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Abstract
Nanoscale structures present both unique physics and unique theoretical challenges.
Atomic-scale simulations can find novel nanostructures with desirable properties,
but the search can be difficult if the wide range of possible structures is not well-
understood. Electrical response and other non-equilibrium transport phenomena are
measured experimentally, but not always simulated accurately. This thesis presents
four diverse applications that demonstrate how first-principles calculations can ad-
dress these challenges.

Novel boron nanotube structures with unusual elastic properties are presented.
Internal degrees of freedom are identified that allow longitudinal stress to be dissipated
without changing the tube's diameter, leading to high lateral stiffness.

Self-trapped hole structures in amorphous silicon dioxide are investigated in order
to connect the behavior of hole currents to atomic-scale structures. Calculations on
a paired-oxygen analogue to the Vk center show that such a configuration does not
result in a metastable trapped-hole state.

A novel method to enable first-principles mobility calculations in ultrathin silicon-
on-insulator (UTSOI) structures is presented and applied to interface roughness scat-
tering in transistor channels. Self-consistent potentials and accurate wavefunctions
and band structures allow for a direct link between measured electrical response and
atomic structure. Atomic-scale interface roughness is shown to be an important limit
on mobility at high carrier densities. At low carrier densities, such short-wavelength
roughness results in qualitatively different mobility behavior than gradual UTSOI
channel thickness fluctuations.

An effective Hamiltonian technique to calculate short-time, non-equilibrium fluc-
tuations in quantum devices is developed. Applications to quantum dots and resonant
tunneling diodes show that temporal fluctuations are reproduced well.

Thesis Supervisor: John D. Joannopoulos
Title: Francis Wright Davis Professor of Physics
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Chapter 1

Introduction

One atom is not the same as a collection of 1023 atoms. This important, if obvious,

observation has motivated condensed matter physicists since the 1930's. Quantum

mechanics has proven to be the key to explaining the wide variety of material proper-

ties observed in nature. The early development of band theory permitted physicists

to explain the difference between metals and insulators, as well as to understand why

quartz is transparent and gold is not. Equally powerful theories were developed to

explain superconductivity, magnetism, superfluidity, and other phenomena unique to

1023 -atom systems.

From the beginning of condensed matter physics, analytical results on real ma-

terials were hard to come by. Solving Schr6dinger's equation for 1023 interacting

electrons is an impossible task. As a result, approximations are necessary to strip

away unnecessary complications and illuminate essential physics. Simplifying approx-

imations are very useful in explaining unusual phenomena observed in real materials,

but determining why a particular phenomenon occurs in a particular material re-

quires additional detail. Simple theories can explain the difference between metals

and insulators, but why should carbon appear naturally in both forms? Understand-

ing how diamond differs from graphite requires an ability to calculate how different

arrangements of carbon atoms result in different properties.

The development of Density Functional Theory by Hohenberg, Kohn, and Sham [70,

82] opened the door to modern calculations of material properties from first-principles.
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The translational and other symmetries of crystal structures, in conjunction with

Bloch's theorem [19], allowed the 1023 atoms in a macroscopic crystal to be re-

duced to the handful of atoms in the unit cell. Many experimental efforts of the

last two decades have focused not on macroscopic materials, however, but rather on

nanometer-scale structures that can be engineered to display unique properties. This

has presented new challenges for computational theorists, because such structures can

contain hundreds or thousands of atoms and do not have lattice symmetries.

The work described in this thesis demonstrates how computational techniques

based on Density Functional Theory can be used to predict and understand the

novel properties of nanoscale structures. In addition, new methods are described

that permit the calculation of charge and spin transport properties. The ability of

theorists to calculate currents and voltages measured experimentally in nanoscale

devices not only allows for direct comparison between experiment and theory, but

also allows theory to contribute to the design and development of novel nanoscale

electronic devices.

1.1 Small is Different
(with apologies to P. W. Anderson)

1.1.1 Nanoscale Size Effects

Nanometer-scale structures can display properties very different from their macro-

scopic counterparts. Macroscopic gold surfaces are non-reactive, resulting in char-

acteristic luster of gold jewelry, but nanoscale gold clusters are very effective cat-

alysts [151]. Carbon is found in nature in two forms: diamond, a hard insulator,

and graphite, a soft semimetal. At the nanoscale, however, carbon displays a rich

variety of structures [38]. The C60 molecule, or "buckyball", is a carbon cluster

in the shape of a soccer ball, whose hollow interior and stable exterior could find

a range of applications. Carbon nanotubes, hollow tubes in the shape of rolled-up

graphene sheets, show great tensile strength and stiffness, and are either metallic or

semiconducting depending on their structure. Nanotubes have inspired numerous ap-
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plications, including nanoscale transistors [132, 12] and strong, light-weight composite

materials [7, 96, 136].

The origin of these unique nanoscale structures and properties are the size effects

that result from forming clusters of tens or hundreds of atoms, instead of the 1023

atoms in a macroscopic crystal. The surface-to-volume ratio for such nanometer-scale

clusters is not small, and as a result there will be many surface atoms with different

coordination and bonding patterns than those in the bulk. Surface reconstructions

will be very important, and the resulting stable structures may be very different

than their bulk or macroscopic surface counterparts. An extreme example are carbon

nanotubes and fullerenes, discussed above. Two-dimensional sections of graphene

sheets will not remain flat, but prefer to roll into tubes or balls.

Another important size effect relates to the balance between kinetic and potential

energy in nanoscale structures. In macroscopic metals, valence electrons behave as

nearly-free particles that screen external fields with frequencies below the plasma

frequency. The screening effect is largely driven by potential energy: electrons are

attracted to the "valleys" of the applied potential and repelled from the "peaks".

As a result, the valleys become less deep and the peaks smaller. In nanostructures,

however, kinetic energy plays a more important role. The kinetic energy cost to

localize electrons within the nanostructure is already high, and the further localization

necessary to respond to an applied field may be prohibitive. In small nanostructures,

kinetic energy may dominate the potential energy and turn a cluster of metal atoms

into a dielectric.

1.1.2 Applications of Nanostructures

By understanding the novel structures formed by atoms at the nanoscale, it is possible

to design materials with desirable properties from the ground up. For example, car-

bon nanotubes in isolation are stiff and strong, and could make excellent materials for

cars, aircraft, and other systems where strength is needed but weight is at a premium.

To go from the nanometer scales of individual tubes to meter-scale beams and sheets,

nanotubes can be incorporated into a polymer matrix or other flexible, light-weight
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material. Optimizing the performance of these nanotube-polymer composites requires

a detailed understanding of the chemical and mechanical properties of the nanotubes.

Computational methods permit relatively rapid "experimentation" on candidate nan-

otubes to find those with the best combination of lateral and longitudinal stiffness

and strength.

In addition to engineering materials that exploit nanoscale structures to achieve

desirable macroscopic properties, nanometer-scale devices can be designed to continue

the miniaturization trend in electronics and sensors. Novel transistor structures may

be constructed out of nanotubes [76] or even from single molecules [28]. Quantum

fluctuations in such nanoelectronic devices are an important influence on the behavior

of individual devices and circuits. In order to properly design nanoscale circuits,

computational methods must be developed that can account for charge and spin

fluctuations over femtosecond time scales.

Even before such conceptual devices emerge in large-scale integrated circuits, the

silicon-based technology in use today will enter the nanoscale regime. The semi-

conductor industry's technology roadmap predicts that the length of the conducting

channel in MOSFET transistors will shrink to 10nm by 2015 [1]. New technologies

may reduce the thickness of that channel to as little as lnm in that time frame,

and the thickness of the insulating gate dielectric will fall well below 10nm as well.

Within the next decade, the semiconductor industry will have to confront the chal-

lenges of designing and manufacturing truly nanoscale devices. Since the industry is

dependent on accurate modeling of device structures to shorten the development cycle

and improve performance, computational theory must be able calculate the electrical

response of nanometer-scale silicon structures.

1.1.3 Computational Challenges

Computational Design

First-principles calculations on nanoscale structures present a number of challenges.

The absence of long-range translational symmetries in nanometer-scale clusters means

22
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that very large unit cells must be used, often with significant amounts of vacuum.

The wide variety of possible structures that can be realized by tens or hundreds

of atoms, and their dissimilarity to bulk crystal phases, means that physical and

chemical intuition is often the only guide to choosing candidate structures. Careful

study of higher-dimensional structures with translational symmetries can guide the

search for stable nanostructures. For example, planar structures can be conceptually

"rolled up" into nanotubes. Computational design requires not only an ability to

predict nanoscale structures and their properties, but also a framework within which

to explain them.

Transport and Non-Equilibrium Properties

Transport properties offer an additional challenge because the field of quantum trans-

port calculations is relatively new, and direct comparison with experimental data

is challenging. Much work has been done to calculate ballistic transport through

molecules, where scattering events can be neglected and contact resistance dominates.

There is a need for new methods that can properly handle the diffusive transport

often seen in nanoscale semiconductor devices, where scattering with defects and im-

purities is important. Recent experiments have succeeded in measuring femtosecond

fluctuations in currents through quantum devices, and revealed interesting temporal

correlations. New methods are needed that can account for this short-time behavior

in quantum devices. It is the goal of this thesis to demonstrate that the challenges

inherent in the calculation of nanoscale structure and transport are surmountable,

and to show how first-principles computational methods can inform experiments and

device design.

1.2 Outline

The work presented in subsequent chapters of this thesis illustrates how theoretical

and computational methods can be used to predict and explain experimental results

on nanoscale structures. The prediction of novel boron nanotube structures and elas-
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tic properties shows how an understanding of atomic properties can narrow the range

of candidate structures that must be investigated. The orbitals of the boron atom

explain the planar structure. The buckled boron plane in turn leads to tubular struc-

tures. Structural properties of boron nanotubes reveal internal degrees of freedom

that lead to unusual elastic properties. Understanding the less complex planar struc-

tures enables the computational design of novel tubular structures with unique and

desirable properties.

The investigation of self-trapped hole structures in silicon dioxide is an important

link in the understanding of hole transport in amorphous SiO2 films. Experiments can

validate a statistical theory, but without a link to atomic-scale structure, efforts to re-

duce the incidence of trapped holes and improve the radiation hardness of MOSFETs

can stall. In nanoscale structures, such as thin SiO2 gate dielectrics, atomic-scale

structures can influence macroscopic transport properties.

The connection between structure and transport is again highlighted by mobility

calculations in ultra-thin silicon-on-insulator MOSFETs. First-principles calculations

provide an accurate description of the structure and electronic properties of ultrathin

silicon channels, and by developing a method to calculate mobilities, the relation

between atomic-scale structure and measured device properties can be established.

Atomic-scale interface roughness scattering illustrates how scattering phenomena that

are uniquely important in nanoscale channels lead to qualitatively different electrical

behavior.

Quantum devices present new challenges. Such small devices are amenable to

first-principles calculations, but a basic understanding of quantum transport is lack-

ing. Existing statistical theories can describe time-dependent currents and voltages

in quantum devices, but cannot account for short-time fluctuations. In nanoscale

structures, important phenomena can occur at femtosecond time scales.

1.2.1 Boron Nanotubes

Chapter 2 presents novel boron nanotube structures that display tunable elastic prop-

erties. Boron is carbon's neighbor in the periodic table, with three 2p valence elec-
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trons. Unlike carbon, however, boron's three naturally-occurring crystalline phases

are complex rhombohedral structures based on 12-atom icosahedra. It stands to rea-

son, though, that like carbon, boron could form three sp2 bonds and have a metastable

hexagonal planar phase similar to graphene. Although the sp2-bonded hexagonal

boron plane is stable, it has a low cohesive energy. A six-fold coordinated triangular

plane has a much higher cohesive energy with metallic bonds and a nearly uniform

electron density. Frustration in the boron 2p orbitals leads to a buckling instabil-

ity in the flat triangular plane, making the stable planar phase of boron a six-fold

coordinated pleated triangular sheet.

The pleats in the buckled plane break the six-fold symmetry of the flat triangu-

lar plane, and define a preferred direction. When the plane is rolled into a boron

nanotube, the orientation of this preferred direction strongly influences the structure

and properties of the resulting tube. The two classes of achiral boron nanotubes

were investigated, and were found to have sharply different electronic structures and

elastic properties. Carbon nanotubes have electronic properties that depend strongly

on chirality: (n, 0) (zigzag) tubes are semiconducting, while (n, n) (armchair) carbon

nanotubes are metallic. Boron nanotubes are the elastic analogue of carbon nan-

otubes: (n, 0) boron nanotubes are stiff longitudinally but soft laterally, while (n, n)

tubes are softer longitudinally but rigid laterally. Carbon nanotubes offer tunable

electronic properties, while boron nanotubes offer tunable elastic properties.

As a result of their chirality-dependent elastic properties, boron nanotubes could

be used to optimize the performance of composite materials. (n, 0) boron nanotubes

could provide high strength and stiffness, while the lateral rigidity of (n, n) tubes

could allow for optimal stress transfer from the polymer matrix to the nanotubes. A

composite material constructed from both types of boron nanotubes could improve

upon those made from carbon nanotubes. Chapter 2 demonstrates how nanoscale

structures evolve from atomic properties, how physical intuition guides the investiga-

tion of candidate structures, and how an understanding of nanostructure properties

can inform the design of engineered nanomaterials.
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1.2.2 Self-Trapping of Holes in Silicon Dioxide

Chapter 3 presents an investigation of self-trapped hole structures in silicon dioxide.

The behavior of holes in silicon dioxide has long been of interest. SiO2 is the most

commonly used gate insulator in Metal-Oxide-Semiconductor Field Effect Transistors

(MOSFETs), separating the metallic gate from the conducting silicon channel. High-

energy photons can create electron-hole pairs in SiO2, and if the MOSFET is "turned

on", electric fields generated by a biased gate can quickly separate the electron from

the hole. While the mobility of electrons in the conduction band of SiO2 is quite

high, the holes move much more slowly and are easily trapped in the amorphous

oxide lattice. Trapped holes result in positive charges in the oxide that can both

scatter conduction electron in the silicon channel and change the on/off profile of the

device. Understanding how holes generated in the oxide diffuse to the gate or channel

is important to maintaining device performance in the presence of radiation.

Experimental measurements of currents generated by holes in the oxide show

unusually long tails with a power-law dependence. Statistical theories of diffusive

transport that could explain these tails were developed in the 1970's. These theories

assumed that as the holes diffused through the oxide, they encountered trapping

centers, metastable localized states that held the holes for varying amounts of time.

Although the statistical theories included no atomic-scale detail, the success of these

simple models in describing experimental results inspired a search for the atomic

origins of trapping centers. Defects, such as oxygen vacancies or impurities such

as germanium can trap holes; the density of such defects can be reduced through

improvements in device processing. Another important category of trap is the self-

trapping center. A localized lattice distortion traps the hole in a metastable state,

often called a "small polaron". Such traps are not associated with defects or impurities

and are unlikely to be removed through device processing.

Electron spin resonance measurements have identified two distinct self-trapped

hole signatures. One of these structures has already been identified; the other has

remained elusive for over a decade. Chapter 3 presents a candidate structure that
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could represent the unidentified self-trapped hole. This structure is the analogue of

the Vk hole-trapping center found in the ionic alkali halides. Calculations performed

on a range of configurations in the amorphous SiO2 lattice show that holes do not

self-trap in this configuration, demonstrating that this analogue of the Vk center does

not occur in the partially-covalent SiO2 system. This result lends credence to the

original conjecture that a type of Anderson localization is responsible for the as-yet

unidentified self-trapping center.

1.2.3 Mobility in UTSOI MOSFETs

Chapter 4 presents a new method to calculate mobility in ultra-thin silicon-on-

insulator (UTSOI) MOSFETs. A schematic representation of an SOI MOSFET is

shown in Figure 1-1. Silicon-on-insulator technology is predicted to play an impor-

tant role in maintaining transistor scaling along the path of Moore's Law. As channel

lengths grow shorter, the thickness of the channel in a UTSOI transistor can be re-

duced to suppress deleterious short channel effects. Next-generation UTSOI devices

may have channels as thin as one nanometer, or four atomic layers of silicon.

In order to move UTSOI MOSFETs from the laboratory to the manufacturing

plant, accurate simulations of such devices must be available. Modeling and sim-

ulation of novel device structures shortens the development cycle and can aid in

diagnosing manufacturing problems. Current state-of-the-art MOSFET simulations

work well for bulk silicon devices and have had some success describing silicon-on-

insulator devices with thick channels. Since current simulations of devices employ

approximations that neglect atomic-scale detail in order to gain efficiency, problems

have arisen in modeling UTSOI devices.

DFT calculations can provide an accurate quantum mechanical description of the

silicon channel and oxide interfaces in a UTSOI device, but for device simulations the

quantities of interest are electronic transport properties. The mobility encapsulates

the net effect of all scattering processes in the channel, and is readily measured

by experiments. Because the mobility is a linear transport property, ground-state

energies and wavefunctions from a DFT calculation provide all quantities necessary
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Figure 1-1: Schematic representation of a double-gate SOI MOSFET. Solid black
regions denote conducting gates. The substrate is generally a heavily-doped silicon
wafer. The undoped silicon channel is surrounded by the top and buried oxides. The
two gates can be biased separately with voltages VB (top gate) and VBG (buried gate).
Source (Vs) and drain (VD) biases are applied to the silicon channel through conduct-
ing source and drain electrodes (not shown). Thicknesses of the various regions are
shown on the right.

to calculate the mobility. Chapter 4 presents a method to calculate the mobility

in a UTSOI channel, under an arbitrary gate bias and in the presence of defects,

impurities, and phonons. Little computational effort is required beyond ground-state

DFT calculations.

1.2.4 Interface Roughness Scattering

For UTSOI devices operating at moderate to high carrier densities, interface rough-

ness scattering is expected to dominate the mobility. Recent models of interface

roughness scattering in UTSOI channels rely on a continuum description of the in-

terface, in which the position of the interface can vary by an arbitrary amount. It

is clear that the interface position cannot vary arbitrarily, however, since it can only

change by the addition or subtraction of silicon atoms at the interface. The contin-

uum model works well in bulk devices where a single-atom fluctuation only changes

the channel thickness by a small percentage, but in a one-nanometer UTSOI channel,

a single displaced silicon atom changes the channel thickness by 25%!. In Chapter 5,

28



an accurate model of interface roughness scattering in UTSOI devices is developed,

based on scattering from the elemental defects that constitute interface fluctuations.

This defect scattering model marks a departure from continuum models, and repre-

sents a direct connection between the atomic-scale structure of the channel and device

performance.

At low carrier densities, atomic-scale interface roughness leads to qualitative differ-

ent mobility behavior than gradual changes in the channel thickness (long-wavelength

interface roughness). Experiments on UTSOI MOSFETs have shown that the mo-

bility at low carrier densities is significantly reduced relative to bulk MOSFETs.

Existing models of long-wavelength roughness scattering can qualitatively reproduce

this mobility reduction. Atomic-scale roughness, though it can limit the mobility at

high carrier densities, is not likely to play a major role at low densities. The model of

atomic-scale roughness presented in Chapter 5 thus confirms earlier speculation that

the reduced mobility in UTSOI MOSFETs is due to fluctuations in the channel thick-

ness, and not due to intrinsic roughness defects. These fluctuations can be reduced

or eliminated through improved device processing techniques, leading potentially to

a 100% increase in UTSOI mobility at low carrier densities.

1.2.5 Charge and Spin Transport in Quantum Devices

Chapter 6 presents a new method to calculated short-time fluctuations in the charge

and spin currents through quantum devices. UTSOI technology is an important

advance in silicon technology, and will improve the performance of next-generation

transistors. Looking several generations into the future, transistors and other elec-

tronic device elements will shrink into a regime where quantum effects dominate. In

channels less than 10 nanometers thick, for example, scattering events in the channel

are unlikely and transport properties are determined largely by the energy spectrum

of states in the channel. Transport through quantum dots and resonant tunneling

diodes is an example of such ballistic transport that is accessible to experiments today.

Describing ballistic transport theoretically is challenging due to the need to con-

sider both localized and extended states in the device, and to treat time-dependence
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explicitly (AC currents). The Landauer-Biittiker and Non-Equilibrium (Keldysh)

Green's Function (NEGF) approaches are both widely used to study time-dependent

transport through quantum devices. It is difficult to treat an arbitrary bias and time

dependence in the Landauer-Biittiker approach, and quantum correlation effects are

often neglected. The NEGF approach can in principle provide an exact solution for

quantum transport at an arbitrary bias, but including time dependence is problem-

atic because non-equilibrium Green's functions represent a statistical average. The

ergodic theorem asserts that time averaging is equivalent to a statistical phase-space

average, but it is not clear a priori how much time is needed to properly represent

a phase-space average. This need for time averaging is inconsistent with arbitrarily-

fast temporal fluctuations, and highlights the need for a new method to treat the

short-time behavior of quantum devices.

Chapter 6 presents an effective Hamiltonian approach to the calculation of short-

time fluctuations in quantum devices. The full Hamiltonian describing a device cou-

pled to an arbitrary number of leads is reduced to an effective Hamiltonian treating

only device degrees of freedom through a block-diagonalization of the Hamiltonian

matrix in Fock space. Preliminary results on charge and spin transport in a quantum

dot and resonant tunneling diode are presented and compared to previously-published

computational results. The current limitations of the effective Hamiltonian method

and possible ways to improve it are discussed.
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Chapter 2

Boron Nanotubes

2.1 Introduction

Boron, carbon's first-row neighbor, has only three valence electrons. Its natural crys-

talline structure is a rhombohedral lattice with 12-atom icosahedral clusters at each

lattice site [103]. Nevertheless, there are some intriguing similarities with carbon.

Boron's three electrons could in principle form sp2 hybrid orbitals that might lead

to planar and tubular structures similar to those formed by carbon. Since carbon

nanotubes and fullerenes [38] are metastable structures, formed only under kineti-

cally constrained conditions [39, 135], one might envision analogous boron structures.

Indeed, initial results by Boustani et al. [23, 22] have demonstrated the possibility

of such metastable structures with relatively low energy cost. Crystalline [106] and

amorphous [25, 145, 101] boron nanowires with diameters as small as 20 nm have

recently been fabricated, suggesting that boron nanotubes may already be within the

range of experimental possibility.

There is an intriguing and potentially significant difference between carbon and

boron, however. Boron has only three valence electrons, so that in sp2-bonded planar

or tubular boron structures the relative occupations of the sp2- and the r-bonded

bands depends on the energetic positions and dispersions of the two bands, perhaps

opening up a broader range of possibilities.

In this chapter, the electronic structure and relative stabilities of planar and tubu-
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lar boron structures are examined in detail. It is found that boron does form a stable

sp2-bonded hexagonal graphene-like sheet, but a planar triangular lattice has an even

larger cohesive energy, though still smaller than that of the bulk a-rhombohedral

structure. The triangular planar structure has an unusual property. It is essentially

a homogeneous electron gas system with a threefold-degenerate ground state. This

degeneracy makes the flat triangular plane unstable with respect to buckling, which

breaks the symmetry and introduces a preferred direction defined by strong a bonds.

When rolled into a tube, this preferred direction, which is not present in carbon nan-

otubes, defines the chirality and controls the electron density, cohesive energy, and

elastic response of boron nanotubes. The properties of the (n, 0) tubes (proposed

in References [23] and [22]) arise from the flat plane and are very similar to carbon

nanotubes. The properties of the (n, n) boron nanotubes are derived from the buck-

led plane and contrast sharply with carbon nanotube structures. As a result of the

buckling, the curvature energies of (n, n) tubes are lower than those of (n, 0) tubes

and show a non-monotonic plateau structure as a function of n. The buckled sides of

the larger (4n, 4n) boron nanotubes allow for internal relaxations that can dissipate

longitudinal stress. As a result, larger (4n, 4n) tubes have a very low Poisson ratio.

The resulting lateral rigidity is important for mechanical stress transfer in nanotube

composite materials [126].

2.1.1 Computational Method

The present calculations were based on the local density approximation (LDA) to den-

sity functional theory [1091, a plane wave basis set [59], and pseudopotentials [511 to

represent the ionic cores. K-point meshes for Brillouin zone integration were sufficient

to converge total energies to 1 mHa per atom. The boron pseudopotential accurately

reproduces experimental [37] and theoretical [143] parameters for the c-rhombohedral

structure.
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2.2 Planar Boron Structures

Figure 2-1(a) shows the in-plane electron density for the hexagonal plane. The struc-

ture, as would be expected by analogy to carbon, is sp2-bonded, with high charge

concentrations within the bond regions. However, the cohesive energy is only 5.96 eV,

considerably lower than the 7.37 eV for the a-rhombohedral phase. In both boron

and carbon, the three sp2 orbitals bind in the plane, forming bonding and antibonding

states that are separated by a large energy gap. The p orbitals perpendicular to the

plane also bind weakly to each other (note that an isolated plane is considered here),

forming bonding and antibonding bands that are degenerate at the K point in the

Brillouin zone [30]. Carbon's four valence electrons fill all of the bonding bands from

both the in-plane sp2 orbitals and the 7r-bonded p orbitals, resulting in a zero-gap

semiconducting plane. In the hexagonal boron plane, the 7r-bonded band crosses the

sp2 bands, and there are not enough electrons to fill them all. The result is a metal-

lic plane without strong sp2 binding, leading to a low cohesive energy. Figure 2-2

shows a schematic band structure for the hexagonal boron and carbon planes. The

band structure of the hexagonal boron plane is similar to that of the graphene sheet,

though the reduced Fermi energy makes the boron plane metallic.

Although the covalent hexagonal plane is not energetically favorable, the flat

triangular plane has a cohesive energy of 6.53 eV, only 0.84 eV less than the a-

rhombohedral phase. The contrast between this boron plane and graphite is striking.

Figure 2-1(b) shows the in-plane electron density for the lowest energy flat triangular

plane. The density is nearly uniform between the atoms, with little covalent charac-

ter. Despite the nearly homogeneous electron density, the electronic bands are not

free-electron-like. Figure 2-3 shows the boron bands and free electron bands from the

F point to the X point in the Brillouin zone. The free electron mass is scaled such

that the free electron Fermi energy (with three electrons per primitive cell) is equal

to the boron Fermi energy.
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(a) The hexagonal boron plane. Note
the sp2 bonding, also found in graphite
planes.
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(b) The triangular boron plane. Out-
side of the ionic cores, the density is
nearly uniform.

Figure 2-1: Contour plot of the electron density for boron planes, in electrons/A3 .
The ionic cores are shown as black circles. Density fluctuations near the cores are
characteristic of the pseudopotential.
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Figure 2-2: Schematic band structure for the hexagonal boron and carbon planes.
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Figure 2-3: Flat triangular lattice electronic bands for boron (solid) and free electrons
(dashed), and boron density of states. The zero of energy is set at the Fermi energy.

2.2.1 Ground State Degeneracy

It is important to note that the sixfold coordination of the boron atoms in the trian-

gular phase is not compatible with the symmetries of the p orbitals (see Figure 2-4).

The best that can be hoped for is to let the p, orbital lie along a line of atoms, over-

lapping with the pz orbitals of two neighbors and forming strong a bonds. The p,

orbital will have a much smaller overlap with the four remaining neighbors, forming

mixed a-r bonds. This frustrated alignment of p orbitals leaves the ground state

indeterminate: three possible a. bond directions can be chosen. In the flat triangular

plane, symmetry makes these three directions equivalent, and the nearly homoge-

neous electron density makes a metallic bonding picture tnore appropriate. However,

the distinction between a and mixed ca-r bonds has important consequences when

the symmetry of the flat plane is broken.

A degenerate ground state suggests that the flat plane would be unstable with re-

spect to buckling that breaks the triangular symmetry. This instability is confirmed

by the phonon dispersion [57], which has an acoustic branch with an imaginary fre-

quency in the vicinity of the X point in the Brillouin zone. The imaginary frequency

mode at the X point corresponds to vibrations that lead to the stable planar phase
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Figure 2-4: p and p, orbitals drawn schematically
lattice (in the x-y plane).

for a single atom on a triangular
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(a) Ball and stick structure model. (b) Valence electron density isosur-
face showing the oa bonds. The ionic
cores are shown as dark spheres.

Figure 2-5: The stable buckled triangular plane.

of boron, shown in Figure 2-5(a). Instead of the nearly homogeneous electron density

of the flat triangular plane, the buckled plane shows strong directional a bonds (see

Figure 2-5(b)), as would be expected from the p-orbital model presented above. In

Figure 2-5(b), the weaker mixed a--r bonds do not contain enough electrons to appear

on the isosurface. This buckled plane, which is distinct from the buckled boron sheet

proposed in Reference [22], selects a preferred direction and breaks the ground-state

degeneracy, raising the cohesive energy to 6.79 eV.

2.3 Boron Nanotubes

2.3.1 Structural and Electronic Properties

The preferred bonding direction in the planar phase foreshadows the importance of

chirality in nanotube phases. In rolling up a triangular sheet to create a tube, the lines
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Figure 2-6: Definition of chirality for triangular lattice nanotubes. The primitive
vectors are and b. The dotted lines show the circumference vectors for the (4, 4)
and (4, 0) nanotubes.

of a bonds can be chosen to run along the length of the tube, along its circumference,

or to wind along it. The orientation of these bonds determines the electron density

and energetics of the nanotube to an extent not seen in carbon nanotubes [69]. The

chirality of a boron nanotube is defined based on the triangular lattice. An (m, n)

tube is constructed by rolling a triangular plane such that the head of the lattice

vector ma + nb meets its tail; a and b are the primitive vectors of the triangular

lattice. Figure 2-6 shows the vectors for a (4, 4) and (4, 0) nanotube. The dotted

lines in the figure form the circumference of the tube.

Consider first the case of an (n, n) nanotube, shown in Figure 2-7. Here, the ca bond

direction can be chosen to lie along the length of the tube. Given this possibility, the

boron atoms will form bonds running along the nanotube, as the electron density

isosurface in Figure 2-7 shows. The strong longitudinal bonds allow the tube to

buckle laterally, emulating the buckled plane structure. Instead of the circular cross

section seen in carbon nanotubes, the (8, 8) tube has a square cross section (shown

in Figure 2-8(b)). The sides of the square are sections of the buckled plane, and

the corners show only a slight distortion. In contrast, the cross section of the (6, 6)

tube (Figure 2-8(a)) shows no buckling. With only four atoms on each side, it is

not possible to buckle the sides without distorting the topology of the corners. The

"buckled" structure of the (6, 6) tube (Figure 2-9) breaks the mirror symmetries of the

actual (6, 6) and (8, 8) structures (Figures 2-8(a) and 2-8(b)), introducing chirality to

an achiral tube.
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Figure 2-7: The (4, 4) boron nanotube. Left: ball and stick structure model. Right:
valence electron density isosurface at 0.67 electrons/A3 . The ionic cores are shown as
dark spheres.

Table 2.1: Summary of the cohesive energy Ecoh, the curvature energy with respect to
the buckled plane Ecurv, the equilibrium diameter d, the modified Young's modulus
Ys (see Equation 2.1), and the Poisson ratio a for boron nanotubes.

Chirality Ecoh (eV) Ecurv (eV) d (A) Y (TPa nm) u
(4,4) 6.71 0.08 4.34 0.29 0.5
(6,6) 6.65 0.14 5.65 0.15 0.4
(8,8) 6.76 0.03 8.48 0.22 < 0.1
(7,0) 6.36 0.43 3.99 0.49 0.2
(8,0) 6.39 0.40 4.62 0.49 0.1

Larger diameter tubes sharing the favorable buckled structure of the (8, 8) tube

can be constructed by adding atoms to the sides of the square in pairs. Among the

(n, n) boron nanotubes, therefore, (4n, 4n) tubes should have lower curvature energies

and be more stable. This trend is suggested by the cohesive and curvature energies

summarized in Table 2.1. In the table, the curvature energy is defined as the difference

in cohesive energy between the tube and the plane: E,,,r -to EP ane.

An (n, 0) nanotube cannot align bonds longitudinally (see Figure 2-10). Al-

though buckling and selecting a bond direction proves energetically favorable in

the (n, n) tubes, it is not required by symmetry. Buckling is necessary to break the

symmetry of the flat plane, but rolling up the plane into an achiral tube breaks the
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(a) (6, 6) (b) (8, 8)

Figure 2-8: Ball and stick cross sections of boron nanotubes.

Figure 2-9: Cross section of a proposed (6, 6) boron nanotube structure in which the
sides buckle. The tube is not symmetric with respect to the mirror planes shown by
dotted lines.

degeneracy automatically. The threefold planar degeneracy reduces to a twofold de-

generacy (spiraling cr bonds related by chiral symmetry) and a non-degenerate state

(or bonds running longitudinally or laterally). It is possible for o- bonds to run along

the circumference of an (n, 0) tube, but the electron density of an (8, 0) nanotube,

shown in Figure 2-10, shows no such bonds. Instead, the density of (n, 0) boron

nanotubes is nearly uniform, exhibiting the free electron character of the flat triangu-

lar plane. The energetic consequences are apparent. The curvature energies of (n, 0)

boron nanotubes lie 0.25 - 0.4 eV above those of the (n, n) tubes, roughly the same as

the 0.26 eV cohesive energy difference between the flat and buckled triangular planes.

Between the achiral limits, there may be a critical chiral angle at which boron nan-

otubes switch from the c-bond-dominated electronic structure of the buckled plane to

the free-electron-like structure of the flat plane. This transition could have important

consequences for the behavior of boron nanotubes under torsion.
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Figure 2-10: The (8, 0) boron nanotube. Left: ball and stick structure model. Right:
valence electron density isosurface at 0.67 electrons/A3 . The ionic cores are shown as
dark spheres.

2.3.2 Elastic Properties

Elastic properties of boron nanotubes exhibit a strong chirality dependence as well.

Among the most important characteristics of a cylindrical object is the Young's mod-

ulus Y, , defined for single walled tubes as [69]:

S 2 (2.1)

where So is the equilibrium surface area, E is the total energy, and e is the longitudinal

strain. Since the walls of boron nanotubes are only a single atom thick, it is not

possible to define the tube volume, and the modified Young's modulus must be used.

For the (n, n) tubes with square cross sections, the diameter is defined as the diagonal

of the square, and buckling is ignored in calculating the surface area.

Another important elastic property of a tube is the Poisson ratio r:

d - deqddeq -E, (2.2)
deq

where d is the tube diameter at strain c, and deq is the equilibrium tube diameter. The
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Poisson ratio measures the change in the tube's radius as it is strained longitudinally.

The combination of the Young's modulus and the Poisson ratio provides information

about the strength of both the longitudinal and lateral bonds of the nanotube.

The Young's modulus Ys and Poisson ration a were calculated for the (n, n) and

(n, 0) boron nanotubes discussed above. As with the binding energy, chirality plays

an important role in determining these properties. It is clear from the electron density

isosurface in Figure 2-7 that the strength of the (n, n) boron nanotubes arises from the

bonds running along the length of the tube. Since the lateral bonds are comparatively

weak, an (n, n) nanotube would be expected to expand and contract circumferentially

to relieve stress, leading to a high Poisson ratio and a low Young's modulus. This

is indeed the case for the small-diameter (4, 4) and (6, 6) tubes. For the (4, 4) tube,

Y = 0.29 TPa nm and a = 0.5. The Young's modulus is comparable to boron nitride

nanotubes and roughly half that of carbon nanotubes, while the Poisson ratio is nearly

twice as large as the value for either carbon or boron nitride nanotubes [69].

For the (8, 8) boron nanotube, however, structural dynamics play a more impor-

tant role. Figure 2-8(b) shows that the cross-section of the (8, 8) tube is a square

with buckled sides. Using the previous definition of the Poisson ratio, we find that

a = 0.1, considerably smaller than the Poisson ratio of the (4,4) and (6, 6) tubes.

The diameter of the (8,8) tube does not change significantly with strain, but there

is considerable lateral relaxation that results in a low Young's modulus. The simple

square cross sections of the (4, 4) and (6, 6) tubes, as well as the circular cross sections

of the (n, 0) tubes, permit only uniform lateral dilation and contraction if the sym-

metry of the structure is to be maintained. The buckled sides of the (8,8) (and larger

(4n, 4n) tubes, as discussed previously) permit tube walls to relax without changing

the overall square structure. Figure 2-11 shows the lateral relaxations that the (8, 8)

tube undergoes under positive longitudinal strain.

Internal Degrees of Freedom

Although the (8,8) boron nanotube does not change its diameter under longitudinal

strain, the comparatively weak lateral bonds do allow for relaxation of the buckled
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Figure 2-11: Ball and stick cross section of the (8, 8) boron nanotube, with vectors
showing lateral relaxations under positive longitudinal strain. Longer vectors repre-
sent larger relaxations, but are not to scale.

tube sides. As the tube is stretched, the angle a in Figure 2-11 increases. The increase

in this buckling angle is also seen when the buckled plane is stretched along the lines

of strong a bonds, shown in Figure 2-5. The buckled triangular plane has a degree of

freedom that is not present in either the flat triangular or the flat hexagonal plane.

Buckling introduces a third dimension into the planar structure, enabling strain to be

relaxed in an internal degree of freedom that does not break the planar symmetry. As

the buckled plane is stretched, atoms can move perpendicular to the plane to relieve

stress, an option that is forbidden by symmetry in flat planar structures. This is

analogous to the fundamental difference between the phonon modes of a monatomic

Bravais lattice and those of a lattice with a basis: in the latter, optical modes are

present that allow relative motion without a net translation of the crystal. The larger

(4n, 4n) boron nanotubes with buckled sides, such as the (8, 8) tube, have unique

mechanical properties that arise from the presence of these internal degrees of freedom.

These nanotubes are not directly analogous to macroscopic tubes: longitudinal strain

is not accompanied solely by an expansion or contraction of the tube radius, but

rather by an additional relaxation of the tube structure. Controlling the chirality of

boron nanotubes permits stress dissipation through novel internal mechanisms unique

to nanoscale structures.

The enhanced lateral rigidity seen in (8, 8) boron nanotubes could prove advanta-

geous in the design of nanotube composite materials. Composites consisting of carbon

nanotubes embedded in a polymer matrix have already been fabricated and result in

a high-strength, light-weight material [96, 7, 136]. As Srivastava et al. [126] have
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pointed out, optimization of such a composite would require nanotubes with a high

Young's modulus and a low Poisson ratio. The cylindrical symmetry of carbon nan-

otubes, only broken at high strains [120], prevents them from reducing their Poisson

ratio through internal relaxations, as in (8,8) boron nanotubes. Composites using

boron nanotubes could take advantage of the high Young's modulus of (n, 0) tubes to

provide stiffness, while the low Poisson ratio of (4n, 4n) tubes could provide optimal

stress transfer between the polymer matrix and the nanotubes. Boron nanotubes

are the elastic analogue of carbon nanotubes: chirality dependence leads to tunable

electrical properties in carbon tubes, and to tunable elastic properties in boron tubes.

Just as the variation in electrical properties permits the design of carbon nanotube

transistors [132, 12, 76], boron nanotubes may find use in high-strength composites

and nanoelectromechanical systems [34].

In contrast to the (n, n) nanotubes, the (n, 0) tubes have no dominant bonding

direction. Straining the tube stresses bonds both laterally and longitudinally, making

it difficult for the tube to expand or contract circumferentially. An increased Young's

modulus and a decreased Poisson ratio reflects this cost. For the (8, 0) boron nan-

otube, Ys = 0.49 TPa nm and = 0.1. Although the radius of the (8, 0) tube is only

6% larger than that of the (4, 4) tube, the Young's modulus is 68% larger. This is

in sharp contrast to carbon nanotubes, where tubes of similar radius have Young's

moduli that differ by only a few percent [69].

In summary, the unusual properties of planar and tubular boron structures have

been investigated. Although boron might be expected to form planar structures simi-

lar to carbon graphene sheets, a metallic triangular plane with a nearly homogeneous

electron density has a larger cohesive energy. A threefold degenerate ground state in

the flat plane makes it unstable with respect to buckling, which breaks the triangular

symmetry and introduces a preferred direction. When the plane is rolled into a tube,

this direction defines the chirality and controls the electronic and mechanical prop-

erties of the tube. Novel (n, n) boron nanotube structures are proposed that arise

from the buckled plane and have lower curvature energies than the (n, 0) tubes arising

from the flat triangular plane. As a result of buckling, (n, n) boron nanotubes have a
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novel internal relaxation mechanism that results in a very low Poisson ratio. The elec-

tron density differences between the flat and buckled planes explains the differences

in the elastic properties of the (n, 0) and (n, n) tubes. Understanding planar boron

structures is crucial to understanding the unusual properties of boron nanotubes.
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Chapter 3

Self-T rapping of Holes in Silicon

Dioxide

3.1 Hole Transport in SiO2

The transport properties of holes in silicon dioxide has long been of interest both

experimentally and theoretically. SiO2 is the most common gate insulator used in

MOSFETs, and the electrical characteristics of the gate oxide are an important factor

in device performance. Trapped charge in the gate oxide results in a shift in the

threshold voltage, the gate voltage at which the transistor "turns on". Given sufficient

charge build-up, the threshold voltage can fall to zero, preventing the MOSFET from

turning off, and possibly disrupting the entire circuit of which it is a part.

Ionizing radiation incident on the oxide can create electron-hole pairs. The electron-

hole creation energy in SiO2 was determined experimentally to be 17 ± 1 eV [17], so

that photons with energies in the keV or MeV range can be expected to produce

large numbers of pairs. Such ionizing radiation is an important influence on electron-

ics designed for space and defense applications, and a proper understanding of the

dynamics of generated electrons and holes is crucial to ensuring that MOSFETs can

survive incident radiation. The mobility of electrons in the conduction band of SiO2

is quite high, so that in the presence of an applied field (such as when the MOS-

FET is turned on), electrons generated by ionizing radiation are swept out of the
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oxide in about a picosecond [71, 105]. The holes, on the other hand, move through

the oxide quite slowly and can be trapped easily, resulting in long-term shifts to

the threshold voltage. The theoretical description of hole transport in amorphous

SiO2 is complicated by the range of time scales that must be considered. At 77K,

measurable currents due to holes leaving the oxide persist from approximately 10- 7

to 10 seconds after an applied radiation pulse [73]. A combination of trapping and

hopping processes must be invoked to explain transit times spread over eight orders

of magnitude.

3.1.1 The Continuous-Time Random Walk Model

In 1975, Scher and Montroll [123] proposed the Continuous-Time Random Walk

(CTRW) model to explain observations of transient photocurrents in amorphous insu-

lators such as As2Se3 [112] and the organic complex trinitrofluorenone-polyvinylcarbazole

(TNF-PVK) [54]. Such photocurrent experiments are a controlled version of ionizing

radiation processes in MOSFET gate insulators. A light flash creates electron-hole

pairs at the surface of the insulator. An applied electric field quickly collects the elec-

trons at the surface of the insulator, while the holes migrate to the other end, where

the hole current is measured. Two key features emerged from these experiments: the

transient photocurrents decayed very slowly, and when normalized by a characteristic

transit time, all experimental curves could be superimposed onto a universal curve.

To explain the polynomial tails and scale-free behavior of the photocurrent curves

required a statistical process beyond simple diffusion.

Standard diffusion is based on a Markoffian process, in which the probability of

a hop at time t depends only on the condition of the system at t. In other words,

the system has no "memory". This results in the familiar relation between the mean

position of the carrier distribution and its spread or: 1/a oc V/i. Kenkre, Montroll,

and Shlesinger [81] developed a generalized theory of non-Markoffian transport, based
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on the following master equation:

dP/dt = dx (t-X) e [p(l - ')P(l', x) -p(l' -i)Pl, x)] . (3.1)

P(l, t) is the probability that site will be occupied by a carrier at time t, and p(l - ')

gives the rate of hopping from site 1' to site 1. The first term on the right gives the

net inflow of particles to site 1, while the second term accounts for outflow. For the

case of Markoffian transport, 0(t) oc d(t), and the system has no memory. In general,

however, the "relaxation function" a describes how the previous states of the system

affect the carrier distribution function at a time t.

The relaxation function is related to a distribution of hopping times 0p(t) through

their Laplace transforms. An exponential distribution, 0p(t) c exp(-At), leads to the

Markoffian relaxation function described above. The exponential form corresponds to

a system with a single characteristic hop that takes time 1/A to complete. Physically,

such a system would have a single trapping level, with binding energy hA. By solving

Equation 3.1, Scher and Montroll demonstrated that transient photocurrent experi-

ments characterized by scale-free behavior and long tails could be fit by a hopping

time distribution of the form: !b(t) c t- t, where a is a positive constant. Such a hop-

ping time distribution, in contrast to the exponential distribution described above,

has long tails and no well-defined characteristic hopping time.

Physically, a hopping time distribution with polynomial tails has a wide range of

trapping levels, of varying depth. The exponential model may be appropriate for a

holes hopping in a crystalline insulator such as ao-SiO2, where hA is a measure of the

overlap between localized oxygen 2p orbitals, but Hughes found that such a model

did not explain hole transport in amorphous SiO2 [72]. However, the CTRW model

did fit the available data quite well [73], indicating that the hole transport process

in amorphous SiO2 relies on traps of various depth. Such a prediction inspired a

search for potential trapping sites that continues to the present day, and that will be

discussed below in further detail.
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3.1.2 The Multiple-Trapping Model

Motivated by perceived shortcomings in the CTRW model, including apparent non-

universal behavior in SiO2 transport data, Curtis and Srour [36] proposed another

model to explain dispersive hole transport in amorphous insulators. Their model,

the multiple-trapping model, is considerably less mathematically complex than the

CTRW model and predicts similar behavior over experimental time scales. The

multiple-trapping model assumes that a range of traps exist at different energy levels,

and begins by considering the rate of change of the concentration of trapped holes Pi

at an energy level Ei:

dpil/dt = cppNi - epN+ . (3.2)

p is the concentration of holes in the valence band, cp is the capture probability, Ni

is the number of trapping centers at energy Ei, ep oc exp(-Ei/kBT) is the emission

probability from the trap, and N+ is the number of traps containing a hole. The

number of holes is assumed to be small so that the number of traps not containing a

hole Ni° is approximately equal to the total number of traps Ni.

Equation 3.2 must be solved for each level i assumed to exist in the system. The

other constraint comes from conservation of charge, modified by the number of holes

carried out of the insulator by the applied field:

dp/dt + E dpi/dt = -klpF, (3.3)
i

where k relates to the free carrier mobility, and F is the applied electric field.

Solving Equations 3.2 and 3.3 together with an exponential distribution of trap

densities, Ni = No exp(-Ei/13), with a parameter, Curtis and Srour were able to

fit the available experimental data on amorphous SiO2. The success of this model

relies on the same principle as that of the CTRW model: a wide range of trap depths.

A complete picture of hole transport in amorphous SiO2 requires identifying the

atomic-scale origin of these traps. First-principles calculations, in conjunction with

experiments, can identify trapping centers and provide an energy and hopping time
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distribution to be used in conjunction with either the CTRW model or the multiple-

trapping model for transport calculations.

3.2 Hole Trapping Centers in SiO2

Trapping centers for holes in SiO2 can be separated into three general categories:

defect-associated traps, impurity-associated traps, and self-trapping sites. This sec-

tion will describe defect and impurity traps briefly, and then focus on self-trapping

centers (also referred to as "small polarons"), in which a localized lattice distortion

in the presence of a hole creates a metastable trapped-hole state.

3.2.1 Defect-Associated Traps

Structural defects in Si0 2 are related to either oxygen vacancies, additional oxygen

atoms, or under-coordinated oxygens. All three elemental defect types are associated

with hole trapping centers. Oxygen vacancies have been well-studied, since they are

associated with the prominent E' peaks in electron spin resonance (ESR) spectra (E'

in crystalline SiO2 [45] and E [90, 146] and E [64] in amorphous SiO2 ). Recent

theoretical studies have established the atomic-scale structure of both the El centers

in crystalline a-SiO 2 [20] and the E, and E} centers in amorphous SiO2 [94, 104].

The oxygen vacancy results in a strained Si-Si bond in the neutral configuration that

can break in the presence of a hole, resulting in local structures that contain either

three- or fivefold coordinated silicons.

Additional oxygen atoms form what is known as a "peroxy radical", a Si-O-O-

Si bond in place of the standard Si-O-Si bond. A hole can trap in the 0-0 bond,

making the trapping center effectively an 0 molecule [50, 63]. Under-coordinated

oxygen atoms result in "non-bridging oxygen hole centers" (NBOHCs). An NBOHC

can trap a hole at the singly-coordinated oxygen atom without significant structural

realignment [63, 127].
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3.2.2 Impurity-Associated Traps

Silicon substitutional dopants in SiO2 can result in hole traps on neighboring oxygen

atoms. Germanium in a-SiO 2 breaks the symmetry of the Si-O-Si bond, and permits

a hole to trap on an oxygen atom in an Si-O-Ge bond [67, 107]. Boron dopants in SiO2

also result in hole trapping centers, although in this case the trapping is also associated

with a strong lattice relaxation. Pacchioni, Vezzoli, and Fanciulli [108] found that

the Si-O-B bond breaks, resulting in a hole trapped on a singly-coordinated oxygen.

The boron atom relaxes back into the plane of its three other oxygen neighbors, and

remains threefold-coordinated.

3.2.3 Self-Trapping Centers

The best-known example of a self-trapped hole is the Vk center in the alkali halides,

in which a hole binds two adjacent negative ions into a negatively-charged molecule-

like configuration (see, for example, Reference [10]). Self-trapping in SiO2 was first

predicted by Mott [102] in 1977. Experiments in the 1980's [61, 32] established the

existence of self-trapped holes in amorphous SiO2, but concluded that self-trapping

did not occur in crystalline a-quartz. [67]. Griscom's evaluation of electron spin

resonance (ESR) measurements [62] divided self-trapped holes in amorphous SiO2

into two classes: STH1, a hole trapped in the 2p orbital of a normal bridging oxygen,

and STH2, a hole apparently delocalized over the 2p orbitals of adjacent oxygens.

Theoretical calculations based on cluster models of amorphous SiO2 [40, 152, 79, 107]

have confirmed the atomic structure of STH 1. The structure of STH 2, however, has

remained elusive. Pacchioni and Basile [107] proposed a model for STH 2, but their

relaxed structure contracts the O-Si-O bond angle to 84° from the tetrahedral value

of 1090. This large relaxation in the presence of a hole disagrees with Griscom's

prediction, based on ESR data, of small atomic motions in the vicinity of STH2.

Cluster calculations provide a relatively flexible environment that may permit large

distortions that would be unlikely to occur under the constraints of the amorphous

network.
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With the exception of the 630-atom cluster of Zhang et al., who considered only the

STH 1 structure, the calculations described above did not treat clusters large enough

to contain the five-, six-, and seven-member rings that constitute the amorphous

network of SiO2. The absence of rings means that previous calculations could not

consider an important potential candidate for the STH2 structure: oxygen atoms on

opposite sides of a ring bound together into an O molecule-like state in the presence

of a hole. This O-like state has the hole distributed over two adjacent oxygen atoms,

satisfying an important criterion derived by Griscom from ESR data. Since oxygen

atoms in SiO2 are negative ions, the O-like state is the direct analogue of the Vk

center. While Vk centers are well known in alkali halides with ionic bonds, it remains

to be seen whether such a self-trapped hole state can occur in partially-covalent

systems such as SiO2.

In this chapter, first-principles calculations based on amorphous SiO2 supercells

containing five-, six-, and seven-member rings are used to investigate the structure

and energetics of the O-like self-trapped hole state. It is found that the O-like

state is not even metastable, meaning that this Vk center analogue does not occur in

partially-covalent SiO2. This result supports Griscom's original conjecture [62] that

STH 2 is a type of Anderson localized state [4], localized by disorder in the amorphous

network and not by atomic relaxations.

Computational Method

The present calculations used density functional theory [70] within both the local-

density (LDA) [82] and generalized-gradient (GGA) [110] approximations, a plane

wave basis [109], and ultrasoft potentials [142] to represent the ions. These meth-

ods are implemented in the VASP computer code [83]. Supercells, used in previous

work [13, 94], were used to represent amorphous SiO2. The cutoff energy for the

plane wave basis set was 29 Ry, and the Brillouin zone was sampled at the Gamma

point. A uniform negative background charge was used to maintain neutrality in the

supercell.
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Figure 3-1: Schematic of a six-member ring from the amorphous SiO2 network. Oxy-
gen 2pz orbitals are perpendicular to the Si-O-Si plane. ao or mixed a-ir bonds can
form between 2pz orbitals as the oxygen atoms are pulled together.

O0-like Bonding

Figure 3-1 shows schematically a six-member ring like those found in amorphous

SiO2. In the presence of a hole, oxygen atoms on opposite sides of the ring can come

together, as shown by the arrows in the figure, to form an O2 molecule-like state.

This configuration is a small polaron state that could explain Griscom's observation of

STH2. That this O0-like state is energetically favorable can be understood from the

simplified molecular orbital diagram in Figure 3-2. In the undistorted ring, the ground

state of the neutral system, the doubly-occupied oxygen 2pz orbitals on opposite sides

of the ring do not interact. As the oxygen atoms move toward the center of the

ring, the 2pz orbitals can form a weak oa bond, splitting the formerly degenerate 2pz

orbitals into ab and oa, bonding and anti-bonding levels. In the neutral system, both

orbitals are doubly-occupied and no energy gain is expected. In the presence of a

hole, however, the a orbital will be only singly-occupied and we expect a cohesive

energy gain of A. Figure 3-3 shows that the hole is distributed among oxygen 2pz

orbitals in the undistorted ring configuration. When the oxygen atoms are pulled

together, the hole resides in a a-antibonding orbital as shown in Figure 3-4.

As the oxygen atoms move closer together, A will increase. However, the overall

energy of the system also includes the effect of distorting the Si-O-Si bonds, which

will lead to a decrease in cohesive energy. The cohesive energy of the distorted ring

in the presence of a hole is determined by the interplay between the positive 2pz
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c - antibonding

2A

A B C

Figure 3-2: Molecular level diagram for Si-O-Si bonds in amorphous SiO2. A repre-
sents the isolated O and Si atoms, with 2p and hybridized sp3 orbitals. B represents
the levels after formation of an Si-O-Si bond. The bonding orbitals are hybrids of Si
sp3 orbitals and 0 2p, and 2py orbitals. The 0 2pz orbital is perpendicular to the
Si-O-Si plane and cannot interact with the Si orbitals due to symmetry. C represents
the formation of a weak bond between O atoms on opposite sides of a ring. The non-
bonding 2 pz orbitals split into a-bonding and -antibonding orbitals. In the presence
of a hole, the a-antibonding orbital is half-occupied, resulting in a net energy gain
from the bond of A.

Figure 3-3: Valence electron density isosurface showing hole density distributed over
oxygen 2pz orbitals in an amorphous SiO2 supercell. O atoms are shown in red, Si
atoms in blue.
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Figure 3-4: Valence electron density isosurface showing hole density in a .-
antibonding orbital. O atoms are shown in red, Si atoms in blue. Pulling two oxygen
atoms together towards the center of the six-member ring creates an 02-like molecule.

binding energy and the negative contribution from stretching the Si-O-Si bonds. As

a result, there is no guarantee that the distorted ring will represent a stable small

polaron. The most likely configuration for a self-trapped hole is one in which the

oxygen atoms are close together in the undistorted ring, in order to minimize the

energy cost of stretching the Si-O-Si bonds, and in which the opposite 2 pz orbitals

are aligned, in order to maximize the a bond energy A. With these criteria in mind,

we can sample ring configurations in various amorphous SiO2 supercells to find those

most likely to result in trapping configurations with positive cohesive energies.

Oxygen Pair Statistics

Figure 3-5 shows histograms of both the 0-0 distances across the ring and the align-

ment angle. If the 2 pz orbitals of oxygen atoms 1 and 2 make angles al and a2 with

respect to the line between atoms 1 and 2, then we define the alignment angle A to be

A = al + a2. The alignment angle is a convenient figure of merit that represents the

degree of a bonding between oxygen atoms. A pure a bond is found when A = 0°,

while a pure w bond is found when A = 180°. Four 72-atom supercells were sampled,

with densities ranging from 1.99 to 2.14 g/cm3 , reflecting the variation in local den-

sity expected within amorphous material. It is important to note that the smallest
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Figure 3-5: Statistics of oxygen-oxygen pairs in amorphous SiO2 supercells. The
supercells contained 526 total pairs with 0-0 distances < 5.0A.

0-0 distance across a ring found within these cells is 2.56 A, almost twice the 02

bond length of 1.34 A as measured in solution [124]. Thus, the binding between 2 pz

orbitals can be expected to be weak, and must be balanced by a correspondingly

small Si-O-Si bond distortion if the 02-like hole trapping state is to be stable.

Self-Trapping Energetics

Figure 3-6 shows the energy in the presence of a hole as a function of 0-0 distance

for a likely candidate structure with a neutral-cell equilibrium 0-0 distance of 2.73

A and a 2pz alignment angle of 95.61°. The energetic trends discussed below are

seen in all other configurations that were investigated. Energies are calculated with

respect to the zero-displacement configuration in the presence of a hole. There is no

local minimum at non-zero displacement, meaning that there is not even a metastable

hole-trapping configuration.

The absence of O0-like self-trapped hole configurations in the sampled supercells

provides strong evidence for the absence of such self-trapping sites. The distribution

of 0-0 distances shown in Figure 3-5 demonstrates that oxygen separations obey a

roughly exponential distribution. Fitting the measured distribution (from 526 oxygen

pairs) permits us to predict the fraction of oxygen pairs with separations of 1.34A.
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Figure 3-6: Energy cost versus fractional displacement for a representative 0-0 pair
in the presence of a hole. The oxygen atoms are moved along the line between them;
fractional displacement is defined as the fractional change in the equilibrium 0-0
distance.

From this fit, 0.13% of oxygen pairs will have a bond length of 1.34A. However, the

exponential fit overestimates the fraction of pairs with bond lengths less than 3.0A.

For example, we find that 0.76% of pairs have a bond length between 2.8k and 3.0A;

the fitted distribution predicts 2.15%. In amorphous SiO2, ring configurations with

0-0 distances < 3.0A are rare, and it thus becomes very difficult to predict the

incidence of pairs with very short 0-0 distances.

The bond length of the 02 ion in solution is not a perfect proxy for the expected

bond length of the 02-like Vk center analog in SiO2, but it does provided an ap-

proximate distance over which the 2pz bonding is strong. It is likely that the 0-0

distance required for bonding in amorphous SiO2 is even shorter, since energy gain

from 2pz bonding is balanced by the energy cost to stretch the Si-O-Si bonds, and the

alignment of the 2pz orbitals may only permit a mixed o - r bond. As a result, given

that O-like self-trapped hole states do not occur in common ring configurations in

amorphous SiO2, potential anomalously short 0-0 distances are unlikely to account

for the observed concentration of STH 2 trapped holes.

In conclusion, a potential analog to the Vk center in amorphous SiO2 was investi-

gated that could explain the atomic structure of the measured STH2 self-trapped hole.

Through first-principles calculations and a sampling of amorphous SiO2 supercells, it

has been established that the O--like self-trapped hole state is not even metastable

at normal oxygen pair separations. Though it is not possible to rule out the existence
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of anomalous ring configurations in the amorphous network that could permit self-

trapped hole states, it is demonstrated statistically that such configurations are too

rare to explain observed STH2 concentrations. This result lends credence to Griscom's

original conjecture that the STH 2 self-trapped hole is an Anderson-localized state.
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Chapter 4

First-Principles Mobility

Calculations

4.1 Introduction

For four decades, industrial modeling of metal-oxide-semiconductor field-effect tran-

sistors (MOSFETs) has been based on a series of approximations that suppress

atomic-scale detail. Quantum effects in thin channels are treated in the effective-

mass approximation, with the oxide interfaces represented by infinite potential bar-

riers (see Reference [6] for a review). Roughness at the interface is described by

continuum models [114, 5] that account only for long-wavelength fluctuations. Monte

Carlo simulations based on these approximations [46, 47, 150] have had success in

describing bulk-silicon MOSFETs, but the continued evolution of silicon microelec-

tronics deep into the nanoscale regime presents new challenges. Novel device struc-

tures such as ultrathin-body silicon-on-insulator (UTSOI) MOSFETs [35, 33, 27] will

likely be needed to continue performance gains in next-generation devices [1]. UTSOI

MOSFETs have been fabricated with channels as thin as one nanometer, four atomic

layers of silicon [41, 140]. At these nanoscale dimensions, traditional device modeling

that suppresses atomic-scale detail is no longer adequate. In this chapter, a method

is presented that permits the measured electrical response of UTSOI devices to be

calculated directly from first-principles, including full atomic and electronic structure
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detail.

Of central importance to MOSFET modeling is the channel mobility as function

of gate bias, the source-drain conductance normalized by the channel carrier density.

The mobility encapsulates all the scattering processes that influence the carriers, and

is a measure of how "fast" an average carrier can traverse the channel. The present

method permits this scattering problem to be solved using accurate wavefunctions

and self-consistent scattering potentials calculated within Density Functional Theory

(DFT) [70]. Calculating the mobility using the Boltzmann equation and the Born

approximation permits a direct comparison between first-principles results and exist-

ing theories. In addition, a Green's function-based method is described that allows

for systematic improvements to the Born-Boltzmann method.

4.2 Method for Mobility Calculations

4.2.1 Ground-State Calculations

The present ground-state calculations were based on Density Functional Theory

(DFT) [70] in the Local Density Approximation (LDA) [82]. A plane-wave basis [109]

was used, and the ionic cores were represented with ultra-soft pseudopotentials [142].

These approaches are implemented in the VASP code [83]. Modifications to this code

were made to enable mobility calculations, as described in the following sections. The

supercell approach to describe the silicon channel and oxide interfaces is not directly

applicable in the presence of a gate bias (external electric field). Solutions to this

difficulty are discussed in Section 4.2.2.

A well-known limitation of the standard implementation of DFT is that the empty

one-electron states in the Kohn-Sham formalism [82] do not constitute a good repre-

sentation of the conduction bands of a semiconductor or insulator. The largest effect

is a significant underestimation of the value of the energy gap. Figure 4-1 shows the

variation of the valence and conduction band edges across the Si-SiO2 interface. The

calculated valence-band discontinuity at the Si-SiO2 interface is only 2.8 eV compared
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Figure 4-1: The valence and conduction band edges across the Si-SiO2 interface,
calculated by projecting the density of states onto planes of atoms. (Plot courtesy of
S. T. Pantelides)

with the experimental value of 4.5 eV. The calculated conduction-band discontinu-

ity is 2.3 eV compared with the experimental value of 3.3 eV [2]. Since the band

offsets are underestimated by DFT in both the LDA and the Generalized-Gradient

Approximation (GGA) [110], both conduction band electrons and valence band holes

in silicon will see a reduced barrier to tunnel into the oxide. Although treating the ox-

ide interface as a potential barrier is not an approximation employed in first-principles

DFT calculations, the reduced offsets would nonetheless be expected to correlate into

increased wavefunction penetration into the oxide. This phenomenon would be man-

ifest in calculations of scattering from defects and impurities in the oxide, such as

suboxide bonds (discussed in Chapter 5). A carrier wavefunction that penetrates

further into the oxide results in a larger overlap with oxide defect/impurity scattering

potentials, leading to a reduced mobility.

There are several available paths to overcome this potential difficulty and improve

the accuracy of calculated mobilities with respect to experimental measurements.

First, the band gap can be corrected with a "scissor operator" [55, 65] that shifts

the conduction bands rigidly with respect to the valence bands. The utility of this

method is based on experience with bulk semiconductors, in which the LDA and GGA
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reproduce correctly the shape of the conduction bands, but with a reduced band gap.

Figure 4-1 demonstrates that by projecting the density of states onto planes of atoms

parallel to the interface, the valence and conduction band edges can be calculated as

a function of position. Using this technique, it is possible to construct a position-

dependent scissor operator that shifts the conduction bands on the silicon and oxide

sides of the interface independently. This additional degree of freedom can result in a

calculation that correctly reproduces band gaps and the conduction band offset, with

little computational complexity beyond the LDA or GGA.

Another possibility is to abandon the relative simplicity of the LDA and GGA

and pursue calculations in a higher-order electronic structure scheme, such as the

GW approximation [68, 74, 84] or the Self-Interaction-Corrected (SIC) LDA [111, 66].

These methods yield energy gaps that agree well with experiment, but at the cost of

considerable computational complexity. No GW or SIC-LDA calculations have yet

been reported on the 100-200 atom supercells used in this work to represent UTSOI

channels.

It is important to note that the mobilities calculated using the method presented

below are calculated in channels of infinite length. That is, there is no contribution to

the mobility from source or drain contact resistance, and the external gate potential

is not influenced by source and/or drain fields. This is desirable from a physical point

of view, since scattering in the channel is a separate process from contact resistance,

and should be understood independently. However, it is not possible to completely

eliminate contact resistance in real devices, and so experimental measurements will

never correspond exactly to these theoretical calculations, even in the limit of long

channels. The most important direct insight from these mobility calculations is the

dependence of mobility on gate field, channel thickness, and carrier concentration.

The band gap and band alignment difficulties described above should not affect rel-

ative mobilities calculated at different channel thicknesses or gate fields. Although it

will be desirable in the future to combine this method for mobility calculations with a

higher-order electronic structure method, the quantities relevant to comparison with

experiment should be accurate within the LDA.
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4.2.2 MOSFET Electrostatics

The influence of gate bias on the electronic structure of a silicon channel modeled

with a supercell is a challenging issue due to the constraints of periodicity. The elec-

trostatics of a symmetric double-gate MOSFET will be discussed in detail below. In

this configuration, the chemical potential of the source (or drain) serves as the volt-

age reference. Both the front and back gates are biased symmetrically such that the

potential on the front and back interfaces of the silicon channel are equal, but raised

or lowered with respect to the source potential. Maintaining this potential difference

requires the presence of free charge within the channel, which accumulates when the

gate bias lowers the conduction bands of the channel relative to the source. [134]

DFT calculations in a periodic supercell do not directly model the presence of

source and drain electrodes that can contribute carriers as the gate bias changes. The

number of electrons in the supercell remains constant, making it necessary to use an

inverse approach to double-gate MOSFET modeling. In the following discussion, the

case of an n-type channel will be considered, in which the carriers are electrons in

the conduction band. To model a p-type channel, electrons are removed from the

valence band and the compensating background charge is negative. Excess electrons

are introduced into the conduction band at the beginning of the calculation, and

the resulting conduction electron density and electrostatic potential are calculated

self-consistently.

Periodicity introduces an additional complication, however. Consistent electro-

statics requires that the supercell be neutral; a charged cell would result in a divergent

electrostatic contribution to the energy. Thus, when excess electrons are added to

the conduction band, a uniform positive background charge must also be included to

neutralize the supercell. Adding an external potential that satisfies the proper bound-

ary conditions allows the contribution of this positive background to be subtracted

out and the proper electrostatics of the charged supercell recovered. The Hartree

potential in the calculation satisfies the following equation, where the z direction is
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perpendicular to the Si-SiO2 interface, and variation in the x-y plane is neglected:

d20 -e
d = _ (nion() - nval(Z) - ncond(Z) + nbg) (4.1)dz2 -C

where nion is the positive charge of the ion cores, lj is the negative charge of the

valence electrons, ncond is the negative charge of the conduction electrons, and nbg is

the uniform positive background charge. By construction, fdz (nion() - nva(z)) = 0

and fdz (nbg - nod(z)) = 0. If a constant external potential is added that satisfies

the Hartree equation for a uniform negative background charge,

d2kext -e
d =(-nbg), (4.2)dz e

then the total potential + Oet satisfies the proper electrostatic equation for the

charged channel:

d2 +ext) = e (nion() - nva(z) - ncnd(Z)) (4.3)
dz 2 Eo

Since nbg is constant, it is trivial to solve Equation 4.2 for the external potential

that obeys the proper boundary conditions for the charged cell:

Oext = enbg z2 (4.4)
2e0

With the conduction electrons confined to the silicon channel, and the oxide repre-

sented as a dielectric medium, the resulting external potential is given in Figure 4-2.

Single-gate or non-symmetrically-biased MOSFETs present different challenges for

periodic-supercell electronic structure calculations. A biased gate results in an electric

field on the channel that confines electrons to the vicinity of the Si-SiO2 interface. A

constant electric field results in a linear scalar potential that is not periodic and thus

cannot be accommodated without extending the supercell. Figure 4-3 shows how a

constant electric field can be accommodate in an extended supercell. The external
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Figure 4-2: Schematic of the external potential in a symmetric double-gate UTSOI
MOSFET. Dotted lines divide the silicon channel and oxide regions.

Oxide Silicon Oxide

Figure 4-3: Schematic of a single-gate MOSFET simulation in an extended supercell.
The symmetric external potential (,,ext reflects a constant electric field confining the
carriers at each silicon-oxide interface. This results in a realistic simulation so long
as the wavefunctions of interest (represented by dotted lines) do not overlap.

potential ext is periodic, and reflects electric fields of opposite direction confining

electrons at each silicon-oxide interface. The middle region of the supercell is not

realistic, but so long as the wavefunctions of interest (the bottom of the conduction

band or the top of the valence band) are confined to the interfaces, this is not likely

to be a problem. The difficulty with simulating a single-gate MOSFET in this con-

figuration is the size of the supercell. In bulk MOSFETs, the wavefunctions extend

approximately 100A from the interface, requiring a supercell at least 20nm in the

direction perpendicular to the interfaces. Such a large cell is beyond the reach of

present-day first-principles calculations.

Another method to simulate a single-gate MOSFET is to use a gauge transforma-

tion that transforms the linear scalar potential into a periodic, but time-dependent,

vector potential. In particular, a constant electric field can be implemented by using
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either a scalar potential 0,

E = -Vq5 = -Ex - Ey - Ez, (4.5)

or by using a time-dependent vector potential A,-. aAt -E=- (t) A = -Et. (4.6)
at

Self-consistent electronic structure calculations in the presence of a time-dependent

field, such as A in Equation 4.6, are possible within the Time-Dependent Density

Functional Theory (TDDFT) formalism [118]. A = -Et is turned on starting from

t = 0, and the system is simulated until a quasi-stationary state is reached. This

quasi-stationary state reflects the time-independent state that would be found if the

constant electric field were included via a scalar potential. The end state is only

quasi-stationary, since at long enough times, the electrons confined to the interface

would overcome tunnel through the potential barrier into the oxide.

4.2.3 First Approximation: Born and Boltzmann

Since carriers traversing the channel in a MOSFET can scatter off of defects and

impurities, calculating the mobility entails solving a scattering problem. As such, the

first step in a mobility calculation is to calculate the relevant wavefunctions {i'nk},

energy bands {Enk}, and Kohn-Sham potential Videal for a reference, "unperturbed"

system. For UTSOI channels, the unperturbed system is a supercell with an ideal,

abrupt Si-SiO2 interface, as shown in Figure 4-4. The relevant bands and wavefunc-

tions are those at the bottom of the conduction band for electron carriers, and those

at the top of the valence band for holes. Since the length and width of the channel

are large compared to its width, there is effectively two-dimensional periodicity in the

plane of the interface, making k a two-dimensional wavevector. The band index n is

analogous to the "sub-bands" introduced by Stern and Howard [128], except that an

SOI channel is confined to two-dimensions by the oxide interface even in the absence
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Figure 4-4: Supercell containing a 5A-thick UTSOI silicon channel with ideal, abrupt
Si-SiO2 interfaces.

of an electric field.

Next, a scattering center (defect or impurity) is introduced into the supercell,

and the interface+defect/impurity structure is relaxed into its lowest energy state,

using either a conjugate-gradient-type algorithm [109] or Car-Parrinello molecular

dynamics [26, 85]. The Kohn-Sham potential Vdefect of this supercell is calculated. The

self-consistent scattering potential AV can then be constructed: AV = Vdefect - deal.

Current state-of-the-art MOSFET simulations [46, 47, 150] solve the semiclassical

Boltzmann equation using Monte Carlo techniques. The scattering models used in

these simulations (see Reference [6] for canonical examples) are based on the Born

approximation for the scattering matrix and Fermi's Golden Rule for the scattering

rate. Using the accurate wavefunctions and bands calculated for the ideal UTSOI

channel, and the self-consistent scattering potential AV, we can calculate the scat-

tering matrix within the Born approximation:

Tmn (k,k') = nk' V mk) . (4.7)

Tmn,(k, k') gives the probability amplitude for scattering from state (mk) to state

(nk').

In order to calculate the mobility, we can solve the Boltzmann equation to linear

order in the applied source-drain electric field [153, 95]. To first order in the electric
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field E, the Boltzmann equation gives the occupancy of state (nk):

fn(k) = fo(En(k)) + h V k) (4.8)
E=En (k)

where Tn(k) is the lifetime (relaxation time) for state (nk), and fo is the equilibrium

Fermi distribution. The mobility is defined by ((v)), = ~(E), where (v) is the

average velocity calculated according to the above distribution fn(k).

The mobility tensor component , for an applied field in the P direction resulting

in a current in the a direction is given by:

=-e d2k n (n(k)) (() afo(e)) (4.9)

where -n(k) = VkEn(k)/h is the group velocity of state (nk).

Now the relaxation times (rn(k)} must be calculated. Fermi's Golden Rule gives

the rate for scattering from state (mk) to state (nk') under the influence of a single

defect or impurity:

Rmn(k, k') - n(k ' ( ) - EM(k) (4.10)

The inverse lifetime of an electron in state (nk) is given by summing over the rates

for transitions to all possible final states (ink'). If correlated scattering from multiple

defects/impurities does not occur, an assumption that is valid to first order in the

defect/impurity density nd, the scattering rates for multiple defects/impurities sim-

ply add [95]. It multiple-scattering events do occur, it is possible to include several

defects/impurities in the supercell and calculate a scattering potential AV that re-

flects the combination of scatterers. Adding the scattering rates, the inverse lifetime

of state (nk) in the presence of a defect/impurity density nd is:

1 _ -r d 2 k'1' , 2nd f d2k'
Tn(k) h 27 h m 2 ,,= nd ( 2 T,-,,,.,(k /', k) = 5(2c,, l-n(kk)- a>e(4.11)(

(4.11)
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A more rigorous calculation of the inverse lifetime (see, for example, References [95]

and [153]) gives a nearly identical expression, but includes an additional weight fac-

tor (1 - cos ), where where is the angle between v(k) and vm(k). Physically,

this factor reflects the fact that backscattering has a greater effect on mobility than

small-angle scattering. Thus, the final expression for the mobility is:

-eh d k d2k' ITM. (p - 2

Poo = 2 7rend (2-r) 2 (en (k) - m (k') (1 -cos 0)

X (Vn [Z Pk), (V( fo(e) c (4.12)
E=E(k)

4.2.4 Green's Functions: Beyond Born and Boltzmann

Calculating mobility using the Born approximation and the Boltzmann equation has

the benefit of being simple conceptually, and permits direct comparison between

first-principles results and those based on existing models and Monte Carlo device

simulations. The atomic-scale structure of the Si-SiO2 interface and quantum me-

chanical effects are included through the wavefunctions and self-consistent scattering

potential. Both elements are important to accurate simulations of UTSOI devices,

and both are absent in current state-of-the-art models. However, several restrictive

assumptions have been made. For instance, Equation 4.7 assumes that the scattering

potential AV is small. For traditional devices with thick channels, a single impurity

or interface fluctuation is likely to be a small perturbation on the conduction elec-

trons, and the assumption of weak AV can be expected to yield accurate results. For

a UTSOI MOSFET, where the channel can be as thin as four atomic layers, a single

oxygen protrusion or suboxide bond will change the channel thickness by 25% in the

space of a few Angstroms. In the nanoscale regime, first-order perturbation theory

may not be adequate to accurately describe device physics, making it necessary to

identify ways to obtain more accurate solutions.

A systematic way to improve Equation 4.12 for the mobility is to solve the prob-

lem through a finite-temperature Green's function approach [95]. This method will
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be introduced below, and it will be demonstrated that it reduces to the equations of

Section 4.2.3 in the appropriate limits. Green's functions provide a powerful computa-

tional framework that permits an exact quantum solution of transport in the presence

of defects and impurities. The cost, however, is increased conceptual complexity and

potential complications due to numerical convergence. At present, first-principles

mobility calculations have been performed using only the approach of Section 4.2.3,

to enable direct comparison with existing models and to highlight the importance of

atomic-scale channel structures and accurate quantum-mechanical wavefunctions and

scattering potentials. In the future, however, calculations within the Green's func-

tion formalism may be able to probe the limits of semiclassical transport and treat

transport in the smallest devices.

The Green's function approach begins by defining a Hamiltonian in second-quantized

notation that contains all of the physics described in Section 4.2.3:

H = Z En(k)C tkCnk + S(' (n'AVmk)ckc k (4.13)
nk mk nk'

The structure factor S(k) = ZRd exp(-ik Rd) contains all information about the

random defect/impurity positions. Given this Hamiltonian, we can solve for the finite-

temperature (Matsubara) Green's function Gmn(k, k', iw) [95], which encapsulates all

transport and scattering properties of the carriers. Physically-relevant results are

obtained by averaging over the random defect/impurity positions, which makes the

Green's function translationally invariant. Expanding the Green's function in powers

of AV, this average becomes an average over products of S(k): (S(k) ... S(kN)).

Although these quantities cannot be evaluated in general, they are tractable to first

order in the defect/impurity density. This limit corresponds to neglecting correlated

scattering events between different defects/impurities, and is the equivalent assump-

tion to that made in Equation 4.11. Although the averaged retarded Green's function

is diagonal in the wavevector k as a consequence of translational invariance, it still
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has off-diagonal elements in the band index:

[G (k, )] = [Go 1(kw) - E(k ,w)] (4.14)
mn mn

The diagonal unperturbed Green's function is given by:

[Go (k,w)] = (( +i i)-( - ( )- ))Smn, (4.15)

where r is a small positive constant and ,I is the chemical potential. The self-energy

is linear in the defect/impurity density nd, and is obtained by solving the following

integral equation:

-Fmn~ k',w) (ni Wmi+0 (nk'AVpk") rmp(k, k", w)n (k, PW)= (nP/ mk)+E (4.16)pkil ) (w + i) - (Ep (k") -

where the singularity at w = ep(k")-I is handled by taking the limit r 0+ , as would

be the case for a retarded Green's function. Once F is calculated, the self-energy is

given by: Emn(k, w) = ndrmn(k, k, w).

There is a direct connection between the self-energy and the scattering matrix.

The structure of Equation 4.16 is the same as the equation for the scattering (or

transfer) matrix from elementary scattering theory via the Lippmann-Schwinger equa-

tion [119]. In fact, we have: Tmn(k, ) = mn(k, k', w = en(k)). As a direct result

of taking the low-defect-density limit when averaging over defect positions, which re-

sults in each defect being an independent scatterer, the first-order solution to Equa-

tion 4.16 is just (nk' AV mk), the result we obtained in the Born approximation in

Equation 4.7. Solving Equation 4.16 exactly provides the exact scattering matrix. In

ultrathin-body devices where atomic-scale defects are large perturbations, this exact

solution may result in different physics than the Born approximation.

Within the Green's function formulation, it is also possible to compute the lifetime

of a state (nk). The Green's function in the time domain is proportional to the

probability amplitude for a state which was created at time t = 0 to be destroyed after
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a time r. After Fourier transforming the retarded Green's function in Equation 4.14,

there will be a decaying exponential factor exp(-I Im[]]lr/ih). The imaginary part

of the self-energy corresponds to the inverse lifetime of the state. If Equation 4.16

is solved to second order in AV, and off-diagonal elements in the band index are

neglected, then:

Im nn(kw En(k))] 2krnd f dmk2thi , [,,. ( )),] h( - m(2r)2 I))
m

(4.17)

which is identical to the inverse lifetime given in Equation 4.11, with Tmn(k, k') cal-

culated within the Born approximation. Higher-order or exact solutions to the self-

energy can yield lifetimes that correspond to the exact scattering matrix.

Mobility via the Kubo Formula

To go beyond the semiclassical Boltzmann equation for transport, the conductivity

can be calculated from the Kubo formula [95]. The Kubo formula is a linear response

formula, meaning that the calculated mobility is only valid for small source-drain

voltages. The conductivity for an applied electric field in the a direction and a

current response in the p direction is given by:

1 rIpet'
aces -- lim Im [Ira(w)] X (4.18)

w--O W

where IIret is the retarded current-current correlation function. Within the Matsubara

finite-temperature formalism, IIret is calculated by first calculating the time-ordered

correlation function H as a function of the Matsubara frequency. All internal fre-

quency integrations are sums over Matsubara frequencies, and it is not until the end

of the calculation that the analytic continuation iw - w+ir is made and the retarded

correlation function recovered.

The current-current correlation function can be evaluated exactly in the low-

defect-density limit that was previously invoked. A significant simplification is achieved

by using the current operator appropriate for free particles: = Efnk(-hek/m)cnkcnk.
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This expression avoids off-diagonal terms in the band index and is appropriate when

the gradients of the conduction band Bloch functions in the direction perpendicular

to the interface are negligible. With this approximation,

=) 2 E:Em ) )he ( (, Xiwiw')) (4.19)
nk iw'

where Q is the volume of the system and {iw} are the Matsubara frequencies. As

- oc, the sum over k becomes an integral over the first Brillouin zone. = l/kT

is the standard thermal factor.

In order to calculate the auxiliary vector function X, a new scalar function A is

defined as follows:

kA~(, iw, i') Zm'(k', iW, i')ndrmn(k', k, iw)rnm(, kiW + iw'). (4.20)
mk'

With this definition, X becomes:

)Xn(k, iw, iw') = k [ + Am(k, i, i')] Gmn(k, i + iw')Gnm(k, iw'). (4.21)
m

Finally, Equations 4.20 and 4.21 combine to give a scalar integral equation for A:

An(k, iw, i') = k2i ndrmn(k', k, iw)Fnm(k, k', iw + iw') [1 + Ap(k, iw, iw')]
mpk'

x Gpm(k, i + iw')Gmp(k, iw'). (4.22)

By solving Equation 4.22, we can evaluate X. The advantage of this approach is that

it avoids solving a vector integral equation for X in favor of solving a simpler scalar

integral equation for A.

Evaluating the internal sum over Matsubara frequencies in Equation 4.19 is diffi-

cult since it requires knowledge of r as a function of Matsubara frequencies. In some

cases, r, calculated numerically from Equation 4.16, can be fit to an analytic form,

allowing the Matsubara frequency sums to be evaluated directly. Another approach
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can be used effectively in large supercells. A large supercell has a correspondingly

small Brillouin zone, and as a result, the matrix elements of the scattering poten-

tial (nk'l AVmik) will be nearly constant as a function of k and k for a given pair

of band indices (m, n). Neglecting the variation of these matrix elements with the

wavevector implies that is independent of k and k' as well. For a k-independent

F, calculating II is trivial, and the isotropic conductivity (via Equation 4.18) takes a

simple form:

he Aofo(;- ),(4.23)
-2 S i dAmn(E)Anm() aE e (4.23)

where Scel is the Si-SiO2 interface area in the supercell. Amn (e) is the spectral function

of the retarded Green's function from Equation 4.14: Amn(e) = -2 Im[Gmn(e)]. Since

the potential matrix elements are k-independent, wavevector dependence in Gmn can

only enter through the energies n(k)). In formulating Equation 4.23, band energies

were assumed to be constant across the Brillouin zone as well.

In the general k-dependent case, Equation 4.22 can be solved to yield II. From

H and the electron density (input to the initial electronic structure calculation), the

conductivity and the mobility can be calculated. This procedure includes the factor

(1- cosO) that is missing in the inverse lifetime calculated from Fermi's Golden

Rule or the Green's function above. In addition, the off-diagonal elements of the

self-energy are properly taken into account when there is more than one conduction

band. Equation 4.17 corresponds directly to the Boltzmann equation solution, but

at the cost of assuming the self-energy to be diagonal in the band index. For a

spatially-localized potential, the off-diagonal elements can be substantial and the

proper carrier lifetime must be obtained from the Green's function. When carriers

can scatter between conduction bands, solving the Kubo formula includes important

physics that are neglected in simple solutions of the Boltzmann equation.

The Kubo formula allows the direct calculation of mobility without assumptions

about the scattering rate. It is complicated to solve either analytically or numerically,

but allows for the freedom to include correlated scattering between different impurities
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and other quantum effects that are beyond the reach of the Boltzmann equation. With

this systematic Green's function approach based on electronic structure calculations,

fully-quantum transport calculations in ultrathin-body devices are possible. Future

work will determine the range of validity of perturbation theory and semiclassical

transport in nanoscale channels.

Basis State Convergence

A critical issue that affects the numerical accuracy of the mobility calculations is the

number of relevant conduction or valence band states included in the Hamiltonian

(Equation 4.13). The potential AV couples states of different band index, as well

as those with different wavevector. For a diffuse potential that is slowly varying and

extends over many supercells (such as the 1/r impurity potential used in textbook

problems), matrix elements of AV are nearly diagonal in the band index. Thus, the

Hamiltonian need only contain enough conduction or valence band states to accom-

modate the carriers. In the present calculations, however, AV is generally localized

within a supercell and can be rapidly varying in space. As a result, AV can couple

the states included in the Hamiltonian to those outside of the chosen subset of con-

duction or valence bands. Convergence of the mobility with respect to the number

of conduction- or valence-band states included in the Hamiltonian must be carefully

studied to ensure that important AV-induced transitions are not being neglected.

An alternative approach is to include Bloch-like states in the Hamiltonian that

couple to the relevant conduction or valence states through AV, and behave as an

additional type of "particle" in the Hamiltonian. Consider the function space H

spanned by the eigenstates of the Hamiltonian. The relevant conduction or valence

bands that contain the carriers form a subspace of H: Hc C H. The other bands that

are not directly relevant to the transport process are contained in the subspace Ho,

so that H = Hec [Ho. \V in general couples states in Hc to those in Ho as described

above, meaning that a Hamiltonian such as that in Equation 4.13 neglects potentially

important scattering processes because it artificially restricts the mobility calculation

to states in He. As mentioned above, one way to include these scattering processes
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is to increase the number of bands included in the Hamiltonian, i.e. increase the size

of the subspace He. The difficulty with this solution is that extended Bloch states,

while an accurate depiction of carrier states in a transport problem, do not efficiently

represent Ho. Matrix elements of the potential (nkc'AVmk) behave as Fourier

transforms of the potential at wavevector k - k' due to the extended nature of the

Bloch wavefunctions. Localized potentials couple many bands because wavevectors

within the first Brillouin zone are insufficient to represent the Fourier transform of

a potential localized within the supercell. This is analogous to familiar problem

of needing many plane waves to represent a very localized function: the smaller a

function's spread in real space, the larger its spread in reciprocal space.

The way around this problem is to recognize that Ho does not need to be rep-

resented using Bloch states. It is possible to choose a set of basis states {(Iak} that

span Ho, but that also provide a compact representation of AV. For any state (nk)

in HC, matrix elements of the potential (nkIjAV ak') will be non-negligible only

for a E 1... N. Thus, only those conduction or valence bands that are occupied by

carriers need to be included in Hc, and scattering outside this subset is accounted

for by including a small number N of states from Ho.

Basis states that span Ho can be chosen to be Bloch-like functions b(ak, written as

linear combinations of localized functions chosen to accurately represent the potential:

(lk (r = E eikRwa(r- R), (4.24)
R

where R is a lattice vector and wQ(r) is a function localized within the supercell.

The most important restriction on {'4?Ik} is that these states be orthogonal to the

states {Fnk} included in Hc. Jnk = exp(ik . r)uk(r-) is a Bloch function, so that the

orthogonality condition reduces to:

/ d3retk-ifunk (r-)wa(r). (4.25)

The most straightforward way to satisfy Equation 4.25 is to choose a set of orthonor-
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mal functions {w) (for example, harmonic oscillator functions) and then use Gram-

Schmidt [8] or another technique to orthogonalize {we} to the Bloch functions in

Hc.

Once a satisfactory set of orthonormal functions {ak}, a E 1 ... N, is chosen,

the unperturbed Hamiltonian can be diagonalized within this subspace. This di-

agonalization provides a set of "energies" {Eck} for the Bloch-like "particles", and

simplifies the resulting Hamiltonian. The modified Hamiltonian including the Bloch-

like pseudo-particles can now be written:

H = n(k) C kCnk +EES('-k) (n V L Cnk) Cmk+
nk mk nk'

S, E(k)dkd k + A S(k' - k) (,'AV a) dk,dak
ak ak /3k'

5,5 S'P-k) nk AV alk) ctk,d,k + h.c., (4.26)
ak nk'

where dak/dtk creates/destroys a pseudo-particle in state 4 ,,k, and h.c. represents

the Hermitian conjugate of the previous term. The Bloch-like functions {4,k}, as

described above, are chosen to be orthogonal to the relevant conduction- or valence-

band states.

The Hamiltonian in Equation 4.26 can be used in place of the previous Hamil-

tonian (Equation 4.13). In calculating the Green's function, the new terms in the

Hamiltonian containing dk and dtk result in an additional term in the self-energy

that is straightforward to evaluate. The additional complication of these Bloch-like

states is only necessary if convergence of the mobility requires an excessive number

of conduction or valence band states to be included in the Hamiltonian.

4.2.5 Phonon Scattering

The calculation of electron-phonon matrix elements from first principles is a relatively

recent endeavor [91, 121, 122, 141], based on Density-Functional Perturbation Theory

(DFPT) [15, 60, 58]. The phonon spectrum is calculated via DFPT, and used in
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conjunction with perturbed wavefunctions to yield matrix elements. This method is

rigorous and straightforward, and yields important information about the coupling of

electron states to particular phonon modes (important, for example, in the study of

phase transitions [92]).

For simulations of transport in devices, carrier lifetimes and mobilities are re-

quired. The lifetime of a particular state reflects the probability for that state to

make a transition into any other state; in the context of phonon scattering lifetimes,

it reflects a sum over phonon modes. Phonon modes are the frequency-space analog

of the time-dependent vibrations of a solid at finite temperature. The DFPT methods

described above calculate phonon spectra by diagonalizing the dynamical matrix: a

frequency-space approach. A real-time method to calculate the phonon spectrum also

exists [77]: run a molecular dynamics simulation, and Fourier transform the dynami-

cal structure factor. Since transport properties reflect a sum over phonon modes, this

sum can be calculated in either real or frequency space. This is the essence of the

dynamical phonon scattering method: avoid direct calculation and diagonalization of

the dynamical matrix by integrating real-time dynamics.

The general approach to calculate mobilities from a molecular dynamics simulation

is based on time-dependent perturbation theory. If the ions are moving, then the

electrons see a time-dependent potential:

Vion(t) = E Vi(r- (t)), (4.27)
i

where (iR(t)} are the time-dependent ionic positions and V(f is the potential of the

ith ion. The equilibrium ionic positions are denoted by ({Ri°. If the ions remain close

to their equilibrium positions (as is the case for a solid far from its melting point),

then the time-dependent perturbation AV will be small:

AV(t) = E {i(r- I(t))- V(r- i)}. (4.28)
i
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The unperturbed Hamiltonian is constructed using the equilibrium ionic positions:

H0= T + Ve-e + Vext + V (rF - ), (4.29)
i

where T is the kinetic energy operator and Vee is the effective electron-electron

interaction potential (e.g. VHartree + Vxe for DFT). The external potential Vext was

included in the Hamiltonian to emphasize that this phonon scattering approach is

compatible with applied gate fields such as those described in Section 4.2.2.

Using first-order time-dependent perturbation theory, the rate of scattering from

state (mink') to state (nk) can be written down:

mP-n!(T) = 10 j dt ei(enk-mk/ )t/h(nkIAV(t) im) 2 (4.30)

The ions begin moving at t = 0, and the dynamical simulation (using first-principles

molecular dynamics (MD) [26, 85]) runs for a time T. Since the electron density

at each time step is calculated self-consistently, the effects of coupling between the

polar interface optical phonon modes and the channel carriers are included automat-

ically. This phonon-plasmon coupling contributes to "remote phonon scattering",

which Fischetti, Neumeyer and Cartier identified as an important limitation on the

mobility of MOSFETs with high-s dielectrics [48]. The origin of the high dielectric

constant is the high bond polarizability. Optical phonon modes are associated with

bond stretching, and as a result thermal vibrations lead to oscillating dipoles. These

dipole fluctuations couple strongly to the charge carriers in the channel and can be

a primary source of scattering and dissipation. A major limitation of this dynamical

phonon scattering method is that a simulation run for a finite time T will not capture

phonon modes with frequencies smaller than 2r/T. However, even relatively short

simulations will capture important interface optical modes.

79



Connection to Existing Phonon Models

The theory of phonons begins with a straightforward approximation to the time-

dependent scattering potential AV(t). If the ions remain close to their equilibrium

positions, then the time-dependent ion coordinates can be expressed as a sum of the

equilibrium position and a small deviation: Ri(t) -= ? + ¢R(t). To first order in

6R, the perturbation potential is:

AV(t) = - Z R. (t) VVi (r- ). (4.31)
i

The deviation 6R can be expressed as a sum of phonon modes [113]:

J (t) = (1 ) ho ekefqAX

{e-iWqt(XjaqAIx) + e"-t(XIat qAlx) }, X (4.32)

where N is the number of unit cells and Mi is the mass of the ith ion. {WqA} are the

phonon frequencies, labeled by the wavevector q and polarization A. eqx is the polar-

ization vector. The exponential time dependence comes from the time dependence of

the operators aq, and at_qA in the Heisenberg picture, with the phonon Hamiltonian

containing only harmonic terms. IX) is the ground-state phonon wavefunction.

The primary constraint on IX) is that the expectation value of the number operator

should give the Bose-Einstein occupancy:

(xlataqXlx) = ex(4.33)
4X exp(3Wqx)-

In order to evaluate Equation 4.32 it is only necessary to evaluate certain expectations

values of X), and not the wavefunction itself. The simplest choice for the matrix

elements (XlaqAlX) and (Xlat _qlX) is to take the square root of the Bose-Einstein

occupancy:
1

(XaqAlX) = (XlaAIx1)= (4.34)qI / exp(/OWqA)-
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If (latxaqAjX) (xlaxlx)(xlaqAl), then Equation 4.33 is satisfied. Evaluating

(Xla~taqlX) in this manner assumes that the phonon wavefunction is a coherent state

(see Reference [87], Chapter 21, for a brief introduction). A coherent state Ix) is

an eigenstate of the annihilation operator: aqxAX) = CqxIX), where cqx is a constant

eigenvalue. Coherent states are commonly used in the study of radiation to represent

quantum analogues of classical radiation fields, when large numbers of photons are

present. Since Ix) represents a large number of phonons in a room-temperature solid,

it is appropriate to treat IX) as a coherent state.

Using Equation 4.34 for the expectation values of aq, and at_ q, it is possible to

evaluate Equation 4.30 for the phonon scattering rate. The time dependence in R. (t)

enters only through the exponentials exp(-iwqAt) and exp(iw_qAt), so that the time

integral in Equation 4.30 can be evaluated mode-by-mode:

Iq (T) = | dt ei(e"k-emk')t/AekiWqXt - [ei(( enk - em"k) /t w)T _ 1].
A il((eEk - Emk)/ i Wq)

(4.35)

The potential matrix elements are time-independent:

fqA = Z(1/M)e" ¢ ' (nksA'q, VVi(r*- Rj°)lmk'). (4.36)
i

In terms of the Iqx(t)} and fqx), the scattering rate is given by:

1 Rmk' nk(T) =)ja E (1/VIN) ( h/2wq) fqAX{ Iq /exp(/wqx)- 1 ~ exp( q) 1 1+qx(T)}| (4Tex ~) qI\(T) + 1 ~IqT (4.37)

Taking the square magnitude, I .. 12, introduces cross terms in q and A. In the

T - oo limit, however, the time derivative of those terms vanish. The diagonal
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terms are straightforward to evaluate in the T - oo limit:

liraI(T)12 = li r-Emk)/h + WqA) Tlim II' (T)2 =lim - 2 sin2 ((ne - mk)/ i QX)T--I)oo Q '-oo ((nk - Emk')/h i WqA)2 2 J
= 2irhTj (Ek - mk' + WqA), (4.38)

where (... ) is the Dirac delta function. In the T -, oo limit, the expression for the

phonon scattering rate in terms of phonon modes is:

Rmk.ni(T ° cc) = E (1/N) (h/2WqA) fqA X
qA

{ 1 1
5 (nk - etk' - WqA) + (enk - emk' + W-qA) 

exp(3 wqA) - - W exp(P qA) - 1

(4.39)

Equation 4.39 is a familiar expression for phonon scattering, involving both ab-

sorption (the first term in braces) and emission (the second term) of phonons. Mo-

mentum conservation is enforced through the matrix elements fq,. The disadvantage

to using this expression for the scattering rate is that it does not include phonon-

plasmon coupling, since the "scattering potential" is VV, which is not calculated

self-consistently.

4.3 Electronic Structure of UTSOI Channels

In this section, results from the ground-state DFT-LDA calculations that provide

the unperturbed wavefunctions and energy bands are discussed and compared to the

predictions of a free electron model of the channel currently used in state-of-the-art

simulations. Understanding the electronic structure of UTSOI channels as a function

of carrier density (or gate bias) is an important first step to explaining calculated mo-

bilities. Traditional UTSOI MOSFET simulations treat the channel as a potential well

perpendicular to the Si-SiO2 interface. The oxide interfaces are generally represented

by infinite potential barriers. Based on solutions of the one-dimensional Schr6dinger
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Figure 4-5: Schematic representation of wavefunction penetration into the oxide. The
wavefunction is the solid line within the potential well defining the Si channel. The
oxide is represented by the shaded regions, and the height of the oxide potential
barrier is o,. The channel thickness is Tsi, and the penetration depth of the carriers
is Lp.

equation in this potential well, two phenomena unique to UTSOI channels have been

described: wavefunction penetration and volume inversion. Wavefunction penetra-

tion into the oxide and volume inversion will be treated in depth later in this section,

and compared to free-electron results. In addition, the self-consistent screening of the

external potential will be discussed.

The subsequent results on wavefunction penetration and volume inversion special-

ize to the case of electron carriers, i.e. the relevant wavefunctions are those at the

bottom of the conduction band. Similar trends will be found in systems with hole

carriers. Electron densities and potentials are not symmetric about the center of the

channel because the two Si-SiO2 interfaces are not equivalent.

4.3.1 Wavefunction Penetration

Figure 4-5 demonstrates schematically the phenomena of wavefunction penetration

into the oxide. As discussed in Section 4.2.1, the offset between the conduction band

of Si and that of SiO2 represents a potential barrier that confines the electrons at the

bottom of the conduction band to the Si channel. In most traditional simulations

that solve the Schrddinger equation for effective-mass electrons in the channel (see,

Reference [149] for an example), the oxide interface potential barrier is infinite. As a

result, the carriers are completely confined within the channel.

As the calculated conduction electron densities in Figure 4-6 show, the oxide
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Table 4.1: Calculated penetration length Lp versus channel thickness Tsi, from Fig-
ure 4-6. Measurement definitions as in Figure 4-5.

Tsi (A) Lp (A)
10 1.8468
15 1.3405
20 1.1886

interface barrier should not be thought of as infinite. There is significant penetration

of the carrier wavefunctions into the oxide region. In order to compare the calculated

density with the predictions of the effective-mass model, the penetration length was

determined from the plot in Figure 4-6. For concreteness, the width of the channel was

chosen to be exactly Tsi (10A, 15A, or 20A), although the exact position of the Si-SiO2

interface is arbitrary at the atomic scale. The penetration length was determined to

be the distance from the interface position at which the linear electron density ne was

less than 10-5 e-/A. A channel density of 5.6 x 10-"e-/A 2 was chosen to minimize

the influence of the external bias, making the potential well nearly "square", as in

Figure 4-5. Table 4.1 gives the penetration length as a function of channel thickness.

For comparison to the calculated values in Table 4.1, consider an electron in a

square well such as that in Figure 4-5. Since the conduction electron density is low,

only the lowest bound state in the well must be considered. Matching boundary

conditions at the edges of the well gives a transcendental equation for the wavevector

k:

tan (Tk =s(4.40)
where n = /(2m/h 2 )(Io - E), and the energy E is a function of k: E = hi2 k2 /2m.

Solving Equation 4.40 for k gives a set of allowed wavevectors that satisfy the bound-

ary conditions, and a corresponding set of allowed energies. Unlike the infinite square

well, where Io - oo = - oo, Equation 4.40 admits only a finite number of

bound-state solutions (with E < Io). In the limit Io, » E, which is likely to be

appropriate for the ground state of the well, the allowed wavevectors will be given by
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Figure 4-6: Calculated conduction electron densities for 10A-, 15A-, and 20A-thick
channels, with the channel density fixed at 5.6 x 10-"e-/A 2 . The z axis is per-
pendicular to the Si-SiO2 interface. Vertical lines mark the positions of the Si-SiO2
interfaces; line styles correspond to those in the legend. Electron densities are given
as linear densities, integrated over planes parallel to the interface.

the simpler equation tan(Tsik/2) = 0. Using this approximation, the ground-state

energy is Eo = h2 r2 /2mTsi.

The decaying part of a bound-state solution in the oxide region is given by

i oc exp(-nx). Thus, 1/n is proportional to the decay length. To distinguish this

characteristic length from the previously defined penetration length Lp, 1/ - A. Lp

and A are proportional to each other, but not necessarily equal. Lp measures the

decay length for the electron density, while A measures wavefunction decay. Because

only the ground-state of the potential well is considered, however, the density decay

length is just A/2. The factor of two can be absorbed into the proportionality con-

stant connecting A to Lp. Using the expression for nE given above, and substituting

the ground-state energy Eo for E, we find:

= 1 = /2mo ( - h2 7r2 1 (4.41)

h2/2mqbo~ -- A2 defines a characteristic length that is very small when o is

large. A/Tsi < 1 based on the previous assumption that Eo << Ioz Thus, we can
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Figure 4-7: Penetration length Lp versus 1/Tsi, as calculated from Figure 4-6. Circles
show calculated points, solid line is a linear fit.

expand the square root in Equation 4.41 to find an expression for the characteristic

penetration length as a function of Tsi.

0o = =A + 2Tsi ) (4.42)

If the previous assumption Eo << 4o is valid, and if the calculated conduction

band densities behave similarly to effective-mass electrons with a constant interface

potential barrier, then the penetration length should be linear in 1/Ts. Figure 4-7

shows that this linear relationship holds. A further prediction of the effective-mass

model is a relationship between the slope m and intercept b of Ao(l/T2i). Because the

only undetermined constant in Equation 4.42 is A, m/b 3 = 7r2/2. As was previously

discussed, Lp is not equal to A0, but is proportional to it: Lp = aAo. Based on this

constant, the measured ratio of the slope to the cube of the intercept is: h/b3 =

7r2 /2a2. From the fit in Figure 4-7, f7/b 3 = 100.427 = 20.351 * (r 2/2), and thus

a = 0.222.

The effective-mass model that treats the oxide interface as a potential barrier

does predict the variation of the penetration length with channel thickness. The

accuracy of the Lp(1/TS) fit indicates that the Si-SiO2 interface can be modeled as

a potential barrier of constant height across at least a limited range of Tsi values.

The intercept of the Lp(1/TS2j) curve is given by: b = aA = aVi 2 /2mI%.-. In the

86

�



effective-mass model, the electron mass m is an effective mass. To make this clear,

subsequent discussion will refer to the effective mass as m*, and the unrenormalized

electron rest mass as mo = 9.11 x 10-31 kg. Using the fitted intercept from Figure 4-7,

b = 0.95875A, 4o1 is given by:

mo a2i2 = ) 0.20368eV. (4.43)

The relevant effective masses in silicon are the longitudinal and transverse effective

masses at the bottom of the conduction band (the valleys along the Ir - X direction

in the Brillouin zone): ml,,ng = 0.98mO and mtrans = 0.19mO [129]. Using these values

for the effective mass, we find lo = 0.208eV and trans = 1.072eV. These two

values highlight difficulties with the effective-mass model. First, the justification for

treating the interface as a potential barrier was that the conduction band edge of the

oxide was offset from the edge of silicon conduction band. Since the bands define the

energy landscape for effective-mass electrons, both the longitudinal and transverse

P - X valleys should have equal barrier heights, being of equal energy. In this model,

4oI depends explicitly on the effective mass, which is not equal for the longitudinal

and transverse valleys. Second, neither calculated value of (IXo is comparable to the

calculated conduction band edge offset of 2.3eV (discussed in Section 4.2.1). This

discrepancy may be due to the lack of a sharp transition between the Si and SiO2

conduction bands. As shown in Figure 4-1, it takes roughly 5 for the conduction

band edge to rise from its Si value to the SiO2 value. The density penetration length

is 1-2A, so the effective band offset may be less than the difference in bulk band edges.

Both of these difficulties likely arise from the basic conceptual difficulty of the

effective-mass model: the discontinuity of the effective mass between Si and SiO2.

Both the conduction- and valence-band effective masses differ in Si and SiO2, and

this makes constructing a rational kinetic energy operator a challenge. The easiest

way around this difficulty is to make the Si-SiO2 interface an infinite potential barrier,

confining the electrons to the silicon channel, but this approach neglects important

wavefunction penetration effects. In MOSFET simulations that solve the Schr6dinger
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Figure 4-8: Plane-averaged electron densities in a 10A-thick silicon channel. Densities
are scaled to have equal weight. The z axis is perpendicular to the Si-SiO2 interface.

equation with a finite interface barrier, the effective mass of Si is used in both the

channel and oxide regions. This is not likely to accurately represent wavefunction

penetration since the kinetic energy in the oxide region will be either over- or un-

derestimated (the effective mass for conduction electrons in SiO2 is 0.85mo [99, 97],

between the longitudinal and transverse effective masses in Si). In order to fit the cal-

culated penetration length, the value of the oxide potential barrier must be adjusted.

As a result, there is no accurate way to derive the parameters for an effective-mass

model of the channel from first-principles.

Another important consideration is the penetration length as a function of carrier

electron density, or equivalently, applied gate bias. The effective-mass model discussed

above predicts no dependence on gate bias, but that is solely a result of assuming

that the potential well defining the channel is square. This assumption completely

neglect any external fields, and is only valid in the low-carrier-density (low-gate-field)

limit. Figure 4-8 shows the conduction electron density for a 10A-thick channel. In

order to show how the shapes of the density profiles vary, all three electron densities

are scaled to have equal weight. As a result, the ordinate of Figure 4-8 is arbitrary.

Even on increasing the conduction electron density by an order of magnitude, from

5.6 x 1011 to 5.6 x 1012 e-/cm2 , the density profile hardly changes. At lower carrier
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Figure 4-9: Schematic representation of applied bias potential and electron densities
in a thin SOI device. Shaded regions represent the oxide. The dotted line shows
the symmetric gate bias potential. The solid line shows the carrier density for a
thicker channel, with carriers divided into front and back channels. The dashed line
represents the carrier density in a volume-inverted channel.

densities, the applied gate field does not appreciably affect the electronic structure

of the channel. Although at 5.6 x 101 3 e-/cm2 additional charge begins to accumu-

late at the oxide interfaces, the penetration length remains largely unchanged. For

thin channels such as that in Figure 4-8, kinetic energy is clearly the dominant fac-

tor in determining the charge distribution in the channel. Although the potential

energy provided by the external gate field favors extra charge at the interface, the

kinetic energy cost to further localize the carriers cannot be overcome in a thin chan-

nel. In thicker channels the interplay between potential and kinetic energy results

in appreciable changes to the density profile as the carrier density is increased. The

electronic structure of thicker channels will be discussed below, and the concept of

volume inversion will be introduced.

4.3.2 Volume Inversion

In a standard, single-gate MOSFET the carriers are confined to a narrow region

near the silicon-oxide interface. In a symmetric double-gate device, the applied bias

(the dotted line in Figure 4-9) creates potential wells at both oxide interfaces. In a

thick SOI device, this creates two carrier channels, one at the front and one at the

back interface. The solid line in Figure 4-9 shows the electron density that would be

expected for such a two-channel configuration. For a given bias, the thick double-gate

device carries twice as much current as a single-gate device.
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In thin SOI devices, however, the two-channel model of a double-gate SOI MOS-

FET breaks down. The dashed line in Figure 4-9 shows the carrier density in a thin

SOI device. The electron density has a peak in the center of the silicon region instead

of near the interfaces, and as a result, there is only a single channel. This configu-

ration is referred to as volume inversion, and was introduced by Balestra et al. [141

as a means to improve performance in double-gate SOI MOSFETs. Electrons con-

centrated near the oxide interfaces scatter more frequently from interface defects and

charges trapped in the oxide. Electrons in a volume-inverted channel are concentrated

away from the interfaces, and thus can avoid frequent interaction with interface and

oxide defects. As a result, the mobility [44] of volume-inverted double-gate UTSOI

MOSFETs is enhanced relative to the same devices operated in single-gate mode. As

shown by the two-channel model for thick SOI devices, a double-gate MOSFET will

have twice as many carriers as a single-gate device for the same bias voltage. Since

mobility is normalized to the carrier density, this doubling does not by itself lead to

an increased mobility.

The phenomenon of volume inversion is easily understood through the potential

well model introduced in Section 4.3.1. The ground-state wavefunction of the poten-

tial well is 0 = V/7S cos(7rz/Tsi) (neglecting wavefunction penetration), which

has a peak at the center of the silicon region and nodes at the interfaces. At low

carrier densities, only 0 is occupied, and thus the density has the volume-inverted

form shown in Figure 4-9. The situation is less clear, however, at higher carrier den-

sities and in thicker channels. Higher carrier densities mean that potential well states

above the ground state are occupied, and the accompanying bias potential makes it

energetically-favorable for carriers to concentrate near the interface. Thicker chan-

nels reduce the kinetic energy cost to localize carriers near the interfaces. The range

of carrier densities and channel thicknesses over which volume inversion will be ob-

served is a result of a balance between the potential energy gain from staying near

the interface and the kinetic energy cost of localization.

In order to elucidate how the boundaries of the volume inversion regime depend on

Tsi and the carrier density ne, a simplified potential well model of the channel will be
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Figure 4-10: Schematic of the potential well volume inversion model. The applied
external potential )ext is shown as a dotted line, while the dashed line shows the
carrier density model n. The oxide is represented by dashed region, with the oxide
potential barrier assumed to be infinite.

introduced. This model is shown schematically in Figure 4-10. As in Section 4.3.1,

the well width is Tsi, but the oxide interface barrier is taken to be infinite. ne,

as measured for SOI MOSFETs, is a two-dimensional carrier density. Channels of

different widths will be compared at constant n, which is constant over the width

of the channel. The density of electrons per unit width of the channel is given by

ne/Tsi. The applied bias potential is taken to be ¢ext(z) = (-qn/2esiTsi)z 2, where

q = +1(-1) for holes (electrons), and si is the dielectric constant for bulk silicon.

The expression for bext above is calculated assuming a constant carrier density in the

channel; non-uniform carrier densities lead to only minor changes in the potential.

The potential energy due to the applied bias potential for a carrier density distri-

bution n(z) is given by: PE = JTs/, dz et(z)(qn(z)). n(z) is a three-dimensional

density with the constraint: T i/2 dzn(z) = n,. For computational ease and clarity,

a model form for the carrier density is used, as shown in Figure 4-10. The density is

symmetric and characterized by constant-density regions of with L, 0 < L < Tsi/2,

adjacent to the oxide interfaces. L characterizes the degree of localization of the car-

riers. Volume inversion is characterized by L = Tsi/2, with two independent channels
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for L < Tsi/2. Using this form for the density, we can calculate the potential energy:

(2n2Tsii (Tsi ( 2L) ] (444)

The kinetic energy can be estimated from the degree of localization of the carrier

density, via the Heisenberg uncertainty relation: AxAp h. The characteristic

width L of the density in Figure 4-10 gives a localization length Ax = 2L, and thus

Ap hi/2L. Taking the momentum p to be Ap, the kinetic energy p2 /2m can be

calculated:

neh2 neh (Tsi 2KE = 2m(2L)2 2m-,tj 2L) (4.45)

The total energy E = KE + PE depends on the width of the carrier density through

the dimensionless variable x - 2L/Tsi:

neh 2 1l_ q 2 n2Ts
E(x)= ( 2 1 (24 i (x 2 - 3x+3). (4.46)

Since 2L < Tsi, x E (0, 1]. Depending on the values of a _- (neh2 /2mTsi) and

(q2n2Tsi/24esi), E(x) has two types of behavior over the range (0, 1]. The first

occurs when E(x) has no minimum for x E (0, 1]. In this case, since E(x -+ 0) - oo,

the minimum energy is found at x = 1 = 2L = Tsi. When E(x) has no minimum

in (0, 1], the channel is volume-inverted, since the localization length of the carrier

density is equal to the channel width. The second regime occurs when E(x) has a

minimum for x E (0, 1]. In this case, the localization length is less than Tsi, and the

carrier density splits into two uncoupled channels. This situation is the one depicted

schematically in Figure 4-10.

From E(x) as given in Equation 4.46, it is possible to determine the boundaries of

the volume inversion regime. As x -- O, E/la - -oo. At x = 1, aE/ax = -2a+f.

Since E(x) is continuous in the region (0, 1], if E/Ox(x = 1) > 0, then there must

be some x E (0,1] at which E/Ox = 0. Thus, the volume inversion regime is

characterized by 2a > , which implies that E(x) has no minimum for x E (0, 1].

Note that, by the definitions above, a and ,3 are always positive. The volume inversion
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Figure 4-11: Plane-averaged electron densities in a 20A-thick silicon channel. Den-
sities are scaled to have equal weight. The z axis is perpendicular to the Si-SiO2
interface.

regime is defined by:
nTi < 12h2esi (447)

q2m

Equation 4.47 states that thinner channels operating at lower carrier densities

are more likely to be volume-inverted. As Figure 4-8 shows, a thin 10A channel

is always within the volume inversion regime, even as the conduction electron den-

sity is increased by two orders of magnitude. The situation for thicker channels is

different, however. Figure 4-11 shows the scaled conduction electron densities for

a 20A-thick channel, over the same order-of-magnitude range as in Figure 4-8. At

4.5 x 1013 e-/cm2 , electron density is qualitatively different. A considerable amount of

charge has built up near the oxide interfaces, and the density is nearly uniform across

the channel instead of being peaked in the center. For a 20A channel, this carrier

density marks the boundary of the volume inversion regime. Increasing the density of

conduction electrons drives more charge toward the interface, and eventually results

in two separate channels, with a node instead of a peak at the center of the silicon

region.
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Figure 4-12: Schematic of a Tsi-thick silicon channel, Tot-thick oxide, and metal
gate. The axis of the cylinder is perpendicular to the silicon-oxide and metal-oxide
interfaces. The cylinder has length z and base area A.

4.3.3 Self-Consistent Electrostatics

In a MOSFET, the carriers in the channel are coupled to the free charge in the metal

gate. A biased gate results in an electric field across the channel that is screened by

the carriers in the channel. In this section, the macroscopic electrostatic equations

that govern the channel and gate charges are discussed, and compared to calculated

results. Figure 4-12 shows a schematic representation of a silicon channel. Based on

this model, the electric field as a function of the channel charge qn(z) and the metal

gate charge a will be calculated. The width of the channel is Tsi, and the width of the

gate oxide is To. A symmetric double-gate MOSFET has zero electric field at z = 0,

the center of the channel. Since the metallic gate is assumed to be a good conductor,

an applied gate bias will accumulate charge only near the gate-oxide interface. The

accumulated gate charge will be represented by a surface charge a.

The cylinder in Figure 4-12 defines a surface S containing a volume V over which

the Poisson equation will be integrated. Since the system is symmetric in the plane

of the interfaces, the only variation of the electric field E and the channel charge

n will be in the z-direction. In the regime of macroscopic electrostatics, the oxide

and silicon channel will have static dielectric constants Eox and eSi, respectively. The

volume integral of the Poisson equation gives:

jd3rV D = jd3r ntot (r- dS D = Qtot (4.48)
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The left end of the cylinder is at z = 0, where D = esiE = 0. Thus, since the system

varies only in the z direction, Equation 4.48 gives:

E(z) = q dz' n(z') 0 < z < Tsi/2
esi

q TsJ/2
E~a:'= q | dz' n(z') Tsi/2 < z < Tsi/2 + To.. (4.49)

Integrating Equation 4.48 out to z > Tsi/2 + Tox gives an important condition

connecting the total charge N = 2 oTSi/2 dzn(z) in the silicon channel to the surface

charge in the gate. The field at z = 0 is zero, as is the charge for z > Tsi/2 + Tox,

since the gate is assumed to be a good conductor. This implies that the total charge

in the cylinder is zero and thus: Io = -qN/2.

Equation 4.49 evaluated at z = Tsi/2 implies that a surface charge a' = (qN/2)(1/eo;-

1/eSi) must exist at the silicon-oxide interface in order to ensure continuity of the elec-

tric field (the total charge in the channel must still equal the gate charge: N/2+a' = a.

The field E(z) in general must be calculated self-consistently with the channel charge

qn(z). The self-consistency condition is satisfied in the DFT calculations described

above. Here, the qualitative features of the self-consistent field are discussed and

compared to calculated results.

If the silicon channel were a perfect conductor, the field in the gate oxide would

be screened completely by the surface charge: a' = -a. As a result, there will be

a discontinuity in the electric field (and hence a kink in the scalar potential) at the

silicon-oxide interface. E(z) = a'/Eo for Tsi/2 < z < Tsi/2 + To. and E(z) = 0

for z < Tsi/2. Silicon, of course, is not a perfect conductor, but in thicker channels

with higher carrier densities, more charge will build up at the interface to screen

the oxide field. This phenomenon is most evident outside of the volume inversion

regime, as illustrated in Figure 4-11. Wavefunction penetration into the oxide blurs

the line between the silicon and oxide regions and acts to smooth the kink in the

scalar potential. Qualitatively, as channel thicknesses and carrier densities increase,

the silicon will more closely resemble a perfect conductor and the kink in the scalar

potential at the silicon-oxide interface will become more pronounced. Outside of the
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Z Axis Position (A)

Figure 4-13: Plane-averaged external electrostatic potentials for a 2nm-thick channel
at carrier electron densities of 5.6 x 101e-/cm 2 and 5.6 x 1013 e-/cm2 . Both potentials
are scaled to be equal in magnitude, to facilitate shape comparisons. The z axis is
perpendicular to the interface.

volume inversion regime, the potential inside the channel will have a smaller curvature,

making the electric field close to zero.

Figure 4-13 shows the self-consistent external potential bext, averaged over the

plane parallel to the interface, for carrier densities of 5.6 x 101 1e-/cm 2 and 5.6 x

1013 e-/cm 2. As shown in Figure 4-11, the former density is well within the volume

inversion regime, while the latter is at the boundary of this regime. The electric

field E(z) discussed above is given by this scalar potential: E(z) = -dlext/dz. The

self-consistent external potential as a function of channel charge qN is calculated as

follows: 0et(qN) = 1(qN) - '1(O), where the total electrostatic potential I = ion +

OH + b°0 is the sum of the ionic potential, the Hartree potential due to the electrons,

and the unscreened external potential. '1(0), the total electrostatic potential with no

channel charge, has no unscreened external potential contribution.

The intuition provided by the macroscopic electrostatic model discussed above is

confirmed by Figure 4-13. At a carrier density of 5.6 x 1013 e-/cm 2, the conduction

band electrons are free to move close to the interface and screen the field in the oxide.

As a result, the curvature of the potential in the silicon channel is reduced relative

to the potential at 5.6 x 101 e-/cm 2, implying a smaller electric field in the channel.

As the channel moves out of the volume inversion regime, more charge builds up a

the silicon-oxide interface, and the applied gate field in the oxide is screened more
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Figure 4-14: Effective field versus conduction electron density for a 20A-thick silicon
channel. The line is a guide to the eye.

efficiently.

An important quantity that is often measured experimentally and calculated theo-

retically is the "effective field", the applied gate field averaged over the silicon channel.

For a symmetric double-gate MOSFET, the effective field E is defined by:

fdz E(z)n(z)/~= (4.50)
fodz n(z) (450)

E(z) and n(z) are the plane-averaged electric field and carrier density, respectively,

discussed above. The coordinate system used in Equation 4.50 is the same as that

shown in Figure 4-12.

Figure 4-14 shows the effective field as a function of conduction electron density

for a 20A-thick channel. It is linear in the conduction electron density, as would be

expected for an undoped channel. An alternative expression for the effective field,

which is more easily measured experimentally, is: E = (Qb + rQc)/si, where Qb is

the "bulk charge", and Qc is the charge in the channel [9]. For an SOI MOSFET, the

bulk charge is zero, implying that the effective field is linear in the channel charge.

For evaluating the results of self-consistent DFT calculations, using the channel car-

rier density directly is more convenient. However, for comparison to experimental

measurements, it is important to be able to calculate the effective field as described

above.
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Chapter 5

Interface Roughness Scattering

5.1 Introduction

Interface roughness scattering becomes increasingly important in thinner UTSOI

channels, since the carriers are confined in closer and closer proximity to the oxide

interface. Current roughness models treat interface fluctuations as a long-wavelength

phenomenon, with the thickness of the channel varying gradually over tens of nanome-

ters. These thickness fluctuations can be reduced by improved device processing and

the use of shorter channels. However, atomic-scale interface roughness will always

be present, as a consequence of strain at the interface and entropy [24, 21]. Cur-

rent models do not address atomic-scale roughness scattering, but the consequence

of having even a single atom out of place in a nm-thick channel can be severe. This

chapter describes a first-principles approach to atomic-scale interface roughness scat-

tering, based on the methods of Chapter 4. This model has important consequences

for future UTSOI device development.

The elemental defects that contribute to interface roughness are suboxide bonds,

an Si-Si bond on the oxide side of the interface, and oxygen protrusions, a Si-O-Si

bond on the silicon side of the interface. Calculated mobilities based on scattering

from these defects allow us to address an important experimental result on UTSOI

devices. At low carrier densities, the mobility measured for single- and double-gate

UTSOI MOSFETs is significantly reduced relative to the universal mobility curve [52,
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31, 130, 144] that describes bulk devices [140, 138, 44, 115]. Our results demonstrate

that atomic-scale interface roughness is not responsible for this reduction in mobility,

and thus imply that long-wavelength interface-thickness fluctuations are a primary

contributor.

5.1.1 Existing Models

Interface roughness scattering is expected to be the dominant form of scattering in

UTSOI devices with channels thinner than 4A [56, 42]. Current models of interface

roughness scattering [149, 53, 42] trace back to the ideas of Ando [5] and Prange and

Nee [114], and provide a continuum picture of interface roughness. The discussion

below follows Esseni [42], and demonstrates how scattering matrix elements can be

calculated from these continuum models. At each point rFin the plane of the interface,

the location of the interface is assumed to be displaced by a random amount A(r. A

is taken to be a Gaussian-distributed random variable, with average A and correlation

length A:

(A(f)A(f)) = A2 exp (r'- f'12/A2 ). (5.1)

A and A are parameters that can be used to fit the model to experimental data.

If the channel is represented by a square well of width L, and the interfaces

represented by potential barriers of height o, then the unperturbed (zero roughness)

potential is:

Vo(z) = b, [e(-z) + e(z - L)], (5.2)

where E is the Heaviside step function, and the z axis is perpendicular to the inter-

face. If fluctuations occur only at the front interface (z = 0), then the full potential

(including roughness) at a point r in the plane of the interface is:

V(z, r) = box [e(-Z + A(r-) + e(z - L)]. (5.3)

The interface roughness perturbation potential is given by the difference between the
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full and unperturbed potentials:

VIR(Z, rf = Cox [e(-z + A(r)) - e(-z)]. (5.4)

The scattering matrix elements (nkIVIRImk) can now be calculated. For the

square-well potential, the eigenfunction Ink) in real space is given by: Vbk(z, r =

exp(ik. run(z), where k is a two-dimensional wavevector in the plane of the interface.

Using these wavefunctions, the scattering matrix element is:

(nk[VIRmk I ) = ~ Ld r e (k).Imn[A(f)] (5.5)
A(r)

Imn[A(r] = dz u*(z)um,(Z), (5.6)

where A is the area in the interface plane. If A(r is small, the wavefunction can be

approximated by its behavior in the vicinity of the interface. From Equation 4.58 of

Reference [6], the wavefunction near the interface can be written as:

n -Lo d n (O) exp(z/Lo), (5.7)
dz

where Lo = hi2/2m*4o, and dun(O)/dz is the wavefunction derivative at the interface

as ox -+ oo. m* is the effective mass. Using Equation 5.7 for u(z), In can be

evaluated explicitly:

2du* (O) dum(O) L\ (r-/LoImn[A(r] = Lo d ( )d um (O) ( ) [e2A(/L°-1] (5.8)

Under the assumption that A is small, the exponential in Equation 5.8 can be

expanded to first order in A, giving Imn[A(r-)] c A(r. Substituting the first-order

Imn into Equation 5.6, an simple expression for the interface roughness scattering

matrix element can be written:

1) [h2 d(o) du d(O)] fd2r ei('-k) '(r. (5
{nt~[mlmft) =A 2m--- d--z- dz

101



Fermi's Golden Rule is used to calculate the scattering rate from the square of the

scattering matrix element, averaged over all possible random interface fluctuations.

Based on Equation 5.1 for the real-space distribution function, the average can be

evaluated explicitly:

I j d2r exp (iq2 2/4) SIR (. (5.10)
A 2 A A

Using this integral, the final expression for the averaged square of the scattering

matrix element can be written:

I(nklVIRlm)l2= [ 2 du(O) du(O]z IR (5.11)

If the power spectrum SIR has significant weight at small q, as is true for most

MOSFET simulations, then the interface roughness consists largely of gradual changes

in the channel thickness (long-wavelength interface roughness).

5.1.2 Atomic-Scale Roughness

The picture of continuous, random displacements of the interface may accurately re-

flect bulk silicon MOSFETs with thick channels, but it is problematic for thin SOI

channels. At the atomic-scale, the interface position can fluctuate only by adding or

subtracting silicon or oxygen atoms. In the extreme case of a one-nanometer thick

UTSOI channel, displacing a single atom changes the thickness of the channel by 25%!

The reality of nanoscale channel thicknesses precludes assuming that interface dis-

placements are small and continuous. Previous work [24] has identified the elemental

defects that contribute to interface roughness: a Si-Si bond on the oxide side of the

interface, called a suboxide bond (Figure 5-1(a)), and a Si-O-Si bond on the silicon

side of the interface, called an oxygen protrusion (Figure 5-1(b)). The suboxide bond

consists of a missing oxygen atom on the oxide side of the interface, while the oxygen

protrusion consists of an extra oxygen atom on the silicon side. A combination of

these two defects leads to a fluctuating interface.
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(a) Suboxide bond. (b) Oxygen protrusion.

Figure 5-1: Schematics of an Si-SiO2 interface showing elementary interface roughness
defects.

5.2 First-Principles Results

5.2.1 Scattering Potentials and Screening

In order to investigate the effects of suboxide bonds and oxygen protrusions on mo-

bility in UTSOI channels, relaxed suboxide bond and oxygen protrusion structures

have been calculated for channels with thicknesses ranging from 10-25t. The Born

approximation (Equation 4.7) was used for the scattering matrix and the mobility was

calculated by solving the Boltzmann equation (Equation 4.9). Figure 5-2 shows the

self-consistent scattering potentials for the oxygen protrusion and suboxide bond in a

10A channel, together with the conduction electron density. The potentials were cal-

culated at a conduction electron density of 5.6 x 1012 e-/cm 2. The oxygen protrusion

consists of an additional oxygen ion, and so provides an attractive potential on the

silicon side of the interface. The suboxide bond, consisting of a missing oxygen ion,

provides a repulsive potential on the oxide side. The electron density accurately re-

flects the penetration of the conduction electron wavefunctions into the oxide region,

often neglected in MOSFET simulations but important for the accurate description

of scattering in the channel.

Calculating the scattering potentials self-consistently at each value of the carrier

density includes screening effects that are generally treated only through a semi-

empirical dielectric constant (see, for example, Section IIB in Reference [56]). At

higher conduction electron densities, electrons will accumulate in the attractive re-

gions of the potential and be repelled from the repulsive regions. As a result, the
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Figure 5-2: Plot showing plane-averaged scattering potentials for oxygen protrusions
(top) and suboxide bonds (middle), along with carrier density (bottom). The z axis
is perpendicular to the Si-SiO2 interface. Black circles mark the defect centers.
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Figure 5-3: Plane-averaged suboxide bond scattering potential at carrier electron
densities of 5.6 x 10Ole-/cm2 and 5.6 x 1013 e-/cm2 . The z axis is perpendicular to
the interface. The inset shows the height of the depth of the potential well at z = 3.OA
as a function of carrier electron density.

"peaks" and "valleys" of the scattering potential are softened, and the overall magni-

tude of the potential reduced. Figure 5-3 shows the suboxide bond scattering potential

as the conduction electron density varies over three orders of magnitude. The inset

of the figure plots the depth of the first attractive potential region, showing a linear

decrease with increasing electron density.
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Figure 5-4: Calculated electron mobilities due to scattering from suboxide bonds and
oxygen protrusions, for channel thicknesses of 10, 15, and 20A.

5.2.2 Calculated Mobilities

Figure 5-4 shows the calculated mobilities due to suboxide bonds and oxygen protru-

sions, for 10A-, 15A-, and 20A-thick channels. The density of both suboxide bonds

and oxygen protrusions is taken to be 5.6 x l01 1 defects/cm2 , the same order of mag-

nitude as observed interface trap densities [138]. The defect density will in general

depend on film growth and device processing conditions, but as shown by Equa-

tion 4.11, the defect density only provides an overall scaling factor for the mobilities.

The most surprising feature of Figure 5-4 is the fact that at lower electron den-

sities, for each channel thickness, the oxygen protrusion-limited mobility is greater

than the suboxide bond-limited mobility. This is counterintuitive because, as shown

in Figure 5-2, the oxygen protrusion and suboxide bond scattering potentials are of

roughly equal strength, while the oxygen protrusion lies within the silicon channel and

thus overlaps more strongly with the electron density. As a result, oxygen protrusions

would be expected to be stronger scatterers than suboxide bonds. The explanation for

the unexpectedly high oxygen protrusion-limited mobility lies in the sp3 -antibonding

character of the states at the bottom of the conduction band in silicon. The extra

oxygen atom that constitutes the protrusion lies near the middle of the Si-Si bond,

where an sp3 -antibonding wavefunction has a node. Figure 5-5 shows that this intu-

105



-0

U

5
a.

Z Axis Position

Figure 5-5: Plane-averaged wavefunction at the bottom of the conduction band in a
10A-thick UTSOI channel. The z axis is perpendicular to the Si-SiO2 interface. A
black circle marks the center of the oxygen protrusion.

ition is valid for a UTSOI channel. Since the center of the oxygen protrusion coincides

with a node in the wavefunctions at the bottom of the conduction band, the overlap

with the scattering potential is reduced and an increased mobility results.

Two competing effects influence the shape of the mobility curves in Figure 5-

4. The first, discussed in Section 4.3.2, is volume inversion. At higher electron

densities, the additional potential energy gained by drawing the electrons toward the

silicon-oxide interfaces more than compensates for the kinetic energy cost of further

localizing the electrons. As a result, the electron density is peaked at the interfaces

instead of in the center of the channel. This qualitative change in the shape of

the electron distribution is shown in Figure 4-11. Increasing the electron density at

the interfaces increases the overlap with the suboxide bond and oxygen protrusion

scattering potentials, and decreases the mobility. Since the volume inversion effect

is more pronounced in thicker channels, it is the 15A- and 20A-thick channels that

show a marked decrease in mobility at higher electron densities.

The second effect, which dominates the behavior of thin channels, is potential

screening. As discussed in Section 5.2.1, the scattering potential is "softer" at higher

electron densities. This reduction in the strength of the scattering potentials in-

creases the mobility at higher electron densities. In the 10A-thick channel, in which

volume inversion is not a pronounced effect, the mobilities begin to increase around

4 x 1013 e-/cm2 due in part to potential screening. In ultrathin channels, the bal-

ance between screening and volume inversion determines the mobility at high carrier
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Figure 5-6: Suboxide-bond-limited electron mobilities calculated with screened and
unscreened scattering potentials. The channel thickness is 10A.

densities, leading to qualitatively different behavior in channels of different thickness.

Unscreened Mobilities

Without self-consistent screening, the softening effect would be absent and the re-

sulting mobilities would be unphysically low at higher carrier densities. To illustrate

the importance of this effect, Figure 5-6 shows calculated suboxide-bond-limited mo-

bilities with screened scattering potentials and without. The unscreened scattering

potential is taken to be the potential calculated self-consistently at a conduction elec-

tron density of 5.6 x 101le-/cm 2 . The scattering potential calculated at this electron

density is used with all subsequent calculations.

At higher conduction electron densities, the screening of the potential becomes

more effective and the difference between the screened and unscreened mobilities

grows larger. The unscreened mobilities are consistently lower than the screened

mobilities due to the deeper "valleys" and higher "peaks" of the unscreened potential,

as discussed in Section 5.2.1.

5.2.3 Comparison to Existing Models and Experiments

The electron mobility measured in UTSOI MOSFETs remains constant or even de-

creases with decreasing electron density in the < 1013 e-/cm 2 range [140, 138, 44, 115],

falling well below the universal mobility curve (UMC) that describes bulk MOS-
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FETs [52, 31, 130, 144]. Theoretical work [53, 43, 42], based on the interface roughness

models described in Section 5.1.1, has reproduced qualitatively this UMC deviation.

In the literature, scattering off of these interface fluctuations is considered to be dis-

tinct from "Tsi fluctuation scattering" [117, 140, 138, 139], in which variations in the

channel thickness affect the eigenspectrum of the channel states. However, Esseni [42]

has shown that both types of scattering show the same dependence on channel thick-

ness, with the same numerical prefactor. In fact, since the origins of both models

lie in fluctuations of the interface position, there is little reason to consider them

independent scattering mechanisms. In the following discussion, scattering caused by

interface fluctuations will be referred to as long-wavelength roughness scattering.

The present model, based on atomic-scale defects, reflects short-wavelength rough-

ness. As pointed out by Uchida et al. [140] and Ernst et al. [41], it is difficult to

fabricate long-channel UTSOI MOSFETs with uniform channel thickness. Improved

device processing and shorter channel lengths can be expected to lead to greater uni-

formity and significantly decrease long-wavelength roughness. Suboxide bonds and

oxygen protrusions, on the other hand, are elemental interface roughness defects.

Short-wavelength roughness will likely always be present due to strain at the Si-SiO2

interface [21, 24]. As shown in Fig. 5-4, the mobility for suboxide bonds and oxygen

protrusions at all channel thicknesses is proportional to 1/n, for low electron den-

sities (< 1013 e-/cm 2 ), where ne is the conduction electron density. At low electron

densities, short- and long-wavelength roughness lead to mobility contributions that

can differ by orders of magnitude.

Simulations of a 25A-thick UTSOI channel based on Esseni's interface roughness

scattering model [42] show that at room temperature and electron densities below

10'3e-/cm2, the phonon and long-wavelength roughness scattering contributions to

the mobility are roughly equal. As a result, the total mobility ptot, given by Math-

iessen's rule, is: 1//tot = l//phonon + 1//LWR - 2/Ptphonon, where /ILWR is the mobility

due to long-wavelength roughness scattering. If improved device fabrication processes

can reduce or eliminate long-wavelength interface thickness fluctuations, only short-

wavelength roughness due to oxygen protrusions and suboxide bonds will remain.
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Thus, the total mobility becomes: 1//tot = 1/lphonon + 1/ISWR - 1/lphonon, since

1/SWR ° 0 at low electron densities. Due to the rapid increase in short-wavelength

roughness mobility with decreasing electron densities, reducing UTSOI channel thick-

ness fluctuations could result in up to a 100% gain in mobility at low carrier densities.
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Chapter 6

Quantum Transport

6.1 Introduction

Current state-of-the-art MOSFETs have dimensions that are well within the nanoscale

regime. The length and width of the channel are roughly 40nm, and as discussed in

Chapter 4, the channel can be as thin as 1-2nm. Despite the continued shrinking

of silicon technology, the active channel region of MOSFETs still contains roughly

100, 000 atoms. If channel is represented as a potential well, then the level spacing

in a MOSFET-sized box is roughly 10-5 eV. The connection to the source and drain

regions further broadens the levels into a continuum. Despite the small size of mod-

ern MOSFETs, semiclassical transport calculations that require a continuous band

structure are still accurate.

What changes as devices shrink further? A very small device (with characteristic

dimensions of 1-lOnm), weakly coupled to leads, will have a discrete spectrum of

states. If the temperature is less than the spacing between levels in the device,

the transport process depends crucially on the properties of each individual level.

Due to the small size of the device, Coulomb interactions between electrons on the

device are strong and can shift significantly the single particle spectrum. As a result,

correlations can be very important to transport in small devices. A device that

displays some or all of the properties described above will be referred to as a quantum

device. Figure 6-1 shows a schematic of a quantum device connected to two leads,
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Figure 6-1: Schematic of a quantum device connected to two leads. The left and right
leads are metals in thermal equilibrium, with chemical potentials L and PR. The
energy levels for the device, labeled 0, 1, 2,..., are discrete and widely spaced in the
absence of the leads.

and introduces concepts that will be important in subsequent discussions. Both the

left and the right lead are assumed to be metals in thermal equilibrium, described by

chemical potentials AL and PR, respectively. In the absence of the leads, the device

has a discrete spectrum of levels, labeled 0, 1, 2,... in the figure. The left and right

chemical potential determine the occupancies of the device levels. Levels 0 and 1 are

doubly-occupied since they lie below the chemical potentials of both the left and right

leads. The occupancy of level 2 is more ambiguous. Since it lies between ILL and PR,

the number of electrons in level 2 will be a dynamic quantity that depends on the

transport process.

Examples of such quantum devices include resonant tunneling diodes [29, 125, 49],

quantum dots [11, 133], and single-electron transistors [137, 3, 131]. All three types

of devices share the characteristics described above, but each device demonstrates

unique physics that result in unusual electrical responses. The resonant tunneling

diode consists of a confined structure with a discrete bound state, separated from

two leads by barriers (see Figure 6-2, part A). At a low applied bias (part B), the

energy level of the bound state is aligned with the occupied states in both the left

and right lead, allowing a current to flow as electrons tunnel from the left lead to

the right via the bound state. At higher voltages (part C), the bound-state energy

falls below the occupied states in the left lead, preventing resonant tunneling through

the bound state. As a result, the current decreases as voltage increases, leading to

negative differential resistance.

Quantum dots are small semiconductor nanostructures (< 100nm in diameter)
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Figure 6-2: Schematic representation of a resonant tunneling diode. On the right is
a representative current-voltage (I-V) curve showing negative differential resistance.
A, B, and C as labeled on the I-V curve correspond to the band diagrams on the
left. Metallic leads are represented by the dotted regions, barriers are dashed regions.
The dashed line marks the energy of the bound-state between the barriers. After
W. R. Frensley [49].

that contain only a few free electrons. The dot contains thousands or millions of

atoms and as a result, the effective mass theory applies and permits electrons in the

conduction band to be thought of as free carriers with an effective mass. For GaAs,

the conduction band effective mass m* is only 0.07mo, resulting in an effective Bohr

radius of a = h2/2m*e2 = 0.76nm. The small effective mass of the free carriers

in a quantum dot results in a new, larger length scale for the dot. With a proper

confining potential, the quantum dot can appear to be a single artificial atom [11],

with associated shell-filling effects [133] as electrons are added. Coulomb interactions

between electrons as they are added and removed from the dot result in temporal

correlations in the current that have recently been measured [93].

The single-electron transistor (SET) is similar to the resonant tunneling diode

described above, but with the addition of a gate to control the position of the energy

levels in the dot. When an electron hops on to a bound-state energy level in the

potential well, it costs an amount of energy, called the "charging energy", equal to

e2 /C, where C is the capacitance of the well. Figure 6-3 shows schematically the

energy levels and gate voltage-conductance curve for a SET. If the bound-state level

is above the Fermi level in the leads (Figure 6-3, part A), then no electrons can tunnel

through from the source to the drain, and the conductance is zero. As the gate voltage
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Figure 6-3: Schematic representation of a single-electron transistor. The gate voltage
shifts the position of the bound-state energy levels in the potential well. On the right
is a representative gate voltage-conductance curve, inspired by the low-temperature
data of Takahashi et al. [131]. Points A, B, and C on the curve correspond to the band
schematics on the left. The dotted regions represent the metallic source and drain,
the shaded regions are barriers. The dashed line within the potential well shows the
bound-state energy level. The dotted line in B and C represents the energy level
for a doubly-occupied bound state, e2 /C above the singly-occupied level due to the
charging energy.

changes, the bound-state energy level aligns with the source/drain Fermi level, and

the conductance peaks (part B). As the gate voltage increases further, the lowest

bound-state level is singly-occupied, and it costs an additional energy e2 /C to add

another electron. As a result, the levels in the well are not aligned with the leads and

the conductance decreases. Increasing gate voltage leads to a series of conductance

peaks due to the finite gap between potential well levels induced by the charging

energy.

Calculating the transport properties of such quantum devices is difficult since semi-

classical approximations are clearly inapplicable and many of the unique features of

such devices occur only a finite bias, making quantum linear response calculations

(using the Kubo formula) insufficient. The effectively infinite size of the leads and

the lack of periodicity in the device-plus-leads system makes first-principles calcu-

lations difficult. The most promising approach to such a problem is to construct

a Hamiltonian from first-principles, including the level spectrum of the isolated de-

vice, the densities of states in the leads, and the coupling between them. For time-

independent calculations or those that seek only the long-time behavior of the system,
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Non-Equilibrium (Keldysh) Green's Function techniques, described in Section 6.1.1

below, may be used. If the short-time behavior, including quantum fluctuations as

in Reference [93], of the system is desired, new approaches must be developed. This

chapter discusses progress toward such a theory of short-time fluctuations in quantum

devices, based on an effective Hamiltonian for the device degrees of freedom.

6.1.1 Non-Equilibrium Green's Functions

Quantum Field Theory methods were first used to solve non-equilibrium many-body

problems by Martin and Schwinger in 1959 [98]. Field-theoretic techniques emerged

in their modern form, based on Green's functions and diagrammatic expansions,

through the work of Kadanoff and Baym [78], Keldysh [80], and Langreth [88]. It is

not the intent of this chapter to present a complete review of the Non-Equilibrium

Green's Function theory or its numerous applications, but rather to briefly review its

major points and examine its limitations. For a complete review with an emphasis

on electron transport, the reader is referred to Reference [116].

A system in equilibrium is a time-independent system, from the standpoint of

measurable quantities. Once a system reaches equilibrium, currents, voltages, tem-

peratures, and other parameters remain constant. In order to drive the system out of

equilibrium, some time-dependent potential must be applied. The basic description

of a non-equilibrium system rests on a three-part Hamiltonian:

W = Ho + Hint H'(t). (6.1)

Ho is the non-interacting part of the Hamiltonian; as in the traditional Green's func-

tion context, Ho is assumed to exactly solvable. Hint represents the interparticle

interactions, e.g. the Coulomb interaction. H'(t) is an arbitrary time-dependent po-

tential, turned on at t = 0, that serves to drive the system out of equilibrium. The

time-independent components of the Hamiltonian are given by H: H = Ho + Hint,

-= H+H'(t).

For a system in equilibrium, e.g. if H'(t) = 0, the expectation value of any observ-
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able O is given by: (O) = Tr[p(H)O], where p(H) = (Tr[exp(-PH)]) - ' exp(-H) is

the density matrix. Non-equilibrium statistical physics is concerned with calculating

time-dependent expectation values given by:

(O(t)) = Tr[p(H)O(t)], (6.2)

for t > 0. OH is the operator O in the Heisenberg representation with respect to the

full, time-dependent Hamiltonian J: Ox = exp(i7-t)O exp(-itt).

The equilibrium density operator in Equation 6.2 seems to be an unusual choice to

represent a non-equilibrium statistical average, but is simply a consequence of using

the Heisenberg representation to time-evolve a system that is initially in equilibrium.

At times t < 0, H'(t) = 0 and the system is in equilibrium. As such, the system is in

a mixed state characterized by the density matrix p(H): Io) = , exp(- E)Ia),

where {la), E,} are the eigenstates and eigenvalues of H. For t > 0, after H' is

"turned on", the system's state I can evolve with time, as in the Schr6dinger picture,

or the operators can evolve with I o) fixed. It is important to realize that in either

context, the density operator p(H) does not behave as an operator in the Heisenberg

sense, i.e. it does not evolve with time. Instead, it is part of the wavefunction and

remains fixed in the Heisenberg picture.

The first step in calculating non-equilibrium expectation values using Equation 6.2

is to transform to the interaction representation with respect to the time-independent

component of the Hamiltonian H. In the theory of equilibrium finite-temperature

(Matsubara) Green's functions, the expectation value of O in this representation is:

(0) (o01T [S(-oo, oo)OH(t)S(oo, -oo)] I6o)
(o01T [S(-oo, oo)S(oo,-oo)] Io) (6.3)

with the time evolution operator S(to, t) given by:

S(to, t) = T [exp(-i dt' H(t)) (6.4)

T is the time-ordering operator, and OH is the operator O in the interaction represen-
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tation with respect to H: OH = exp(iHt)O exp(-iHt). HH(t) is the time-dependent

component of the full Hamiltonian 7I in the interaction representation; this opera-

tor now has both explicit time-dependence and additional time-dependence from the

exponential factors.

Equilibrium systems do not allow for irreversible effects as the system evolves from

t = -oo to +oo. Thus, (t - oo) = exp(ia)I(t - -oo), where a is a constant

phase. This phase relationship of course excludes systems such as superconductors in

which the interacting final state is of a different symmetry than the non-interacting

initial state, but all other systems can take advantage of this convenient relation. As

a result, the expectation value simplifies further:

() = (oT [OH(t)S(O, -c)] 65o)
(0) = -)I') (6.5)

In the non-equilibrium case, however, irreversible effects are unavoidable, and no

simple relation connects the final and initial states. Keldysh [80] provided the insight

necessary to successfully generalize the equilibrium Green's function formalism to

non-equilibrium situations. Instead of evolving the system from -oo to oo, with time

moving in a single direction, it is possible to follow a path from -oo to oo and back

to -oo. As a result of this choice, the only state that must be well-defined a priori is

the state at t - -oo. This is, of course, the initial equilibrium state of the system,

before the time-dependent Hamiltonian H'(t) is turned on.

Non-equilibrium expectation values, like their equilibrium counterparts, can be

calculated using Green's function techniques (see Reference [95] for an extensive

textbook treatment). A one- or two-body operator O will require the calculation

of familiar one- and two-body Green's functions. Green's functions possess simple

perturbation expansions (in H'(t) and Hint), and as such are easier to calculate than

direct expectation values such as Equation 6.2. The Green's function with the most

convenient perturbation expansion is the contour-ordered Green's function GTc(1, 1'):

G(1 1') ('oITc [bH(l)Ml,(l')s(-, )S(c, -c)] I'o)
GTc(1, 1I) (66)(Io0Tc [S(-oo, oo)S(oo, -oo)] o)
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Figure 6-4: The Keldysh countour. The contour extends along the time (t) axis from
-oo to oo and back to -oo. The + branch corresponds to increasing time, while the
- branch corresponds to decreasing time.

?IH(1) is a field operator in the interaction picture at the space and time position

1 = (l,tl). The time-ordering operator Tc now orders times along the contour in

Figure 6-4, introduced by Keldysh [80]. Times that are further along the contour

are placed to the left. The times in S(oo, -oo) lie on the + branch, and those in

S(-oo, oo) lie on the - branch. Using the Keldysh contour, a new time-evolution

operator can be introduced:

= T [exp -i Jdt H(t))] , (6.7)

where fc represents integration along the Keldysh contour shown in Figure 6-4.

To account for all of the possible time-orderings, it is necessary to introduce

two new Green's functions, in addition to the time-ordered and anti-time-ordered

Green's functions familiar from equilibrium theory. Since this chapter is concerned

with electron transport, the Green's functions for fermions will be presented. The

time- and anti-time-ordered Green's functions retains their familiar forms:

GT(1, 1') = -i(T [(1)(')]

GT(1, 1') = -i(T [~b~(1)'h4(1')]). (6.8)

T is the anti-time-ordering operator that puts earlier times to the left. Field oper-

ators are represented in the Heisenberg picture with respect to the complete (time-

dependent) Hamiltonian I-. Angle brackets correspond to expectation values with

respect to the state /o) introduced above. The two new Green's functions corre-
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spond to a fixed ordering of lb(1) and t(1'):

G<(1, 1') = i(Ot(1')OH(1))

G>(1, 1') = -i(+h(1) ( l')). (6.9)

The need for the new Green's functions in Equation 6.9 comes from using contour-

ordering instead of time-ordering. Consider two times, t and t'. If both t and t' are

located on the + branch of the Keldysh contour, then the contour-ordering operator

Tc will put t to the left of t' if t > t', and vice-versa, corresponding to the time-

ordering operator. If both t and t' are both on the - branch, then Tc will place t' to

the left of t if t > t', corresponding to anti-time-ordering. These two situations, where

both times are on the same branch of the Keldysh contour, lead to the time- and anti-

time-ordered Green's functions in Equation 6.8. If t is on the + branch and t' on the -

branch, however, then t' will always be to the left. In the opposite case, where t' is on

the + branch and t on the -, t will always be on the left. These situations correspond

to the new, fixed-order Green's functions in Equation 6.9. Because the time-evolution

operator S, involves times on both the + and - branch, all four Green's functions

will enter into the expansion.

The contour-ordered Green's function GT. can be represented by a two-by-two

matrix that accounts for the four possible combinations of t and t' on the two branches

of the Keldysh contour. Each component of GTc corresponds to one combination,

shown here schematically:

GT(1,1')= ( G+ + G+ ) (610)
G_+ G__

G+_ is the component with t on the + branch and t on the - branch, and so forth.

As discussed above, these G±± components correspond to the four Green's functions
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introduced in Equations 6.8 and 6.9:

GT(1, 1') = ( GT(1, 1) G<(1,1') (6.11)

GT can be readily expanded in this two-by-two matrix representation, called

Keldysh space. Interactions in Keldysh space are likewise represented by matrices.

Using the ideas of Keldysh, the full machinery of equilibrium Green's function per-

turbation theory can be applied without change to non-equilibrium systems. The

only change is that each Green's function line, interaction line and vertex represents

a two-by-two matrix instead of a scalar function. Linear transformations in Keldysh

space can simplify the matrix representation of interactions. The widely-used ro-

tation introduced by Larkin and Ovchinnikov [89], for example, makes a one-body

interaction a diagonal matrix.

Limitations of the Green's Function Method

The non-equilibrium Green's function (NEGF) formalism introduced above is a pow-

erful theoretical tool for treating quantum devices. Despite the difficulty in calculating

high-order terms in the perturbation expansion, numerous groups have used NEGF

techniques to study resonant-tunneling diodes [86], single-molecule transistors [148],

and other quantum systems. However, the statistical nature of the NEGF method

limits its applicability to high-frequency responses. The density matrix p(H) implies

an uncorrelated ensemble average over accessible states of the system. The ergodic

theorem asserts that this ensemble average over many equivalent systems is the same

as a time average over a single system. For systems in equilibrium, this statement is

generally uncontroversial because all quantities of interest are time-independent.

Non-equilibrium systems, however, are explicitly time-dependent. The quantities

of interest display measurable steady-state and transient behavior before the system

settles into equilibrium. The time-dependence in the NEGF method enters only

through the Hamiltonian H'(t), enabling the study of systems under AC bias [75] but

not reproducing the correlated fluctuations observed in experiments even under DC

120

_·



bias [93]. The NEGF method is based on the ensemble average, while experiments

are generally performed on a single systems over long (laboratory) time scales. The

ergodic theorem must be valid in order to ensure that quantities calculated using

theoretical statistical approaches are the same as those measured experimentally. For

non-equilibrium phenomena, this equivalence requires that measurable quantities (i.e.

currents, voltages) vary over time scales that are long compared to the time required

for a statistical average. Denoting the time needed for the system to sample all of

the states in its accessible phase space by -, and the characteristic time scale over

which the system's quantities of interest vary by T, the ergodic hypothesis for non-

equilibrium systems holds if T > T.

If T < , then the ergodic hypothesis will not hold, and statistical averaging

will smooth out the short-time behavior of the system. Such a situation could result

from probing the response of systems to very high-frequency radiation, or if quantum

fluctuations are measured in real time. In these cases, an approach that can follow

this short-time behavior without averaging is needed.

6.1.2 Quantum Fluctuations

Recent experiments have measured the tunneling of electrons in quantum dots in real

time [93]. These results have sufficient time resolution to record temporal correlations

in the measured current and voltage noise. Such correlations were predicted by Ben-

Jacob and Gefen [16] on the basis of a model tunnel junction Hamiltonian. In order

to model more realistic systems that correspond to experimental configurations, the

system Hamiltonian must include not only the quantum device (tunnel junction or

dot), but also the leads that connect the device to the measurement and control

apparatus. While a quantum device in isolation is a closed system, the device and

leads together constitute an open system without simple translational symmetry.

The approach described below maps this complex open problem onto a simpler

problem that, while still open, deals only with the device degrees of freedom. The

degrees of freedom in the leads are traced out by assuming that the leads remain

in equilibrium. Results calculated within this approximation are discussed, and a
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method to systematically extend the equilibrium-lead approximation is presented.

6.2 Effective Hamiltonian Method

The Hamiltonian for the device-plus-leads system is that used originally by Meir and

Wingreen [100], and subsequently by many others. The leads are taken to be non-

interacting, but the device Hamiltonian can contain arbitrary many-body interactions.

With the Hamiltonian for the isolated device given by Hint, the device-plus-leads

Hamiltonian is:

H = Hint({cn}; {cn}) + E Ekd),dki + E Vkidtcn + h.c., (6.12)
k k kinki kin

where {cn} and cn} form a complete and orthogonal set of creation and annihila-

tion operators for the device, and di creates an electron in state ki) in the lead

labeled by the subscript i (e.g. for the system shown in Figure 6-1, i = L or i = R).

Vkin} determine the coupling between the leads and the device. "h.c." refers to the

Hermitian conjugate of the preceding term. These couplings can be calculated from

first-principles, and will depend on the details of the lead-device interface: bonding

patterns, the presence of insulating tunnel barriers, etc. First-principles calculations

can also provide the energy spectra of the device and leads in isolation, allowing a di-

rect connection between the atomic-scale structure of the system and the Hamiltonian

in Equation 6.12.

The currents flowing into and out of the device can be calculated from expectation

values of the appropriate current operator. Each state ki) in lead i provides a channel

through which current can flow into the device. The current from channel ki into the

device can be related to the time rate of change of the occupancy of that state:

d(ntk) _ d(d dk.) _ie

Iki dt d = ) E (kin(dtdki)X (6.13)dt dt h2 kicn(cn) - Vin(cdk,)n

where (...) indicates the expectation value with the (unknown) wavefunction of the
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device-plus-leads system. Equation 6.13 is derived directly from the Heisenberg equa-

tion of motion for the number operator: d(t dk)/dt = (-i/h) [H, ddk]. The ex-

pression for the current in terms of expectation values leads directly to an expression

for the current operator:

I= k (vkI.dc - Vkinctdki · (6.14)
n

The total current into the device from lead i is given by the sum over all channels ki:

Ii = Eki( ki)-

6.2.1 A New Basis

A sufficiently large lead can be viewed as a reservoir in thermal equilibrium. As

such, each lead is associated with a chemical potential pi and temperature T. The

entire device-plus-leads system is assumed to be in thermal equilibrium, so that the

temperature is constant across all leads. Chemical potential differences are main-

tained by external biases. The electrons in the leads are non-interacting, allowing the

wavefunction within the lead to be written as:

=i) = H bki), (6.15)
ki

where

I'k,) = Iki, 0) 1 - fk, + ki, 1)ei vij/. (6.16)

Iki, O) means that state Iki) is unoccupied, and Iki, 1) that state Iki) is occupied: i.e.,

Iki, 1) = di ki, 0).(k) = f(k) = f(Eki -i) is the Fermi distribution function. The random

phase ki reflects fluctuations of the states in the leads, and the effect of the device

on the lead states is neglected. It is easily verified that Iki) corresponds to the state

Iki) being occupied according to the Fermi distribution: (ki Inki ki) = f(ki).
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The orthonormal basis in the leads is completed by the following wave functions:

I{4}) = ]I L'Pkj) 17 X Ii), (6.17)
ki¢{li} {Z1}

where

XzI) = ll, O)/,- li, l)eii /1- fj. (6.18)

{{li}) } constitute a set of states that reflect excitations above the thermal "ground

state" 1/i). This is most easily seen by taking the limit T -- 0, in which the Fermi

distribution function becomes a step function. In this case, for an energy Ek, below

the chemical potential (Fermi energy) i, [IkCi) is the electron state and Xki) the

hole state. The opposite is true for Eki above the Fermi energy. The {lbki), IXki )}

basis set defined in Equations 6.16 and 6.18 is a unitary transformation from the

{Iki , O), Iki, 1)} basis set defined previously. The creation and annihilation opera-

tors for {jki, 0), ki, 1)}, {dt, dki}, are transformed into {b, bki,}, for which the new

"vacuum" state is Iii). The transformation is:

d = fk(j - fkj)( - 2bt bk) - (1 - fki)bt, + fkibki, (6.19)

and

dtdki = fk, + (1 - 2fki)b,kibki - fki(l - fk)(bki + bki), (6.20)

where the phase factor ei!ki has been absorbed into bt . After the transformation, the

Hamiltonian in Equation 6.12 becomes:

H = Hint({ct}; {cn}) + E f-ki(l -fk)Vkincn + h.c.
kin

+ E {- 2 fk(1 - fk)bbk - (1- fki)bt, + fkibki} VkinCn + h.c.
kin

+EEk, {fk, + (1- 2fkj)bktbk - /fki (-fkj)(b + bki)}, (6.21)
kThe thermal ground state ) and set of excitations {{})} for each lead pro-

The thermal ground state [gi) and set of excitations {[{/,})} for each lead pro-
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vide an intuitive partition of the Hilbert space for the device-plus-leads system. For

simplicity, consider a quantum device connected to a single lead. States in the device-

plus-leads Hilbert space are products of a lead state, for example Is), and a device

state: Isystem) = Idevice) Ia). The Hamiltonian can be written as a block matrix:

H=

Each block, such as (1IIHIpi), is itself a Hamiltonian containing only device degrees of

freedom. The element of H in the first row and first column is (IH[11), an effective

device Hamiltonian in which the lead degrees of freedom have been eliminated by

taking an expectation value with the thermal ground state of the lead. This effective

Hamiltonian does not necessarily accurately represent the device-plus-leads system

because the device couples excited states of the lead to the ground state (via the

off-diagonal blocks of H). In principle, the matrix in Equation 6.22 can be block-

diagonalized. The element in the first row and first column of the block-diagonal H

is the accurate effective Hamiltonian for the device degrees of freedom, representing

an expectation value taken with the true thermal ground state of the lead.

The block-diagonalization problem presented above can be simplified by introduc-

ing projection operators (defined below for an N-lead system):

P = I (IA1)2) ... IUN)) (1(2I ... (NI), (6.23)
i

and Q = 1 - P. Using these projection operators, a new block form for the Hamilto-

nian can be written:

PHP PHQH=(HP PHQ (6.24)
QHP QHQ

PHP corresponds to the first row-first column matrix element of H in Equation 6.22.

The form of H in Equation 6.24 makes it clear that a full block-diagonalized form of

the Hamiltonian is not needed if the leads are taken to be in thermal equilibrium. It is
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only necessary to transform to a new Hamiltonian H in which the off-diagonal blocks

PHQ and QHP are zero. The QHQ block that describes matrix elements of the

Hamiltonian with excited states of the leads does not have to be block-diagonalized.

The projected components of the Hamiltonian are easily evaluated in the {bti, bki }

basis of Equation 6.21:

Ho = PHP = Hint({cn}; {cn}) + E fkEki+

(6.25)

2 fki(i - fkVkincn + h.c.,
kin

QHQ = Ho + E {(1- 2fki)Ek, -2/fk,(1 - fk) (Vkncn. + Vncn)} bbki,
ki n

(6.26)

QHP = A{kZi VkinCt - (1- f) E Vk in - fki( -fki)Ek b (6.27)
ki n n

and PHQ = (QHP)t. The PHP component of the Hamiltonian, Ho, is simply the

device-plus-leads Hamiltonian (Equation 6.12) with the operators {dt, dk,} replaced

by their expectation values evaluated with the thermal equilibrium states {(J'ki)}

(Equation 6.16). -ki fkiEki is the energy of the isolated lead i in thermal equilibrium.

6.2.2 Effective Hamiltonian

In order to find the effective Hamiltonian that corresponds to equilibrium leads, it

is necessary to find the matrix U that block-diagonalizes the Hamiltonian H. In the

matrix notation introduced above:

ft(PHP ) U (PHP PHQ) Ut (6.28)
QHQ QHP QHQ

where UUt = UtU = 1. If the off-diagonal matrix elements of H, PHQ and QHP,

are small in magnitude or negligible for another reason, then perturbative approaches

to this diagonalization may be effective. For example, since PHQ oc bt, a first-order
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solution to Equation 6.28 (with terms proportional to (PHQ)(QHP)) will correspond

to including only lead states with a single excitation above the thermal ground state.

The first-order solution may be valid if multiple-excitation processes in the leads are

unimportant.

As a first approach to the problem presented in Equation 6.28, consider the zeroth-

order solution: PHQ = 0 and U = 1. In this case, the effective Hamiltonian is simply

Ho, given in Equation 6.27. The Zki fkiEki term that gives the thermal ground-state

energy of the leads can be ignored, since it provides only a constant energy shift.

Without this constant term, the effective Hamiltonian is:

Heff = Hint({c }; {Cn}) + E /fki(1 -fki)Vkincn + h.c.. (6.29)
kin

Given this effective Hamiltonian, the current operator, presented in its general

form in Equation 6.14, can be evaluated. The effective current operator will be

derived below in two manners. The first employs the projection operator P discussed

above to isolate the device degrees of freedom. The second starts from the charge

continuity equation, considering only changes in the charge on the device. For higher-

order effective Hamiltonians, the projection method may prove cumbersome, although

it provides a more direct connection to the full device-plus-leads system.

Current Operator - Projection Method

As with the Hamiltonian, the current operator for the device-plus-leads system can

be written as a block matrix, employing the projection operators P and Q:

I (PIP PIQ (6.30)
QIP QIQ/

Employing the same zeroth-order approximation used above, in which PIQ and QIP

are taken to be zero, the current operator for the device degrees of freedom is given

by Ieff = PIP. In the {b', bki} basis, the current operator for the device-plus-leads
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system (from Equation 6.14) is:

i = Vki { fk(l -fk)(1 - 2bibki) - (1 - fki)bi + fkbk} cn + h.c. (6.31)
n

Given Ii, in this basis, it is straightforward to evaluate the effective current operator

Ieff = PIP in the zeroth-order approximation:

Ieff = -E>kin (V/fki,( -- fk,))Cn + h.c. (6.32)
n

Current Operator - Charge Continuity

Consider the charge continuity equation, integrated over a volume Q surrounding the

quantum device, with bounding surface 0/Q:

t + I = 0, (6.33)

where Q is the total charge contained inside Q, and hi is normal to af/. If Q is chosen

to contain the device but not the leads, then Q is the charge in the device and foa I .f

is the sum of currents going out of the device into the attached leads. In operator

form, Q = (-e)(), where N = -n ctc n, is the number operator and (...) denotes

an expectation value with the ground state of the device. Eliminating the expectation

values gives the continuity equation in operator form:

(-e)aN = E i, (6.34)

where ii gives the current going into the device from lead i (consistent with the sign

convention of Equation 6.13).

The time evolution of N is given by the Heisenberg equation of motion with

respect to the effective Hamiltonian for the quantum device (Equation 6.29). For

ease of notation, the effective Hamiltonian can be written without reference to the
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lead states {ki)}:

Heff = Hint(({c}, {c}) + E V~ic + h.c., (6.35)
i,n

where

Vin =Z E fkI(-fki)Vk in (6.36)
ki

describes the coupling of all the states in lead i to state n in the device. Evaluating

the Heisenberg equation of motion:

ih- = [Hit, ] + (VinCnVin (6.37)
i,n

Since Hint is the Hamiltonian for the isolated quantum device, particle number

must be conserved: [Hint, N] = 0. Number conservation simplifies Equation 6.37,

allowing the current operator to be identified by comparing the Heisenberg equation

of motion to the continuity equation:

(-e) at = E (inn ) = E i (6.38)
i,n i

The operator which gives the current flowing out of the device and into lead i is thus:

= i (VinCn -Vnn) . (6.39)
n

Using the definition of Vin (Equation 6.36), the components Iki can be readily identi-

fied. The resulting current operators are equivalent those derived from the projection

operator method above. Since the current operator is derived explicitly from the

charge continuity equation, current is conserved.
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6.3 Applications

The two sections below illustrate potential applications of the effective Hamiltonian

method, using the simple zeroth-order solution of Equation 6.29. Coherent charge

and spin dynamics in a quantum dot connected to a single lead are described well, but

the zeroth-order solution is shown to be inadequate to describe steady-state current

in a resonant-tunneling device connected to two leads.

6.3.1 Quantum Dot

Consider a quantum dot with a single bound state connected to a single lead with

chemical potential . The basis for the quantum dot is {10), I T), 1), 12)}, where 0

and 2 indicate the number of electrons on the site, and T and indicate the spin

orientation of the electron when there is a single electron on the site. The effective

Hamiltonian for the system is

-A Vi V2 0

Heff = V1 (6.40)
V2* 0 e - L - U/2 V2

0 1* V2* 2( - )

where

Vj = E e k' f(l - fk)Vk, j = 1,2. (6.41)
k

The phase qok may be different for states that couple to I T) than those that couple

to l). In order to distinguish them, these couplings are labeled with the index

j = l(T), 2(T). The on-site interaction term is calculated using:

Untnl - (nt + nl ) (6.42)
2

The U/2 term is taken from the symmetric Anderson Hamiltonian to eliminate pro-

cesses that empty or doubly-fill the localized state. There are four eigenstates. If the
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energy levels are such that e < and e + U/2 > /u, then at equilibrium the ground

state should have one electron on the quantum dot. If U >> I - /zI and U > V (the

strong-correlation limit), then to second order in Vj the four eigenenergies are

E = - - U + (lv[12 + 1v2l2 ± Ivi + v22) , (6.43)

Eo = U (Vll2 + v212 ± Iv12 + v 21), (6.44)

and
2 12

E2 = 2(E - /) - ([Vl2 + IV212:F IV1 + V22) , (6.45)

where the first set of the ± and T: signs for Eo and E2 is taken if e- tp > 2V2 + V221/U,

and the second set is taken if E - IL < 2 V1
2 + V22/U.

As expected, the two singly-occupied states are lower in energy. Their separation,

41 V2 + V22/U, is the exchange splitting due to coupling to the electrodes, and is equal

to the exchange term in the Kondo Hamiltonian. An examination of the ground state

wave function confirms that the Kondo effect is indeed contained in this effective

Hamiltonian. To illustrate the Kondo effect, the bound state in the dot is assumed to

couple to only a single conduction channel in the lead. As a result of this simplified

coupling Equation 6.41 becomes:

Vj = Ve i4' ° ) (6.46)

The Fermi distribution function factor /f(1- f) has been absorbed into V. Conse-

quently, the two coupling constants, V1 and V2, have the same magnitude and differ

by a phase factor exp(i), with 0 = (1) - ( 2). It is then straightforward to find the

ground state wavefunction. To first order in the coupling, it is

1 _/2(V 1 ± V2 ) - (Vl* ± V2* 12) (6.47)
= ( T) ± )) -- U U

where the + is taken when cos 0 < 0, and the - is taken otherwise. The ground state

thus has zero net spin. This implies that the complete wave function in both the
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quantum dot region and the electrode region should be (neglecting the order Vj/U

terms),

/ (l T)QDlead) i os I I)QDllead T)) (6.48)

where "QD" indicates the wave function on the quantum dot and Ilead) is the single-

electron wavefunction in the lead that couples to the bound state in the dot.

The dynamics of a wavefunction on the quantum dot can be illustrated by the fol-

lowing examples. First consider a wavefunction for a single electron on the dot whose

initial state has a spin polarization of I T). The time evolution of the wavefunction '

(4'(t = 0) = T T)) can be expressed as a linear combination of the two singly occupied

states:

1
+(t) 1.. (?/4eiE+t/l + A, eiEt/()

( T) coswt i 4) sin wt) ei(E++E-)t/2, (6.49)

where w = (E+ - E_)/2h = 2V12 + V2
21/Uh, and the choices of the ± signs depend

on the sign of cos b as discussed earlier. Equation 6.49 predicts a time-dependent

oscillation of the spin on the dot, S(t) = ((t)lnT - n1 1 (t)) = cos 2wt. This oscilla-

tion was obtained numerically in Reference [147] by integrating the time-dependent

Schr6dinger equation.

The time-dependent dynamics of the charge can also be found if the initial state

mixes the E± with the Eo and E 2 states. The oscillation frequency of the charge

is much higher, determined by the separation between E± and E0, E2, which is

approximately U/2. In order to find the magnitude of the oscillation, it is necessary

to find the wavefunctions for the E0 and E2 states. To first order in the coupling,

these states are:

2. 2V*
'o = 1) + ) + 2 1) (6.50)

/2 = 12) + 2V, + 2V2 (6.51)
U U
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Consider now a wavefunction that is initially a mixed-occupancy state: lb(0) =

a+_ + b02. The time dependence of this wavefunction is

+(t) = a?_eiE-t/h + bp 2 eiE2t/h. (6.52)

The current flowing into the quantum dot can be computed from Equation 6.39:

I(t) = 2 (Vi(ct) + V2(cl)-V*(cl)-V*(cl)) = X eab(Vl - V2)1 sin(Qt + 0'),
(6.53)

where Q = U/2h, ' is the phase of a*b(Vi - V2), and higher order terms in Vj/U have

been omitted. The time variation of the charge is,

Q(t) = e ((cct) + (cl)) = e 1 + bl2 - 4vab ( - 2)1 cos(Qt + ') (6.54)

Compared to the spin oscillation, the charge oscillation is more rapid in frequency, and

with a much smaller amplitude. These results are in agreement with the numerical

results of Reference [147].

6.3.2 Resonant Tunneling

A simple example of steady-state current is resonant tunneling through a single bound

state, as in a resonant tunneling diode or single-electron transistor. The single bound

state is connected to two leads, with chemical potentials ~l and LS2. Within the

zeroth-order effective Hamiltonian model presented in Section 6.2.2, it is not possible

to calculate the effective chemical potential of the bound state. The effective chemical

potential is defined here to be eff, with p/ < _eff < A 2 assumed. In order to highlight

resonance effects without addition complications, electrons will be assumed to be

spinless. Thus, there are only two states of the resonant level: 10) (unoccupied) and

II) (occupied). In this basis, taking the bound state energy to be , the Hamiltonian
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is:

Heff ( -eff V1 + V2 (6.55)
HVl* + -2 - ef/

The couplings V1,2 are defined as in Section 6.3.1:

Vj = e ki fkj(l-fk)Vkj, j =1, 2. (6.56)
kj

For ease of notation, define V = V1 + V2.

The eigenvalues and eigenvectors of Heff are:

E± = (1/2) [(-eff) i /(-/eff) 2 + 4lV]2] (6.57)

1±) = 1E4+IVI2 ( (6.58)

The - state is the ground state for all values of e and /eff. The current operators

from leads 1 and 2 into the dot are given by:

I1,2 ( 2) (6.59)

with matrix elements:

l2el E
/±lIII -l ) ( l Im(V *V2 (6.60)-kihJ E±2+ IV12
(2e E±

(+lI2,I± = l + J E4 +i 2 Im{2V*l} (6.61)h E: + Iv12 I 2

Since Im{V1*V2} = -Im{V2*V}, the divergence of the current V . I = (±lIIl+ ) +

(+lI21+) vanishes for both the 1+) and -) states. From the continuity equation,

a current with vanishing divergence implies that OQ/9t = 0, where Q is the total

charge in the bound state. This condition corresponds to a steady state, as would be

expected if the wavefunction is an eigenstate of the effective Hamiltonian.

To investigate the behavior of the steady-state current, the eigenenergies and
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currents can be evaluated in three relevant limits: < eff, > eff, and = Ueff.

The couplings V1 and V2 are assumed to be equal in magnitude, and differ only by a

phase: V, 2 = Voei/l,2, where V is real. As a result, Im{V*V2} = V2 sin(q$2 - q1), and

IV12 = IV + v212 = 4Vo2 cos2 ((01 + 02)/2).

When < eff, +) - 10), and I-) II). If the bound state energy lies well below

the chemical potentials of both the left and right electrodes, the ground state of the

device has an electron occupying the bound state. To second order in Vo:

E_ IV12E+= I ffj IXiE -6 eff /
For e > Ijeff, +) 1 1), and -) 10).

chemical potentials, the bound state

in Vo:

E+ = Ic - effl + I'
E - /teffIl

E-IVf IIE - elffl 

(6.62)

(6.63)

=- I) -V 2sin( 2 -

When the bound state energy is well above the

is empty in the ground state. To second order

=( -) ( [E {)Vo2sin(02- l)

= ( ) V2sin( 2 - 1)

(6.64)

(6.65)

When = Ijeff, the I+) and I-) states are mixtures of 10) and I1). To second order in

Vo):

E = +lV12 Ii = (h) V2sin(2 - )1 _ Vo 2 sin (0 - 01) (6.66)

In all three cases considered above, the currents do not depend on the difference in

chemical potential between the two leads. As such, even in the limit of small bias, no

conductance can be defined. Furthermore, all currents are proportional to sin(0q2 -ql)

This phase difference between the coupling constants reflects quantum fluctuations,

and should vary with time. A proper steady-state current should take into account

this variation through an average over the phase difference. Unfortunately, the equal-

weight phase average is zero: f d sin = 0. In the absence of long-time phase

correlations between the two electrodes, I = -I4 = 0 in the steady state.
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The zeroth-order effective Hamiltonian, despite its success in predicting temporal

correlations (Section 6.3.1), is unsuitable to steady-state current calculations. This is

a direct result of the zeroth-order approximation. The off-diagonal blocks of the full

Hamiltonian, PHQ and QHP were assumed to be negligible, resulting in a ground-

state lead wavefunction that was simply a product of isolated-lead thermal ground

states:

Ilead)othorder = IJ I/i), (6.67)
i=l,N

for an N-lead system. A full block-diagonalization of the Hamiltonian results in a

ground state that mixes the thermal ground state of the leads with excited states.

This mixing reflects the influence of the other leads on each individual lead. The

zeroth-order solution does not include this coupling, and as such cannot account for

any dependence on differences in the lead chemical potentials. Higher-order effective

Hamiltonians should be able to reproduce steady-state currents as well as additional

details of the temporal current correlations.
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Chapter 7

Conclusions

The preceding chapters have provided a glimpse of the rich variety of phenomena

that occur in structures with nanometer-scale dimensions. In this regime, atomic-

scale structure cannot be ignored and significant changes can happen in the span

of femtoseconds. Computational methods are essential to the study of nanoscale

systems, but the well-tested techniques for isolated molecules and bulk solids are no

longer sufficient. Two of the emerging challenges in the simulation of nanostructures

are the computational design of low-dimensional structures and the calculation of non-

equilibrium transport phenomena. Calculations and novel methodology presented in

this thesis show how both of these challenges can be addressed. The small size

and complex behavior of nanoscale systems provide fertile ground for computational

techniques to directly address experimental results.

7.1 Computational Design

Chapter 2 demonstrates that the unique properties of boron nanotubes can be un-

derstood through consideration of planar boron structures and the boron atom. The

prediction of novel boron nanotube structures came directly from the study of boron

planes. The two-dimensional periodicity of the planar structures greatly reduced

the computational cost of these studies. A robust understanding of how the boron

p orbitals lead to the planar buckling instability was achieved with relatively little
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computational effort. This picture of the behavior of the buckled plane led directly

to the prediction of the differences between the (n, 0) and (n, n) boron nanotubes.

Work on boron planes significantly narrowed the possible range of boron nanotube

structures. Studying higher-dimensional analogues of low-dimensional nanostructures

can minimize computational costs and speed the identification and design of desirable

properties.

The internal degrees of freedom identified in (n, n) boron nanotubes are repre-

sentative of a more general phenomenon. Since nanostructures are not homogeneous

(individual atoms cannot be "smeared out"), the macroscopic elastic constants that

are measured experimentally do not always have a clear connection to microscopic

structure. Although a macroscopic tube under lateral strain must expand or contract

its diameter to relieve stress, a nanotube has other mechanisms for relaxation. The

atoms that constitute the walls of the nanotube can rearrange themselves without

changing the overall diameter of the tube, as with optical phonons that involve no

net translation of the crystal. This permits stress to be dissipated in a manner that is

not reflected in the Poisson ratio. A straightforward connection between the Young's

modulus and the Poisson ration is expected for a macroscopic tube, but nanotubes

designed with internal degrees of freedom can break that connection, and achieve low

Young's moduli in conjunction with low Poisson ratios. Low Poisson ratios imply

high longitudinal stiffness that can be desirable in composite materials.

Computational design of nanostructures is challenging due to the wide variety of

possible structures a small collection of atoms can adopt. In order to efficiently study

that phase space, the planar and solid analogues of low-dimensional nanostructures

should be studied and understood first. Accurate first-principles calculations can

yield detailed information about novel structures and properties, and the atomic-

scale mechanisms that bring them about. Such mechanisms can be useful guides in

designing further nanostructures that display desirable properties.
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7.2 Transport and Non-Equilibrium Phenomena

Chapters 4 and 6 presented novel methods to calculate transport properties of ul-

trathin transistors and quantum devices. Currents will flow in systems driven out

of equilibrium, breaking symmetry and presenting computational challenges beyond

those of equilibrium, ground-state calculations. The method for mobility calculations

presented in Chapter 4 focuses on the linear transport regime and steady-state trans-

port. Experiments on MOSFETs rarely probe the strongly non-linear regime of the

source-drain current, so that mobility calculations can make a direct connection to ex-

periments without undue complication. Fully non-linear transport with an arbitrary

time dependence can be treated through the effective Hamiltonian method presented

in Chapter 6, but the system must be represented by a simplified Hamiltonian that

can obscure the atomic-scale structure.

First-principles mobility calculations represent a significant advance over existing

state-of-the-art MOSFET mobility models. In ultrathin SOI devices, the atomic-scale

structure plays an important role since even single-atom defects and impurities repre-

sent large deviations from the ideal channel. Using ground-state DFT calculations to

obtain the scattering potential and wavefunctions permits a first-principles scattering

matrix to be calculated. This matrix is used in conjunction with the dispersion rela-

tion to solve the Boltzmann equation to linear order or the Kubo formula to calculate

the mobility. The resulting mobility is calculated entirely from first-principles, and

enables a direct connection to be made between the measured electrical response and

atomic-scale defects and impurities.

The effective Hamiltonian method allows for rapid temporal correlations in quan-

tum devices to be calculated efficiently. By tracing out the lead degrees of freedom,

the effective Hamiltonian focuses on the behavior of electrons occupying the device's

states. Currents and bound state occupancies can be expressed in terms of eigenstates

with a well-defined time dependence, allowing temporal correlations to be understood

as a superposition of eigenmodes. The matrix representation of the full system (de-

vice and leads) Hamiltonian provides the framework for perturbative approaches to
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constructing the effective Hamiltonian. Although the zeroth-order effective Hamilto-

nian only accounts for a limited range of phenomena, higher-order approaches can be

readily developed for many quantum devices.

Chapter 5 demonstrated that mobility calculations can identify the atomic-scale

origin of the observed electrical response in UTSOI MOSFETs. By distinguishing

atomic-scale from long-wavelength interface roughness, first-principles calculations

allowed the origin of anomalously low mobility in UTSOI channels to be discerned.

As a result of this new understanding, a path to improving mobility at low effective

fields by up to 100% was identified. Chapter 3 showed how first-principles calcu-

lations can help identify the atomic and electronic structure of trapping centers in

amorphous insulators, providing greater insight into the transport behavior of these

materials. Although the atomic structure of the STH 2 trapping center remains un-

resolved, conclusive evidence for the absence of a Vk center analogue in SiO2 was

obtained.

7.3 Future Work

The first-principles mobility calculation and effective Hamiltonian methods have nu-

merous applications that have only begun to be explored. In this section, future

methodological improvements and technologically-important applications will be dis-

cussed. The computational design of nanostructures and the calculation of their

relevant transport properties is a relatively young field. With increasing computa-

tional power and the further development of novel methods, future advances that

provide insight into both basic physics and technology seem certain to arrive.

7.3.1 First-Principles Mobility Calculations

In order to go beyond linear transport calculations and explore the behavior of the

source-drain current at high bias, the Hamiltonian presented in Section 4.2.4 can

be solved using non-equilibrium Green's Functions (discussed in Section 6.1.1). A

simple, non-interacting model for the source and drain electrodes will have to be
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constructed, but in sufficiently long channels this should not greatly influence the

transport properties. Effects such as contact resistance that are strongly dependent

on device processing can be parameterized to fit observed UTSOI MOSFET data.

Constructing a UTSOI channel Hamiltonian from first-principles and then employing

NEGF methods maintains the direct link between atomic-scale structure and trans-

port properties.

The ability to connect atomic-scale defects directly to measured electrical re-

sponses through the mobility, transconductance and other properties provides a unique

opportunity to improve device characterization techniques. The calculated mobilities

for each defect and impurity have unique dependences on gate bias and temperature,

and a particular combination of defects should have characteristic features that can

be measured experimentally. The electrical "signature" of a particular combination of

defects can be compared to experimentally-measured mobility curves, as a function

of temperature and gate bias. If the mobilities due to a range of possible defects

and impurities in a devices are calculated, then an straightforward electrical response

measurement could determine the concentrations of defects and impurities, providing

a simple and non-invasive way to characterize the quality of a device at the atomic

scale.

Beyond interface roughness, there are many other novel scattering mechanisms

in UTSOI channels. High-K dielectrics will replace SiO2 as the gate insulator of

choice in both bulk and SOI MOSFETs. These novel materials have complicated

interfaces with silicon that are not yet well-understood [18]. New structural defects

in addition to suboxide bonds and oxygen protrusions may play an important role

in limiting the mobility of UTSOI devices with high-K dielectrics. Careful studies of

how high-K-Si interface defects affect mobility can influence device development by

revealing which silicon-insulator structures perform best. In addition, first-principles

phonon scattering calculations (described in Section 4.2.5) can be used to understand

the plasmon-phonon interaction in UTSOI high-c structures. Although scattering

with polar optical modes will be more severe with high-K dielectrics than with SiO2,

certain device designs may reduce the strength of scattering. For example, the use of
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an SiO2 buffer layer to remove the high-e interface from the Si channel may reduce

the plasmon-phonon interaction, but could introduce structural defects that limit the

mobility. Making these choices in the design of future UTSOI MOSFETs requires

accurate and flexible modeling tools that incorporate accurate atomic structures and

quantum-mechanical effects. The first-principles mobility calculation method can find

use in these, and other, applications.

7.3.2 Effective Hamiltonian Method

An important extension to the zeroth-order effective Hamiltonian method presented

in Section 6.2.2 is to block-diagonalize the full Hamiltonian to higher orders. Higher-

order effective Hamiltonians will include couplings, via the quantum device, between

the leads and could account for steady-state currents. Although constructing an

operator via a perturbation expansion is more complicated than evaluating a function,

further study should uncover efficient methods for perturbative block-diagonalization.

Physical intuition about the leads and/or working in the low-temperature limit may

lead to simple solutions for higher-order effective Hamiltonians.

Calculating temporal fluctuations in the current and occupancies of a quantum

device is an important task, since recent experiments have shown that measurements

can be made at femtosecond time scales. Although fluctuations in a single device can

reveal interesting physics, correlated fluctuations may play a more fundamental role in

the behavior of quantum circuits. The eigenvalues of the effective Hamiltonian reveal

that current and spin fluctuations occur at characteristic frequencies determined by

the nature of the device and its couplings to the leads. Densely-packed devices in

a nanoscale electronic circuit may couple to each other and enhance fluctuations

at certain frequencies. These resonant fluctuations could drive the circuit out of

equilibrium and significantly change its electrical behavior. In designing macroscopic

circuits, devices that are electrically isolated are truly independent, and the response

of a circuit is the sum of its parts. In quantum circuits, however, devices that are close

together may couple to each other and behave as a new, composite entity. A proper

theory of fluctuations, such as that provided by the effective Hamiltonian method,
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can describe these couplings and inform the design of quantum electronic circuits.
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