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Abstract

This paper considers discrete-time systems with full state feed-
back, scalar control and scalar disturbance. First, systems with a
scalar regulated output are studied (singular problems). It is shown
that there is a large class of such systems, characterized by the non-

minimum phase zeros of the transfer function from the control to the
regulated output, for which the fl-optimal controller is necessarily
dynamic. Moreover, such controllers may have arbitrarily high order.
Second, problems with two regulated outputs, one of them being the
scalar control sequence, are considered (non-singular problems). It is
shown, by means of a fairly general example, that such problems may
not have static controllers that are t 1-optimal.
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1 Introduction

Since Dahleh and Pearson ([1],[2]) presented the solution to the fl op-
timal control problem, there has been increasing interest in understanding
the basic properties of such problems ([3],[8],[9] and [11]). Considering that
in the case of 7{2 and -{o, optimization, state feedback optimal controllers
have a very special structure (i.e. static), it seems only natural to ask how
full state information affects the fl optimal solution. In particular, under
what conditions (if any) there exist a static linear controller that achieves
optimality. This paper presents results regarding this question, for systems
with scalar control and scalar disturbance. In particular, two different types
of problems within this class of systems are considered: a) those with a scalar
regulated output, denoted as singular problems, and b) those with two reg-
ulated outputs, denoted as non-singular problems, where one of the outputs
is the scalar control signal. For systems in a), it is shown that there exists a
static controller which is fl-optimal if the non-minimum phase zeros of the
transfer function from the control input to the regulated output satisfy a
simple algebraic condition. Violating such condition, however, may result in
a dynamic el-optimal controller of possibly high order (generally when the
non-minimum phase zeros are "close" to the unit circle). For systems in b), it
is shown by means of a general example that optimal controllers are dynamic
in a broad class of cases which are common in control design.

The paper is organized as follows. Section 2 formulates the singular prob-
lem along with some basic notation. Sections 3 and 4 present results corre-
sponding to singular problems involving minimum and non-minimum phase
plants respectively. Section 5 examines a non-singular problem by means of
a general example, followed by the conclusions in Section 6.

2 Problem Formulation

Consider the following state-space minimal realization of a full state feed-
back system with scalar inputs w (disturbance) and u (control), scalar regu-
lated output z, and measurements x (state vector):

A bl b2

cl 0 dl2
I O O
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where A E Rnxn, b1 and b2 E RnX 1, cl E R1Xn" and d1 2 E R. For any
internally stabilizing controller k, let d = {d(0),O(),),(2),...} denote the
closed-loop pulse response sequence from w to z. Then, the problem can be
stated as follows:

inf tfI111 (1)
k-stab.

where fiI1, def ;i Ij(i)l. Using standard results in the parameterization of
all stabilizing controllers (see [6]), problem (1) can be rewritten as follows:

inf lt, - t 2 * q * t 3 11 (2)
qEte xR

where /x" indicates the space of all m x n matrices with entries in ef and *
denotes convolution. Thus, t1 and t 2 C {1, and t3 EC (nx1. Let the A-transform
of a right-sided real sequence h = {h(O), h(l), h(2),...} be defined as

h(A) = E h(k)Ak
k=O

where A represents the unit delay. Then, a state-space realizations for tl, t 2
and t3 can be found by using the state-space formulas in [6] with the observer
gain matrix, H, equal to -A. For this specific choice, the realizations are:

tl(A) = A[Af,Ab,cl +dl 2f, clbl] (3)

t2(A) = [Af, b2 , c1 + d1 2 f, d12 ] (4)

t 3 (A) = [O,bl,,0] = Ab1 (5)

where ii(A) denotes the A-transform of ti, Af d=f A + b2 f,

[A,B,C,D] d f AC(I- A) - 1 B + D

and f is chosen such that all the eigenvalues of Af are inside the unit disk.
The following result, which will be needed in the next section, is proved

in [1].
Theorem 2.1 Assuming t2(') and t3(') have no left and right zeros respec-
tively on the unit circle, there exists qopt CE Xfl that achieves the optimal
norm in problem (2). Moreover, the closed-loop optimal pulse response,
Oopt = tl - t2 * qopt * t 3 , has finite support.
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3 Singular Problem with Minimum-Phase
Plant

This section considers the case where the transfer function from the con-
trol input, u, to the regulated output, z, is minimum-phase except for an
integer number of unit delays (i.e. zeros at the origin in the A-plane). It will
be assumed throughout that (A, b2) is reachable.
Theorem 3.1 For such a system, the static feedback gain, f*, that places
the eigenvalues of (A + b2 f*) at the exact location of the minimum-phase
zeros of [A, b2, cl, dl 2] and the rest at the origin is fl-optimal.

Proof Consider using f* as the state feedback gain in the parameteriza-
tion described above. Then, after carrying out all stable pole-zero cancella-
tions,

t 2 (A) r A'

where r is the number of unit delays in [A, b2,cl,dl2] and y, is a scalar
depending on r. In what follows, the cases where r = 0 and r > 0 will be
treated separately.

i) If r = 0, then d12 # 0, cl + d1 2 f* = 0, and t 2(A) = d12. Also, from
equation (3),

l(A) -= Cl bl A = (Clbl + dl 2 f*bl - d1 2 f*b1 )A = -dl2f*b1

= '(A) =-dl2 f*blA - d12q(A)bl A

Thus, the {L-optimal solution is given by 4opt(A) = -f*, and qpt(A) = 0.
Furthermore, using the state-space equations in [6] for computing the optimal
controller, it can be shown after a little algebra that kpt(A) = f*.

ii) If r > 0, then dl2 = 0, clA>. = 0 by construction, and t2(A) =

clA7;1 Ar'. Again, from equation 3,

1l(A) = clblA + clAblA2 + clAf.AblA3 + ... + clAflAblAr+i

Therefore, the closed-loop pulse response is given by

+(A) = cA + cAbl 2 + clAf.Abl 3 + ...

+ clAf,72 blA + ciA; 1(A - b24q(A))bl 'r+
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Clearly, q does not affect the first r + 1 elements of 0 (i.e. +(i), i = 0, 1,..., r).
Then, the best possible choice of q, in the sense of minimizing the el-norm of
4, is the one that makes ¢>(i) = 0 for i = r + r + 1, r + 2,..., and is achieved by
letting ,opt(A) = -f*, since O(r + 1) = clAf.bj = 0. Again, the correspond-
ing fl-optimal controller is f*. I

Corollary 3.1 The fl-optimal closed-loop transfer fu.nction of the system
considered in theorem 3.1 (with r > O) is given by:

()opt () = C1 Ai-1 Aibl
il=1

Proof It follows from the fact that clA'.b 2 = 0 for i = 0, 1,... , r -2. The
details are left to the reader. '

Put in words, theorem 3.1 says that there is nothing the controller can
do to invert the delays in the system. It can, however, cancel the rest of the
dynamics of the system due to the absence of non-minimum phase zeros in
the transfer function from the control input to the regulated output. This
results in an optimal closed-loop pulse response that is equal to the open
loop pulse response in its first (r + 1) elements and zero thereafter. It is
also worth noting that theorem 3.1 is directly applicable to the discrete-time
LQR problem, where Ei6 4 is minimized. More precisely, the asymptotic
LQR solution (see [7]) where the weight on the control tends to zero (i.e.
cheap control problem) is identical to that of theorem 3.1.

4 Singular Problem with Non-minimum
Phase Plant

This section considers those cases where [A, b2, cl, d12] has r non-minimum
phase zeros not necessarily at the origin (i.e. A = 0).

Again, we use the same parameterization as in the previous section. That
is, we choose f* to place (n - r) eigenvalues of A* at the exact location of the
minimum phase zeros of [A, b2, cl, d12] and the rest (r) at the origin. Then,
from the discussion in section 3, tl(A) is polynomial in A and of order (r + 1),
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t 2(A) is polynomial too, but of order r, and t 3(A) is simply A b1. Therefore,
the closed-loop transfer function can be written as follows:

(>) = (91 j(A - at) -9g2 i1(A - j); q()) A -e f() A (6)
i=l j=l

where 91,9 2 e R, ai's are the zeros of ti, /3j's are the (non-minimum phase)

zeros of i2 and [A, b2, c, d12], and q(A) df 4(A) bE C e1l. Note that 11 OI -- [1 ¢[

Also, by theorem 2.1, 0,,ot(A) is polynomial in A, which implies that qot(X)
is polynomial in A. Thus, the optimization problem is equivalent to the
following linear programming (primal) problem: for a sufficiently large but
finite s,

minE |i(i) (7)
X i=o

S r

s.t. ¢(i)j: = gi IH(0j - ai) 1, 2,...,r
i=O i=1

In the above we have assumed that the /3j's are simple zeros to simplify the
formulation of the interpolation conditions. The coming results, however,
carry over to the more general case.

The following theorem by Deodhare and Vidyasagar [4] will prove useful.
It is stated with no proof.
Theorem 4.1 The support of d in (7), denoted as (s + 1), equals the number
of constraints r, if

r-1

E |ai! < 1 (8)
i=O

where >=x(A -/ 3 j) - = A + a,_lA" -l + *+ alA + ao.

Now we are ready to present the next result.

Theorem 4.2 Let [A,b 2, cl, d 12 ] have r non-minimum phase zeros, then if
(8) is satisfied, f* is fl-optimal.

Proof By theorem 4.1, 0opt(A) is of order (r - 1). Then, considering the

order of each term in (6), it is clear that qopt(A) has to be constant and such
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that +(r) = O. Using the state-space formulas (3), (4) and (5),

0 = +(r) = (cl + dl2 f*)Afl(Ablb 2- bopt(O))

(cl + dl2 f*)Af; (A - b2 q,,opt())bl

But, by construction, (c1 + d12f*)A-. = 0 due to the stable pole-zero can-
cellations and the fact that the rest of the poles are placed at the origin.
Therefore, Oopt = -f* is the required value, and kopt = f*. I

It remains to consider those cases where the non-minimum phase zeros
of [A,b 2 ,cl,d12] are such that they violate condition (8). Theorem 4.1 es-
tablished only a sufficient condition to determine the order of the optimal
response. If this condition is violated, the optimal closed-loop response might
be of higher order, possibly greater than n, but still polynomial. When that
is the case the following theorem applies.

Theorem 4.3 If the optimal response, 5opt(A), is of order greater than n,
then the el-optimal controller is necessarily dynamic.

Proof The highest order polynomial response that a static controller can
generate is n, by placing all closed-loop poles of the plant at the origin. Any
polynomial response of order greater than n, say N, requires a dynamic com-
pensator of at least order N - n. U

The following example shows that a large class of state feedback singular
problems have this property.

EXAMPLE 1: Consider the following parameterized family of plants (with
parameter K),

,() , A2 - 2.5A + 1)
P,(X)

(1 - 0.2A)(23A2 - 2.5A + 1)

Assume that the controller has access to the state vector and that the distur-
bance acts at the plant input. The non-minimum phase zeros relevant to this
theory are given by the roots of tA2 - 2.5A + 1, as a function of K. It is easy
to see that for K > 3.5 condition (8) is satisfied and the optimal controller
is f*. By applying the methods of [1], it can be shown that for K = 3.5 the
optimal solution is no longer unique. Actually two possible solutions with
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op1 = 7 are:
A - 2.52A' + 3.5A3

opt3 .5 { A - 1. 2I + 4.9A4

The first is achieved with f* while the second requires a first order controller.
(The non-uniqueness is related to the occurrence of weakly redundant con-
straints in the linear program.) Note that for this value of a;, the left hand
side of (8) is equal to one.

For 1.5 < i; < 3.5 condition (8) is violated and the optimal solution has
the following general form:

optl.5<.<3.5 = A + kK(2)A 2 + 0j(NfK)AN 

As , , 1.5, one of the non-minimum phase zeros approaches the boundary
of the unit disk while 0,(2) -- -1.5, 0,(NK) - 0.5, and, most remarkably,
N, / oo. This implies, by theorem 4.3, that the optimal controller can have
arbitrarily large order. For instance, if i; = 1.51, then

qopt___=,, 
- A - 1.4907A2 + 0.5776A1 2

and the optimal compensator is of order 9. It is also interesting to point out
that for K < 1.5 one of the non-minimum phase zeros leaves the unit disk
and condition (8) is again satisfied. In this case, Aqopt.<1 .= A- 1.5A2 and

kopt = f*. With regard to the optimal norm, it drops from a value arbitrarily
close but greater than 3 to a value of 2.5 in the transition.

Similar behavior has been reported in [10], for the case of sensitivity
minimization through output feedback. The above example shows that the
nature of such solutions have comparable characteristics even under full state
feedback.

5 A Non-Singular Problem

So far we have considered problems with a scalar regulated output. One
could argue that sensitivity minimization problems, such as the one in the
above example, where a measure of the control effort is not included in the
cost functional (i.e. singular problems), may have peculiar solutions that
could hide the structure of the more general non-singular case. To clarify
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this point, we will consider a variation of the above example by including the
control effort in the cost functional. That is,

k-stab. ' 7 2 1 -k-stab.

where X1 represents the closed-loop map from the disturbance to the output
of the plant, ¢2 represents the closed-loop map from the disturbance to the
control input, and y is a positive scalar weight. The fact that there are
two regulated outputs and only a scalar control makes this problem of the
bad rank class (see [2] and [8]). This implies that a linear programming
formulation of the solution will have, in general, an infinite number of non-
zero variables and active constraints (theorem 2.1 no longer holds) making
the exact solutions difficult to obtain. For the following example, however,
it can be shown that the optimal response has finite support, and that an
exact solution can be computed ([11],[5]).

EXAMPLE 2: Consider problem (9) for the parameterized family of plants
of example 1. If , = 2 and y = 0.1 then the exact fl-optimal solution can
be shown to be

8 8 7 2 + 631 308
((A) A 558 558 558

998.6 + 11895.4 2 89 5 5 .4 a 12 8 2 .2 _708.4 5
~2 (A) A 9 98.6 + -q AqA- 5

558 558 558 558 558

where I|I))1 = f 11)211 = 1192/279 -_ 4.2724, and the optimal controller is
dynamic and of second order.

It is also interesting to consider the singular problem corresponding to
this example (i.e. n = 2 and y = 0). The optimal solution is given by

(A) = A _90 2 1284dA) A - -A2 + A568 68

103.6 +1446 A2 1394.4 _3 1136 4 294.4

68 68 68 68 68

where flqlll = 286/68 _ 4.2059 while 112111i = 4374.4/68 ~ 64.3294 is clearly
larger. In fact, the above solution is valid for y C [0, 286/4374.4] since for any
- in such interval I 1 Žll > 7112 Ill.- Moreover, for any such y, the fl-optimal
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controller is dynamic and of second order since the optimal q1 is polynomial
and of fifth order.

All this indicates that given a non-singular problem, the optimal con-
troller may very well be dynamic, whether or not the two regulated outputs
impose conflicting goals. Further, it can be shown that even when the corre-
sponding singular problem has a static optimal controller, the non-singular
problem may require a dynamic one.

6 Concluding Remarks

This paper presented a study of the el optimization problem for systems
with full state feedback, scalar disturbance and scalar control. Two classes
of problems were considered: a) singular problems with a scalar regulated
output, and b) non-singular problems with two regulated outputs, one of
them being the control sequence. The main purpose of the study was to
determine whether or not there is always a static controller which is fl-
optimal. First, it was shown that for a large class of relevant problems
the el-optimal controller is necessarily dynamic and that the order of the
controller can be arbitrarily high. Although the systems in question were
simple, it is safe to conclude that more complex MIMO state feedback {l
optimization problems will also have this characteristic in general. Second,
it was shown that singular problems satisfying equation 8, which only involves
the non-minimum phase zeros of the transfer function from the control to the
regulated output, always have a static optimal controller, and that such gain
can be easily computed without solving a standard tl problem.
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