(r, t) be the

amount of session i traffic served in an interval [r, t]. Then a GPS server is defined as one

for which

Si t) Oi
Sj(r, t) > j = 1,2,...,N

for any session i that is backlogged in the interval [r, t].

Summing over all sessions j:

Si(r,t)E4J > (t-)ri

and session i is guaranteed a rate of

= . (2)Ej0

GPS is an attractive multiplexing scheme for a number of reasons:

* Define Pi to be the session i average rate. Then as long as Pi < gi, the session can be

guaranteed a throughput of Pi, independent of the demands of the other sessions. In

addition to this throughput guarentee, a session i backlog will always be cleared at a

rate > gi.

* The delay of an arriving session i bit can be bounded as a function of the session i

queue length, independent of the queues and arrivals of the other sessions. Schemes
such as FCFS, LCFS, and Strict Priority do not have this property.

* By varying the Oi's we have the flexibility of treating the sessions in a variety of

different ways. For example, when all the qi's are equal, the system reduces to uniform

processor sharing. As long as the combined average rate of the sessions is less than r,

any assignment of positive Oi's yields a stable system. For example, a high bandwidth

delay-insensitive session, i, can be assigned gi much less than its average rate, thus

allowing for better treatment of the other sessions.

* It is possible to make worst-case network queueing delay guarantees when the sources
are constrained by leaky buckets. We will present our results on this later. Thus GPS

is particularly attractive for sessions sending real-time traffic such as voice and video.

4 A PACKET-BY-PACKET TRANSMISSION SCHEME-PGPS 4

Figure 1 illustrates generalized processor sharing. Variable length packets arrive from both

sessions on infinite capacity links and appear as impulses to the system. For i = 1, 2, let

Ai(0, t) be the amount of session i traffic that arrives at the system in the interval (0, t], and

similarly, let Si(O, t) be the amount of session i traffic that is served in the interval (0, t].

We assume that the server works at rate 1.

When bl = 02, and both sessions are backlogged, they are each served at rate 1 (eg.

the interval [1,6]). When 2q51 = 02, and both sessions are backlogged, session 1 is served

at rate 1 and session 2 at rate 2. Notice how increasing the relative weight of q2 leads to

better treatment of that session in terms of both backlog and delay. The delay to session

2 goes down by one time unit, and the delay to session 1 goes up by one time unit. Also,

notice that under both choices of Xi, the system is empty at time 13 since the server is work

conserving under GPS.

It should be clear from the example that the delays experienced by a session's packets

can be reduced by increasing the value of b for that session. But this reduction may be at

the expense of a correspondingincrease in delay for packets from the other sessions. Figure 2

demonstrates that this may not be the case when the better treated session is steady. Thus,

when combined with appropriate rate enforcement, the flexibility of GPS multiplexing can

be used effectively to control packet delay.

4 A Packet-by-Packet Transmission Scheme-PGPS

A problem with GPS is that it is an idealized discipline that does not transmit packets as

entities. It assumes that the server can serve multiple sessions simultaneously and that the

traffic is infinitely divisible. In this section we propose a simple packet-by-packet trans-

mission scheme that is an excellent approximation to GPS even when the packets are of

variable length. Our idea is similar to the one used in [4] to simulate uniform processor

sharing. We will adopt the convention that a packet has arrived only after its last bit has

arrived.

Let Fp be the time at which packet p will depart (finish service) under generalized

processor sharing. Then a very good approximation of GPS would be a work conserving

scheme that serves packets in increasing order of Fp. (By work conserving we mean that

the server is always busy when there are backlogged packets in the system.) Now suppose

that the server becomes free at time r. The next packet to depart under GPS may not

have arrived at time r, and since the server has no knowledge of when this packet will

arrive, there is no way for the server to be both work conserving and to serve the packets in

increasing order of Fp. The server picks the first packet that would complete service in the

4 A PACKET-BY-PACKET TRANSMISSION SCHEME-PGPS 5

Session 1 Session 2

Arrivals
packet size packet size

3
242

i 2 , 11 time 9
time

__--------___________

d*2 = 6

23- 3------

4- /I I / $II(Ot) 4-

2 i-' 2

2 4 6 8 10 12 1 4 2 4 6 8 10 12 14 time

The packets arrive on links with infinite speed and are of variable length. Notice that
by increasing -tz, we can give session 2 better service.

Figure 1: An example of generalized processor sharing.
7 - &(o___ 7- --

4 A PACKET-BY-PACKET TRANSMISSION SCHEME-PGPS 6

01 = 02

d* = 10 d* = 35
20- 20-

_10 ------ S, S

time time10 20 30 10 20 30

01 >>> 02

_ d* = 5 d* = 37.5

20 . . 20-

?1 St ~1 -S 2

time time10 20 30 10 20 30

The dotted curves represent cummulative arrivals. Session 1 is a steady session that is
also delay sensitive (perhaps it is a video session). Its worst-case packet delay can be
cut in half with minimal performance degradation to other sessions. In the figure d1 is
increased to infinity, but session 2 delay goes up by only 2.5 time units.

Figure 2: The effect of increasing /i for a steady session i

4 A PACKET-BY-PACKET TRANSMISSION SCHEME-PGPS 7

Session 1 Session 2
packet Arrival 1 2 3 11 ° 5 9

information Size 1 1 2 2 3 22

q1 0= 2 GPS 3 5 9 13 5 9 11
PGPS 4 5 7 13 3 9 11

2q=1 2 GPS 4 5 9 13 4 8 11
PGPS 4 5 9 13 3 7 11

The lower portion of the table gives the packet departure times under both schemes.

Figure 3: How GPS and PGPS compare for the example in Figure 1.

GPS simulation if no additional packets were to arrive after time r. Let us call this scheme

PGPS for packet-by-packet generalized processor sharing.

Figure 3 shows how PGPS performs for the example in Figure 1. Notice that when

d1 = 4b2, the first packet to complete service under GPS is the session 1 packet that arrives

at time 1. However, the PGPS server is forced to begin serving the long session 2 packet

at time 0, since there are no other packets in the system at that time. Thus the session 1

packet arriving at time 1 departs the system at time 4, i.e. 1 time unit later than it would

depart under GPS.

A natural issue to examine at this point is how much later packets may depart the

system under PGPS relative to GPS. First we present a useful property of GPS systems.

Lemma 1 Let p and p' be packets in a GPS system at time r and suppose that packet p

completes service before packet p' if there are no arrivals after time r. Then packet p will

also complete service before packet p' for any pattern of arrivals after time r.

Proof. The sessions to which packets p and p' belong are both backlogged from time r

until one completes transmission. By (1), the ratio of the service received by these sessions

is independent of future arrivals. a

A consequence of this Lemma is that if PGPS schedules a packet p at time r before another

packet p' that is also backlogged at time r, then packet p cannot leave later than packet p'

in the simulated GPS system. Thus, the only packets that are delayed more in PGPS, are

those that arrive too late to be transmitted in their natural order. Intuitively, this means

that only the packets that have small delay under GPS are delayed more under PGPS.

Now let Fp be the time at which packet p departs under PGPS. We show that

4 A PACKET-BY-PACKET TRANSMISSION SCHEME-PGPS 8

Theorem 1 For all packets p,

P- Fp < rLm

where Lma,, is the maximum packet length, and r is the rate of the server.

Proof. Since both GPS and PGPS are work conserving disciplines, their busy periods

coincide i.e. the GPS server is in a busy period iff the PGPS server is in a busy period.

Hence it suffices to prove the result for each busy period. Consider any busy period and let

the time that it begins be time zero. Let Pk be the kth packet in the busy period to depart

under PGPS and let its length be Lk. Also let tk be the time that Pk departs under PGPS

and uk be the time that pk departs under GPS. Finally, let ak be the time that Pk arrives.

We now show that

tk < Uk +

for k = 1, 2, Let m be the largest integer that satisfies both 0 < m < k - 1 and u, > Uk.

Thus

Um > uk > Ui for m < i < k. (3)

Then packet Pm is transmitted before packets Pm+l ... , Pk under PGPS, but after all these

packets under GPS. If no such integer m exists then set m = 0. Now for the case m > 0,

packet Pm begins transmission at tm - L., so from from Lemma 1:

min{am+l,..., ak} > tm- Lm (4)

Since Pm+l, .. ,Pk-1 arrive after tm - L, and depart before pk does under GPS:

Uk >-(Lk + Lk-l + Lk-2 + ... + Lm+l)+ tm -r r

Lm
Uk > tk - --

If m = 0, then Pk-l,...,pl all leave the GPS server before Pk does, and so

Uk > tk.

Let Si(r, t) and Si(r, t) be the amount of session i traffic served under GPS and PGPS in

the interval [r, t]. Then we can use Theorem 1 to show:

4 A PACKET-BY-PACKET TRANSMISSION SCHEME-PGPS 9

Theorem 2 For all times r and sessions i.

Si(O, T)- Si(O, T) < Lmax.

Proof. The slope of Si alternates between r when a session i packet is being transmitted,

and 0 when session i is not being served. Since the slope of Si also obeys these limits,

the difference Si(O,t)- Si(O,t) reaches its maximal value when session i packets begin

transmission under PGPS. Let t be some such time, and let L be the length of the packet

going into service. Then the packet completes transmission at time t + L . Let be the time

at which the given packet completes transmission under GPS. Then since session i packets

are served in the same order under both schemes:

S(o, 7) = Si(O, t + L)
r

From Theorem 1:

L Lmax
7 > (t+-) (5)

Si(0o, t+ - Lmax) < Si(t+ L) (6)

= S1(t)+ L. (7)

Since the slope of Si is at most r, the Theorem follows. 0

Let Qi(r) and Qi(t) be the session i backlog at time r under PGPS and GPS respectively.

Then it immediately follows from Theorem 2 that

Corollary 1 For all times r and sessions i.

i(, T) - Qi(O, T) < Lmax.

Theorem 1 generalizes a result shown for the uniform processing case by Greenberg and

Madras [8]. Notice that

* We can use Theorem 1 and Corollary 1 to translate bounds on GPS worst-case packet

delay and backlog to the corresponding bounds on PGPS.

* Variable packet lengths are easily handled by PGPS. This is not true of weighted

round robin.

In Section 4.1 we will provide a way to implement PGPS using the concept of virtual time,

that will allow us to simulate the evolution of the GPS process efficiently.

4 A PACKET-BY-PACKET TRANSMISSION SCHEME-PGPS 10

4.1 A Virtual Time Implementation of PGPS

In Section 4 we described PGPS but did not provide an efficient way to implement it. In

this section we will use the concept of Virtual Time to track the progress of GPS that

will lead to a practical implementation of PGPS. Our interpretation of virtual time is very

similar to one considered in [4] for uniform processor sharing. In the following we assume

that the server works at rate 1.

Denote as an event each arrival and departure from the GPS server, and let tj be the

time at which the jth event occurs (simultaneous events are ordered arbitrarily). Let the

time of the first arrival of a busy period be denoted as t1 = 0. Now observe that for each

j = 2,3, ... , the set of sessions that are busy in the interval (tj_-, tj) is fixed, and we may

denote this set as Bj. Virtual time V(t) is defined to be zero for all times when the server

is idle. Consider any busy period, and let the time that it begins be time zero. Then V(t)

evolves as follows:

V(O) = 0

V(tj- 1 + r) = V(tjl) + EB , < tj -tjl, j=2,3,... (8)
iiE

The rate of change of V, namely 8±. i+T, is and each backlogged session i receives

service at rate qi 9v(~+jr). Thus, V can be interpreted as increasing at the marginal rate at

which backlogged sessions receive service.

Now suppose that the kth session i packet arrives at time ak and has length Lk. Then

denote the virtual times at which this packet begins and completes service as S and Fck

respectively. Defining Fi° = 0 for all i, we have

Sk = max{F/k-' V(ak)}

F i Hi:=S __ (9)

There are three attractive properties of the virtual time interpretation from the stand-

point of implementation. First, the virtual time finishing times can be determined at the

packet arrival time. Second, the packets are served in order of virtual time finishing time.

Finally, we need only update virtual time when there are events in the GPS system. How-

ever, the price to paid for these advantages is some overhead in keeping track of the sets

Bj, which is essential in the updating of virtual time:

Define Next(t) to be the real time at which the next packet will depart the GPS system

after time t if there are no more arrivals after time t. Thus the next virtual time update

5 COMPARING PGPS TO OTHER SCHEMES 11

after t will be performed at Next(t) if there are no arrivals in the interval [t, Next(t)]. Now

suppose a packet arrives at some time, t, and that the time of the event just prior to t is

r (if there is no prior event, i.e. if the packet is the first arrival in a busy period, then set

r = 0). Then, since the set of busy sessions is fixed between events, V(t) may be computed

from (8), and the packet stamped with its virtual time finishing time. Next(t) is the real

time corresponding to the smallest virtual time packet finishing time at time t. This real

time may be computed from (8) since the set of busy sessions remains fixed over the interval

[t, Next(t)]: Let Fmin be the smallest virtual time finishing time of a packet in the system

at time t. Then from (8):
Next(t)- tFnn = V(t) + Next(t)-
EiEBj Oi

. Next(t) = t + (Fin - V(t)) Z qi.
iEBj

Given this mechanism for updating virtual time, PGPS is defined as follows: When

a packet arrives, virtual time is updated and the packet is stamped with its virtual time

finishing time. The server is work conserving and serves packets in increasing order of

time-stamp.

5 Comparing PGPS to other schemes

Under weighted round robin, every session i, has an integer weight, wi associated with

it. The server polls the sessions according a precomputed sequence in an attempt to serve

session i at a rate of x. If an empty buffer is encountered, the server moves to the next

session in the order instantaneously. When an arriving session i packet just misses its slot

in a frame it cannot be transmitted before the next session i slot. If the system is heavily

loaded in the sense that almost every slot is utilized, the packet may have to wait almost N

slot times to be served, where N is the number of sessions sharing the server. Since PGPS

approximates GPS to within one packet transmission time regardless of the arrival patterns,

it is immune to such effects. PGPS also handles variable length packets in a much more

systematic fashion than does weighted round robin. However, if N or the packets sizes are

small then it is possible to approximate GPS well by weighted round robin.

Zhang proposes an interesting scheme called virtual clock multiplexing [14]. Virtual

clock multiplexing allows guaranteed rate and (average) delay for sessions independent of

the behavior of other sessions. However, if a session produces a large burst of data, even

while the system is lightly loaded, that session can be "punished" much later when the other

sessions become active. Under PGPS the delay of a session i packet can be bounded in terms

6 LEAKY BUCKET 12

of the session i queue size seen by that packet upon arrival, whereas no such bound is possible

under virtual clock multiplexing because of the punishment feature. Thus, good worst-case

performance can only be guaranteed under virtual clock multiplexing under stringent access

control. Also, the additional flexibility of PGPS may be useful in an integrated services

network.

Stop-and-Go Queueing is proposed in [5, 6, 7], and is based on a network-wide time slot

structure. A finite number of connection types are defined, where a type g connection is

characterized by a fixed frame size of Tg. Each session i is assigned a connection type g. The

admission policy under which delay and buffer size guarantees can be made is that no more

than riTg bits may be submitted during any type g frame. Thus bandwidth is allocated by

peak rates rather than average rates. While this is a more restrictive admission policy than

leaky bucket (as we shall see in Section 6), it allows for tight control of jitter in the network.

The service discipline is not work-conserving, but is designed to preserve the smoothness

properties of the admitted traffic. It has the advantage of being very amenable to analysis.

PGPS uses the links more efficiently and flexibly and can provide comparable worst-case

end-to-end delay bounds. Since it is work-conserving, PGPS will also provide better average

delay than stop-and-go for a given access control scheme. However, stop-and-go queueing

may provide significantly better bounds on jitter.

6 Leaky Bucket

Consider the leaky bucket scheme [13] of Figure 4.

Tokens or permits are generated at a fixed rate, p, and packets can be released into the

network only after removing the required number of tokens from the token bucket. There

is no bound on the number of packets that can be buffered, but the token bucket contains

at most a bits worth of tokens. In addition to securing the required number of tokens, the

traffic is further constrained to leave the bucket at a maximum rate of C > p.

The constraint imposed by the leaky bucket is as follows: If Ai(r, t) is the amount of

session i flow that leaves the leaky bucket and enters the network in the time interval (r, t],

then

Ai(r,t) < min{(t - r)Ci, ai + p(t - r)}, Vt > r > 0, (10)

for every session i. WVe say that session i conforms to (ai, pi, Ci), or Ai , (vi, Pi, Ci).

This model for incoming traffic is essentially identical to the one recently proposed by

Cruz [2], [3], and it has also been used in various forms to represent the inflow of parts

into manufacturing systems by Kumar [12], [9]. The arrival constraint is attractive since it

restricts the traffic in terms of average rate (p), peak rate (C), and burstiness (a and C).

6 LEAKY BUCKET 13

Tokens enter at rate pi

ai bits

Buffer\
Rate < Ci

Incoming (Bursty) Traffic To the network

Figure 4: A Leaky Bucket

Figure 5 shows how a fairly bursty source might be characterized using the constraints.

Represent Ai(O, t) as in Figure 5. Let there be li(t) bits worth of tokens in the session i

token bucket at time t. We assume that the session starts out with a full bucket of tokens.

If Ki(t) is the total number of tokens accepted at the session i bucket in the interval (0, t]

(it does not include the full bucket of tokens that session i starts out with, and does not

include arriving tokens that find the bucket full), then

Ki(t) = min {Ai(O, r) + pi(t- r)}. (11)
O<r<t

Thus for all r < t:

Ki(t) - Ki() < p(t - T). (12)

We may now express li(t) as

li(t) = ai + Ki (t) - Ai(O, t). (13)

From (13):

li(r) -li(t) = Ai(r,t)- (Ki(t) - Ki(7)) (14)

for all 0 < r < t. Now using (12) we obtain the useful inequality:

Ai(r, t) < li() + pi(t- r) - li(t). (15)

- -~~~~~~------ ---.---- I---I----

7 ANALYSIS 14

Bucket Empty -- Ai(O, t)
oi + Ki(t)

ii(b); ai

~ai" '? '_ ' ~" Bucket Full

c'~ -slope = pi

b t '

Figure 5: Ai(t) and li(t).

7 Analysis

In this section we analyze the worst-case performance of single node GPS systems for

sessions that operate under leaky bucket constraints, i.e., the session traffic is constrained

as in (10).

There are N sessions, and the only assumptions we make about the incoming traffic are

that Ai , (ai, pi, Ci) for i = 1, 2, ..., N, and that the system is empty before time zero. The

server is work conserving (i.e. it is never idle if there is work in the system), and operates at

the fixed rate of 1. Let Si(r, t) be the amount of session i traffic served in the interval (r, t].
Note that Si(O,t) is continuous and non-decreasing for all t (see Figure 6). The session i

backlog at time r is defined to be

Qi(7) = Ai(O, r) - Si(O, r).

The session i delay at time r is denoted by Di(r), and is the amount of time that session

i flow arriving at time r spends in the system before departing. Thus

Di(rT) = inf{t > r : Si(O,t) = Ai(0, r)} - r. (16)

From Figure 6 we see that Di(r) is the horizontal distance between the curves Ai(O, t) and

Si(O, t) at the ordinate value of Ai(O, r).

Clearly, Di(r) depends on the arrival functions A 1,..., AN. We are interested in com-

puting the maximum delay over all time, and over all arrival functions that are consistent

7 ANALYSIS 15

Ai(o,t))

Ai(O, r) -1D /)

t

Figure 6: Ai(0, t), Si(O, t), Qi(t) and Di(t)

with (10). Let D~ be the maximum delay for session i. Then

D max max Di(r).
(A1 AN) r>O

Similarly, we define the maximum backlog for session i, Qi:

=! max maxQi(7).
(A AN) r>0

The problem we will solve in the following sections is: Given q 1, ... , ON for a GPS server

of rate 1 and given (aj,pj, Cj), j = 1,...,N, what are D? and Q' for every session i? We

will also be able to characterize the burstiness of the output traffic for every session i, which

will be especially useful in our analysis of GPS networks in the sequel.

7.1 Definitions and Preliminary Results

We introduce definitions and derive inequalities that are helpful in our analysis. Some of

these notions are general enough to be used in the analysis of any work-conserving service

discipline (that operates on sources that are leaky bucket constrained).

Given A 1,..., AN, let aT be defined for each session i and time r > 0 as

a[= Q,(r) + 4i(r) (17)

where I(r) is defined in (13). Thus a[is the sum of the number of tokens left in the

7 ANALYSIS 16

bucket and the session backlog at the server at time r. If C/ = co we can think of eaT as

the maximum amount of session i backlog at time r+, over all arrival functions that are

identical to Al, ..., AN up to time r.

Observe that a ° = ai and that

Q i(7) = =0 = a' < ai. (18)

Recall (15):

Aj(r, t) < li(r) + pi(t - 7) -li(t).

Substituting for IT and It from (17):

Qi(r) + Ai(r,t)- Qi(t) < aI- ai + pi(t - -). (19)

Now notice that

S;(r, t) = Qi(r) + A(r, t) - Qi(t). (20)

Combining (19) and (20) we establish the following useful result:

Lemma 2 For every session i, r < t:

Si(r, t) < at - ai + pi(t- 7). (21)

Define a system busy period to be a maximal interval B such that for any r, t E B,

r < t:
N

E Sj(r,t) = t - r.
i=l

Since the system is work conserving, if B = [tl, t2], then CNl Qi(tl) =N

Lemma 3 When Ej pj < 1, the length of a system busy period is at most

-i=l _Pi

Proof. Suppose [tl , t 2] is a system busy period. By assumption,

N N

ZQi(tl) = Qi(t2) = .
i=l i=l

7 ANALYSIS 17

Thus
N N

Ai(tl,t 2) = Si(tl,t 2) = t2 -tl
i=l i=l

From (10):
N

t2 - tl < aoi + Pi(t 2 -tl),

i=1

which yields

t - tl < t1 - la
1 - _ENi1 Pi,

A simple consequence of this Lemma is that all system busy periods are bounded. Since

session delay is bounded by the length of the largest possible system busy period, the session

delays are bounded as well.

We end this section with some comments valid only for the GPS system: Let a session

i busy period be a maximal interval Bi contained in a single system busy period, such

that for all r, t E Bi:

Si(r, t) q i

Notice that it is possible for a session to have zero backlog during its busy period. However,

if Qi(r) > 0 then r must be in a session i busy period at time r. We have already shown

in (2) that

Lemma 4 : For every interval [r, t] that is in a session i busy period

Si (r t) > (t - :r)

Notice that when ~ = q~i for all i, the service guarantee reduces to

Si(, t) >_ .N

7.2 Greedy Sessions

Session i is defined to be greedy starting at time r if

Ai(r, t) = min{Ci(t - r), l(r) + (t - r)pi}, for all t > r. (23)

In terms of the leaky bucket, this means that the session uses as many tokens as possible

(i.e. sends at maximum possible rate) for all times > r. At time r, session i has li(r)

7 ANALYSIS 18

AT(O, t)

slope = Ci
~, K~Ki(t)

a, + K,(t

a) ..- p

f-fiCslope = Pi

t

Figure 7: A session i arrival function that is greedy from time r.

tokens left in the bucket, but it is constrained to send traffic at a maximum rate of Ci.

Thus it takes i time units to deplete the tokens in the bucket. After this, the rate will

be limited by the token arrival rate, Pi.

Define At as an arrival function that is greedy starting at time r (see Figure 7). From

inspection of the figure (and from (23)), we see that if a system busy period starts at time

zero, then

A°(O, t) > A(O, t), VA - (ai, pi, Ci), t > 0.

The major result in this section will be the following:

Theorem 3 Suppose that Cj > r for every session j, where r is the rate of a GPS server.

Then for every session i, Dt and Q? are achieved (not necessarily at the same time) when

every session is greedy starting at time zero, the beginning of a system busy period.

This is an intuitively pleasing and satisfying result. It seems reasonable that if a session

sends as much traffic as possible at all times, it is going to impede the progress of packets

arriving from the other sessions. But notice that we are claiming a worst case result, which

implies that it is never more harmful for a subset of the sessions to "save up" their bursts,

and to transmit them at a time greater than zero.

While there are many examples of service disciplines for which which this "all-greedy

regime" does not maximize delay, the amount of work required to establish Theorem 3 is

still somewhat surprising. Our approach is to prove the Theorem for the case when Ci =oo

7 ANALYSIS 19

for all i-this implies that the links carrying traffic to the server have infinite capacity.

This is the easiest case to visualize since we do not have to worry about the input links,

and further, it bounds the performance of the finite link speed case, since any session can

"simulate" a finite speed input link by sending packets at a finite rate over the link. After

we have understood the infinite capacity case it will be shown that a simple extension in

the analysis yields the result for finite link capacities as well.

7.3 Generalized Processor Sharing with Infinite Incoming Link Capaci-

ties

When all the input link speeds are infinite, the arrival constraint (10) is modified to

Ai(r, t) < ai + pi(t- r), VO <_ r < t, (24)

for every session i. We say that session i conforms to (ai, Pi), or Ai - (ai, Pi). Further, we

stipulate that Ei pi < 1 to ensure stability.

By relaxing our constraint, we allow step or jump arrivals, which create discontinuities in

the arrival functions Ai. Our convention will be to treat the Ai as left-continuous functions

(i.e. continuous from the left). Thus a session i impulse of size A at time 0 yields Qi(0) = 0

and Qi(O+) = A. Also note that li(O) = ai, where li(r) is the maximum amount of session

i traffic that could arrive at time r+ without violating (24). When session i is greedy from

time r, the infinite capacity assumption ensures that li(t) = 0 for all t > r. Thus (15)

reduces to

At(r, t) = li(r) + (t - r)pi, for all t > r. (25)

Note also that if session is greedy after time r, li(t) = 0 for any t > r.

Defining at as before (from 17), we see that it is equal to Qi(r+) when session i is

greedy starting at time r.

7.3.1 An All-greedy GPS system

Theorem 3 suggests that we should examine the dynamics of a system in which all the

sessions are greedy starting at time 0, the beginning of a system busy period. This is

illustrated in Figure 8.

From (25), we know that

Ai(O, r) = ai + pir, r > 0,

and let us assume for clarity of exposition, that ai > 0 for all i. Define el as the first time

7 ANALYSIS 20

traffic

~A/i~(0 , t)

S S-

0 T el e2 e3 e4 e5

time t

Figure 8: Session i arrivals and departures after 0, the beginning of a system busy period.

at which one of the sessions, say L(1), ends its busy period. Then in the interval [0, el],

each session i is in a busy period (since we assumed that ai > 0 for all i), and is served at

rate I . Since session L(1) is greedy after 0, it follows that

PL(l) < 'N
,k=l Ok

where i = L(1). (We will show that such a session must exist in Lemma 5.) Now each

session j still in a busy period will be served at rate

(1 -PL())~j

Uk=l •k - 'kL(1)

until a time e2 when another session, L(2), ends its busy period. Similarly, for each k:

PL(k) < E -= 1j Lj)-) k = 1,2,..., N , i = L(k). (26)

As shown in Figure 8, the slopes of the various segments that comprise Si(O,t) are

7 ANALYSIS 21

s, s, From (26):

(j1 Y - j=l P L(j)Sk = EN j k (z) , k= 1,2,..., L(i).

It can be seen that {sk} k = 1,2,..., L(i) forms an increasing sequence.

Note that

* We only require that

O < el < e2 < ... < eN,

allowing for several ei to be equal.)

* We only care about t < eL(i) since the session i buffer is always empty after this time.

* Session L(i) has exactly one busy period-the interval [0, ei].

Any ordering of the sessions that meets (26) is known as a feasible ordering. Thus,

sessions 1, ... , N follow a feasible ordering if and only if:

k < -(1 , 1) k = 1, 2, ... , N. (27)

Lemma 5 At least one feasible ordering exists if EiN 1 Pi < 1.

Proof. By contradiction. Suppose there exists an index i, 1 < i < N such that we can

label the first i - 1 sessions of a feasible ordering 1, ... , i- 1}, but (27), does not hold for

any of the remaining sessions when k = i. Then denoting Li-1 = {1, ..., i - 1 we have for

every session k ' Li- 1:

Pk> (1- E pj)()
jELi-1 Cj(~i- 1 2j

Summing over all such k we have:

N

E k > - E p E pj >
koLi-, jELi,_ j=l

which is a contradiction, since we assumed that ~jN= pj < 1. Thus no such index i can
exist and the Lemma is proven. a

In general there are many feasible orderings possible, but the one that comes into play at

time 0 depends on the ai's. For example if p = pj and q = 0j, j = 1,2,..., N, then there

are n! different feasible orderings. More generally, there are N! different feasible orderings

7 ANALYSIS 22

traffic

1 As(0, t) - /

W- tS(O, t)_-- -" - 'A 4 tS(0,) - - /S(Ot)

---" 1A 2 (0, t)

_ - - - = - 82

time t
0 el e2 e3 e4 e5

The arrival functions are scaled so that a universal service curve, S(0, t), can be drawn.
After time ei, session i has a backlog of zero until the end of the system busy period,
which is at time e5. The vertical distance between the dashed curve corresponding to
session i and S(0, r) is · Qi(r), while the horizontal distance yields Di(r) just as it
does in Figure 8.

Figure 9: The dynamics of an all-greedy GPS system.

if Pi = oi for all i. To simplify the notation let us assume that the sessions are labeled so

that j = L(j) for j = 1,2, ... , N. Then for any two sessions i,j indexed greater than k we

can define a "universal slope" Sk by:

.Sk = - ij > k. k = , 2, ... ,
Oi i E?:k Ok

This allows us to describe the behavior of all the sessions in a single figure as is depicted

in Figure 9. Under the all-greedy regime, the function V(t) (described in Section 4.1),

corresponds exactly to the universal service curve, S(0, t), shown in Figure 9. It is worth

noting that the virtual time function V(t) captures this notion of generalized service for

arbitrary arrival functions.

In the remainder of this section we will prove a tight lower bound on the amount of

7 ANALYSIS 23

service a session receives when it is in a busy period: Recall that for a given set of arrival

functions A = {A 1 ,...,AN}, Ar = {Af, {A..., A } is the set such that for every session k,

A(O0, s) = Ak(O, s) for s E [0, r), and session k is greedy starting at time 7.

Lemma 6

Assume that session i is in a busy period in the interval [r, t]. Then (i) For any subset M

of m sessions, 1 < m < N, and any time t > r:

(t -- -> (EjM O + pj(t -))) (28)

EjEM Oj

(ii) Under A r, there exists a subset of the sessions, Mt, for every t > r such that equality

holds in (28).

Proof. For compactness of notation, let Oji = , i,j.

(i) From (21)

Si(T, t) •< j + pj(t - r)

for all j.

Also, since the interval [r, t] is in a session i busy period:

SA(7, t) < _jiSi(T, O)

Thus

Sj(r, t) < min{aj' + pj(t - r), OjiSi(r, t)}.

Since the system is in a busy period, the server serves exactly t - r units of traffic in

the interval [r, t]. Thus

N

t - T < y min{uj + pj(t- r), qjiSi(r, t)}
j=1

j t - T < O£ a.+ pj(t - r) + E QjiSi(r, t)
jAM jEM

for any subset of sessions, M. Rearranging the terms yields (28).

(ii) Since all the sessions are greedy after r under AT, every session j will have a session

busy period that begins at 7 and lasts up to some time ej. As we showed in the discussion

leading up to Figure 9, Qj(t) = 0, for all t > ej. The system busy period ends at time

e* = maxj ej. Define

Mt = fj : ej > t}.

7 ANALYSIS 24

By the definition of GPS we know that session j E Aft receives exactly OjjSi(r,t) units

of service in the interval (r,t]. A session k is not in Mlt only if ek < t, so we must have

Qk(t) = 0. Thus, for k A Mlt.

Sk(, t) = 0 k + pk(t-),

and equality is achieved in (28). 0

7.4 An Important Inequality

In the previous section we examined the behavior of the GPS system when the sessions are

greedy. Here we prove an important inequality that holds for any arrival functions that

conform to the arrival constraints (24).

Theorem 4 : Let 1, ... , N be a feasible ordering. Then for any time t and session p:

p p

E a< E k
k=1 k=l

We want to show that at the beginning of a session p busy period, the collective bursti-

ness of sessions 1, ..., p will never be more than what it was at time 0. The interesting aspect

of this theorem is that it holds for every feasible ordering of the sessions. When pj = p,

and <j = X for every j, it says that the collective burstiness of any subset of sessions is no

less than what it was at the beginning of the system busy period.

The following three Lemmas are used to prove the theorem. The first says (essentially),

that if session p is served at a rate smaller than its average rate, pp, during a session p busy

period, then the sessions indexed lower than p will be served correspondingly higher than

their average rates. Note that this lemma is true even when the sessions are not greedy.

Lemma 7 Let 1, ... , N be a feasible ordering, and suppose that session p is busy in the

interval [7, t]. Further, define x to satisfy

Sp(r, t) = pp(t - 7) - x (29)

Then
p- 1 p- 1 AN

,Sk(r,t) > E(t- r)Pk+ x(1 + E ,2). (30)
k=1 k=1)=p+l O

7 ANALYSIS 25

Proof. For compactness of notation, let qij = , Vi,j. Now because of the feasible
ordering,

1 - Ej=P pi
Pp <

Ez=p Oip

Thus

SP(T, t) < (t- T) () - X. (31)

Also, Sj(r, t) < •jpSp(r, t), for all j. Thus

N N

Z Sj(r, t) < Sp(T-,t)E Pjp.
j=p j=p

Using (31)
N p-1 N

T Sj(T, t) < (t - T)(1 - E Pj) - x E Ojp.
j=p j=1 j=p

Since [r, t] is in a system busy period:

N p-1

'E Sj(T,t)= (t - T) - E sj(,t-.
J=p j=1

Thus
p-1 p-1 N

(t - r) - E Sj(7, t) < (t - T)(1 - E pj) - X E Ojp
j=1 j=1 j=p

p-1 p-1 N

Sj(r,t) > (t- r) E pj + x(l + E Ojp),
3=1 j=1 j=p+l

since 6p = 1. a

Lemma 8 Let 1, ... ,N be a feasible ordering, and suppose that session p is busy in the
interval [T, t]. Then if Sp(r, t) < pp(t - r):

P p

Z Sk(r, t)> (t-) pk, (32)
k=l k=1

Proof. Let

Sp(T, t) = pp(t - r) - ,

x > O. Then from (30) we have are done, since x EN=p+l > 0. .

7 ANALYSIS 26

Lemma 9 Let 1, ... ,N be a feasible ordering, and suppose that session p is busy in the

interval [r, t]. Then if Sp(r, t) < pp(t- r):

P p

a,1 < a al
k=1 k=1

Proof. From Lemma 2, for every k,

7 + pk(t- r)- Sk(r, t) > a

Summing over k, and substituting from (32), we have the result. 0

If we choose r to be the beginning of a session p busy period, then Lemma 9 says that if

SP(r, t) < pp(t - T) then
p-1 p-1

a + E0"< ap oak- (33)
k=1 k=l

Now we will prove Theorem 4: We state it again for reference:

Theorem 4: Let 1, ..., N be a feasible ordering. Then for any time t and session p:

P P

Eak - ak-
k=1 k=1

Proof. We proceed by induction on the index of the session p.

Basis: p = 1. Define r to be the last time at or before t such that Q1 (r) = 0. Then session

1 is in a busy period in the interval [r, t], and we have

Sl(r,t) _ > (t - 7)Pl.
_k=l Ok

The second inequality follows since session 1 is first in a feasible order, implying that

P1 < . From Lemma 2:
Pk=l < k

a4 < oa + pi(t- r) -S(, t) < al < al.

This shows the basis.

Inductive Step: Assume the hypothesis for 1,2,...,p - 1 and show it for p. Let r be the

start of the session p busy period that contains t.

Observe that if Qi(t) = 0 for any session i then i _< a o. Now consider two cases:

7 ANALYSIS 27

Case 1: Ct < ap: By the induction hypothesis:

p-1 p-1

Ski < I:ar.
i=l i=l

Thus
P p

E t < Eci.
i=l i=l

Case 2: ao > op: Session p must be in a session p busy period at time t, so let r be the time

at which this busy period begins. Also, from (21): Sp(r, t) < pp(t - i). Applying (33):

p-1 p-1 p

ap + ak < -o p + C ak < E ack, (34)
k=1 k=1 k=l1

where in the last inequality, we have used the induction hypothesis. cl

7.5 Proof of the main result

In this section we will use Lemma 6 and Theorem 4 to prove Theorem 3 for infinite capacity

incoming links.

Let A 1,..., AN be the set of arrival functions in which all the sessions are greedy from

time 0, the beginning of a system busy period. For every session p, let Sp(r, t), and bp(t)

be the session p service and delay functions under A. We first show

Lemma 10 Suppose that time t is contained in a busy period that begins at time r: Then

Sp(O, t -) < Sp(T, t). (35)

Proof. Define B as the the set of sessions that are busy at time t - r under A. From

Lemma 6:
(t - 7'- 'iE3(fT + pi(t- r)))- i

Sp(7, t)B

Since the order in which the sessions become inactive is a feasible ordering, Theorem 4

asserts that:
Se(t t) a (t - - Ei L3(O'i + pi(t- 7)))- i
Sp(7, t) >

= L 6(0,t - T),

(from Lemma 6), and (35) is shown. [

7 ANALYSIS 28

Lemma 11 For every session i, D? and Q? are achieved (not necessarily at the same time)

when every session is greedy starting at time zero, the beginning of a system busy period.

Proof. We first show that the session i backlog is maximized under A: Consider any set

of arrival functions, A = {A1, ... , AN} that conforms to (24), and suppose that for a session

i busy period that begins at time r:

Qi(t*) = maxQi(t).
t>r

From Lemma 10:

s(O, t* - -) < Si(, t'),

Also,

Ai(7, t*) •< i + pi(t - r) = Ai(0, t* - r).

Thus

Ai(O, t* - 7) - i(, t* - r) > Ai(r, t*) - Si(r, t*)

i.e.

Qi(t* - r) > Qi(t*).

The case for delay is similar: Consider any set of arrival functions, A = {A1,..., AN}

that conforms to (24), and suppose that for a session i busy period that begins at time r:

Di(t*) = maxDi(t).
t>7-

From the definition of delay in equation (16):

Ai(r, t*)- Si(-, t* + Di(t*)) = 0.

Let us denote d?' = t* - r. From Lemma 10:

Si(O, d? + Di(t*)) < Si(r, t* + Di(t*))

and since ai > aor:

.i(O, d?) > Ai(7, t*).

Thus

Ai(o, d) - S(O, + Di(t*)) > Ai(r, 7 + t*) - S(r, t* + Di(t*)) = O

D i(d?) > Di(t*).

8 GENERALIZED PROCESSOR SHARING WITH FINITE LINK SPEEDS 29

Thus we have shown Theorem 3 for infinite capacity incoming links.

8 Generalized Processor Sharing with Finite Link Speeds

In the infinite link capacity case we were able to take advantage of the fact that a session

could use up all of its outstanding tokens instantaneously. In this section we include the

maximum rate constraint, i.e. for every session i, the incoming session traffic can arrive at

a maximum rate of Ci > 1. We will find that while the system dynamics are complicated

slightly, Theorem 3 still holds. The next section analyzes the case when all sessions are

busy from time zero, which allows us to establish Theorem 3.

8.1 An All-greedy GPS system

Suppose all sessions are greedy starting at time zero, and for clarity of exposition assume

that ai > 0 for all i. Then every session starts a busy period at time zero. Since the system

busy period is finite we can label the sessions in the order that their first individual busy

periods are terminated. Recall that for the infinite link capacity case this corresponds to

labeling the sessions according to a particular feasible ordering. Session i traffic will arrive

at rate Ci for exactly

bi - vi (36)
Ci - pi

after which it arrives at rate Pi.

Assume that Ci > 1 for every session i. Since session i traffic is arriving at least as fast

as it is being served from time 0 to bi, we must have bi < ei, where ei is the time (> 0)

when the session i busy period is terminated for the first time. In the interval [0, e1], each

session i is in a busy period (since we assumed that O'i > 0 for all i), and is served at rate

At e1, session 1 ends its busy period. Now since el > bl, session i must have been

sending traffic at rate pi at time el. Thus Pi < - . Similarly, we can show that
kk=l (Zk

pk < E = P , k = 1,2, ..., N. (37)

Comparing this to (26) we see that the universal service curve S(O, t) is identical to what it

would have been if every session had infinite Ci! Since any arrival function Ai - (ai, pi, Ci)

is also consistent with (ai, pi, co), arguments similar to those in Section 7.3 yield Theorem

3.

9 THE OUTPUT BURSTINESS, aeUT 30

9 The Output Burstiness, agut

In this section we focus on determining for every session i, the least quantity ae9ut such that

Si (aout, pi, r)

where r is the rate of the server. This definition of output burstiness is due to Cruz [2]. By

characterizing Si in this manner we can begin to analyze networks of servers, which is the

focus of the sequel to this paper. Fortunately there is a convenient relationship between

aorUt and Qt:

Lemma 12 If Cj > r for every session j, where r is the rate of the server, then for each

session i:
Gout = Q*

Proof. First consider the case Ci = oo. Suppose that Qi* is achieved at some time t*,

and session i continues to send traffic at rate pi after t*. Further, for each j 0 i, let tj be

the time of arrival of the last session j bit to be served before time t*. Then Q? is also

achieved at t* when the arrival functions of all the sessions j f i are truncated at tj, i.e.,

Aj(tj,t) = 0, j 5 i. In this case, all the other session queues are empty at time t*, and

beginning at time t*, the server will exclusively serve session i at rate 1 for Q units of

time, after which session i will be served at rate Pi. Thus

S(t*, t) = minft - t*, Q! + pi(t* - t)}, Vt > t*.

From this we have

.uOt > Q!.

We now show that the reverse inequality holds as well: For any r < t:

Si(r, t) = Ai(r, t) + Qi(r) - Qi(t)

< t + pi(t - r) + Qi(7) - Qi(t)

- Qi(t) + pi(t - 7)

(since Ci = o.) This implies that

i < at T - Q i (t) < a < Q

10 CONCLUSIONS 31

Thus
rout = Q*

Now suppose that Ci E [r, co). Since the traffic observed under the all-greedy regime is

indistinguishable from a system in which all the incoming links have infinite capacity, we

must have aout = Q? in this case as well. E]

10 Conclusions

In this paper we introduced a flexible, efficient and fair service discipline based on generalized

processor sharing, and analyzed it for single node systems. The results obtained here are

crucial in the analysis of arbitrary topology, multiple node networks, which we will present

in the sequel to this paper.

References

[1] D. BERTSEKAS AND R. GALLAGER, Data Networks, Prentice Hall, Englewood Cliffs,

NJ, 1991.

[2] R. L. CRUz, A calculus for network delay, Part I: Network elements in isolation, IEEE

Transactions on Information Theory, 37 (1991), pp. 114-131.

[3] ~, A calculus for network delay, Part II: Network analysis, IEEE Transactions on

Information Theory, 37 (1991), pp. 132-141.

[4] A. DEMERS, S. KESHAV, AND S. SHENKAR, Analysis and simulation of a fair queueing

algorithm, Proceedings of SIGCOMM '89, (1989), pp. 1-12.

[5] S. J. GOLESTANI, Congestion-free transmission of real-time traffic in packet networks,

in Proceedings of IEEE INFOCOM '90, San Fransisco, CA, 1990, pp. 527-536.

[6] -- , A framing strategy for connection managment, in Proceedings of SIGCOMM '90,

1990.

[7] ~, Duration-limited statistical multiplexing of delay sensitive traffic in packet net-

works, in Proceedings of IEEE INFOCOM '91, 1991.

[8] A. C. GREENBERG AND N. MADRAS, Comparison of a fair queueing discipline to

processor sharing, in Performance '90, Edinborough, Scotland, 1990, pp. 239-254.

REFERENCES 32

[9] C. Lu AND P. R. KUMAR, Distributed scheduling based on due dates and buffer pri-

oritization, tech. rep., University of Illinois Technical Report, 1990.

[10] A. K. PAREKH AND R. G. GALLAGER, A Generalized Processor Sharing approach to

flow control-The MAlultiple NVode Case. Tech. Rep. 2076, Laboratory for Information

and Decision Systems, MIIT, 1991.

[11] - , A Generalized Processor Sharing approach to flow control-The Single NVode

Case, Tech. Rep. 2040, Laboratory for Information and Decision Systems, MIT, 1991.

[12] J. R. PERKINS AND P. R. KUMAR, Stable distributed real-time scheduling of flexi-

ble manufacturing systems. IEEE Transactions on Automatic Control, AC-34 (1989),

pp. 139-148.

[13] J. TURNER, New directions in commnunications (or Which way to the information

age), IEEE Communications Magazine, 24 (1986), pp. 8-15.

[14] L. ZHANG, A New Architecture for Packet Switching Network Protocols, PhD thesis,

Department of Electrical Engineering and Computer Science. MIT, August 1989.

