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Abstract
We carry out various investigations regarding gauge theories on the worldvolume of
D-branes probing toric singularities.

We first study the connection that arises in Toric Duality between different dual
gauge theory phases and the multiplicity of fields in the gauged linear sigma models
associated with the probed geometries.

We introduce a straightforward procedure for the determination of toric dual the-
ories and partial resolutions based on the (p, q) web description of toric singularities.

We study the non-conformal theories that arise in the presence of fractional branes.
We introduce a systematic procedure to study the resulting cascading RG flows, in-
cluding the effect of anomalous dimensions on beta functions. Supergravity solutions
dual to logarithmic RG flows are constructed, validating the field theory analysis of
the cascades. We systematically study the IR dynamics of cascading gauge theo-
ries. We show how the deformation in the dual geometries is encoded in a quantum
modification of the moduli space.

We construct an infinite family of superconformal quiver gauge theories which are
AdS/CFT dual to Sasaki-Einstein horizons with explicit metrics. The gauge theory
and geometric computations of R-charges and central charges are shown to agree.

We introduce new Type IIB brane constructions denoted brane tilings which are
dual to D3-branes probing arbitrary toric singularities. Brane tilings encode both the
quiver and superpotential of the gauge theories on the D-brane probes. They give
a connection with the statistical model of dimers. They provide the simplest known
method for computing toric moduli spaces of gauge theories, which reduces to finding
the determinant of the Kasteleyn matrix of a bipartite graph.

Thesis Supervisor: Amihay Hanany
Title: Associate Professor
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Chapter 1

Introduction

String Theory [73, 147, 131, 111, 170] was born in an attempt to provide an alternative

to field theories capable of handling the abundance of strongly interacting particles,

hadrons, that was experimentally observed in the 1960s. Later on, it was realized that

String Theory fails to describe the parton behavior of high energy scattering correctly

and an ordinary Yang-Mills theory, Quantum Chromodynamics (QCD), emerged as

the correct description of strong interactions.

In order for a string theory to be consistent, it has to live in ten spacetime di-

mensions and be supersymmetric. There are different approaches to make contact

with four-dimensional physics. One possible avenue is by means of Kaluza-Klein's

old idea of compactifying extra dimensions. In addition, every string theory has a

massless spin-2 particle in its spectrum. This feature was unacceptable when trying

to use String Theory to describe strong interactions. Later, this was reinterpreted

as a virtue by changing the string scale from the original value of approximately

1GeV to the typical scale of a relativistic quantum theory of gravity, the Planck scale

c/G ~ 1019GeV. This massless particle is then interpreted as the graviton, and

String Theory re-emerges as a serious candidate for fulfilling the long standing quest

for a quantum theory that unifies all known interactions, including gravity.

There are five different ways in which String Theory can be quantized, giving rise

to the five known string theories: Type IIA, Type IIB, Type I, Heterotic SO(32) and

Heterotic E8 x E8. These five theories are connected by duality transformations, i.e.
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it is possible to express the degrees of freedom of any of them in terms of the degrees

of freedom of the others. The five string theories can be regarded as expansions

around different corners in moduli space of an underlying eleven dimensional theory

called M-theory. A full formulation of M-theory is unknown, but its field theory limit

corresponds to eleven dimensional supergravity.

In 1995, Polchinski's discovery of the importance of D-branes [148] as the source of

Ramond-Ramond fields in String Theory marked what is now known as the "Second

Superstring Revolution". D-branes are non-perturbative extended objects that are

defined by imposing Dirichlet boundary conditions on fundamental strings. All string

theories contain D-branes in their spectrum. In addition, all but Type I string theory

have another type of brane, the NS5-brane. Similar extended objects exist in M-

theory. They are 2 and 5-dimensional and are respectively called M2 and M5-branes.

The low energy dynamics of D-branes is described by ordinary gauge theories confined

to their world-volumes.

The discovery of D-branes led to fascinating developments, connecting String The-

ory with black holes and supersymmetric field theories. D-branes also have a profound

influence in phenomenological constructions based in String Theory. The application

of the brane-world paradigm to the construction of Standard Model like theories has

been a very fruitful direction of research.

This thesis will focus on the study of supersymmetric field theories and their

engineering in String Theory. There are several reasons why supersymmetric field

theories are of interest. On one hand, supersymmetry is crucial for the consistency

of String Theory. If we believe that String Theory is the fundamental theory of

nature, it is natural to expect that the connection with our non-supersymmetric world

involves some supersymmetric theory at high energies. Supersymmetry would be then

finally broken at low energies. Another merit of supersymmetry is that it provides

an elegant solution to the hierarchy problem, stabilizing the large ratio between the

Planck and electroweak scales. Finally, there is yet another motivation for the study

of supersymmetric field theories that is not based on considering supersymmetry as

key ingredient in a fundamental description of the universe. A standard approach
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in Physics research is to start by considering a simplified version of the system of

interest, usually with a high amount of symmetry. Once the symmetric problem is

understood, we can approach the realistic model by progressively reducing the amount

of symmetry. Along this line of thought, we can regard supersymmetric field theories

as highly symmetric "toy models". We then expect that the conclusions we derive for

them can be extended, at least to some extent, to more conventional field theories.

One of the most fascinating features of quantum field theories is Duality. It is often

the case that; more than one apparently different field theories are in fact equivalent.

This is very useful, since usually phenomena that are complicated to analyze in one

description become straightforward in a dual one. An outstanding example of such a

correspondence is given by Seiberg duality [156], which is an equivalence between the

low energy limit of A = 1 supersymmetric field theories in 3+1 dimensions. Seiberg

dual theories might have different gauge groups, matter content and interactions but

their long distance physics is identical. One of the main topics we will investigate

is the geometric origin of f = 1 four dimensional dualities when gauge theories are

constructed using D-branes over Calabi-Yau singularities.

D-branes are useful probes of backgrounds in String Theory. At weak string cou-

pling, they are much heavier than fundamental strings and hence are sensitive to

shorter length scales. The probed geometry determines the amount of supersymme-

try, spectrum and interactions of the gauge theory living on the world-volume of the

branes. One of the goals of this thesis is to find efficient ways to determine gauge

theories on D-branes over singularities. We will mainly focus on the case in which

the singularities are toric. The use of D-brane probes is one of the alternative ap-

proaches to engineer interesting gauge theories in String Theory. We will explore two

directions that are necessary in order to obtain realistic theories: the construction

of field theories with reduced supersymmetry ( = 1 is the maximum amount of

SUSY consistent with a chiral theory) and breaking of conformal invariance (with

subsequent Renormalization Group flows).
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Outline

In the first chapters of this thesis we review some background concepts that are

important for understanding our work: Chapter 2 reviews the five consistent ten-

dimensional string theories as well as eleven-dimensional supergravity and discusses

their brane content, Chapter 3 gives a brief introduction to Toric Geometry and

Chapter 4 explains the main approaches to the engineering of gauge theories in String

Theory.

The non-uniqueness of the gauge theories on D-branes probing a given toric sin-

gularity leads to the concept of Toric Duality [45]. This is a generalization of Seiberg

duality to theories with toric moduli space. The motive of Chapter 5 is a detailed

study of Toric Duality, and the relation between different dual phases of the gauge

theories and multiplicities of fields in the gauged linear sigma model description of

the geometry. Chapter 6 exploits the (p, q) description of toric singularities to develop

a method that considerably simplifies the derivation of toric dual theories and the

computation of gauge theories via partial resolution. At the same time, we establish

a connection between Seiberg duality in four dimensions and crossing of curves of

marginal stability in five-dimensional field theories.

We then investigate the Renormalization Group (RG) flows that are induced by

fractional branes. In Chapter 7 we develop a general methodology for the treatment of

duality cascades. We study previously unknown logarithmic flows as well as cascades

with a qualitatively different UV behavior, Duality Walls. In Chapter 8 we continue

our study of cascading RG flows, performing an analytical study of duality walls

and exploring the chaotic behavior of some duality cascades. The most important

achievement of this chapter is the construction of supergravity duals of cascading

solutions for cones over del Pezzo surfaces. This construction is easily generalized

to more general toric geometries and puts the field theory analysis of such RG flows

on a firm footing. In Chapter 9 we initiate a systematic study of the infrared limit

of cascades. We show how the deformation of the dual geometries emerges in the

field theory as a quantum modified moduli space. Of particular interest, due to their
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phenomenological applications, are the cascades with several scales of strong dynamics

introduced in this chapter. These cascades are dual to warped throat geometries with

regions of different warping.

In Chapter 10, we construct an infinite family of quiver gauge theories that are

AdS/CFT dual to a corresponding class of horizon Sasaki-Einstein manifolds with

explicit metrics. The computation of central charges and baryon R-charges in the

gauge theory are shown to agree with the corresponding calculation on the gravity

side of the AdS/CFT correspondence. The results reported in this chapter represent

a significant progress in our understanding of the AdS/CFT correspondence, pass-

ing from the two explicit Sasaki-Einstein metrics with known CFT duals that were

previously at; hand to an infinite set of CFT/dual Sasaki-Einstein metric pairs.

The problem of gauge theories on D-branes over singularities is revisited in Chap-

ter 11. We introduce new brane constructions that are dual to gauge theories on

D3-branes probing arbitrary toric singularities, which we call Brane Tilings. They

encode both the quiver and the superpotential of the gauge theory. Brane tilings give

a connection to dimer models and considerably simplify the study of these theories.

In particular, the previously laborious task of finding the moduli space of the gauge

theory is reduced to the computation of the determinant of the Kasteleyn matrix of a

graph. This is by far the simplest method known so far for the computation of toric

moduli spaces of gauge theories.

The material we report in this thesis covers part of the author's work during his

graduate studies, which appears in a series of publications [43, 52, 44, 53, 56, 61, 57,

54, 14, 60, 59, 58].
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Chapter 2

Branes

In addition to fundamental strings, string theories have a plethora of extended p-

dimensional objects (with (p+1)-dimensional worldvolumes). They receive the generic

name of p-branes and generalize the usual notion of a 2-dimensional membrane.

Branes play a key role in our current understanding of String Theory. We refer

the reader to [148, 150, 149] for comprehensive reviews. The present picture is that

the five consistent string theories and 11d supergravity are all connected by duality

transformations [70, 101, 168, 155, 163, 165]. This strongly supports the idea that

they correspond to different limits of a single subjacent theory, M-theory. D-branes

are crucial in order to be able to map the entire set of BPS objects between dual

theories.

The low energy dynamics of branes is described by gauge theories living in their

worldvolume. In addition to gauge fields, their fluctuations can also give rise to

charged matter fields. Interesting gauge theories can be engineered with branes in

different configurations, combining them with other extended objects such as orien-

tifold planes and by embedding them in non-trivial geometries. Motivated by this,

we present in this chapter a brief overview of the five consistent string theories and

11d supergravity and their branes.
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2.1 Massless spectrum of string theories

For various discussions, such as the classification of possible branes, it is sufficient to

consider the low energy, massless degrees of freedom of String Theory. The existence

of (p+l)-form gauge fields implies that string theories couple to appropriate branes.

The coupling of branes to gauge field generalize the notion of electric and magnetic

coupling of electromagnetism which, in d dimensions, read

Electric coupling: p-brane

Magnetic coupling: (d-p-4)-brane

d* F( p+2) = QE(d- p- l)

dF(P+2) = QM6(d-p-1)

where F( p+2) is the (p+2)-form field strength.

Massless fields transform in irreducible representations of the little group. Count-

ing the number of degrees of freedom for each type of massless field in arbitrary

dimensions d is straightforward. For d dimensions the little group is SO(d - 1) and

we have the following counting:

(2.1.2)

In preparation for our classification of p-branes, we now describe the massless field

content of lid supergravity and the different string theories

2.1.1 M-theory

A full formultation of M-theory is still unknown, but its low energy limit is described

by eleven dimensional supergravity. Eleven-dimensional supergravity is the theory
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Field Degrees of freedom

Symmetric, traceless d(d - 3)/2

2-tensor (graviton)

p-form ( 2
d-3

Spinor 2 

Gravitino (d - 3)2 d



with largest possible space-time supersymmetry and Poincar6 invariance. The limit

in the number of dimensions follows from the fact that consistent non-trivial field

theories cannot have massless particles with spin greater than two. Upon dimensional

reduction, 11d supergravity leads to Type IIA supergravity.

Using the expressions in (2.1.2), we determine the number of degrees of freedom

in the ld massless supergravity multiplet. It consists of the graviton GMN, with

11 8/2 44 degrees offreedom, a 3-formC with ( ) = 84 degrees of freedom

and the gravitino OM with 8.24 = 128 degrees of freedom. Where the indices M, N =

0,..., 10. We immediately verify that the supergravity multiplet has an equal number

of bosonic and fermionic degrees of freedom, 128, as expected in a supersymmetric

theory.

2.1.2 Type IIA

In Type IIA string theory right-movers and left-movers transform under different

spacetime supersymmetries of opposite chirality. Hence, the theory is non-chiral. Its

massless content corresponds to Type IIA supergravity. Massless fields are organized

into irreducible representations of the ten-dimensional little group S0(8).

The massless fields in the closed sector are organized as follows

Bosons NS - NS 8, 8v = 1 + 28v + 35 = + B(2) + (2)

R-R 8c 8 = 8v + 56 = C(1) + C(3) (2.13)
(2.1.3)

Fermions NS - R 8v, 8 = 8 + 56,

R-NS 8c, 8v = 8 + 56S

where NS and R indicate the Neveu-Schwarz and Ramond sectors that follow from

the the periodicity of the worldsheet spinors in the quantization of the superstring

[73, 147].

The 56, and 56. representations arise from combining a vector and a spinor of

SO(8) and thus correspond to spin 3/2 particles, i.e. gravitinos.
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Alternatively, Type IIA supergravity can be obtained by dimensional reduction of

lid supergravity along xlo, without refering to quantization of String Theory. The

representations of the eleven-dimensional little group S0(9) decompose into the ones

of SO(8) as follows

S0(9) D SO(8)

C(3) : 84 -+ 28 + 56v
(2.1.4)

9(2): 44 -- 1+8V+35

128 - 8 +8,+ 56 + 56

In addition, Type IIA supergravity has a 9-form C(9) with 10-form field strength

F10. The standard action term f Fo10 * Fo0 gives the equation of motion d * Fo10 = 0,

from which *Fo10 = 0 follows. The solution is thus constant but very interesting. The

real importance of this form was noticed in [148], where it was understood that it

generates a contribution to the cosmological constant

2.1.3 Type IB

The massless spectrum of Type IIB is given by Type IIB supergravity. In this case,

there are also two spacetime supersymmetries but of the same handedness. Thus, the

theory is chiral. Type IIB supergravity cannot be obtained by dimensional reduction

or restriction of a higher dimensional theory. The spectrum of Type IIB supergravity

is

Bosons NS - NS 8v ® 8v = 1 + 28 + 35v = + B(2) + g(2)

R-R 8 8 = 1 + 28 + 35r = C(°) + C(2) + C(4)+

Fermions NS - R 8v 8 = 8 + 56.

R-NS 8 ®8V = 8 + 56.
(2.1.5)

where again we have organized the fields into different sectors corresponding to the

quantization of the superstring.
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The self-duality of the 35c representation of S0(8) indicates the self-duality of

the 5-form field strength F5 = dC(4 )+. It is not known how to introduce a covariant

action that leads to self-duality of F5 as an equation of motion. Hence, the standard

approach is to consider covariant equations of motion and then impose F5 = *F5 by

hand. The 56s representations correspond to gravitinos.

It is also useful to introduce a 10-form C(10). This form is not dynamical, i.e.

has no propagating degrees of freedom, since it cannot have a kinetic term in 10

dimensions (its field strength would be an 11-form).

2.1.4 Type I

The spectrum of Type IIB supergravity presented in the previous section is given by

the tensor product of two identical super Yang-Mills multiplets (8v + 8,). In this

case, it is possible to impose a graded symmetrization of the product, leading to

[(8v + 8,) ® (8v + 8c)Igraded sym = (8v + 8v)sym + (8v + 8) + (8c + 8c)antisym
= (1 + 28 + 35V)B + (8 + 56s)F

(2.1.6)

From a string theory point of view, the symmetrization comes from orientifold-

ing, i.e. taking the quotient by worldsheet parity Q, of the left-right symmetric Type

IIB string [152, 98, 31, 68].

The NS-NS 2-form is odd under Q and then is projected out when performing the

orientifold quotient. There is a surviving 2-form C(2) that comes from the R-R sector

and transforms in the 28c of SO(8). The additional bosonic fields are the dilaton q

in the 1 representation and the graviton g(2) in the 35v.

The orientifold projection kills one linear combination of the two gravitinos, a

56s, of Type IIB supergravity. The spectrum in (2.1.6) is the one of chiral Type

I supergravity in ten dimensions. It corresponds to the A/ = 1 gravity multiplet

in d = 10, with 64 bosonic and 64 fermionic degrees of freedom. In addition, the

non-dynamical RR 10-form C(10) of Type IIB survives the orientifold projection.
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This is a chiral theory and thus we have to be concerned about possible anomalies.

The spectrum, as listed in (2.1.6), has gravitational chiral anomalies. The anomalies

are canceled by including an Af = 1 vector multiplet with gauge group S0(32).

Bosons NS 8, SO(32) gauge bosons (2.1.7)

Fermions R 8c S0(32) gauginos

From a string theory point of view, the vector multiplet comes from an open

sector ending on space-time filling D9-branes that is required for consistency in order

to cancel RR tadpoles [68].

2.1.5 Heterotic string theories

Heterotic strings exploit the fact that the right and left moving modes of closed strings

are decoupled. In heterotic strings, the right moving modes are taken to be those

of type II superstrings. Hence, the critical dimension is 10. The left moving modes

are those of the bosonic string and live in 26 target space dimensions. The 16 extra

directions do not correspond to physical dimensions but are compactified on a lattice.

The 16d lattice is severely constrained by modular invariance which requires it to

be even and self-dual. Such lattices only exist in dimensions multiple of 8. There

are only two examples in 16 dimensions: the E8 x Es8 and the spin(32)/Z 2 lattices,

giving rise to the E8 x E8 and SO(32) heterotic theories. Their massless spectrum is

given by the Jf = 1 10d gravity multiplet presented in (2.1.6) coupled to E8 x E8 or

S0(32) vector multiplets. It is interesting to note that the massless content of the

SO(32) theory is identical to the one of Type I.

2.2 Classification of branes

Armed with the spectra of massless forms presented above, we are ready to classify the

brane content of M-theory and the different string theories according to the electric

and magnetic couplings in (2.1.1). Branes in the five 10d string theories can be

organized in two categories according to the dependence of their tensions on the
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string coupling gs. One the one hand, there are "solitonic" or Neveu-Schwarz (NS)

branes, which are the magnetic duals of fundamental strings and have tensions that

go as 1/9g2. On the other hand, there are Dirichlet (D) branes, whose tensions go as

1/gs.

2.2.1 M-theory

The existence of the 3-form field C(3) in lid supergravity indicates that there are

two types of extended objects in M-theory. One of them, the M2-brane, has a 2+1

dimensional worldvolume and couples electrically to C(3) . In addition there is a 5+1

M5-brane, which couples magnetically to C(3 ) . These two M-branes give rise to all

the branes of the 10-dimensional string theories.

2.2.2 Type IIA

From the p-form gauge fields in (2.1.3), we see that Type IIA string theory possesses

the following set of branes:

(2.2.8)

In addition, there is a D8-brane that sources C9 which, as discussed in Section

2.1.2. has constant field strength and generates a cosmological constant.

2.2.3 Type IIB

The massless spectrum in (2.1.5) corresponds to the following branes:

(2.2.9)
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Type IIB string theory has also D9-branes, which source the non-dynamical C(10)

discussed in 2.1.2. They fill the entire spacetime and correspond to open strings whose

endpoints are free to move in 10 dimensions, i.e. with Neumann boundary conditions

in all directions.

2.2.4 Type I

From (2.1.6), we get the brane content of Type I string theory:

(2.2.10)

Similarly to what happens for Type IIB, there are also D9-branes in this case. It

is interesting to notice that, since the NS-NS 2-form field B(2) does not survive the

orientifold projection, there are no NS5-branes in Type I string theory.

2.2.5 Heterotic

We have seen that, similarly to what happens for Type I, the massless spectrum in

the closed sector of both heterotic theories is given by the Ar = 1 gravity multiplet in

d = 10 presented in (2.1.6). In this case, though, the 2-form is sourced by NS5-branes

via magnetic coupling. These are the only branes of heterotic theories.

2.2.6 Orientifold planes

Orientifolds are other interesting extended objects of string and M-theory. They can

be combined with branes to engineer gauge theories. An orientifold p-plane (Op-

plane) extends in (p+l) dimensions and is the fixed plane of the combined action of

Z 2 reflections in the coordinates and worldsheet parity transformation Q. That is,

they are the fixed space under:

xI(z, z) -x'I(2, z) I = p+ 1,...,9 (2.2.11)
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An Op-plane is charged under the same RR gauge fields and breaks the same

half of supersymmetry than a parallel Dp-brane. At least for weak string coupling,

orientifold planes are non-dynamical objects.

2.3 A microscopic description of D-branes

In the sections above, we have taken a low energy approach to the classification of

extended objects in string/M-theory. We started from a macroscopic, low energy

supergravity description, and identified fundamental strings, D-branes, NS5-branes

and M-branes as the sources of the different p-form massless fields. This strategy has

the advantage of allowing a rapid identification of the brane content of each string

theory and M-theory but fails to provide a microscopic description for them.

The string theory description of Dp-branes is indeed very simple: they are p + 1-

dimensional defects in spacetime where open strings can end. Namely, they are defined

by imposing Neumann boundary conditions on p+ 1 directions and Dirichlet boundary

conditions in the remaining 9 -p [148].

Neumann: OXU(a,ut)=o, 1r t = , (2.3.12)
(2.3.12)

Dirichlet: 9tXA'(a, t) =0,, P = p + 1,..., 9

The generalization of (2.3.12) to open strings stretching between different branes,

of possibly different dimensionalities, is straightforward.

Computation of one loop diagrams in string theory shows that D-branes source

the graviton, dilaton and RR fields [148], and that their tension (equal to the RR

charge since they are BPS objects) is

1
TDp p (2.3.13)

The microscopic description of D-branes thus agrees with the identification of

D-branes as the sources of RR fields that we made in the previous section.
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2.4 Gauge theories in the worldvolume of D-branes

The effective action for the D-brane theory is given by a supersymmetric Dirac-Born-

Infeld action coupled by a Wess-Zumino term to the closed sector fields in the bulk

S = SDBI + SWZ [127], where

SDBI = -p f dP+l'e-Tr {[-det(Gab + Bab + 27ra'Fab)]1/2} (2.4.14)

Swz = ip f dp+l1 Tr [exp(27ra'F2 + B2) A ir C(r)]

where Gab and Bab are the components of the NS-NS fields parallel to the D-brane

and Fab is the field strength of the U(1) gauge field living on the brane. The string

length is realated to a', which has length-squared units, by £e = a'1/2. The sum in

Swz runs only over the r-form fields present in the particular supergravity (IIA, IIB,

etc) under consideration. The integral picks the form that matches the appropriate

power of F2 and B2 coming from the exponential. The tension of the Dp-brane is

fupe-

We now consider a limit in which the D-brane theory is described by SYM gauge

theory on the world volume of the D-brane. In order to do so, we have to decouple

the massless modes on the D-brane from the tower of massive open string modes on

the D-brane and the closed string fields, including gravity, in the bulk. While taking

this limit we want to preserve a finite g2YM for the resulting gauge theory. Its value

can be read from (2.4.14) by expanding SDBI to quadratic order and is

gYM - (2r) 2TDp -eP (2.4.15)

Thus, the gauge theory limit corresponds to £e -+ 0 with g, -+ 0 for p < 3 and

g8 -+ oc for p > 3. For p = 3, g2 M is independent of g, , and the es -+ 0 limit

corresponds to Jf = 4 SYM in 3+1 dimersions.

For a single D-brane, the low energy limit corresponds to the dimensional reduc-

tion of 9+1 dimensional f = 1 SYM with U(1) gauge group to p + 1 dimensions.

The low energy degrees of freedom are scalars and gauge fields plus the appropriate
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fermions required by supersymmetry. The action is given by

S = f dP+x (1FpIF'v + Id1xI90 XI) (2.4.16)

The gauge bosons of the U(1) theory correspond to open strings with both end-

points on the single D-brane under consideration as depicted in Figure 2-l.a. They

are pointlike, since the mass of a string state is given by the string tension multiplied

by its length.

"U

A

A

Mut

(a) (b)

Figure 2-1: Open strings ending on: a) a single D-brane and b) a stack of D-branes.

Let us now consider the case of N parallel Dp-branes. Since they are BPS objects,

the forces among the D-branes vanish. This follows from the cancellation between

the attraction due to NS-NS fields (such as the graviton) and the repulsion due to

R-R fields. As above, each D-brane has U(1) gauge bosons on their worldvolume. In

addition, there are massive states corresponding to strings stretching between different

D-branes as shown in Figure 2-1, with masses dictated by the separation between

the D-branes. We can keep track of both endpoints of the strings by associating

to them fundamental and antifundamental U(N) Chan-Patton indices. Thus, the

strings naturally give rise to the adjoint representation of U(N). When the D-branes

are brought together and become coincident the non-diagonal states become massless.

These are the W bosons of the enhanced U(N) gauge group [169].
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In this case, the decoupling limit previously considered leads to maximally su-

persymmetric U(N) SYM in p+l dimensions. The effective action is obtained by

dimensional reduction of 9+1 dimensional U(N) SYM. The kinetic term is given by

kin 2M (F4F1VF8V + -D XIDPX) (2.4.17)

with the covariant derivative DX I = "X'I - i[Aj, X I] and field strength F, ,

&[/,A,] - i[A,, A,]

The 9-p scalars XI transform in the adjoint representation of U(N) and are subject

to the potential

1

V-, 8 M2 ZTr[XI, XJ]2 (2.4.18)
s9SYM II,J

Separating the D-branes, the off-diagonal components of the scalars and the

charged gauge bosons become massive. The gauge group thus becomes higgsed ac-

cording to U(N) -- U(1)N (other patterns of higgsing are possible for non-generic

positions of the D-branes).

2.5 String theory branes from M-theory

The tension of an extended object is defined as Energy/Volume, where the volume

corresponds to its spatial directions. Thus, for a p-brane with p spatial directions the

tension has dimensions [E]/[L]P = 1/[L]p +l . M-theory does not have any dimension-

less parameter. It only has one dimensionful parameter, the lid Planck length ep.

Thus, we have TM2 _ /ep and TM5 1/.6p The precise relation between TM2 and

TM 5 follows from Dirac quantization and is given by

TM = 1T 2 (2.5.19)
27 

In 10d string theories, there are two fundamental parameters. One of them, the

string coupling gs, is dimensionless, while the other one, the string length e, is
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dimensionful. The tensions of extended objects are functions of both of them. Since

the D-brane tensions come from a disk diagram, they are all proportional to gl-. The

dependence on the characteristic length of the theory follows the same reasoning that

in 11d. Hence,

1
TDp = gP+I (2.5.20)

Properties of the various extended objects discussed above can be easily derived by

considering their origin in 11d M-theory. All the branes of the ten-dimensional string

theories descend from the M2 and M5-branes in eleven dimensions. By computing the

tensions of different extended objects, it is possible to establish a mapping between

10d and 11d parameters. As an example, we now consider the construction of Type

IIA branes starting from M-theory.

As we have discussed above, Type IIA string theory is obtained by compactifying

M-theory on R1 '9 x S1. The xl ° direction is compactified on a circle of radius R1 o.

The M-theory origin of Type IIA branes is the following:

* Fundamental string: M2-brane wrapped around x10 . Equating the tension

of the wrapped membrane and the fundamental string, we get the first relation

between IIA and M-theory parameters

R i = e (2.5.21)

* DO-brane: Kaluza-Klein (KK) mode of the graviton with momentum 1/Rlo

along xi ° . Equating the masses of the KK mode of the graviton and the DO-

brane we get the second relation

Rio = g8 SE (2.5.22)

* D2-brane: M2-brane not wrapping xi° .

* D4-brane: M5-brane wrapped around x10.
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* NS5-brane: M5-brane not wrapping xl° .

* D6-brane: Kaluza-Klein monopole.

* D8-brane: the corresponding object in M-theory, the M9-brane, is not fully

understood. Its tension is R30/p 2 [41].-1 ,Ol p
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Chapter 3

Toric geometry

A central part of this thesis is devoted to the construction of gauge theories by

means of D-brane probes over singularities. Much of our studies will be focused on a

particular but rich type of singularities, namely toric singularities. We now present

the main concepts of toric geometry. For more detailed discussions we refer the

reader to [62, 9, 139].

In addition, Chapter 6 introduces a related approach to toric varieties, construct-

ing them as m-dimensional torus fibrations Tm over some base spaces, and encoding

the information about degenerations of the fibrations in toric skeletons (also known

as (p, q) webs).

A d-complex dimensional complex projective space is defined as

Capd = (Cd+l _ (O,..., 0))/C* (3.0.1)

The origin is removed to ensure a well behaved quotient by the group C*, which

acts on E Cd+l according to (l,...,Xd+l) - (Ax1,...,AXd+l), with A E C 0.

A d-complex dimensional toric variety Vd is a generalization of a complex projective

space, in

Vd = (n - F)/C*(n-d) (3.0.2)

in which we quotient by (n - d) C* actions and we remove a set of points F in order
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for such quotient to be well defined. The action of C*( - d) on the C coordinates is

defined by (n - d) charge vectors Qa as

Aa :(xi, ...Xn) (A X ..,A xn), a=l1,..., n-d (3.0.3)

The charges can be arranged into a matrix Q = (Q?) that will be of later use.

This approach to toric varieties is known as the holomorphic quotient.

Alternatively, we can perform the quotient by C*(nd) in two steps, decomposing

each C* = R+ x U(1). This approach is called the symplectic quotient. We first

fix the R+(n- d) levels via a moment map

n

ZQiaIxil2 = I' a = 1,. . n - d (3.0.4)
i=l

for some real parameters a. We refer to these equations D-terms. This is because they

are actually the D-terms of an Af = 2 gauged linear sigma model (GLSM)with target

space Cn which reduces in the infrared to a non-linear sigma model whose target space

is the toric variety Vd [167]. Finally, we quotient by the U(1)(n - d) action defined by

the charge matrix Q (which gives the gauge groups and corresponding charges of the

GLSM). Generic non-zero values of the a's lead to a full resolution of the singularity.

Setting them to non-generic values (i.e. with some linear combinations equal to zero)

produces a partial resolution. This idea plays a central role in Chapter 5, since it

can be used to determine the gauge theories for certain toric singularities, starting

from the known gauge theories for other geometries, such as Abelian orbifolds.

A simple way to represent a toric singularity is by means of a toric diagram. A

toric diagram for a d-complex dimensional toric variety is a set of points in the integer

lattice N = Z(d). The toric diagram consists of n vectors vai, i = 1,..., n. Each vi

represents an homogeneous coordinate zi. The vi's satisfy linear relations of the form

n

EQavi = 0 (3.0.5)
with Q Z. Taking a basis i=lf Qa where a = 1. n - d we construct a charge

with Qi E Z. Taking a basis of Q,, where a = 1,..., n- d, we construct a charge
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matrix Q. In other words, Q is given by the kernel of a matrix whose columns are

the V'i's. The matrix Q computed this way, is precisely the one that determines the

U(1)(n -d ) action of the symplectic quotient.

When the toric variety is Calabi-Yau, the toric diagram is simplified. In fact the

manifold is Calabi-Yau if and only if there exist a vector h in the lattice M dual to

N such that

< h, vi >= 1 V i (3.0.6)

In other words, the toric diagram lives on an (n - 1)-dimensional hyperplane

at unit distance from the origin. This means that the 3-complex dimensional toric

Calabi-Yaus that we will study are represented by toric diagrams that are effectively

2-dimensional.

Let us illustrate these ideas with a concrete example. Figure 3-1 shows the toric

diagram for the well known example of the conifold.

V3 V4

V1 V2

Figure 3-1: Toric diagram for the conifold.

The four nodes in the toric diagram are

V1 = (0, 0, 1) vi2 = (1, 0, 1) V3 = (0, 1,1) v4 = (1,1,1) (3.0.7)

where we have added to all vectors in the two dimensional toric diagram a third

coordinate that follows from (3.0.6).

Using these vectors as columns, we construct the matrix
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0 1 0 1

1 1 1 1G =(o 0 1 (3.0.8)

Then, ker(G) = (-1, 1, -1). That is, the linear relations among these vectors

are generated by a single Ql = (-1, 1, 1, -1). Hence the toric diagram in Figure 3-1

describes a toric variety defined by

-lxl 2 + jI212 + 1x312 - IX412X = 1 (3.0.9)

modulo a U(1) action given by the charge matrix

X1 X2 X3 X4 (3.0.10)

-1 1 1 -1

For 1j = 0 in (3.0.9) we have the singular conifold. The cases of (1 > 0 and (l < 0

give rise to two resolutions of the conifold singularity related by flop transitions.
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Chapter 4

Egineering gauge theories using

branes

String Theory has been widely used to study the dynamics of gauge theories. In doing

so, it sometimes provides a completely new interpretation of field theory results. The

relation goes in both directions, and gauge theories can be used to understand String

Theory processes. The main ingredient in this connection is that, as we discussed

in Chapter 2, the low energy dynamics of D-branes is described by SYM on their

world volume, with different amounts of supersymmetry depending on the specific

configuration. Several ways of constructing gauge theories using D-branes have been

developed. We now review the main strategies employed: brane setups [86], geometric

engineering [114, 115] and brane probes [39, 110, 125, 84].

4.1 Hanany-Witten setups

Brane setups were introduced by Hanany and Witten in [86]. They involve branes

suspended between branes and extend the simple stacks of parallel branes discussed

in Section 2.4. By combining different types of branes and orienting them properly, it

is possible to reduce the amount of supersymmetry and introduce new matter. This

approach is particularly simple and intuitive because it involves flat branes in flat

space. Distances and motions in the brane picture are mapped to parameters and
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moduli of the gauge theories.

We can understand the main virtues of this approach with a simple example. Let

us consider one of the brane configurations studied in [86], which corresponds to the

construction of d = 3 f = 4 supersymmetric gauge theories. We show the setup for

an U(2) gauge group without matter in Figure 4-1.

D3

NS NS

Figure 4-1: Hanany-Witten configuration for d = 3 f = 4 gauge theory in 2+1
dimensions with U(2) gauge group

The configuration involves NS5-branes and D3-branes spanning the following di-

rections

X0 X 1 X2 X 3 X 4 X 5 X 6 X 7 X 8 X 9

NS · · · · · ·

D3 * * -
In the g - 0 limit, the NS5-branes are much heavier that the D3-branes, and

they can be regarded as non-dynamical objects whose positions determine certain

parameters of the gauge theory living on the D3-branes. The D3-branes have a finite

length L 6 in the x6 direction. Hence, the low energy gauge theory on them is 2+1

dimensional. The brane configuration breaks 1/4 of the original supersymmetries,

leaving 8 supercharges, i.e. A = 4 in 3 dimensions.

The ten dimensional Lorentz group SO(1, 9) is broken down to SO(1, 2) x SO(3)v x

SO(3)H. SO(1, 2) acts on (x°, x1,x 2), SO(3)V on (X3 , x 4, x5 ) and SO(3)H on (x7, X8, X9 ).

The double covers of SO(3)v and SO(3)H are SU(2)v and SU(2)H. The V and H

subindices indicate that they act as symmetries of the Coulomb and Higgs branches,
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respectively. The R-symmetry of the gauge theory is SO(4) = SU(2)v x SU(2)H.

i.e. it corresponds to rotational symmetries of the brane configuration.

The three dimensional gauge coupling is determined by the separation between

the NS5-branes L6

1 L 6

2 (4.1.1)
g g8

Relative motion of the NS5-branes in the (x7 ,x8 ,x9 ) directions map to FI pa-

rameters in the gauge theory. Flavors can be incorporated by adding D5-branes in

(x0 , x, X2, x 7, x8 , x9).

Mirror symmetry of the 3-dimensional gauge theory [105] corresponds to S-duality

of the brane configuration [86]. In addition, looking at these brane constructions

from a different perspective it is possible to establish a correspondence between the

Coulomb branch of the 3d gauge theories and the moduli space of magnetic monopoles

of the SU(2) gauge theory broken to U(1) that lives on the worldvolume of the NS5-

branes [86]. These are typical examples of the simplifications and intuition we obtain

about the dynamics and duality of field theories when they are embedded in string

theory constructions.

Since its conception, the field of brane setups has been extremely fruitful and

constructions of gauge theories in several dimensions, with different amounts of su-

persymmetry and gauge groups, have been developed since they were introduced

(see for example [69] for a review of some of these constructions). The (p, q) web

constructions of Chapter 6 are examples of this type.

4.2 Geometric engineering

Geometric engineering [114, 115] corresponds to considering Type IIA or IIB string

theory compactified on a Calabi Yau. In the case of a CY3-fold, the resulting theory

has JVf = 2 supersymmetry in four dimensions.

D-branes wrapping internal cycles in the CY give rise to gauge and matter fields,

that become massless when the cycles shrink to zero size. All the information that
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is relevant for the field theory limit is encoded in the local structure of the geome-

try. Then, for the purpose of studying the field theory, the compact Calabi-Yau can

be replaced by a non-compact ALE singularity. These singularities have an ADE

classification, i.e. they are associated to the Dynkin diagrams of simply-laced alge-

bras. The quiver diagram of the resulting gauge theory turns out to be equal to the

corresponding Dynkin diagram.

4.3 D-brane probes

A third approach for the construction of gauge theories consists on taking a String

Theory background and probe it with D-branes [39, 110, 125, 84]. The background

geometry dictates the amount of supersymmetry, matter content, gauge group, and

interactions of the gauge theory on the D-branes. Of particular interest are singular

geometries, since they can give rise to reduced SUSY and chiral theories. This method

will be used all along this thesis.

Gauge theories on D-branes at orbifold singularities are particularly simple to

compute. Orbifolds are obtained by performing a quotient by the action of an orbifold

group. The orbifold group acts on spacetime coordinates and, in the presence of D-

branes, on the Chan-Patton degrees of freedom at the endpoints of open strings. The

gauge theory for the orbifold is obtained by considering the images of the original

D-branes and projecting into invariant states [39].

Figure 4-2: Stack of D-branes can be located over singularities to engineer interesting
gauge theories.

Chapters 5 and 6 will introduce methods for computing the gauge theories on
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D-branes over more general toric singularities. The quantum dynamics of the back-

ground is encoded in the quantum behaviour of the gauge theory. We will exploit

this fact in Chapter 9. The problem of finding gauge theories on D-branes probing

arbitrary toric singularities will be revisited in Chapter 11.
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Chapter 5

Symmetries of Toric Duality

In this chapter we elucidate the nature of toric duality dubbed in hep-th/0003085

in the construction for world volume theories of D-branes probing arbitrary toric

singularities. This duality will be seen to be due to certain permutation symmetries of

multiplicities in the gauged linear sigma model fields. To this symmetry we shall refer

as "multiplicity symmetry." We present beautiful combinatorial properties of these

multiplicities and rederive all known cases of torically dual theories under this new

light. We also initiate an understanding of why such multiplicity symmetry naturally

leads to monodromy and Seiberg duality. Furthermore we discuss certain "flavor"

and "node" symmetries of the quiver and superpotential and how they are intimately

related to the isometry of the background geometry, as well as how in certain cases

complicated superpotentials can be derived by observations of the symmetries alone.

This chapter is based on [43].

5.1 Introduction

The study of string theory on various backgrounds, in particular space-time singular-

ities, is by now an extensively investigated matter. Of special interest are algebraic

singularities which locally model Calabi-Yau threefolds so as to produce, on the world-

volume of D-branes transversely probing the singularity, classes of supersymmetric

gauge theories.
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Using the techniques of the gauged linear sigma model [167] as a symplectic quo-

tienting mechanism, toric geometry has been widely used [8, 38, 138, 11] to analyse

the D-brane theories probing toric singularities. The singularity resolution methods

fruitfully developed in the mathematics of toric geometry have been amply utilised

in understanding the world-volume gauge theory, notably its IR moduli space, which

precisely realises the singularity being probed.

To deal with the problem of finding the gauge theory on the D-brane given an ar-

bitrary toric singularity which it probes, a unified algorithmic outlook to the existing

technology [8, 38, 138, 11] of partial resolution of Abelian orbifolds has been estab-

lished [45]. One interesting byproduct of the algorithm is the harnessing of its non-

uniqueness to explicitly construct various theories with vastly different matter content

and superpotential which flow in the IR to the same moduli space parametrised by

the toric variety [45, 46]. In fact these theories are expected [48, 12] to be completely

dual in the IR as field theories. The identification of the moduli space is but one man-

ifestation, in addition, they should have the same operator spectrum, same relevant

and marginal deformations and correlation functions. The phenomenon was dubbed

toric duality.

Recently this duality has caught some attention [48, 12, 32, 143, 24], wherein

three contrasting perspectives, respectively brane-diamond setups, dual variables in

field theory as well as Af = 1 geometric transitions, have lead to the same conjecture

that Toric Duality is Seiberg Duality for A/ = 1 theories with toric moduli spaces. In

addition, the same phases have been independently arrived at via (p, q)-web configu-

rations [80].

The Inverse Algorithm of [45] remains an effective - in the sense of reducing the

computations to nothing but linear algebra and integer programming - method of

deriving toric (and hence Seiberg) dual theories. With this convenience is a certain

loss of physical and geometrical intuition: what indeed is happening to the fields

(both in the sigma model and in the brane world-volume theory) as one proceed

with the linear transformations? Moreover, in the case of the cone over the third del

Pezzo surface (dP3 ), various phases have been obtained using independent methods

60

__ __



[48, 12, 24] while they have so far not been attained by the Inverse Algorithm.

The purpose of this writing is clear. We first supplant the present shortcoming by

explicitly obtaining all phases of dP3. In due course we shall see the true nature of toric

duality: that the unimodular degree of freedom whence it arises as claimed in [46] -

though such unimodularity persists as a symmetry of the theory - is but a special case.

It appears that the quintessence of toric duality, with regard to the Inverse Algorithm,

is certain multiplicity of fields in the gauged linear sigma model. Permutation

symmetry within such multiplicities leads to torically dual theories. Furthermore we

shall see that these multiplicities have beautiful combinatorial properties which still

remain largely mysterious.

Moreover, we also discuss how symmetries of the physics, manifested through

"flavor symmetries" of multiplets of bi-fundamentals between two gauge factors, and

through "node symmetries" of the permutation automorphism of the quiver diagram.

We shall learn how in many cases the isometry of the singularity leads us to such

symmetries of the quiver. More importantly, we shall utilise such symmetries to

determine, very often uniquely, the form of the superpotential.

The outline of this section is as follows. In Section 5.2 we present the multiplicities

of the GLSM fields for the theories C2/Zn as well as some first cases of C3 /(Zk X Zm)

and observe beautiful combinatorial properties thereof. In Section 5.3 we show how

toric duality really originates from permutation symmetries from the multiplicities

and show how the phases of known torically dual theories can be obtained in this new

light. Section 5.4 is devoted to the analysis of node and flavor symmetries. It addresses

the interesting problem of how one may in many cases obtain the complicated forms

of the superpotential by merely observing these symmetries. Then in Section 5.5 we

briefly give an argument why toric duality should stem from such multiplicities in

the GLSM fields in terms of monodromy actions on homogeneous coordinates. We

conclude and give future prospects in Section 5.6.
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5.2 Multiplicities in the GLSM Fields

We first remind the reader of the origin of the multiplicity in the homogeneous coordi-

nates of the toric variety as described by Witten's gauged linear sigma model (GLSM)

language [167]. The techniques of [8, 38, 138, 11] allow us to write the D-flatness and

F-flatness conditions of the world-volume gauge theory on an equal footing.

At the end of the day, the U(l)n JV = 1 theory with m bi-fundamentals on the

D-brane is described by c fields Pi subject to c - 3 moment maps: this gives us the

(c - 3) x c charge matrix Qt. The integral cokernel of Qt is a 3 x c matrix Gt; its

columns, up to repetition, are the nodes of the three-dimensional toric diagram

corresponding to the IR moduli space of the theory. These c fields pi are the GLSM

fields of [167], or in the mathematics literature, the so-called homogeneous coordinates

of the toric variety [30]. The details of this forward algorithm from gauge theory data

to toric data have been extensively presented as a flow-chart in [45, 46] and shall not

be belaboured here again.

The key number to our analyses shall be the integer c. It is so that the (r + 2) x c

matrix T describes the integer cone dual to the (r + 2) x m matrix K coming from

the F-terms. As finding dual cones (and indeed Hilbert bases of integer polytopes)

is purely an algorithmic method, there is in the literature so far no known analytic

expression for c in terms of m and r; overcoming this deficiency would be greatly

appreciated.

A few examples shall serve to illustrate some intriguing combinatorial properties

of this multiplicity.

We begin with the simple orbifold C 3 /Zn with the Zn action on the coordinates

(x, y, z) of C3 as (x, y, z) - (wax, wby, w2-z) such that w is the nth root of unity

and a + b- 1 O(modn) to guarantee that Zn C SU(3) so as to ensure that the

resolution is a Calabi-Yau threefold. This convention in chosen in accordance with

the standard literature [8, 38, 138, 11].

Let us first choose a = 0 so that the singularity is effectively C x C2 /Zn; with the

toric diagram of the Abelian ALE piece we are indeed familiar: the fan consists of a
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single 2-dimensional cone generated by e2 and nel - e2 [62]. This well-known Af = 2

theory, under such embedding as a C3 quotient, can thus be cast into X = 1 language.

Applying the Forward Algorithm of [8, 38, 138, 11] to the / =1 SUSY gauge theory

on this orbifold should give us none other than the toric diagram for C2 /Zn. This is

indeed so as shown in the following table. What we are interested in is the matrix

Gt, whose integer nullspace is the charge matrix Qt of the linear sigma model fields.

We should pay special attention to the repetitions in the columns of Gt.

5.2.1 C2 /Zn

We present the matrix Gt, whose columns, up to multiplicity, are the nodes of the

toric diagram for C2 / Z n for some low values of n:

We plot in Figure 5-1 the above vectors in Z3 and note that they are co-planar,

as guaranteed by the Calabi-Yau condition. The black numbers labelling the nodes

are the multiplicity of the vectors (in blue) corresponding to the nodes in the toric

diagram.

n=2 n=4
1 1

(1. 0.0)
(. 0.0

(0. 1, 0) (0, 0 11) (0. -1. 2) (0. -2 3) (0. -3. 4)
(0. 1, 0) o. 0. 1) (0, -1. 2) 1 4 6 

n=3 nS5
1

/ 1 (,1 (. .2 0.0- . -45)

(0.1.0) 0.0.1) (0-1.2) (0-2.3) .1, 0 (0,0. 1) (0,-1. 2) (0. -23) (O.-3. 4) 0.-4.5)
10 . 0) (0. 0.1) (0.-1.21 (0. -2. 1 5 5 31

1 3 1 1 5 10 10 5 1

Figure 5-1: The familiar toric diagrams for C2/(Zk x Zm), but with the multiplicity
of the sigma model fields explicitly labelled.

These toric diagrams in Figure 5-1 are indeed as expected and are the well-known

examples of C2/Zn. Now note the multiplicities: a pattern in accordance with Pascal's
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triangle can clearly be observed. For general n, we expect 's on the extremal vertices

of the triangles while for the ith internal colinear node, we have multiplicity ( n

Therefore for this case

c = E + 1 = 2n + 1 (5.2.1)
i=l i

We show this explicitly in the appendix.

5.2.2 C3 /(Zk X Zk)

As pointed out in [45], in the study of arbitrary toric singularities of local Calabi-Yau

threefolds, one must be primarily concerned with the 3-dimensional Abelian quotient

C3/(Zk x Zk). Partial resolutions from the latter using the Inverse Algorithm suffices

to handle the world volume gauge theory. Such quotients have also been extensively

investigated in [8, 38, 138, 11, 146, 74].

As is well-known, the toric diagrams for these singularities are (k + 1) x (k + 1)

isosceles triangles. However current restrictions on the running time prohibits con-

structing the linear sigma model to high values of k. We have drawn these diagrams

for the first two cases, explicating the multiplicity in Figure 5-2. From the first two

cases we already observe a pattern analogous to the above C2 /z, case: each side of

the triangle has the multiplicity according to the Pascal's Triangle. This is to be

expected as one can partially resolve the singularity to the C2 orbifold. We still do

not have a general rule for the multiplicity of the inner point, except in the special

case of C3/(Z 3 X Z 3 ), where it corresponds to the sum of the multiplicities of its

neighbouring points. For contrast we have also included Z 2 X Z 3, the multiplicities of

whose outside nodes are clear while those of the internal node still elude an obvious

observation.

5.3 Toric Duality and Multiplicity Symmetry

What we shall see in this section is that the numerology introduced in the previous

section is more than a combinatorial curio, and that the essence of toric duality
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(1,1) ~(0,0 1) \ , (k,m)= (3,3)

1 (2,-1,0) (1,0) (1. 10,0) (-1,2. 0) 1

3 3
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Figure 5-2: The familiar toric diagrams for C2/Zn, but with the multiplicity of the
sigma model fields explicitly labelled.

lies within the multiplicity of linear sigma model fields associated to each node of the

toric diagram.

Some puzzles arose in [48, 12] as to why not all of the four Seiberg dual phases of

the third del Pezzo surface could be obtained from partially resolving C3 /(Z 3 X Z 3 ).

In this section we shall first supplant this shortcoming by explicitly obtaining these

four phases. Then we shall rectify some current misconceptions of toric duality and

show that the unimodular transformations mentioned in [46] is but a special case and

that

PROPOSITION 5.3.1 Toric duality is due to the multiplicity of the gauged linear sigma

model fields associated to the nodes of the toric diagram of the moduli space.

Let us address a subtlety of the above point. By toric duality we mean so in the
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restricted sense of confining ourselves to the duality obtainable from the canonical

method of partial resolution, which guarantees physicality. There are other sources

of potentially dual theories posited in [45, 46] such as the "F-D ambiguity" and the

"repetition ambiguity." Because these do not necessarily ensure the gauge theory

to have well-behaved matter content and superpotential and have yet to be better

understood, the toric duality we address here will not include these cases.

5.3.1 Different Phases from a Unique Toric Diagram

Let us recapitulate awhile. In [46] the different phases of gauge theories living on

D-branes probing toric singularities were studied. The strategy adopted there was to

start from toric diagrams related by unimodular transformations. Different sets of

toric data related in this way describe the same variety. Subsequently, the so called In-

verse Algorithm was applied, giving several gauge theories as a result. These theories

fall into equivalence classes that correspond to the phases of the given singularity.

In this section we show how indeed all phases can be obtained from a single toric

diagram. The claim is that they correspond to different multiplicities of the linear

oa-model fields that remain massless after resolution. In order to ensure that the

final gauge theory lives in the world volume of a D-brane, we realize the different

singularities as partial resolutions of the C3 /(Z 3 X Z3) orbifold (Figure 5-3).

The resolutions are achieved by turning on Fayet-Iliopoulos terms. Then some

fields acquire expectation values in order to satisfy D-flatness equations. As a result,

mass terms for some of the chiral superfields are generated in the superpotential.

Finally, these massive fields can be integrated out when considering the low energy

regime of the gauge theory. Alternatively, we can look at the resolution process from

the point of view of linear -model variables. The introduction of FI parameters

allows us to eliminate some of them. The higher the dimensionality of the cone in

which the (i's lie, the more fields (nodes on the toric diagram) we can eliminate.

In this way, we can obtain the sub-diagrams that are contained in a larger one, by

deleting nodes with FI parameters.

In the following, we present the partial resolutions of C3/(Z 3 X Z3) that lead to
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Figure 5-3: Toric diagram of C3/(Z 3 x 3), with the GLSM fields labelled explicitly
(q.v. [45]).

the different phases for the Fo, dP2 and dP3 singularities.

5.3.2 Zeroth Hirzebruch surface

F0 has been shown to have two phases [45, 46]. The corresponding quiver diagrams

are presented in Figure 8-4. The superpotentials can be found in [45, 46] and we will

present them in a more concise form below in (5.3.3) and (5.3.4). Indeed we want

to rewrite them in a way such that the underlying SU(2) x SU(2) global symmetry

of these theories is explicit. Geometrically, it arises as the product of the SU(2)

isometries of the two Pl's in F0o = P1 x P.

The matter fields lie in the following representations of the global symmetry group

SU(2) x SU(2) x

dual on 4 X23

( .) X4
Xi

(,1 -ij-L-Z.

SU(2) x SU(2)

(Ol.)

(5.3.2)

(n, .)
(.,0)
(El, 9)
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1 X1 2 1 X12 2

W. >> * >> 0

iX«4 fi i~x4l3 'X'3

" >E · << ·
4 Xi 3 4 X 3

I II

Figure 5-4: Quiver diagrams of the two torically dual theories corresponding to the
cone over the zeroth Hirzebruch surface F0.

It was shown in [48, 12, 24] that these two theories are indeed Seiberg duals.

Therefore, they should have same global symmetries as inherited from the same ge-

ometry. For example, if we start from phase II and dualize on the gauge group 4, we

see that the dual quarks X43 and X 4 are in the complex conjugate representations

to the original ones, while the X3 's are in (, o) since they are the composite Seiberg

mesons (X = X 4X41). The corresponding superpotentials have to be singlets under

the global symmetries. They are given by

WII -EiiX12X 3 4 mnX23 X4l (5.3.3)

WI = EijemnX12X23X3 - ijEmnX4 X (5.3.431)

We identify WII as the singlet appearing in the product X12 X3 4 X2 3 X4 1 =

(o, ) ® (, ) ® (-.,) ® (.,n), while WI is the singlet obtained from X12 X23 X31 -

X41 X43 X31 = (,) ® (.,E) ® (0,0) - (',0) ® (, ) (,). In [46] we obtained
these two phases by unimodular transformations of the toric diagram. Now we refer

to Figure 5-5, where we make two different choices of keeping the GLSM fields during

partial resolutions. We in fact obtain the two phases from the same toric diagram with

different multiplicities of its nodes. This is as claimed, torically (Seiberg) dual phases

are obtained from a single toric diagram but with different resolutions of the multiple

GLSM fields. We have checked that the same result holds if we perform unimodular
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Figure 5-5: Toric diagrams of the two torically dual theories corresponding to the
cone over the zeroth Hirzebruch surface F0, with the surviving GLSM fields indicated
explicitly.

transformations and make different choices out of the multiplicities for each of these

SL(3; Z)-related toric diagrams. Every diagram could give all the phases.

5.3.3 Second del Pezzo surface

Following the same procedure, we can get the two phases associated to dP2 by partial

resolutions conducing to the same toric diagram. These theories were presented in

[48, 12]. The GLSM fields surviving after partial resolution are shown in Figure 5-6.

.

4

36

.

8

0 36

37

I

0
37

II

Figure 5-6: Toric diagrams of the two torically dual theories corresponding to the
cone over the dP2 , with the surviving GLSM fields indicated explicitly.

5.3.4 Third del Pezzo surface

There are four known phases that can live on the world volume of a D-brane prob-

ing dP3. They were obtained using different strategies. In [48], the starting point

was a phase known from partial resolution of C3 /(Z 3 x Z3 ) [46]. Then, the phases
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were found as the set of all the Abelian theories which is closed under Seiberg dual-

ity transformations. In [12] the phases were calculated as partial resolutions of the

C3/(z 3 x Z3 ) orbifold singularity. Finally, an alternative approach was elaborated in

[24], where four dimensional, X = 1 gauge theories were constructed wrapping D3,

D5 and D7 branes over different cycles of Calabi-Yau 3-folds. From that perspective,

the distinct phases are connected by geometric transitions.

The partial resolutions that serve as starting points for the Inverse Algorithm to

compute the four phases are shown in Figure 5-7. With these choices we do indeed

obtain the four phases of the del Pezzo Three theory from a single toric diagram

without recourse to unimodular transformations.

4 0 8 4 27

41 40 37 33

I III

II I

Figure 5-7: Toric diagrams of the four torically dual theories corresponding to the
cone over the dP, with the surviving GLSM fields indicated explicitly.

Having now shown that all the known cases of torically dual theories can be

obtained, each from a single toric diagram but with different combinations from the

multiplicity of GLSM fields, we summarise the results in these preceding subsections

(cf. Figure 5-8).

We see that as is with the1cases for the Abelian orbifolds of C2 and C, i Section

5.2, the multiplicity of the outside nodes is always while that of the internal node is

at least the sum of the outside nodes. What is remarkable is that as we choose different

combinations of GLSM models to acquire VEV and be resolved, what remains are
combinations of GLSM models to acquire VEV and be resolved, what remains are
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Table 5.1: The number of GLSM multiplicities in the centre of the toric diagram
versus the number of fields in the final gauge theory.

different number of multiplicities for the internal node, each corresponding to one of

the torically dual theories. This is what we have drawn in Figure 5-8.

Hirzerbruch 0 del Pezzo 2

I II I II

del Pezzo 3

I II III IV

Figure 5-8: GLSM multiplicities in the toric diagrams associated to the dual the-
ories. The outside nodes each has a single GLSM corresponding thereto, i.e., with
multiplicity 1.

5.3.5 GLSM versus target space multiplicities

Let us pause for a moment to consider the relation between the multiplicities of linear

a-model and target space fields. We present them in (5.1).

We can immediately notice that there exist a correlation between them, namely

the phases with a larger number of target space fields have also a higher multiplicity

of the GLSM fields. Bearing in mind that partial resolution corresponds (from the

point of view of the GLSM) to eliminating variables and (from the original gauge
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Singularity Phase Central GLSM Fields Target Space Fields
F0 I 5 12

II 4 8
dP2 I 6 13

II 5 11
dP3 IV 11 18

III 8 14
II 7 14
I 6 12



theory perspective) to integrating out massive fields, we can ask whether different

phases are related by an operation of this kind. An important point is that, on the

gauge theory side, the elimination of fields is achieved by turning on non-zero vevs

for bifundamental chiral fields. Apart from generating mass terms for some fields,

bifundamental vevs higgs the corresponding gauge factors to the diagonal subgroups.

As a consequence gauge symmetry is always reduced. All the theories in Table 5.1

have the same gauge group, so we conclude that they cannot be connected by this

procedure.

5.4 Global Symmetries, Quiver Automorphisms and

Superpotentials

As we mentioned before, the calculation of the superpotential is not an easy task, so

it would be valuable to have guiding principles. Symmetry is definitely one of these

ideas. We have seen that the isometry SU(2) x SU(2) of P1 x P1 suffices to fix

the superpotential of Fo. We will now see that the SU(3) isometry of C3 /Z3 does

the same job for dPo. These examples tell us that the symmetry of a singularity is

a very useful piece of information and can help us in finding and understanding the

superpotential. Indeed our ultimate hope is to determine the superpotential by direct

observation of the symmetries of the background.

Before going into the detailed discussion, we want to distinguish two kinds of sym-

metries, which are related to the background in the closed string sector, that can be

present in the gauge theory. The first one is the isometry of the variety. For example,

the SU(2) x SU(2) of IP1 x IP1 and SU(3) ofC3/Z 3. These symmetries are reflected in

the quiver by the grouping of the fields lying in multiple arrows into representations

of the isometry group. We will call such a symmetry flavor symmetry. As we have

seen, this flavor symmetry is very strong and in the aforementioned cases can fix the

superpotential uniquely.

The second symmetry is a remnant of a continuous symmetry, which is recovered
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in the strong coupling limit and broken otherwise. For del Pezzo surfaces dPn we

expect this continuous symmetry to be the Lie group of En. We will refer to it

as the node symmetry, because under its action nodes and related fields in the

quiver diagram are permuted. We will show that using the node symmetry we can

group the superpotential terms into a more organized expression. This also fixes the

superpotenial to some level.

We will begin this section by discussing how symmetry can guide us to write down

the superpotential using dP3 as an example. Then for completeness, we will consider

the other toric del Pezzo and the zeroth Hirsebruch surface and will present a table

summarizing our results.

5.4.1 del Pezzo 3

The node symmetries of dP3 phases have been discussed in detail in [12]. It was found

that they are D6, Z 2 X Z2, Z2 X Z2 and D6 for models I, II, III and IV respectively

(where D6 is the dihedral group of order 12). For the convenience of the reader, we

remark here that in the notation of [48], these models were referred to respectively as

II, I, III and IV therein. Here we will focus on how the symmetry enables us to rewrite

the superpotentials in an enlightening and compact way. Furthermore, we will show

how they indeed in many cases fix the form of the superpotential. This is very much

in the spirit of the geometrical engineering method of obtaining the superpotential

[24, 32, 143] where the fields are naturally organised into multiplets in accordance

with Hom's of (exceptional collections of) vector bundles.

We recall that the complete results, quiver and superpotential, were given in

[12, 48] for the four phases of dP3. Our goal is to re-write them in a much more

illuminating way. First we give the quiver diagrams of all four phases in Figure 5-

9. In this figure, we have carefully drawn the quivers in such a manner that the

symmetries are obviously related to geometric actions (rotations and reflections) on

them; this is what we mean by quiver automorphism. Now let us move on to see how

the symmetry determines the superpotentials.

Let us first focus on model I. We see that its quiver exhibits a D6 symmetry of
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Figure 5-9: Quiver diagrams of the four torically dual theories corresponding to the
cone over dP3 . We see explicitly the node symmetries to be respectively: D6, Z2 X Z2,

Z2 X Z2 and D6.

the Star of David. This quiver has the following closed loops (i.e. gauge invariant

operators): one loop with six fields, six loops with five fields, nine loops with four

fields and two loops with three fields. Our basic idea is following:

* If a given loop is contained in the superpotential, all its images under the node

symmetry group also have to be present;

* Since we are dealing with affine toric varieties we know that every field has to

appear exactly twice so as to give monomial F-term constraints [45];

* Moreover, in order to generate a toric ideal, the pair must have opposite signs.

We will see that these three criteria will be rather discriminating. The gauge
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invariants form the following orbits under the action of D6 (by (a, b, c... n) we mean

the term XabXbc . . Xna in the superpotential):

(1) {(1,2,3,4,5,6)}

(2) {(1, 2, 3, 4, 5), (2, 3, 4, 5, 6), (3, 4, 5, 6, 1), (4, 5, 6,1, 2), (5, 6,1, 2, 3), (6, 1, 2, 3, 4)}

(3) {(1, 2, 3, 5), (2, 3, 4, 6), (3, 4, 5,1), (4, 5, 6, 2), (5, 6,1, 3), (6,1, 2, 4)}

(4) {(1, 2, 4, 5), (2, 3, 5, 6), (3, 4, 6, 1)}

(5) {(1, 3, 5), (2, 4, 6)}

(5.4.5)

This theory has 12 fields, thus all the terms in the superpotential must add up to 24

fields. This leaves us with only two possibilities. One is that the superpotential is

just given by the six quartic terms in (3) and the other is that W = (1) + (4) + (5).

The first possibility is excluded by noting the following. The field X12 shows up in

(1, 2, 3, 5) with positive sign (which let us assume ab initio to be positive coefficient

at this moment), so the sign in front of (6, 1, 2, 4) must be negative, forcing the sign

in front of (2, 3, 4, 6) to be positive because of the field X4 6. Whence the sign in front

of (1, 2, 3, 5) must be negative due to the field X23 , contraciting our initial choice. So

the toric criterion together with the node symmetry of the quiver leaves us with only

one possibility for the superpotential. We can represent the gauge invariant terms as

0 = X12X2 3X34X 45X 56X 61; A = X13X 35X51; V = X24X46X62;

= 23X35X56X62; 0 = X 13X34X46X61; X = X12X24X45X51.

where the sign has been determined by toric criteria. This gives the following nice

schematic representation for the superpotential as:

W = O - (o+ 0 + + (A + V) = - 3(o) +2(A)

This is of course the same as the one given in [48, 12].

Model II has a Z 2 X Z 2 node symmetry. One Z 2 is a mirror reflection with respect

to the plane (1234) and the other Z 2 is a 7r rotation with respect to the (56) line

75



accompanied by the reversing of all the arrows (charge conjugation of all fields). From

the quiver and the action of the symmetry group, we see that the gauge invariants

form the following orbits:

(1) {(2, 6, 4, 1, 3), (2, 5, 4, 1, 3)

(2) {(2, 6, 4, 3), (2, 5, 4, 3), (4, 1, 2, 6), (4, 1, 2, 5)} (5.46)

(3) {(2, 6, 1), (2, 5, 1), (3, 6, 4), (3, 5, 4)}

(4) {(6, 1,3), (5,1, 3)}

Since we have 14 fields, all terms in the superpotential must add to give 28 fields.

Taking into account the double arrow connecting nodes 1 and 3, we see that orbits

containing 13 fields should appear four times. There are four possible selections giving

a total 28 fields: (2) + (3); (2) + (4) + (4); (1) + (4) + (3) and (1) + (4) + (4) + (4).

The first choice gives three X2 6 fields while the fourth gives three X61 fields. These

must be excluded. We do not seem to have a principle to dictate to us which one of

the remaining is correct.

However, experience has lead us to observe the following patten: fields try to

couple to different fields as often as possible. In second choice the field X 26 always

couples to X64 while in the third choice it couples to both X64 and X 61. Using our

rule of thumb, we select the third choice which will turn out to be the correct one.

Next let us proceed to write the superpotential for this third choice. Let us take

the term +X1 2X 2 6 X 61 as our starting point. since the field X 12 appears again in the

loop X12X25X 51 , it must have negative sign. Using same reason we can write down

orbits (1) + (3) as

[X 12 X 26X 61 - X 12 X2 5 X 5 1 + X 3 6X 64 X4 3 - X3 5X 5 4 X4 3 ]

+[-X 26X 64 X 4 lY1 3 X 32 + X 25X 54X 41?X 32]

where we have chosen arbitrarily the field Y13 from the doublet (X13, Y 3) and left the

? mark undetermined (either to be Y13 or X13 ). Then we use another observed fact

that multiple fields such as (X 13 , Y13) are also transformed under the action of the
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symmetry generators. Since loops (2, 6, 4, 1, 3), (2, 5, 4, 1, 3) are exchanged under the

Z 2 action, we should put X 13 in the ? mark.

Finally we can write down the orbit (4) which is uniquelly fixed to be +[-X 6lX1 3X 3 6+

X5 1 Y13 X3 5 ]·

Combining all these considerations we write down the superpotential as

WII = [X12X 26X 61 - X12X2 5X51 + X36X 64X43 - X35X54X43]

+[-X6 1 X1 3 X 36 + X5 1Y13X3 5] + [-X 26X 64X 4 1Y 13X3 2 + X2 5X5 4X41X1 3X32]

= x2 X 2)[A] + Z2[v] + Z2[0],

where A := X 12 X2 6X 61 , V := X 61X13X3 6 and 0:= X 26X 64X41 Y13X3 2. Once again,

symmetry principles has given us the correct result without using the involved calcu-

lations of [48, 12].

Model III posesses a Z 2 x Z 2 node symmetry: one Z2 is the reflection with respect

to plane (246) while the other Z2 is a reflection with respect to plane (136). Under

these symmetry action, the orbits of closed loops are

(1) {(4, 1, 5, 6), (4, 3, 5, 6), (2, 1, 5, 6), (2, 3, 5, 6)}

(2) {(4, 1, 5), (4, 3, 5), (2, 1, 5), (2, 3, 5)}

Furthermore, the sum of these two oribts gives 28 fields which is as should be because

we again have 14 fields. Using the same principles as above we can write down the

superpotential as

WilI = [X41X 15X 54 - X54X43X3 5 + Y35X52X 23 - X52X 21Y15]

+[-X4 1Y 1 5X5 6X 64 + X64X4 3Y35Y5 6 - X23X3 5X5 6X 62 + X 62X21X15 Y5 6]

= (Z2 X Z2)[A + ],

where A := X41X15X54 and =I := -X4 1Y 1 5X 56X 64. Let us explain above formula.

First let us focus on the first row of superpotential. Under the Z2 action relative to

plane (246) we transfer X41 X1 5X5 4 to X54X4 3X3 5, while under the Z2 action relative
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to plane (136) we transfer X41 X 1 5X54 to -X 52X 21 Y 1 5. This tell us that (X1 5, X35) and

(Y15, Y3 5 ) are Z21246 multiplets while (X1 5 , Y15) and (X 3 5 , Y3 5 ) are Z2 1136 multiplets.

The same Z2 x Z2 action works on the second row of superpotential if we notice

that (X56,Y56) are permuted under both Z21246 and Z21136 action. The only thing

we need to add is that since X15 in term X41 X1 5X5 4 so we must choose Y15 in term

-X4 1 Y 15X5 6X 64 to make the field X41 couple to different fields. This will fix the

relationship between the first row and the second row. Again we obtain the result of

[48, 12] by symmetry.

For model IV, there is a Z 3 symmetry rotating nodes (123) and a Z 2 reflection

symmetry around plane (123). There is also a further symmetry that will be useful in

writing W: a mirror reflection relative to plane (145). The closed loops are organized

in a single orbit

{(1, 6, 4), (2, 6, 4), (3, 6, 4) , (1 (2, 6, 5) 5), (3, 6, 5)} (5.4.8)

This orbit will appear twice due to the multiple arrows. Using the Z 3 symmetry first

we write down the terms [X41X16X64 + X43X3 6Y64 + X4 2X 2 6Z 64] where the triplet

of fields (X64, Y64, Z6 4) are rotated under the Z3 also. Next using the Z2 symmetry

relative to plane (145), we should get -(X41 Y 1 6?) where we do not know whether ?

should be Y64 or Z64. However, at this stage we have the freedom to fix it to be Y64,

so we get [-X4 1 Y1 6Y64 - X43Y36Z64- X42Y26X 64]. Notice that in principle we can have

[-X41Y16Y64- X43Y36X64- X42Y2 6Z 64] as well. However, this choice does not respect

the Z 3 symmetry and X42 couples to same field Z64 twice. Now we act with the other

Z2 symmetry and get [X51Y16X65 + X53Y 36Y 65 + X52Y26 Z65]. Finally we are left with

the term -[X 51X1 6? + X53 X36? + X52X26?] where Z3 symmetry gives two ordered

choices (Y65, Z6 5 , X 65) or (Z65, X 65, Y65). We do not know which one should be picked.

The correct choice is - [X5 1X 1 6Y 65 + X53X3 6Z65 + X5 2X2 6X65] which happens to have
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the same order as the second row. Putting everything together we get

WIV - [X41 X1 6X 64 + X 4 3X36 Y64 + X 42X 2 6Z 64]

- [X4 1 Y1 6 Y6 4 + X4 3 Y3 6 Z64 + X4 2 Y2 6X 64]

+ [X51Y 16X 65 + X 53Y3 6Y 65 + X52Y26Z65]

- [X5 1X1 6Y65 + X5 3X3 6 Z65 + X52 X2 6X65]

(4 X Z3)[A],

where A := X41X1 6X 64 . This is again in agreement with known results.

5.4.2 Hirzebruch 0

The two phases of Fo were considered in Section 5.3.2. We saw that they both have

an SU(2) x SU(2) flavor symmetry coming from the isometries of P1 x IP1. Besides

that, they also have a Z2 x Z2 node symmetry. For phase II, one of the Z2 actions

interchanges (12) ++ (34) while the other interchanges (23) ++ (41). For phase I, one

Z2 exchanges 2 +- 4, while the second Z2 interchanges 1 ++ 3 and charge conjugates all

the fields. The superpotentials can be fixed uniquely by flavor symmetry as (cf. (5.3.3)

and (5.3.4))

· - i m jn i vm ajn
WI ijEmn1~/2x231~ -_ ijXmnX41233WI = EijEnX1 2 XX4Emn 3l mn

Wi I -- 'eiX12Xaj4fmnX23X41

where the way we wrote them exhibits both flavor and node symmetries. However,

as it can be seen easily, if we only use node symmetry, there are several choices to

write down the superpotential just like in the case of phase IV of dP3. The reason for

that is because we have too many multiple arrows in the quiver. In these situations,

it is hard to determine how these multiple arrows transform under the discrete node

symmetry. Here we are saved by utilising the additional flavor symmetry.
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5.4.3 del Pezzo 0

The quiver for this model is presented in Figure 5-10. This is a well known example

and has also been discussed in [24, 17]. The SU(3) isommetry of IP2 appears as an

SU(3) flavor symmetry. The three fields lying on each side of the triangle form funda-

mental representations of SU(3). Furthermore, this theory has a Z 3 node symmetry

that acts by cyclically permuting the nodes (123). After all the cone over del Pezzo

0 is none other than the resolution Op2(-3) -+ C3 /Z 3 . Bearing these symmetries in

mind, we can write down the superpotential uniquely as

w = f.0YX(()X v() (5.4.9)

which is explicitly invariant under both SU(3) (a, f and y indices) and Z3 cyclic

permutations of (123).

1

3 2

Figure 5-10: The quiver diagram for the theory corresponding to the cone over dPo.

5.4.4 del Pezzo 1

The quiver for this model is shown in Figure 5-11. This theory has a Z2 node sym-

metry that acts by interchanging (23) <- (14) and charge conjugating all the fields.

From this symmetry, we have the following orbits of closed loops

(1) {(1, 2, 3,4)} (5.4.10)

(2) {(1, 3,4), (2,3, 4)}
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We need 20 fields in the superpotential which can be obtained by using each orbit

twice. Furthermore, this theory has an SU(2) flavor symmetry with respect to which

the triplet between nodes 3, 4 splits into the doublet X34 and a singlet X34. This

flavor symmetry comes from the blow up of 1P2 at one point [1, 0, 0] which breaks the

SU(3) isometry to SU(2). Using these inputs we get the superpotential uniquely as

W-= [= a X3 4X 4X 13 - aPX34 X3X 4 2] + EX 12X34 X(5.4.11)

where we can see that under the Z 2 transformation the two terms in the brackets

transform into one another, while the last one is invariant.

X 121 2

Xo

X3
41 23

4 3
X 

34, X34

Figure 5-11: The quiver diagram for the theory corresponding to the cone over dP1.

5.4.5 del Pezzo 2

The first phase of dP2 has a Z2 node symmetry that interchanges nodes 1 and 2. The

quiver for the phase I is given in Figure 5-12. From this we read out the orbits of

closed loops:

(1) {(4, 1, 5, 3), (4, 2, 5, 3)}

(2) {(4, 1, 5), (4, 2, 5)} (5.4.12)

(3) {(3, 1,5), (3,2, 5)}

Since we need a total of 26 fields in the superpotential, the only solution consistent

with the toric condition is W = (1) + (2) + (3) + (3). Knowing this we can write

down the superpotential. First we have the terms [X41X15X 54 - X4 2X2 5X54]. Under

this choice, (X15 , X2 5) and (Y15, Y25) are Z2 multiplets. This gives us immediately
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-[X 4 1 Y 15 X 5 3 X 3 4 - X 4 2 Y 2 5 Y 53 X 3 4], where we couple X4 1 to Y15 (likewise X4 2 to Y25 )

because X4 1 has coupled to X 15 in the orbit (2). Furthermore, we have chosen arbi-

trarily (X53, Y53) as the Z 2 multiplets and Z53 as the Z2 singlet. Next we will have

-[X31X15Y53 - X32X25X 53 ], where we couple X31 to Y53 instead of X53 because this

term has the negative sign1. The last terms are obviously +[X31Y15Z53 - X32Y 25Z5 3].

Adding all pieces together we get

WI = [X41X 15 X 54 - X42X25X54]- [X4 1Y 15X 53 X34 - X42Y25Y 53X34]

- [X31X 15Y53 - X 32X 25X 53] + [X31Y15 Z53 - X32Y2Z53].

4 4

2 1 2

5 5

Model I Model II

Figure 5-12: Quiver diagrams for the two models corresponding to the cone over dP2.

Now we move to phase II. The quiver is given by Figure 5-12. It has a Z2 symmetry

that interchanges nodes 1 2 and 4 5 and charge conjugates all the fields. From

this we read out the orbits of closed loops:

(1) {(1, 4, 5, 2, 3)}

(2) {(1, 4, 2, 3), (1, 5, 2, 3)}

(3) {(1, 4, 5, 3), (3, 4, 5, 2)} (5.4.13)

(4) {(3, 1, 5), (3, 4, 2)}

(5) {(4, 5, 3)}

We need 22 fields in the superpotential. The only consistent choice results in WI, =

'Here we do not consider the Z5 3 because it is the singlet under the Z2 action.
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(1)+(2)+(4)+(5). Orbits 1 and 5 give the terms [X 45 X 5 3 X 3 4 ] - [X1 4 X 4 5 X 5 2 X 23 X3 1 ]1

Notice that under the Z 2 action (X23, X3 1 ) are a doublet as well as (Y23, Y31). Now

we consider orbit 4. Z 2 action tell us that there are two choices, -[X 5 3Y 31X1 5 +

X3 4X4 2Y23] or -[X53X31X15 + X34X42X2 3], where the sign is determined by X5 3 of

orbit 5. However, field X23 X31 at orbit 1 tell us that the second choice should have

positive sign and give a contradiction. This fixes the first choice. Finally the orbit 2

gives +[Y23X 31X5X 5 2 + X 4 2 X 2 3 Y 3 1X 1 4 ] where the field X31 couples to X1 5 because

the field X1 5 has coupled to Y31 at orbit 4 (for the same reason X4 2 couples to X2 3).

Combining everything, we get

W = [X34X4 5X 53] - [X53Y31X 15 + X34X4 2Y23 ]

+[Y23X 31 X1 5X 52 + X 4 2X 23 Y31 X1 4] - [X2 3X3 1X 14X 4 5X 5 2]. (5.4.14)

5.4.6 Summary

Let us make some remarks before ending this section. The lesson we have learnt is

that symmetry considerations can become a powerful tool in determining the physics.

These symmetries are inherited a fortiori from the isometries of the singularity which

we probe. They exhibit themselves as "flavor symmetries", i.e., grouping of multiplets

of arrows between two nodes, as well as "node symmetries," i.e., the automorphism

of the quiver itself. Relatively straight-forward methods exist for determining the

matter content while the general techniques of reconstructing the superpotential are

rather involved. The discussion of this section may serve to shed some light.

First we see that using symmetry we can group the terms in the superpotential into

a more compact and easily understood way. Second, in some cases, the symmetry can

fix the superpotential uniquely. Even if not so, we can still constrain it significantly.

For example, in the toric case, we can see which closed polygons (gauge invariant

operators) will finally show up in the superpotential. Combining some heuristic ar-

guments, we even can write down the superpotential completely. This is indeed far

more convenient than any known methods of superpotential calculations circulated
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amongst the literature.

However, we remark that application of Seiberg duality does tend to break the

most obvious symmetry deducible from geometry alone in certain cases. Yet we can

still find a phase which exhibits maximal symmetry of the singularity. Without much

ado then let us summarise the results (the most symmetric case) in Table 5.2.

5.5 Multiplicity, Divisors and Monodromy

Now let us return to address the meaning of the multiplicities. Some related issues

have been raised under this light in [141, 34]. First recall some standard results from

toric geometry. Our toric data is given by a matrix Gt of dimension 3 x c, whose

columns (up to multiplicity) are the generators := G?' of the cone (fan) in Z3 .

Its integer cokernel is thus a (c - 3) x c matrix Qt, which provides c - 3 relations

(-j qjvj = 0 with qj := Q?) among the vi and hence a (C*)c- 3 action in Cc so that

the symplectic quotient is the c - (c - 3) = 3 dimensional toric singularity in which

we are interested. Let the coordinates of Cc be (zl,..., zr), then the torus action is

given as

(Z Zc) (AQzi , Q CZ )

for i = 1,...,(c - 3) and A E C*.

5.5.1 Multiplicity and Divisors

It is well-known [62] that for any toric variety X with fan E each 1-dimensional cone

corresponds to a Cartier divisor2 of X. Since all our toric singularities are Calabi-Yau

and have the endpoints of vi coplanar, this simply means that each node of the toric

diagram corresponds to a Cartier divisor of X. In terms of our coordinates, each

2A brief reminder on Cartier divisors. A Cartier divisor D is determined by a sheaf of nonzero
rational functions fa on open cover Ua Ua such that the transition function fa/fb on overlaps Ua fnUb
are nowhere zero. It determines an (ordinary) Weil divisor as E ordv(D)V for co-dimension 1

V
subvarieties V, where ord is the order of the defining equation f of V. The sheaf generated by fa
is clearly a subsheaf of the sheaf of rational functions on X; the former is called the Ideal Sheaf,
denoted as O(-D).
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Quiver Superpotential Symmetry

I X '; 2

Fo xj, W -ijX 12X 34 cmn X2 3X41 Z 2 X 2

4 x' 3

1

' - aX12 3X331

_ 3 2 1 
2

, 2| W = [efX 34X 41X 13 -e afX 34X3X 42] + EiX 12X33 4X4alX23 Z2

3

I ~~~~~I I

WI = [X41X15X54 - X42X25X54] - [X41Y15X 53X34 - X42Y25Y53X34]
-[X 31 X 15 Y5 3 - X 3 2X2 5X53] + [X31Y15Z53 - X3 2Y25 Z53]

5 5

1

6 w = O+ ( + + ¢)+(A + V);
0 = X12 X23 X 34 X45 X5 6X6 l; = X13 X35 X5 1 ; = X244662; Z 2 x Z3

.5 = " = X 23X S5X 5 6 X 62; = X 13X 3 4X 4 6 X 6 1; = X2X24X45X51-

I 1 4 1 (1 _I4

Table 5.2: Summary of the maximally symmetric phases.
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node vi corresponds to a divisor D determined by the hyperplane zi = 0 of the ideal

sheaf O(D). Multiplicities in the toric data simply means that to each node vi with

multiplicity mi we must now associate a divisor D$mi so that the sheaf is generated

by sections zmi of O(miD).

Let us rephrase the above in more physical terms. The multiplicity mi in the

GLSM fields (homogeneous coordinates) pi corresponding to node vi simply means

the following. The gauge invariant operators (GIO) are in the form n Xj constructed

in terms of the original world volume fields Xj; each Xj is then writable as products of

the gauged linear sigma model fields pi. It is these GIO's that finally parametrise the

moduli space; i.e., algebraic relations among these GIO's by virtue of the generating

variables pi are precisely the algebraic equation of the toric variety which the D-brane

probes. Multiplicities in Pi simply means that the mi fields (Pi)k=l,...,mi must appear

together in each of the expressions Xj in terms of p's.

There is therefore, in describing the moduli space of the world-volume theory by

the methods of the linear sigma model, an obvious symmetry, per construtio: the

cyclic permutation of the fields pi, or equivalently the cyclic symmetry on the section

zimi. We summarise this in the following:

PROPOSITION 5.5.2 Describing the classical moduli space of the world-volume X = 1

SUSY gauge theory using the gauge linear sigma model prescription leads to an obvious

permutation symmetry in the sigma model fields (and hence in the toric geometry)

which realises as a product cyclic group

H Zmi with E mi = c.
i i

The index i runs over the nodes vi (of multiplicity mi) of the toric diagram.

One thing to note is that there is in fact an additional symmetry, in light of the

unimodular transformation mentioned in [46], and in fact there is a combined obvious

symmetry of

J Zm ix SL(3; Z).
i
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The above symmetry arises as a vestige of the very construction of the GLSM

approach of encoding the moduli space and its geometrical meaning in terms of sec-

tions of the ideal sheaf tensored by itself multiple times is now clear. What is not

clear is the necessity of its emergence. Points have arisen in the existing literature

[11, 141] that the multiplicity of Pi (or what was referred to as a redundancy of the

homogeneous coordinates) ensures that the D-brane does not see any non-geometrical

phases. This is to say that of the c pi's, at each point in the Kdhler moduli space, only

a subset (chosen in accordance with Proposition 5.5.2) is needed to describe the toric

singularity M. Which coordinates we choose depends on the region in the Kihler

moduli, i.e., how we tune the FI-parametres in the field theory. In summary then,

the Forward Algorithm in computing the moduli space of the f = 1 gauge theory

encodes more than merely the complex structure of the toric singularity M, but also

the Kihler structure of the resolution, given here in terms of the pair (M, O(miD)),

where O(miD) are sheafs of rational functions as determined by the multiplicities mi.

5.5.2 Partial Resolutions

Now let us turn to the Inverse Algorithm of finding the gauge theory given a toric

singularity. This is a good place to point out that the process used in the standard

Inverse Algorithm, commonly referred to as "partial resolution" is strictly somewhat

of a misnomer. The process of "partial resolution" is a precise toric method [62, 30] of

refining a cone - the so-called "star-division" - into ones of smaller volume (when the

volume is one, i.e., the generating lattice vectors are neighbourwise of determinant 1,

the singularity is completely resolved). Partial resolutions in the sense of [11, 45, 46],

where we study not the refinement but rather a sub-polytope of the toric diagram (in

other words one piece of the refinement), has another meaning.

We recall that for the cases of interest one begins with the cone of D' = C 3 /(Zk X

Zk), then resolves it completely into the fan ]Db for D' = C 3 /(Zk X Zk). The given

toric singularity D for which we wish to construct the gauge theory is then a cone

a C ED'. It is then well-known (see e.g. [30, 160]) that the variety D is a closed

subvariety of D'.
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It was pointed out in [37] (at least for Abelian orbifolds) that each additional field

in a GLSM gives rise to a line bundle R over the final toric moduli space. Let us

adhere to the notation of [37, 34]; the Grothendick group K(M) of coherent sheafs

over M are generated by a basis {Ri} of such line bundles. Now take a basis {Si} for

KC(M), the compactly supported K-group of M, which is dual to K(M) in the sense

that there exists a natural pairing [106]

(R, S) = ch(R)ch(S)Td(M), R E K(M), S E KC(M)

in the context of the McKay Correspondence [71, 162, 135, 129, 90, 158, 88].

Indeed the Si's are precisely linear combinations of the sheafs O(mjD) mentioned

earlier and so each S can be represented as O(>ij sijmijDi), summed over the divisors

Di, of multiplicity mij, and with coefficients sij. Finally we have the push-forward of

the sheafs Si to compact cycles C C M, giving a basis {Sci }.

With this setup one can compute the quiver of the gauge theory on the D-branes

probing M using the following prescription for the adjacency matrix

ai = ch(R)chc(Sc)Td(M)

Of course, homological algebraic calculations on exceptional collections of sheafs over

M (c. f. e. g. [100, 99, 71, 162, 135, 129, 80]) are equivalent to the above. We use this

language of the R, S basis because the {ScJ } are explicitly generated by the sections

zi where we recall mij to be the multiplicity of the j-th node.

Our final remark is that there in fact exists a natural monodromy action which is

none other than the Fourier-Mukai transform

ch(S) - ch(S)- (S', S)ch(S'), (5.5.15)

giving rise to a permutation symmetry among the {Sci }. In the language of [100, 99,

71, 162, 135, 129], this is a mutation on the exceptional collection. In the language

of (p,q)-branes and geometrical engineering [100, 99, 80], this is Picard-Lefschetz
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monodromy on the vanishing cycles. What we see here is that the multiplicity endows

the {Sci } with an explicit permutation symmetry (generated by the matrices mij) of

which the monodromy (5.5.15) is clearly a subgroup. Therefore we see indeed that the

multiplicity symmetry naturally contains a monodromy action which in the language

of [45, 46] is toric duality, or in the language of [48, 12], Seiberg duality.

Of course one observes that the multiplicity gives more than (5.5.15); this is indeed

encountered in our calculations. Many choices of partial resolutions by different

choices of multiplicities result in other theories which are not related to the known

ones by any monodromy. What is remarkable is that all these extra theories do not

seem physical in that they either have ill-behaved charge matrices or are not anomaly

free. It seems that the toric dual theories emerging from the multiplicity symmetry,

in addition to the restriction of physicality, are constrained to be monodromy related,

or in other words, Seiberg dual. We do point out that toric duality could give certain

"fractional Seiberg dualities" [47]; such Seiberg-like transformations have also been

pointed out in [24].

What we have given is an implicitly algebro-geometric argument, rather than

an explicit computational proof, for why toric duality should arise from multiplicity

symmetry. We await for a detailed analysis of our combinatorial algorithm.

5.6 Conclusions

In studying the D-brane probe theory for arbitrary toric singularities, a phenomenon

where many different KA = 1 theories flow to the same conformal fixed point in the

IR, as described by the toric variety, was noted and dubbed "toric duality" [45]. Soon

a systematic way of extracting such dual theories was proposed in [46]. There it was

thought that the unimodular degree of freedom in the definition of any toric diagram

was key to toric duality.

In this chapter we have addressed that the true nature of toric duality results

instead from the multiplicity of the GLSM fields associated to the nodes of the toric

diagram. The unimodularity is then but a special case thereof.
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We have presented some first cases of the familiar examples of the Abelian quo-

tients C2/Zn and C3/(Zm X Zk) and observed beautiful combinatorial patterns of the

multiplicities corresponding to the nodes. As the process of finding dual cones is an

algorithmic rather than analytic one, at this point we do not have proofs for these

patterns, any further than the fact that for C2 /Zn, the total multiplicity is 2n + 1. It

has been suggested to us by Gregory Moore that at least the 2n behaviour could orig-

inate from the continued fraction which arises from the Hirzebruch-Jung resolution

of the toric singularity. Using this idea to obtain expressions for the multiplicities, or

at least the total number of GLSM fields, would be an interesting pursuit in itself.

We have shown that all of the known examples of toric duality, in particular

the theories for cones over the Zeroth Hirzebruch, the Second and Third del Pezzo

Surfaces, can now be obtained from any and each of unimodularly equivalent toric

diagrams for these singularities, simply by choosing different GLSM fields to resolve.

The resulting multiplicities once again have interesting and yet unexplained proper-

ties. The outside nodes always have only a single GLSM field associated thereto while

the interior node could have different numbers greater than one, each particular to

one member of the torically dual family.

As an important digression we have also addressed the intimate relations between

certain isometries of the target space and the symmetries exhibited by the terms in

the superpotential and the quiver. We have argued the existence of two types of

symmetries, namely "flavor symmetry" and "node symmetry", into whose multiplets

the fields in the superpotential organise themselves. In fact in optimistic cases, from

the isometry of the underlying geometry alone one could write down the superpoten-

tial immediately. In general however the symmetry arguments are not as powerful,

though we could still see some residuals of the isometry. Moreover, Seiberg dualities

performed on the model may further spoil the discrete symmetry. We conjecture

however that there does exist a phase in each family of dual theories which does max-

imally manifest the flavor symmetry corresponding to the global isometry as well as

the node symmetry corresponding to the centre of the Lie group one would observe

in the closed string sector. We have explicitly shown the cases of the cones over the
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toric del Pezzo surfaces.

Finally we gave some arguments of why such multiplicities should determine toric

duality. Using the fact that nodes of toric diagrams correspond to divisors and that

there is a natural monodromy action on the set of line bundles and hence the divisor

group, we see that permutation symmetry among the multiplicities can indeed be re-

alised as this monodromy action. Subsequently, as Seiberg duality is Picard-Lefshetz

monodromy [24], it is reasonable to expect that toric duality, as a consequence of

multiplicity permutation, should lead to Seiberg duality. Of course this notion must

be made more precise, especially in the context of the very concrete procedures of our

Inverse Algorithm. What indeed do the multiplicities mean, both for the algebraic

variety and for the gauge theory? This still remains a tantalising question.

5.7 Appendix: Multiplicities in C2/zn singularities

Let us see that it is possible to perform a general systematic study of the multiplicities

of linear a-model fields. As an example, we will focus here on the specific case of

An_ 1 singularities. They produce Jf = 2 gauge theories with quivers given by the

Dynkin diagrams of the An_- (SU(n)) Lie algebras (Figure 5-13). These singularities

correspond to the C2/Z n orbifolds.

n nodes

Figure 5-13: Quiver diagram for an An-1 singularity.

There are n adjoint fields i's, n Qi's in bifundamentals and n Qi's in antibifun-

damentals. The superpotential is
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n

w = (i - i+l)QiQi (5.7.16)
i=l

with the identification qbn+l = $1. The moduli space is determined by solving D

and F-flatness equations. D-flat directions are parametrized by the algebraically

independent holomorphic gauge invariant monomials that can be constructed with

the fields, so the moduli space can be found by considering the conditions imposed

on this gauge invariant operators by the F-flatness conditions

- = Qi - Qi-1Q-i~ = 0 (5.7.17)

a = (hi - qi+I)Qi = 0
NW

aQ = (hi - 'i+l)Q' = o

where no summation over repeated indices is understood. Looking at the Higgs

branch, the last two equations in (5.7.17) imply

01 = 0-2 =--.-. n (5.7.18)

while the first one gives 3

Qi = Qi lQi-lQi- i (5.7.19)

Iterating (5.7.19) we see that

=Q QT'Q-1Qi (5.7.20)

Thus, we see that the original 3n fields can be expressed in terms of only n + 2

3In the general case of N D-branes sitting on the singularity, the Qi's become matrices and cannot
be inverted
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+ = Xl (5.7.21)

Qi = Q-'QiQi

Qi

Following [45], we can use the toric geometry language to encode the relations

between monomials into a matrix K, which defines a cone

I

r

01

Q1

Q1

01 .- (n

1 ... 1

O ... O

0 ... 0

Q2 ...... Qn

O O ... O

1 1 ... 1

1 1 ... 1

-1 0 ... 0

0 -1 

0 -1

Q1 Q1 .. Qn

O O ......... O

1 0 .........
0 1

. 0 * * .

1 I
(5.7.22)

5.7.1 Finding the general dual cone

In what follows, we will discuss linear combinations, linear independence and gener-

ators, in the restricted sense of linear combinations with coefficients in Z > 0. The

reader should keep this in mind.

The dual cone of matrix K consists of all vectors v e Zn+ 2 such that v.k > 0 for

any column k of the matrix KT. We can generate any vector in Zn+2 making linear

combinations of vectors with entries +1 and 0. Looking carefully at (5.7.22), we see

that KT contains a (n + 2) x (n + 2) identity submatrix, formed by the first and

the last n + 1 columns. This forbids -1 entries. Then the T matrix is given by a

set of vectors from those 2 n+2 with 0 and 1 components which satisfy the following
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conditions:

1) v.k > 0 V k

2) All v's in the dual cone are linearly independent.

3) They generate all the v's such that satisfy condition 1 (that is, we do not have

to add extra vectors to our set).

Let us see that we can find a set of vectors that satisfy these three conditions for

any n. Then, we would have found the dual cone for the general An- 1 singularity.

We will first propose some candidate vectors, and then we will check that they indeed

satisfy the requirements.

(5.7.23)

which give a total of 2n + 1 vectors. From the expression of KT (5.7.22), we immedi-

ately check that (1) is satisfied. Looking at the first three entries of the vectors, we

see they are all linearly independent (not only in our restricted sense of Z > 0 linear

combinations), then (2) is true.

Finally, we have to check that every v for which v.k > 0 can be obtained from

this set. In fact, all the vectors with 0,1 components can be generated, except those

of the form (0,, 0, ... at least a 1 ...). But these have v.k < 0 for k being any of the

Q2 to Qn columns of KT, so we have shown that (3) is also true.

Summarising, using the notation of [45], the dual cone for a general An_1 singu-

larity can be encoded in the following T matrix
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(1,0, ... , 0) 1

(0, 1, 0, ... all 0 and 1 combinations ...) 2n-

(0, 0, 1,... all 0 and 1 combinations ...) 2n-1

-



O ... ... 0

1 ... ... 1

0 ... ... 0

all combinations

of O's and 's

2n-1

O ... ... O

O ... ... O

1 ... ... 1

all combinations

of O's and 's

2n-1
/

We see that there are 2 + 1 linear a-model fields. This is consistent with claim

made in Section 5.2 that the field multiplicity of each node of the toric diagram is

given by a Pascal's triangle, since

E ( .)+ 1 = 2 + 1 (5.7.25)
/--1 /
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Chapter 6

Geometric dualities in 4d field

theories and their 5d interpretation

We study four-dimensional A = 1 gauge theories arising on D3-branes probing toric

singularities. Toric dualities and flows between theories corresponding to different

singularities are analyzed by encoding the geometric information into (p, q) webs.

A new method for identifying quiver symmetries of the four-dimensional theories

using the brane webs is developed. Five-dimensional theories are associated with the

theories on the D3-branes by using (p, q) webs. This leads to a novel interpretation of

Seiberg duality, which can be mapped to the crossing of curves of marginal stability

in five dimensions. The work presented in this chapter is based on [52].

6.1 Introduction

The purpose of this chapter is to look at gauge theories living on D3-branes probing

toric singularities from three completely different perspectives, studying not only the

transition between toric dual theories but also the flow between theories corresponding

to different geometries. These complementary approaches are summarized in Figure 6-

1. We will discuss how different physical processes manifest in the three languages.

In the first place, we will study directly the K = 1 theories in d = 4. In this context,

toric duals are related by Seiberg dualities, while theories for different geometries
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correspond to (un)higgsings. The second viewpoint is purely geometric, and the

continuous flow between theories is achieved by blow-ups and blow-downs of the

corresponding non-compact Calabi-Yau. Finally, every theory under study has an

associated five dimensional A = 1, SU(2) partner 1. The correspondence follows from

considering M theory on the different CY threefolds. In this language, there exist a

one to one mapping between the change of parameters that interpolates between four

dimensional toric dual theories and the change of the BPS spectrum in five dimensions

(crossing of curves of marginal stability). The key objects interconnecting these three

descriptions are (p, q) webs.

d=4 N=J (4 SUSYs)
gauge theory on the

brane probe

geometr oed=5 N=l (8 SUSYs)
non-compact cy SU(2) theorywith

Figure 6-1: The three alternative perspectives that will be developed in this chapter.
The connections between them will be made using (p, q) webs.

The organization of this chapter is as follows. In Section 6.2, we review the main

concepts of (p, q) web constructions and toric geometry. In Section 6.3, we explain how

to extract the quiver for the four dimensional theory that appears in the world vol-

ume of D3-branes probing a toric variety whose toric data is encoded in a given (p, q)

web. Section 6.4 is devoted to understanding the flow between toric duals and theo-

ries associated with different singularities as geometric transitions and (un)higgsings.

Section 6.5 shows the full power of (p, q) webs in establishing quiver symmetries of

the four dimensional gauge theories. In Section 6.6, we use the mapping from (p, q)

webs to five dimensional theories to introduce a third perspective for toric duality and

'Five dimensional Jf = 1 theories have 8 supercharges. This is the number of SUSYs that is
preserved by the (p, q) web configuration when condition 6.2.2 is satisfied.
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geometric transitions, namely there is a one to one correspondence between the con-

tinuous change of parameters and subsequent flops in (p, q) webs which is associated

to toric duality and a change in the five dimensional BPS spectrum.

6.2 A review of (p, q) webs and toric geometry

6.2.1 (p, q) webs and five dimensional theories

In [4, 5] (p, q) webs were introduced as brane constructions to study five dimensional

theories. They are Type IIB string theory configurations in which 5-branes share

four spatial directions and time. The remaining dimension of the 5-branes world

volumes lie on a plane parametrized by the (x, y) coordinates. Every (p, q) web can

be associated to a KV = 1 gauge theory living in the 4 + 1 dimensions common to all

the 5-branes. Each brane has a (p, q) charge which is related to its tension

Tp,q = Ip + TqITD5 (6.2.1)

and to its slope

Ax: Ay =p: q (6.2.2)

where TD5 is the D5-brane tension and r is the complex scalar of Type IIB (which we

have chosen equal to i in 6.2.2). The last condition assures that 1/4 of the SUSYs is

preserved. Branes can join at vertices, where (p, q) charge is conserved,

EPi = qi 0 (6.2.3)
i i

where the sum is performed over all the branes ending at a given vertex. It is easy

to see that 6.2.1, 6.2.2 and 6.2.3 imply the equilibrium of the web.

These theories were thoroughly studied in [5]. We will give here a brief explanation

of how the five dimensional parameters can be read off from the (p, q) webs. All

through this chapter we will deal with SU(2) theories, so we choose an SU(2) model
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with one flavor to exemplify all the relevant concepts (Figure 6-2). Color branes are

finite parallel branes (depicted in red in the figure). Their separation is parametrized

by the expectation value of a U(1) scalar X. For 0 = 0, both color branes coincide

and we have an unbroken SU(2) gauge symmetry. When q > 0, SU(2) is broken

down to U(1) and the W gauge boson gets a mass mw = . The bare value of the

gauge coupling is given by the length of the color branes when 0 = 0 (see Figure 6-2)

We can add a flavor to this theory. This is represented by a semi-infinite brane

parallel to the color branes (green brane in Figure 6-2). For X = 0 this brane cor-

responds to a quark multiplet in the 2 representation of SU(2). When 0 grows,

the gauge group is higgsed to U(1) and the 2 gives rise to two quark states with

m1,2 = q/2. A bare mass for the quarks can be introduced by displacing the flavor

brane with respect to the middle position between the color branes. In this case, the

quark masses become ml, 2 = Im i q/21.

Figure 6-2: A (p, q) web corresponding to an SU(2) theory with one flavor.

BPS saturated states correspond to string webs ending perpendicularly on the five

branes. The rules governing the construction of string webs are identical to the ones

we discussed for brane webs. The monopole tension is calculated as the area of the

closed face of the web. The masses of BPS states and the monopole tension can be

expressed in terms of , go and the quark bare masses.

6.2.2 Toric geometry

Toric geometry and (p, q) webs are closely related. Toric geometry studies varieties

that admit a U(1)d action, in general with fixed points (for a complete treatment see
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[62]). These spaces are described by specifying shrinking cycles and relations between

them. An alternative description of these geometries is in terms of (p, q) webs. It is

possible to see that the connection between both descriptions consists simply on that

the brane web is a representation of the toric skeleton (for a complete discussion of

the relation see [130]).

We will focus on cones over two complex dimensional toric varieties. They can

be understood as T 2 fibrations over C. Lines and vertices in the web represent fixed

points of the U(1) actions (i.e. places where the fibration becomes degenerate). Lines

correspond to vanishing 1-cycles, while points describe vanishing 2-cycles. The process

of blowing-up a point in a given variety consists of replacing it by a 2-sphere. The

toric representation of a 2-sphere is a segment. Then we see that if the points we

choose to blow up are vertices in the web, we just have to replace them by segments.

We conclude this brief introduction by developing the toric representation for a

specific example, the zeroth Hirzebruch surface F. F is equal to P1 x IP', so we

can think about it as a 2-sphere fibered over another 2-sphere. This representation is

shown in Figure 9.8.a. Now we want to interpret this geometry as a T2 fibration over

C. A natural way to do this is by associating the vertical positions Y1,2 on the two

2-spheres to the two coordinates in the complex plane. Then, we associate to every

point on C a 2-torus given by the product of the two circles parallel to the equators at

the corresponding i. The full construction is presented in Figure 9.8.b. The C2 circle

vanishes at the north and south poles of the small sphere, represented torically by

the two vertical lines. Analogously, the two horizontal lines correspond to the north

and south poles of the big sphere. Both C1 and C2 vanish at the four vertices of the

rectangle. From this discussion we also see that the sizes of the different compact

2-cycles are given by the lengths of the segments in the toric skeleton.

6.3 Four dimensional quivers from (p, q) webs

Let us study how to obtain the quiver for the four dimensional JV = 1 theory that

appears on the world volume of a D3-brane probing the type of singularities we are
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Figure 6-3: Toric representation of F0 = IP1 x IP.

considering. A possible approach consists of obtaining the singularity as a partial

resolution of an abelian orbifold, whose associated gauge theory is well understood.

This approach was pursued in [45] and further developed in [46, 12, 43] to get the the-

ories for the zeroth Hirzebruch and the toric del Pezzo surfaces as partial resolutions

of C3/(z 3 X z 3).

A second alternative exploits the geometric information encoded in the (p, q) web.

Each factor of the gauge group is given by a fractional brane, which is a bound

state of D3, D5 and D7-branes. D3-branes span the four directions transverse to

the singularity and thus are located at O-cycles inside the toric variety. Analogously,

D5-branes wrap 2-cycles and D7-branes wrap the compact 4-cycle. Some possible

configurations are sketched in Figure 6-4. The mirror Type IIA geometries associated

to these models were studied in [80]. It was found there that 0, 2 and 4-cycles map

to 3-cycles, and D3-branes become D6-branes wrapping a T3. The bifundamental

matter content is given by the intersection matrix of the 3-cycles. Furthermore, each

3-cycle Si wraps a 1-cycle Ci of a smooth elliptic fiber that becomes degenerate at

some point zi. Each Ci carries a (Pi, qi) charge, and the intersection numbers for the

3-cycles can be calculated as

#(i-Sj) = #(C,.Ci) = det ( p i i (6.3.4)
Pj qj
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The (p, q) charges of the 1-cycles are those of the external legs of the web. This

suggests a profound connection between the (p, q) web and the gauge theory in four

dimensions. Each node in the web corresponds to the fractional brane of one gauge

group factor. When probing the singularity with N D3-branes, these gauge groups are

all SU(N). The external leg associated with it gives the (p, q) charges of the 1-cycle

in the mirror manifold used to compute the matter content using the intersections

with other 1-cycles.

D3 D5 D7

Figure 6-4: Possible D3, D5 and D7-branes located at 0-cycles and wrapping compact
2 and 4 cycles, respectively.

As it has already been noticed in [80], (p, q) charge conservation at every node of

the web ( Ei(pi, qi) = 0) guarantees the absence of anomalies in the four dimensional

gauge theory. This is the case if every node of the quiver has a same number of

incoming and outcoming arrows. Choosing the i-th node, we have

N() - N()= E det i qi (qipj-piqj) (6.3.5)
joi P j joi

qi E P -Pi qj = -qi + qipi = 0

Thus we see that the theory is anomaly free.

We conclude this section with an explicit example of how the quiver theory is

constructed from the brane web. We consider the case of dP1 . A possible (p, q) web

for this geometry is presented in Figure 6-5.

We read the (p, q) charges of the 1-cycles from the external legs of the web. They

are
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2

Figure 6-5: A (p, q) web for dP1 and its associated quiver.

(Pl, q) = (-1, 2) (P2, q2) = (1, ) (6.3.6)

(P3, q3)= (1, -1) (P4, q4)= (-1, -1)

Using 6.3.4, it is straightforward to calculate the intersection numbers

#(C1.C2) = -2 #(Cl C3) = -1 #(Cl C4) = 3(63.7)

#(C2.C3) = -1 #(C2.C4) = -1 #(C3.C4) = -2

The sign of the intersection numbers indicate the orientation of the corresponding

bifundamental fields. The resulting quiver is presented in Figure 6-5, where we have

explicitly labeled the nodes according to the associated external legs.

6.4 Geometric transitions

In what follows, we will apply the observations in Sections 2 and 3 to obtain the

phases of Fo and of all del Pezzo surfaces up to dP3 . We will use (p, q) web diagrams

as representations of the probed geometries and will study which are the resulting

theories after successive blow-ups and blow-downs. This method proves to be very

powerful and gives all the phases associated with different singularities without doing

any calculation!

6.4.1 Blow-ups, unhiggsing and (p, q) webs

Del Pezzo surfaces are constructed by blowing-up up to eight generic points on IP2.

When the number of blown up points is less than or equal to three, the SL(3,C)
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symmetry of 1P2 can be used to map the generic positions of these points to any desired

location. In particular, these can be chosen to be vertices of the web configuration.

Thus, all possible blow-ups of up to three points can be studied by blowing-up vertices

of the web. Using the (p, q) web description of a sphere, the blow-up of a point is

obtained by replacing it by a segment. The (p, q) charges of the two external legs at

the endpoints of the blown-up 2-cycle are given by the charges of the original external

leg.

The inverse process, a blow-down of a compact 2-cycle to a point, is given in the

(p, q) web description by the replacement of a segment by a point, and the subsequent

combination of the external legs attached at the end points of the segment. For the

four dimensional gauge theory this process is simply a higgsing of the SU(N) groups

associated to both external legs to the linear combination of them under which the

bifundamental field that gets a non-zero vev is neutral.

(-1,2)

(2,-I)

(1,0)

(-1,-1) ,-
-1) (0-I) (L.-I)

Figure 6-6: Possible blow-ups of dPo. All the resulting theories are equivalent.

Let us use this method to calculate all the phases associated to D3-branes probing

cones over toric del Pezzo surfaces. The starting point is a (p, q) web describing

dPo (Figure 6-6). We have identified in red the branes obtained as a result of a

blow-up. Once we have the resulting webs, we can calculate the intersection matrix

and the quiver as in 6.3.4. The three webs in Figure 6-6 are related by SL(2, Z)

transformations, and describe the only phase of dP1 .
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The next step is taking any of the equivalent webs for dP1 (what we obtain is inde-

pendent of our choice) and performing all possible blow-ups. The results are shown in

Figure 6-7. After calculating the associated quivers we conclude that these webs rep-

resent two different theories. These are exactly the two toric dual models encountered

in [46] for dP2. At this point a new feature, which will persist for other geometries,

appears: the existence of (p, q) webs with parallel external legs. These models are

completely sensible as long as the 4d gauge theories are concerned. However, these

theories present problematic issues when a 5d interpretation of the webs is intended.

They may exhibit a leakage of 5d global charges due to states corresponding to strings

stretching between parallel branes, and can also have directions in the moduli space

along which the superpotential is not convex [5]. These drawbacks can be eliminated

by providing a suitable UV completion of the theories, embedding them into larger

(p, q) webs.

(-1,-

(1,0)

(1,-1)

(1,0)

(1.-1)
(-1,-1) -.

(-1,2) (-1,2)

(1,0) (-1, (1,0)
(1,0)

(1,-1)

(1,-i) (-1,-1) (0,-i) (-10) (1,-i)

II I I II

Figure 6-7: Possible blow-ups of dP1 . They correspond to two inequivalent phases.

We now move on, take one representative for each phase of dP2 and proceed to

blow-up points. At this point, it is not possible to blow-up any vertex in the web, since

in some cases this would lead to crossing external legs (additional compact 4-cycles).
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The theories coming from the first phase and second phase of dP2 are presented in

figures 6-8 and 6-9. Computing the quivers we obtain the four toric phases of dP3

[48, 12].

(-1
(1,0)

(0,-1) (1,-1)

(-1,2)

(1,0)

(-1 (-1

(1,-1)

(0,-1)

II

(0,-1)

I

(-1,2)

III

(1,0)
(1,0)

(1,-1)

(1,-1)

III
(-1,2)

(1,0)

(1,0)

II

Figure 6-8: Possible blow-ups of phase I of dP2.

The SL(3, C) freedom is exhausted after blowing up three points on IP1. Thus, we

cannot map a further generic point to a vertex of the web and then blow it up. This is

a manifestation of the fact that dP, surfaces do not admit a toric description beyond

n = 3. Nevertheless, we can study the theories obtained from dP3 after a non-generic

toric blow-up. We summarize the possibilities in Figure 6-10. These (p, q) webs define

two quiver theories that are studied in detail in [44].
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(1,0)
(1,0)

(-1,-1) (0,-1)

(-1,2)

(1,0)
(1,0)
(1,0)

(-1,-1) (-1,-1)

II IV

Figure 6-9: Possible blow-ups of phase II of dP2.

We close this section by emphasizing that different Seiberg dual phases can be

understood as related by blowing-down a 2-cycle and blowing-up a point. This is

nothing more than an SL(3, C) transformation relocating one of the blown-up point

in p2. In this way, the set of Seiberg duality transformations (that do not change the

rank of the gauge groups, keeping them all equal) Gs satisfies

SL(3, C)
SL(2, Z)

(6.4.8)

By the quotient by SL(2, Z), we mean that those transformations that trivially

do not change the intersection matrix, and hence do not lead to a dual phase, should

be eliminated. Furthermore we see that, since there are elements in SL(3,C) that do

not preserve the intersection numbers, some singularities can be represented by both

(p, q) webs with parallel legs and by (p, q) webs without them.
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Figure 6-10: Possible
have suppressed (p, q)

blow-ups of the four phases of dP3 at non-generic points. We
charges for simplicity.

6.4.2 The two phases of F0

The techniques introduced in Section 6.4.1 can be used to study, for another example,

how different phases and singularities are interconnected by the geometric processes

of blowing-up points and shrinking 2-cycles. In Figure 6-11 we present a possible

path connecting the two phases of F. Starting from phase I, we blow up two points,

arriving at model II of dP3. The last step in the flow consists of shrinking two 2-cycles

to zero size, combining the corresponding external legs.

The intersection matrices for both phases can be computed using 6.3.4, and are

presented in the appendix.
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Figure 6-11: A possible transition between the two phases of F0, by blowing-up two
points and blowing-down two 2-cycles.

6.4.3 Higgsings as blow-downs

We have mentioned in Section 6.4.1 that blow-ups of the geometry correspond to

unhiggings when we look at them from the perspective of the four dimensional gauge

theory on the world volume of the brane probing the singularity. Conversely, the

blow-down of a compact 2-cycle to a point translates into the higgsing of two S(N)

factors to a single SU(N) by giving a non-zero expectation value to a bifundamental

chiral field.

As we have discussed, compact 2-cycles are represented by the internal finite

segments of the (p, q) web, their length given by the volume of the corresponding

P l's. Thus, we see the beautiful interplay between the two descriptions of the process.

When blowing-down, we reduce the length of a segment. When this length vanishes,

the external legs that are located at its endpoints are combined, adding their (p, q)

charges. The two original SU(N)'s merge into a single one. The resulting linear

combination depends on the relation between the coupling constants and is such that

a bifundamental field charged under the original gauge groups is neutral with respect

to it.

The (p, q) description of the original and final geometries allows an immediate

identification of which vev we have to turn on in the gauge theory in order to flow

down to the desired theory. Furthermore, it supplies a correspondence between gauge

groups in the original and final theories. An explicit example of a blow-down from

dP3 to dP2 will help to clarify these concepts. Let us connect the transition between
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the theories in Figure 6-12. From the respective webs, we already see that they are

related by the combination of nodes 2 and 3.

I 

1

6

5

(a. 1)

6

3
4

a.2)
3

4

2/3 2/3 6

4
5

(b.1) (b.2)

Figure 6-12: Higgsing from dP3 (a.1) to dP2 (b.1)
corresponding quivers are a.2 and b.2.

by blowing down a 2-cycle. Their

Before going on, let us notice that we have represented both quivers in a way that

makes their symmetries explicit. The identification of these symmetries is immediate

following the rules that will be presented in Section 6.5. Theory A has a Z2 X Z2 node

symmetry. The first Z2 interchanges nodes 3 and 4. The second Z2 acts as a 7r rotation

around the (34) axis and a charge conjugation of all fields. These two symmetries

disappear when we combine 2 and 3, but a new Z2 symmetry that interchanges

2/3 ++ 6, 4 ++ 5 and charge conjugate all fields appears in model B. At this point

we can calculate the intersection matrices and see that theory A has 14 fields, while

theory B has 11. One of the missing fields is the one getting a non-zero vev, so we can

already see that masses for two fields will be generated when higgsing (notice that

we know that this mass term will appear without looking at any superpotential!) 2.

2It is indeed very simple to understand how these two fields acquire masses. In the brane web
language, the combined 2/3 leg is parallel to the existing 6, making the original 062 and 36 disappear.
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The original superpotential is [45, 46]

WA = 0620240~46 + 0)51l140)45 - 062023036 - 5113035 + 13036061 (6.4.9)

+-144 6 q61 + '2303505661(b 12 - q2 4 04 5 b56 06 1 qb12

The combination of legs 2 and 3 corresponds to turning on a non-zero vev for 023

in 6.4.9. When doing so, SU(N)( 2 ) x SU(N)( 3 ) is broken down to a single SU(N),

under which 023 is neutral. At the same time two fields, q62 and O36, become massive

as predicted. We are interested in the IR limit of this theory, so we integrate them

out using their equations of motion. Setting < 0 23 >= 1, the resulting superpotential

is

W = -051013035 + 051014'045 + 014046~61 + 035056614012 (6.4.10)

+13024046061 - 024q45056 6101l2

which is exactly the superpotential of the dP2 theory under consideration [45, 46].

An application, partial resolutions of C3/(Z3 X Z3)

In Sections 6.4.1 and 6.4.2, we obtained all the gauge theories associated to blow-

ups of ]p2 and P1 x P1 in a constructive way, identifying at every step the possible

geometric blow-ups. On the other hand, in section 6.4.3 we traced the connection

between blow-downs, higgsings and transformations of the (p, q) webs. Let us now

consider an example where all these tools and ideas converge.

The four phases of dP3 were presented in Section 6.4.1. Furthermore, we have

associated specific (p,q) webs to each of them. These theories were obtained in

[48, 12] by the method of partial resolution of C3/(Z 3 x Z3). Let us see how these

This is due to the existence of a (62023036) cubic term in the superpotential, which becomes a
mass term after giving a non-zero expectation value to 023. However, the reader should be aware
that the general situation is that not all gauge invariant operators permitted by a given (p.q) web
(alternatively by its associated quiver) appear in the corresponding superpotential.
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Figure 6-13: The four dP3 phases obtained as partial resolutions (higgsings) of
C3/(Z3 X Z3). We indicate the scalars that get a non-zero vev in each case.

results can be recovered immediately using our techniques. The starting point is the

(p, q) web for C3 /(Z 3 X Z3) (Figure 6-13). In each case, we easily see which external

legs have to be combined in order to get the desired phase. This is not the end of

the story, the web construction also tells which fields have to get a non-zero vev in

the original theory, they are the fields associated to the non-vanishing intersections

of the combined 2-cycles. We summarize our results in Figure 6-13, indicating the

scalars that get a non-zero expectation value.
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6.5 Symmetries of the four dimensional gauge the-

ory

An appealing feature of the (p, q) language is that it makes quiver symmetries of the

gauge theory evident. We will consider here two examples of how thes symmetries

manifest themselves in the brane representation. These symmetries have been studied

in [12, 43], along with their importance as a tool for determining the structure of

superpotentials.

S, symmetries: These symmetries appear when the web brane configuration has

sets of n parallel external legs (in the geometric language non-compact 2-cycles with

the same (p, q) charges). Parallel branes have vanishing mutual intersections, while

their intersections with the rest of the branes are identical. Due to this identity of the

intersections, the gauge groups associated with parallel legs can be permuted leaving

the quiver invariant. The symmetry group in this case is the full Sn permutation

group. These discrete symmetries get enhanced to a continuous SU(n) when the

parallel branes coincide. In Figure 6-14 we show phase IV of dP3 as an example. The

three parallel red legs give rise to a S3 symmetry between red nodes in the quiver,

while there is a Z 2 symmetry that interchanges blue nodes coming from the parallel

blue branes.

Z 2 axial symmetries: this is another example of symmetries that can be read di-

rectly from the (p, q) webs. They appear whenever the web has an axis of symmetry.

In these cases the theories are invariant under exchange of gauge groups associated

to external legs at both sides of the axis and charge conjugation of all fields. Is it

important to notice that these reflections are indeed a subset of a larger set of trans-

formations, given by all the GL(2, Z) symmetries that map the webs onto themselves

(i.e. that preserve the (p, q) charges of external legs). We have chosen to discuss

Z2 reflections because they are the simplest of these symmetries, but we will also

be considering the case of rotations later in this section. As an example, we present

phase II of dP3 in Figure 6-15. The two webs in Figure 6-15 are equivalent, and corre-
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Figure 6-14: (p, q) web for phase IV of dP3. We have colored the external branes giving
rise to the different SU(N) factors accordingly to their transformation properties
under quiver symmetries.

spond to the same phase. We have presented both in order to illustrate how the same

symmetry can arise in differently looking webs. Moreover, this example illustrates

how the symmetry axis can sometimes be hidden. As it can be seen in the example,

the axis can be made evident by an SL(2, Z) change of (p, q) basis, which preserves

the intersection numbers between cycles and simply corresponds to a variation in the

complex scalar r in 6.2.1.

For this example,

el = (1, O) el = (1, O)

e 2 = (0, 1) el = (1, 1)

The two bases are related by the SL(2, Z) matrix

C =) (6.5.12)
0 1

Based on the preceding observations, we can use the (p,q) webs listed in the

appendix and make an immediate classification of the mentioned node symmetries

that appear in each model. The results are summarized in Table 6.1.

Three of the models deserve a more detailed explanation. The first of them is
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Figure 6-15: Two different (p, q) webs for phase II of dP3 . Once again, nodes of the
same color transform into one another by the quiver symmetries.

dPo, whose (p, q) web has an obvious Z 2 axis of symmetry going along one of its legs.

Furthermore, the three external legs are equivalent under SL(2, Z) transformations

that "rotate" the web. As a result, the full node symmetry group of dPo is D3. An

identical reasoning applies to the first phase of dP3, which has an evident Z2 axis,

and whose six external legs are equivalent under SL(2, Z), leading to a D6 symmetry.

Finally, the fourth phase of dP3 has one set of two and another one of three parallel

external legs. According to our rules, this corresponds to a Z 2 x S3 = D6 symmetry.

6.6 Geometric transitions from the perspective of

five dimensional theories

As we have discussed, (p, q) webs give a representation of the moduli space of / = 1

theories in 4 dimensions, for those cases in which the moduli space admits a toric

description. For these models, brane webs are simply the toric skeletons representing

vanishing cycles. At the same time, (p, q) webs can be used to study 5 dimensional
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Table 6.1: Classification of node symmetries.

KJ = 1 gauge theories living in the 4 + 1 common dimensions of the branes. The

purpose of this section will be to understand the translation of the four dimensional

concepts of Seiberg duality and of different phases to the five dimensional language.

While doing so, we will get some nice dynamical information about the five dimen-

sional theories.

6.6.1 Five dimensional interpretation of the theories

We have already discussed how (p,q) webs lead to 5 dimensional SU(Nc) theories

with NF flavors. The number of colors is given by the number of parallel internal

branes. For all the cases we are studying, the (p, q) webs possess only one closed

face (i.e. a single compact 4-cycle in the geometric interpretation), and have a pair

of parallel internal branes, so they will be associated with SU(2) theories. In all the

webs sketched in Figures 6-6 to 6-11, it is possible to identify at least one such a pair

of parallel finite branes that play the role of color branes.

Of the NL external legs of a web, four have to be the supporting structure of

color branes. It is also possible to see that in all the studied webs, after we identify

the supporting branes, the remaining ones result to be parallel to color branes, thus

admitting an interpretation as NF = NL - 4 flavor branes. Putting all these things

together we see that F0 phases will be associated to SU(2) with no flavors, while dPn

theories will be represented in five dimensions by SU(2) models with NF = n - 1.
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There are two theories that require a more careful interpretation. The first one is

the well-known case of dPo. Having only three external legs, this theory is understood

as SU(2) with -1 flavors. We can extend the reasoning in the following way, any

time we face a theory where we cannot identify NL - 4 legs as flavors, we blow up

N points until reaching a model with the usual interpretation. This theory will have

NL + N - 4 flavors. Then we say that the number of flavors in the original theory

is (NL + N - 4) - N. The other special case is phase IV of dP3, which is shown in

Figure 6-16 together with the same (p, q) web blown-up at one point. According to

our previous statements, the five dimensional interpretation of this model is SU(2)

with 3- 1 flavors.

Figure 6-16: Phase IV of dP3 . It can be interpreted in five dimensions as SU(2) with
3-1 flavors.

6.6.2 Different limits in moduli space, a first example

Let us start studying how the flow between theories can be interpreted as adding a

flavor to the corresponding five dimensional gauge theory and considering different,

eventually infinite, limits in parameter space. To do so, let us focus on the example

of a transition between one of the phases of F0 and dP1. The main point here is to

realize that in both brane configurations one of the external legs can be understood

as coming from a junction between two branes, one of which is a flavor brane. When

taking the location of this junction very far away from the core of the (p, q) web, the

configurations become those studied in Sections 6.4.1 and 6.4.2. The position of the

flavor brane is parametrized by the bare mass of the quark. When it becomes infinite,
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the quark decouples leaving us with pure SU(2) theories with no flavors.

Figure 6-17 shows how in the limit m -+ -oo we have the second phase of F0, for

Iml < /2 we get phase I of dP2 and finally we obtain dP1 for m -+ oo.

Figure 6-17: Flowing from F0 to dP1 by tuning the bare mass of the quark from
m - -oo to m -+ oo.

6.6.3 Geometrical blow-ups as tuning bare masses

Encouraged by the example presented in the previous section, we can ask whether

this is a general feature and we may indeed interpret all geometrical transitions of

the type we are considering as tuning the bare mass for some quark. After inspecting

Figures 6-6 to 6-11 we conclude that this in fact is true!

The way of seeing this is that, in all cases, one of the two external legs connected

to a 2-cycle coming from a blown-up point is parallel to a pair of finite segments in

the inner face of the (p, q) webs. Thus, this external leg can be understood as a flavor

brane, while the two finite branes play the role of SU(2) color branes. We can think

about the blowing-up process as bringing the flavor brane from infinity (m -+ ±oc)

until it reaches the body of the web. We can repeat this process indefinitely. One

important point that has to be kept in mind is that, after each step, the two branes

acting as color branes can change (and thus the orientation of the flavor brane we

have to consider).

Figure 6-18 shows an example of a flow dP1 -+ dP2 II -+ dP3 II, illustrating how

the direction of color and flavor branes can change at each step. As an aside, this

example also shows an interesting situation, the fact that at some point in the blow-
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Figure 6-18: Flow dP1 - dP2 II - dP3 II, obtained by bringing bare masses to
finite values.

up process there can be more than one possible choices of which branes to consider

color branes. We see that, before the second blow-up, another legitimate choice would

have been the two vertical finite branes.

6.6.4 BPS spectrum

BPS states in the five dimensional theory are given by webs of strings ending on the

5-brane web [5]. We will use this construction to see how BPS spectra of different

phases are related. Let us consider the two phases of dP2 since they constitute one

of the simplest examples. We will also restrict our analysis to BPS states associated

to string webs with only two and three end points (the extension to other states is

immediate). The corresponding configurations are shown in Figure 6-19.

Both spectra are quite different. Specifically there is no analog of state b of phase

II in phase I. Nevertheless, we have seen that both the geometric picture and the

five dimensional one in terms of varying parameters suggest that the passage between

different phases is a continuous process.
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a b

Phase 2

d e

Phase 1

Figure 6-19: Some BPS states for phases I and II of dP2. String junctions are rep-
resented in red. For simplicity, we have suppressed the external legs of the (p, q)
webs.

Let us understand how the two spectra are continuously connected. To do so,

we follow the fate of state b as we flow between phases II and I. In Figure 6-20

we show different stages of this transition. The starting point is phase II and we

gradually reduce the size of the blue 2-cycle. From stages 2 and 3 we see that, as the

blue cycle approaches zero size, state b becomes degenerate with one state of type

c (both of them in the BPS spectrum of phase II). State c survives the transition,

becoming state e of phase I. The final step consists on shrinking the blue 2-cycle to a

point and blowing up the green point. In conclusion state b undergoes a continuous

transformation into state e, going through a point at which both states have the same

mass.

We have understood that, for the specific case of geometric transitions between

dP2 phases, BPS states corresponding to string junctions with support on collapsing

2-cycles cease to exist as these 2-cycles shrink to a point, but become degenerate with

other BPS states that remain in the spectrum. The same conclusion can be reached

in the general case.

The string junctions (BPS states in five dimensions) that can in principle disappear

abruptly are those ending on shrinking blown-up 2-cycles (exceptional curves). It is
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1 2 3 4

Model II Model II Model II Model I

Figure 6-20: Continuous flow between BPS states of the two phases of dP2.

easy to see (and Figures 6-6 to 6-11 illustrate this fact) that external legs attached to

exceptional curves are parallel to internal branes ending on the corresponding segment

of the (p, q) web. The general situation is presented in Figure 6-21, where the charges

of internal branes are shown in brackets, and those of external legs in parentheses.

-(Pzq)

-- n 

Figure 6-21: Continuous connection between BPS states in the general case.

(p, q) charge conservation fixes the slope of the shrinking brane to be given by

[P3, q3] = [Pl - P2, ql - q2] (6.6.13)

Let us now consider the string junction shown in red in Figure 6-21, which can

be part of a larger BPS configuration. Its a and b legs are perpendicular to branes 1

and 2. Thus

(Pa, qa) = (ql,-P) (6.6.14)

(Pb, qb) = (-q2, P2)
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Once again, (p, q) charge conservation implies

(Pc, qc) = (ql - q2, -P1 + P2) = (q3, -P3) (6.6.15)

Then, string c is perpendicular to brane 3. We can now follow a reasoning identical

to the one used previously for dP2. As brane 3 goes to zero size, legs a and b of the

string junction can be negligibly small, and the corresponding BPS state becomes

degenerate with the one ending directly on brane 3. This concludes our proof of the

continuity of BPS spectra in the general case.

We discussed in Section 6.4.1 how Seiberg dual theories are related by the combi-

nation of a blow-down and a blow-up in the non-compact Calabi-Yau probed by the

D3-brane. The arguments presented in this section lead us to an important conclu-

sion: Seiberg duality between theories in four dimensions appears in the associated

five dimensional models as crossing curves of marginal stability.

6.6.5 Continuity of the monopole tension

In this section we will calculate another five dimensional quantity, the monopole

tension, and study how its values for different theories are related

Let us consider the example of the two phases of dP2, which in five dimensional

language correspond to SU(2) theories with one flavor. Calculating the monopole

tensions for these two phases (which is simply the area of the inner face of the (p, q)

web [5]) we find

1 M m 2

T(I) - 2 +( - + m) (6.6.16)

T(I) + - 2

We see that this quantity has a different functional dependence on the parameters

when we consider the two theories. Another question (whose answer is obvious from

the (p, q) web picture) is what the value of T(I) is when m = b/2. In this situation
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we know that one of the quarks becomes massless, while the other one gets the same

mass as the gauge boson mQ = q. The tension in this case becomes

TM = 2 + 2 (6.6.17)

which is exactly that for dP1. Once again, the transition is continuous.

6.7 Conclusions

We have studied dualities and flows between gauge theories living on D3-branes prob-

ing toric singularities. We have found (p, q) webs very useful for this task, and for

establishing relations among the probed geometry, the four dimensional theories on

the world volume of the branes and five dimensional SU(2) associated theories.

In Section 6.4 we have interpreted the flow between the four dimensional theo-

ries corresponding to the zeroth Hirzebruch and the del Pezzo surfaces as geometric

transitions in the probed singularities. We also established the geometric transforma-

tions connecting toric dual models. In doing so, the (p, q) web representation of the

toric varieties became not only a useful pictorial representation of the process, but

a whole computational tool. The process of obtaining all the theories is reduced to

doing successive blow-ups and to calculate intersection matrices. This simplicity can

be contrasted with methods previously employed for the same task, based on partial

resolutions of C3/(Z 3 X Z3 ), which are computationally much more involved. Another

advantage of the (p, q) web approach is that it offers a geometric intuition at every

point of the process.

Furthermore, we studied the connection between blow-downs(ups) and (un)higgsings

in the four dimensional theories. When doing so, the associated (p, q) webs permit

the immediate identification of which field must acquire a non-zero vev. This was

exemplified by getting the partial resolutions of C3 /(Z3 x Z3 ) that give the four toric

dual theories corresponding to dP3.

Section 6.5 was devoted to study how quiver symmetries can be read off from (p, q)

webs. The web constructions make these symmetries evident. The identification of
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the symmetry groups is reduced to counting parallel external legs and finding axes of

symmetry.

In Section 6.6 we initiated the exploration of a new perspective for geometric

transitions. Exploiting the connection provided by (p, q) webs, we developed the

interpretation of the studied theories as five dimensional SU(2) gauge theories with

NF flavors. We showed how geometrical blow-ups can be understood as bringing

flavors from infinite bare mass. We proved that BPS spectra of two theories connected

by a geometric transition are continuously connected. In this language, the transition

corresponds to crossing a curve of marginal stability. We also studied the continuous

relation between the monopole tensions in two such theories.

6.8 Appendix: Gauge theories for branes on toric

singularities

In this appendix we summarize the theories studied throughout this chapter. For

each of them we give a (p, q) web and its quiver 3. For the del Pezzo surfaces, we also

include the corresponding fractional brane charges. These charges were calculated

with the procedure described in [80], which uses the map between 3-cycles in the

mirror manifold and vector bundles on the del Pezzo surfaces of [100, 99]. The purpose

of their inclusion is to exemplify how the combination and splitting of external legs of

the (p, q) webs are associated to the same operations on the fractional brane charges.

3In some of the quivers we have charge conjugated all the fields in order to follow the ones
presented in the references [45, 46, 48, 43].
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Cone over Fo

Fo has two phases. Phase I has 12 fields, while Phase II has 8.

(p, q) web Quiver Intersection matrix

1

1 21

0 -2 -2 4

2 0 0 -2

2 0 0 -2

-4 2 2 0

4

11 7

0 -2 0 2

2 0 -2 0

0 2 0 -2

-2 0 2 oI a I
_ _4 3 ' 

(6.8.18)

Cone over dPo

2

3

3

dPo has one phase with 9 fields.

Fractional brane
(p, q) web Quiver Intersection matrix

charges
1

I I

o -3 3 ch(Fl) = (2, -e, -1/2)
= O -3 ch(F2) = (-1,e,-1/2)

-3 3 0 j ch(F3 ) = (-1,0,0)2
I .

_I 1 3 2 1 1
- .... x

(6.8.19)
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Cone over dP1

dP] has one phase with 10 fields.

Fractional brane
(p, q) web Quiver Intersection matrix

charges
1 1 

-2 -1 3 ch(F1) = (2, -e, -1/2)
I= 2 0 -1 -1 ch(F2) = (0, E 1,-1/2)

Z=
1 1 -2 ch(F3) = (-1,e- El,O)

A -3 1 2 oL(7- ( I _ n /4 ' 13 _. - - 1 I \ 1 4 / j cftkr4) = k-1,u,u)

Cone over dP2

dP2 has two phases, with 13 and 11 fields.

Fractional brane
(p, q) web Quiver Intersection matrix

charges

0 -2 -2 1 3 ch(F1) = (2, -, -1/2)

2 0 0 -1 -1 ch(F2) = (, E1,-1/2)
3 II = 2 0 0 -1 -1 ch(F3) = (0, E2,-1/2)

-1 1 1 0 -1 ch(F4 ) = (-1, - E - E2, 1/2)

4 1 - 1 1 1 / ch(F5 ) = (-1,0,0)

1 3
0 -2 -1 1 2 ch(Fi) = (2, -e, -1/2)

2 0 -1 -1 0 ch(F 2 ) = (0, E 1 ,-1/2)

· 5 + 2 \ 1 1 = 1 1 0 -1 -1 ch(F3 ) = (-1, -E l,0)

r -1 1 1 0 -1 ch(F 4 ) = (-1, E2, 1/2)

4 3 4 < -2 0 1 1 0 _ ch(F 5 ) = (0, -E 2, -1/2)

2 2

3

I I I _ 93 1 1 I I I
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Cone over dP3

dP3 has four phases, with 12, 14, 14 and 18 fields.

Fractional brane
(p, q) web Quiver Intersection matrix

charges

/ O -1 -I O 1 1 ch(Fl) = (1,-e + E3,0)

6 1 0 -1 -1 0 1 ch(F2 ) = (1, -E 3, -1/2)

1 1 0 -1 -1 0 ch(F3 ) = (0, El,-1/2)
II =

5 0 1 1 0 -1 -1 ch(F4 ) = (-1, e - El,0)

-1 0 1 1 0 -1 rh.(,) = (-1 Vl 1/29

I_________4 -1 -1 0 1 1 0/) ch(F 6) = (0,-E 2, -1/2)
6

o -1 -1 -1 1 2 ch(Fl) = (1,-e+E 3 ,0)
1 0 -1 -1 0 1 ch(F2 ) = (1, -E 3, -1/2)

3
1 1 0 0 -1 -1 ch(F3 ) = (0, E 1,-1/2)

II =
1 1 0 o -1 -1 ch(F 4 ) = (O, E 2 ,-1/2)

-1 0 1 1 o -1 ch(F5 ) = (-1, - E1 - E 2, 1/2)

\ -2 -1 I 1 1 0 ,h(. - - (_1 fn n

/ 5n . \ ch(F ) = (2,-,-1/2)/ ,. C.1 I 1 \ Ich(Fi) = (2, -e.-1/2)6 I U -Z -Z I I Z . ... I 

2 0 0 -1 -1 0 ch(F2)= (0, E,-1/2)

2 0 0 -1 -1 0 ch(F 3) = (0, E3 ,-1/2)
2i7m =

3 -1 1 1 0 0 -1 ch(F4) = (-1, - E1 - E3, 1/2)
-1 1 1 0 0 -1 \ _ I I /,

4 -2 0 0 1 1 0 J ch(F6) = (O,-E 2,-1/2)

o -2 -2 -2 3 3 ch(F1) = (2,-e, -1/2)

2 0 0 0 -1 -1 ch(F2) = (0, El,-1/2)

2 0 0 0 -1 -1 ch(F3) = (0, E2 , -1/2)

2 0 0 0 -1 -1 ch(F4) = (0, E3 , -1/2)

-3 1 1 1 0 0 ch(F5) = (-1,e- E1 - E2 - E3 , 1)
-3 1 1 1 0 0 ch(Fz) = (-I.00)

_ _ _ _ _ _ _ _ _ I _ _ _ _ _ _ _ _ _ _ _ _ I I__ _ _ _ _ -___U / \ - - /

(6.8.22)
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Chapter 7

Duality Walls, Duality Trees and

Fractional Branes

We compute the NSVZ beta functions for Af = 1 four-dimensional quiver theories

arising from D-brane probes on singularities, complete with anomalous dimensions,

for a large set of phases in the corresponding duality tree. While these beta functions

are zero for D-brane probes, they are non-zero in the presence of fractional branes. As

a result there is a non-trivial RG behavior. We apply this running of gauge couplings

to some toric singularities such as the cones over Hirzebruch and del Pezzo surfaces.

We observe the emergence in string theory of "Duality Walls," a finite energy scale

beyond which Seiberg duality does not proceed. We also identify certain quiver

symmetries as T-duality-like actions in the dual holographic theory. The content of

this chapter is based on [56].

7.1 Introduction

Understanding renormalization group flows out of conformal fixed points of super-

symmetric gauge theories is of vital importance in fully grasping the AdS/CFT Cor-

respondence beyond super-conformal theories and brings us closer to realistic gauge

theories such as QCD. In particular, the J/ = 1 gauge theories arising from world-

volume theories of D-brane probes on Calabi-Yau singularities have been extensively
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studied under this light. Dual to these theories are the so-called non-spherical hori-

zons of AdS [125, 110, 116, 1, 121, 138].

A prominent example, the conifold singularity, was analysed by Klebanov and

Strassler (KS) in [119] where the RG flow takes the form of a duality cascade. Here, we

have a theory with two gauge group factors and four associated bi-fundamental fields.

With the addition of appropriate D5-branes, the theory is taken out of conformality in

the infra-red. Subsequently, the two gauge couplings evolve according to non-trivial

beta functions. Whenever one of the couplings becomes strong, we should perform

Seiberg duality to migrate into a regime of weak coupling [119]. And so on we proceed

ad infinitum, generating an intertwining evolution for the couplings. This is called

the a duality cascade. The dual supergravity (SuGRA) solution, happily aided by

our full cognizance of the metric on the conifold, can be studied in detail and matches

the field-theory behavior.

The generalization of this phenomenon to other geometries is hindered by the fact

that the conifold is really the only geometry for which we know the metric. Never-

theless nice extensions from the field theory side have been performed. Notably, in

[50], the cascade has been recast into properties of the Cartan matrix of the quiver

[108, 88, 89]. Then Seiberg duality becomes Weyl reflections in the associated root

space. The UV behaviour would thus depend markedly on whether the Cartan matrix

is hyperbolic (with a single negative eigenvalue and the rest positive) or not. Indeed

for some simple quiver examples without consideration of stringy realization, it was

shown that the RG flow converges in the UV and surprisingly there is a finite accu-

mulation point at which the scale of the dualizations pile up. This opens the question

of what is the possible UV completions of these field theories. Such fundamental

limitation on the scale of the theory was originally dubbed duality walls in [159].

The issue seems to persist as one studies generalizations of the conifold geometry

and in realizations in string theory. As a first example that is chiral and arising from

standard string theory constructions, [85] discussed the case of our familiar 3 /z 3

singularity. Using naive beta-functions without consideration for the anomalous di-

mensions, [85] analysed in detail how one encounters duality walls for this string

130



theoretic gauge theory.

Indeed, even without making reference to explicit metrics and supergravity solu-

tions, it is possible to study this problem from a gauge theory perspective. Exten-

sive methodology and catalogues of non-spherical horizons have been in circulation

(q.v. e.g. [138, 75, 20, 96, 39, 79, 11], and Chapters 5 and 6. for an infinite family with

explicit Sasaki-Einstein metrics). A particular class for which an algorithmic outlook

was partaken is the toric singularities of which the conifold and the C3 /z 3 orbifold

are examples [11, 45, 53]. For these geometries, Seiberg-like dualities dubbed "Toric

Duality" [45, 48, 12] have been labouriously investigated. Consecutive application

of such a duality on a given theory essentially translates to a systematic application

of certain quiver transformation rules. These rules can be understood from many

fruitful perspectives: as ambiguities in the Inverse Toric Algorithm [45]; or as mon-

odromy transformations of wrapped cycles around the singularity [29, 99, 47, 24]; or

as braiding relations in (p, q) sevenbrane configurations [47]; or as mutations in helices

of exceptional collections of coherent sheafs [99]; or as tilting functors in the D-brane

derived category [18, 22], etc.

A key feature of such a duality is the tree structure of the space of dual theories.

As we dualise upon a node in the quiver at each stage, a new branch blossoms. The

topology of the tree is important. For example, whether there are any closed cycles

which would signify that certain dualities may be trapped within a group of theories.

We are therefore naturally inspired by the conjunction of the toy model in [85]

and our host of techniques from toric duality. Dualization in the tree is precisely

the desired cascading procedure. A first care which needs to be taken is a thorough

analysis of the beta-function, including the anomalous dimensions. Happily, the

form of the exact beta function with the anomalous dimensions has been computed

by [142] for Jf = 1 gauge theories and by [128] for quiver theories in particular.

In XV = 1 SCFT theories, the 't Hooft anomaly for the U(1)R charge determines

all anomalous dimensions of chiral operators. These however are determined up to

global non-R flavour symmetries. Computationally one must resort to finding such

additional symmetries. In the quiver cases, this can be done by guided inspection of
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the quiver diagrams [43].

The nice work by [102] posited a maximization principle to systematically de-

termine the R-symmetry and hence all anomalous dimensions. Namely one must

maximise a certain combination of the U(1) charges. This quantity is called a in the

canonical literature and together with c they constitute the central charges of the

SCFT. Indeed it is believed that a obeys a 4d version of Zamolodchikov's c-theorem,

decreasing monotonically along an RG flow towards the IR. The central charge a shall

be for us, a measure of the number of degrees of freedom in the field theory. In the

AdS dual, it corresponds to the 5d horizon volume of the singular geometry.

The organization of this chapter is as follows. We will first require three ingredients

the combination of which will form the crux of our calculation. The first piece we

need is four dimensional Jf = 1 super conformal field theory (SCFT), especially

quiver theories. In particular we remind the reader of the computations of anomalous

dimensions in the beta function. This will be the subject of §7.2. The second piece we

need is the so-called "duality trees" which arise from iterative Seiberg-like dualizations

of quiver theories. This, with concrete examples from the zeroth del Pezzo, will

constitute §7.3. The final piece we need is to recall the rudiments of the Klebanov-

Strassler "cascade" for the quiver theory associated to the conifold. We do this in

§7.4.

Thus equipped, we examine a simple but illustrative gauge theory in §7.5. This

quiver theory arises from D3-branes probing the singular complex cone over the zeroth

Hirzebruch surface. We have studied it in detail in Chapters 5 and 6. The duality tree

for the conformal phases of the theory form a flower. With the appropriate addition

of fractional branes to take us away from conformality, we compute the beta function

running in §7.5.2, by determining, using the abovementioned maximization principle,

all anomalous dimensions. We will find in §7.5.3 that there is indeed a duality wall,

viz., an energy scale beyond which dualities cannot proceed. Interestingly, certain

quiver automorphism symmetries can be identified with T-duality-like actions in the

dual AdS theory.

Such analyses are well adapted and easily generalizable to arbitrary quiver the-
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ories. As a final example, we present the case of the cone over the first del Pezzo

surface in §7.6. This case exhibits another interesting phenomenon which we call

"toric islands."

We end with concluding remarks and prospects in §7.7.

7.2 Computing Anomalous Dimensions in a SCFT

We devote this section to a summary of beta-functions in 4D Af = 1 SCFT and of how

to compute in particular the anomalous dimensions. Later, we will make extensive

use of the values of these anomalous dimensions.

The necessary and sufficient conditions for a Jf = 1 supersymmetric gauge theory

with superpotential to be conformally invariant, i.e., a SCFT, are (1) the vanishing of

the beta function for each gauge coupling and (2) the requirement that the couplings

in the superpotential be dimensionless. Both these conditions impose constraints

on the anomalous dimensions of the matter fields, that is, chiral operators of the

theory. This is because supersymmetry relates the gauge coupling beta functions

to the anomalous dimensions of the matter fields due to the form of the Novikov-

Shifman-Vainshtein-Zakharov(NSVZ) beta functions. [142, 128].

The examples which we study are a class of SUSY gauge theories known as quiver

theories. These have product gauge groups of the form f- SU(Nc,) together with Nfi

bifundamental matter fields for the i-th gauge factor. There is also a polynomial

superpotential. The SCFT conditions for these quiver theories can be written as:

I

-d(h) + I Ey k = 0 (7.2.1)
k

where i is the beta-function for the i-th gauge factor, and yj, the anomalous dimen-

sions. The index j labels the fields charged under the j-th gauge group factor while

k indexes the fields appearing in the k-th term of the superpotential with coupling h,

whose naive mass dimension is d(h).
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These conditions (7.2.1) constitute a linear system of equations. However they

do not always uniquely determine the anomalous dimensions because there will be

more variables than constraints. One or more of the y's are left as free parameters.

Intriligator and Wecht [102] provided a general method for fixing this freedom in

aribitrary 4D SCFT, whereby completely specifying the anomalous dimensions. They

showed that the R-charges of the matter fields, which in an SCFT are related to the

y's, are those that (locally) maximize the central charge a of the theory. The central

charge a is given in terms of the R-charges by

3
a = 3(3TrR 3 - TrR), (7.2.2)

32

where the trace is taken over the fermionic components of the vector and chiral

multiplets.

In a quiver theory with gauge group I SU(Ni) and chiral bifundamental multi-
i

plets with multiplicities fij between the i-th and j-th gauge factors (the matrix fij is

the adjacency matrix of the quiver), we can give an explicit expression for (7.2.2) in

terms of the R-charges Rij of the lowest components of the bifundamentals

a = 3 2 Ni2 + E fijNiNj [3(Rij - 1)-(Ri/ - 1)] (7.2.3)

Parenthetically, we remark that in some cases, such as the ones to be discussed in

§7.4 and §7.5, anomalous dimensions can be fixed by using some discrete symmetries

by inspecting the quiver and the form of the superpotential, without the need to

appeal to the systematic maximization of a.

Now in (7.2.3) we need to know the R-charges. However, in a SCFT the conformal

dimension D of a chiral operator is related to its R-charge by D = RI. Moreover,

the relation between D and y is D = 1 + . Therefore we can write the R-charges

and hence (7.2.3) in terms of the anomalous dimensions by

lR = 1 + . (7.2.4)
2 2
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Therefore, after solving the conformality constraints (7.2.1) we can write a in terms

of the still unspecified y's by (7.2.3) and then maximize it in order to completely

determine all the anomalous dimensions.

The freedom in the anomalous dimensions after using the SCFT conditions reflects

the presence of non-anomalous U(1) flavor symmetries in the IR theory. Initially,

there is one U(1) flavor symmetry for each arrow of the quiver. All the matter fields

lying on an arrow have the same charge under this U(1). Now we must impose the

anomaly free condition for each node, this is the condition that for the adjacency

matrix fij at the i-th node we have

E fjNj = fjiNj . (7.2.5)
J3 J

In other words, the ranks of the gauge groups, as a vector, must lie in the integer

nullspace of the antisymmetrised adjacency matrix:

(f _ fT)ij N = 0 . (7.2.6)

Indeed the matrix (f - fT) is the intersection matrix of the quiver in geometrical

engineering of these theories (q.v. e.g. [80, 99, 47]). After imposing this condition

(7.2.6), we are left with (# of arrows - # of nodes) non-anomalous U(1)'s. The

invariance of the superpotential reduces their number even more, giving one linear

relation between their charges for each of its terms. But the number of independent

such relations is not always sufficient to eliminate all the abelian flavor symmetries.

The charges of those that still remain in the IR can indeed be read off from the

expressions for the anomalous dimensions of the fields in terms of those that remain

free after imposing the conditions (7.2.1).

The way in which the charge matrix of the remaining U(1) flavor symmetries

appears in this framework is as the matrix of coefficients that express the anomalous

dimensions of the bifundamental fields as linear combinations of numerical constants

and some set of independent anomalous dimensions. Specifically, suppose we start
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with n anomalous dimensions and that the solution to (7.2.1) specifies k of them in

terms of the other n- k:

i Yoi+ qijj , i= 1,..., k , j = k + 1,..., n. (7.2.7)

The corresponding R-charges are related to the y's by R = 7+2. The charges

of the matter fields under these residual U(1)'s from are given by the qij matrix in

(7.2.7). The constants 'yoi are mapped to the test values of R charges. It is important

to keep in mind that it is possible to change the basis of U(1)'s (correspondingly the

set of independent anomalous dimensions), in which case the charge matrix would be

modified.

7.3 Duality Structure of SUSY Gauge Theories:

Duality Trees

Having reminded ourselves of the methodology of computing anomalous dimensions,

we turn to the next ingredient which will prepare us for the cascade phenomenon, viz.,

the duality trees which arise from Seiberg-like dualities performed on the quivers.

Duality trees provide an interesting way to encode dual gauge theories and their

relations. This construction was introduced in [24], for the specific case of D3-branes

probing a complex cone over dPo, the zeroth del Pezzo surface.

In general, for a quiver theory with adjacency matrix fij and n gauge group

factors, there are n different choices of nodes on which to perform Seiberg duality. In

other words, we can dualize any of the n nodes of the quiver to obtain a new one, for

which we again have n choices for dualization. We recall that dualization on node io

proceeds as follows. Define Iin := nodes having arrows going into io, Iout := those

having arrow coming from io and Ino,, := those unconnected with io.

1. Change the rank of the node io from Nc to Nf - Nc with Nf = fi,ioNi =
iEIin

fio,iNi;
iEIot
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2. fdju = fi if either i,j = io;

3. Only arrows linking Ii, to It will be changed and all others remain unaffected;

4. fAda = fAB - fioAfBio for A E Iout, B E Ii,;

If this quantity is negative, we simply take it to mean an arrow going from B

to A. This step is simply the addition of the Seiberg dual mesons (as a mass

deformation if necessary).

We remark that the fourth of these dualization rules accounts for the antisymmetric

part of the intersection matrix, which does not encode bi-directional arrows. Such

subtle cases arise when there are no cubic superpotentials needed to give masses to the

fields associated with the bi-directional arrows. This situation appears for example

in some of the theories studied in [44] and [49].

The subsequent data structure is that of a tree, where each site represents a gauge

theory, with n branches emanating therefrom, connecting it to its dual theories. This

is called a duality tree. We will see that duality trees exhibit an extremely rich

structure, with completely distinct topologies for the branches for gauge theories

coming from different geometries.

As an introduction, let us recall the simple example considered in [24, 47]. The

probed geometry in this case was a complex cone over dPo. This cone is simply the

famous non-compact C3 /Z 3 orbifold singularity. The generic quiver for any one in

the tree of Seiberg dual theories for this geometry will have the form as given in

Figure 7-1. The superpotential is cubic because there are only cubic gauge invariant

operators in this theory, given by closed loops in the quiver diagram.

Since there are three gauge group factors, there will be three branches coming out

from each site in the duality tree. The tree is presented in Figure 7-2. For clarity we

colour-coded the tree so that sites of the same colour correspond to equivalent theories,

i.e., theories related to one another by some permutation of the gauge groups and/or

charge conjugation of all fields in the quiver (in other words theories whose quivers

are permutations and/or transpositions of each other). We have also included, the

quivers to which the various coloured sites correspond in Figure 7-3.
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Figure 7-1: Generic quiver for any of the Seiberg dual theories in the duality tree
corresponding to a D3-brane probing C3/Z 3, the complex cone over dPo.

Figure 7-2: Tree of Seiberg dual theories for dPo. Each site of the tree represents
a gauge theory, and the branches between sites indicate how different theories are
related by Seiberg duality transformations.

One important invariant associated with an algebraic singularity is the trace of

the total monodromy matrix around the singular point. This can typically be recast

into an associated Diophantine equation in the intersection numbers, i.e., the fj's

[29, 36, 47]. This equation captures all the theories that can be obtained by Seiberg

duality and hence classifies

From Figure 7-1, we see that there exists a simple relation between the intersection

numbers and the ranks of the gauge groups for dPo, namely for rank (n, n2, n3), the

intersection matrix is given by 3 -nj o n2 The Diophantine equation in

ns -n2 0
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Figure 7-3: Some first cases of the Seiberg dual phases in the duality duality tree for
the theory corresponding to a D3-brane probing C3/Z 3, the complex cone over dPo.

terms of the ranks reads

n2 + n2 + n - 3nln2n3 = . (7.3.8)

This turns out to be the well-studied Markov equation.

It is important to stress that, up to this point, duality trees do not provide any

information regarding RG flows. In fact, if the theories under study are conformal the

trees just represent the set of dual gauge theories and how they are interconnected

by Seiberg duality transformations within the conformal window. We will extend

our discussion about this point in §7.4 and §7.5, where we will obtain non-conformal

theories by the inclusion of fractional branes.

7.4 The Conifold Cascade

A famous example of successive Seiberg dualizations is the Klebanov-Strassler cascade

in gauge theory [119] associated to the warped deformed conifold [119]. In light of the

duality tree structure in the previous section, we now present the third and last piece

of preparatory work and summarise some key features of this example, in order to

illustrate the concept of duality cascade, as well as to introduce many of the methods

and approximations that will be used later.

Let us begin by considering the gauge theory that appears on a stack of N D3-
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branes probing the conifold. This theory has an SU(N) x SU(N) gauge symmetry.

The matter content consists of four bifundamental chiral multiplets A 1,2 and B1,2 and

the quiver diagram is shown in Figure 7-4. This model has also interactions given by

N AjA2 N

Figure 7-4: Quiver diagram for the gauge theory on N D3-branes probing the conifold.

the following quartic superpotential

W = -sijfklTrAiBkAjBl (7.4.9)

for some coupling A, and where we trace over color indices.

This gauge theory is self dual under Seiberg duality transformations, by applying

the duality rules in §7.3. Accordingly, its duality tree is the simplest one, consisting

of a single point representing the SU(N) x SU(N) theory, which transforms into itself

when dualizing either of its two gauge groups. This is shown in Figure 7-5.

Figure 7-5: The "duality tree" of the conifold. Its single site represents the standard
SU(N) x SU(N) theory. The closed link coming out the site and returning to it
represents the fact that the theory, being self-dual, transforms into itself under Seiberg
duality.

We will see below that when we apply the procedure for finding anomalous di-

mensions outlined in §7.3 to this specific case, taking into account its symmetries, we

conclude that all the anomalous dimensions are in fact equal to -1/2 and that the

theory is conformal, i.e. both the gauge and superpotential couplings have vanishing

beta functions and (7.2.1) are satisfied. In order to induce a non-trivial RG flow

the theory has to be deformed. A possible way of doing this is by the inclusion of

fractional branes [119]. It is straightforward to see what kind of fractional branes can

be introduced.
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In general, introducing fractional branes is done by determining, for a given quiver,

the most general gauge groups consistent with anomaly cancellation. Now recall from

(7.2.6), possible ranks of the gauge factors must reside in the integer nullspace of the

intersection matrix. Therefore a basis for probe and fractional branes is simply given

by a basis for this nullspace. For the conifold, we find that the most general gauge

group is SU(N + M) x SU(N). We will refer to N as the number of probe branes

and to M as the number of fractional branes.

We see that indeed, for any non-vanishing M, there is no possible choice of anoma-

lous dimensions satisfying (7.2.1) and thus we are indeed moving away from the con-

formal point. This case has been widely studied (see [119, 94, 95] and references

therein) and leads to a duality cascade. What this means is that at every step in

the dualization procedure of this now non-conformal quiver theory, one of the gauge

couplings is UV free while the other one is IR free. As we follow the RG flow to

the IR, we reach a scale at which the inverse coupling of the UV free gauge factor

vanishes. At this point, it is convenient to switch to a more suitable description of

the physics, in terms of different microscopic degrees of freedom, by performing a

Seiberg duality transformation on the strongly coupled gauge group. This procedure

generates the duality cascade when iterated. Indeed, the tree of Figure 7-5 can be

interpreted as representing a duality cascade modulo fractional brane contributions.

7.4.1 Moving Away from the Conformal Point

Let us now study this cascade in detail, setting the framework we will later use to

analyze cascades for general quiver theories. Recall, from (7.2.1), that a key ingredient

required for the computation of the beta functions are the values of the anomalous

dimensions. We have already provided a method to compute anomalous dimensions

in the absence of fractional branes, that is, in a conformal theory, in §7.2. There is

no analogue for such a procedure when the theory is taken away from conformality.

However we will assume, for all the theories we will consider, that

= %c + O(M/N)2 , (7.4.10)
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where y is the value of the given anomalous dimension at the conformal point. This

assumption will be justified for various non-trivial examples in Chapter 8, where we

construct supergravity solutions dual duality cascades.

The expression (7.4.10) is of great aid to us as it gives us the control over the

anomalous dimensions we were pursuing. Inspecting (7.2.1), we see that because

the departure of the 7's from their conformal values is of order (M/N) 2 at large N,

the order (M/N) contributions to the beta functions can be computed simply by

substituting the anomalous dimensions calculated at the conformal point into (7.2.1),

and using the gauge groups with the M corrections.

Let us be concrete and proceed to compute the cascade for this example. First let

us consider the anomalous dimensions at the conformal point where M = 0. They

are the result of requiring the beta functions for both SU(N) gauge groups and for

the single independent coupling in the superpotential to vanish in accordance with

(7.2.1). In this case, these three conditions coincide and are reduced to

Yc,A + Yc,B = -1, (7.4.11)

where Yc,A (resp. Yc,B) is the critical value for the anomalous dimension for field A

(resp. B). Once we take into account the symmetry condition Yc,A = %Y,B, we finally

obtain

y,= -1/2 . (7.4.12)

Now let us consider the beta functions for the gauge couplings in the non-conformal

case of M 0 O. They are

SU(N + M): p4 = N(1 + YA + YB) + 3M (7.4.13)

SU(N): P92 = N(1 + VA + 7B) + (-2 + A + B)M

Note that there is no solution to the vanishing of these beta functions for M 0.

Replacing the anomalous dimensions at the conformal point y, = -1/2 in (7.4.13)
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we obtain the leading contribution to the beta functions

SU(N + M): / 91 = +3M (7.4.14)

SU(N): = 92 = -3M.

Since the theory at any point in the cascade is given by the quiver in Figure 7-4

with gauge group replaced by SU(N + (n + 1)M) x SU(N + nM) for some n E Z

(where the role of the two gauge groups is permuted at every step), we see that the

gauge couplings run as shown in Figure 7-6, where the beta function for each gauge

group changes from ±3M to :T3M with each dualization. In Figure 7-6 we use the

standard notation to which we adhere throughout this thesis: the squared inverse

couplings are denoted as xi = 1/gi2 and the logarithm of the scale is t = logy.

An important feature of this RG flow is that the separation between successive

dualizations in the t axis remains constant along the entire cascade. We will see in

§7.5.3 how the gauge theory for a D3-brane probing more general geometries, such

as a complex cone over the Zeroth Hirzebruch surface, can exhibit a dramatically

different behavior.

Xl

t

Figure 7-6: Running of the inverse square gauge couplings xi = , i=1,2. against

the log of energy scale t = log p, for the conifold. The distance between consecutive
dualizations is constant and the ranks of the gauge groups grow linearly with the step
in the cascade.
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7.5 Phases of F0o

We are now well-equipped with techniques of computing anomalous dimensions, of

duality trees and duality cascades. Let us now initiate the study of some more

complicated gauge theories. Our first example will be the D-brane probe theory on a

complex cone over the zeroth Hirzebruch surface F0, which is itself simply P1 x P1 .

This is a toric variety and the gauge theory was analysed in [45].

There are some reasons motivating the choice of this theory. The first is its relative

simplicity. The second is that its Seiberg dual phases generically have multiplicities of

bifundamental fields greater than 2, whereby providing some interesting properties.

Indeed, from the general analysis of [50, 85], a qualitative change in a RG flow towards

the UV behavior is expected when such a multiplicity is exceeded. Finally, as we will

discuss later, this theory admits the addition of fractional branes. The presence of

fractional branes turns the theory non-conformal, driving a non-trivial RG flow. All

together, this theory is a promising candidate for a rich RG cascade structure.

The duality tree in this case is shown in Figure 7-7; we shall affectionately call

it the "Fo flower," of the genus Flos Hirzebruchiensis and family Floris Dualitatis.

We have drawn sites that correspond to different theories with different colours; the

colour-coded theories are summarized in Figure 7-8. Since the quiver has four gauge

groups, there are four possible ways of performing Seiberg duality and thus there are

four branches coming out from each site of the tree. The number on each branch

corresponds to the node which was dualised. A novel point that was not present in

the tree for dPo is the existence of closed loops.

The possible existence of RG flows corresponding to these closed loops is con-

strained by the requirement that the number of degrees of freedom decreases towards

the IR, in accordance to the a-conjecture/theorem. As it was stressed for the dPo

and the conifold examples, the duality tree for F0 merely represents the infinite set

of conformal theories which are Seiberg duals. Non-vanishing beta functions and the

subsequent RG flow are generated when fractional branes are included in the system.

We reiterate this point: the duality tree describes duality cascades modulo fractional
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branes. In other words, it represents a "projection" of actual cascades to the space

of vanishing fractional branes.

Figure 7-7: The "duality tree" of Seiberg dual theories for F0, it is in the shape of a
"flower," the Flos Hirzebruchiensis.

7.5.1 F0 RG flows

In this section we will follow the RG flow towards the UV of the theory living on D3-

branes probing F0, with the addition of fractional branes to obtain a non-conformal

theory. As in the conifold example, the possible anomaly free probe and fractional

branes are determined by finding the integer null space of the intersection matrix that

defines the quiver (7.2.6). This can be done for any of the dual quivers that appear

in the duality tree, but the natural choice is the simplest of the F0 quivers as was

done in [47] which is shown in Figure 7-8 as the first one (blue dot). The intersection
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matrix for this quiver is given by

2 0 0

0 2 0
=. fij =

0 0 2

0 0 0

0

-2

0

2

2 0 -2

0 2 0

-2 0 2

0 -2 0

A suitable basis for the nullspace of (7.5.15) is v = (1, 1, 1, 1) and v2 = (0, 1, 0, 1).

Therefore, the most generic ranks for the nodes in the quiver, consistent with anomaly

cancellation, are

(nl, n2, n3, n4 ) = N(1, 1, 1, 1) + M(O, 1, 0, 1) . (7.5.16)

Following the discussion in §7.4, we will refer to N as the number of probe branes

and M as the number of fractional branes. The theory is then conformal for M = 0
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and non-conformal otherwise. For M $ 0, there will exist an RG cascade. The

specific path to the UV is determined by the initial conditions of the flow, namely

the gauge couplings at a given scale Ao. As we will see, very different qualitative

behaviours can be obtained, depending on these initial conditions.

Under the approximation in (7.4.10), the procedure outlined in §7.2 can be applied

to determine the conformal anomalous dimensions, which then can be used to work

out the beta functions in the limit M/N << 1 and study the running of the gauge

couplings as we flow to the UV. Let us do so in detail. The beta-functions in (7.2.1),

for a quiver theory with k gauge group factors, ranks {n}i, adjacency matrix Aij and

loops indexed by h corresponding to gauge invariant operators that appear in the

superpotential, now becomes

i k i k

/?ienodes = 3ni- - Z(Aii + Aji)nj + 2 (Aijyij + Ajiji)nj
j=l j=

1

PhEloops = -d(h) + 2 EYhihj (7.5.17)
h

where in the second expression /heloops associated with the terms in the superpo-

tential, the index in the sum over Yhihj means consecutive arrows in a loop and d(h)

is determined by 3 minus the number of fields in the loop.

We will make liberal use of (7.5.17) throughout. For our example for the first

phase of F0, the ranks (nl, n2 , n3, n4) = (1, 1, 1, 1), together with intersection matrix

from (7.5.15), (7.5.17) reads

1 + Y1,2 + Y4,1 = O, 1 + Y1,2 + Y2,3 = O, 1 + 2,3 + Y3,4 = (7.5.18)

71,2 + 2,3 3,4 + 4,1) = 0, 1('1,2,Y2,3±'Y3,4+y4,1 0,

which affords the solution

{71,2 - 1 -74,1, 72,3 - 74,1, 73,4 - -1 4,1,1} (7.5.19)

We see that there is one undetermined y. To fix this we appeal to the maximization
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principle presented in §7.2. The central charge (7.2.3) now takes the form (where 74,5

is understood to mean 74,1.

a 3= 1- (i+ (-1 +Yii+1) -- i,i+) (7.5.20)
4 1 3

Upon substituting (7.5.19) into (7.5.20), we obtain

3
a(-Y4,1) = 8 (-2 + 4,1 + 42,1) (7.5.21)

the maximum of which occurs at y4,1 = -. And so we have, upon using (7.5.19),

71,2 = 72,3 = 73,4 = 74,1 = -1/2. (7.5.22)

Let us remark, before closing this section, that there is an alternative, though

perhaps less systematic, procedure to determine anomalous dimensions that does not

rely on the maximization of a. For every theory in the F 0 cascade the space of solutions

to (7.5.18) is one dimensional. Fixing this freedom at any given point determines the

anomalous dimensions in the entire duality tree. Maximization of the central charge

a is a possible way of determining this free parameter. For F0, a simple alternative is

to make use of the symmetries of the theory (quiver and superpotential). Our theory

(7.5.15) for example, instantly has all y's equal by the Z 4 symmetry of the quiver.

Therefore, in conjunction with the solutions (7.5.19) to conformality, gives (7.5.22)

as desired. Once the anomalous dimensions of theory (7.5.15) are determined, the

freedom that existed in the conformal solutions of all the dual theories is fixed. This

is done by matching the scaling dimensions of composite Seiberg mesons every time

a Seiberg duality is performed and/or by noting that the anomalous dimensions of

fields that are neutral under the dualized gauge group are unchanged.
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7.5.2 Closed Cycles in the Tree and Cascades

Now we wish to find the analogue of the conifold cascade in §7.4 here. For this we

wish to look for closed cycles in the duality tree (Figure 7-7). In the conifold case

the theory was self dual and we cascaded by adding appropriate fractional branes.

Here we do indeed see a simple cycle involving 2 sites (namely the blue and the dark

green). We will call these two theories models A and B respectively and draw them

in Figure 7-9. Model A is the example we addressed above.

N N+M N N+M
_k _ _ , - _ 

IAh cc -
N+M N N+M N+2M

Model A Model B

Figure 7-9: Quivers for Models A and B. Model A corresponds to the choice of ranks
(n1l, n2, n3, n4)A = N(1, 1,1,1) + M(O, 1, 0,1), from which model B is obtained by
dualizing node 3. It has ranks (nl, n2, n3, n4)B = N(1, 1, 1, 1) + M(O, 1, 2, 1)

The starting point will be model A, its superpotential and the set of gauge cou-

plings at a scale Ao. We recall from (7.5.22) that the anomalous dimensions at the

conformal point are 71,2 = 2,3 = 3,4 = 74,1 = -1/2. This leads to the following

values for the beta functions for the 4 gauge group factors:

P1 = -3M / 2 = 3M

/3 = -3M /4 = 3M .

These beta-functions are constants, which means that the running of xi, the inverse

squared couplings as a function of the log scale is linear, with slopes given by (7.5.23).

Let us thus run xi to the UV accordingly. We see that 1 and 3 are negative so at

some point the inverse couplings for the first or the third node will reach 0. Which

of them does so first depends on the value of the initial inverse couplings we choose

for nl and n3. We dualise the node for which the inverse coupling first reaches 0, say

149



node 3. This will give us Model B. If instead node 1 has the inverse coupling going

to 0 first, we would dualise on 1 and obtain a theory that is equivalent to Model B

after a reflection of the quiver (we can see this from Figure 7-7).

Next we compute the anomalous dimensions for Model B at the conformal point.

In analogy to (7.5.18) and (7.5.20) we now obtain 7Y1,2 = 73,2 = 74,3 = 74,1 = -1/2

and 72,4 = 1, which gives the beta functions for the next step:

/1 = -3M P2 = 0 (7.5.24)

p3 = 3M /4 = 0 .

From these we run the couplings at this stage again, find the node for which the

inverse coupling first goes to 0. And dualize that node. We see a remarkable feature

in (7.5.24). To the level of approximation that we are using, only the first gauge group

factor has a negative beta function. This implies that the next node to be dualized

is precisely node 1. Performing Seiberg duality thereupon takes us to a quiver that

is exactly of the form of Model A, only with the ranks differing in contributions

proportional to M, i.e., different fractional brane charges.

By iterating this procedure it is possible to see that the entire cascade corresponds

to a chain that alternates between type A and type B models. Furthermore, the

length of the even steps of the cascade, measured on the t = log p axis is constant.

The same statement applies to the length of the odd steps. This cascade is presented

in Figure 7-10 for the initial conditions (x1, X2, X3 , x 4 ) = (2, 1, 1, 0).

7.5.3 Duality wall

We have seen in §7.5.2 that models A and B form a closed cascade and are not

connected to the other theories in the F0 duality tree by the RG flow, regardless of

initial conditions. This motivates the study of duality cascades having other Seiberg

dual theories as their starting points. The simplest choice corresponds to the model

in Figure 7-11. This theory is obtained from Model A by Seiberg dualizing node 2

followed by 1. We will call this Model C.
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0 1 2 3 4 5 6
t

Figure 7-10: Duality cascade alternating between the A
colouring scheme is such that orange, black, green, and
nodes 1, 2, 3 and 4.

3N
2 N-

NIX 
i > i 

N+M 6

and B toric models. The
red respectively represent

M

6

N

Figure 7-11: Model C for the Fo theory. It
then 1 from the simplest Model A.

is obtained from dualising node 2 and

Decreases in the Step

Applying the formalism developed in previous sections we can proceed to compute,

for any initial condition, the RG cascade as the theory evolves to the UV. The starting

point is the computation of the anomalous dimensions for Model C at the conformal

point. These, by the techniques above, turn out to be 71,2 = 71,4 = -3/2, 12,3 =

14,3 = 5/2 and 73,1 = -1. Using them to calculate the beta functions, we obtain

1 = 0

P3 = 0

2 = -3M
,4 = 3M .

(7.5.25)

With these let us evolve to the UV. Let us first consider the case in which the initial

condition for the inverse gauge couplings are (xl, X2, X3, X4 ) = (1, 1, 1, O0). Figure 7-12
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shows the evolution of the four inverse gauge couplings both as a function of the step

in the cascade and as a function of the logarithm of the scale. An interesting feature

1.

Xi

0.

1.

Xi

0.

Couplings vs. scale

n t

Figure 7-12: Evolution of gauge couplings with (a) the step in the duality cascade and
(b) the energy scale for initial conditions (l, X 2 , X3 , X4 ) = (1, 1, 1, 0). The colouring
scheme is such that orange, black, green, and red respectively represent nodes 1, 2, 3
and 4.

is that the distance, Ai, between successive dualizations is monotonically decreasing.

This marks a departure from the behaviors observed in the conifold cascade and

from the example presented in §7.5.2, where Ai remained constant (cf. Figure 7-

6). However, this fact does not necessarily mean the convergence of the dualization

scales. Indeed, we plot the intervals Ai in Figure 7-13.a while Figure 7-13.b shows

the resulting dualization scales. The slope of this curve is decreasing, reflecting the

A vs. step

3 

5

2

5

1

5

.
0 20 40 60 80 100

Scale vs. step

ti

0.

O.

O.

O.

0.

O.

O.

O.

Figure 7-13: The evolution of A, the size of the increment during each dualization
and the energy scale increase as we dualise, for the initial conditions (xi, x2 , x 3, x4) =

(1,1,1,0).
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decreasing behavior of Ai. Nevertheless, ad infinitum, the scale may in principle

diverge. In Section 8.3, we perform an analytical study of this cascade and show that

for this initial conditions the dualization scales are convergent.

A Duality Wall

Let us now consider a different set of initial conditions, given by ( 1, 2, X3, x 4 ) =

(1, 1, 4/5, 0). The flow of the inverse couplings is now shown in Figure 7-14.

Couplings vs. step Couplings vs. scale
2

1.5

Xi 1

0.5

0
5 10 15 20

1.

Xi

0.

n t

Figure 7-14: Evolution of gauge couplings with (a) the step in the duality cascade
and (b) the energy scale for initial conditions (Xl, X 2, X3, X4 ) = (1, 1, 4/5, 0). The
colouring scheme is such that orange, black, green, and red respectively represent
nodes 1, 2, 3 and 4.

A completely new phenomenon appears in this case. Something very drastic

happens after the 14-th step in the cascade. As a consequence of lowering the initial

value of x 3, the third node gets dualized at this step, producing an explosive growth of

the number of chiral and vector multiplets in the quiver. This statement can be made

precise: at the l4-th step node 3 is dualized and the subsequent quivers have all their

intersection numbers greater than 2. In this situation the results of [50, 85] suggest

that a duality wall is expected. This phenomenon is characterized by a flow of the

dualization scales towards an UV accumulation point with an exponential divergence

in the number of bifundamental fields and ranks of the gauge groups.

This asymptotic behavior can be inferred once Seiberg dualities are interpreted as

Picard-Lefschetz monodromy transformations which we discuss in Section 8.3
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Figure 7-14 shows a very small running of the gauge couplings beyond this point.

This is not due to a vanishing of the beta functions, but to the extreme reduction of

the length of the Ai intervals.

A vs. step Scale vs. step

0.3

0.25

0.2
Di

0.15

0.1
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0
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0.4

0.3

0.2

0.1

0 10 20 30 40 50 0 10 20 30 40 50
n n

Figure 7-15: The evolution of A, the size of the increment during each dualization
and the energy scale increase as we dualise, for the initial conditions (xi, X2, X 3, X4 ) =

(1,1,4/5, 0).

In contrast to Figure 7-13, for the initial conditions (1, 1, 4/5, 0), we have drawn

the plots in Figure 7-15.a and Figure 7-15.b. Both of them indicate that a limiting

scale which cannot be surpassed is reached as the theory flows towards the UV. This

is precisely what we call a duality wall.

7.5.4 Location of the Wall

We have just seen that starting from the quiver in Figure 7-11 for F0 with initial con-

ditions (X1 , X 2 , X3, X4 ) = (1, 1, 4/5, 0) a duality wall is reached. Let us briefly examine

the sensitivity of the location of the duality wall to the initial inverse couplings.

Let our initial inverse gauge couplings be (1, x2, x3 , 0), with 0 < x 2, x3 < 1, and

we repeat the analyses in the previous two subsections. We study the running of the

beta functions, and determine the position of the duality wall, twall, for various initial

values. We plot in Figure 7-16, the position of the duality wall against the initial

values x2 and X3 , both as a three-dimensional plot in I and as a contour plot in II. We

see that the position is a step-wise function. A similar behavior has been observed in

[85] for dPo in the case of vanishing anomalous dimensions.
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0.s

0.6

X 3
0.4

twall 

0.8 0.6 0.4 0.2 X2

(1) (II)

Figure 7-16: A plot of the position twall against the initial gauge coupling values
(1, x2, X3 , 0). (I) is the 3-dimensional plot and (II) is the contour plot versus x2 and
x3 .

7.5.5 A 2 Symmetry as T-Duality

A remarkable symmetry seems to be captured by the gauge theory discussed above.

Suppose that, starting from Model C, we had decided to follow the RG flow towards

the IR instead of the UV. There is a simple trick that accomplishes this task, namely

to look at the flow to the the UV of a theory in which the beta functions have changed

sign and where the log-scale t has been replaced by -t. Since we are considering beta

functions that are linear in the number of fractional branes M, changing the sign

of the beta functions can be interpreted as changing M to -M. However, upon

inspecting Figure 7-11, we see that M - -M is nothing more than a Z 2 reflection of

the quiver along the (13) axis. Therefore, the flow to the IR that starts from Model

C is simply the flow to the UV of its Z 2 reflection. Therefore, the whole cascade we

have already computed also describes, up to this reflection, the cascade to the IR.

Let us elaborate on the origin of this Z 2 symmetry. In the holographic dual of

the gauge theory, the energy scale M is typically associated to a radial coordinate R.

Then, transforming t = log i to -t corresponds to an inversion of the radial coordinate

R -+ 1/R in the holographic dual theory. Therefore this Z 2 symmetry displayed by

the gauge theory RG flow indicates a Z 2 T-duality-like symmetry of string theory on
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the underlying geometry. The scale of model C can then be interpreted as the self

dual radius of the dual holographic theory. This holographic theory then exhibits a

minimal length beyond which there are no further new phenomena. Every physical

quantity at a scale less than this scale can be expressed in terms of a different physical

quantity by applying the Z 2 action described above. It will be very interesting to

explore this symmetry further.

7.6 Phases of dP1

We have initiated the study of duality walls for general quiver theories and in the

foregoing discussion analysed in detail the illustrative example of the cone over the

zeroth Hirzebruch surface. It is interesting to extend the construction of duality trees

to other gauge theories and the structures and RG flows that may emerge.

Let us briefly consider perhaps the next simplest case, viz., the gauge theory

on a D3-brane probing a complex cone over dP1 , the first del Pezzo surface, which

is IP2 blown up at 1 point. This is again a toric variety and the theory has been

extensively studied [45, 43]. There is only one toric phase in this case1 , whose quiver

is shown in Figure 7-17; the ranks are (1, 1, 1, 1). This model is self-dual under the

[1] [2] [l] [2]
1 _ _ 1 . _ _! I I

I

I 1

2

1 0

I

1
I 3 31 3

[4] [4] [4][3]
(a) (b)

Figure 7-17: The quivers for the gauge theory arising from dP1. (a) is the toric phase
while (b) is obtained from (a) by dualising either node 3 or 4 and is a non-toric phase.
The ranks of the nodes are denoted by blue square brackets.

dualizations of nodes 1 or 2, and is transformed into a theory with gauge group

SU(2N) x SU(N) x SU(N) x SU(N) when dualizing any of the other two nodes.

'We follow here the nomenclature of [43], where a theory was denoted toric if it had all its gauge
group factors equal to U(N), i.e., all the ranks are equal.
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Again using the notation of (7.5.16), we denote the ranks in the conformal case, as

(2, 1, 1, 1). The duality tree obtained by taking into account these two models is shown

in Figure 7-18. The encircled theory is the one in Figure 7-17.a and each link shows

the associated dualized node. Other Seiberg dualizations of the (2, 1, 1, 1) model lead

to (5,2,1,1) and (4,2, 1, 1) theories. We have not included them in Figure 7-18 for

simplicity.

* (1,1,1,1)

* (2,1,1,1)

Figure 7-18: The tree of Seiberg dual theories for dP1 . There are six toric islands
(sets of blue sites) in this tree.

Already at this level we can see that the duality space of dP1 is very rich, exhibit-

ing a phenomenon that we will call "toric islands" (isolated sets of toric models).

Furthermore, the abundance of closed loops makes it quite different from the dPo

and F0 cases. The appearance of a six-fold multiplicity of islands is a result of the

combinatorics that gives the possible reorderings of a given quiver. Explicitly, the

number of possible re-orderings of the four nodes in the toric quiver is 4! = 24. After

grouping these toric models in islands of four, we are led to the six expected islands.

7.7 Conclusions and Prospects

In applying some recent technology to the classic conifold cascade phenomenon [119],

we have here studied how duality walls arise in string theory. Endowed with the

systematic methods from toric duality [45, 43] and maximization principles in de-
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termining anomalous dimensions in arbitrary four-dimensional SCFT's [102, 103], we

have re-examined the ideas of [50, 85] by supplanting complete anomalous dimensions

to the beta functions, emerging under a fully string theoretic realization.

Indeed, armed with the vast database of "duality trees" encoding various (gener-

alized) Seiberg dual phases of four-dimensional SCFT / = 1 gauge theories that live

on world-volumes of D3 branes probing various singular geometries, we have outlined

a general methodology of analysing cascading phenomena and finding duality walls.

At liberty to take advantage of the well-studied toric singularties, we have used the

enlightening example of the theory corresponding to the complex cone over the zeroth

Hirzebruch surface Fo. We have shown how one adds fractional branes to take the the-

ory out of conformality and hence obtain a nontrivial running bf the (inverse) gauge

couplings. Thereafter, by either symmetry arguments [43] or maximization of central

charge a [102], one could determine the exact form of the NSVZ beta-functions, in

the limit where the number of physical branes is much larger than that of fractional

ones. We have then shown how to apply this running to consecutive applications of

Seiberg duality.

We find, when one identifies appropriate "closed cycles" in the tree, generalization

of the conifold cascades. We also find the existence of "duality walls" (cf. Figure 7-14).

This occurs whenever subsequent applications of the duality (cascade) result in the

rapid decrease in the evolution, towards the UV, of the interval between dualizations,

whereby creating an accumulation point onto which all asymptotic values of the

couplings pile. Such a wall signifies a finite energy scale beyond which Seiberg dualities

cannot proceed.

An interesting appearance is played by the Z 2 symmetry which the beta function

equations exhibit and the non-trivial action on the scale. This action simply inverts

the scale and defines a critical scale, say 1, at which there is a reflection point in the

physics. All phenomena above this scale are related to those below it. In the dual

geometry this is reminiscent of the familiar T-duality and the critical scale corresponds

to the self-dual radius of T-duality. The position of the wall is sensitive to the initial

conditions, viz., the values of the gauge couplings, and exhibits a step-wise behaviour
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with respect to them (cf. Figure 7-15). In next section we will study this dependence

on initial conditions analytically.

Of course, our example is but the simplest of a wide class of theories. We have

briefly touched upon a more involved case of the cone over the first del Pezzo surface.

There, interesting "toric islands" appear, giving an even richer structure for the cas-

cade. Several new cascades, showing widely different phenomena, will be constructed

in coming sections.
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Chapter 8

Chaotic Duality in String Theory

We investigate the general features of renormalization group flows near superconfor-

mal fixed points of four dimensional /' = 1 gauge theories with gravity duals. The

gauge theories we study arise as the world-volume theory on a set of D-branes at a

Calabi-Yau singularity where a del Pezzo surface shrinks to zero size. Based mainly

on field theory analysis, we find evidence that such flows are often chaotic and contain

exotic features such as duality walls. For a gauge theory where the del Pezzo is the

Hirzebruch zero surface, the dependence of the duality wall height on the couplings

at some point in the cascade has a self-similar fractal structure. For a gauge theory

dual to lP2 blown up at a point, we find periodic and quasi-periodic behavior for the

gauge theory couplings that does not violate the a conjecture. Finally, we construct

supergravity duals for these del Pezzos that match our field theory beta functions.

This chapter is based on [61].

8.1 Introduction and Summary

In the previous chapter, we have considered duality cascades for a class of non-

spherical horizons which are U(1) bundles over the del Pezzo surfaces [85, 56]. We

have observed that, in some cases, these theories exhibit a behavior that differs dra-

matically from the KS flow.

The numerical studies of Chapter 7 have convinced us that, sensitive to the type
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of geometry as well as initial conditions, the quivers after a large number of Seiberg

dualities may become hyperbolic in the language of [50]. After this, a finite energy

scale is reached beyond which duality cannot proceed. This phenomenon has been

dubbed a "duality wall".

In this chapter we elucidate some aspects of flows, cascades, and walls for gauge

theories arising from these more general geometries using both field theory and

SuGRA techniques. To begin with, a more systematic, and where possible, ana-

lytic investigation of the duality wall phenomenon is clearly beckoning. For this

purpose, we will use the exceptional collection techniques that become particularly

conducive for the del Pezzo surfaces [24], especially for computing the beta functions

and Seiberg dualities [93, 97]. We review these matters synoptically in Section 8.2.

In particular, we will formulate the general RG cascade as motion and reflections in

certain simplices in the space of gauge couplings.

Thus girt with the analytic form of the beta functions and Seiberg duality rules

[56, 93, 85], we show in Section 8.3 the existence of the duality wall at finite energy

analitically. As an illustrative example, we focus on F0, the zeroth Hirzebruch surface.

In the numerical studies of Chapter 7, two types of cascading behavior were noted for

F. Depending on initial values of couplings, one type of cascade readily caused the

quiver to become hyperbolic and hence an exponential growth of the ranks, whereby

giving rise to a wall. The other type, though seemingly asymptoting to a wall, was

not conclusive from the data. As an application of our analytic methods, we show

that duality walls indeed exist for both types and give the position thereof as a

function of the initial couplings. These results represent the first example in which

the position of a duality wall along with all the dual quivers in the cascade have

been analytically determined. Thus, we consider it to be an interesting candidate

to attempt the construction of a SuGRA dual. Interestingly, the duality wall height

function is piece-wise linear [85, 56] and "fractal." A highlight of this chapter will be

the demonstration that a fractal behavior is indeed exhibited in such RG cascades.

As we zoom in on the wall-position curve, a self-similar pattern of concave and convex

cusps emerges.
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Inspired by this chaotic behavior, we seek further in our plethora of geometries

for signatures of chaos. Moving onto the next simplest horizon, namely that of the

dP1 , the first del Pezzo surface, we again study the analytic evolution of the cascade

in detail. Here, we find Poincar6 cycles for trajectories of gauge coupling pairs. The

shapes of these cycles depend on the initial values of couplings. For some ranges,

beautiful elliptical orbits emerge. This type of behavior is reminiscent of the attractors

and Russian doll renormalization group flow discussed in [137, 126]. This example

constitutes Section 8.4.

Finally, in Section 8.5, we move on to the other side of the AdS/CFT Correspon-

dence and attempt to find SuGRA solutions. We rely upon the methodologies of [72]

to construct solutions that are analogous to those of Klebanov and Tseytlin (KT)

[120] for the conifold. The fact that explicit metrics for cones over del Pezzo surfaces

are not yet known (except for dP1 [63]) is only a minor obstacle. We are able to write

down KT-like solutions, complete with the warp factor, as an explicit function of the

Cartan matrices of the exceptional algebra associated with the del Pezzo.

These SuGRA solutions should be dual to field theory cascades that are similar

to the original KS cascade. Identifying the precise SuGRA phenomenon which marks

the duality wall remains an open and tantalizing quest.

We would like to stress the importance of possible corrections to the R-charges of

the matter fields, and hence to the anomalous dimensions and beta functions. We will

see that in order to be able to follow the RG cascades accurately, we need to be able

to assume that the R-charges are corrected only at order CO(M/N)2 where M is the

number of D5-branes, N the number of D3-branes, and M/N a measure of how close

we are to the conformal point M = 0. In the case of the conifold, the gauge theory

possessed a Z 2 symmetry which forced the O(M/N) corrections to vanish. Our del

Pezzo gauge theories generally lack such a symmetry.

We have two arguments to address these concerns. First, for KS type cascades, our

SuGRA solutions beta functions precisely, severely constraining any possible M/N

corrections to the R-charges. For more complicated cascades involving duality walls,

we lack SuGRA solutions. Nevertheless, we shall push ahead, assuming that eventu-
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ally appropriate supergravity solutions will be found and that R-charge corrections,

even if O(M/N), will not change the qualitative nature of our results. The flows which

we shall soon present are so interesting that we think it worthwhile to describe them in

their current, though less than fully understood state. An analogy can be made to the

Navier-Stokes equation. Turbulence is observed in fluids in many different situations

but is very difficult to model exactly. Instead, people have developed simple models,

such as Feigenbaum's quadratic recursion relation, to understand certain qualitative

features, such as period doubling. In some sense, the flows we present here are in

relation to the real RG flows as Feigenbaum's analysis is to the real Navier-Stokes

equation.

8.2 A Simplicial View of RG Flow

In preparation for our discussions on Renormalization Group (RG) flow in the gauge

theory duals to del Pezzo horizons, we initiate our study with an abstract and recol-

lective discussion of RG flows and duality cascades.

8.2.1 The Klebanov-Strassler Cascade

The Klebanov-Strassler (KS) flow [119] provides our paradigm for an RG cascade.

In the KS flow, one starts with an Jn = 1 SU(N) x SU(N + M) gauge theory with

bifundamental chiral superfields Ai and Bi, i = 1, 2 and a quartic superpotential.

The couplings associated with the two gauge groups we shall respectively call gl and

g2. This quiver theory can be geometrically realized as the world-volume theory of

a stack of N coincident D3-branes together with M D5-branes probing a conifold

singularity. The matter content and superpotential are given as follows:

A1, 2

N ; A--l N+M W = eiijkTrAiBkAjBl . (8.2.1)
B- 2H i,2

where A is the superpotential coupling and the trace is taken over color indices.
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For M = 0 the gauge theory is conformal. Indeed, the M D5-branes are added

precisely to take us out of this conformal point, inducing a RG flow.

The one loop NSVZ beta function [142] determines the running of the gauge

couplings. For each gauge group we have

d(8ir2/g2) 3T(G) - T(ri)(1 - 2yi) (8.2.2)
lni p(8.2.2)

dlnp 1 - i T(G)

where pu is a ratio of energy scales and for an SU(NC) gauge group T(G) = NC and

T(fund) = 1/2.

Using yi = Ri- 1, we can express the beta functions Oi=1,2 for the two gauge

couplings gi=l,2 in terms of R-charges. As is done in [119], we will work in the

approximation that the denominator of (8.2.2) is neglected. Then, the beta functions

become

]1 = 3 [N + (RA - 1)(N + M) + (RB - 1)(N + M)] ,

P2 = 3 [(N + M) + (RA - 1)N + (RB - 1)N] .

At the conformal point, the R-charges of the bifundamentals can be calculated

from the geometry and are RA = RB = 1/2. They can also be simply determined by

using the symmetries of the quiver and requesting the vanishing of the beta functions

for the gauge and superpotential couplings. Generically, we would expect the R-

charges to suffer O(M/N) corrections for M # 0. Here however, there is a Z 2

symmetry M -+ -M for large N that forces the corrections to be of order at least

O(M/N) 2. Thus,

1 = -3M, 12 = 3M (8.2.3)

up to O(M/N) corrections.

If we trust these one loop beta functions, then flowing into the IR, we see that

the coupling g2 will eventually diverge because of the positivity of P2. According

to Klebanov and Strassler, the appropriate remedy is a Seiberg duality. After the
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duality, the gauge group becomes SU(N) x SU(N - M) but otherwise the theory

remains the same. After this duality, the beta functions change sign: P1 = 3M and

P2 = -3M. This process of Seiberg dualizing and flowing can be continued for a long

time in the large N limit as shown in Figure 8-1. The number of colors in the gauge

groups becomes smaller and smaller. Klebanov and Strassler [119] demonstrated that

when one of the gauge groups becomes trivial, the gauge theory undergoes chiral

symmetry breaking and confinement. The phenomenon is realized geometrically in

the SuGRA dual by a deformation of the conifold in the IR.

Xt

t

Figure 8-1: The KS cascade for the conifold. The two inverse gauge couplings xi=1,2 =
I for the two nodes evolve in weave pattern against log-energy scale t where Seiberg
gi
duality is applied whenever one of the xi's reaches zero.

Clearly there are some weaknesses in this purely gauge theoretic approach to the

RG flow of a strongly coupled gauge theory. Usually Seiberg duality is understood as

an IR equivalence of two gauge theories and is not performed in the limit g2 -+ c.

Can we really trust Seiberg duality here? Also, we have dropped the denominator of

the full NSVZ beta function (8.2.2), which is presumably important. Nevertheless, the

analysis is sound and the strongest argument for the validity of these Seiberg dualities

comes not from gauge theory but from the dual supergravity theory [119]. There is a

completely well-behaved supergravity solution, the KS solution of the conifold, which

models this RG flow. On the gravity side, there is a radial dependence of the 5-form

flux which produces a logarithmic running of the effective number of D3-branes in

complete accordance with the field theory cascade, giving credence to these Seiberg

dualities.
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8.2.2 General RG Flows

We shall henceforth focus on the four dimensional, Af = 1 gauge theories engineered

by placing D3-branes at the singularity of a Calabi-Yau threefold cone over a del

Pezzo surface. We have presented thes theories in detail in Chapters 5 and 6 (see also

[93, 11, 45, 43, 52] for a comprehensive discussion). With some important caveats,

these theories can be treated in a fashion similar to the discussion above for the

conifold.

The field content of a del Pezzo gauge theory is described compactly by a quiver.

For D-branes probing the n-th del Pezzo, the number of gauge group factors in the

quiver theory is equal to

k = n+3, (8.2.4)

which is the Euler characteristic X(dP,). We reserve the index i = 1,2,... k for

labeling the nodes of the quiver. We denote the adjacency matrix of the quiver by

fij. In other words, fij is the number of arrows in the quiver from node i to node j.

We point out that by definition, the fij are all non-negative.

Thus given a quiver, we need to specify the ranks of the gauge groups in order to

define a gauge theory. We will denote the rank of the gauge group on the i-th node by

di, and the dimension vector by d = (di)i=1,...,k. As on the conifold, the ranks di are

related to the number of branes that realize the specific gauge theory in string theory.

When probing the del Pezzos, we will reserve N to denote the number of regular

D3-branes, and MI to denote the number of D5-branes. The D3-brane corresponds

to a unique dimension vector which we will denote by r = (ri)i=1,...k. In distinction

to the conifold and its ADE generalizations, the possible D5-branes are constrained

by chiral anomaly cancellation, and we will parametrize their dimension vectors by

SI - () with I = 1,2...,n.

Summarizing, a D-brane configuration with N regular D3-branes and MI D5-
k

branes of type I corresponds to the gauge group rI SU(di) with
i=l

di = riN + si M' (8.2.5)

167



and fij chiral fields Xij in the SU(di) x SU(di) bi-fundamental representation.

As shown in [93, 97], the beta functions of the gauge theory can be computed

effectively from geometry by taking advantage of the exceptional collection language

[24, 93, 97, 47]. An exceptional collection £ = (El, E 2,..., Ek) is an ordered collection

of sheaves, specifying the D-brane associated with each node. The intersections of

the sheaves give rise to massless strings which in turn correspond to bifundamental

fields in the gauge theory. can roughly be thought of as a basis of branes.

An important feature of exceptional collections for us will be the ordering. The

ordering of a collection induces an ordering of the nodes of the quiver. In order to use

the exceptional collection technology to compute the beta functions, we must keep

track of the ordering.

If a given quiver satisfies the well split condition of [93], the order of the quiver

changes in a simple way under Seiberg duality. To understand the well split condition,

we first need to refine our understanding of the quiver ordering. It was shown in [93]

that the ordering of the quiver is only determined up to cyclic permutations. If

123... n is a good ordering, then so is 23... nl. If a quiver is well split, then we can

find a cyclic permutation such that for any node j, all the outgoing arrows from j

go to nodes i < j and all the in-going arrows into j come from nodes i > j. After

a Seiberg duality on node j, j would become the last node in the quiver. In, [54]

alternative formulation of the well split condition in terms of (p, q) webs was found.

An unproven conjecture of [93] is that the Seiberg dual of a well split quiver is

again well split. The conjecture was proven for four node quivers in [93] and no

counter-examples are known to the author. An appropriate understanding of ill split

quivers is still lacking. For example, the correct determination of R-charges for them is

still open. Indeed, the fractional Seiberg dualities encountered in [47] are problematic

precisely for this reason. Ill split quivers were studied in [54]. As our examples in

this chapter involve only Seiberg dualities of well split, four node quivers, we can be

confident in our calculations.

In light of the exceptional collection language, we shall also make use of the matrix

S which is an upper triangular matrix with ones along the diagonal and related to
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fi by

fij- fji, i<j;
Sij - 1, i=j ; (8.2.6)

O, i>j.
where we have assumed an ordering. The components Sij, i j, are still the number

of arrows from node i to node j, except that now a negative entry corresponds to

reversing the arrow direction. We will find it convenient to use a matrix I which is

simply the antisymmetrized version of S (or f).

= S- St= f- ft (8.2.7)

Using this, chiral anomaly cancellation can be concisely expressed as the condition

that the dimension vector d be in the kernel of I. In other words, r and the s form

a basis of ker I.

Beta Functions and Flows

Methods exist in the literature for the determination of the R-charges as well as the

beta function. Evaluating (8.2.2) with the quiver notation introduced above, and

denoting by Rj the R-charge of the bifundamental Xij, one obtains for the beta

function of the i-th node (cf. Eq (5.7) of [56])

dn i = 3di + E (fij(Rij - 1) + fji(Rji - 1)) di) . (8.2.8)
dlnpi 2j=1

where xi is related to the i-th gauge coupling via xi = 8r 2/g2.

One very insightful approach for the determination of the R-charge is the proce-

dure of maximization of the central charge a in the CFT as advocated in [102, 103].

We shall however adhere to the procedure of [93, 97], which gives the R-charges at

the conformal point. Transcribing Eq. 49 from [85] to present notations, the R-charge
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of the bi-fundamental Xij is given by

R(Xij) 1 + (9- n)rirj (s1 q S-1l) sign(i-j) (8.2.9)

It was shown in [85] that plugging (8.2.9) into (8.2.8), and going to the conformal

point di = ri, one finds pi = 0, as expected.

The flow is induced when we leave the conformal fixed point by adding D5-branes.

As in [119], we will work in the regime M' < N. As in Chapter 7, we will assume

the R-charges do not receive corrections of O(M I / N). This assumption is supported

by the supergravity solutions we write down in Section 8.5, which severely constrain

the nature of such corrections for KS type cascades. For more general cascades with

duality walls, we believe that we can still trust the qualitative nature of our results.

Ignoring the corrections, the non-conformal beta functions can readily be obtained

by substituting (8.2.9) into (8.2.8) for general ranks di. We obtain, to order MI/N,

/pi = 3sM' + E 'RijsM', (8.2.10)

where we have introduced the symmetric matrix

Rij = fij(Rii - 1) + fji(Rji - 1) (8.2.11)

We will now evolve the inverse gauge couplings xi = 8'r2/gi with the beta functions

(8.2.10). Since the one-loop beta functions are constant, the evolution proceeds in

step-wise linear fashion, much like the KS cascade; we have

87r2 8r 2

+ t) - = fpi/t (8.2.12)g(t + t) g (t)

during the step At in energy scale (t = In/p), before one has to perform Seiberg

duality on the node whose coupling reaches zero first.

An important constraint can be placed on this evolution. Even though now these
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beta functions do not vanish identically, it is still the case that

Z /3ir = 0 (8.2.13)

The reason is that this sum can be reorganized into a sum over each of the beta

functions at the conformal point, and at the conformal point, each of these beta

functions vanishes individually. It follows from (8.2.10) and (8.2.13) therefore, that,

k

Z 2 = constant (8.2.14)

throughout the course of the cascade; on this constraint we shall expound next.

Simplices in the Space of Couplings

The space of possible gauge coupling constants xi 1/gi2 for a quiver with k gauge

groups is a cone (R+)k. The relation (8.2.14) cuts out a simplex in this cone. The

beta functions (8.2.10) establish the direction of the renormalization group flow inside

this simplex. For the KS conifold flow, having two gauge couplings, the cone is the

quadrant in R2 parametrized by 1/g 2 = x > 0 and 1/g2 = y > 0. The simplex is the

line segment x + y = const inside this cone. The beta functions tell us to move up

and down this line segment until one or the other coupling constant diverges.

In more general cases, under the renormalization group flow, we will eventually

reach a face of the simplex where one of the couplings diverges. At this point, the

insight gained from the KS flow tells us we should Seiberg dualize the corresponding

gauge group. After the duality, we find ourselves typically in a new gauge theory. The

new gauge theory has some new associated simplex and renormalization group flow

direction given by some different set of beta functions. The KS flow is very special in

that the Seiberg dual theory is identical to the original one up to the total number

of D3-branes N.

One imagines in general some huge collection of simplices glued together along

their faces. In any given simplex, the renormalization group trajectory is a straight
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line. At the faces, the trajectory "refracts". One recomputes the beta functions to find

the new direction for the RG flow. In Figure 8-1 for example, we have the evolution

of the couplings reflecting off the t-axis (corresponding to either 1/g2 or 1/g2 equal

to zero), whereby giving the weave pattern. Note that such RG flows are generically

quite sensitive to initial conditions. Slightly altering the initial couplings may alter

the trajectory such that a different face of a simplex is reached. A different face

corresponds to a Seiberg duality on a different node which will generically completely

alter the rest of the flow. Such a sensitivity was noticed in [85, 56].

For four node quivers, the simplices are tetrahedra and the RG flow can be vi-

sualized. There is only one vector s, with components si, corresponding to only one

D5-brane. Thus, the direction of the RG flow inside any given tetrahedron is, up

to sign, independent of M. Moreover, one can show that after a duality on node i,

f3i - -i (see the appendix for details).

Thus prepared, we can embark upon a detailed study of the RG flows and duality

cascades for various concrete examples. Some of them will exhibit a KS type behavior,

meaning that the cascade will periodically return to the same quiver up to a change

in the number of D3-branes, showing no accumulation of dualization scales in the

UV. Others will be markedly different, exhibiting duality walls. In particular, we

shall describe an assortment of interesting flows for D-branes probing cones over the

del Pezzo surfaces, where we will be able, in addition to numerics, to gain some

quantitative analytic understanding.

8.3 Duality Walls for F0

We begin with D-brane probe theories on the complex cone over F0, the zeroth Hirze-

bruch surface. The addition of D5-branes takes us out of conformality, whereby

inducing a RG flow. Detailed numerical study was undertaken in [56]. We presented

the results in Chapter 7. All Seiberg dual theories for this geometry can be arranged

into a web which encodes all possible duality cascades. This web takes the form

of a flower and has been affectionately called the Flos Hirzebruchiensis (cf. Fig 7
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cit. Ibid.). The purpose of this section is to derive analytical results for the existence

of duality walls and their location. We also explain the fractal structure of the

duality wall curve as a function of the initial couplings.

8.3.1 Type A and Type B Cascades

Before proceeding with the analytical derivations, let us make a brief summary of the

findings in [56], where two classes of RG trajectories were identified. In one gauge

theory realization, F0 exhibits a Klebanov-Strassler type flow that alternates between

two quivers with constant intervals in t = log p (for energy scale p) between successive

dualizations. This type of flow is an immediate generalization of the conifold cascade.

The quivers of and the beta functions inter-connecting between the two theories are

shown in Figure 8-2.

N N+M N N+M1 ~ -, A_ » *

P1 = -3M

P2= 3M
3 = -3M
4= 3M 4

P1 = -. 5VI

_2 =0M

I, = 3M
' " 04

'""i * > '
4 3..4 .

N+M N N+M .. N+2M

Figure 8-2: The first class of duality cascades for F. This is an immediate generaliza-
tion of the KS conifold case and we alternate between the two theories upon dualizing
node 3 of each and evolve according to the beta functions shown.

The second class of flows commences with the quiver in Figure 8-3, which is

another theory in the duality flower for F. In this case, there is a decrease in the t

interval between consecutive dualizations towards the UV, leading to the possibility

of a so-called duality wall past which no more dualization is possible and we have

an accumulation point at finite energy. Considering initial couplings of the four

gauge group factors of the form (1,x 2, x3, 0), two qualitatively different behaviors

were observed.

1. In theories with x3 > 0.9, the cascade corresponds to an infinite set of alternate

dualizations of nodes 1 and 2. The distance between dualizations is monotoni-
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1 2 .2

l=0
2 = -3M 2 6

134= 3M

4 6 3
N+M N

Figure 8-3: The second class of theories for F0. Starting from this quiver and following
the duality cascade give markedly different behavior from the KS case. It was seen
in this case that the increment in energy scale decreases at each step and a "duality
wall" may be reached [56].

cally decreasing, as was shown in Figures 7-12 and 7-13. However, no conclusive

evidence of convergence to a duality wall was found in this case. We will call

such a cascade an A type cascade and will show shortly that in this case a

duality wall is indeed approached smoothly.

2. On the other hand, for X3 < 0.9, the third gauge group is dualized at a finite

scale. When this happens, all the intersection numbers in the quiver become

larger than 2, leading to an explosive growth of the ranks of the gauge groups

and the number of bifundamental chiral fields, and generating an immediate

accumulation of the dualization scales. This discontinuous behavior makes du-

ality walls evident even in numerical simulations for these flows. We will refer

to these flows as B type cascades.

8.3.2 Duality Walls in Type A Cascade

Having elucidated the rudiments of the cascading behavior of the F0 theories, let us

explore whether there are indeed duality walls for A type cascades, which we recall

to be the type for which numerical evidence is not conclusive. We shall proceed

analytically. In order to do so, let us first construct the quiver at an arbitrary step

k. We can regard Seiberg duality as a matrix transformation on the rank vector and

the adjacency matrix as was done for example in Sec. 8.1 of [56]. An elegant way to

derive the quiver at a generic position in the cascade is by realizing Seiberg duality
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transformations as mutations in an exceptional collection (equivalently, by Picard-

Lefschetz monodromy transformations on the 3-cycles in the manifold mirror to the

original Calabi-Yau). We will use this language as was done in [93, 97].

Taking the exceptional collection to be (a, b, 3, 4), the alternate dualizations of

nodes 1 and 2 corresponds in this language to the repeated left mutation of a with

respect to b. For even k (a, b) = (1, 2), while for odd k (a, b) = (2, 1). Figure 8-3

corresponds to k = 1 where the exceptional collection ordering is (2,1,3,4). This

quiver is well split.

Quivers at Step k

Under Seiberg duality, the rank of the relevant gauge group changes from N to

Nf - N. Type A cascades correspond to always dualizing node a. By explicitly

constructing these RG trajectories, we will check that this assumption is indeed con-

sistent. The exceptional collection tells us that after the duality, nodes a and b will

switch places. Thus

N,(k + 1) = Nb(k) (8.3.15)

Nb(k + 1) = 2Nb(k) - Na(k)

It is immediate to prove that after k iterations, the ranks of the SU(Ni) gauge groups

are given by

Na = (2k- 1)N + (k- 2)M,

Nb = (2k + 1)N + (k - 1)M ,(8.3.16)

N3 = N,

N4 = N+ M.

The number of bifundamental fields between each pair of nodes follow from applying

the usual rules for Seiberg duality of a quiver theory. In particular, we combine the

bifundamentals Xa4, Xba, and Xa3 into mesonic operators Mb4 = XbaXa4 and Mb3 =

XbaXa3. We introduce new bifundamentals X4a Xb, and Xa with dual quantum

numbers along with the extra term Mb4X4aXb + Mb3X3aXab to the superpotential.

We then use the superpotential to integrate out the massive fields, which appear in

the quiver as bidirectional arrows between the pairs of nodes (3, b) and (4, b). The

175



resulting incidence matrix for the quiver will change such that

fba(k + 1) = fba(k)

fa4(k + 1) = -f4b(k) + 2fa4(k)

f 3b(k + 1) = fa 3(k)

f4 b(k + 1) = fa4 (k)

f43(k + 1) = f4 3 (k)

fa3(k + 1) = -f3b(k) + 2fa3(k)
(8.3.17)

which can be simplified to yield

fba(k) = 2

fa4(k) = 2(k - 1)

f3b(k) = 2(k + 1)

f 4b(k) = 2(k- 2)

f43 (k) =6

fa3(k) = 2(k + 2) .

This information can be summarized in the quiver diagram in Figure 8-4.

Na

2(k-1)

N4

2

2(k-2)

6

Nb

2(k+1)

N3

Figure 8-4: Quiver diagram at step k of a type A cascade for F0.

With the adjacency matrix (8.3.18) and the non-conformal ranks (8.3.16), we can

readily compute the beta functions from (8.2.10), to arrive at

= _ 9(k+1)kM
3a- (4k+2)

b _ 9(k-1)kM
ib- = (4k-2)

3(7k2 -3k-4)M
/33- (2-8k 2 )

3(7k2 +3k-4)M
/4 = (-2+8k2 )

<0
> 0

< 0

>0,

k = 1,2,3,...

(a, b) = (2, 1);

(a, b) = (1, 2);

The RG Flow

Using the results in Section 8.3.2, we proceed to study the evolution of the dualization

scales starting with the initial couplings (1,x 2(0),x 3 (0), 0). Let us consider the first

step in the cascade. We are in a type A cascade, so x 3(0) > 0.9. The beta functions
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are, from (8.3.19),

/1(1) = 0, 2(1) = -3M, /3(1) = 0, 4(1) = 3M . (8.3.20)

We see that only node 2 has a negative beta function at the first step and so its

associated coupling will reach zero first, i.e., the first step ends with the dualization

of node 2. The subsequent increment LA(1) in the energy scale t = log yL before the

dualization is performed is equal to

X2(0)()- 12(1) (8.3.21)
102(1)

Applying

xi(k + 1) = xi(k) + Pi(k + 1)A(k + 1), t(k + 1) = t(k) + A(k) , (8.3.22)

we have at the end of this step

x1(1) = 1, 2(1) =0, x3(1) = x3(0), x4 (1) = 3MX2(1) (8.3.23)
1/2(1)1

So, as far as nodes 2 and 3 are concerned, the initial value x2 (0) only affects the length

of the first step, beyond which any information about it is erased. In order to look

for the initial couplings that lead to a type A flow, recall that we have to determine

the possible initial values x3 (0) such that x 3(k) remains greater than zero as k - oc

so that the third node never becomes dualized. Since 3(1) = 0, this is completely

independent of A(1) and hence independent of x2 (0).

That said, let us look at the cascade at the next step. The beta functions (8.3.19)

now give

27 9
/1(2) = -- M, 2(2) = 3M, /3(2) = - M, 4(2) = 3M. (8.3.24)

Since we are interested in type A cascades, we assume that the initial value x3 (0)

is such that this node is never dualized. Thus, the next node to undergo Seiberg
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duality is the other one with a negative beta function, namely node 1. Recalling that

xl(1) = 1, the consequent step in the energy scale A(2) is thus

Xi(1) 1
A\(2) = 1Li(2)- - 1 (2) ' (8.3.

and x1(2) = 0 while x2 (2) = 2(2)A(2). Proceeding similarly, the next step gives

/32(2) 1
A(3) - (2)2(3 (8.3.

We see that in general, at the kth step, the interval A(k) is given by

A(k) [[ I lPa(i)] ()i=2 ~~ 3b (k)

(a, b) = (2, 1),

(a,b) = (1,2),

k odd;

k even ,
(8.3.27)

for k > 2. This, using (8.3.19), can be written as a telescoping product

(4k - 2)
9(k- 1)k

(8.3.28)

Simplifying this expression we arrive at

Ml\(k) =
2(2k + 1)(4k - 2)

27k2(k2 - 1)
(8.3.29)

for k > 2. The total variation of the third coupling x3, after k steps, is given by

k

X3 (k) - x3(0) = E A (i)3 (i)
i=2

(8.3.30)

As discussed, the boundary between type A and B cascades corresponds to initial

conditions such that x3(k) -+ 0 for k -+ oo, i.e., the initial conditions that separate

the regime in which node 3 gets dualized at some finite k from the one in which it

never undergoes a Seiberg duality. Then,
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2 (7i + 4) 4 2 5
X3(0)- X3(00) = 2 i 2(i + 1) 2 9 (8.3.31)

We see that this sum is approximately equal to 0.906608, in agreement with the

numerical evidence, which located the transition at 3 (0) 0.9. We will henceforth

call this coupling x3 (0) such x3 (00) = 0, X3b, because it is a boundary value between

type A and type B cascades.

Duality Walls in Type A Cascades

The computations in the previous section enable us to address one of the questions

left open in [56] (see Chapter 7 of this thesis), namely whether duality walls exist

in this case. Our flow, from (8.3.31), corresponds to an infinite cascade that only

involves nodes 1 and 2. Let us sum up all the steps A(k) in the energy scale ad

infinitum; this is equal to

E (k) = (1) + E (k (8.3.32)
k=l k=2

Using \(1) = x2(0)/]/ 2(1) = x2 (0)/3M and (8.3.29), we see that this sum can

actually be performed, giving us a finite answer. This means that there is indeed a

duality wall for our type A cascades, whose value is equal to

twall = 3M x() + + (8.3.33)

We would like to emphasize that, although derived in the approximation of vanishing

O(M/N) corrections to the R-charges, (8.3.33) is the first analytical result for a

duality wall. Given the detailed understanding we have of every step of the cascade

on the gauge theory side, this example stands as a natural candidate in which to try

to look for a realization of this phenomenon in a SuGRA dual.
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8.3.3 Fractal Structure of the Duality Wall Curve

Having analytically ascertained the existence and precise position of the duality wall

for type A cascades, and the boundary value x3b(0) of the inverse squared coupling at

which the cascades become type B, we now move on to address another fascinating

question, hints of which were raised in [56, 85], viz., the dependence of the position

of the wall upon the initial couplings. We will see that, in type B cascades, such

dependence takes the form of a self-similar curve.

Let us focus on the one dimensional subset of the possible initial conditions given

by couplings of the form (1, 1, x3 (0), 0) (more general initial conditions can be studied

in a similar fashion). Figure 8-5 is a plot of the position of the duality wall as a

function of x 3 (0). Initial values X3 (0) > X3b correspond to type A cascades. Node 3 is

not dualized in this case and thus the position of the wall is independent of x3 (0) in

this range, as determined by (8.3.33). From now on, we will focus on the X3 (0) < X3b

type B region. The curve exhibits in this region an apparent piecewise linear structure

as was noticed in [56] and presented in Section 7.5.4.

0 0.125 0.25 0.375 0.5 0.625 0.75
r , 

0.7

0.6

0.5

0.4

I.; 

0 0.125 0.25 0.375 0.5 0.625 0.75

Figure 8-5: Position of the duality wall for F0 as a function of x 3(0) for initial con-
ditions of the form (1, 1, X3(0), 0). A piecewise linear structure is seen for the type B
cascade region, i.e., X3(0) < X3b 0.9.

In order to appreciate the piecewise structure more clearly, it is useful to consider

the derivative of the curve. We show in Figure 8-6 a numerical differentiation of

Figure 8-5. This apparent linearity is in fact approximate, and an intricate structure
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is revealed when we look at the curve in more detail. While exploring the origin of

the different features of the curve, we will discover that a self-similar fractal structure

emerges.

0 0.125 0.25 0.375 0.5 0.625 0.75
0.8

0.6

0.4

0.2

0 0.125 0.25 0.375 0.5 0.625 0.75

Figure 8-6: Derivative of the position of the duality wall for Fo as a function of
x 3(0) for initial conditions of the form (1, 1, x 3 (0), 0). The appearance of the constant
segments evidences further the piecewise linear behavior of position of the wall with
respect to X3 (0).

The most prominent features in Figure 8-5 are the concave and convex cusps

at the endpoints of apparently linear intervals. In our notation (cf. figure), the bend

at _ 0.2 is a convex cusp while the one at _ 0.3 is a concave one. We will explain

now their origin and give analytical expressions for their positions.

As we will illustrate with examples, this kind of structure appears at those values

of the couplings at which a transition between different cascades occurs. A semi-

quantitative measure of how different two cascades are is given by the number of

steps m that they share in common. In this sense, if a given cascade A shares ml

steps with cascade B and m2 with cascade C, with ml > m2, we say that A is closer

to B than to C. The general principle is that the closer the cascades between which

a transition occurs at a given initial coupling, the smaller the corresponding feature

in the position of duality wall versus coupling curve is.

It is important to remember what the physical meaning of our computations is.

Numbering cascade steps increasing towards the UV and identifying the values of

the initial couplings are just a simple way to handle the process of reconstructing a
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duality cascade. This cascade represents a traditional RG flow in the IR direction,

in which Seiberg duality is used to switch to alternative descriptions of the theory

beyond infinite coupling. At some stage of this flow in the IR the model in Figure 8-3

appears, with couplings given precisely by what we called initial conditions. Thus, two

cascades that share a large number of steps m in common, correspond to two RG flows

initiated at different theories with large gauge groups and number of bifundamental

fields in the UV that converge at some point, sharing the last m steps prior to reaching

the model in Figure 8-3. Due to the fact that a duality wall exists, the independent

flows before convergence of the cascades take place in a very small range of energies.

We now investigate the convex and concave cusps of the curve. Our approach

consists of identifying what happens to the cascades at those special points, and then

computing the corresponding values of the initial couplings analytically. Let us first

consider the concave cusps. The m-th concave cusp corresponds to the transition

from node 3 being dualized at step m + 1 to it being dualized at step m + 2. The

cascades at both sides of the m-th concave cusp share the first m steps and are of the

form

2121... a3
(8.3.34)2121... ab3

m

where (a, b) = (1, 2) for m even and (2, 1) for m odd. In this way, concave cusps fit in

our general discussion of transitions between cascades, and we see that cusps become

smaller as m is increased. The values of x3 (0) that correspond to the concave cusps

are obtained by setting x3 (k) = 0 in (8.3.30) and (8.3.31) for k > 2, i.e.

xonc(k)= 2 (7i + 4) k> 2 (8.3.35)

From (8.3.35), the first concave cusps are located at X3 (0) equal to

1 79 467 2569 19133

3' 162' 810' 4050' 28350' '
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in complete agreement with the numerical values of Figures 8-5 and 8-6.

Let us move on and study the convex cusps in Figure 8-5. In analogy with (8.3.34),

we claim that the mth convex cusp corresponds to cascades switching between

2121...a3a

2121 ... a 3b (8.3.37)
m

with (a, b) = (1, 2) for m even and (2, 1) for m odd. In order to check whether the

proposal in (8.3.37) is correct, we proceed to compute the positions for the cusps that

it predicts. The calculation is similar to the one in §8.3.2 and we only quote its result

here

convt k (4 + 7k)(10 + 49k + 50k2 + 14k3 ) 2 k-1 (7i + 4)
3x°n"(k) 9k2 (1 + k)2 (3 + 22k + 14k2) 9 i 2 (i+ 1)' (8.3.38)

Equation (8.3.35) determines the following positions for the first convex cusps

70 21773 76733 457831 83386559

309' 50544' 141750' 750060' 126809550'

which are in perfect accordance with Figures 8-5 and 8-6, whereby validating (8.3.37).

The Fractal: Something fascinating happens when the duality wall curve is studied

in further detail. Although convex cusps appear as such when looking at the curve

at a relatively small resolution as in Figure 8-5, an infinite fractal series of concave

and convex cusps blossoms when we zoom in further and further. As an example, we

show in Figure 8-7 successive amplifications of the area around the first convex cusp,

indicating the dualization sequences associated to each side of a given cusp. According

to our previous discussion, this cusp is located at x 3(0) = 70/309 and corresponds to

the transition between two cascades differing at the third step: 232... and 231....

Figure 8-7.b zooms in. We can appreciate that what originally seemed to be a convex

cusp becomes a pair of convex cusps with a concave one in the middle. Furthermore,
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the value of X3 (0) given by (8.3.38) is in fact the one that corresponds to this originally

hidden concave cusp. The new convex cusps are of a higher order, corresponding to

transitions between cascades at the 4th step. The first one in Figure 8-7.b corresponds

to 2323... -+ 2321... while the second one is associated to 2312... - 2313.... We

see in Figure 8-7.c how each of the convex cusps splits again into two 5th order convex

cusps with a concave one in between.

This procedure can be repeated indefinitely. We conclude that concave cusps are

fundamental, while an infinite self-similar structure that corresponds to increasingly

closer cascades can be found by expanding convex cusps.

(a)

(b)

(C)

O.2;

C'.511

0.5111

('.1112

C.!ll

. I 111

c .21

0 0.125 0.25 0.375 0.5 0.625 0.75

Figure 8-7: uccesive amplifications of the regions around convex cusps show the self-
similar nature of the curve for the position of the wall versus x3 (0). We show the
first steps of the cascades at each side of the cusps, indicating between parentheses
the first dualizations that are different.
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8.4 RG Flows and Quasiperiodicity

Having expounded in detail the analytic treatment of RG flows for the zeroth Hirze-

bruch theory as well as their associated fractal behavior, let us move on to see what

novel features arise for more complicated geometries. We recall the next simplest del

Pezzo surface is the blow up of IP2 at 1 point, the so-called dP1. The gauge theory

for D3-brane probes on the cone over dP1 was constructed via toric algorithms in

[45]. There are infinitely many quiver gauge theories which are dual to this geometry.

Their connections under Seiberg duality can be encoded in a duality tree. When D5-

branes are included, the duality tree becomes a representation of the possible paths

followed by a cascading RG flow. The tree for dP1 appears in Figure 7-18. This tree

contains isolated sets of quivers with conformal ranks r = (1, 1, 1, 1), denoted toric

islands in [56]. We will find quasiperiodicity of the gauge couplings for RG cascades

among these islands.

8.4.1 Initial Theory

We are interested in studying the RG flow of a gauge theory corresponding to dP1.

For simplicity, let us choose one of the dual quivers with a relatively small number of

bifundamentals. Our quiver is described by the following (we have also included the

inverse matrix as a preparation to compute the R-charges):

N N+3M

0 0 1 -2 0 0 1 2

0 0 0 I 0 0 0 1

4 1
N+2M N+M

(8.4.40)
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We start with a gauge theory with N D3-branes and M D5-branes, M < N, corre-

sponding to gauge groups

SU(N + M) x SU(N + 3M) x SU(N) x SU(N + 2M) . (8.4.41)

Chiral anomaly cancellation is satisfied since the D3-brane vector r = (1, 1, 1, 1) and

the D5-brane vector s = (1, 3, 0, 2) are in the kernel of S - ST . In fact, the kernel of

S- ST is two dimensional, and these are the only kinds of D-branes that are allowed.

The R-charges of the bifundamental fields at the conformal point are then, using

(8.2.9),

R(X32) = 4'
1

R(X21) = R(X 43) = 

3
R(X4 2) = R(X 31) = R(X1 4 ) =- (8.4.42)

As before, we assume the conformal R-charges get corrections only at order (M/N) 2 .

Subsequently, using (8.2.10) we calculate the one loop beta functions for the four

gauge groups to be

P/M = (-15/4,27/4, -27/4, 15/4) . (8.4.43)

8.4.2 RG Flow

As discussed above, we let the gauge couplings evolve according to the beta functions

and we perform a Seiberg duality on the gauge group factor whose coupling diverges

first. Interestingly, a Seiberg duality on node 2 or 3 produces the same quiver up

to permutation (with the rank of the dualized gauge group appropriately modified).

On the other hand, Seiberg duality on nodes 1 or 4 produces a different quiver with

larger numbers of bifundamentals.

In the next section, we will perform a numerical study of the possible flows. We

will see how certain RG flows involve a single type of quiver and periodically return

to the starting point up to a change in the number of D3-branes. These cases are
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the dP1 analogues of the KS cascade. We will also discover other more intricate flows

with a beautiful structure, depending on the initial conditions.

Poincar6 Orbits

Let us explore the two-dimensional space of initial couplings (c-3 (O)-x4 (O), 0, x3 (0), x4 (0)),

where c is some constant that fixes the overall normalization. Next, choose some ini-

tial value for the pair ( 3 (0), x4(0)) and evolve the cascade for a large number of steps.

An interesting way of visualizing these flows is the following. We keep all the values

of (X3 , X4) which are both non-zero, i.e., when either node 1 or 2 but neither node

3 nor 4 is dualized. A subsequent scatter plot can be made for these values, and is

presented in Figure 8-8 for various choices of initial conditions, which are identified

by different colors.

We see different types of behavior according to the initial conditions. First, there

are elliptical trajectories. They correspond to cascades that only involve r = (1, 1, 1, 1)

quivers. In the language of [56], the entire RG flow takes place within a single

toric island. Other trajectories jump among three squashed ellipses. These cascades

consist of both quivers with r = (1, 1, 1, 1) and r = (2, 1, 1, 1) (and its permutations)

and correspond to hopping around the six toric islands. Finally, other flows have a

diffuse scatter plot, and correspond to cascades that travel to quivers with arbitrarily

large gauge groups. Outside the stable elliptical orbits, numerically we find sensitive

dependence on the initial conditions.

For the periodic trajectories, it is indeed possible to show analytically that ( 3, x 4)

give rise to the parametric equation for an ellipse with respect to the parameter n

[61], in accord with the scatter plots (c) and (d) in Figure 8-8.

Though one might worry, there is in fact no contradiction between this periodic

behavior and the expectation that under RG flow, there will be fewer degrees of

freedom in the IR than in the UV. This expectation has been encoded more precisely

in the so-called a-conjecture (see for example [102, 10] for a recent discussion). One

can associate to any four-dimensional conformal theory a central charge denoted a

which can be interpreted as a measure of the number of degrees of freedom in the
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Figure 8-8: Scatter plot of ( 3,x 4 ) that are non-zero during 800 dualization steps
for the initial value (32 - X3(0) - x4(0), 0, x 3(0), 4 (0)). In each plot, (x3(0), x4 (0))
is allowed to range over a rectangular region with lower left corner L, upper right
corner R, and minimum step size in the x 3 (0) and x 4 (0) directions equal to 63 and
64 respectively. (a) L = (9,157), R = (10,162), = (¼, ); (b) L (9,153),

R = (10,156), 6= ( (c) L = (2,6), R= (5,9), 6-(1,1); (d) L = (7,11),
R = (9,17), (1, W). We use a different color for every set of initial conditions.

theory. According to the a-conjecture, given UV and IR conformal fixed points,

aUv > aIR. Now for our field theory analysis to be valid, our gauge theories should

never be very far away from conformality, where this distance is measured by the

O(M/N) corrections. One expects therefore that a can be loosely defined at any

point in the RG cascade and moreover that a should be non-increasing as we move

into the IR. Recall that a c- t R(4')3 where the sum runs over the R-charges of

all the fermions in the theory [7, 6]. From the structure of these quiver theories, one

sees that a N2 and moreover after a sequence of four dualities for the dP1 flow
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above, N - N - 4M. Thus a is indeed decreasing as we move into the IR despite

the periodic behavior of the gauge couplings.

The scatter plots are reminiscent of the Poincar6 surface-of-section (SoS) plots

used in the study of chaotic dynamics. We recall that a Poincar6 SoS is a surface

in phase space which cuts the trajectory of a system. If the trajectory is periodic or

quasiperiodic, the accumulation of intersection points where the trajectory cuts the

surface often produces cycles. In our case, instead of phase space, the RG cascade is

a trajectory inside the space of couplings, which we recall from §8.2.2 to be a glued

set of tetrahedra. The ellipses we observe are sections thereof. In the above plots, we

have actually superimposed different surfaces, 2 = 0 and xl = 0, but a symmetry

has kept the picture from getting muddled.

8.5 Supergravity Solutions for del Pezzo Flows

In the above, we have discussed in detail the RG flows for some del Pezzo gauge theo-

ries from a purely field-theoretic point of view. This is only half of the story according

to the AdS/CFT Correspondence. It is important to find type IIB supergravity solu-

tions that are dual to these field theory flows. As already emphasized [119], the main

reason to trust that Seiberg duality cascades occur for the KS solution is not the field

theory analysis but that it is reproduced by a well behaved supergravity solution.

The purpose of this section is to investigate these dual solutions.

Surprisingly, even without a metric for the del Pezzos, we can demonstrate the

existence of and almost completely characterize some of their supergravity solutions.

The solutions we find are analogous to the Klebanov-Tseytlin (KT) solution [120] for

the conifold. Recall that the KS solution is well behaved everywhere and asymptotes

to the KT solution in the ultraviolet (large radius). The KT solution, on the other

hand, is built not from the warped deformed conifold but from the conifold itself and

thus has a singularity in the infrared (small radius).
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8.5.1 Self-Dual (2,1) Solutions

To put these type IIB SuGRA solutions in historical context, note that they are closely

related to a solution found by Becker and Becker [13] for M-theory compactified on a

Calabi-Yau four-fold with four-form flux. One takes the four-fold to be a three-fold X

times T2 and then T-dualizes on the torus, as was done in [78, 33]. The crucial point

here is that the resulting complexified three-form flux has to be imaginary self-dual

and a harmonic representative of H 2,1(X) to preserve supersymmetry. Grafia and

Polchinski [72] and also Gubser [76] later noticed that the KT and KS supergravity

solutions were examples of these self-dual (2,1) type IIB solutions. (Indeed, the

authors of [119] also mention that their complexified three-form is of type (2,1).)

Let us briefly review the work of Grafia and Polchinski. The construction begins

with a warped product of R3 ,1 and a Calabi-Yau three-fold X:

ds2 = Z-1/2,,dx'dx + Z1/2ds , (8.5.44)

where the warp factor Z = Z(p), p E X, depends on only the Calabi-Yau coordinates.

We are interested in the case where X is the total space of the complex line bundle

O(-K) over the del Pezzo dP,. Here K is the canonical class. The manifold X is

noncompact.

There exists a class of supersymmetric solutions with nontrivial flux

G3 = F3 - -H 3 (8.5.45)
.9

where F3 = dC2 is the RR three-form field strength and H3 = dB2 the NSNS three-

form. To find a supergravity solution, the complex field strength G3 must satisfy

several conditions: G3 must

1. be supported only in X;

2. be imaginary self-dual with respect to the Hodge star on X, i.e., *xG 3 = iG3 ;

3. have signature (2, 1) with respect to the complex structure on X; and finally,
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4. be harmonic.

If these conditions are met, a supergravity solution exists such that the RR field

strength F5 obeys

dF5 = -F 3 A H3 , (8.5.46)

and the warp factor satisfies

(V2Z)vol(X) = gsF3 A H3 , (8.5.47)

where vol(X) is the volume form on X. In particular, vol(X) = r5dr A vol(Y) where

Y is the (5 real-dimensional) level surface of the cone X. The axion vanishes and the

dilaton is constant: e = g9.

8.5.2 (2,1) Solutions for the del Pezzo

Let us construct such a G3 for the del Pezzos. As a first step, we construct the metric

on X. Let has be a Kiihler-Einstein metric on dP, such that Rab = 6hab. Indeed, we

only know of the existence of and not the explicit form1 of hab. We want to consider

the case where X is a cone over dP,. In this case, the metric on X can be written

[20, 19] as

ds2 = dr2 + r2r2+ r2hbdzadzb , (8.5.48)

where 7r = (db + a). The one-form a must satisfy da = 2w where w is the Kihler

form on dP, and 0 < < 2r is the coordinate on the circle bundle over dP,.

Next, we describe a basis of self-dual and anti-self-dual harmonic forms on dP,.2

We begin with the Kihler form w. Locally, dP, looks like C2 and 2w - dz1 A d2z +

dz2 A dz2 . Thus locally, it is easy to see that w is self-dual under the operation of

the Hodge star. Because the Hodge star is a local operator, w must be self-dual

1Such a metric is known not to exist for dP and dP2. See for example [161].
2 We would like to thank Mark Stern and James MCKernan for the following argument.
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everywhere. Now, recall our dP, are Einstein. Thus

w = 6iR dza A d2b = 6i00 In vft . (8.5.49)

Clearly dw = ( + )w = 0 whence w must be closed. It follows that w is a self-dual

harmonic form on dP,,.

There exists a cup product (bilinear form) Q on Hl,l(dP,) defined as

Q(0q') -= |AP q , A, E Hl'l(dpn) . (8.5.50)

The Hodge Index Theorem states that Q has signature (+, -,...,-). For dP,, h2 0 =

0 while hl l = n + 1, there being n other harmonic (1, 1) forms on dPn in addition to

w. We denote these harmonic forms as I, I = 1,..., n. Let us pick a basis for Q

such that

)I A w = 0. (8.5.51)

From the above discussion of w one sees that

0 < w A *w = w A w (8.5.52)

where the inequality follows from the definition of the Hodge star and the equality

from the fact that w is self-dual. Hence the XI span a vector space V where

Recall that the Hodge star in two complex dimensions squares to one: * * X = 0.

Thus we can diagonalize * on V such that *HjI = j. However, if *X1i = sI, then

one would find f qb A qI > 0, in contradiction to the fact that Q has purely negative

signature on V. We conclude that the qI must all be purely anti-self-dual, *, = -0I.

With these preliminaries, it is now straightforward to construct G3. We let

k k dr
F3 = a A , H3 = Eag-A I, (8.5.53)

I=1 I=1
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for expansion coefficients a. Hence,

k

G3 = aI (7 - i dr ) A I . (8.5.54)
I=1

This is a solution because by construction, G3 is harmonic and is supported on X so

conditions (1) and (4) are met. Moreover, (dr/r + i) is a holomorphic one-form on

X. Therefore, G3 must have signature (2, 1) because X is a (1, 1) form. Furthermore,

it is easy to check that *xG3 = iG3 . Thus, conditions (2) and (3) are also met.

D5-Branes The number of D5-branes in this SUGRA solution is given by the

Dirac quantization condition on the RR flux. More precisely, we have an integrality

condition on the integral of F3 over compact three-cycles in the level surface Y of the

cone X. Given a basis t-J (J = 1,... n) of such cycles, we impose that writing

I F3 = 47r2o'MJ , (8.5.55)

must give integer M J. From the construction of Y, it follows that J will be some

circle bundle over a curve D J C dP, while the circumference of the circle is 2/3.

Subsequently, equation (8.5.55) reduces to

E a1 j X = 67ra'Mj . (8.5.56)
I J

To understand the curve D J, we take a closer look at the divisors that correspond to

elements of Hl1,l(dPn). Because dPn is 2 blown up at n points, there will be a divisor

H corresponding to the hyperplane in I 2 and exceptional divisors Ei (i = 1,... , n) for

each of the blow ups. Essentially because two lines intersect at a point, Q(H, H) = H.

H = 1. From the blow-up construction, we also know that Q(Ei, Ej) = Ei Ej = -6ij.

Finally, Ei · H = 0 because the blow-ups are at general position. We see explicitly

that Q has signature (+, -, -,...,-). From Poincar6 duality, there is a one-to-one

map from the differential forms w and XI to the divisors H and E, which we now

explore.
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The first chern class of P 2 is c1(P2) = 3H. By the adjunction formula, it follows
n

that cl (dP,) = 3H- ~ Ej. Locally, the first chern class can be expressed in terms
j=l

of the Ricci tensor,

cl (dP,) = i -dz A dzb , (8.5.57)
2wr

and then from the Einstein condition (8.5.49), we find that

w = cl (dPn) . (8.5.58)

Thus, by (8.5.51), the (>I must be orthogonal to Cl(dP,). This orthogonality condi-

tion has an astonishingly beautiful (and well known) consequence. The orthogonal

complement of 3H - Ej Ej is the weight lattice of the corresponding exceptional Lie

group 4. In this language the Xl must lie in this weight lattice.

We now return to the question, what are the curves DJ in the integral (8.5.56)?

The problems we need to worry about in defining the D J are essentially the same

problems we need to worry about in trying to quantize the flux in a far simpler system,

that of a collection of point electric charges in three dimensions. In drawing a sphere

(or perhaps some shape with more complicated topology) around each charge, we

want to make sure that the sphere wraps around the selected charge exactly once and

no other charges.

For the dPn, this condition translates into the requirement that

|D ' =- | / A cl(DJ) = 6IJ . (8.5.59)

Because XI A w = 0, only the component of cl(D J) orthogonal to Cl(dP) need be

defined. Let us choose cl(D J) A w = 0. To avoid surrounding charges more than

once, we need to make the D J "as small as possible". Thus we choose the cl(D J) to

be the generators of the weight lattice. The condition (8.5.59) then implies that the

qI generate the root lattice. For example, for dP3, we could choose ql = E1 - E2,

052 = E2 - E3, and 03 = H - E1 - E2 - E3 . Indeed, the bilinear form (8.5.50) can be
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written in the basis

f d A ,j = -A (8.5.60)

where AIJ is the Cartan matrix for the E£, root lattice.

Finally, using (8.5.53), (8.5.56) and (8.5.59), we can normalize F3 and H3, giving

us

aJ = 6ra'M J ; (8.5.61)

hence the number M J of D5-branes is fixed in our SUGRA solutions. From a pertur-

bative point of view, we can think of this SUGRA solution as arising from the back re-

action of D5-branes wrapped around vanishing curves C of X, which are the Poincar6

duals of the AI. This follows from the definition dF3 = a a'd(rl A a,) = E a'3 c,.

D3-branes Having discussed some detailed algebraic geometry for the dPn, we are

now ready to quantize the number N of D3-branes as well. The condition reads, using

(8.5.46),

F5 = (47r2 a') 2 N, (8.5.62)

where F5 = F + *lo c, and

F = I aIaJg, ln(r/ro)rl A 0, A O . (8.5.63)
I,J

Therefore one finds, using (8.5.60) and (8.5.61),

3
N = U-Ss ln(r/ro) MAI JM J (8.5.64)

I,J

for large r. In other words, the number of D3-branes grows logarithmically with the

radius.

Warp Factor Now, recalling from [20] that for Y = dP,,

vol(Y) = 2(9- n), (8.5.65)
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we can use (8.5.53) and (8.5.47) to solve for the warp factor. The equation reads

[02 5 0 ,_ (67ra'g) 2 2r (8.5.66)

[0r2 +rr] Z(r) = EMA MJ (8.5.66)L r r r " Vol(Y) 3r

This yields
2-34 22 (ln(r/ro) 1

Z(r) ----- r + MAIMJ . (8.5.67)
I,J

In short, we have found the analog of the Klebanov-Tseytlin solution, a solution

that is perfectly well behaved at large radius but has a curvature singularity at small

radius Z(r) = 0. We envision that there is some similar warped deformed del Pezzo

solution which resolves the singularity, just as the warped deformed conifold of the

KS solution resolved the singularity of the KT solution. An analysis of such IR

deformations, from a field theory and toric geometry perspectives, is the subject of

Chapter 9.

8.5.3 Gauge Couplings

In order to move towards a comparison between SUGRA and gauge theory, let us

determine the gauge couplings on probe branes inserted into the geometry we have

discussed above. To begin with, let us study D3-branes. Their gauge coupling is

simply proportional to the string coupling, g, which as we have seen is constant in

the self-dual (2,1) solutions. In gauge theory, this is expressed by the fact that the

sum of gauge couplings (8.2.14) is independent of the scale.

We can also probe with D5-branes. Consider a D5-brane wrapped on a curve

CI C dP, C Y at a fixed radial position r in X. We take CI to be the Poincar6 dual

of the harmonic two-form sI. As is well-known (see, e.g., [94]), the gauge coupling

on such a brane is related to the integral of the NS 2-form around C by

8wr2 1 
I - -- cl B2. (8.5.68)

x 2 27raings

Thus, using the expression for B 2 by integrating H3 from (8.5.53), as well as the value
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of aJ from (8.5.61), we find

xI =-3nrj, q JMJ. (8.5.69)

This yields for the beta function

7 = d I ' -3(CI CJ)MJ, (8.5.70)

where C C = f X, A Oj is the intersection pairing of two-cycles in dP, and the sum

on J is implied.

To compare this result with gauge theory, we first need to recall the fact from

section 8.2.2 that a D5 brane wrapped around C is associated with a certain combi-

nation of fractional branes that we have encoded in the vector s = (s). Thus, the

beta function I is related to the beta functions of the fractional branes via

0, = Z si]i, (8.5.71)
i

Inserting the expression for i from (8.2.10), we obtain the gauge theory expression

fr = 3Zs s 3 + sRiJsMJ (8.5.72)
i i

where R is given in (8.2.11). Let us now use the vanishing of the beta function for

the conformal theory (corresponding to putting di = ri in (8.2.8) and using (8.2.10))

to rewrite the first term as

i ij 1iESISJ =-2 s'si (8.5.73)i ij
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Using the definition of Rij in (8.2.11), we find the gauge theory result

f3s = 24 .dA3E (SIS JS-SJrs J3 r

$ r3 
2 fi(Ri - 1)(s'Sjj + s s' - sj -S, sj -)MJ. (8.5.74)

To finish up and relate this long-winded expression to the intersection pairing in

(8.5.70), we need to rely on certain results concerning baryonic U(1) charges in quiver

gauge theories related to del Pezzos [138, 103, 97, 96]. First of all, these baryonic U(1)

charges are in one-to-one correspondence with possible non-conformal deformations.

In formulas, one can write all baryonic U(1) charges QI as a sum

QI = qQi (8.5.75)
i

where Qi is a charge associated with the nodes of the quiver and is equal to +1 for

incoming arrows and -1 for outgoing arrows. In other words,

Q1(X 3) = - q . (8.5.76)

For purposes of anomaly cancellation, these charges are related to the null vectors s 

of 1 = S - St via [103, 97]

qrir = s. (8.5.77)

It was then shown in [97] that the baryonic U(1) charges QI are also in one-to-

one correspondence with curves CI in the del Pezzo orthogonal to the Kihler class.

Moreover, it was shown in [97] that one could identify the intersection product of the

curves C as the cubic anomaly associated with the baryonic charges QI,

1
Ci, Cj = -trRQQj . (8.5.78)

2
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Now let us relate this cubic anomaly to the beta functions.

(trRQiQj) M J = Mj fij(Rij- 1)Qj(Xij)QJ(Xij)rirj
i,j

MJ E fj (Rij - 1)(J - q')( - q~)rirj
i,j

' · · ri 2Si ii s J ) = -3 .---MijRij-1s + s , rj 3
2,3

This expression, upon substituting into the SuGRA result (8.5.70), gives the gauge

theory result for the beta function in (8.5.74), whereby giving us the link we needed.

8.5.4 Discussion

On the one hand it is impressive that we can write down such a complicated super-

gravity solution that encodes interesting field theoretic behavior without knowing the

precise metric on the del Pezzos. On the other, it is a little disappointing that we

have found no smoking gun for the existence of duality walls from the supergravity

perspective.

Let us consider the implications of this KT-like solution for del Pezzos. Such a

solution indicates that the dual del Pezzo field theory should behave like the KS field

theory. In other words, one expects a sequence of Seiberg dualities where as we move

into the UV, the number of D3-branes gradually increases, the number of D5-branes

remains fixed, and no duality wall is reached. We have seen such behavior for some

of the phases of the del Pezzos. For example, the Model A/Model B flow of [56] and

the dP1 flow considered here exhibit such behavior. Several other examples will be

constructed in Chapter 9.

Our supergravity solutions severely constrain possible O(M/N) corrections to the

R-charges for KS type flows. In particular, both on the field theory side and on the

supergravity side, we saw that the sum of the beta functions (8.2.14) must vanish.

Additionally, we calculated the n I3 for dPn both in field theory and in supergravity

and saw that the two expressions agreed. In total, we have n + 1 constraints on n + 3
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beta functions. Thus, any corrections to the beta functions for KS flows must lie in

the remaining two dimensional vector space. (Note that for the original KT solution

for the conifold, the two constraints are enough eliminate any possible corrections to

the two beta functions.)

We have also seen behavior vastly different from KS type cascades. For example,

for the F0 surface, we saw duality walls. Note also in this flow that the number of D3-

branes does not increase but is pinned by nodes three and four. Presumably there is

some other supergravity solution which describes this flow. One way of constructing

a more general type of supergravity solution would be to try to construct F3 with a

dependence on dr or to start with a non-conical metric on X.
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Chapter 9

Multi-Flux Warped Throats and

Cascading Gauge Theories

In this chapter we describe duality cascades and their infrared behavior for systems of

D3-branes at singularities given by complex cones over del Pezzo surfaces (and related

examples), in the presence of fractional branes. From the gauge field theory viewpoint,

we show that; D3-branes probing the infrared theory have a quantum deformed moduli

space, given by a complex deformation of the initial geometry to a simpler one. This

implies that for the dual supergravity viewpoint, the gauge theory strong infrared

dynamics smoothes out the naked singularities of the warped throat solutions with

3-form fluxes constructed in Chapter 8, describing the cascading RG flow of the

gauge theory. This behavior thus generalizes the Klebanov-Strassler deformation of

the conifold. We describe several explicit examples, including models with several

scales of strong gauge dynamics. In the regime of widely separated scales, the dual

supergravity solutions should correspond to throats with several radial regions with

different exponential warp factors. These rich throat geometries are expected to have

interesting applications in compactification and model building. Throughout our

studies, we also construct explicit duality cascades for gauge theories with irrational

R-charges, obtained from D-branes probing complex cones over dP1 and dP2. The

material we present in this chapter is based on [59].
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9.1 Introduction

The preceding sections have been devoted to the study of cascading gauge theories.

We have seen that their ultraviolet (UV) behavior is markedly different from that of

ordinary field theories. Instead of having a UV fixed point, they have an infinite tower

of dual theories with a steadily increasing number of colors and matter fields towards

the UV. This increase can sometimes be linear as in [119], or can be much faster,

with a power law or even exponential behavior. In the latter cases, the dualization

scales generally present a UV accumulation point, leading to a duality wall [85, 56].

A supergravity solution describing the UV region of the conifold cascade was

found by Klebanov and Tseytlin (KT) in [120]. This solution is well behaved at

large energies but has a naked singularity in the infrared (IR). A full solution, which

asymptotes the one of KT at large energies but is well behaved in the IR was later

presented by Klebanov and Strassler (KS) in [119]. Instead of being based on the

singular conifold, it is constructed using the deformed conifold. The 3-cycle inside

the deformed conifold remains of finite size in the IR, avoiding the singular behavior.

On the gauge theory side, the IR singularity is eliminated by strong coupling effects,

whose scale is related to the dual 3-cycle size.

In [61], UV solutions, similar to that of KT, were constructed for complex cones

over del Pezzo surfaces dPn, for 3 < n < 8. These supergravity solutions were pre-

sented in Section 8.5. They also suffer from the same problems in the IR. Contrary

to what happens for the conifold, explicit metrics describing either the non-spherical

horizons or their deformations are not known. Therefore it remains an open question

to develop methods to understand the infrared behavior of these theories in their

dual versions. The purpose of this chapter is to use the strong coupling dynamics of

the dual gauge theories to extract as much information as possible regarding these

deformations. In particular we will show a precise agreement between the field theory

analysis of D3-branes probing the infrared of the cascades and the complex deforma-

tions of the initial geometries. This strongly supports the existence of completely

smooth supergravity descriptions of the complete RG flow for (some of) these non-
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conformal gauge theories. In addition, our techniques are valid for other geometries,

suggesting the existence of cascades and infrared deformations for other quiver gauge

theories.

Although our examples are analogous to the conifold in some respects, the gauge

theories and corresponding geometries are notably richer in others. For instance, we

will encounter that these gauge theories generically give rise to several dynamical

scales. In the regime of widely separated scales, the flow among these scales is to a

great approximation logarithmic. The supergravity duals thus correspond to logarith-

mic throats with different warp factors, patched together at some transition scales.

Clearly these topologically richer throats deserve further study.

Before proceeding, it is important to point out that our analysis shows that a

smoothing of the singularity by a complex deformation may not be possible for some

geometries, or even for all possible assignments of fractional branes in a geometry. Our

methods give a clear prescription for when this is the case. A class of examples of this

kind is provided by the countable infinite family of 5d horizons with S2 x S3 topology,

for which explicit metrics have been constructed in [65, 63, 66, 64, 134]. These

geometries are labeled by two positive integers p > q and are denoted yp,q. In [14],

the quiver theories living on the world-volume of D3-branes probing metric cones over

yp,q geometries were derived. We review this work in Chapter 10. Impressive checks

of the AdS/(CFT correspondence for these models, such as matching the field theory

R-charges and central charge a = c with the corresponding geometric computations

were carried out in full generality [14]. Recently, warped throat supergravity solutions

dual to cascades in the yp,q quivers were constructed in [92]. These solutions exhibit

a naked singularity, and we show that for the particular subclass of yp,O a complex

deformation removes the IR singularity. However, in the general case these geometries

do not admit complex deformations to smooth out their infrared behavior. It would

be interesting to understand such examples, and we leave this question for future

research.

The chapter is organized as follows. In Section 9.2 we provide some background

material.
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In Section 9.2.1 we review the KS supergravity solution for the conifold, stressing,

making emphasis in the IR behavior. We also discuss possible generalizations of the

supergravity throats constructed in [61] and presented in Section 8.5.

In Sections 9.2.2 and 9.2.3 we present a framework to determine possible geometric

deformations for general local Calabi-Yau geometries using (p, q) web diagrams, and

discuss a topological property of the corresponding RG flow solutions. In section 9.2.4

we introduce our approach to show that the strong gauge theory dynamics induces

the complex deformation of the initial geometries to simpler ones. These arise as

quantum deformations of the moduli space of the gauge theory describing D3-branes

probing the infrared dynamics.

In Section 9.3 we describe some simple examples of RG cascading flows and in-

frared deformations, in several cases with a single strong dynamics scale. The ex-

amples include the cone over F, the cone over dP2, and the suspended pinch point

(SPP) singularity. In subsequent sections we present examples with several strong

dynamics scales. In Section 9.4 we study the case of the cone over dP3, which admits

a two-scale deformation following the pattern dP3 -+ conifold - smooth (C3). In

Section 9.5 we present further two-scale examples, namely dP4 - SPP -+ smooth,

and PdP3 -+ C2/z 2 -+ enhancon.

Section 9.6 contains our concluding remarks. Appendix 9.7 presents an alternative

approach for the field theory analysis of the mesonic branch, while Appendix 9.8 pro-

vides a detailed description of the deformations in toric geometry. Finally Appendix

9.9 describes the field theory description of the smoothing for real cones over the yp,O

manifolds.

9.2 Cascading throats

In this section we lay out our approach to cascading RG flows. We first discuss

the supergravity duals that describe logarithmic flows, beginning with a review of

the well known conifold example and then moving on to generalizations to other

geometries. We then explain how to identify extremal transitions using (p, q) web
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diagrams. Finally, we discuss how these geometric deformations are generated by the

strong coupling dynamics of the gauge theory.

9.2.1 Supergravity throats

To frame the forthcoming discussion, it is convenient to review the case of the conifold.

The / = 1 supersymmetric gauge theory on N D3-branes at a conifold singularity

[121], in the presence of M fractional branes (i.e. D5-branes wrapped over the 2-cycle

in the base of the conifold), is given by a gauge group SU(N) x SU(N + M), with

two chiral multiplets Al, A2 in the representation (,D) and two multiplets B1, B2

in the representation (,Ol). The superpotential is W = A 1B1 A2B 2 - A 1B2 A2 B 1.

In order to keep the notation short, we leave the superpotential couplings and the

trace over color indices implicit. We will adopt this convention when presenting all

the forthcoming superpotentials. As discussed in [119] and thoroughly reviewed in

Chapters 7 and 8, for M <K N the theory undergoes a duality cascade as it flows to

the infrared, at each step of which the highest rank gauge group becomes strongly

coupled and is replaced by its Seiberg dual.

A supergravity solution describing the UV region of the conifold cascade was

found by Klebanov and Tseytlin (KT) in [120]. This solution is well behaved at

large energies but has a naked singularity in the infrared (IR). A full solution, which

asymptotes the one of KT at large energies but is well behaved in the IR was later

presented by Klebanov and Strassler (KS) in [119]. Instead of being based on the

singular conifold, it is constructed using the deformed conifold. The 3-cycle inside

the deformed conifold remains of finite size in the IR, avoiding the singular behavior.

On the gauge theory side, the IR singularity is eliminated by strong coupling effects,

whose scale is related to the dual 3-cycle size.

In the absence of fractional branes the gauge theory on D3-branes at a conifold

singularity is superconformal, and its supergravity dual is given by Type IIB theory

on AdS5 x T :1l. The 5-manifold T1 'l is topologically S2 x S3, and may be regarded as

an S1 fibration over S2 x S2. Denoting ai the 2-forms dual to the two S2 's, we define

for future convenience the Kiahler class w = a1 + a 2 and the orthogonal combination
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= 1 - 2-

In the presence of M fractional branes, conformal invariance of the gauge theory

is broken, and the supergravity dual is no longer AdS5 x T1 ,'. In the UV, the su-

pergravity dual is a particular case of the throats to be described in section 9.2.1.

Sketchily, it is a warped version of AdS5 x T1 ,1, with warping sourced by non-trivial

RR and NSNS 3-form fluxes supported on ,

i dr
G3 = F3 - -H 3 = M( + i-) A (9.2.1)

gs r

where is a 1-form along the S1 fiber in T1,', and r is the radial coordinate. In

intuitive terms, the RR flux (related to F3 ) is sourced by the fractional branes in the

dual description, while the NSNS flux (related to H3 ) leads to a logarithmic running

of the relative inverse squared gauge coupling of the field theory. The fluxes also lead

to a radially varying integral of the 5-form over T1 ,1, which reproduces the decrease

in the number of D3-branes in the duality cascade of the field theory. The solution

does not contain, even asymptotically, an AdS5. This is accordance with the fact that

the gauge theory does not have a conformal fixed point in the presence of fractional

branes.

The above solution, first studied in [120], if extended to the IR, leads to a naked

singularity. Intuitively, this is because the above supergravity description misses the

strong coupling dynamics taking place near the end of the cascade. The full

solution in [119] is smooth, due to a non-trivial modification of the above ansatz

in the infrared. In the IR, the geometry is a deformed conifold, and has a finite

size S3 , which supports the RR 3-form flux. The size of this 3-cycle is related to

the scale of strong dynamics of the dual gauge theory. The complete solution is a

warped deformed conifold, with imaginary self-dual 3-form fluxes which are moreover

(2, l1)-forms and thus preserve supersymmetry [76, 72]. In the UV, the full solution

asymptotes the warped version of AdS5 x T1,1 described above, while in the IR it

contains a non-trivial 3-cycle supporting the flux.

Overall, the gauge/gravity correspondence is a relation between the field theory,
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described by fractional D3-branes on (i.e. D5-branes on the 2-cycle of) a resolved

conifold, and the supergravity solution, described by 3-form fluxes on a deformed

conifold. Namely a brane-flux transition taking place between two geometries related

by an extremal transition where a 2-cycle disappears and is replaced by a 3-cycle

[166, 25, 26, 24]. In our case the geometries under consideration are toric, and can be

visualized using web or toric diagrams [4, 5]. The geometric interpretation of webs is

discussed in detail in [130]. In these pictures, finite segments and faces of the initial

web correspond to 2- and 4-cycles in the resolution phase, while 3-cycles correspond

to segments joining the different sub-webs in the deformation phase. The geometrical

transition is nicely depicted using web diagrams for the conifold geometry, as shown

in Figure 9-1. The detailed geometric description of the deformation is described in

Appendix 9.8.

7-

Figure 9-1: Conifold extremal transition. The finite segment in the first figure repre-
sents an S2, with an area proportional to the length of the segment, while the green
segment in the last figure corresponds to an S3 with a volume proportional to the
distance between the two infinite lines.

For future convenience, it is useful to review the matching between the deformation

of the geometry and the infrared dynamics of the field theory. In particular, and

following [119], we may recover the deformed conifold geometry as the moduli space

of D3-branes probing the infrared end of the cascade.

A simple derivation follows by considering the infrared theory in the presence of M

additional D3-branes. This is described by a conifold gauge theory with gauge group

SU(2M) x SU(M), with the chiral multiplets A, Br, r = 1, 2 and superpotential

W = A 1B 1A 2B 2 - A 1B 2A 2B1. The non-perturbative dynamics may be determined

by assuming, to begin with, that the SU(M) gauge factor is weakly coupled and acts

as a spectator, corresponding to a global flavor symmetry. Then the gauge factor
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SU(2M) has Nf = Nc and develops a quantum deformation of its moduli space.

Introducing the four mesons Mrs = ArB,, which transform in the adjoint of SU(M),

and the baryons C, C, the quantum modified moduli space is described by

det(Mll) det(M 22 ) - det(M 12 ) det(M 21) - CC = A4 M, (9.2.2)

where A is the dynamical scale of the SU(2M) gauge theory. The constraint may be

implemented in the superpotential by introducing a Lagrange multiplier chiral field

X, so it reads

W = M 1ll1M2 2 - M12M21 - X(det M - CC - A4M), (9.2.3)

with M a 2M x 2M matrix whose blocks are the M x M matrices, Ml1, M12, M21, M22.

The quantum constraint forces some of the mesons or baryons to acquire vevs. As

discussed in [119], the dynamics of the probes is obtained along the mesonic branch l ,

which corresponds to

X= A4 -4 M ; C = C =O ; det M= A4 M (9.2.4)

The vacuum is parametrized by the vevs of the mesons Mij, subject to the quan-

tum constraint. This can be seen to correspond to M D3-brane probes moving in a

deformed conifold. To make this more manifest and to simplify the discussion, it is

convenient to restrict to the Abelian case. This is sensible, because all the informa-

tion about the non-Abelian gauge dynamics has been already included, and because

we are not turning on baryonic degrees of freedom.2 The moduli space of the single

1 As mentioned already in [119], the baryonic branch describes instead the continuation of the
cascade down to the endpoint SU(M) theory. That the infrared theory at the end of the cascade is in
the baryonic branch is supported by the identification in the supergravity solution of the Goldstone
mode associated to the spontaneous breaking of baryon number symmetry, and the identification of
the Dl-brane as an axionic string [77, 154, 23].

2A more precise statement would be to stick to the non-Abelian case, without overall U(1),
but study the dynamics along the generic mesonic Higgs branch. Our results below would arise
for the relative U(1)'s controlling the relative positions of the D-branes. The trick of simplifying
the discussion by restricting to the Abelian quiver theory is a standard manipulation for branes at
singularities, see [138] for further discussion.
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D3-brane probe in this case is

M1M22 - M12M21 = A4 (9.2.5)

namely, a deformed conifold geometry. Hence the strong coupling dynamics of the

field theory encodes the deformed geometry at the infrared end of the cascade, dic-

tating the size of the finite S3 .

The general idea is that the gauge theory living on the D-brane world volume per-

ceives the deformed geometry that becomes important at a given scale as a quantum

deformation of its moduli space. This technique will generalize to more complicated

cascades and infrared behaviors in the next sections.

As we discussed, the main support for the idea of a cascading RG flow for the

conifold comes from the supergravity dual description [120]. In Section 8.5, we dis-

cussed the construction of analog supergravity solutions for del Pezzo surfaces [61].

This construction of throats was originally elucidated for the case of del Pezzo sur-

faces. Nevertheless, its range of applicability is much broader and it is indeed suitable

for any other complex cone over a 4-dimensional surface Y4 with a Kihler-Einstein

metric.

The construction of these throats is important since it illustrates that cascading

RG flows appear often in quiver gauge theories. Moreover, warped throats are inter-

esting both from the viewpoint of phenomenological applications (e.g. [67, 109, 27])

and of counting flux vacua, due to their 'attractor' behavior [35]. Our purpose in this

chapter is to clarify the infrared structure of these (and similar) classes of models, a

key understanding required for the above applications.

These throats contain a naked singularity at their origin, and hence are the analogs

of the KT throat [120] for the conifold. In later sections we will clarify that the dual

gauge theory infrared dynamics suggests that in many situations a suitable defor-

mation of the geometry eliminates the singularity, and yields a smooth supergravity

solution, the analog of the solution in [119] for the conifold.

In addition, we would like to mention that there exist more general situations,
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where the conical Calabi-Yau singularity corresponds to a real cone over a Sasaki-

Einstein 5-dimensional horizon X5 as before, but X5 cannot be constructed as a U(1)

fibration over a 4-dimensional Kihler-Einstein base. Simple examples of this class are

provided by the complex cones over dP1 and dP2, where the U(1) fibration over the

del Pezzo surface is irregular. This fact maps, on the gauge theory side, to irrational

R-charges. Moreover, recently, an infinite family of cones over 5d Sasaki-Einstein

manifolds, denoted Y.p,q, with explicit metrics has been constructed [65, 63, 66, 64,

134]. Also, the dual quiver gauge theories have been found in [14]. Duality cascades

for the case of y 2 ,1, corresponding to the 5d horizon of a complex cone over dP1, were

constructed in [61], and duality cascades for the entire yp,q family along with their

supergravity duals have been recently carried out in [92]. An interesting difference

with respect to the above throats is an additional dependence of the warp factor on

a coordinate of the 5d horizon X5 , rather than just on the radial direction.

Finally, notice that, using our arguments in coming sections, one can show that

the YP,q cascades do not in general admit a geometric deformation to resolve their

singularities. The only cases where this is possible correspond to cones over YPO,

which are in fact Zp quotients of the conifold. They thus fall within our analysis, and

we describe the field theory version of their smoothing in Appendix 9.9.

9.2.2 The deformed geometries

The above throats contain a naked singularity, suggesting that they miss the non-

perturbative infrared dynamics of the dual gauge field theory. Hence they are the

analogs of the singular solution in [120]. From the discussion of the conifold it is

expected that, at least in some cases, when the infrared gauge theory dynamics is in-

cluded, the dual supergravity solution corresponds to a deformed background related

to the original one by an extremal transition. This transition replaces 2- and 4-cycles

by 3-cycles. A general question is therefore to analyze the existence of extremal tran-

sitions on local Calabi-Yau geometries, where shrinking 4-cycles are replaced by finite

size 3-cycles.

In this section we address this geometric question from several viewpoints. For
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concreteness we center the discussion on the geometries given by complex cones over

del Pezzo surfaces, although results generalize to other situations, as will be clear in

our examples.

The general question is what are the possible deformations of the complex cones

over del Pezzo surfaces. Besides its relevance to the above discussion, this question has

another interesting realization. Geometries with collapsing del Pezzo surfaces lead,

when used as M-theory backgrounds, to five-dimensional field theories with En global

symmetries. The Coulomb branch is parametrized by the sizes of the 2-cycles, while

the Higgs branch corresponds to extremal transitions, i.e. complex deformations of

the geometry arising at the origin of the Coulomb branch, where the 4-cycle shrinks

to zero size. The classification of such Higgs branches was described in [157], and

shown [140] to fully agree with the geometric description.3

In many examples, one may use the realization of the five-dimensional field the-

ories in terms of (p, q) webs of Type IIB fivebranes [4, 5], in order to visualize the

corresponding Higgs branches. This corresponds to the situations where the geome-

tries are toric, and the (p, q) web corresponds to the reciprocal of the collection of

points in the z 2 integer lattice defining the toric diagram [5, 130]. In general, for toric

geometries with a corresponding web, deformations exist if there are subsets of ex-

ternal legs which can form sub-webs in equilibrium. The deformation is described as

the separation of such sub-webs. A more precise description of this in toric geometry

language is illustrated in some examples in Appendix 9.8.

The (p,q) web representation of the deformation for the conifold is described

in Figure 9-1, where the sub-webs correspond to straight lines. The 3-cycle in the

deformed conifold corresponds to a segment stretched between the two sub-webs. For

example in 5 dimensional gauge theories a D3-brane stretched between the two (p, q)

sub-webs is a BPS brane on the Higgs branch, which maps to a brane wrapped on

the 3-cycle in the geometry.

3A concise description of these Higgs branches is provided by the instanton moduli space of
the corresponding En gauge theory. The relation is manifest by realizing the five-dimensional field
theory in the worldvolume of D4-branes probing configurations of D8-branes/08-planes at strong
coupling, so that the global symmetry is enhanced to En [157]. The Higgs branch corresponds to
dissolving the D4-brane as an instanton of the En gauge theory.
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Using the toric diagrams for the cones over del Pezzo surfaces one can recover

the results in [140]. Namely, for dPo and dP1 there is no deformation branch, as is

manifest from their toric pictures, Figure 9-2.

Figure 9-2: Web diagrams for the complex cones over dPo and dP1 . In both cases,
it is impossible to split them into more than one sub-webs in equilibrium, implying
there exist no complex deformations for these geometries.

On the other hand, dP2 has a deformation, shown in Figure 9-3, which completely

smoothes out the geometry. For dP3 there are two deformation branches, one of them

two-dimensional and the other one-dimensional, see Figure 9-4. Notice that the two-

dimensional deformation branch may be regarded as a one-dimensional deformation

to the conifold, subsequently followed by a one-dimensional deformation to a smooth

space. This is more manifest in the regime of widely different sizes for the two

independent 3-cycles.

Figure 9-3: The web diagram for the complex cone over dP2 and its complex defor-
mation.

For higher del Pezzo surfaces, the generic geometry is not toric. However, there

are closely related blow-ups of IP2 at non-generic points, which do admit a toric de-

scription. These non-generic geometries lead to the same quivers than the del Pezzos,
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Figure 9-4: Web diagram for the complex cone over dP3 and its two branches
of complex deformation. Figure b) shows a two-dimensional deformation branch,
parametrized by the sizes of two independent 3-spheres corresponding to the dashed
segments (the three segments are related by a homology relation, hence only two are
independent). Figure c) shows a one-dimensional deformation branch.

but with different superpotentials. For non-toric del Pezzos, some deformations are

manifest in the toric representation, see Figure 9-5 for an example. Notice however

that the dimensions of these deformation branches are in general lower than that for

generic geometries, thus showing that some deformations of the higher del Pezzos are

non-toric.

Figure 9-5: Web diagram for a cone over a non-generic blow-up of IP2 at four points
and its deformation. This geometry is toric and is closely related to dP4 . The two
dashed segments correspond to two homologically equivalent 3-spheres. The left-
over diagram describes a suspended pinch point singularity, which admits a further
deformation not shown in the picture.

In a similar spirit, we may consider other toric geometries closely related to toric

del Pezzos, but corresponding to a non-generic location of the blow-ups.4 They are

given by web diagrams associated to the so-called less symmetric quiver gauge the-
4Here the distinction between toric and quiver webs is relevant [49]. In these cases, the web

diagram corresponds to the quiver web, and encodes the quiver data of a less symmetric phase of the
gauge theory. On the other hand, the geometry is still described by some toric data, corresponding
to a toric web, different in general from the quiver web. See [49] for a detailed discussion.
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ories. For such geometries, deformations to smooth geometries exist, although the

generic deformation may not be available. One example of a deformation on a non-

generic version of dP3 is shown in Figure 9-6.

Figure 9-6: Web diagram for the cone over a non-generic dP3 and its deformation to
the orbifold C3/Z 2.

Finally, we emphasize that the above techniques can be used to study the deforma-

tions of other geometries, even involving more than one collapsing 4-cycles. Concrete

examples, like the deformations of the cone over F0, the suspended pinch point sin-

gularity and the yp,q geometries will appear in subsequent sections. It is interesting

to point out that all possible complex deformations for toric varieties may not be

described using the above web deformations. Nevertheless, all our examples will be

of this kind. We leave the interesting question of other possible situations for future

research.

9.2.3 A topological consideration

The throats on cones over dP, constructed in [61] (and generalizations) have in prin-

ciple n independent discrete parameters, the M I, associated to the integer fluxes

sourced by the n independent fractional branes one can in principle introduce in the

quiver gauge theory.

However, in this section we describe a topological argument which shows that in

order for a throat to have a smooth deformation at its bottom, corresponding to a

geometric deformation as discussed above, the fractional brane assignments cannot be

fully arbitrary. Equivalently, it is possible to use topological information about the al-

214

111.1^_1_.__-_11 - -__

I



lowed deformations to derive the set of fractional branes triggering the corresponding

strong infrared dynamics.

The argument is as follows. The fractional brane numbers can be measured in the

throat solution by computing the flux of the RR 3-form F3 through a 3-cycle in the

5d base of the cone (constructed as an S1 fibration over a 2-cycle in the del Pezzo

surface 5). There are n such 3-cycles. On the other hand, in the smooth deformed

geometries, one in general finds a smaller number k of 3-cycles. This implies that

n - k 3-cycles in the asymptotic region are homologically trivial. Consequently, only

k independent choices of fractional brane numbers remain.

For each deformed geometry, the set of corresponding fractional branes, i.e. those

associated to the homologically non-trivial 3-cycles, is determined as follows. Consider

a given complex deformation, corresponding to the separation of sub-webs. Recall now

the relation between external legs in web diagram and nodes in the quiver [80, 52].

The fractional branes associated to the deformation are those controlling the rank

of the nodes corresponding to the legs in the removed sub-web. We will see some

examples of this in later sections.

Notice that this does not mean there are no throat solutions for more general

fractional brane assignments, but rather that they cannot be completed in terms of

a purely geometric background. A systematic study of fractional branes and the

dynamics they trigger is in progress [51].

9.2.4 Deformations from the gauge theory

In the previous sections, we have introduced the simple example of the conifold and

discussed how the original naked singularity in the supergravity dual is cured when

the strong coupling dynamics of the gauge theory is taken into account. We then

reviewed how more general extremal transitions are described using toric geometry

in the form of (p, q) webs.

We now describe the derivation of the geometric deformation from the viewpoint

5Although we focus on the case of del Pezzo surfaces, the discussion applies to other real four
dimensional Kihler-Einstein surfaces.
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of the infrared dynamics of the dual gauge theory, for a general quiver theory. As

in the conifold case above, the deformation can be derived as the deformed moduli

space of probes, arising from the quantum modification of the moduli space of the

gauge theory. Although the basic idea follows discussions in [119], its implementation

in our more involved geometries leads to richer structures.

The geometries we study have several collapsing 2-cycles on which we can wrap D5-

branes, giving rise to different types of fractional branes. In order for the supergravity

solutions described in Section 8.5 to be valid we will assume that the number of

fractional branes of each type M' < N. There is no constraint on the relative

sizes of the MI's. However, in order to simplify our discussion, we can consider the

situation in which

M1 << M 2 << ... << ... << N (9.2.6)

Then it is natural to foresee a hierarchy of scales of strong gauge dynamics

Al << A2 <... < A3 (9.2.7)

where the As's are dynamical scales that arise when N(AI) is comparable to MI

A, such that N(AI) M I (9.2.8)

We have simplified the field theory analysis by assuming the scales are well sep-

arated, although we expect that descriptions of other situations exist in both the

smooth supergravity solution and the gauge theory language.

The basic structure of strong infrared dynamics is the following. Given a quiver

gauge theory with fractional branes, the theory cascades down until the number of

D3-branes N becomes similar to one of the fractional brane numbers, say MI ° , at a

scale A1o. For simplicity, and due to our assumption of separation of scales, we may

ignore the remaining MI's and take them to vanish. In order to simplify notation,

we call M I° = M. Then the last step of the cascade can be probed by introducing M

additional D3-branes and studying the resulting moduli space. In this situation the
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gauge group takes the form

SU(2M) m x Su(M) n (9.2.9)

In several of our examples below, the number of gauge factors with rank 2M is

two 6, m = 2, but the discussion may be carried out in general. Also, in the explicit

models the number of flavors for the SU(2M) gauge factors is 2M, hence equals the

number of colors.

The non--perturbative dynamics may be determined by assuming, to begin with,

that the SU(M) gauge factors are weakly coupled and act as spectators, correspond-

ing to global flavor symmetries. For simplicity we continue the discussion assuming

also that there no arrows among SU(2M) nodes, i.e. no (2M, 2M) matter. Under

these circumstances, the strong dynamics corresponds to a set of decoupled SU(2M)

gauge theories with equal number of colors and flavors, which thus develop a non-

perturbative quantum modification of the moduli space. This is best understood in

terms of gauge invariant mesonic and baryonic variables. For each such gauge factor,

the mesons are

Mru = ArBu (9.2.10)

with r, u = 1, 2, where

Ar: (2M, Mr) Be: (Me, 2M) (9.2.11)

and the baryons have the abbreviated form

B3 = [A]2M = [B]M (9.2.12)

where antisymmetrization of gauge indices is understood. It is important to keep

in mind that these operators are not gauge invariant when the entire gauge group

6In the (p, q) web description of the deformations presented in Section 9.2.2, this arises naturally
when one of the sub-webs that are separated is simply an infinite straight line.
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(and not just the factors undergoing deformation) is taken into account. This will

be important when we study what happens after they develop non-zero vevs. The

quantum modified moduli space is described by

det A4 - LB = A4M (9.2.13)

The resulting infrared gauge dynamics is described by a quiver gauge theory with the

SU(2M) nodes removed, the corresponding flavors replaced by mesonic and baryonic

degrees of freedom (both in the quiver diagram and in the superpotential), and with

the quantum modified constraints enforced as superpotential interactions by means

of singlet chiral field Lagrange multipliers X, of the form7

W = Wo + X(det - BB - A4M) (9.2.14)

The quantum constraints force some of the meson/baryon degrees of freedom to

acquire non-zero vevs. The dynamics of the probes is recovered along the mesonic

branch, which corresponds to setting the baryons to zero and X = A4 -4 M, and

saturating the constraint with meson vevs (see footnote 1). This triggers symmetry

breaking of some of the SU(M) factors to diagonal combinations, and makes some

of the fields massive due to superpotential couplings. The resulting theory contains

a set of meson fields with quantum deformed moduli space, describing the probes in

the deformed geometry. In addition, there are additional gauge factors and chiral

multiplets describing the geometry left-over after the complex structure deformation

of the original one. In later sections we will present several examples, in which the

matching between the gauge theory description of the quantum deformations and the

geometric complex structure deformations is complete. This is a very satisfactory

result.

There is a subtlety in fixing the sign of the vev for X. The simplest way of deter-

mining the correct one is to require that, restricting to the Abelian case, the theory

7For simplicity, we show only one Lagrange multiplier and additional superpotential term. It us
understood that there is one such contribution for each strongly coupled gauge group factor.
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has a superpotential allowing for a toric description of its moduli space. Concretely,

that each bi-fundamental field appears with opposite signs in the two terms contain-

ing it. This recipe can be recovered from a more careful treatment of the equation

of motion determining X from the initial superpotential, as discussed in a concrete

example in Appendix 9.7.

After the condensation, the left-over quiver theory may correspond to a singular

geometry with fractional branes, and thus will have subsequent duality cascades and

condensations. The resulting RG flow takes in this case the form of a cascade with

multiple dynamical scales at which the underlying geometry undergoes deformation.

Explicit examples are discussed in coming sections.

9.3 Some warmup examples

In this section we would like to describe some simple examples of infrared resolutions,

in situations with one-scale cascades.

9.3.1 The cone over F0

Let us consider the case of the cone over F. The web diagram for this geometry is

shown in Figure 9-7a, and the corresponding quiver is in Figure 9-8a.

Figure 9-7: Web diagram for the complex cone over F0 , and its complex deformation
to a smooth space.

The fractional brane corresponds to the rank vector (0, 1, 0, 1). The superpotential

for the theory is

W = X12X23Y34Y41 - X12Y23Y34X41 -Y12X23X34Y 41 + Y12 Y2 3 X3 4 Xp9.3.15)
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Figure 9-8: Figure a) shows the quiver diagram for the theory of D3-branes at a
complex cone over F0. Figure b) shows a dual phase of the theory, involved in the
duality cascade.

in self-explanatory notation. This theory has an SU(2) x SU(2) global symmetry,

which geometrically arises as the product of the SU(2) isometries of the two IPl's in

Fo = IP1 x IP1. It corresponds to a Z 2 orbifold of the conifold xy - zw = 0 by the

action x, y, z, w - -, -y, -z, -w, as first determined in [138]. This is also manifest

in the dual toric diagrams, where the cone over F0 differs from the conifold by the

addition of an interior point (namely, by the refinement of the toric lattice).

This theory has a cascade, which was exhaustively studied in [56, 61], and to

which we referred in Chapters 7 and 8. Introducing N D3-branes and M fractional

branes, namely starting quiver 9-8a with the rank vector

N(1,1,1,1) + M(0,1,0,1) (9.3.16)

the theory alternates between the two quivers in Figure 9-8a, b. Given the Z2 symme-

try of the quiver and of the deformed geometry, it is natural to consider the situation

where the UV gauge couplings of opposite nodes are equal. In this case, the duality

cycle is obtained by a (simultaneous) dualization of the nodes 1 and 3, followed by a

(simultaneous) dualization of 2 and 4, after which 1 and 3 are subsequently dualized,

etc. Under these conditions, quiver 9-8b appears just as an intermediate step between

simultaneous dualizations. In each duality cycle, the number of D3-branes decreases

by 2M units. It is interesting to note that, regarding the geometry as a quotient of

the conifold, nodes 1 and 3 descend from a single node in the quiver of the conifold,

while 2 and 4 descend from the other. In this respect, the duality cascade in the
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orbifold theory, in the situation of symmetric gauge couplings for opposite nodes in

the quiver, can be regarded as directly descending from the duality cascade in the

conifold theory.

The infrared end of the cascade is therefore expected to be similar to that of

the conifold. In fact, this is exactly what is obtained e.g. for N a multiple of M.

The gauge theory associated to the rank vector (0, M, 0, M), leads to two decoupled

XV = 1 SYM-like theories. In more detail, the infrared behavior may be explored

by introducing M additional D3-brane probes, namely by studying the gauge theory

with rank vector (M, 2M, M, 2M). In the infrared the gauge factors 1 and 3 are

weakly coupled, and can be considered spectators. The gauge factors 2 and 4 have

Nf = NC and develop a quantum deformation of their moduli space. Following the

general discussion in Section 9.2.4, we introduce the mesons

Ml MA12 1 X1 2 X2 3 X1 2 Y2 3 1
LM21 M22 J L Y1 2X 2 3 Y12Y2 3

.Ar [ Nj N12 ] [ X34X41 X34Y41

N21 N22 LY34X41 Y34Y41

and the baryons B, B, C, 

The quantum modified superpotential reads

W = M 11N22 - M12N21 - M 21N12 + M22N11 +

+ X1 (det M - B8 - A4M) + X 2 (detAf - CC - A4M ) (9.3.17)

where we have introduced a single strong coupling scale due to the equality of the

gauge couplings along the flow.

In order to study the mesonic branch, we have

X1 A4 - 4 M ; B1=B=0 ; X 2 =A 4 4 M ; C=C=

detM = A4M ; detAf = A4M (9.3.18)
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Now restricting to the Abelian case (see footnote 2), the resulting superpotential

is

W = Ml22 - 11 2N21 - M 21 N12 + M/22N11

- MllM 22 + M 12M 21 - N11N2 2 + N 12 N21

That is, the superpotential becomes entirely quadratic. The gauge group is broken to

the diagonal combination of nodes 1 and 3 by the expectation values of the mesons.

Using the equations of motion, the superpotential vanishes. The only degrees of

freedom are one set of mesons, due to the equations of motion, which require M = /.

In addition, these mesons are subject to the quantum constraints, namely det M =

A4. This describes the dynamics of the probes in the deformation of the cone over F0o

to a smooth space. Indeed, at any point in the mesonic branch (in the Abelian case)

the gauge group is U(1) and there are three adjoint (i.e. uncharged) chiral multiplets

with vanishing superpotential. This is the f = 4 U(1) SYM of D3-branes probing a

smooth space.

The analogy of the above discussion with the conifold case is manifest from the

orbifold description. Moreover, from the geometric viewpoint the deformation of the

cone over F0 corresponds simply to the quotient of the deformed conifold xy - zw = 

by the Z 2 action x, y, z, w -+ -x, -y, -z, -w, under which it is invariant.

The complex cone over F0 is one of the first examples in the family of real cones

over the manifolds YPo introduced in [65, 63, 66, 64, 134], namely y2,0. The real

cones over YPO correspond to quotients of the conifold xy - zw = 0 by the Zp action

generated by

x - e 2i/P , y e-2ri/Py , z -+ e2 i/z , w - e-27ri/p (9.3.19)

(with y1,0 corresponding to T1,1, the base of the conifold itself). This orbifold action

is easily understood by looking at the toric diagrams for these varieties. The toric

diagrams look like the diagram of the conifold with an additional refinement of the

lattice.

Moreover, using the web diagrams for these varieties it follows that these are the
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only examples of cones over the manifolds ypq which admit a complex deformation

which smoothes the singularity. Namely, only for the case of q = 0 we expect that

complex deformations will smooth out the naked singularity at the tip of the warped

throat solutions in the presence of fluxes as in [92]. The discussion of the geometries

involved and the field theory description of the smoothing is presented in Appendix

9.9.

9.3.2 First del Pezzos

Let us consider the cones over the first del Pezzo surfaces. As already mentioned, the

cone over dPo does not admit any fractional branes, and therefore cannot be taken

away from the conformal regime.

The quiver diagram for a cone over dP1 is presented in Figure 9-9. The corre-

sponding superpotential is

Figure 9-9: Quiver diagram for D3-branes at the cone over dP1 .

W -= E.X4XfilX13 - +,X4X42 ,-X12X34XlX3 (9.3.20)

This theory admits one kind of fractional branes, given by the rank vector (0, 3, 1, 2).

The addition of these fractional branes leads to an RG cascade which was first stud-

ied in [61]. The superpotential (9.3.20) preserves an SU(2) x U(1) global symmetry.

The R-charges can then be determined using the a-maximization principle, and turn

out to be irrational numbers [134]. Some explicit computations can be found in [21].

This is the simplest example of a singularity whose dual gauge theory has irrational

R-charges. Thus, it is very interesting to understand the associated cascades in detail

and we now proceed to do so.
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The resulting RG flow is logarithmic and periodic. For an appropriate choice of

initial couplings, the sequence of dualized nodes in a period is 2, 4, 3, 1, after which

N - N - 4M and M. The quivers for several steps in the cascade are shown in

Figure 9-10.

0( N N+3M ( N N-M ( N N-M

N+2M N+M N+2M N+M N-2M N+M

N N-M O N-4M N-M

N-2M N-3M N-2M N-3M

Figure 9-10: Quivers in a duality cycle in the duality cascade of dP1 . We have
indicated in blue the dualized node at each step.

The beta functions at each step are

N1 N 2 N3 N 4 |B1M l 2 /M 3 /M 4/M

1 N N+3M N+M N+2M -10+V3 10-/ 22-7vf3 -22+7/-3
2 N N-M N+M N+2M 22-773 -10+ vl -22+7Vi-3 10 -
3 N N-M N+M N-2M -22+7V/3 22-7V - -10- -10+V
4 N N-M N-3M N-2M 10-V -22+7vrl -10+ 22-7v

5 N N-4M N-3M N-2M -10+Vf-3 10-v-3 22-7Vf_ -22 + 7V
(9.3.21)

where we have indicated the beta functions of the dualized nodes with a bold font.

In addition, the supergravity dual of this flow corresponds to the y 2,1 flow, which

is a member of the class of warped throat solutions recently constructed in [92].

However, as already mentioned, the geometry does not admit a complex deformation,

hence the naked singularity at the infrared is not removed by this mechanism. This
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Figure 9-11: Evolution of the inverse squared couplings xi = 87r2 /gi2 as a function of
t = log p for the dP1 cascade under consideration. UV couplings have been chosen
respecting the quiver symmetries and such that the sequence given by Figure 9-10
and (9.3.21) is followed. We indicate xl and x2 in green, and X3 and x4 in orange.

question is being addressed in [51].

The first non-trivial example of complex deformation is provided by the cone over

dP2. The web diagram is shown in Figure 9-3a, and the corresponding quiver diagram

is in Figure 9-12.

4

1 2

5

Figure 9-12: Quiver diagram for D3-branes at the cone over dP2.

The superpotential for this theory is given by

W = X34X45X53- (X53Y31X15 + X34X42Y23)

+ (Y2 3X31X1 5X52 + X42X2 3Y31X14 ) - X 23X 31X14 X4 5X52 (9.3.22)

The two independent fractional branes can be taken to correspond to the rank

vectors (1, 1, 0, 0, 0) and (0, 1, 0, 1, -1). The existence of an RG cascade in this theory,

although expected, has not been established in the literature, neither from the field
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theory nor the supergravity viewpoint.

Using our arguments in section 9.2.3, it is possible to see that the cascade ending

in the deformation shown in figure 9-3a corresponds to the first type of fractional

branes. We thus proceed to study it, taking initial ranks of the form

N = N(1, 1, 1, 1, 1) + M(1, 1, 0, 0, 0) (9.3.23)

We will consider UV couplings respecting the Z 2 symmetry that the

absence of fractional branes, x1 = x2 and x 4 = x5.

O N ( N (

N+M N+M

N

N N-M

N-M N-M

N-M N+M N-M

N

® N-M

N-M N-M N-M

quiver has in the

N

N-N

N

N-M

N-N

N N-2M N-2M

Figure 9-13: Some quivers in a duality cycle in the duality cascade of dP2. We have
indicated in blue the dualized node at each step.

The sequence of gauge group ranks and beta functions for the gauge couplings is

N1 N2 N 3 N4 N 5
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Figure 9-14: Evolution of the inverse squared couplings xi = 87r2/g2 as a function of
t = log / for some steps in the dP2 cascade under consideration. UV couplings have
been chosen respecting the quiver symmetries and such that the sequence given by
Figure 9-13 and (9.3.24) is followed. We indicate xl and x2 in black, X3 in green, and
X4 and x5 in magenta.

Figure 9-14 shows a typical evolution of gauge couplings in this case. For simplic-

ity, Figure 9-13 and (9.3.24) only show six steps in the duality cascade. At the end

of this pattern of dualization, one obtains a quiver similar to the original one, up to

a reduction of the number of D3-branes and a rotation of the diagram. Hence con-

tinuation of this pattern eventually leads to a full duality cycle, and thus a periodic

cascade.

Let us now explore the behavior of the theory for small number of regular D3-

branes, which corresponds to the infrared of the RG cascade. For that, we consider

M D3-branes probing the theory at the IR end of the cascade. Hence, let us consider

the gauge theory described by the rank vector

N = M(1, 1, 1, 1, 1) + M(1, 1, 0, 0, 0) (9.3.24)

In this situation nodes 1 and 2 have N = NC and develop a quantum deformed
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moduli space. The meson fields for nodes 1 and 2 are

M3 4 M3 5

[M3 4 3 5

X 31 X1 4 X3 1 X1 5

Y3 1 X 14 Y 31X15

N5 3AV, = N43

L NIT43 [

X42 X23 X 52X23

X4 2 Y23 X 52 Y23

The quantum modified superpotential becomes

W = X34X45X53 - (X53Y31X15 + X34 X4 2 Y23 )

+ (Y23X 31X 15X 52 + X 4 2X 23 Y31X 14 ) - X23 X31 X 14 X45 X 5 2

+ X1 (detM - BB -A4 M) + X2 (detA - CC - A4M)

Along the mesonic branch we have

; B=B=O ; X2 = -A4 - 4 M ; C=C=O

det M = A4M ; det Jfi= A4M

The appropriate signs for the vevs for X1 and X2 can be determined with a

reasoning identical to the one in Appendix 9.7.

The expectation values for the mesons higgs the gauge group to a single diagonal

combination of the nodes 3, 4 and 5. Restricting to the Abelian case, the superpo-

tential becomes

W = X3 4X 45X 53 - N53 M34X45 - X 53 Al3 5 - X34N43

+ N5 32 35 + N4 3 M34 + M3 4M35 - /34M35 - N43N 53 + N4 3N53 (9.3.27)

Using the equations of motion for e.g. M3 4, M35 and N43, we have

34 = X 53 M35 = N43 , X33 = N53 (9.3.28)
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Plugging this into (9.3.27) we have

W = X34X45X53 - X34X53X45 (9.3.29)

Renaming X 34 = X, X45 = Y and X 53 = Z, we obtain the Af = 4 field content and

superpotential

W = X[Y, Z] (9.3.30)

which in any event vanishes in the Abelian case, but is crucial in non-Abelian sit-

uations. Hence, the moduli space of the D3-brane probes is given by the complex

deformation of the cone over dP2 to a smooth space, as expected from the geometrical

analysis.

9.3.3 The suspended pinch point

To illustrate that the ideas of cascades and infrared deformations are very general, we

would like to consider a further example, based on the suspended pinch point (SPP)

singularity. The web diagram for this geometry is shown in Figure 9-15a, while its

deformation is in Figure 9-15b.

Figure 9-15: Web diagram for the SPP and its deformation to a smooth geometry.

The quiver diagram was determined in [138, 164] and is shown in Figure 9-16a,

and the superpotential is

W = X21X2X23X32 - X32X23X31X13 + X 13X 31X11l - X12X21X11 (9.3.31)

The ranks of the gauge factors are arbitrary, hence there are two independent frac-

tional branes, which can be taken to be (0, 1, 0) and (0, 0, 1).
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Figure 9-16: Quiver diagram for SPP.

Although it has not been described in the literature, the theory has a very nice

and simple duality cascade, which as we show ends in the deformed geometry shown

in Figure 9-15a. Similarly to what happens in the flows considered for dP1 and dP2,

this cascade shares a very special feature with the conifold cascade: it is periodic and

involves a single quiver. Let us consider the starting point given by the ranks

N = N(1, 1, 1) + M(O, 1, 0) (9.3.32)

By following the pattern of dualizing the most strongly coupled node at each

step, we are led to a cascade that repeats the following sequence of dualizations

(2, 1, 3, 2, 1, 3). The quiver theories at each step of this sequence are shown in Figure 9-

17. As before, we have indicated in blue the node that gets dualized at each step.

In more detail, the ranks of the gauge groups and the beta functions for this series

of dualizations are
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N N+M N-M N -

® C) © N-M © N-3M

N-M

N-2M N-M N-2M N-2M N

Figure 9-17: Sequence of quivers in one period of the SPP cascade. We have indicated
in blue the dualized node at each step.

N1 N2 N3

N N+M N

N N-M N

N-M N-M N
N-M N-M NM N-2M
N-M N-2M N-2M
N-3M N-2M N-2M
N-3M N-2M N-3M

1/M P2/M P3/M

-3/2 3 -3/2

3/2 -3 3/2

-3/2 -3/2 3
3/2 3/2 -3

3 -3/2 -3/2

-3 3/2 3/2

-3/2 3 -3/2
(9.3.33)

After six dualizations (step 7 in the previous table), the quiver comes back to

itself, with N -+ N - 3M and M constant.

It is important that at every step in the cascade the most strongly coupled node

is never the one with the adjoint chiral field. This allows the cascade to proceed via

standard Seiberg dualizations. In the previous table, we have again used a bold font

for the beta function of the dualized node at each step. It still remains to show that

it is possible to choose initial couplings such that the proposed dualities take place
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along the RG flow. In fact, it is possible to do so, as shown in Figure 9-18 for a

particular choice of UV couplings. Moreover, the pattern is completely generic.

x i
2.

1.

0.

t

Figure 9-18: Evolution of the inverse squared couplings xi = 87r2/g as a function of
t = log for the SPP cascade. Red lines indicate x2 and green lines indicate x1 and
X3 .

As usual, the cascade proceeds until the effective number of D3-branes is compa-

rable to M. At this point, we expect the gauge theory strong dynamics to take over

and induce a geometric transition. Indeed, the SPP singularity admits a complex

deformation, shown in Figure 9-15b. In the following we describe how this arises in

the field theory.

In order to study the infrared end of the cascade, we study the gauge theory

describing M D3-branes probing it. This corresponds to the quiver theory with rank

vector

= M(1, 1, 1) + M(O, 1, 0) (9.3.34)

In this case, we only need to consider mesons and baryons for node 2. The mesons

are given by

M M13 M1l 1 X 12 X2 3 X1 2 X2 1 (9.3.35)

M 33 M 31 J X 3 2 X2 3 X32X21

We now introduce the quantum constraint in the superpotential and choose the

mesonic branch

X= 4 -4 M ; = = 0 (9.3.36)
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Restricting to the Abelian case, the superpotential reads

W = -M 3 3 X 3 1 X1 3 + X 13X 31X11 - M1 1X 11 + M33M 11 (9.3.37)

The equation of motion for M1l requires X11 = M3 3, so we get

W = -M3 3X3 1 X1 3 + X 13X3 1M33 (9.3.38)

The gauge group is SU(M) (due to the breaking by meson vevs M oc 1). All three

fields transform in the adjoint representation (a singlet in the Abelian case). The

above theory clearly describes the field content and superpotential of AJ = 4 SYM,

i.e. the theory describing the smooth geometry left over after the deformation.

In addition, there remain some additional light fields, namely Ml, M13, M31, M3 3,

subject to the constraint

M13M31 - M33M11 = A4 (9.3.39)

The dynamics is that of probe D3-branes in the geometry corresponding to the

deformation of the SPP to flat space. This matches nicely the geometric expectation,

from the web diagrams in Figure 9-15, from which we see that the result of the

deformation is a smooth geometry.

The relation between the field theory and the more geometrical description of

the deformation can be done also using the toric geometry language. Using the

construction of the moduli space of the SPP in terms of toric data (the forward

algorithm), e.g. in [138, 146], the moduli space is given by xy = zw2 , with

X; = X13X3 2X24 , y = X31X12X23, z = Xll, w X13X31 (9.3.40)

modulo relations from the superpotential (namely, we also have e.g. w = X12X21).
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Using the mesons we have

= X13M31 , = X31M13 , z = X11 = M33 , w = X13X31 = M11 (9.3.41)

The monomials satisfy xy - zw2 = 0 at the classical level, namely

X 13X 3 1 (M 31 M 1 3 - M3 3M 11 ) = 0 (9.3.42)

The quantum deformation of the moduli space of the field theory M31 M1 3- M33MMl =

A4, thus corresponds to

X 13X 31 (M 3 1M13 - M 33M 11) = EX13X31 (9.3.43)

which in terms of the monomials can be written as xy - zw2 = Ew which is the de-

scription of the geometric deformation in Figure 9-15b. Thus the description we have

provided has a quite direct link with the geometric description of the deformation,

see Appendix 9.8. Similar computations could be carried out in the other cases.

9.4 The dP3 example

In this and subsequent sections we present examples where there are several scales

of strong gauge dynamics along the RG flow. They are dual to supergravity

solutions with several geometric features along the radial direction. The cleanest

examples are those involving several deformation scales, which separate throat-like

regions with different warp factors, dual to cascading flows in the gauge theory. In

this section we center on one such example, based on the cone over dP3 .

The complex cone over dP3 has two different deformation branches, shown in

Figure 9-4. Following the discussion in section 9.2.3, it is possible to directly determine

the sets of fractional branes in the gauge theory that are associated to the finite

size 3-cycles in the supergravity description, and which should therefore trigger the

corresponding RG flow and strong dynamics. In this section we carry out the gauge
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Figure 9-19: The quiver for D3-branes on the complex cone over dP3.

theory analysis corresponding to these sets of fractional branes and describe in detail

the duality cascade and infrared dynamics.

Before doing that, let us review some general features of the gauge theory. The

(p, q) web diagram is shown in Figure 9-4, and the corresponding quiver gauge theory

is shown in figure 9-19. The superpotential reads (see e.g. [43])

W v X 12X 23 X3 4X4 5X 56X 61 + X 13X 3 5X 51 + X 24X46X 62 -

- - -X13X34X46X61 - X12X24X45X51 (9.4.44)

in self-explanatory notation.

A basis of fractional branes is given by the rank vectors (1, 0, 0, 1, 0, 0), (0, 0, 1, 0, 0, 1)

and (1, 0, 1, 0,1, 0).

9.4.1 The cascade for the first branch

In this section we describe a cascading RG flow for the dP3 theory. This duality

cascade, which has not appeared in the literature, provides the dual of the throat in

[61] corresponding to the appropriate choice of fractional branes.

The cone over dP3 has a two-dimensional deformation branch, shown in Figure

9-4c, which involves two independent 3-cycles and hence two independent RR fluxes.

Hence a warped throat ending in this deformation must be dual to an RG flow in the

quiver gauge theory with two independent fractional branes. From the geometry, and

the argument in section 9.2.3, the 3-cycles involved in the deformation correspond to
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a) N+P b) N+M-P C) N+M-P
1 1 1

N+M 6 2 N N+M 6 2 N N-P 6 2 N

N 5 3 N+M N 5 3 N+M N 5 3 N-F

4 4 4
N+P N+M-P N+M-P

Figure 9-20: Two dualizations in the first RG cascade in dP3. Dualized nodes are shown
in blue.

the fractional branes with rank vectors (1, 0, 0, 1, 0, 0) and (0, 0, 1, 0, 0, 1).

Hence our starting point is the quiver in Figure 9-19 with ranks

N = N(1,1, 1, 1, 1, 1)+ P(1, 0, 1, 0, O)+ M(O, O, 1,0, 0, 1) (9.4.45)

In addition, the Z2 symmetry of the external legs in the toric diagram suggests

that it is natural to consider initial conditions such that the RG flow is symmetric

with respect to opposite nodes in the quiver. Hence, opposite nodes are taken with

equal gauge couplings at a large UV scale. In order to study the RG flow to the

infrared, we center on the regime N > P M, which eventually will lead to two

hierarchically different scales of RG flow.

The suggested duality cascade proceeds as follows. The nodes with largest beta

function are 1 and 4, so we dualize them simultaneously. The results are shown in

Figure 9-20a,b (the resulting quiver may be reordered to yield a standard maximally

symmetric quiver, but we need not do so). Next the most strongly coupled nodes are

3, 6, so we dualize them simultaneously. This is shown in Figure 9-20b,c.

The quiver in Figure 9-20c can be reordered into a standard maximally symmetric

quiver. This is of the form of the starting quiver, with similar fractional branes, but

with the effective N reduced by an amount P. We can then continue dualizing nodes

2, 5, then 1, 4, then 3, 6, etc, following the above pattern and generating a cascade

which preserves the fractional branes but reduces the effective N.
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In order to check that the suggested cascade of dualizations is consistent with an

RG flow, we compute the gauge theories at each step in the cascade, along with the

beta functions for the gauge couplings.

Given that N > P > M, we expect the cascade to be controlled by the P

fractional branes of the first type in the UV. In that spirit, we study in detail the

RG flow first neglecting the effect of M, which we set to zero for simplicity, under

the assumption that the M fractional branes of the second type will only produce a

small perturbation to the cascade constructed this way.

Let us explore in more detail that the above proposed cascade of dualizations

1,4,2,5,3,6 indeed corresponds to an RG flow. This cascade iterates between Models

I and II of dP3 in [48], and the corresponding ranks and beta functions at each step

are

N1 N2 N3 N4 N5 N6

N+P N N N+P N N

N-P N N N+P N N
N-P N N N-P N N

N-P N-P N N-P N N
N-P N-P N N-P N-P N
N-P N-P N-2P N-P N-P N
N-P N-P N-2P N-P N-P N-2P

p1 /P l2 /P 33 /P p4 /P P5 /P 36 /P

3 -3/2 -3/2 3 -3/2 -3/2
-3 0 0 3 0 0

-3 3/2 3/2 -3 3/2 3/2

-2 -3/2 5/2 -5/2 3/2 2

-3/2 -3/2 3 -3/2 -3/2 3
0 0 -3 0 0 3

3/2 3/2 -3 3/2 3/2 -3
(9.4.46)

After six dualizations (step 7 in the previous table), the quiver comes back to

itself, with ranks

N = (N - P)(1, 1, 1, 1, 1, 1) - P(O, 0, 1, 0, 0 1) (9.4.47)

Thus, the theory after six steps looks like the original one, with N -+ N - P, plus

a rotation and a replacement of P -+ -P.

Notice that in the situation which is Z 2 symmetric with respect to opposite nodes,

the above duality steps group by pairs of simultaneous dualizations, and the quivers
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2P-M

P 6 2 P-M
P-M P

2/5 3/6
P-M 5 3 P

4

2P-M

Figure 9-21: Condensation of the gauge theory of dP3 to the gauge theory of the conifold.
The nodes undergoing a deformation are indicated in green.

involved are always maximally symmetric (model I in [48]).

One may worry that in the presence of non-zero M the structure of the above

cascade is destabilized. However, numerical results on the structure of cascades for

a variety of choices of UV gauge couplings shows that the existence of cascades is a

quite robust feature of the above choice of fractional branes (although the particular

pattern of dualities involved in a cycle may be different from the above one).

Hence, the above cascade can be generalized to the situation with non-zero M,

with the same result, namely there are cycles of Seiberg dualities, which leave the

quiver and fractional branes invariant, but decrease the number of D3-branes in mul-

tiples of P.

The cascade proceeds until the effective N is not large compared with P. For

simplicity, consider that the starting N is N = (k + 2)P - M. Then after a suitable

number of cascade steps, the ranks in the maximally symmetric quiver are (2P -

M, P - M, P, 2P - M, P - M, P), for nodes (1, 2, 3, 4, 5, 6), as shown in Figure 9-21a.

At this stage the SU(2P - M) factors have 2P - M flavors and develop a quantum

deformation of their moduli space. This should correspond to turning on one of the

complex deformations of the geometry. From the structure of the left over web in the

toric representation after a one-parameter deformation, see Figure 9-4b, we expect

that the left over geometry should be a conifold. This is shown in Figure 9-21.

Before describing this quantum deformation in detail, let us simply mention that
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M 6 2M

M 5 3M

4
2M

Figure 9-22: Gauge theory encoding the dynamics of D3-brane probes of the infrared of
the cascade. The nodes undergoing a deformation are indicated in green.

it results in the disappearance of nodes 1 and 4, the recombination of nodes 2 and 3,

and 5 and 6 respectively, due to meson vevs, and a rearrangement of the arrows. The

final result is indeed a conifold quiver gauge theory, with ranks P - M and P. The

theory subsequently evolves towards the infrared via a Klebanov-Strassler flow, by

duality cascades where the effective number of D3-branes decreases in steps of M. At

the end of this cascade, there is another condensation, which corresponds to turning

on the second complex deformation of the cone over dP3 to yield a smooth space.

9.4.2 The quantum deformation to the conifold

Let us now describe the fate of the dP3 quiver theory at the end of the first duality

cascade. To simplify the discussion, we take the situation where nodes 2356 have

equal rank, i.e. M = 0, but the generalization to non-zero M is possible. We would

like to consider the gauge theory associated to a set of P D3-branes probing the

infrared of the duality cascade. The corresponding quiver is shown in Figure 9-22.

Following our general discussion in section 9.2.4, the SU(2P) nodes condense, so
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we introduce the corresponding mesons

M U M6 3 M 62 [ X6 1 X1 3 X6 1 X1 2 1

M5 3 M5 2 X 51 X1 3 X51 X1 2

[ 36 N3 5 1 X3 4 X4 613 X34X45

N26 N25 l X24 X4 6 X2 4X4 5

We also introduce the baryons B, B, A, . The quantum constraints read

detM-B = A4P ; detA -AA = A4P (9.4.48)

where we use the same dynamical scale for both gauge groups, corresponding to the

Z2 symmetry of opposite nodes in the quiver preserved during the flow.

The superpotential reads

W = M62X23N35X56 + M53X35 + N26X62 -

- X23X35X56X62- M 63N 36 - M 52N25 +

+ X1 (det M - B3 - A4P) + X2 (detA - AA - A4P ) (9.4.49)

Going along the mesonic branch, we uncover the dynamics of the probes in the

geometry at the infrared of the cascade. The mesonic branch corresponds to

X= X = A4-4P ; .A=A=O ; B=B=O (9.4.50)

and the constraints on the mesons. For the most symmetric choice of meson vevs

M oc 1, / oc 1, the gauge groups associated to the nodes 3 and 6, and 2 and 5, are

broken to their respective diagonal combinations.

In order to simplify the discussion, we restrict to the Abelian case, where the
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superpotential reads

W = M62X23N35X 56 - X23X35X56X62 - M63N36 - M52N25 +

+ M53 X3 5 + N2 6X 62 + M63M52 - M53 M62 + N3 6N25 - N2 6N35 (9.4.51)

Using the equations of motion for M53 and N2 6, we have X3 5 = M6 2, X62 = N35.

Thus

W = X23N35X56M62 - X23M62X56N35 -

- M63N36 - M52N2 5 + M63M52 + N3 6N2 5 (9.4.52)

Using the equations of motion for e.g. M63, M52, the quadratic terms disappear, and

we are left with

W = X2 3N3 5X 56M62 - X 23 M 62X 5 6N3 5 (9.4.53)

Going back to the non-Abelian case, the gauge group is SU(M) 25 x SU(M) 3 6, with

charged fields given by those appearing in the superpotential. These can be relabeled

as Al = X23 and A2 = X5 6, in the (, 0), and B1 = M3 5, B2 = M62, in the (, O). This

is the gauge theory of D3-branes at a conifold singularity, showing that the left over

geometry after the complex deformation is a conifold. It is important to note that

there are some additional massless fields, which describe the dynamics of the D3-brane

probe in the deformed geometry. Specifically, the quadratic terms in (9.4.52) leave

two linear combinations of M63, M52, N3 6, N25 massless. In addition, the fields M53

and N2 6, which disappeared from the superpotential, also remain massless. Overall,

we have light fields subject to the constraints (from dW/OXi = 0)

M63M52 - M 53M 62 = A 4P ; N36N 25 - N 2 6N3 5 = A4 P (9.4.54)

Hence the complete dynamics of the theory corresponds to one D3-probe in a geometry

which is the deformation of a complex cone over dP3 to a singular conifold.
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N+M 5 3 N+M
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Figure 9-23: Starting point of the cascade ending in the one-parameter deformation of the
cone over dP3.

Notice also that if we consider two kinds of fractional branes, namely non-zero M

in the original cascade, the quantum deformation proceeds as above, since it involves

recombinations of opposite nodes which have equal ranks even for non-zero M. The

resulting condensation leads to a conifold, with the two nodes of the conifold theory

having different ranks, what triggers a further Klebanov-Strassler duality cascade and

infrared deformation.

9.4.3 The other branch

The cone over dP3 has a second deformation branch, which is one-dimensional, see

figure 9-4c. In this section we discuss the duality cascade dual to the corresponding

supergravity throat, and describe the infrared deformation in the gauge theory.

Using the relation in section 9.2.3, the one-parameter deformation branch corre-

sponds to the choice of fractional branes in Figure 9-23. Also, due to the Z 3 symmetry

of the geometry, it is natural to propose that nodes with even/odd label have equal

UV couplings, respectively.

The proposed cascade in this case goes as follows. As one flows to the infrared,

the SU(N + M) gauge factors become strongly coupled and should be dualized.

Their simultaneous dualization is difficult, since there are bi-fundamentals joining the

corresponding nodes, so we proceed sequentially, with a particular choice of ordering

which is not important for the final result. We choose to dualize node 1 first. The
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Figure 9-24: Some steps in the duality cascade. Dualized nodes are shown in blue.

a) N b) N-M C) N

I 1 2

N 6

N-M 5

2 N N 6 , 2 N N-M I / 5 N-M

3 N-M N-M 5 3 N-M N 6 4 N

4 4 3

IN N N-M

Figure 9-25: Last duality and reordering to complete the duality step. Note that the nodes
of the last quiver have been reordered in order to make its Z3 symmetry manifest. The
dualized node is shown in blue.

result is shown in Figure 9-24ab. In the resulting theory, there are no bi-fundamentals

joining nodes 3 and 5, so we can now dualize them simultaneously, as shown in Figure

9-24bc.

Next, node 1 is most strongly coupled, so we dualize it again. The result is shown

in Figure 9-25ab. Then, we dualize nodes 2 and 6. The final quiver is the maximally

symmetric one, as can be shown by reordering the nodes as in 9-25bc. This final

theory is of the same kind as the original one, but reducing the effective N in M

units (and up to a rotation). Notice also that the final theory has the same nice Z3

symmetry between the nodes as the original one with the nodes (2, 4, 6) playing the

role of (1, 3, 5). One can then proceed to perform the same sequence of dualizations,

this time on nodes (2, 4, 6), completing a full cycle of the cascade.

The above heuristic derivation is confirmed by the detailed computation, and
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provides the field theory interpretation of the supergravity solution in [61], for the

corresponding choice of asymptotic fluxes. The cascade proceeds until the effective

number of D3-branes is comparable to that of fractional branes. At this stage, we

may use the field theory to derive the strong infrared dynamics which removes the

singularity by replacing it by a smooth deformed geometry.

For that purpose, we consider the dynamics of the theory at the end of the cascade,

in the presence of additional D3-brane probes. Namely, we consider the quiver with

ranks (2M, M, 2M, Al, 2M, M). In this situation, we expect that the three nodes 1,

3, 5 lead to a quantum deformed moduli space. In order to study the left-over theory,

we consider performing this condensations sequentially (the order not being relevant

for the final result).

Consider the strong dynamics associated to the node 1. We introduce the mesons

M = 62 M63 [ X6 1 X1 2 X6 1X1 3 (9.455)

L M52 M53 L X 5 1 X 1 2 X 5 1 X 1 3

Similar to our above analysis, we implement the quantum constraint in the super-

potential. We center on the mesonic branch, along which the gauge factors 6 and 2,

and 5 and 3, are broken to their respective diagonal subgroups, denoted 26 and 35

henceforth. Restricting to the Abelian case, the superpotential is described by

W = M62X 23 X 34X 4 5X 5 6 + M53X 35 + X 24X 4 6X 62 - X2 3 X35 X5 6X 62 (9.4.56)

- M63X 34X4 6 - M52 X 24X4 5 - M62M53 + M52M63

The combined node 35 has Nf = NC plus additional massive adjoints and flavors,

which we integrate out using the equations of motion for M5 3, X 3 5, M5 2, M6 3. The

resulting superpotential is

W = M 62X 23X 34X 4 5X 56 + X24 X46X62 (9457)

- X23 M62X 56X 62 - X34X46X24X45

so the only fields charged under the node 35 are the massless ones. Since node 35 has
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Nf = N we introduce the mesons

N2 6 N2 4 1 X 2 3 X5 6 X2 3 X3 4 (9458)
L N 4 6 N4 4 j [ X4 5 X5 6 X4 5 X3 4

which, along with the corresponding baryons, satisfy a quantum deformed constraint.

Along the mesonic branch, the group associated with the nodes 26 and 4 is broken

down to a single diagonal combination. The superpotential is given by

W = M62N24N4 6 + X 24X46X 62 - N26M6 2X62
(9.4.59)

- N44X4 6X2 4 + N26N 44 - N46N24

Using the equations of motion for N26, N44, N4 6, N 24, the superpotential reads

W = X24X46X62 - X24X62X46 (9.4.60)

Since these fields transform in the adjoint representation of the leftover SU(M) gauge

group, this is the JV = 4 SYM theory, and the result implies that the geometry after

the deformation is smooth. As usual, there are some additional neutral massless

fields, with quantum modified constraints, which describe the dynamics of the probe

in the deformation of dP3 to a smooth geometry. We see that the complete smoothing

by a single scale is in full agreement with the geometric picture.

9.5 Further examples

In this section we apply our by now familiar techniques to study other examples of

quiver gauge theories with two scales of strong infrared dynamics.

9.5.1 From PdP (I) to the Suspended Pinch Point

We now investigate a two-scale cascade which follows the sequence

PdP(I) - SPP - smooth
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where PdP stands for 'pseudo del Pezzo' and PdP (I) indicates the complex cone over

a non-generic toric blow-up of dP3 denoted Model I of PdP4 in [44].

This is another simple example of the agreement between the complex deformation

of the geometry, and the quantum deformation of D3-branes probing the infrared

theory of fractional branes. Since the discussion of the RG flow and existence of

cascades in these geometries is involved and somewhat aside our main interest, we

skip their discussion and center on the gauge theory description of the deformation.

We consider the theory on a stack of D3-branes probing a complex cone over the

toric variety obtained by performing a non-generic blow-up of dP3. Figure Figure 9-

26a shows the (p, q) web diagram for this geometry. We also indicate a complex

deformation to the suspended pinch point (SPP) singularity.

1 7

Figure 9-26: Web diagram for the PdP ( I) model, its deformation to the SPP, and a
further deformation to a smooth space.

The quiver diagram for this model is shown in Figure 9-27, which has a 5-block

structure that is evident in the web diagram, with nodes 7, 1 and 2, 3 forming pairs.

The corresponding superpotential was derived in [44] and reads

W - X 24X46X61X12 + X73X35X5 7 - X73X34X46X67 - X45X57X72X24
(9.5.61)

-X3 5 X5 6X61 X13 + X51 X1 3 X34 X4 5 - X25 X51X12 + X25 X5 6X6 7X 72

Following our arguments in section 9.2.3, the deformation we want to consider

corresponds, in the gauge theory, to the choice of fractional branes

= M(1,1, 1, 1, 1, 1, 1) + M(O, 1, ,O, O, 1, ) (9.5.62)
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Figure 9-27: Quiver diagram for PdP4( ). We show in green the nodes that undergo
the deformation.

Following our general prescription, we construct the meson fields for nodes 2 and

6

M _ [M 14 M74 1
L M 15 M 75

L N51 N57 0

X1 2 X2 4

X 12X 2 5

X 4 6X61

X 56X 61

X 72X 24

X 72X 25

X 4 6X 6 7

X 5 6X6 7

]
(9.5.63)

]

We now introduce Lagrange multiplier chiral fields to impose the quantum modi-

fied constraints on mesons and baryons. Along the mesonic branch we have

X, =A 4- 4M B=B= ; X2 = A4- 4M ; C=C =O 0

det M = A4M ; detJ = A4M (9.5.64)

Along the mesonic branch, nodes 1, 4 and 5, 7 recombine to their respective diagonal

combinations. Restricting to the Abelian case, the superpotential is
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W = M14N41 + X 73 X3 5X5 7 - X73 X3 4N4 7 - X45 X5 7M74

-X 3 5 NV5 1 X1 3 + X 5 1X 13 X 34 X 4 5 - M1 5X5 1 + M75N57 (9.5.65)

-M 1 4 M7 5 + M15 M74 - N4 1N5 7 + N51N4 7

Using the equations of motion for M14 , M15, N57, N4 7, N51, etc, we have

N 41 = M 75 X 51 = M 7 4 M 7 5 = N4 1 (9.5.66)

N 51 = X 73 X3 4 N4 7 = X35X13

The gauge group after symmetry breaking is SU(N) 5 7 x SU(N) 14 x SU(N) 3, and we

have the superpotential

W = X73X35X57 -- M74X45X 57 - X73X34N4 7 - X3 5X 73X3 4X1 3 + M74X1 3X34X45

(9.5.67)

Relabeling the gauge group as SU(N)1 x SU(N) 2 x SU(N) 3, and the fields as

M 74 Y12, X45 4 Y21 , X1 3 - Y23 X3 4 - Y3 2

X3 5 -+ Y31 , X 71 - Y13 , X5 7 Y1 1 (9.5.68)

we readily see the field content and superpotential of the SPP geometry. In addition

to these fields, there are some massless modes, leftover from the initial mesons. One

can check that out of the eight original fields, five combinations remain massless, and

they are subject to the quantum constraints, hence three degrees of freedom remain.

They provide the moduli space of a D3-brane probe in the geometry given by the dP4

deformed to a SPP.

The remaining theory may have fractional branes, triggering the cascade of the

SPP that we studied in section 9.3.3, which terminates in smooth C3 .

9.5.2 From PdP3b to C/z 2

In this section we would like to discuss a further example of condensation, realized

geometrically as the deformation of a non-generic blow-up of dP2 , the pseudo del
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Pezzo denoted PdP3b in [49], to a C2/Z2 x C orbifold singularity. From the geometric

viewpoint, it illustrates the fact that different phases of the quiver gauge theory

may suffer different condensation processes. From the field-theoretical viewpoint, it

provides an example with a different behavior for the left over theory. Namely, instead

of the A = 4 theory or a conifold-like singularity, the left-over geometry corresponds

to an orbifold singularity. In the presence of fractional branes on C2/Z 2, the theory

is not conformal, but instead of running down a cascade it encounters a singularity.

The smoothing of this singularity in the dual supergravity description is of enhanqon

type [107].

Let us consider a set of branes at a complex cone over the non-generic blow-up of

dP2 leading to the quiver gauge theory in the phase denoted Model II of PdP3b, worked

out in [49], and whose quiver diagram is shown in Figure 9-28. The corresponding

toric web diagram is shown in Figure 9-29 8

6

3

1

S

Figure 9-28: Quiver diagram for PdP3 b.

The tree level superpotential is given by

Wo = X 12X 25X 54X 41 + X26X 64X 43X 32 - X25X51Y13X32 - X64X41X13X36

+Y13X3 6X 61 + X 13X 35 X5 1 - X6X12X26 - X4 3X3 5X 5 4
(9.5.69)

8 Here we adhere to the terminology introduced in [49]. Thus, we see that the toric diagram for
PdP3 b is different from the one for dP3 and is given by the reciprocal of the (p, q) web in Figure 9-29.
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1

5
6

3

Figure 9-29: Web diagram for the cone over the non-generic blow-up of dP2, and its
deformation. The external legs have been labeled indicating their correspondence to
the nodes in the quiver in Figure 9-28.

The geometric deformation of this space is shown in Figure 9-29b. Using our

arguments in section 9.2.3, this corresponds to strong coupling dynamics associated

with nodes 2 and 4 in the quiver diagram. In order to show this using D3-brane probes

of this infrared dynamics, we consider the quiver gauge theory with rank vector

N = M(O, 1,0, 1,0, O)+M(1, 1, 1, 1, 1, 1) = M(1,2, 1,2,1, 1) (9.5.70)

In this situation, nodes 2 and 4 have Nf = N, and have a quantum deformed

moduli space. Hence the above gauge theory (along the mesonic branch) describes

the dynamics of D3-brane probes in the left over geometry after the complex structure

deformation of the original geometry PdP3 . In the following, we follow the by now

familiar arguments to determine the latter.

We introduce the meson fields

M - M1 5 M3 5 ] X1 2X 25 X3 2X 25

M 1 6 M 3 6 X1 2 X 2 6 X 3 2 X2 6 ]

(9.5.71)

r_- = N51 N53 ] X54 41 X54X4 3 1
N 6 1 N 6 3 J X6 4 X4 1 X 64 X4 3

In terms of mesons and baryons, the superpotential becomes
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W= M1 5N51 + M36N63 - M35 X5 1Y13 - N61X13X36

+ Y13X3 6X6 1 + X13 X3 5X 51 - M16X61 - N53X35 (9.5.72)

-X1 (detM - B/3 - A4M) - X2 (detAf - CC - A4M)

The mesonic branch is given by

X =2 4- 4 M ; =3 = =0 ; C = 0 (9.5.73)

with the mesons subject to the quantum constraints. Also, along the mesonic branch,

the symmetry is broken by recombining the gauge factors 1 and 5, and 3 and 6, into

their respective diagonal combinations.

Restricting now to the Abelian case, the superpotential is

14' = M15N51 + M36 N63 - M35X51Y 13 - N6X13X36

+ Y 13X 36X 61 + X 13X 35X 51 - M16X61 - N53 X35 (9.5.74)

- M 15M3 6 + M 16M 35 - N51N 63 + N61N5 3

Using the equations of motion, we obtain e.g. N61 = X3 5, M16 = X61, N51 = M36,

M15 = N63. The superpotential is

W = M3 5X 51 Y13 - N61X 1 3X 3 6 + Y13X 36M 16 + X13 N 61 X 51 (9.5.75)

Relabeling the unbroken group as SU(N)A x SU(N)B, and the fields as Y13 -+ XAB,

M35 -+ XBA, X 51 -+ 'AA, X13 -+ YAB, N6 1 -+ YBA, X3 6 -+ (IBB, the final quiver is

presented in Figure 9-30.

A B

Figure 9-30: Quiver diagram after deformation of PdP3 b. It corresponds to a C2/ Z 2 x
C geometry.

The field content and superpotential correspond to the gauge theory for a C2 /Z 2 x

C geometry. This agrees with the expected left over geometry after the complex
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deformation. In addition, the theory contains massless meson degrees of freedom,

subject to the quantum constraint. They describe the dynamics of the D3-brane

probe in the geometry given by the complex deformation of PdP3 to C2/Z 2 x C.

As usual, it is possible to study the situation where the final gauge theory contains

fractional branes. This theory is X/ = 2 supersymmetric, hence its RG evolution could

be determined from its exact solution. As usual in non-conformal Af = 2 theories,

instead of a duality cascade we expect strong coupling singularities. In the dual

supergravity side, they are described as enhancon configurations [107].

9.6 Conclusions

In this chapter we have centered on the gauge field theory dynamics associated with

the smoothing of singularities in warped throat solutions dual to RG flows for branes

at singularities in the presence of fractional branes. We have established that in a

large set of examples the smoothing corresponds to a complex deformation of the cone

geometries. We have described this phenomenon in the dual gauge field theory, by

using D3-brane probes of the infrared dynamics. The geometric deformation arises

as a quantum deformation of the moduli space of the D3-brane probes. The field

theory description is in full agreement with the geometric description of the complex

deformation using toric methods.

In addition, we have constructed new explicit examples of cascading RG flows for

some of these theories. These duality cascades, along with the infrared deformations,

are generalizations of the Klebanov-Strassler RG flow, but show a richer structure in

several respects. For instance, very interestingly, several examples correspond to du-

ality cascades with several scales of partial confinement and deformation, after each

of which the remaining quiver theory continues cascading down the infrared in a dif-

ferent pattern. Their supergravity duals should correspond to warped throats whose

warp factor and flux structure jumps at particular values of the radial coordinate. In

other words, to warped throats based on a deformed geometry with several 3-cycles,

which are of hierarchically different size. It would be interesting to develop a better
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understanding of these throats directly from the supergravity side. Also, we expect

several interesting applications of these richer throat structures to compactification

and model building such as the constructions in [28].

Our work opens a set of new questions. For instance, certain geometries do admit

fractional branes, and even have known KT-like warped throat solutions, but do not

admit complex deformations to smooth out their singularities. It would be interesting

to understand the infrared behavior of this class of models. In particular, the real

cones over the recently studied ypq manifolds, of which the five-dimensional horizon

of the complex cone over dP1 is an example, fall in this class. This direction is being

pursued in [51].

Finally, there is an interesting phenomenon taking place in the quiver gauge the-

ories we have studied, which is however not involved in the nice RG flows we have

centered on. Namely, some of these theories, for other choices of fractional branes (or

of UV gauge couplings) exhibit duality walls [85, 56, 55, 61]. It is conceivable that a

gauge theory with in principle a duality wall in its UV can actually be UV completed

by regarding it as a remnant after confinement of a larger gauge theory at higher

energies, with a better behaved UV regime. Thus our work may shed some light also

into these more exotic RG flows.

9.7 Appendix A: A more careful look at the mesonic

branch

In this appendix we present an alternative approach to the field theory analysis of the

IR complex deformation of the geometry, which complements our methods in Section

9.2.4. The strategy will be to consider the dynamics of the fluctuations of the meson

fields around the expectation values required by the quantum constraints. As we will

see, this method has the advantage of clarifying how the relative signs of the Lagrange

multipliers are determined and shows how the low energy limit with respect to the

strong coupling scales is taken explicitly.
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In order to illustrate these ideas, we will focus on the example of the deformation

from dP3 down to the conifold. We will reproduce the computations performed in

Section 9.4.2 from a different viewpoint.

As discussed, the quantum modified constraints on the meson and baryon fields

(9.2.13) are imposed via Lagrange multipliers Xi. The quiver for the phase of dP3 we

are considering is shown in Figure 9-22. The ranks are

N = M(1, 1,, 1, 1, 1) + M(1, O, 0, 1, 0, 0) (9.7.76)

leading to a quantum modified moduli space for nodes 1 and 4. The meson fields for

these nodes are

M56 3 M6 2

LM 5 3 M5 2 -

X 61 X13 X 6lX 1 2 1 = N 3 6 N 3 5

[ X5 1 X 13 X 51 X1 2 N 2 6 N 2 5 J

X34 X 46

- X24X46

In terms of them and the baryonic operators, the quantum corrected superpoten-

tial is

W = M62X23N35 X56 - X23X35X5 6X62 - M63N36 - M52N2 5 + M53X35 + N26X62

+ X1(det M - BB - A4M) + X2(det N - CC - A4M) (9.7.77)

Let us focus on the mesonic branch of the moduli space, i.e. solutions with B =

B=C = =o.

ax 1W = O

axW = 

=X det M = A 4M

= detAf = 4 M
(9.7.78)

For simplicity, we concentrate on a particularly simple choice of vev's satisfying

(9.7.78)

254

X 34X 45

X 24 X 45 ]

I____�� �



< M >= A2 [ 1MxM

0

1 MxM
1MxM < J >=A 1 02

1MXM -L

Denoting qrij and ij the fluctuations of Mij and Nij around their respective ex-

pectation values, and dropping a constant term, the superpotential in the Abelian

case becomes

W = 62X23735X5 6 - X23X35X56X62 - 2A4 - A 2(7763 + 7736 + 7752 + 7725)

- 77637736 - 77527725 + 775 3X 3 5 + 8]2 6 X 6 2

+ X 1 (A 2 ( 6 3 + 752) + 763752 - 77537762)

+ X 2 (A2 ( 73 6 + 7725) + 367725 - 357726) (9.7.80)

We are interested in looking at energies much smaller than the dynamical scale

A. This can be systematically implemented by taking the large A limit of the super-

potential, which we will call W', and looking at the approximate equations of motion

that follow. For large A, the superpotential becomes

W' = -A 2 (r763+752) -A 2 (7736+7725)-A2X 1 (7763+/52) -A 2X 2 (?736 +rn25 )+O(A °) (9.7.81)

This determines the value of the Lagrange multipliers through

9W'
= 0

(763 + 7752)

awl-= 0
(7736 + 25)

- X =1

-4 X2 = 1

Plugging this into (9.7.80), we obtain an expression identical to (9.4.51), with the

mesons replaced by their corresponding fluctuations. The rest of the proof is the same
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as the one in Section .4.2.

This type of discussion makes clear, for example, how the relative minus sign in

the values of the Lagrange multipliers X1 and X 2 assumed in (9.3.26) is determined.

9.8 Appendix B: Description of complex deforma-

tions

In this section we provide a precise geometric description of the complex deformation

corresponding to the removal of sub-webs in the toric diagram of our geometries. For

additional details and other examples see [3].

The basic process in the separation of a sub-web in a toric diagram is the separation

of two lines. This basic process is already present in the complex deformation of the

conifold. In order to describe it in toric language, recall the toric data for the conifold

al a 2 bl b2

Q I 1 -1 -1

Namely, one is performing a Kihler quotient of C4 by the U(1) action acting on it

with the above charges. Physically, the conifold is the target of the 2d linear sigma

model specified by the above charges for a set of four chiral multiplets. The moment

map equation (equivalently the D-term equations for the linear sigma model) are

lal12 + la 212 - lbl12 - lb2l
2 = s (9.8.83)

The geometry is toric, namely can be regarded as a fibration of circles over a base.

The U(1) action is simply generated by the three independent phase rotations of the

chiral multiplets, up to the above U(1) action (which is a gauge equivalence).

The geometry can be describe using the gauge-invariant quantities x = ala2,

y = bb 2, u = albl, v = a2b2, as the hypersurface in C4 defined by xy = uv. This may

be equivalently described by the two equations xy = z, uv = z. The U(1) actions

degenerate along lines in the subspace z = 0. The toric projection in Figure 9-31
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describes the loci in z = 0 where the U(1) actions degenerate. Notice that s measures

the size of the 2-cycle in the resolved conifold.

b 2=O

b1 =0

Figure 9-31: Toric projection and complex deformation for the conifold.

The complex deformation involving the separation of the two lines, Figure 9-31b,

is possible when s = 0. To describe it, we simply use monomials invariant under the

U(1) gauge symmetry associated to s, namely x, y, u, v, and deform their constraint

to

- U = (9.8.84)

This may be recast as xy = z + , uv = z, showing that there are two different

values of z at which the toric fibers degenerate. This implies that the two lines have

separated from each other.

a)
x 2=O

X 3

b)

x5=

Figure 9-32: Toric projection and complex deformation for the SPP.

The procedure generalizes to more involved situations. Let us consider the SPP

singularity, for which the toric data are
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Qs

Qt

X 1 X 2 X3

1 -1 0

0 0 1

X4 X5

1 -1

-2 1

The corresponding D-term equations are

IX12 + -x412 - X212 - Il512 = S,

Ix312 + Ix512 - 21x412 = t (9.8.85)

There are two parameters s, t which control the size of two independent 2-cycles in the

geometry. The toric picture, showing the degeneration loci of the toric circle actions,

is shown in Figure 9-32a. The complex structure of the SPP is given by

u2 = y2, (9.8.86)

where x, y, u, v are gauge invariant coordinates,

X X1 X2, y= X3X4X5, U = XlX4X2 V = X2X3X4.
u~x~x~5, v 2x 3x 4.

(9.8.87)

The complex structure deformation, in Figure 9-32b, arises when s = 0. In order to

describe it, we introduce variables invariant under U(1)8

X = lxX2, Y = P = XX5X3 = p = 3 = X2X3X4 (9.8.88)

(which are well-defined for X3 0). They satisfy a constraint ax = pi, which we

deform to

xy - pv = e (9.8.89)

In the complete manifold, using that p = u/y, we obtain for the complex deformation

xy2 = (pv + E)y = uv + EY
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Notice that this geometric argument and the deformed geometry nicely dovetail the

field theory argument at the end of section 9.3.3.

9.9 Appendix C: Cones over the YP,q manifolds

Real cones over the manifolds YP,q [65, 63, 66, 64, 134] provide an infinite family of 6

dimensional singular geometries on which we can place D3-branes. This leads to an

infinite class of quiver gauge theories, which have been determined in [14], and whose

study is a promising new direction in the gauge/gravity correspondence.

One interesting feature is that the five dimensional YP,q manifolds have only one

collapsing 2-cycle and thus admit a single kind of fractional brane, which triggers a

cascading RG flow. Some particular cascades, as well as the KT-like supergravity

solutions for the general case, have been recently constructed in [92]. The warped

throat solutions contain a naked singularity at their tip. A natural question is whether

a smooth solution exists, based on a complex deformation of the underlying geometry,

and how to understand it from the dual field theory viewpoint.

In general these 6-dimensional manifolds correspond to spaces which do not admit

complex deformations. This can be seen from the web diagrams of those spaces, see

Figure 9-33.

(0, p)
S

S

S

0

S

Figure 9-33: The toric and web diagram for the cone over the general YP,q manifold.
No leg recombination is possible except for the case q = 0.

Only in the case of YPAO a decomposition of the web into sub-webs is possible.

This case is also special, since it corresponds to a Zp quotient of the conifold. More
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concretely, defining the conifold by the equation

xy - zw = 0 (9.9.91)

the cone over yp,O is obtained by modding out by the Zp action generated by 0, which

acts as

x -4 e2ri/Px , y -- e-2ri/py , z - e2i/z , w - e-2i/pw (9.9.92)

which is clearly a symmetry of (9.9.91).

The complex deformation of the manifold is simply the Zp quotient of the complex

deformation of the conifold

Xy - zw = e (9.9.93)

The 3-cycle in the deformed space is the Lens space S3 /zp.

Therefore, although both warped supergravity throats and logarithmic RG duality

cascades seem to exist for all the yp,q cases, the class of yp,O manifolds stand out as

the only cases which admit a complex deformation, presumably removing the infrared

singularity of their supergravity solutions. Our plan is to center on this class and

indeed derive the deformation from the viewpoint of the strong dynamics of the dual

gauge theory with fractional branes in general. The IR of yp,q cascading RG flows

for p > q is studied in [51]

For that purpose we need the corresponding quiver gauge theories. These can be

obtained using the rules in [14], but for illustration purposes we construct them using

their realization as Zp quotients of the conifold. This can be done following the ideas

in [164]. Concretely, the conifold theory is SU(N 1 ) x SU(N 2) with fields Al, A2 in

the (, i) and B 1, B2 in the (, El). We also have the superpotential

W = A 1B1A 2B 2 - A 1B 2A 2B 1 (9.9.94)
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By the realization of the conifold as the moduli space of the gauge theory, there is a

relation between the fields and the coordinates x, y, z, w. Roughly

x A 1B 1 , y A 2B 2 , z A iB2, w A 2B1 (9.9.95)

The action (9.9.92) can thus be implemented as the action

Al - e2r/pAl , A2 e-2ri/PA2 , B1 - B1 , B 2 - B2 (9.9.96)

In addition, we have to specify the action of 0 on the SU(N 1 ) and SU(N 2 ) Chan-Paton

labels. This is done by two order p discrete gauge transformations, which without

loss of generality can be chosen

70,1 = diag (lno, e2ri/P1n, . . , e2ri(p-)/np_

7,2 = diag (lmo, e2 1ri/Plml,..., e27ri(p-1)/ _

with Ea na = N1 and Ea ma = N2.

Now we have to project with respect to the combined geometric and Chan-Paton

action. For vector multiplets, the geometric action is trivial, and we simply get a

gauge group

SU(no) x ... x SU(np_l) x SU(mo) x ... x SU(mp_l) (9.9.98)

while the projection for the chiral multiplets leads to a set of chiral multiplets in the

following representations

= (a, ma+l )

= (a, ma)

(A2)a,a-1

(B2)a,a

= (na, ma-l)

= (a, ma)
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The superpotential is directly obtained from the conifold one and reads

W = L [(Al)a,a+l (Bl)a+l,a+l (A2)a+l,a(B2)a,a - (Al)a,a+l (B2)a+a,a+l (A2)a+l,a(Bl)a,a]
a

The complete result agrees with that using the rules in [14] (by relabeling B, -+

U1, Al -+ Z, A 2 -+ Y). It is easy to check that the quiver for e.g. Y4,0 agrees with

that in figure 8 in [14].

This gauge theory admits a single kind of fractional brane. The gauge theory

corresponds to na = N + M, and ma = N. The RG flow presumably leads to

a cascade of Seiberg dualities with structure very similar to that of the conifold.

Although we have not carried out a complete analysis, we would like to make the

following natural proposal. Consider all the nodes SU(N) to have equal coupling

at some UV scale, and all nodes SU(N + M) to have equal coupling. Namely, we

consider the couplings to respect the Zp symmetry of the quiver. As we run to the

IR, the nodes SU(N + M) get to strong coupling. Let us Seiberg dualize them

simultaneously (to do it in practice, we may do it sequentially, but presumably the

order is not important). After this, we obtain a similar quiver, with all ranks N + M

replaced by N - M. So next one should dualize all the nodes of rank N, etc. This

just amounts to inheriting the cascade from the parent to the orbifold theory.

Let us now consider the infrared behavior of the cascade. For N a multiple of M

(in which case we center in what follows) the endpoint of the cascade is a theory of p

decoupled N = 1 SYM nodes, with equal gauge coupling (or dynamical scale) due to

the Zp symmetry of the flow. The unique dynamical scale should be associated with

a finite-size 3-cycle in a deformed geometry.

In order to check that the geometry at the tip of the throat is the deformed

geometry described above, we consider the gauge theory describing the dynamics of

M D3-brane probing the IR theory. Namely, using the by now familiar technique we

take the quiver theory with group

H SU(2M) x II SU(M)a (9.9.100)
a a
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The nodes SU(2M)a condense, so we introduce the mesons

M = [ Ma,a+l[ Ma,a-i

Ma,a+l

Ma,a-1 1= [

(Al)a,a+ (BI)a+l,a+l

(A2)a,a-l (Bl)a-l,a-

(Al)a,a+(B 2 )a+l,a+l ( .9.101)

(A2)a,a-l(B2)a.,a-1 

In terms of these, the superpotential reads

(9.9.102)W = E [Ma,a+i a+l ,a - Ia,a+lMa+i,a]
a

We now should impose the quantum constraint, and pick the mesonic branch. Along

the mesonic branch, all the SU(M)a gauge groups are broken to a single diagonal

combination. Therefore all mesons transform in the adjoint representation of this

gauge group. Imposing the constraint as a superpotential and centering in the Abelian

case as usual, we have

W = E [Ma,a+la+1,a- Ma,a+iMa+,a- Ma,a+lia,a_l + Ma,a-lMa,a+l] (9.9.103)
a

Notice that we have 4pM 2 meson degrees

the F-term equations

Ma+la = Ma,a1_

Ma,a+l = Ma-l,a

of freedom. However, they have to satisfy

Ma+l,a = Ma,a-1

Ma,a+l = Ma-l,a (9.9.104)

These are apparently 4pM2 relations. However, they are not all independent. This

can be seen by noticing that they only fix the relative vevs of the mesons for different

values of a, but they do not fix the overall size of a given kind of meson. Therefore,

there are four operators whose vevs are not fixed by the above conditions. They are
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/l = Ma,a+l , M1
2 = 1 Ma,a+ (9.9.105)

a a

(9.9.106)

A[21 = I Ma+l,a , M22= Ma+l,a
a a

Notice however that the original mesons are also constrained by the quantum

constraint (which is obtained from dW/dXa = 0 before going into the mesonic branch

etc). This implies that the final operators have to satisfy

MllM22- M12M21 = AP (9.9.107)

This moduli space indeed corresponds to a deformed space. Moreover, the fact

that the fundamental mesons are related to the above fields by the order p relation

(9.9.107) shows that the final space is a Zp quotient of the deformed conifold.

Hence the whole family of yp,O cones is closely related to the KS conifold, and

a generalization of the complex cone over F, which is the case p = 2 in the above

language. The field theory argument plus the geometric analysis strongly support

the existence of a smooth supergravity solution describing a complete RG flow for

these theories. Indeed, these exist and are given simply by the Zp quotient of the KS

solution.
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Chapter 10

An Infinite Family of

Superconformal Quiver Gauge

Theories with Sasaki-Einstein

Duals

In this chapter we describe an infinite family of quiver gauge theories that are

AdS/CFT dual to a corresponding class of explicit horizon Sasaki-Einstein mani-

folds. The quivers may be obtained from a family of orbifold theories by a simple

iterative procedure. A key aspect in their construction relies on the global symmetry

which is dual to the isometry of the manifolds. For an arbitrary such quiver we com-

pute the exact R-charges of the fields in the IR by applying a-maximization. The

values we obtain are generically quadratic irrational numbers and agree perfectly with

the central charges and baryon charges computed from the family of metrics using

the AdS/CFT correspondence. These results open the way for a systematic study of

the quiver gauge theories and their dual geometries. This chapter is based on our

work in [14].
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10.1 Introduction

Many lessons have been learned about the dynamics of supersymmetric field theories

from their embedding in String Theory constructions. Similarly, many properties of

the string theory constructions were revealed by studying the gauge theories embed-

ded in them.

In this chapter we will study D3-branes probing toric singularities, which repre-

sent a relatively simple, yet extremely rich, set in the space of possible Calabi-Yau

manifolds. The AdS/CFT correspondence [132] connects the strong coupling regime

of gauge theories on D-branes with supergravity in a mildly curved geometry. For the

case of D3-branes placed at the singularities of metric cones over five-dimensional

geometries Y5, the gravity dual is of the form AdS 5 x Y5, where Y5 is a Sasaki-Einstein

manifold [116, 121, 1 138].

During the last year, we have witnessed considerable progress in the understanding

of these gauge theories. This has been due to developments on various different

fronts. A key ingredient has been the discovery of the principle of a-maximization

[102], which permits the determination of R-charges of superconformal field theories.

This principle is applicable to any superconformal field theory, regardless of whether

or not it is possible to embed the theory in a String Theory construction. The a-

maximization principle has been successively extended in a series of works [123, 104,

122, 10, 124], broadening its range of applicability outside of conformal fixed points

and bringing us closer to a proof of the supersymmetric a-theorem.

Further progress has been made in the study of the non-conformal theories that

are produced when, in addition to probe D3-branes, fractional D3-branes are in-

cluded in the system. Fractional D3-branes are D5-branes wrapped on vanishing

2-cycles of the probed geometry and trigger cascading RG flows, i.e. flows in which

Seiberg duality is used every time infinite coupling is reached, generating a sequence

of gauge theories, each of them providing a simpler description of the theory at every

scale. Duality cascades have been studied in detail, and they have been shown to

exhibit a plethora of interesting phenomena, such as duality walls and chaotic RG
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flows [85, 56, 55, 61]. These works were reviewed in Chapters 7 and 8. In addition,

supergravity duals of cascading RG flows for D3-branes probing complex cones over

del Pezzo surfaces have been constructed [61] (even without knowledge of the metric

of the underlying horizon), validating the applicability of the cascade idea. Inter-

esting cascading gauge theories dual to throat geometries with several warp factors

(associated with various dynamical scales generated by the field theory) can also be

studied [59]. We reviewed their construction in Chapter 9. These constructions seem

to have potential phenomenological applications.

On the geometry side there has also been dramatic progress - from knowledge

of only one non-trivial Sasaki-Einstein five-manifold, namely T1 1, we now have an

infinite family of non-regular metrics on S2 X S3 [65, 63]. These manifolds are called

ypq, where p and q are positive integers with 0 q < p. The associated Type IIB

supergravity solutions should be dual to 4d K = 1 superconformal field theories.

These theories are superconformal quivers, i.e. all the fields trasform in representa-

tions of the gauge group with two indices. From computations using these metrics, it

became clear in [63] that the dual field theories would exhibit very remarkable prop-

erties, such as irrational R-charges. The work of [134] has then provided a detailed

description of these manifolds and their associated Calabi-Yau singularities in terms

of toric geometry. It turns out that all the cases with p < 2 are well known and the

corresponding superconformal quiver has already been found. y1,0 is the conifold T1,

[121]. y 2,0 is associated to the F 0 quiver [138]. The cone over yl1 l is simply C x C2/Z 2

and the quiver has two gauge groups and Af = 2 supersymmetry. y 2 ,1, for which the

dual quiver gauge theory was computed in [45] and was also presented in [134], hap-

pens to be the first del Pezzo surface (also called F1). For this case, the authors of

[21] have carried out an explicit check of the conformal anomaly coefficient, using

a-maximization [102], finding remarkable agreement with the geometrical prediction

of [134]. The cone over y2,2 is a Z4 orbifold of C3 , or equivalently a complex cone

over the Hirzebruch surface F2. In general YP,P is an orbifold Z2p orbifold of C3, and

the corresponding quiver can be found easily by standard techniques.

The purpose of this chapter is to construct the field theory duals to the entire
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infinite family of geometries. Section 10.2 reviews some properties of the yp'q geome-

tries. Section 10.3 is devoted to the construction of the associated superconformal

quiver gauge theories. The quiver diagrams are constructed and the precise form

of the superpotential is found. In general it is a-non trivial task to find the exact

superpotential. In the case of the yp,q manifolds, however, global symmetries and

the quiver toric condition can be used to fix the complete form of the superpotential.

This leads to a successful comparison between global SU(2) x U(1) flavor symmetries

and isometries. Also the U(1) baryonic global symmetry of the theories is shown

to follow from the topology of the YP,q manifolds. From the quiver diagram it is

also possible to infer various topological properties of the supersymmetric 3-cycles

of the Sasaki-Einstein manifolds, as we discuss at the end of Section 10.4. Here also

agreement between gauge theory and geometry is achieved.

Once the quiver diagrams and the exact superpotentials are given, it is a simple

exercise to apply the general a-maximization procedure of [102]. This leads to a

successful comparison between, on the geometry side, volumes of the 5-manifolds

and of some supersymmetric 3-cycles and, on the gauge theory side, gravitational

central charges and R-charges of dibaryon operators.

Having an infinite set of Type IIB solutions, together with their gauge theory

duals, represents a substantial advancement of our understanding of gauge/gravity

duals and opens up the possibility of exciting progress in numerous directions.

10.2 The geometries

In this section we give a brief summary of the geometry of the Sasaki-Einstein yp,q

manifolds, focusing on those aspects which are particularly relevant for the construc-

tion of, and comparison to, the gauge theory. Further details may be found in [63, 134].
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The local form of the yp,q metrics may be written as

ds2 = 1 Y(d02 + sin2 dq 2) + y dy 2 + c(d- od) 2
6 w(y)q(y) 9

+ w(y) [da + f(y)(d/ - cos Od)]2

ds2(B) + w(y)[da + A]2 (10.2.1)

where

2(b- y 2 )
w(y) 

b - 3y 2 + 2y3

b( - y2

b - 2y + y2

6(b - y2) (10.2.2)

Here b is, a priori, an arbitrary constant1. These local metrics are Sasaki-Einstein,

meaning that the metric cone dr 2 + r2ds2 is Calabi-Yau. For all values of b, with

0 < b < 1, the base B can be made into a smooth manifold of topology S2 x S2 . In

particular, the coordinate y ranges between the two smallest roots Y1, Y2 of the cubic

b - 3y2 + 2y3, so Yl < y < Y2. For completeness we quote the range of the other 4

coordinates: 0 <_ 0 < _, 0 < L_ 2r, 0 < 6 < 27r, 0 < a < 27re. Then for a countably

infinite number of values of b in the interval (0, 1) the periods of dA over the two

two-cycles in B are rationally related, and hence the metric can be made complete

by periodically identifying the a coordinate with appropriate period. The ratio of

the two periods of dA is then a rational number p/q, and by choosing the maximal

period for a one ensures that the Chern numbers p and q for the corresponding U(1)

principle bundle are coprime. Moreover, the bound on b implies that q < p. One now

has a complete manifold with the topology of a circle fibration over S2 x S2. Applying

Smale's classification of 5-manifolds, one can deduce the topology is always S2 X S3 .

For hcf(p, q) = h > 1 one has a smooth quotient of this by Zh. In particular, since

'In [63, 134] b was denoted "a". However, we change notation here to avoid any possible confusion
with the a central charge of the quivers. Both will ultimately have rather similar, but different,
expressions in terms of p and q.
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H3(YP,q; Z) - Z fE Zh, the dual field theories will possess a baryonic U(1)B flavour

symmetry arising from reduction of the Type IIB four-form on the non-trivial non-

torsion three-cycle. We denote the complete Sasaki-Einstein manifolds obtained in

this way by yp,q.

For completeness we give the value of b, which crucially determines the cubic

function appearing in q(y), as well as the two smallest roots yl, Y2 of this cubic in

terms of p and q:

1 =p P2_ 3

Y1 = 4p (2p- 3q- 4p2 - 3q2)

Y2 = p1 (2p+3q - 4p2- 3q2) (10.2.3)

The period of a is 27re where

q

3q2- 2p2+ p/p 2-3q 2 (10.2.4)

and the volume is then easily calculated to be

vol(Y p,q) =
q2[2p + 4 2 - 3q2] 3

3p2[3q2 - 2p2 + p j4 p 2- 3q2]
(10.2.5)

Note that this is bounded by

(10.2.6)

and is monotonic in q. In fact, it will be useful to define ypO and YPP formally as

corresponding quotients of T 1l and S5 / Z
2 by Zp. These arise naturally as limits of the

toric diagrams for yp,q [134], although strictly speaking the global analysis performed

in [63] does not hold in these limits - for example, in the case b = 1 (p = q) the base

B collapses to a weighted projective space.

It will also be important to recall that these geometries contain two supersym-

270

vol(T','/Z) > VlypIq > Vol(S5/Z2 X Zp)



metric submanifolds [134], which are topologically Lens spaces E1 = S3 /Zp+q and

E2 = S3/Zp_q. Here supersymmetric means that the metric cones C(El), C(E2) are

calibrated submanifolds (in fact divisors) in the Calabi-Yau cone. These submani-

folds are located at the two roots y = yl and y = Y2, respectively. In fact, the yp,q

manifolds are cohomogeneity one, meaning that the isometry group acts with generic

orbit of codimension one. The isometry group depends on p and q: for both p and

q odd it is SO(3) x U(1) x U(1), otherwise it is U(2) x U(1). For a compact coho-

mogeneity one manifold there are then always precisely two special orbits of higher

codimension, and in the present case these are El and E2. Note in particular that

SU(2) - SO(3) is contained in the isometry groups.

It is straightforward to compute the volumes of El, 2. However, the following

combination

R[B] _ ( 2vol ) vol(E) i= 12 (10.2.7)R[Bi] - §. 2vol(YP,q)

is more relevant for AdS/CFT purposes, since this formula gives the exact R-charges

for baryons in the dual gauge theory, arising from D3-branes wrapped over the cor-

responding cycles Ei. These are easily calculated [134]:

R[B] = 13q2 [-4p2 + 2pq + 3q2 + (2p - q) 4p2 - 3q2]

R[B2] = 32 [4p2 _ 2pq + 3q2+ (2p + q) V4p2- 3q2] . (10.2.8)

Note that this formula is homogeneous with respect to re-scaling p -+ hp, q - hq,

implying that manifolds with equal value of the ratio p/q will have the same R-

charges. Let us also note that the R-symmetry in the field theory is dual to the

canonically defined Killing vector field on the Sasaki-Einstein manifolds

K = 3 2 0 ' (10.2.9)

From the point of view of the Calabi-Yau cone, K arises by contracting the Euler

vector r/Or into the Kiihler form. Note that K has closed orbits precisely when 

is a rational number, since has period 27r and ac has period 2r£. In this case the
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Sasaki-Einstein manifold yp,q is said to be quasi-regular, and the space of leaves

of the foliation defined by K is a Kihler-Einstein orbifold. This is true if and only if

the following quadratic diophantine holds:

4p2 - 3q2 = n 2 (10.2.10)

for n an integer number. If e is irrational the generic orbits of K do not close, but

instead densely fill the orbits of the torus generated by [a/afb, £e/aa] and the Sasaki-

Einstein manifold YP,q is said to be irregular. Note that the orbits close over the

submanifolds El, E2.

The local form of the metrics is not particularly useful for constructing the dual

gauge theories. However, one can make contact with the large literature on gauge

theories for D3-branes placed at Calabi-Yau singularities by noting that the group

U(1)3 acts as a symmetry of ypq. The Calabi-Yau cone C(yp, q) is thus toric. One can

compute the toric diagram as follows [134]. The K/ihler form of the Calabi-Yau may

be regarded as a symplectic form, and one can then introduce a moment map for the

Hamiltonian torus action by U(1)3, which is a map : C(Y p, q) -+ R3 . The image is

always a polyhedral cone, of a special type, and the moment map exhibits the Calabi-

Yau as a U(1)3 fibration over this polyhedral cone. The latter has four faces, where

various U(1) subgroups degenerate over the faces of the cone in a way determined

by the normal vectors to the faces. One can now apply a Delzant theorem to this

cone to obtain a gauged linear sigma model for C(yp,q). This is a simple algorithm

that takes the combinatorial data that defines the polyhedral cone and produces the

charges of the gauged linear sigma model. The result [134] is a U(1) theory with 4

chiral superfields with charges (p, p, -p + q, -p - q). Equivalently, because the space

we start with is Calabi-Yau, the normal vectors to the four faces of the polyhedral

cone lie in a plane. Projecting the four vectors onto this plane gives the vertices of

the toric diagram.
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10.3 The quiver theories

In this section we will present the quiver theories for the infinite class of manifolds

which were presented in the previous section. We will recall the toric diagrams of

each manifold, draw its corresponding (p,q)-web, extract simple information like

the number of nodes and the number of fields in a given quiver theory from its

corresponding toric diagram, and then present the quiver itself. Finally we write

down the superpotential for the quiver theory.

The toric diagrams for yp,q were found in [134] and are defined by the convex

polygon over a z2 lattice defined by four vertices located at

[0,0], [1, 0], [p, , [p - q - l,p- q] . (10.3.11)

See Figure 10-1 for the toric diagram of y4 ,2 and Figure 10-2 for a schematic de-

scription of the general case. Given the toric diagram, it is in principle possible to

determine the gauge theory for any ypq, by the process of partial resolution [45]. The

starting point can be for example an abelian orbifold of the form C3 /Zm X Zn, with

m and n sufficiently large. In particular, the toric diagrams of yp,q could be obtained

by partial resolutions of the C3 /Zp+l x Zp+l orbifold, for any q at fixed p. Partial

resolution corresponds to turning on non-generic Fayet-Illiopoulos parameters that

reduce the toric diagram to the desired one. This method becomes computationally

intractable even for modest values of p and q, and thus different approaches have to

be developed.

We would like to get as much information as possible about the gauge theory from

this toric description. Given a toric diagram, there are three steps in determining a

supersymmetric quiver gauge theory with 4 supercharges that is associated with it.

First we would like to get the number of gauge groups. Second we look for the number

of bifundamental fields and the gauge quantum numbers. Finally we find which of

the allowed gauge invariant terms appear in the superpotential. We will see now that,

using very simple geometric ideas, it is possible to go far in answering the first two

questions.
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For a given toric diagram the number of gauge groups is a constant associated

with the geometry. It is independent of any action of dualities that the gauge theory

is undergoing. One way to look at the different gauge groups of the quiver is as

living on the world volume of fractional branes which are given by bound states of

D-branes which wrap even dimensional cycles in the geometry. These are the number

of possible ways in which D-branes (3, 5, and 7-branes) can be wrapped on 0, 2 and

4-cycles, respectively. For the manifolds under study this number turns out to be

particularly simple and is just the Euler characteristic of the 4d-base. In the toric

diagram this number is given by the number of triangles in any possible triangulation

of the corresponding diagram. Equivalently the number of triangles is given by the

area of the toric diagram in units in which a single triangle has area 1. Different

triangulations are related by flops, which correspond in the gauge theory to Seiberg

duality transformations. Let us first notice that the vertex (p - q - 1,p - q) =

(p - q, p - q) + (-1,0) sits always on a line parallel to the one joining the (0, 0)

and (p, p) points, located one lattice spacing to the left of it. In order to count the

number of triangles, we can use a uniform triangulation for every ypq, given by the

line that joins the points (0, 0) and (p,p), and the segments that connect (1, 0) and

(p - q - 1, p - q) with the (i, i) points for 0 < i < p. It is clear from this construction

that the quiver associated to YP,q has 2p gauge groups, namely 2p nodes. We illustrate

this triangulation in Figure 10-1 for the example of y4 ,2.

Figure 10-1: Triangulation of the toric diagram for y4 ,2. The number of gauge groups
in the associated quiver theory is given by the number of triangles, which in this case
is equal to eight.
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Every toric diagram has an associated (p,q)-web, corresponding to the reciprocal

diagram in which lines are replaced by orthogonal lines and nodes are exchanged with

faces. The boundary of the toric diagram determines the charges of the external legs

of the web. Figure 10-2 shows this construction for the case of y 4 ,2 2.

(p,p) (-q,q+l)

(P

(0,-i) (p,-p+l)
(0,0) (1,0)

Figure 10-2: Toric diagram and external legs of the corresponding (p,q)-web for y4 , 2.

Furthermore, external legs determine the total number of bifundamental fields

using the formula

1 ( pi q\
nfields = E det i (10.3.12)

i,jelegs Pj qj

This comes from the mapping of 0, 2 and 4-cycles to 3-cycles in the mirror

manifold and computing their intersection, as described in [80].

For yp,q, the charges of the external legs of the web diagram can be computed

from the toric diagram given by (10.3.11), and are

(pl, q) = (-p + q,p - - 1)

(P2, q2 ) = (-q, q + 1) (10.3.13)

(P3, q3) = (p, -p + 1)

(p4, q4) = (0, -1)

2 The cones over YP,q are generically examples of geometries with more than one collapsing 4-
cycle. The study of the gauge theories using (p,q)-webs was initiated in [54], in the context of
quivers obtained by general Picard-Lefschetz monodromies.
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from which, using (10.3.12), we can compute nfields = 4p + 2q.

The determination of the superpotential typically is the most difficult task in

completing the quiver theory and at the moment we do not have a general method

of computing it for an arbitrary toric diagram. However, an important restriction for

any quiver theory corresponding to an affine toric variety is that each of the fields in

the quiver appears in the superpotential precisely twice (i.e. the F-term equations

are of the form monomial equals monomial). As a result when counting the total

number of fields appearing in each of the polygons contributing to the superpotential

we should find 8p + 4q such fields.

In addition, geometric blow-downs correspond to Higgsings in the gauge theory. In

such cases, the non-zero expectation value of a bifundamental field introduces a scale.

When running the RG flow to scales much smaller than this vev, one encounters the

gauge theory for the blown-down geometry. This approach has been implemented in

[44] to derive the superpotentials of several gauge theories. Furthermore, the (p,q)-

web representation of the toric singularities enables a simple identification of the

bifundamental field acquiring a vev [52]. It turns out that the YP,q geometries can

be blow-down to the C3 /Zp+q orbifold, for which the quiver and the superpotential

are known by standard methods. It is then possible to perform a further check of our

construction by verifying that the proposed superpotential produces the final gauge

theory after Higgsing.

In the case at hand, as explained in the previous section, the superconformal

field theories we are looking for possess a SU(2) global symmetry. This considerably

restricts the possible choices of superpotential and, combining this requirement with

the toric restrictions (each field has to appear exactly twice in the superpotential,

one time with sign plus and one time with sign minus), it will turn out that in all

of the cases there is precisely one superpotential satisfying all the properties, modulo

an overall rescaling.
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10.3.1 An iterative procedure starting with the YPP quiver

We now move on and construct the quiver for YP,q. That is, we will now determine

how the 4p + 2q bifundamental fields of YP,q are charged under its 2p gauge groups.

A convenient way to construct the quiver theories for the YP,q manifolds for a

fixed p is to start with the case q = p and work our way down. For the case q = p,

ypp is the base of the orbifold C3/Z 2 p. This orbifold group has an action on the three

coordinates of C3, Zi, i = 1, 2, 3 by zi - waizi with w a 2p-th root of unity, w2p = 1,

and (a, a2, a3) = (1,1, -2). Since 2p is always even the group Z2p with this action

is actually reducible and one can write this group action as Z2 x Zp. For special

cases of p the group Zp can be further reducible with the induced action but to keep

the discussion general we will just refer to this group as Zp, without looking at the

detailed structure, and bearing in mind that this group can be reducible.

The quiver theory for an orbifold is particularly simple and can be computed along

the lines given in [79]. As stated above it has 2p nodes and, using the formula below

equation (10.3.13) for the number of fields, we find that there are 6p bifundamental

fields. Figure 10-3 shows the quiver theory for the C3/Z 8 orbifold.

Figure 10-3: Quiver diagram for the C3 /Z 8 orbifold. We have color-coded bifun-
damental fields in accordance to the forthcoming discussion. Superpotential terms
appear in the quiver diagram as triangles combining a green, a blue and a cyan arrow.

Since a = a2 there is a natural SU(2) x U(1) isometry of this space. The SU(2)

part acts on the coordinates z and Z2 which transform as a doublet and the U(1)
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part acts as the subgroup of SU(3) which commutes with this SU(2). This isometry

becomes a global symmetry of the quiver gauge theory. All fields and their combi-

nations transform in an irreducible representation of this group. As a result we can

divide the 6p fields into 2p doublets that go along the edges of a polygon of 2p nodes.

There are additional 2p singlet fields, which form triangles with each of two adjacent

edges. There are 2p such triangles, all of which contribute to the superpotential.

We require invariance of the theory under the global symmetry and therefore each

time we have two doublets in the superpotential it should be understood that they

are contracted by an epsilon symbol and therefore there will be two terms for each

such polygon. We can now count the number of fields in the superpotential to be

2p. 3 2 = 12p, as expected from the fact that this quiver corresponds to an affine

toric variety. Specifically we denote the doublet fields as Xi, i = 1,..., 2p, a = 1, 2,

with i labeling the Z2p index which takes values mod 2p, while a labels the SU(2)

global symmetry index. Furthermore, we denote the singlets as Yi, i = 1, ... , 2p. We

use the convention that an arrow is labeled by the node number at which it starts.

The superpotential then takes the simple form

2p

W = e~XP XiX +lYi+2. (10.3.14)
i=l

It is understood in this notation that the gauge quantum numbers are summed over

in cyclic order and are therefore suppressed. In what follows, and due to the fact

the the orbifold group Z2p is reducible to at least Z2 x Zp, it will be convenient to

rename the X fields as follows: Ui = X 2i, Vi = X2 i+1 . Note that the fields U are even

under Z2 while the fields V are odd under Z2. From now on we will adhere to the

convention, already used in Figure 10-3, of indicating Vi fields in green and Ui fields

in cyan. In terms of these fields the superpotential takes the form

p

W = Z E, (U~iV5 Y2i+2 + Vi'U+ l Y2i+3). (10.3.15)
i=lThe gauge theory for -1 results from the following set of operations, which

The gauge theory for yp,p-l results from the following set of operations, which
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remove three fields and add one:

* Pick an edge of the polygon, say the one which has an arrow Vi starting at

node 2i + 1, and remove one arrow from the corresponding doublet to make it

a singlet. Call this type of singlet Zi.

* Remove the two diagonal singlets, Y that are connected to the two ends of

this singlet Z. Since we chose the Vi arrow which is removed to start at node

2i + 1 the Y fields which are removed are Y2i+2 and Y2i+3. This action removes

from the superpotential the corresponding two cubic terms that involve these

Y fields.

* Add a new singlet Y2i+3 in such a way that, together with the two doublets at

both sides of the singlet Zi, they form a rectangle. Specifically this arrow starts

at node 2i + 3 and ends at node 2i. The new rectangle thus formed contains

two doublets which as before should be contracted to an SU(2) singlet. This

term is added to the superpotential.

By the end of this process, we get 6p - 2 fields. There are p doublet fields Ui,

p - 1 doublet fields Vj, j $ i, one field of type Zi and 2p - 1 diagonal singlets of

type Yj,j 2i + 2. We present in Figure 10-4 the y 4'3 example, obtained from

y4,4 = 3/Z 8 by the series of steps outlined above. We indicate the new Z singlet in

red.

The new superpotential has (2p- 2) triangles and 1 rectangle (recall that when we

refer to one triangle or one rectangle, we are actually indicating the SU(2) invariant

combination given by two of them). The resulting superpotential is

p

W = Ej hea(U7VfY2j+2 + VU +Y 2j+3) + ZiU+iY2i+3Ui (10.3.16)
ioj=l

As a check we can verify that the model still satisfies the toric condition regarding

the number of fields in the superpotential. There are (p - 1) 3 2- 2 + 4 2 = 12p - 4,

in agreement with our expectation.
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Figure 10-4: Quiver diagram for y 4'3 , obtained from y 4 ,4 = C3I/Z.

We now continue to construct the yp,p-2 model. This is an easy task and is just a

repetition of the 3-step process described above. We pick an index j 0 i and turn a

Vj doublet into a Zj singlet by repeating the sequence of steps previously explained.

The result is a theory with 6p - 4 fields forming p U doublets, p - 2 V doublets, 2 Z

singlets and 2p - 2 Y singlets. We present the y4 , 2 example in Figure 10-5.

a..... ......................> ....... . .......... ..

Figure 10-5: Quiver diagram
three step sequence twice.

for y 4 ,2 , obtained from y4, 4 = C3 /Z 8 by applying the

When one applies the procedure the second time, there is the possibility of choos-

ing the double leg to "open up". For instance in the case of y4 ,2 there are two different

choices that can be made. One is Figure 10-5, the other is Figure 10-6.

These two quivers are different, but are actually related by Seiberg duality. They
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Figure 10-6: A different quiver diagram for y 4 ,2, corresponding to a different toric
phase.

correspond to two different "toric phases" of the same Duality Tree [56, 55].

The superpotential now has 2p - 4 triangles and 2 rectangles and is given by

p

W CE ,,(Uk' VY2k+2 + VkU +lY2k+3) + sp E ZkUT+l Y2k+3U (10.3.17)
i$j$k=1 k=i,j

and has (p - 2) 3 2 · 2 + 2 4 2 = 12p - 8 fields, which is consistent with the fact

that the probed geometry is toric.

We can keep going down in q by iterating the procedure above. Thus, for YP,q

there are 4p + 2q fields forming p U doublets, q V doublets, (p - q) Z singlets and

(p+q) diagonal singlets Y. The superpotential has 2q triangles and (p- q) rectangles.

The general superpotential is

W -- , (Uk, V Y2k+2 + VkU+lY2k+3) + ea E ZkUk+lY2k+3U. (10.3.18)
k k

The sum k for the cubic terms is in indices in which V exists and the sum k for the

quartic terms is in indices in which Z exists. Note that any of the indices 1 to p

appears precisely once either in the cubic or the quartic sum. The number of fields in

the superpotential is q 3 2 2 + (p - q) 4- 2 = 8p + 4q, verifying the quiver is toric.

For completeness we also give the quivers for y4,1 and y 4,0 .
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Figure 10-7: Quiver diagram for y4 ,1. In this case we just see one toric phase.

Figure 10-8: Quiver diagram for Y4 ,0. Note that the superpotential terms are only
quartic. Correspondingly, the nodes have precisely 2 incoming and 2 outgoing arrows.
This quiver diagram is indeed a Z 4 orbifold of the conifold.

All the different quivers constructed by our iterative procedure satisfy the following

property. In the YP!P models every node has precisely 3 incoming and 3 outgoing

arrows. Each time the procedure is applied, for precisely two nodes of the quiver

the number of incoming and outgoing arrows becomes 2. At the end of the process

we are left with a quiver where all of the nodes have precisely 2 incoming and 2

outgoing arrows. A way to rephrase this fact is by saying that the "relative number

of flavors" for each gauge group passes from 3 to 2. This "relative number of flavors" is

discussed in detail in [15] and is useful in order to understand the structure of Seiberg

dualities for any superconformal quiver. The whole set of Seiberg dual phases of the
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same theory can be organized in a Duality Tree [56, 55]. Also for the models we are

discussing it is generically possible to construct an infinite tower of superconformal

quivers related to the ones constructed here by applying Seiberg dualities. The fact

that the relative number of flavors is always greater than (or equal to) 2 implies that

we are just seeing the "minimal models" of the Duality Tree [15]. We notice that

a generic quiver in the Duality Tree will not satisfy the quiver toric condition, i.e.

the equality for all the ranks of the gauge groups. In many cases it is known that

the different models in the Duality Tree are classified by solutions of Diophantine

equations; it would be nice to understand if this is true also here.

Closed loops in the Duality Tree can be used to engineer Duality Cascades of

Klebanov-Strassler type. In the conifold case however the Duality Tree is trivial,

meaning that it is composed of just one theory and there is just one closed loop of

length one. Duality cascades for these theories, along with their supergravity duals,

have been constructed in [92].

10.3.2 Higgsing the yp,q quivers

In some special cases, the YPq's correspond to geometries whose associated gauge

theories are well understood. We have already seen that YPP corresponds to C3/z2p.

In addition, yp,O has no triangles at all and the R-charges for bifundamental fields are

1/2. This agrees with the fact that, as is clear from the corresponding toric diagram,

ypO corresponds to the Zp orbifold of the conifold.

Another appealing observation that follows from our construction of the general

quiver is that the quiver for yp,q can be Higgsed to the one for the orbifold C3 / Z p+ q by

turning on non-zero vevs for all the (p - q) Z fields. One can see this geometrically as

follows. We begin with S 5 , viewed as the unit sphere in C3 with complex coordinates

(Zl, Z2, Z3 ). Consider the U(1) action with weights (1, 1, -2), so that (z1, z 2, z3) -+

(Az1 , Az 2 , A-2Z3 ) with A E U(1). The quotient by this action is a form of weighted

projective space, which we denote WCP[2,,_2]. However, before we quotient out,

we may first factor through by Zp+q C U(1) to give S5 /Zp+q. This is precisely the

orbifold that is dual to the Higgsing described above.
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A useful description of WCP[21,1,2] is as follows. One takes T*S2 , which has

boundary IRP3 = S3/Z2, and glues onto this the Al singularity IR4/Z 2. In this

realization the two-sphere (zl, z2, 0) corresponds to the zero section of T*S 2 whereas

the Al singularity is located at the point (0, 0, z3). The idea now is to blow up the

Al singularity in the base in the usual way, replacing it with another copy of T*S 2.

The resulting space is an S2 bundle over S2 in which the gluing function across the

equator corresponds to 2 E Z 7rl(U(1)), where U(1) c 0(3) acts on the fibre

two-sphere. This bundle can also be made by gluing T*S 2 to minus itself along the

common boundary IRP3 . Notice that this is precisely the topological construction of

the base B of the Sasaki-Einstein manifolds yp,q in [63].

Having resolved the base, we must now consider the fibre S1. Notice that over

WCP[2,1 , 2] minus its singular point, which gives topologically T*S 2, the original U(1)

bundle has winding number p + q over S2 . However, note that H2 (IRP3 ; Z) Z2.

One easily sees that the map from Z, which determines the topology of the U(1)

bundle over T*S2 , to Z2, which determines the topology on the boundary IRP3 , is

just reduction modulo 2. To extend the U(1) bundle over the blown-up copy of

S2 , topologically we must specify an integer 1 E Z which gives the winding number

over the blown-up cycle. However, in order for this to glue onto the existing U(1)

bundle described above, it is clear that we must have 1 - p + q mod 2 in order that

the boundaries match. The resulting space is a U(1) bundle over B with winding

numbers p + q and 1 over two S2 zero sections. Note that these were called S1, S2

in [63] and [134]. Moreover, without loss of generality we may set 1 = p - q, since

l p+q mod 2.

Notice that the final space has precisely the topology of YP'q. Moreover, we also

have the following relation between volumes:

vol(S5/Z2 p) < vol(YP q) < vol(S 5/Zp+q) q < p. (10.3.19)

This process we have described is therefore consistent with an a-theorem for Higgsing.

As an example consider the model y 4,3 ; giving a vev to the bifundamental field Z
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and flowing to the infra-red there is a Higgsing mechanism. The gauge group passes

from SU(N)8 to SU(N) 7 and the quartic term in the superpotential disappears. In

summary, the low energy theory becomes the known orbifold C3 /Z 7.

The same procedure can be applied to one of the phases of y4 ,2. Here new features

arise. Giving a vev to both of the two Z fields one ends up with the orbifold C3 /Z6,

which is actually the model Y3' 3. This fact also relates some observations made in

Section 2 about monotonic behaviour of the volumes of yp,q with the supersymmetric

a-theorem.

Giving instead a vev for just one of the Z fields one finds a new model, which is

the orbifold C3/Z 7 where the above described three-step operation has been applied.

These types of models are not part of the YP,q series, as can be seen from the fact

that all the yp,q models have precisely one baryonic U(1) symmetry. The quivers

C3 /Zodd instead cannot have precisely one U(1) baryonic symmetry, since the number

of baryonic symmetries is given by the number of nodes of the quiver minus the rank

of the (antisymmetric part of) the quiver intersection matrix minus one. Since an

antisymmetric matrix always has even rank, in a quiver with an odd number of nodes

the number of baryonic U(1)'s is always even.

10.4 R-charges and horizon volumes

In this section we compute the exact R-charges as well as the a central charge of the

yp,q quivers using a-maximization, and compare with the geometrical predictions of

[63] and [134]. The agreement found is perfect.

Let us first recall the logic of a-maximization. As explained in [102], in this

procedure one assigns some trial R-charges to the different fields and the exact R-

charges are then determined by those values that (locally) maximize the combination

of 't Hooft anomalies found in [7, 6]:

a(R) = 3 (3trR3 - trR) . (10.4.20)
32
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The maximal value of this function is then precisely the exact a central charge of the

theory at the IR fixed point. As proposed in [102] the trial R-charges can be chosen by

assigning a fiducial R--charge Ro, provided the latter satisfies the constraints imposed

by anomaly cancellation. The fiducial R-charge is allowed to mix with the abelian

global symmetries, which for all the yp,q quivers is U(1)F x U(1)B.

We find it more convenient to implement this procedure in the following equivalent

fashion [56, 97]. Recall that for a supersymmetric gauge theory with gauge group G,

the beta function for the gauge coupling ca = g2/4ir is

a2 3T(G) - 1j T(ri)(1 - yj(a))
8(a) = 2 r (10.4.21)2wr 1 - T(G)

where iy is the anomalous dimension of a chiral superfield in the representation ri, and

for G = SU(N) the Casimirs take the values T(fund) = 1/2 and T(G) = T(adj) = N.

At the IR fixed point all the numerators of the beta functions corresponding to

each gauge group factor (node of the quiver) must vanish, thus imposing the relations

1N-2 Ny(1 - Ri) = 0 (10.4.22)
i

where we used the fact that at the fixed point the anomalous dimension is related to

the R-charge as yji = 3Ri - 2. We have also used the fact that our quivers are always

"toric", in the sense that all the ranks of the gauge groups are equal (to N in this

case). We can then consider a set of arbitrary R-charges Ri which satisfy equation

(10.4.22) at each node, as well as the additional requirement that each monomial in

the superpotential has R-charge precisely 2.

Let us illustrate this procedure with an example, and then move on to the general

YP,q quivers.

10.4.1 Gauge theory analysis for y3 ,2

At the bottom of the infinite family we have y 2,1, which is a metric on the horizon of

the complex cone over dP1 [134]. The gauge theory for this geometry was computed
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in [45] and is also presented in [43]. It has recently been discussed in reference [21],

resolving an apparent mismatch between gauge theory results in the literature and

the geometric analysis of [134]. The next case is y3,2 and the corresponding quiver is

presented in Figure 10-9 below.

2

6 3

5 4

Figure 10-9: Quiver diagram for y3 ,2.

The gauge group for the theory is SU(N) 6 . We may now determine the exact

central charge of this theory using a-maximization. For the y3 ,2 quiver we have

1 + 5 + 5 = 11 a priori different R-charges, subject to 6 linear relations coming from

(10.4.22)

1
= 1 + (R12

2

1= 1 + (R12
1= 1 + (R53
2

= 1 + (R64

1
= 1 + (R15

2
1

= 1 + (R362

1-1) + -(R152

1
- 1) + -2(R61 - 1) = 0

2
1 1

- 1) + -(R42 - 1) + -2(R23 - 1) = 02 2
1 1 1

-1) + (R36 - 1) + 2(R2 3 -1) + -2 2 2'

- 1) + (R42 -1) + 2(R 3 4-1) + -2 2 2
1 1 1

- 1) + -(R 5 3-1) + -2(R 4 5-1) + -
2 2 2
1 1 1

- 1) + -(R 64 - 1) + -2(R 5 6-1) + -
2 2 2

2(R34 - 1) = 0

2(R45 - 1) = 0

2(R56 - 1) = 0

2(R61 - 1) = 0 (10.4.23)
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and 5 conditions from the superpotential

R 56 + R 61 + R 15 = 2

R 45 + R56 + R 64 = 2

R34 + R45 +R53 = 2

R23 + R34 + R42 = 2

R 12 + R2 3 + R36 + R61 = 2. (10.4.24)

However, one can check that two charges remain undetermined - this is a general

feature, valid for all the yp,q models, and is related to the fact that the global sym-

metry is always U(1) x U(1). The maximization is then always performed over a two

dimensional space of trial R-charges.

We can parameterize the two trial R-charges as follows:

R 12 = x R36 = R15 = R 64 = R 53 = R42 = Y

R34 = R56 =1+ (x-y) R61 = R45 = R23 = 1 - (x + y) . (10.4.25)
2 2

Recall the definition of a in terms of these R-charges:

a = 3(21G + 3(R -1)3 - (-1)) (10.4.26)
i

where IGI is the number of vector multiplets. Here it is straightforward to check

that trR = 0 as shown on general grounds in [15]. One can now compute a(x, y) =

9/32trR 3 which reads3

32 1 3
32a(x, y) 6 + (x - 1)3 + 5(y - 1)3 + ( - y)3 - (x + y)3 . (10.4.27)
9 2 4

The local maximimum is found at

1 -y
Xmax = (-9 + 4V) Yma =-1 +2 (10.4.28)

3 v

3Here, and henceforth, we suppress factors of N.
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for which we find a,,, = 27 (-9 + 4v), which indeed agrees with r3 /(4 vol(Y3 ,2)).

10.4.2 a-maximization in the general case

As explained in Section 10.3, the YP,q family is obtained from the YP'P C3 /Z 2 X Zp

model by a sequence of (p - q) simple modifications. Following this construction,

and applying the same logic presented for y3 ,2, it is straightforward to obtain a

parametrization of the R-charges in the general case. There are then 2p relations

from imposing the vanishing of the beta functions at each node, and p + q relations

from requiring that each term in the superpotential (again, by each term, we mean

each SU(2) doublet) has R-charge 2. These are 3p + q linear relations in all, for

(p - q) + p + q + (p + q) = 3p + q a priori independent R-charges. However, two of

the relations are redundant, and we can therefore parameterize the R-charges of all

fields in terms of two unknowns x and y as follows:

* The (p - q) singlets Z around the outer loop of the quiver have R-charge x.

* The (p + q) diagonal singlets Y have R-charge y.

* The p doublets U around the outer loop have R-charge 1 - (X + y).

* The q doublets V around the outer loop have R-charge 1 + (X - y).

As already noted, the fact that the maximization is performed over a two dimen-

sional space implies that there are precisely two U(1) symmetries with which the

R-symmetry can mix. It now follows that

trR(x, y) = 2p + (p - q)(x - 1) + (p + q)(y -1) -p(x + y) + q(x - y) = 0 (10.4.29)

where trR is a fermionic trace and the first contribution of 2p comes from the gauginos.

We thus have trR = 0. This fact is always true for a theory with a weakly coupled

supergravity dual [91] (this corresponds to having c = a). In [15] a general proof

is given that shows that trR vanishes for any superconformal quiver. We can now
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compute trR3 (x, y) which reads

trR3(x, y) = 2p + (p - q)(x - 1)3 + (p + q)(y - 1)3- ( + y)3 + q (x - y0.4.30)
4 4

The maximum is found at

Ymax= 2 [-4p + 2pq + 3q2 + (2p - q) /4p2 - 3q2]
3q2 L

Xmax = 1 [-4p2 -2pq + 3q +(2p + q)/4p 2- 3q2] . (10.4.31)

Notice immediately that these are precisely the same as the baryon charges R[B1],

R[B2] (10.2.8) computed using the metrics. Moreover, substituting into a we also

reproduce the correct volume formula (10.2.5) via the AdS/CFT formula

3

a(YP') 4 vol(Ypq) (10.4.32)

10.4.3 Continuous global symmetries

We are now in a position to summarise the results obtained so far and conclude our

comparison between geometric and field theoretic results.

In section 10.3 we constructed the quivers and wrote down the explicit superpo-

tential. This superpotential is toric and satisfies a global SU(2) symmetry. All the

fields are in the spin-0 representation of SU(2) or in the spin-1/2 representation. We

note that applying successive Seiberg Dualities one expects to find higher dimensional

representations.

In this section, solving the linear beta-function constraints, we showed that there

are precisely two global U(1) symmetries. For any YPq quiver the rank of the (an-

tisymmetric) quiver matrix is 2p - 2 and the number of nodes is 2p. This implies

that there is precisely one U(1) baryonic symmetry. The reason is that this baryonic

symmetry turns out to be equal to a particular combination of the U(1) factors of

the original U(N)2p gauge groups. There are two symmetries that can be constructed

by linear combinations of these 2p U(1) factors: one is completely decoupled and the
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other one is the baryonic symmetry. One way of checking that this is a baryonic sym-

metry is by computing the cubic 't Hooft anomaly, which has to vanish. The reason

is that in the AdS dual description this global symmetry becomes a gauge symmetry,

and the gauge field is given by Kaluza Klein reduction of the RR four-form of Type

IIB superstrings on a 3-cycle of the transverse 5-dimensional space. The cubic 't

Hooft anomalies correspond to a Chern-Simons term in AdS that does not exist for

gauge fields coming from RR four-forms.

As a result of the previous discussion, we see from the gauge theory that any YP,q

quiver has to have precisely one U(1) flavor symmetry. For this symmetry one does

not expect the cubic anomalies to vanish. This symmetry is related to the U(1) part

of the isometries of the transverse 5-dimensional manifold. We summarise the final

charges in table 10.1.

I Field I number R - charge I U(1)B U(1)F I

Y p + q (-4p 2 + 3q2 + 2pq + (2p - q) 4p2 - 3q2)/3q2 p - q -1
Z p-q (-4p2 + 3q2 - 2pq + (2p + q)/4p 2 - 3q2)/3q2 p+q +1

Ua' P (2p(2p- 4p2 - 3q2))/3q 2 -p 0
Va q (3q - 2p + 4p2 - 3q 2)/3q q +1

Table 10.1: Charge assignments for the four different types of fields present in the
general quiver diagram for YP,q.

From table 10.1 it is straightforward to compute

trU(1)B = trU(1)F = 0 . (10.4.33)

These linear anomalies have to vanish, since we have resolved the mixing with the

R-symmetry. A simple computation shows that also the cubic 't Hooft anomalies for

trU(1)3 and trU(1) 3 vanish, for instance

trU(1)a = (p + q)(p - q)3 + (p - q)(p + q)3 + 2p(-p) 3 + 2q(q)3 = 0 (10.4.34)
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The mixed 't Hooft anomalies trU(l)FU(1)B and trU(1)2 U(1)F are instead non-zero.

We note that the relation trU(1)3 = 0 does not have a direct physical meaning, since

one can always redefine the flavor symmetry, mixing it with the baryonic symmetry.

In this case, trU(1) 3 does not necessarily have to vanish.

It is worth explaining the reason for the claim that U(1)B, as given in table 10.1,

corresponds to a baryonic symmetry, since the cubic anomalies U(1)B and U(1)F

show a similar behaviour. One possible explanation is that U(1)B can be directly

constructed as a linear combination of the 2p decoupled gauge U(l)s, while U(1)F

cannot. In the next subsection we will give a different explanation of this fact.

10.4.4 Some properties of the baryons

In this subsection we give a simple analysis of the baryonic operators in the yp,q

quivers, along the lines of [19, 103, 96, 97].

Since all the 2p gauge groups have the same rank, N, it is possible to construct

simple dibaryonic operators with one type of bifundamental field A.':

,[A] = ea'" N A 1 ... A N . (10.4.35)

In the yp,q quivers there are four classes of bifundamental fields, so there are four

classes of dibaryonic operators: B[Y], B[Z], B[U] and B[V]. Since the fields U0 and V0

transform in the 2-dimensional representation of the global SU(2), the corresponding

baryonic operators transform in the (N + 1)-dimensional representation, as explained

in [19]. This fact tells us immediately that the corresponding D3-brane (wrapping a

supersymmetric 3-cycle inside the yp,q manifold) can be freely moved on the round

S2 parametrized by the coordinates 0 and 0. The corresponding 3-cycle is thus part

of a family of supersymmetric cycles parametrized by an S2.

The operators like (10.4.35) are chiral, so their scaling dimension is precisely the

scaling dimension of the bifundamental A, multiplied by N. These scaling dimensions

correspond holographically to the volumes of the corresponding 3-cycles. Computa-

tions of the volumes give precisely the values listed in table 10.1.
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From the quiver it is also possible to derive some information about the topology

of the yp,q manifolds and of the supersymmetric 3-cycles. A more complete treatment

would require the algebraic computation of the moduli space of vacua of the gauge

theory, which should reproduce the quotient of C4 determined in [134] and described

in section 10.3.

Taking the product of two different consecutive dibaryons it is possible to get rid

of the two e-symbols corresponding to the same gauge group [19]. For instance (for

q < p) we can compose U-dibaryons with Z-dibaryons:

B[U]B[Z] c1" 'N V U ... UPNZ1 ... Z7TN El...ryv 13[UZ] . (10.4.36)

It is thus possible to associate (poly-)baryonic operators to connected paths in the

quiver diagram. When the path closes all the e-symbols disappear and the operator

is not baryonic anymore.

We thus look at the closed oriented paths in the quiver diagram. From the quiver

diagrams we can recognize four different types of simple loops:

* One type of loop has length 3 and is made of one Y-field, one U-field and one

V-field.

* One type of loop has length 4 and is made of one Z-field, two U-fields and one

Y-field.

* The third type of loop instead goes all the way around the quiver and has length

2p: it is made of p U-fields, q V-fields and p- q Z-fields.

* The last type has length 2p - q and is made of p Y-fields and p - q U-fields.

In order that the interpretation of a closed path of baryonic operators as a non-

baryonic operator makes sense, it is necessary that the total baryonic charge vanishes.

If we substitute the charges of table 10.1 into the four types of closed loops listed

above, we find that the two "short" loops have vanishing charge both for the U(1)B

and the U(1)F (as has to be the case since they enter in the superpotential), but the
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charge of the two "long" loops is zero only for U(1)B. This implies that precisely the

symmetry called U(1)B in table 10.1 is the baryonic symmetry.

The fact that a closed loop of baryons is equivalent to a non-baryonic operator

has an interpretation in terms of the topology of the 3-cycles wrapped by the corre-

sponding D3-brane: the sum of the cycles associated to the dibaryons entering the

loop has to be the topologically trivial 3-cycle. Denoting E[A] the 3-cycle associated

to the dibaryons constructed with the bifundamental A, we thus have the following

four relations for the corresponding homology cycles of the YP,q manifold:

E[Y] + E[U] + Z[V] = 0 (10.4.37)

E[Z] + 2 [U] + E[Y] = 0 (10.4.38)

p [U] + q [V] + (p - q) E[Z] = 0 (10.4.39)

p E[Y] + (p - q) E[U] = 0 . (10.4.40)

Recall that using the results of [134] one can see that for the singlet dibaryons E[Z] =

E2 = S3 /zp-q and E[Y] = E1 = S3 /Zp+q. Moreover in [134] it is shown that the

representative cycles, given by {y = i} respectively, are supersymmetric, meaning

that the cones over these are complex divisors of the Calabi-Yau cones.

We will now show the existence of two new supersymmetric three-cycles, corre-

sponding precisely to the two remaining dibaryons, E[U] and E[V]. First, let us verify

that we can pick a representative cycle of E[U], which is supersymmetric and repro-

duces the correct volume/charge formula. This is again straightforward using the

results of [134]. Consider the three-cycle obtained by setting {0, q} to some constant

value on the round S2 , and denote this by ES. One easily computes

1 1
2J A JI{0,}=const. = r3dr A dy A d4p A da = vol{0,0}=cOnt.(E 3 ) (10.4.41)

where J is the Kihler two-form of the Calabi-Yau cone over ypq [134], and the

induced volume form is computed using the metric (10.2.1). This shows that the cycle

is supersymmetric. 'The topology is S3 /Zp, as follows from the discussion in [134],
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with the Chern number of the U(1) fibration over the y - two-sphere being p. The

volume is trivially computed by integrating (10.4.41) and indeed reproduces exactly

R[U]. Finally, we may simply define the remaining cycle as the sum 4 --1 - 3.

Thus from (10.4.37) we have E[V] = E4. Note that, correctly, vol(E 4) c R[V] =

R[U] + R[Z]. Clearly the cycle is supersymmetric.

It is fairly straightforward to verify the topological relations (10.4.38)- (10.4.40)

directly from the definitions of the cycles, thus providing a non-trivial check of the

gauge theory calculation above. Let us first recall that S1, S2 are the two copies of S2

in the base B at y = yl, y = Y2, respectively, and that C1 is a copy of the fibre S2 in

B at fixed 0 and 0. By definition, taking the a circle bundle over these submanifolds

gives the 3-cycles E[Y], -[Z] and -[U], respectively4 . Recall now from [63] that

S - S2 = 2C1 (10.4.42)

holds as a homology relation in B. Thus taking the a circle bundle over this gives

(10.4.38).

Using (10.4.37) and (10.4.38) one may now show that the left hand sides of

(10.4.39) and (10.4.40) are given by

p[Y] + (p - q)>[U] = ((p + q)E[Y] - (p - q)E[Z]) (10.4.43)

= - (p[U] + q[V] + (p - q)E[Z])

Consider the quotient by U(1)Q. As a homology relation in B we have

2 ((p + q)E[Y] - (p - q)S[Z]) /U(1) = ((p + q)Sl + (p - q)S2) (10444)
2 2 t/ T Y/YL~ 1 - (r - Y/ULUII I~ll/a (10.4.44)

- pC2 + qCi

where recall [63] that by definition

Si + S2 = 2C2 (10.4.45)

4For further discussion of the topology the reader might consult [134].
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and C1 and C2 are the canonical generators of the two two-cycles in B S2 x S2.

Thus we must show that the U(1)Q bundle over pC2 + qC1 is the trivial 3-cycle in

yp,q.

To see this, we begin by noting that 7r*cl, the pull-back of the first Chern class

of the U(1),~ bundle to the total space of yp,q, is trivial as a cohomology class. Here

7r: ypq - B is the projection. This is a standard fact, and can be seen in a number

of different ways. For example, the one-form (da+ A)/2re is globally defined on yp,q,

where here dA/27re is a representative for cl and a/e is a periodic coordinate on the a

circle direction with period 2r. The essential point is that a gauge transformation in

a is cancelled by the corresponding gauge transformation in A, thus giving a globally

well-defined one-form on the total space - the so-called global angular form. In

particular, we note that the exterior derivative of this one-form, which represents the

pull-back of cl, is exact.

To get to the desired homology relation, we simply apply Poincare duality to the

above. Since by definition cl = pal + qu2, where fc, vj = ij for each i, j = 1, 2, the

Poincar6 dual to cl in B is pC2 + qC1 . Following through

H2 (B; Z) H 2 (B; Z) _- H2(YP'q; Z) H3(YP; Z) (10.4.46)

then maps the two-cycle pC2 + qC1 in B to the 3-cycle in YP,q which is simply the

total space of the a circle bundle over this. As we've just explained, this image is

zero.

10.5 Conclusions

The results presented in this chapter change the status quo in AdS/CFT. Until re-

cently, the only explicitly known non-trivial Sasaki-Einstein metric in dimension five

was T1,1, whose dual superconformal field theory - a rather simple quiver gauge the-

ory - was given by Klebanov and Witten [121]. We now have an infinite number

of explicit toric Sasaki-Einstein five-manifolds [63], their associated toric diagrams

296

_ __



[134], and, from the results of this chapter, we also have the whole infinite family of

dual quiver gauge theories. This is remarkable.

We have applied the technique of a-maximization [102] to this infinite family of

gauge theories to obtain the exact R-charges of the fields at the IR fixed point. As

pointed out in [102], since one is maximizing a cubic function with rational coeffi-

cients, the charges are generically quadratic irrational numbers, rather than rational

numbers, and indeed this is typically true for the field theories presented here. There

are also infinite numbers of theories where the R-charges are rational, namely the YP,q

quivers with 4p2 - 3q2 an integer square. The central charges of these theories, com-

puted using field theory techniques, precisely match with the volumes computed using

the explicit metrics found in [63]. Furthermore, the R-charges of the gauge-invariant

baryonic operators remarkably match the R-charges computed geometrically as vol-

umes of supersymmetric cycles in the yp,q geometries.

In order to have a more complete picture it would be interesting to determine the

moduli space of vacua of the yp,q gauge theories, and reproduce the algebro-geometric

results of [134]. In fact, it is possible to do so using a novel procedure involving dimers

that is the subject of Chapter 11.

Clearly this work opens the door to very interesting applications, and general-

izations, in many different directions. First let us note that the construction of the

Sasaki-Einstein metrics in [63] was immediately generalised to all (odd) dimensions

in [66]. In particular, in dimension seven there are similar (p, q) families of Sasaki-

Einstein metrics which are based on any positive Kihler-Einstein metric in dimension

four. These are classified, and consist of CP 2, S 2 X S2 and the del Pezzo surfaces

dP3,..., dPs. These will therefore serve as supersymmetric M-theory backgrounds of

the form AdS4 x Y7 , which are expected to be dual to K/ = 2 superconformal field

theories arising on M2-branes that probe the corresponding Calabi-Yau four-fold

singularities. When the Kihler-Einstein is toric, the Calabi-Yau singularities are

again toric. It would be interesting to try to develop methods to analyse the gauge

theory duals of these Sasaki-Einstein manifolds.

Let us also recall that the entire family of solutions explored in this chapter has a
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dual description in M-theory, where it uplifts to supersymmetric AdS 5 x M6 solutions,

with M6 a complex S2 bundle over T2 S2 [65]. However, there are many more

solutions presented in [65], with M6 replaced by more general manifolds. It will be

very interesting to investigate if, guided by our results, one could explicitly construct

the dual four-dimensional superconformal field theories for these also. If so, this could

shed considerable light on the corresponding M5-brane theory, it least in a conformal

regime.

Another interesting avenue of research is to understand what the geometric dual

of a-maximization is. It is remarkable that such a simple field theory calculation re-

produces not only the volumes of the metrics, but also the volumes of supersymmetric

cycles. This geometric procedure has recently been constructed in [133].
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Chapter 11

Brane Dimers and Quiver Gauge

Theories

In this chapter we describe a technique which enables one to quickly compute an

infinite number of toric geometries and their dual quiver gauge theories. The cen-

tral object in this construction is a "brane tiling," which is a collection of D5-branes

ending on an NS5-brane wrapping a holomorphic curve that can be represented as a

periodic tiling of the plane. This construction solves the longstanding problem of com-

puting superpotentials for D-branes probing a singular non-compact toric Calabi-Yau

manifold, and overcomes many difficulties which were encountered in previous work.

The brane tilings give the largest class of Af = 1 quiver gauge theories yet studied.

A central feature of this work is the relation of these tilings to dimer constructions

previously studied in a variety of contexts. We do many examples of computations

with dimers, which give new results as well as confirm previous computations. Using

our methods we explicitly derive the moduli space of the entire yp,q family of quiver

theories, verifying that they correspond to the appropriate geometries. Our results

may be interpreted as a generalization of the McKay correspondence to non-compact

3-dimensional toric Calabi-Yau manifolds. The material in this chapter is based on

[58].
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11.1 Introduction

Shortly after the discovery of the importance of D-branes in string theory, it became

clear that they provide a deep connection between algebra and geometry. This is

realized in string theory in the following way: the D-brane, a physical object in

spacetime, probes the geometry in which it lives, and the properties of spacetime

fields are reflected in its worldvolume gauge theory. On the other hand, the D-brane

has fundamental strings ending on it, thus giving rise to gauge quantum numbers

which enumerate the possible ways strings can end on the brane when it is embedded

in the given singular geometry. This fact leads to a pattern of algebraic relations,

which are conveniently encoded in terms of algebraic quantities like Dynkin diagrams

and, more generally, quiver gauge theories.

One simple example is given by a collection of N parallel D-branes; these have

fundamental strings stretching between them and are in one-to-one correspondence

with Dynkin diagrams of type AN-1. Branes are mapped to nodes in the Dynkin

diagrams and fundamental strings are mapped to lines. Placing this configuration on

a circle leads to an affine Dynkin diagram AN-1, where the imaginary root is mapped

to a fundamental string encircling the compact direction. Many more examples of

this type lead to a beautiful relationship between branes and Lie algebras.

When D-branes in Type II string theory are placed on an ALE singularity of

ADE type, the gauge theory living on them is encoded by an affine ADE Dynkin

diagram. Here, fractional branes are mapped to nodes in the Dynkin diagram while

strings stretching between the fractional branes are mapped to lines in the Dynkin

diagram. The gauge theory living on the branes has 8 supercharges, since the ALE

singularity breaks one half of the supersymmetry while the D-branes break a further

half. With this amount of supersymmetry ( = 2 in four dimensions), it is enough

to specify the gauge group and the matter content in order to fix the Lagrangian

of the theory uniquely. As above, we see that this gauge theory also realizes the

relationship between algebra and geometry: on the algebra side, we have the Dynkin

diagram, and on the geometry side there is a moduli space of vacua which is the ADE
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type singularity. This connection between the Lie algebras of affine Dynkin diagrams

and the geometry of ALE spaces is known as the McKay correspondence [136]. This

relation was first derived in the mathematics literature and later - with the help of

D-branes - became an important relation in string theory.

The McKay correspondence can be realized in other ways in string theory. One

example which will be important to us in this chapter is the configuration of NS5-

branes and D-branes stretching between them which was studied in [86]. A collection

of N NS5-branes with D-branes stretching between them results in a gauge theory on

the D-branes which turns out to be encoded by an AN-1 Dynkin diagram. Here, NS5-

branes are mapped to lines while D-branes stretching between NS5-branes are mapped

to nodes in the quiver gauge theory. Putting this configuration on a circle leads to

an affine version of this correspondence AN-1; the imaginary root now corresponds

to a D-brane which wraps the circle. This correspondence is very similar to the D-

brane picture which was presented above and indeed, using a chain of S- and T-

dualities, one can get from one configuration of branes to the other, while keeping

the algebraic structure the same. Furthermore, the gauge theory living on a D-brane

stretched between NS5-branes is very similar to the gauge theory living on a D-brane

that probes an AN-1 singularity. Indeed, as first observed in [145], the collection of

N NS5-branes on a circle is T-dual to an ALE singularity of type AN-1 with one

circular direction. A detailed study of this correspondence was performed in [112].

Many attempts at generalizing the McKay correspondence from a 2 complex di-

mensional space to a 3 complex dimensional space have been made in the litera-

ture. From the point of view of branes in string theory it is natural to extend the

2-dimensional correspondence stated above from D-branes probing a 2-dimensional

singular manifold to a collection of D-branes probing a 3 dimensional singular Calabi-

Yau (CY) manifold. A few qualitative features are different in this case. First, the

supersymmetry of the gauge theory living on the D-brane is now reduced to 4 super-

charges. This implies that gauge fields and matter fields are not enough to uniquely

determine the Lagrangian of the theory, and one must also specify a superpotential

which encodes the interactions between the matter fields.
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This is an important observation: any attempt at stating the 3-dimensional

McKay correspondence must incorporate the superpotential, which was uniquely con-

strained in the 2-dimensional case. Second, the matter multiplets in theories with 4

supercharges are chiral and therefore have a natural orientation. In the theories with

8 supercharges, for every chiral multiplet there is another chiral multiplet with an

opposite orientation, transforming together in a hypermultiplet. Therefore, an over-

all orientation is not present in a theory with 8 supercharges. We conclude that the

3-dimensional McKay correspondence requires information about these orientations,

absent in the 2-dimensional case.

Studying the first few examples for the 3-dimensional McKay correspondence (the

simplest of which is the orbifold C3/2 3 ), it became clear that the objects which re-

place the Dynkin diagrams are quivers with oriented arrows [39]. For these objects,

nodes represent gauge groups, oriented arrows between two nodes represent bifun-

damental chiral multiplets, and certain closed paths in the quiver (which represent

gauge-invariant operators) represent terms in the superpotential. It is important to

note that only a subset of all closed paths on the quiver appears in the superpotential,

and finding which particular subset is selected for the quiver associated to a given

toric singularity is a difficult task. This difficulty will be greatly simplified with the

results presented in this chapter.

In previous chapters, we have discussed in detail the construction of quivers via

string theory. Let us make a briefly summary of what is known about them in order

to put the forthcoming discussion into context. The first known examples of quiver

theories obtained from string theory were those dual to C3 /r, where F is any discrete

subgroup of SU(3) [125, 79]. The most common examples of this type take r = Zn or

F = Z, x Zm. These theories are easy to construct, since it is straightforward to write

down an orbifold action on the coordinates of C3. If IrF = k, then there are k nodes

in the dual quiver and a bifundamental for each orbifold action on C3 that connects

different regions of the covering space. These orbifold theories may be described

torically in a straightforward manner. It was then realized that partial resolution

of these orbifold spaces corresponds to Higgsing the quivers; in this manner, people
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were able to obtain many different quiver theories and their dual toric geometries

[45, 46, 12].

It was not long before a general algorithm for deriving toric data from a given

quiver was found; this procedure is usually called "The Forward Algorithm" [45]. Al-

though the procedure is well-understood, it is computationally prohibitive for quivers

with more than approximately ten nodes. As discussed in detail in Chapter 5, the

Forward Algorithm, in addition to providing the toric data for a given quiver the-

ory, also gives the relative multiplicities of the gauged linear sigma model (GLSM)

fields in the related sigma model [43]. However, the same problem applies here as

well: the toric diagrams and their associated multiplicities are difficult to derive for

large quivers..

Recently, there has been much progress in the arena of gauge theories dual to

toric geometries. Gauntlett, Martelli, Sparks, and Waldram [63] found an infinite

class of Sasaki-Einstein (SE) metrics; previous to their work, only two explicit SE

metrics were known. These metrics are denoted yp,q and depend only on two integers

p and q, where 0 < q < p. In related work, Martelli and Sparks [134] found the toric

descriptions of the yp,q theories, and noted that some of these spaces were already

familiar, although their metrics had not previously been known. One of the simplest

examples is y2,1 , which turns out to be the SE manifold which is the base of the

complex cone over the first del Pezzo surface. More progress was made when the

gauge theory duals of the yp,q spaces were found [14], providing an infinite class of

AdS/CFT dual pairs. This piece of work was the subject of Chapter 10. These

theories have survived many nontrivial checks of the AdS/CFT correspondence, such

as central charge and R-charge computations from volume calculations on the string

side and a-maximization [102] on the gauge theory side. Inspired by these gauge

theories, there have since been many new and startling checks of AdS/CFT, such as

the construction of gravity duals for cascading RG flows [92]. Thus, there has been

remarkable progress recently in the study of toric Calabi-Yau manifolds and their dual

gauge theories; however, a general procedure for constructing the dual to a given CY

is still unknown. In this work, we will shed some light on this problem.
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One of the results of the present work is that the ingredients required to uniquely

define an Jf = 1 quiver gauge theory - gauge groups, chiral matter fields, and super-

potential terms - may be represented in terms of nodes, lines and faces of a single

object, which is the quiver redrawn as a planar graph on the torus (for the quiver

theories corresponding to toric singularities). This point will be crucial in the con-

struction of the quiver gauge theory using dimers, as will be discussed in detail in

section 11.3.

One may also ask how these theories may be constructed in string theory by

using branes, as explained above for the case of theories with 8 supercharges. A key

observation is that if a collection of m NS5-branes is T-dual to an orbifold C3/2m,

then a collection of n NS5-branes intersecting with n NS5'-branes with both sets of

NS5-branes sharing 3+1 space-time directions, is equivalent under two T-dualities to

an orbifold singularity of type C3/(2Zm x Zn). When D3-brane probes are added over

the orbifold, they are mapped to D5-branes suspended between the NS5-branes on the

T-dual configuration. Indeed, a study of these theories using the Brane Box Models

of [87] was done in [84]. Another important development in the brane construction

of quiver gauge theories with 4 supercharges was made in [2] where it was realized

that the quiver gauge theories which live on D-branes probing the conifold and its

various orbifolds are constructed by "Brane Diamonds." Brane diamonds were also

applied to the study of gauge theories for D-branes probing complex cones over del

Pezzo surfaces [48].

In the present chapter, we consider a more intricate configuration of branes. First,

we take an NS5-brane which extends in the 0123 directions and wraps a complex curve

f(x, y) = 0, where x and y are holomorphic coordinates in the 45 and 67 directions,

respectively. We typically depict this by drawing this curve in the 4 and 6 directions,

where it looks like a network that separates the plane into different regions, i.e. a

tiling. We do not explicitly write down the equation for this curve, but do note that

a requirement of our construction is that the tiling of the 46 plane is such that all

polygons have an even number of sides. The 4 and 6 directions are compact, forming

a torus, and we take the D5 branes to be finite in these directions (but extended
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in the 0123 directions) and bounded by the curve which is wrapped by the NS5-

brane. As above, this brane configuration results in a quiver gauge theory living

on the D5-branes. The rules for computing this quiver theory turn out to follow

similar guidelines to those in the constructions mentioned above: gauge groups are

faces of the intersecting brane configuration, bifundamental fields arise across NS5-

branes which are lines in the brane configuration, and superpotential terms show up

as vertices.

It is important to note that the Brane Box Models were formulated using periodic

square graphs for encoding the rules of the quiver gauge theory, but it will become

clear in this chapter that the correct objects to use to recover that construction are

hexagonal graphs, and in fact the brane boxes are recovered in a degenerate limit in

which two opposite edges of the hexagons are reduced to zero length.

We observe that in both the brane box and diamond constructions, the brane

configurations are related to the quiver gauge theory in the following sense: faces

in the brane configuration are mapped to nodes in the quiver, lines are mapped to

orthogonal lines and nodes are mapped to faces. The statement of this duality will

be formulated precisely in Section 11.2.1, and will prove to be a very powerful tool

in generalizing these constructions to a larger class of quiver gauge theories (those

whose moduli space describe non-compact toric CY 3-folds).

Thus, we find that it is possible to encode all the data necessary to uniquely

specify an /' = 1 quiver gauge theory in a tiling of the plane. The dual graph is then

essentially the quiver theory, written in such a way as to encode the superpotential

data as well. As we will now see, however, this tiling encodes much more than just

the quiver theory - it also encodes the dual toric geometry! The central object for

deriving the toric geometry is the dimer, which we now explain.

Since we have taken our brane tiling to consist of polygons with an even number

of sides, and all cycles of our periodic graph have even length, it is always possible to

color the nodes of the graph with two different colors (say, black and white) in such a

way that any, given black node is adjacent only to white nodes, and vice versa. Such

graphs are well-known in condensed matter physics, where the links between black
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nodes and white nodes are called dimers; one may think of a substance formed out of

two different type of atoms (e.g. a salt), where a dimer is just an edge of the lattice

with a different atom at each end. One can allow bonds between adjacent atoms to

break and then re-form in a possibly different configuration; the statistical mechanics

of such systems has been extensively studied.

Recently, dimers have shown up in the context of string theory on toric Calabi-

Yau manifolds. In [144], the authors propose a relationship between the statistical

mechanics of dimer models and topological strings on a toric non-compact Calabi-Yau.

The relationship between toric geometry and dimer models was developed further in

[82], where it was shown how it is possible to obtain toric diagrams and GLSM

multiplicities via dimer techniques. In general, however, we expect that one should

be able to derive the quiver gauge theory dual to any given toric geometry. This is

the purpose of the present work, to describe how dimer technology may be used to

efficiently derive both the quiver theory and the toric geometry, thus giving a fast

and straightforward way of deriving AdS/CFT dual pairs.

We can now state that the 3-dimensional McKay correspondence is represented

in string theory as a physical brane configuration of an NS5-brane spanning four

dimensions and wrapping an holomorphic curve on four other dimensions, and D5-

branes. Alternatively, we can use a twice T-dual (along the 4 and 6 directions)

description: the McKay correspondence is realized by the quiver gauge theory that

lives on D-branes probing toric CY 3-folds. As a byproduct of these two equivalent

representations we can argue that it is possible to find NS5-brane configurations that

are twice T-dual to these toric singular CY manifolds. One removes the D-branes

and ends up with NS5-branes on one side and singular geometries on the other.

The outline of this chapter is as follows. In Section 11.2, we summarize the basic

features of our construction, and establish the relationship between brane tilings and

quiver gauge theories. We explain the brane construction that leads to the quiver

theory, and detail how it is possible to read off all relevant data about the quiver

theory from the brane tiling. We derive an interesting identity for which the brane

tiling perspective provides a simple proof. We illustrate these ideas with a simple
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example, Model I of del Pezzo 3. Additionally, we describe a new object, the "periodic

quiver," which is the dual graph to the brane tiling and neatly summarizes the quiver

and superpotential data for a given gauge theory.

In Section 11.3, we describe the utility of the dimer model and review the rela-

tionship between dimers and toric geometries. We begin by summarizing relevant

facts about dimer models which we will use repeatedly throughout the chapter. The

central object in any computation is the Kasteleyn matrix, which is a weighted ad-

jacency matrix that is easy to derive. We do a simple computation as an example,

which illustrates the basic techniques required to compute the toric geometry related

to any given brane tiling.

Section 11.4 provides the relationship between dimers and fields in the related

gauged linear sigma model. We review the relationship of toric geometries to GLSMs,

and describe how the dimer model allows one to compute multiplicities of GLSM.

These techniques are illustrated with an example, that of the Suspended Pinch Point

(SPP) [138].

Section 11.5 briefly describes how massive fields arise via the brane tiling descrip-

tion, and comments on the process of integrating out these fields from the perspective

of both the brane tiling and the Kasteleyn matrix. Section 11.6 talks about Seiberg

duality from three complementary perspectives: the brane tiling, the quiver, and the

Kasteleyn matrix. We illustrate these viewpoints with Fo as an example.

Section 11.7 gives two descriptions of the process of partial resolution of orbifold

singularities, both from the brane tiling and quiver perspectives. In Section 11.8,

we describe how one may construct brane tilings which produce identical quivers

but different superpotentials; this is illustrated via the quiver from Model II of dP 3.

In Section 11.9, we present many different examples of brane tilings, and compute

the Kasteleyn matrix and dual toric geometry in each example. These computations

duplicate known results, as well as generate new ones. Most notably, we find that toric

diagrams with specified GLSM multiplicities are not in one-to-one correspondence

with toric phases of quiver gauge theories, as had previously been suspected. This

computation is done for Pseudo del Pezzo 5, where we find two toric phases with
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identical GLSM multiplicities. Finally, in Section 11.10, we briefly conclude and

present some suggestions for further study.

11.2 Brane tilings and quivers

In this section we introduce the concept of brane tilings. They are Type IIB config-

urations of NS5 and D5-branes that generalize the brane box [84] and brane diamond

[2] constructions and are dual to gauge theories on D3-branes transverse to arbitrary

toric singularities. From now on, we proceed assuming that the dual geometry is toric

and introduce the relevant brane configurations. The reason for the requirement that

the corresponding singularities are toric will become clear in this and subsequent

sections.

In our construction, the NS5-brane extends in the 0123 directions and wraps a

holomorphic curve embedded in the 4567 directions (the 46 directions are taken to

be compact). D5-branes span the 012346 directions and stretch inside the holes in

the NS5 skeleton like soap bubbles. The D5-branes are bounded by NS5-branes in

the 46 directions, leading to a 3+1 dimensional theory in their world-volume at low

energies. The branes break supersymmetry to 1/8 of the original value, leading to 4

supercharges, i.e. jr = 1 in four dimensions. In principle, there can be a different

number of D5-branes N. in each stack. This would lead to a product gauge group

f, SU(Ni). Strings stretching between D5-branes in a given stack give rise to the

gauge bosons of SU(Ni) while strings connecting D5-branes in adjacent stacks I and

J correspond to states in the bifundamental of SU(N1) x SU(NJ). We will restrict

ourselves to the case N. = N for all I. Theories satisfying this restriction on the

ranks were dubbed toric phases in [43], We should emphasize though, that there

are quivers that are dual to toric geometries but that do not satisfy this condition.

It is worthwhile here to note a few properties of NS5-branes that are relevant

for this construction. As is well-known, an NS5-brane backreacts on its surrounding

spacetime to create a throat geometry. When we have two sets of D5-branes ending

on different sides of the NS5-brane, the throat separates the two sets of branes. The
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D-branes may then only interact via fundamental strings stretching between them;

these are the bifundamentals in the quiver gauge theory. Initially it might seem like

there are two conjugate bifundamentals which pair up to form hypermultiplets, but

in this case, where the NS5-brane wraps a holomorphic curve, the orientation of the

NS5-brane projects one of these out of the massless spectrum [42]. Thus the resulting

quiver theory will generically have arrows pointing in only one direction (it is easy to

get quivers with bidirectional arrows as well, but these will instead come from strings

stretching across different NS5-branes rather than both orientations across the same

NS5-brane).

The important physics is captured by drawing the brane tiling in the 46 plane.

The NS5-branes wrap a holomorphic curve, the real section of which is a graph G in

the 46 plane, which we will later show must be bipartite. A graph is bipartite when

its nodes can be colored in white and black, such that edges only connect black nodes

to white nodes and vice versa. By construction, G is Z2-periodic under translations

in the 46 plane since these directions are taken to be compact.

We will see in the next section that the existence of G is associated to the du-

ality between quiver gauge theories and dimer models. Given a brane tiling, it is

straightforward to derive its associated quiver gauge theory. The brane tiling encodes

both the quiver diagram and the superpotential, which can be constructed using the

following dictionary (see the following section):
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Brane tiling String theory Gauge theory

2n-sided face D5-branes Gauge group with n flavors

Edge between two String stretched between D5- Bifundamental chiral multiplet

polygons I and J branes through NS5 brane. between gauge groups I and J;

We orient the arrow such that

the white node is to the right.

k-valent vertex Region where k strings Interaction between k chiral

interact locally. multiplets, i.e. order k term in

the superpotential. The signs for

the superpotential terms are

assigned such that white and

black nodes correspond to plus

and minus signs respectively.

Conversely, we can use this set of rules to construct a brane tiling from a given quiver

with a superpotential. In the following section we will make this correspondence

precise.

Several interesting consequences follow naturally from this simple set of rules.

Some of them are well known, while others are new. The fact that the graphs under

consideration are bipartite implies that each edge has a black and a white endpoint.

Edges correspond to bifundamental fields while nodes indicate superpotential terms,

with their sign determined by the color of the node. Thus, we conclude that each

bifundamental field appears exactly twice in the superpotential, once with a plus and

once with a minus sign. We refer to this as the toric condition and it follows from

the underlying geometry being an affine toric variety [43].

The total number of nodes inside a unit cell is even (there are equal numbers

of black and white nodes). Thus, we conclude that the total number of terms in

the superpotential of a quiver theory for a toric singularity is even. Although this

condition is reminiscent of the toric condition, it is different. It is comforting to see

that it is satisfied by all the examples in the literature (orbifolds, del Pezzos, Fo,
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pseudo-del Pezzos, SPP, ypq, X p' q, etc).

Bidirectional arrows and even adjoint fields in the quiver can be simply imple-

mented in this construction, by suitably choosing the adjacency of polygons. We will

present an example containing both situations in section 11.4.1.

Let us define

Brane tiling

F: number of faces

E: number of edges

N: number of nodes

Gauge theory

Ng: number of gauge groups

Nf: number of fields

Nw: number of superpotential terms

According to the dictionary above, F = Ng, E = Nf and N = Nw. Applying Euler's

formula to a unit cell in the graph, we see that F + N - E = 2g - 2 = 0 (where

we have used that the graph lives on the torus), which translates into the following

identity for quiver theoriesl:

Ng + Nw - Nf = 0. (11.2.1)

The geometric intuition we gain when using brane tilings make the derivation of this

remarkable identity straightforward.

It is interesting to point out here that the Euler formula has another interpretation.

Let us assign an R-charge to each bifundamental field in the quiver, i.e. to each edge

in the brane tiling. At the IR superconformal fixed point, we know that each term in

the superpotential must satisfy

E R = 2 for each node (11.2.2)
iEedges around node

where the sum is over all edges surrounding a given node. We can sum over all

the nodes in the tiling, each of which corresponds to a superpotential term, to get

Zedges,nodes R = 2N. Additionally, the beta function for each gauge coupling must

'This identity was derived empirically with Barak Kol using the known examples. The brane
tiling gives a proof for a generic /' = 1 toric theory.
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vanish,

2 + (R/- 1) = 0 for each face (11.2.3)
iEedges around face

where the sum is over all edges surrounding a given face. But we can now sum this

over all the faces in the tiling to get 2F + 2N - 2E = 0, where we have used the fact

that the double sum hits every edge twice, and (11.2.2). The sums Zedges,nodes R and

edges,faces R are equal because each double sum has the R-charge of each bifunda-

mental contributing twice. Thus we see that the requirements that the superpotential

have R(W) = 2 and the beta functions vanish (i.e. that the theory is superconformal

in the IR) imply that the Euler characteristic of the tiling is zero. This condition is

the analog of a similar condition for superconformal quivers discussed in [103, 15].

Conversely we see that, in the case in which the ranks of all gauge groups are equal,

the construction of tilings over Riemann surfaces different from a torus leads to non-

conformal gauge theories.

Let us illustrate the concepts introduced in this section with a simple example,

one of the toric phases of dP3 , denoted Model I in [43]. Its corresponding quiver

diagram is presented in Figure 11-1 and its superpotential is

W = X12X23X34X45X56X61 - (X23X35X56X62 + X13X34X46X61 + X12X24X45X51)

+(X 13 X 3 5X 5 1 + X 2 4X 4 6X 62 ).

(11.2.4)

The quiver diagram has 6 gauge groups and 12 bifundamental fields. Hence, the

brane configuration will have 6 faces and 12 edges in a unit cell. The superpotential

(11.2.4) has 1 order six, 3 quartic and 2 cubic terms. According to (11.2.1) we thus

have 1 6-valent, 3 4-valent and 2 3-valent nodes. The final brane tiling is shown in

Figure 11-1.

11.2.1 Unification of quiver and superpotential data

An An = 1 quiver gauge theory is described by the following data: a directed graph

representing the gauge groups and matter content, and a set of closed paths on
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1

6

5

Figure 11-1: A finite region in the infinite brane tiling and quiver diagram for Model
I of dP3. We indicate the correspondence between: gauge groups -+ faces, bifunda-
mental fields edges and superpotential terms <- nodes.

the graph representing the gauge invariant interactions in the superpotential. An

equivalent way to characterise this data is to view it as defining a CW-complex; in

other words, we may take the superpotential terms to define the 2-dimensional faces

of the complex bounded by a given set of edges and vertices (the 1-skeleton and

O-skeleton of the complex). Thus, the quiver and superpotential may be combined

into a single object, a planar tiling of a 2-dimensional (possibly singular) space. Toric

quiver theories, as we will see, are defined by planar tilings of the 2-dimensional torus.

This is a key observation. Given the presentation of the quiver data (quiver graph

and superpotential) as a planar graph tiling the torus, the bipartite graph appearing

in the dimer model (the brane construction of the previous section) is nothing but

the planar dual of this graph! Moreover, as we have argued, this dual presentation

of the quiver data is physical, in that it appears directly in string theory as a way

to construct the 3 + 1-dimensional quiver gauge theory in terms of intersecting NS5

and D5-branes. The logical flow of these ideas is shown in Figure 11-2. Some of

the concepts in this diagram have not yet been discussed in this chapter, but will be

addressed shortly.

Let us see how the properties of the brane tiling arise from those of the quiver
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matrix]

Figure 11-2: The logical flowchart.

theory. We will show that we can think of the superpotential and quiver together as

a tiling of a two-dimensional surface, where bifundamentals are edges, superpotential

terms are faces, and gauge groups are nodes. We refer to this as the "periodic quiver"

representation. The toric condition, which states that each matter field appears in

precisely two superpotential terms of opposite sign, means that the faces all glue

together in pairs along the common edges. Since every field is represented exactly

twice in the superpotential, this tiling has no boundaries. Thus, the quiver and

its superpotential may be combined to give a tiling of a Riemann surface without

boundary; this periodic quiver gives a discretization of the torus. Since the Euler

characteristic of the quiver is zero for toric theories (as discussed in the previous

section), the quiver and superpotential data are equivalent to a planar tiling of the

two-dimensional torus. See Figure 5 of [45] for an early example of a periodic quiver.

This tiling has additional structure. The toric condition implies that adjacent

faces of the tiling may be labelled with opposite signs according to the sign of the

corresponding term in the superpotential. Thus, under the planar duality the vertices

of the dual graph may be labelled with opposite signs; this is the bipartite property of

the dimer model. Since the periodic quiver is defined on the torus, the dual bipartite

graph also lives on the torus.

Anomaly cancellation of the quiver gauge theory is represented by the balancing

of all incoming and outgoing arrows at every node of the quiver. In the dual graph,
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bipartiteness means that the edges carry a natural orientation (e.g. from black to

white). This induces an orientation for the dual edges, which transition between

adjacent faces of the brane tiling (vertices of the planar quiver). For example, these

dual arrows point in a direction such that, looking at an arrow from its tail to its head,

the black node is to the left and the white node is to the right (this is just a convention

and the opposite choice is equivalent by charge conjugation). Arrows around a face

in G alternate between incoming and outcoming arrows of the quiver; this is how

anomaly cancellation is manifested in the brane tiling picture. Alternatively, we

can say that arrows "circulate" clockwise around white nodes and counterclockwise

around black nodes.

5,9

6,10

Quiver

l ts

Planar
2,4 -

quiver

l TIC

Duagraph

3l ,0 4
5T A 9 i5

1 ° v
6 D 10 C i6

4

Figure 11-3: The quiver gauge theory associated to one of the toric phases of the cone
over F. In the upper right the quiver and superpotential (11.2.6) are combined into
the periodic quiver defined on T2 . The terms in the superpotential bound the faces of
the periodic quiver, and the signs are indicated and have the dual-bipartite property
that all adjacent faces have opposite sign. To get the bottom picture, we take the
planar dual graph and indicate the bipartite property of this graph by coloring the
vertices alternately. The dashed lines indicate edges of the graph that are duplicated
by the periodicity of the torus. This defines the brane tiling associated to this K/ = 1
gauge theory.
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Figure 11-3 shows an example of the periodic quiver construction for the quiver

gauge theory associated to one of the toric phases of the Calabi-Yau cone over F.

The superpotential for this theory is [46]

W =: X 1X1OX8 - X 3 X10X 7 - X 2 X 8X9 - X 1X 6 X 12 (11.2.5)

4- X3X6X11 + X4X7X9 + X2X12 X5 - x 4x 11x 5.

11.3 Dimer model technology

Given a bipartite graph, a problem of interest to physicists and mathematicians is

to count the number of perfect matchings of the graph. A perfect matching of a

bipartite graph is a subset of edges ("dimers") such that every vertex in the graph is an

endpoint of precisely one edge in the set. A dimer model is the statistical mechanics

of such a system, i.e.. of random perfect matchings of the graph with assigned edge

weights. As discussed in the previous section, we are interested in dimer models

associated to doubly-periodic graphs, i.e. graphs defined on the torus T2. We will

now review some basic properties of dimers; for additional review, see [82, 117].

Many important properties of the dimer model are governed by the Kasteleyn

matrix K(z,w), a weighted, signed adjacency matrix of the graph with (in our

conventions) the rows indexed by the white nodes, and the columns indexed by the

black nodes. It is constructed as follows:

To each edge in the graph, multiply the edge weight by +1 so that around every

face of the graph the product of the edge weights over edges bounding the face has

the following sign

sign(H e) { +1 if (#edges)= 2 mod 4
i -1 if (# edges)= 0 mod 4

It is always possible to arrange this [113].

The coloring of vertices in the graph induces an orientation to the edges, for
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example the orientation "black" to "white". This orientation corresponds to the

orientation of the chiral multiplets of the quiver theory, as discussed in the previous

section. Now construct paths yw,, y in the dual graph (i.e. the periodic quiver) that

wind once around the (0, 1) and (1, 0) cycles of the torus, respectively. We will refer

to these fundamental paths as flux lines. In terms of the periodic quiver, the paths y

pick out a subset of the chiral multiplets whose product is gauge-invariant and forms

a closed path that winds around one of the fundamental cycles of the torus. For every

such edge (chiral multiplet) in G crossed by y, multiply the edge weight by a factor

of w or 1/w (respectively z, 1/z) according to the relative orientation of the edges in

G crossed by y.

The adjacency matrix of the graph G weighted by the above factors is the Kaste-

leyn matrix K(z, w) of the graph. The determinant of this matrix P(z, w) = det K

is a Laurent polynomial (i.e. negative powers may appear) called the characteristic

polynomial of the dimer model

P(z, w) = cijziw. (11.3.7)
i,j

This polynomial provides the link between dimer models and toric geometry [82].

Given an arbitrary "reference" matching Mo on the graph, for any matching M

the difference M - Mo defines a set of closed curves on the graph in T2. This in turn

defines a height function on the faces of the graph: when a path in the dual graph

crosses a curve, the height is increased or decreased by 1 according to the orientation

of the crossing. A different choice of reference matching Mo shifts the height function

by a constant. Thus, only differences in height are physically significant.

In terms of the height function, the characteristic polynomial takes the following

form:

P(z, w) = zhzowh a E Ch ,h (-l)hz+h+hzhhzwh (11.3.8)

where Ch ,hy are integer coefficients that count the number of perfect matchings cor-

responding to a height change (h, hy) around the two fundamental cycles of the

317



torus.

The overall normalization of P(z, w) is not physically meaningful: since the graph

does not come with a prescribed embedding into the torus (only a choice of period-

icity), the paths y,w winding around the primitive cycles of the torus may be taken

to cross any edges en route. Different choices of paths y multiply the characteristic

polynomial by an overall power ziwi, and by an appropriate choice of path P(z, w)

can always be normalized to contain only non-negative powers of z and w.

The Newton polygon N(P) is a convex polygon in 2Z2 generated by the set of

integer exponents of the monomials in P. In [82], it was conjectured that the Newton

polygon can be interpreted as the toric diagram associated to the moduli space of

the quiver gauge theory, which by assumption is a non-compact toric Calabi-Yau 3-

fold. In the following section, we will prove that the perfect matchings of the dimer

model are in 1-1 correspondence with the fields of the gauged linear sigma model that

describes the probed toric geometry.

The connection between dimer models and toric geometry was explored in [82].

In that paper the action of orbifolding the toric singularity was understood in terms

of the dimer model: the orbifold action by Zm x Zn corresponds to enlarging the

fundamental domain of the graph by m x n copies, and non-diagonal orbifold actions

correspond to a choice of periodicity of the torus, i.e. an offset in how the neighbor-

ing domains are adjoined. Furthermore, results analogous to the Inverse Algorithm

were developed for studying arbitrary toric singularities and their associated quiver

theories. In this chapter we derive and significantly extend the results of [82], and

place them into the context of string theory.

Let us illustrate how the computation of the Kasteleyn matrix and the toric di-

agram works for the case of Model I of dP3. The brane configuration is shown in

Figure 11-4a. The corresponding unit cell is presented in Figure 11-4b. As expected,

it contains one valence 6, three valence 4 and two valence 3 nodes. It also contains

twelve edges, corresponding to the twelve bifundamental fields in the quiver.

From the unit cell, we derive the following Kasteleyn matrix
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a, b)

I I, I
11

2 6

Figure 11-4: a) Brane tiling for Model I of dP3 with flux lines indicated in red. b) Unit
cell for Model I of dP3. We show the edges connecting to images of the fundamental
nodes in green. We also indicate the signs associated to each edge as well as the
powers of w and z corresponding to crossing flux lines.

We observe

fields. This

2 4 6

1 1+w 1-zw 1+z
K = (11.3.9)

3 1 -1 -w-1

5 -z -1 -1 1

that it has twelve monomials, associated with the twelve bifundamental

matrix leads to the characteristic polynomial

P(z, w) = w-z - - z- - - 6 - w - z + wz. (11.3.10)

The toric data corresponding to this gauge theory can be read from this polynomial,

and is shown in Figure 11-5.

The Kasteleyn matrix is a square matrix whose size is equal to half the total

number of points in the unit cell. Thus, for a given toric quiver K is a Nw/2 x

Nw/2 matrix. This is remarkable, since this size can be very modest even for very

complicated gauge theories. The simplicity of computing the toric data using this

procedure should be contrasted with the difficulty of the Forward Algorithm.

This procedure has a profound impact on the study of quiver theories for arbi-

319

1



z

W

Figure 11-5: Toric diagram for Model I of dP3 derived from the characteristic poly-
nomial in (11.3.10).

trary toric singularities. Given a candidate quiver theory for D3-branes over some

geometry, instead of running the lengthy Forward Algorithm, one simply constructs

the associated brane tiling using the rules of Section 11.2 and computes the corre-

sponding characteristic polynomial. We can thus refer to the determination of toric

data from brane tilings as the Fast Forward Algorithm 2 . This simplification will

become clear when we present explicit results for infinite families of arbitrarily large

quivers in Sections 11.9.3.

11.4 An explicit correspondence between dimers

and GLSMs

Following [82], we have argued in the previous section that the characteristic poly-

nomial encodes the toric data of the probed geometry. We now explore the reason

for this connection, establishing a correspondence between fields in the gauged linear

sigma model description of the singularity and perfect matchings in the brane tiling.

Given a toric Calabi-Yau 3-fold, the principles of determining the gauge theory

on the world-volume of a stack of D3-brane probes are well established. Conversely,

the determination of the toric data of the singularity from the gauge theory is also

clear. This procedure has been algorithmized in [45] and dubbed the Forward Algo-

2A name coined by Pavlos Kazakopoulous.
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rithm. Nevertheless, although a general prescription exists, its applicability beyond

the simplest cases is limited due to the computational complexity of the algorithm.

Let us review the main ideas underlying the Forward Algorithm (for a detailed

description and explicit examples, we refer the reader to [45]). The starting point is

a quiver with r SU(N) gauge groups and bifundamentals Xi, i = 1,..., m, together

with a superpotential. The toric data that describes the probed geometry is computed

using the following steps:

* Use F-term equations to express all bifundamental fields Xi in terms of r + 2

independent variables vj. The vj's can be simply equal to a subset of the

bifundamentals. The connection between these variables and the original bi-

fundamental fields is encoded in an m x (r + 2) matrix K (this matrix should

not be confused with the Kasteleyn matrix; which of them we are talking about

will be clear from the context), such that

Xi= Fvj, i = 1,2,...,m, j=1,2,...,r+2. (11.4.11)

Since the F-term equations take the form of a monomial equated to another

monomial, it is clear that generically Kij has negative entries (i.e. negative

powers of the vj can appear in the expressions for the Xi).

* In order to avoid the use of negative powers, a new set of variables pa, a =

1,..., c, is introduced. The number c is not known a priori in this approach,

and must be determined as part of the algorithm. We will later see that it

corresponds to the number of perfect matchings of G, the periodic bipartite

graph dual to the quiver.

* The reduction of the c pa's to the r + 2 independent variables vi is achieved by

introducing a U(1)c-(r+2 ) gauge group. The action of this group is encoded in

a (c - r - 2) x c charge matrix Q.

* The original U(1)r-1 action (one of the r U(1)'s is redundant) determining the

D-terms is recast in terms of the p, by means of a (r - 1) x c charge matrix QD.
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. Q and QD are combined in the total matrix of charges Qt. The U(1) actions of

the symplectic quotient defining the toric variety correspond to a basis of linear

relations among the vectors in the toric diagram. Thus, the toric diagram

corresponds to the columns in a matrix Gt such that Gt = (ker Qt)T.

At this stage, it is important to stress some points. The main difficulty in the

Forward Algorithm is the computation of T, which is used to map the intermediate

variables vi to the GLSM fields PA. Its determination involves the computation of

a dual cone, consisting of vectors such that K T > 0. The number of operations

involved grows drastically with the "size" (i.e. the number of nodes and bifundamen-

tal fields) of the quiver. The computation becomes prohibitive even for quivers of

moderate complexity. Thus, one is forced to appeal to alternative approaches such

as (un-)Higgsing [44]. Perhaps the most dramatic examples of this limitation are

provided by recently discovered infinite families of gauge theories for the yp,q [14]

and XP q [81] singularities. The methods presented in this section will enable us to

treat such geometries. This also represents a significant improvement over the brute

force methods of [82], since the relevant brane tiling may essentially be written down

directly from the data of the quiver theory.

It is natural to ask whether the possibility of associating dimer configurations

to a gauge theory, made possible due to the introduction of brane tilings, can be

exploited to find a natural set of variables playing the role of the p"'s, overcoming

the main intricacies of the Forward Algorithm. This is indeed the case, and we now

elaborate on the details of the dimer/GLSM correspondence. The fact that the

GLSM multiplicities are counted by the cij coefficients in the characteristic polynomial

provides some motivation for the correspondence.

We denote the perfect matchings as j3a. Every perfect matching corresponds to a

collection of edges in the tiling. Hence, we can define a natural product between an

edge e, corresponding to a bifundamental field Xi, and a perfect matching Pac

< e,ip >= 1 ifeiEi3: (11.4.12)
322 if ei Sa
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Given this product, we propose the following mapping between bifundamental

fields and the perfect matching variables p,

Xi = p<ei,'P> (11.4.13)

According to (11.4.12), the Xi involve only possitive powers of the P,. We will

now show that F-term equations are trivially satisfied when the bifundamental fields

are expressed in terms of perfect matchings variables according to (11.4.13). For any

given bifundamental field X0, we have

W = XoPi(Xi) - XP 2(Xi) +... (11.4.14)

where we have singled out the two terms in the superpotential that involve Xo. P1 (Xi)

and P2(Xi) represent products of bifundamental fields. The F-term equation associ-

ated to Xo becomes

axoW = 0 P1(Xi) = P2(Xi). (11.4.15)

This condition has a simple interpretation in terms of the bipartite graph, as shown

in Figure 11-6.

P1(X i) - -P2(X ) =

Figure 11-6: F-term equations from the brane tiling perspective.

After excluding the edge associated to X0, the product of edges connected to node

I has to be equal to the product of edges connected to node 2. In terms of perfect

matchings, (11.4.15) becomes

HI jIP<ei,> -=I jp<eip,> . (11.4.16)
iEP1 a iEP2 a
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Every time that a given pa appears on the L.H.S. of (11.4.16), it has to appear on the

R.H.S. Here is where the fact that the Pl.'s are perfect matchings becomes important:

since nodes 1 and 2 are separated exactly by one edge (the one corresponding to X0 )

every time a perfect matching contains any of the edges in P1, it contains one of the

edges in P2. This is necessary for the pe to be a perfect matching (nodes 1 and 2 have

to be covered exactly once). Thus, perfect matchings are the appropriate choice of

variables that satisfy F-term conditions automatically. We conclude that the perfect

matchings can be identified with the GLSM fields P,, = p,. Then, the matrix that

maps the bifundamental fields to the GLSM fields is

(KT)i, =< ei, p > . (11.4.17)

11.4.1 A detailed example: the Suspended Pinch Point

Let us illustrate the simplifications achieved by identifying GLSM fields with perfect

matchings with an explicit example. To do so, we choose the Suspended Pinch Point

(SPP) [138]. The SPP has a quiver shown in Figure 11-7 with superpotential

W = X21X12X23X32 - X32X23X31X13 + X13X31Xll - X12X21X11. (11.4.18)

3 2

Figure 11-7: Quiver diagram for the SPP.

It is interesting to see how our methods apply to this example, since it has both

adjoint fields and bidirectional arrows. Figure 11-8 shows the brane tiling for the
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SPP. The adjoint field in the quiver corresponds to an edge between two faces in

the tiling representing the first gauge group. The Kasteleyn matrix is

Figure 11-8: Brane tiling for the SPP.

2 4

3 1 l+w - 1

from which we determine the characteristic polynomial

(11.4.19)

(11.4.20)P(z, w) = W- 2 + 2w-1 + 1 - W-1z - Z.

From it, we construct the toric diagram shown in Figure 11-9.

P4

2X3 

pi P.P,

Ps

P3 W

Figure 11-9: Toric diagram for the SPP. We indicate the perfect matchings corre-
sponding to each node in the toric diagram.

There are six perfect matchings of the SPP tiling. We show them in Figure 11-10.

Setting a reference perfect matching, we can compute the slope (ht, hz) for each of

them, i.e. the height change when moving around the two fundamental cycles of the

torus.

325

Z i



- ,- 4---- -.( - 3 2

(0,0)

(1,0)

p5 0---- *- -"-
- -

(0 1);--
(0,1)

-"o - ----- e

4 *-- -
(1,0)

o */-

(2,0)
---or --

P6 0- -

P6 , °o--- * ---

--- 2 -t -t :C -3- -
- o(1,1 ---)

(1,1)

Figure 11-10: Perfect matchings for the SPP. We indicate the slopes (hw, he), which
allow the identification of the corresponding node in the toric diagram as shown in
Figure 11-9.

Using (11.4.12) and (11.4.17), it is straightforward to determine the KT matrix.

/

X]1

X]2

XI2 1

X3 1

X]3

X 23

\ -
Pi P2 P3 P4 P5 P6

0 0 0 0 1 1

1 1 0 0 0 0

0 0 1 1 0 0

1 0 1 0 0 0

0 1 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1
/

(11.4.21)

This agrees with the computation of this matrix done in Section 3.2 of [45].
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11.5 Massive fields

By definition, massive fields appear in the superpotential as quadratic terms. There-

fore they appear in the brane tiling as bivalent vertices. In the IR limit of the gauge

theory, these massive fields become non-dynamical and should be integrated out using

their equations of motion. We now show how to perform this procedure on the brane

tiling and Kasteleyn matrix.

By performing a suitable relabelling of fields, one can always write the super-

potential as follows (up to an overall minus sign if the quadratic term comes with

opposite sign):

W((i) = 1I2 - lPl()i) - 2P2()i) + ... (11.5.22)

where the omitted terms do not involve 1i, )2, and P1, P2 are products of two

disjoint subsets of the remaining 1( that do not include ( 1i or T(2. This structure

follows from the toric condition, which specifies that each field appears exactly twice

in the superpotential, with terms of opposite signs.

Integrating out 4 1 and )2 by their equations of motion gives

W((I)) = -P(i)P 2((i) +... (11.5.23)

This operation takes the form shown in Figure 11-11 and collapses two nodes sepa-

rated by a bivalent node of the opposite color into a single node of valence equal to

the sum of the valences of the original nodes.

The operation of integrating out a massive field can also be implemented in terms

of the Kasteleyn matrix. From this perspective, it is simply row or column reduction of

the matrix on rows or columns with two non-zero entries (or a single entry containing

two summands, if both neighboring vertices to the bivalent vertex are identified in

the graph). In the example of figure 11-11, if the bivalent white node has label 1 and

the adjacent black nodes are 1' and 2' (this can always be arranged by a reordering of

rows or columns, with the corresponding action of (-1) to preserve the determinant),
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P (o)

Figure 11-11: Integrating out
adjacent to a bivalent vertex

a massive field corresponds to collapsing the two vertices
into a single vertex of higher valence.

the Kasteleyn matrix (or its transpose) has the following structure:

(1)
V 1

K=

(2)
V 1

V(1) V(2)
V 2 2 (11.5.24)

0 ... 0

9c

(1)
'Un

(2)
Vn

where v(l) and v(2) index the adjacent nodes to 1' and 2', i.e. contain deg(Pl,2()) + 1

non-zero entries.

Performing elementary column operations, the matrix can be brought to the fol-

lowing form3 :

1

K=

0

1 /V(1) (2) (1) V(1) (2)
V2)/v V1 2 V1 -V 2 V1

(1). (1) (2) (1) (1) (2)Vn / 1 Vn 1 -Vn 1

(11.5.25)

O0 ... 0

Jk

3If the sets of vertices v(1), v(2 ) adjacent to vertices 1' and 2' (excluding the common neighbor 1)
are not disjoint, then after integrating out there will be two or more edges between the same pairs
of vertices. In such cases, these multiple edges may be replaced by a single edge carrying the sum of
the weights of the individual edges, since this reproduces the correct counting of matchings of the
graph. This is indeed what happens in the column reduction process, which may produce entries
that are the sum or difference of two non-zero entries.
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and therefore can be reduced in rank without changing the determinant, by deleting

the first row and column, giving the reduced Kasteleyn matrix

(2) (1) (1) (2)
2 1 - V 2 V1 Sk k.

(2) (1) (1) (2)
Vn V1 -Vn V1

corresponding to the graph with bivalent vertex deleted.

11.6 Seiberg duality

11.6.1 Seiberg duality as a transformation of the quiver

We now discuss how one can understand Seiberg duality from the perspective of the

brane tilings. To motivate our construction, let us first recall what happens to a

quiver theory when performing Seiberg duality at a single node. This was first done

for orbifold quivers in [153]. Recall first that since Seiberg duality takes a given gauge

group SU(NT) with Nf fundamentals and Nf anti-fundamentals to SU(Nf - No), if

we want the dual quiver to remain in a toric phase, we are only allowed to dualize on

nodes with Nf = 2Nd. Dualizing on such a node (call it I) is straightforward, and is

done as follows:

* To decouple the dynamics of node I from the rest of the theory, the gauge

couplings of the other gauge groups and superpotential should be scaled to

zero. The fields corresponding to edges in the quiver that are not adjacent to I

decouple, and the edges between I and other nodes reduce from bifundamental

matter to fundamental matter transforming under a global flavor symmetry

group. This reduces the theory to the SQCD-like theory with 2N, flavors and

additional gauge singlets, to which Seiberg duality may be applied.

* Next, reverse the direction of all arrows entering or exiting the dualized node.

This is because Seiberg duality requires that the dual quarks transform in the
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conjugate flavor representations to the originals, and the other end of each

bifundamental transforms under a gauge group which acts as an effective flavor

symmetry group. Because we want to describe our theory with a quiver, we

perform charge conjugation on the dualized node to get back bifundamentals.

This is exactly the same as reversing the arrows in the quiver.

* Next, draw in N bifundamentals which correspond to composite (mesonic)

operators that are singlets at the dualized node I and carry flavor indices in

the pairs nodes connected to I. This is just the usual QiQi -+ Mj "electric

quark -+ meson" map of Seiberg duality, but since each flavor group becomes

gauged in the full quiver theory, the Seiberg mesons are promoted to fields in

the bifundamental representation of the gauge groups.

* In the superpotential, replace any composite singlet operators with the new

mesons, and write down new terms corresponding to any new triangles formed

by the operators above. It is possible that this will make some fields massive

(e.g. if a cubic term becomes quadratic), in which case the appropriate fields

should then be integrated out.

11.6.2 Seiberg duality as a transformation of the brane tiling

By writing the action of Seiberg duality in the periodic quiver picture, one may

derive the corresponding transformation on the dual brane tiling. This operation

may be encoded in a transformation on the Kasteleyn matrix of the graph, and the

recursive application of Seiberg duality may be implemented by computer to traverse

the Seiberg duality tree [56, 55] and enumerate all toric phases 4.

Consider a node in the periodic quiver. For the toric phases of the quiver all nodes

in the quiver correspond to gauge groups of equal rank. If the node has 2 incoming

4 Assuming this graph is connected. In fact, this is not allways the case and it is possible for the
toric phases to appear in disconnected (i.e. connected by non-toric phases) regions of the duality
tree. A simple example of this situation is given by the duality tree of dP 1. This tree is presented
in [56], where the connected toric components where denoted "toric islands". In addition, it is
interesting to see that if the theory is taken out of the conformal point by the addition of fractional
branes, the cascading RG flow can actually "migrate" among these islands [61].
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arrows (and therefore 2 outgoing arrows by anomaly cancellation, for a total of 4

arrows), then for this gauge group Nf = 2N, and Seiberg duality maps

NC - NC = Nf - Nc = N, (11.6.27)

so after the duality the theory remains in a toric phase.

At such a node V, a generic quiver can be represented as in Figure 11-12. The

4 faces Fi adjacent to V share an edge with their adjacent faces, and contain some

number of additional edges.

Figure 11-12: The action of Seiberg duality on a periodic quiver to produce another
toric phase of the quiver. Also marked are the signs of superpotential terms, showing
that the new terms (faces) are consistent with the pre-existing 2-coloring of the global
graph.

The neighboring vertices to V are not necessarily all distinct (they may be identi-

fied by the periodicity of the torus on which the quiver lives). However by the periodic

quiver construction, if there are multiple fields in the quiver connecting the same two

vertices, these appear as distinct edges in the periodic quiver.

Note that the new mesons can only appear between adjacent vertices in the planar

quiver, because the edges connecting opposing vertices do not have a compatible

orientation, so they cannot form a holomorphic, gauge-invariant combination. There

are indeed 4 such arrows that can be drawn on the quiver corresponding to the

2 x 2 = 4 Seiberg mesons.

It is easy to translate this operation to the dual brane tiling. Gauge groups with

Nf = 2No correspond to quadrilaterals in the tiling. Performing Seiberg duality on
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such a face corresponds to the operation depicted in Figure 11-135 .

A

J!
PI 

,/

i'
Figure 11-13: Seiberg duality acting on a brane tiling to produce another toric phase.
This is the planar dual to the operation depicted in Figure 11-12. Whenever 2-valent
nodes are generated by this transformation, the corresponding massive fields can be
integrated out as explained in Section 11.5.

Note that this operation (and the dual operation on the quiver) are local operations

on the graph, in that they only affect a face and its neighbors, and the global structure

of the graph is unaffected6.

As a simple example, consider F. This is a Z2 orbifold of the conifold, and as

such one can simply take the two-cell fundamental domain of the conifold and double

its area to get the F0 fundamental domain; this phase of this theory is given by a

square graph with four different cells. In Figure 11-14, we have drawn this phase of

the theory as well as the phase obtained by dualizing on face 1. The blue dotted

lines are the lines of magnetic flux delineating the fundamental region, which do not

change during Seiberg duality. It is straightforward to see that these regions give the

correct Kasteleyn matrices, and reproduce the known multiplicities of sigma model

fields [82].

It is useful to see how this action of Seiberg duality can be understood from the

brane perspective. Since the area of each cell (volume of the D-brane) is related to the

gauge coupling of the corresponding group [83], one would expect that Seiberg duality

5 The extension to non-toric Seiberg dualities appears obvious on the periodic quiver, although
there are subtleties involved in the precise operation on the Kasteleyn matrix.

6 The transformation that we have identified with the action of Seiberg duality on the bipartite
graph was discussed in [151], where it was referred to as "urban renewal". This work used a different
assignment of weights in the transformed graph in order to keep the determinant (i.e. the GLSM
field multiplicities, in our language) invariant across the operation. This is not what we want for
Seiberg duality, which maps a toric diagram with one set of multiplicities to the same toric diagram
with (in general) different multiplicities.
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Figure 11-14: The operation of Seiberg duality on a phase of F.

could be viewed as a cell shrinking and then growing with the opposite orientation,

e.g. as branes move through one another. It is possible to see this from Figure 11-14:

we can simply take the NS5-branes at the sides of region 1 and pull them through

one another. In doing this, we generate the diagonal lines. Since we are in a toric

phase with Nf = 2N, the ranks of the gauge groups do not change in this crossing

operation and no new branes are created.

11.6.3 Seiberg duality acting on the Kasteleyn matrix

Since the Kasteleyn matrix encodes all of the information about the graph, it is

possible to implement the transformation of Seiberg duality directly in terms of the

matrix. The first step is to identify the candidate (quadrilateral) faces to be dualized.

These form a square in the Kasteleyn matrix, e.g.:

* a ... b

*** ... *
K -. . . . (11.6.28)

*c ... d

However not all such squares represent the boundary of a face, e.g. on small enough

graphs there can be a closed path of 4 edges which winds around the torus (for a closed

cycle of 4 edges there are no other possibilities, as there is no room for additional
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"internal" edges that; would allow the cycle to have zero winding but not bound a

face of the graph). The way to distinguish these cases is to use the magnetic flux

through the cycle; if the cycle has no net winding around the torus then the flux lines

,, ?y must each cross the cycle twice: once to enter and once to leave. Depending

on the orientation with which they cross the edges (which depends on the choice of

paths y and is therefore not invariant), they may each contribute z or 1/z (similarly

w or 1/w), but it is invariantly true that the product of the edges must have even

degree in both z and w. Conversely, a path with net winding around the torus will

have odd degree in one or both of z and w.

Having identified the four edges forming the quadrilateral to be dualized, we wish

to implement the transformation on the underlying graph depicted in Figure 11-13.

This requires the addition of 2 white and 2 black nodes to the graph, increasing the

rank of the adjacency matrix by 2. The large square is removed from the graph by

setting to zero the four edges a, b, c, d found previously, the smaller square is added

in by setting to non-zero the weights in the new 2 x 2 diagonal block, and the new

smaller square is connected to the rest of the graph by adding non-zero elements to

the 2 x n and n x 2 blocks in the rows and columns corresponding to the removed

entries.

Since the new square has opposite orientation with respect to the large square,

the power of z and w along the edges must be inverted. This may change the nor-

malization of the determinant, so to correct this we can rescale a row by zdz and a

column by wdw, where dw,z = deg,,z abcd. Finally, since the graph transformation

adds 2 additional edges to each of the 4 faces adjacent to the square, each of these

faces must gain an additional minus sign on one of the new edges bounding it, in

order to satisfy the sign rules discussed in section 11.3.

Explicitly, the new Kasteleyn matrix corresponding to the Seiberg dual graph can

be written in the following form (where for convenience we have relabeled the rows

and columns to bring the 4 entries corresponding to edges of the quadrilateral into

the bottom-right position):
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(11.6.29)

As discussed above, after Seiberg duality there may be massive fields in the theory

which should be integrated out; we described in section 11.5 how to implement this

on the Kasteleyn matrix.

This form of Seiberg duality is amenable to efficient implementation on computer.

For example, the enumeration of 17 of the toric phases of the y6,0 quiver took several

days using the algorithm of [82] (which was itself much more efficient than the previous

Inverse Algorithm). Since y 6,0 is a Z 6 orbifold of the conifold, it is possible to use the

orbifold formulae in [82] and immediately write down the Kasteleyn matrix for two

of these phases; either one is a suitable starting point for iteration of Seiberg duality,

which produces these 17 phases within a few seconds.

However, this raises an important subtlety: it is possible for two distinct quiver

theories to have the same set of multiplicities of points in the toric diagram. It had

previously been conjectured, based on the results presented in Chapter 5, that the

multiplicities of GLSM fields uniquely characterized the possible toric phases of the

quiver gauge theory, i.e. in dimer language that the characteristic polynomial was

an invariant of the dimer graph up to graph isomorphism (relabelling of fields). In

the example of y 6, 0, only 17 distinct sets of multiplicities are produced, compared

with an expectation of 18 toric phases [81]; this mismatch was noted already in

[82]7. Furthermore, extending the set of data considered to include the set of orders

of terms in the superpotential (which can be read off from the Kasteleyn matrix

7 A simpler example manifesting this collision of multiplicities is that of pseudo-del Pezzo 5: two
of the four toric phases of this theory have the same multiplicities, as we discuss in section 11.9.
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independently of the field labelling), and the set of neighboring toric phases that

are reachable under Seiberg duality, still only distinguishes 17 distinct phases. By

writing down the brane tilings explicitly and reconstructing the quiverss , we were

able to isolate the "missing" 18th phase and confirm that it indeed has the same toric

diagram with multiplicities as one of the remaining 17, but is nonetheless a distinct

quiver theory that is not equivalent under field redefinition. In addition, these two

phases have the same superpotential orders and Seiberg duality neighbors. In Section

11.9.2, we will present a similar example in which two gauge theories produce the

same toric diagram and multiplicities, although in that case the superpotentials will

have different orders and numbers of terms.

How can we understand this situation? It is a known result in mathematics that

the characteristic polynomial (in the usual linear algebra sense) of the adjacency ma-

trix of a graph does not uniquely characterize the graph up to isomorphism: there

may be two distinct graphs with the same characteristic polynomial. The determinant

of the Kasteleyn matrix of the graph is essentially a double characteristic polynomial

(due to the block structure of the matrix, as explained in [82]), so the result explains

the observed non-uniqueness of GLSM multiplicities of the toric quivers. Similarly,

it is believed that there exists no invariant of a graph up to isomorphism that dis-

tinguishes between all non-isomorphic graphs. In other words, the only invariant of

a graph that characterizes it uniquely is the graph itself, and in order to distinguish

between the pathological cases where the would-be-invariants fail, one must resort to

explicit testing of graph isomorphism, which is an expensive (non-polynomial) oper-

ation. Thus, the enumeration of toric phases by testing graph invariants such as the

characteristic polynomial can only produce a lower bound on the number of phases,

and in general there may be phases (or even entire regions of the toric duality graph)

that are missed by this counting.

8 This work was done in conjunction with P. Kazakopoulos.
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11.7 Partial resolution

Many of the first known examples of gauge theories dual to toric geometries were

described by embedding them in orbifolds [45, 46, 12]. For example, partial resolutions

of C3/Z 3 X Z3 give the first three del Pezzo theories and F0, among others. Partially

resolving the orbifold singularity corresponds to turning on Fayet-Iliopoulos terms in

the dual gauge theory, which by the D-flatness conditions gives vacuum expectation

values to bifundamental fields. These vevs then reduce the rank of the gauge group

via the Higgs mechanism. From the standpoint of the toric diagram, this is simply

removing an external point. Doing so decreases the area of the toric diagram, and

consequently decreases the number of gauge groups in the dual superconformal theory.

It is straightforward to see how Higgsing operates from the perspective of the

dimer models. We give a non-zero vev to a bifundamental field, which reduces the

two gauge group factors under which the bifundamental is charged to the diagonal

combination. Hence, Higgsing is nothing more than the removal of an edge from the

fundamental region of the graph, which causes two faces of the graph to become one.

This method was used in [82] to obtain the bipartite graphs corresponding to an

arbitrary toric singularity, but the algorithm presented was computationally expensive

since it was unknown how to identify the desired Higgsing in the quiver side. Using the

duality between the quivers and brane tilings, it is straightforward to identify the edge

of the bipartite graph to be removed that corresponds to the Higgsing of any given

field in the quiver. Thus, the relations between quiver theories under Higgsing may

be easily followed on the dual brane tiling, avoiding any computational difficulties.

Let us begin with Model I of dP3, since we have already studied this tiling in a

previous section. Since this model is perfectly symmetric and contains only single

bifundamental field between any two gauge groups, giving a vev to any field should

result in the same theory. This theory is dP2, which has five nodes in its quiver. One

can easily check that removing any edge from this tiling for dP3 results in the expected

gauge theory. Figure 11-15 illustrates this process: removing the edge between regions

5 and 6 is equivalent to removing the bifundamental between the corresponding nodes.
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5 6

3 2

3 2

Figure 11-15: Removing the edge from between faces 5 and 6 Higgses Model I of dP3

(top) to one of the two toric phases of dP2 (bottom).

The example of taking Model I of dP3 to one of the two toric phases of dP2 (called

Model II in [43]) is particularly simple, since no fields acquire a mass when X5 6 gets

a vev. It is not any more difficult to see what happens when bifundamentals do

become massive, as we can see by considering the dP2 example. We know that the

dP2 theory can be Higgsed to either dP1 or Fo; this corresponds to giving a vev to

X34 (or equivalently X12 by the symmetry of the quiver) or X23 , respectively. In the

brane tiling, we delete the edge between regions 2 and 3 of the tiling. This puts an

isolated node between the two regions. As per our discussion in Section 11.5, we then

simply collapse those two edges to a point, which corresponds to integrating out the

fields X35 and X5 2. See Figure 11-16.

We expect from string theory that we may embed any toric quiver in an appropri-

ately large Abelian orbifold theory of the form C3/Zm x Zn. The tiling for C3 /Zm x Z,

is hexagonal, so one expects that we can reach any tiling by removing edges from

hexagons. This is indeed the case, as noted by [118] and used extensively in [82].
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1 2

4 3

Figure 11-16: The dP2 tiling (top) can be taken to either dP1 (bottom left) or Fo
(bottom right), depending on which edge gets removed. In the Fo tiling, one should
collapse the edge between regions 2 and 4 to a point; this corresponds to the bifun-
damentals on the diagonal of the quiver.

11.8 Different toric superpotentials for a given quiver

Dimer methods can be used to tackle another interesting problem. Given a quiver

diagram, it is sometimes possible to construct more than one consistent toric superpo-

tential. Constructing the corresponding tilings shows immediately how these theories

differ and enables a straightforward computation of their toric data.

Let us consider a concrete example, given by the quiver diagram shown in Fig-

ure 11-17. This is the quiver for Model II of dP3 [43]. This quiver has 6 gauge groups

and 14 bifundamental fields. From (11.2.1), we see that the number of superpotential

terms is Nw = 14 - 6 = 8. There are two possible toric superpotentials consistent

with the node symmetry group of the quiver. They have been considered in [43] and

[49] and are

WA = [X 12X 26X 61 - X 12X 25X 5 1 + X 36X 64X 43 - X35 X54 X4 3]

+[-X 61 X1 3 X3 6 + X5 1Y13X35] + [-X2 6X 64 X4 1Y 13 X32 + X25X54 X41 X1 3X32 ]
(11.8.30)
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Figure 11-17: Quiver diagram admitting two toric superpotentials.

WB = Y13X3 6XY61 + X 13 X35 X5 1 - X61X12X26 - X43X35X54

+X 12X 25X 54 X41 + X 26X 64X 43X 32 - X2 5X 51Y13X3 2 - X64X41X13X36
(11.8.31)

WA corresponds to a brane tiling with six valence-3 and two valence-5 nodes. This

brane tiling is shown in Figure 11-18. For WB the brane tiling has four valence-3 and

four valence-4 nodes and it is shown in Figure 11-19. The Kasteleyn matrices for

Figure 11-18: Brane tiling corresponding to the quiver diagram in Figure 11-17 and
the superpotential in (11.8.30).

these tilings are
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Figure 11-19: Brane tiling corresponding to the quiver diagram in Figure 11-17 and
the superpotential in (11.8.31).

2 4 6 8

1 z-1 0 w

-1 1 1 0

1 -Z

1 n 1 1

KB =

/

1

3

5

7

2 4 6

1 0

z

w-1

1 0

1 1 -1

z -1 z

The corresponding characteristic polynomials are

PA(Z, w) = w-lz - 1 + z- 1 - w-1 + 7 - w + z + wz (11.8.33)

PB(Z, W) = -W- 2 2w- 1 - 1 -w-2z + 7w-lz - Z- w-1 z2 (11.8.34)

From (11.8.33) and (11.8.34), we extract the toric diagrams shown in Figure 11-20.

A) B)

Figure 11-20: Toric
and WB

diagram for the quiver in Figure 11-17 and superpotentials WA

Thus we see that WA leads to Model II of dP3 (the multiplicities of GLSM fields are
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in agreement with the ones derived in [43]) while WB leads to a non-generic blow-up

of CP 2 at three points, denoted PdP3 b in [49].

11.9 Examples

Here we present the brane tiling configurations for several interesting gauge theo-

ries. Many of them can be obtained using the Seiberg duality and partial resolution

ideas discussed in previous sections. When doing so, we generate data on GLSM

multiplicities for all these models.

11.9.1 Del Pezzo 2

There are two toric phases for dP2. Their corresponding quivers and superpotentials

can be found in [43]. We now construct their corresponding brane tilings.

Model I

The brane tiling for this model is shown in Figure 11-21. The Kasteleyn matrix is

Figure 11-21: Brane tiling for Model I of dP2.

1

1

0

z

W-1 W-IZ-1

1 -Z- 1

1

0

-1

1

1

0

-W

1

(11.9.35)
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leading to

P(z, w) =w- 1z-1 + z-1 + w- - 6 + w + z

The tiling for this model was obtained in Section 11.7

We show it again in Figure 11-22. The corresponding

by means of partial resolution.

Kasteleyn matrix is

Figure 11-22: Brane tiling for Model II of dP2.

1 - Z- 1

1

-1 + W-1 z-1

w 1

1 z

1 1

(11.9.37)

which leads to the following characteristic polynomial

P(z, w) = w-1 z- 1 + 5 - w - z - wz (11.9.38)

From (11.9.36) and (11.9.38) we can determine the toric diagrams along with the

GLSM multiplicities, which are in agreement with the results in [43].

Del Pezzo 3

There are four toric phases for dP3. We refer the reader to [43] for their quivers and

superpotentials. We have already presented the tiling for Model I in Figure 11-1. Its
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Kasteleyn matrix and characteristic polynomial are written in (11.3.9) and (11.3.10).

Figure 11-18 shows the tiling for Model II. Its Kasteleyn matrix and characteris-

tic polynomial are presented in (11.8.32) and (11.8.33). We now proceed with the

construction of the brane tilings for Models III and IV.

Model III

We show the brane tiling in Figure 11-23. The Kasteleyn matrix is

Figure 11-23: Brane tiling for Model III of dP3 .

I
1 2

11 1U

3 1

5 wz

Z7 

4 6 8

W-1 z-1

-1

1

-1

1

1

0

1

0

-W

1
/

(11.9.39)

from which we compute the

d

determinant

P(z,w) =w -1Z- 1 +z - 1 - w- 1 -8+w+z+wz (11.9.40)

This corresponds to the toric diagram of dP3 with multiplicity 8 for the central

point. This result agrees with the Forward Algorithm computations in [43].
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Model IV

Figure 11-24 shows the brane tiling for this theory.

Figure 11-24: Brane tiling for Model IV of dP3.

The Kasteleyn matrix is given by

K :

/

1

3

5

7

9

11

2 4 6 8 10 12

1 0 0

1 1 0

-wz 0 -1

0 z 0

0 -1 1 0 0 -w - 1

W-1 -1w z 0 1 1 0 0

0 _z - l O -1 1 0

0 0 w 0 1 1

and the characteristic polynomial is

.P(z, w) = -w-z - - Z-1 - w-l + 11 - W - - wz

Once again, this corresponds to the toric diagram of dP3. In this case, the multi-

plicity of the central point is 11, in agreement with the computations in [43].
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11.9.2 Pseudo del Pezzo 5

We now consider a complex cone over non-generic, toric blow-up of CP 2 at five

points. The geometry corresponds to a Z2 X Z2 orbifold of the conifold and was

dubbed PdP 5 in [44], where the corresponding gauge theories were studied. There

are four toric phases for this geometry. We refer the reader to [44] for the quivers and

superpotentials. The brane tilings for these four phases are shown in Figure 11-25

Model I Model II

Model III Model IV

Figure 11-25: Brane tilings for the four toric phases of PdP5 .
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2 4 6 8 

-1

-1
Z-1

1

-w

-1
w

z-1

1 wz

z 1

1 w

1 1
I

KII =

/

1 1-1 0 -w 0

2 4 6 8 10 12

0 0 -wz

-z -1 0
0 0 -1

-1 0 -w

-1 -1 0
0 1 -1

/

KIV =

I

1

3

5

7

9

11

13

15

2 4 6 8 10 12 14 16

1 0 0 w 0 0 wz 0

-1 1 0 0 0 1 0 0

0 1 1 0 z 0 0 0

0 0 -1 1 0 0 0 1

0 z - 1 0 0 -1 0 0 w

1 0 0 0 1 1 0 0

0 0 0 z - 1 0 1 -1 0

0 0 1 0 0 0 1 1

(11.9.43)

From these matrices, we compute the corresponding characteristic polynomials

PIii(z, w) =

PII(z,w) =

PI (z, w) =

z - 2 + 2z-1 + 2wz- 1 + 1 - 12w + w2 + 2wz + 2w2z + W2z2

- 2 + 2z-1 + 2wz- 1 + 1 - 14w + w2 + 2wz + 2w2z + 2Z2

z - 2 - 2z- 1 - 2wz-1 + 1 - 21w + w2 - 2wz - 2w2z + w2z2

(11.9.44)

Remarkably, although K, and KIII are different matrices with different dimen-

sions, their characteristic polynomials turn out to be identical. This is a counterexam-

ple to the conjecture that GLSM multiplicities are in one to one correspondence with

the dual phases of the gauge theory. Different phases can indeed lead to exactly the

same multiplicities. We present the toric diagrams with multiplicities in Figure 11-26.
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Figure 11-26: Toric diagrams with multiplicities for the four toric phases of PdP5 .
We observe that the GLSM multiplicities are the same for Models I and III.

11.9.3 Tilings for infinite families of gauge theories

One of the problems for which dimer methods show their full power is in the deter-

mination of dual geometries for infinite families of gauge theories. Infinite sets of

quiver theories have recently been constructed in [14] (see Chapter 10) and [81]. On

one hand, we have already discussed that the application of the Forward Algorithm

to large quivers becomes computationally prohibitive. In addition, it is obviously

impossible to apply the Forward Algorithm to an infinite number of theories. Hence,

the determination of gauge theories dual to an infinite number of geometries usually

involve indirect evidence such as: (un)higgsing, global symmetries, computation of

R-charges and central charges and comparison to volumes in the underlying geometry

[14, 81].

yp,q tilings

Let us discuss now how the yp,q theories [14] appear in the brane tiling picture. A

simple way to construct the ypq's is to start with yp,q=P and decrease q by introducing

"impurities" into the quiver [16]. This procedure can be similarly carried out with

tilings. Since YPP is the base of the orbifold C3 /Z 2 p, it corresponds to the hexagonal

graph with a fundamental cell containing 2 x p hexagons. This is shown in Figure 11-

27 for y3, 3 .

Let us put now a single impurity into the tiling. The impurity covers four

hexagons, and is indicated in blue in Figure 11-28. Two disjoint single impurities

can be generated by adding an identical shaded region into the tiling, separated from
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Figure 11-27: Brane tiling for y 3,3

Figure 11-28: Brane tiling for y3 ,2. The impurity is the blue area.

the first one by some hexagonal faces. For y3 ,1 this is not possible because the fun-

damental cell consists of only six hexagons, whereas two separated single impurities

would cover eight of them. Instead, we can consider the case in which the two impu-

rities are adjacent. This corresponds to a similar impurity graph, which is shown in

Figure 11-29.

One can continue adding impurities and discover the simplicity of the Kasteleyn

matrix for yp,q. It contains elements only in the diagonal and its neighbors and

in the corners. It can be written down immediately, without actually drawing the

corresponding brane tiling. One starts with the following 2p x 2p Kasteleyn matrix

for yp,p.
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Figure 11-29: Brane tiling for y 3 ,'1

1 1 0 0
1 w 1 0

0 1 1 1

0 1 w

0

z

...... 0 Z- '

. ..... 0
O0 ....... O0

1 0 ... O

........ . 0 1 1 1

........ 0 1

We see that the elements around the diagonal consist of the alternating "codons":

(11.9.46)

A2 := (1, w, 1) (11.9.47)

We define three other codons

S := (1,w,w)

I := (1,-l+w,w)

E := (1,-1+w,1)
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Placing impurities into the quiver means changing the Al, A 2, Al, A2 , · ·. sequence

in the matrix. For n single impurities we get yp,p-n and the Kasteleyn matrix gets

smaller, it is now a (2p - n) x (2p - n) matrix. We change the sequence of the codons

as the following. In the second row we put S (start codon), then n- 1 times the I

(iteration codon), and we close it with E (end codon). Then we continue the series

with A 1, A2, Al, A2 , ... until the end of the matrix. As an example, we present the

Kasteleyn matrix for Y 5'3 (i.e. n = 2)

1 1 0

1 w w

O 1 -1+w

0 0 1

0o 0

0 0 0

O O 0

z 0 0

0 0 0 0 z - '

0o 0 0 0

w 0 0 0 0

-1+w 1 0 0 0

1 1 1 0 0

0 1 w 1 0

0 0 1 1 1

0 0 0 1 w

(11.9.51)

-- /

The determinant of the Kasteleyn matrix is then

P(w, z) = -1 + 16w - 41w2 + 33w3 - 10w4 + w 5 - z - 1 - 2z,

and the toric diagam (with GLSM multiplicities) is given in Figure 11-30.

Figure 11-30: Toric diagram of a phase of 

41

Figure 11-30: Toric diagram of a phase of y 5,3

(11.9.52)

We note that the above rules for constructing the Kasteleyn matrix produce the

toric diagrams for all YP,q with p > q > 0. To check this, we can see that the correct
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monomials appear in the determinant. First, the only powers of z that appear in

det K are -1,0, and 1. Terms of the form z°wk appear for all k = 0,..., p; these come

from the diagonal. Second, there is a term z-lw 0 that comes from the lower off-

diagonal. Finally, the term z n, where n = p - q is the number of single impurities,

comes from the upper off-diagonal and gets contributions from only the S and I

codons. Thus, we have shown that the moduli spaces of the ypq quivers reproduce

the correct toric geometries.

For yp,O the matrix gets too small and there is not enough space for Al and A 2.

The Kasteleyn matrix consists of only I codons:

!I
-1 +w w 0 0 ............... z-l

1 -1 +w w 0 ............... 0

0 1 -1+w w 0 ............ 0

K= 0 0 1 -l+ww 0 ... 0

0 .......................... 0 1 -1 +w w

wz 0 .................... 0 1 -1 +w

(11.9.53)

For example, the Kasteleyn matrix of y3,0 is:

-1 +w w Z-1

K = 1 -1+ w w (11.9.54)

wz 1 -1+w

with determinant

P(w, z) = -1 + 6w - 6w2 + 3 + - 1 + W3 z (11.9.55)

and the toric diagram of Figure 11-31.

These Kasteleyn matrices give the toric diagrams of a certain phase of the theories

(the one with only single impurities, all of them together). Other phases can be

obtained by performing Seiberg duality transformations. As discussed in section 11.6
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Figure 11-31: Toric diagram of a phase of y3,0 with three single impurities.

this may be efficiently implemented on a computer and used to enumerate the toric

phases of the theory, together with the duality graph showing the interconnections

between phases.

y3 ,1 with double impurity

In [16], it was shown that all toric phases of yp,q theories can be constructed by

adding single and double impurities to the C3/Z2p quiver. Double impurities arise

when Seiberg duality makes two single impurities "collide". As an example of Seiberg

duality, we now study the double impurity phase of y3 ,1. This phase can be obtained

by dualizing face 3 (see Figure 11-32). The resulting graph can be deformed to

the more symmetric form which is shown in Figure 11-33. The determinant of the

Kasteleyn matrix again gives the P(w, z) polynomial, from which we get the toric

diagram (Figure 11-34).

Seiberg duality

onface 3

Figure 11-32: Dualizing face 3 in y3 ,1 with two single impurities. In the resulting
tiling, we indicate the double impurity in pink.
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Figure 11-33: The double impurity in y 3 ,1

!
1 1 0 0 0 Z-

w - 1 1 - 1 O 0

0 1 1 1 0 0

0 0 w - 1 1 1 0

0 0 0 1 -1 -1

z- 1
L 0 0 0 W

P(w, z) = -7- -2 + 9w- 1 + w + w-lz -1 + zw- 1

Figure 11-34: Toric diagram for y3 ,1 in the double impurity phase

All the multiplicity results in this and previous section agree with the ones derived

using the Forward Algorithm in [40].
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We now describe the brane tilings for the X p q spaces constructed in [81]. Recall that

these spaces are defined by the property that an Xp q theory can be Higgsed to both

yp'q and yp,q-1. Constructing the brane tilings for the Xp ,q is quite straightforward,

but it will be convenient for our purposes to use a slightly modified (but entirely

equivalent) description of the yp,q spaces from the one used in the previous section.

We use the following description of ypq, with p - q single impurities. For this

tiling, we need 2(p - q) quadrilaterals and 2q hexagons. We build the quadrilaterals

by starting with a hexagonal grid, and drawing lines through the center of a given

hexagon, connecting opposite vertices. This divides the hexagon into two quadrilat-

erals. A given YP,q is then given by placing these hexagons and divided hexagons

along a single diagonal such that the divided hexagons are separated from each other

by an even number of non-divided hexagons; this is simply the requirement that the

single impurities be separated from each other by an odd number of doublets. For

examples of this construction, see Figure 11-35.

y3,0 y3,1 y3,2

Figure 11-35: Brane tilings for y 3,'q.

Constructing the XPq brane tilings is now straightforward. We give the example

of X3 ,1 below; the other Xpq tilings work similarly. To build the tilings, simply insert

diagonal lines in hexagons such that removing the line from the X p q tiling gives the
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ypq to which it descends. This diagonal line should always share a node with one

of the horizontal lines subdividing a hexagon in two; this is what allows one to blow

down to yp,q-1 as well as yp,q. In Figure 11-36, one may remove the line between

regions 6 and 7 or the line between regions 5 and 6 to yield y3 ,' and y 3 ,0, respectively.

J~~~ 

Figure 11-36: A brane tiling for X3 ".

The Kasteleyn matrix for this tiling is

/

1

3

5

7

2

1 +w - 1

1

0

z-1

4 6 8

1

-1-w
1

1

0

1

-1

1

z

0

1

-1
/

(11.9.58)

which has determinant det K = 7w-1 + w-2 + 8 + - z - 1 - z + W-1z. This yields

the proper toric diagram and multiplicities for this phase of X3,' [40].

11.10 Conclusions

In this chapter, we have presented a piece of technology which not only simplifies

previously difficult calculations, but also establishes new connections to other inter-
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esting areas of study. In this section, we present some concluding remarks about

brane tilings and dimers, and suggest some arenas for further study.

First, we note the computational power of our construction. The correspondence

between toric singularities, brane tilings, and dimers presented in the present work

goes well beyond any other correspondence yet proposed. We established a precise

connection between toric diagrams, GLSM multiplicities, and dimer quantities. This

connection enables us to explore toric singularities other than only the simplest ones,

and promises to be extremely useful for the future study of toric geometries. We

further emphasize here that the central object in our construction, the brane tiling, is

a physical object constructed out of NS5-branes and D5-branes in Type IIB string

theory, and not just a mathematical tool.

Prior to this work, it had been suspected that there was a one-to-one correspon-

dence between toric geometries with specified GLSM multiplicites and toric phases of

the quiver gauge theory. The increased computational power provided by the brane

tiling has enabled us to show that there is a relatively simple counterexample to this

conjecture, that of Pseudo del Pezzo 5. We find that in fact there are examples where

the only way of distinguishing two phases is by checking graph isomorphism, i.e. there

exists no simpler characterisation of the graph other than the graph itself.

The operation of Seiberg duality on a quiver theory is straightforward, although it

becomes extremely cumbersome to implement it many times. The dimer model allows

us to encode Seiberg duality as an operation on the Kasteleyn matrix. In many cases

this provides an extremely efficient way of enumerating all toric phases of a quiver

theory, as long as one has at least one phase of the quiver theory to start with. It

is an interesting question whether or not one can explore even non-toric theories via

Seiberg duality.

In [133], a geometrical method was given for performing a-maximization [102]

purely in terms of toric data, without needing to know the explicit Calabi-Yau metric

on the toric space. This method involved the use of a Monge-Ampere equation to

extremise a certain function. It is interesting to note that the solution to a Monge-

Ampere equation also appears in the dimer model literature [118], where it is related
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to the extremization of the surface tension functional that determines the asymptotic

shape (limit curve) of a random matching of many copies of the fundamental domain

of a bipartite graph. It would be fascinating to determine whether or not these two

extremization problems are related.

In general, there are many different properties of dimer models that have been

studied in the mathematics literature. It is undoubtedly worth exploring this lit-

erature in depth, since there are surely many additional connections one can draw

between the mathematics and physics of dimers. In particular, the mathematical

literature has different examples of partition functions that can be defined on a dimer

model. Could some of these quantities be related to e.g. a central charge for the

quiver gauge theory, and is it possible to prove the a-theorem for even the simple

example of Higgsing?

The limit curve of the dimer model is related to the geometry that is mirror to

the toric Calabi-Yau cone. This mirror geometry encodes the quantum corrections

from worldsheet instantons to the classical geometry of the toric CY, and provides a

point of contact between dimer models and topological string theory [144]. It would

be interesting to investigate this connection in more detail.

Finally, we note that in this chapter, we do not discuss at all the problem of

starting with a given toric geometry and deriving the brane tiling from that. Ideally,

one would like to be able to do this, since there would then be a direct link to the

dual SCFT from any given toric geometry.
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