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Abstract

This chapter introduces a general framework for designing robust
control systems in the presence of uncertainty when the specifications
are posed in the time-domain. Necessary and sufficient conditions for
performance robustness and a synthesis methodology utilizing linear
programming are presented. Since many of the past work involved
quadratic performance objectives, this chapter outlines a set of new
tools needed to handle Peak-to-Peak specifications. The objective in
here is to present many of the central results in this discipline in an
intuitive fashion rather than a complete rigorous treatment of the sub-
ject.
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1 Introduction

Feedback controller design is primarily concerned with designing control sys-

tems that can deliver high quality performance despite the presence of un-

certainty. Eventhough a real system is not uncertain, it is desirable to think

of it as such to reflect our imprecise or partial knowledge of its dynamics.

On the other hand, uncertainty in the noise and disturbances can be cast

under "real uncertainties", as it is practically impossible to provide exact

models of such inputs. The description of this uncertainty, plant or input

uncertainty, depends on the particular physical system and the operation

environment and thus it is problem-dependent. To aid the designer in this

process, analytical theory has been developed to provide a design methodol-

ogy for synthesizing controllers to achieve "certain" performance objectives

in the presence of a specific class of uncertainty. It is understood that a par-

ticular design problem may not fit the assumptions needed in any of these

problems, nevertheless such methods can provide at least three important

pieces of information to the designer (one can think of many more): The

first is providing a starting point for design, maybe in terms of achieving

robust stability and nominal performance, but possibly also achieving ro-

bust performance. The second is highlighting the tradeoffs in designing the

controller for the system given. As intuitively expected, robustifying the

system to handle larger classes of uncertainty results in more conservative

design and hence in the loss of some performance. The third is capturing in

a quantitative way the fundamental limitations and capabilities of feedback

design. This is possibly the most important of all since one would like to

know whether certain performance specifications can be achieved, and if so,

with what controllers. Examples of such analytical theory are the H 2, H,

and the l1 theory.

The el theory is primarily a time-domain theory in which performance

specifications as well as input and plant uncertainty are posed in the time-

domain in terms of the maximum norm (4 0 -norm). This is a natural set-

up since most performance specifications are magnitude-specifications such
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as tracking errors, maximum deviations from a nominal point, limits on

actuator authority and so on. Disturbances in general have the property

of persistence and boundedness and are best described in terms of the eoo

norm. Examples of such disturbances are wind gusts, friction and so on.

In this chapter, an overview of the 1l theory is given starting from simple

nominal performance problems and leading all the way to a general theory

that allows for synthesizing controllers to achieve robust performance. The

basic ideas involved in concepts of robust stabilization are introduced in a

simple intuitive way, without obscuring these ideas through rigorous proofs.

The synthesis of tl controllers is explained through an analogy with standard

linear programs, the difference being only in that the l1 problem has an

infinite number of variables. Most of the exact proofs are referred to as they

are needed.

2 Preliminaries

First, some notation regarding standard concepts for input/output systems.

For more details, consult [1, 2] and references therein.

L,eo denotes the extended space of sequences in IRN, f = fol, f2,.. ..

t, denotes the set of all f E .,e such that

Ilflll- = sup If(k)l o < 00

where if(k)lI is the standard L, norm on vectors. e,e\tL denotes the set

{f: f E ooe and f ~ 4,}. £p,p E [1, oo), denotes the set of all sequences,

f = {fo, fl, f2,. .. } in RN such that

Illflt, = If(k)lP) <00.

co denotes the subspace of Le in which every function x satisfies

lim x(k) = 0.
k--oo

S denotes the standard shift operator.
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Pk denotes the kth-truncation operator on e,,,:

Pk: {/o, A, f2, *....} -- {o, , f, * , 0, ... }

Let H: oo,e ~ loe,e be a nonlinear operator. H is called causal if

PkHf = PkHPkf, Vk = 0,1,2,...,

H is called strictly causal if

PkHf = PkHPk-lf, Vk = 0,1,2,...

H is called time-invariant if it commutes with the shift operator:

HS = SH.

Finally, H is called ,p stable if

11HII sup sup ijkHllt < oo.
k fEtp,* IPkfllTO~

The quantity [IHIJ is called the induced operator norm over tp.

LCTV denotes the set of all linear causal eo-stable operators. This space is

characterized by infinite block lower triangular matrices of the form:

Hoo 0
Hio Hi,

. .?. )
where Hij is a p x q matrix. This infinite matrix representation of H acts on

elements of tq by multiplication, i.e. if u E tq, then y := Hu E tP where

y(k) = "o .jHkju(j) E IRP. The induced norm of such an operator is given

by:

IIHIlrTv = sup J(Hil ... Hij)lJ
i

where JAI1 = max j E laiji. CTI denotes the set of all H E ITV which are

time-invariant. It is well known that £TI is isomorphic to 4l and the matrix

representation of the operator has a Toeplitz structure. Every element in
1 TI is associated with a A-transform defined as:

o0

r(A) = E H(k)Ak

k=O
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The collection of all such transforms is usually denoted by A, which will be

equipped with the same norm as the 4l norm.

Throughout this paper, systems are thought of as operators. So, the com-

position of two operators G, H is denoted as GH, if both are time-invariant

then GH E 4l (or £TI), and the induced norm is denoted by tIGHII1. When

the A-transform is referred to specifically, we use the notation A for the

transform of H. Also, all operator spaces are matrix-valued functions whose

dimensions will be suppressed in general whenever understood from the con-

text.

3 The £1 Norm

Let T be a linear time-invariant system given by

z(t) = (Tw)(t) = E T(k)w(t - k).
k=O

The inputs and outputs of the system are measured by their maximum am-

plitude over all time; otherwise known as the teo norm, i.e.

llwll1: = maxsup Iwj(k)l.
3 k

The 41 norm of the system T is precisely equal to the maximum amplification

the system exerts on bounded inputs. This measure defined on the system

T is known as the induced operator norm and is mathematically defined as

follows:

TII- = sup IITwloo = tTII 1

where ItTI 1 is the 4l-norm of the pulse response and is given by

I1TII1 = maxE E Itij(k)l.
j k

A system is said to be Ie- stable if it has a bounded 41 norm and the

space of all such system will be denoted by 4l. From this definition, it is

clear that the system attenuates inputs if its tl norm is strictly less than

unity. For control systems applications, if the objective involves minimizing
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maximum deviations, rejection of bounded disturbances, tracking uniformly

in time, or meeting certain objectives with hard constraints on the signals,

a problem with an 4l norm criterion arises.

In the case where the inputs and outputs of the linear system are mea-

sured by the 12 norm, then the gain of the system is given by the Ho, norm

and is given by:

iTh00o = O7maz(T(eit)).

The two induced norms are related as follows:

IlTl.lo < C[[ITII

where C is a constant depending only on the dimension of the matrix T. In

other words, every system inside il is also inside H,0 , however the converse is

not true. This means that there exists £2 stable linear time-invariant systems

that are not £e0 stable; an example is the function with the A-transform given

by [3];

T(A)= etrt

Thus, for LTI systems, minimizing the 1l norm of a systems guarantees

that the H,# norm is bounded. This means that this system will have good

· 2 -disturbance rejection properties as well as £oo-disturbance rejection prop-

erties. Also, the £1 norm is more tied-up to BIBO stability notions and

hence quite desirable to work with. The disadvantage in working with the

L1 norm is the fact that it is a Banach space of operators operating on a Ba-

nach space, not a Hilbert space. Many of the standard tools are not usable,

however, this overview will present new techniques for handling problems of

this kind.

4 Stability and Parameterization

Consider the system G described as in Figure 1. G is a 2 x 2 Block matrix,

u is the control input, y is the measured output, w is the exogenous input,

z is the regulated output, and K is the feedback controller. Let H(G, K)
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Figure 1: Closed Loop System

denote the map

H(G, K)= i1 , "
( V2 Y

The closed loop system is te-stable if and only if H(G, K) E el. The map
of interest is the map between to to z, denoted by Tz:

Tz. = Gll + G 12 K(I - G 22 K)-lG21

This particular mapping captures the performance objectives. If w E 1" with

IlIwJII < 1 but other than that is arbitrary, then the nominal performance
problem is defined as:

inf (sup IITzwwllo) = inf I.Tzt.I 1.
K stabilizing w K stabilizing

4.1 Controller Parameterization

There are several ways for arriving to the parameterization of all stabilizing

controllers, one of which is via coprime factorization [4, 6, 5]. In the 2-

input 2-output set-up, the stabilizability of the system G is equivalent to
the stabilizability of G 22. Let G22 have the bi-coprime factorization with

G22 = NM -1 = -1:

[X - .] MN X]
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where all quantities above are stable. All stabilizing controllers are then

parametrized as:

K = (Y - MQ)(X - NQ)- 1 = (X - QR)-1(. - QM) Q stable.

This parameterization has two major advantages: the first is that it furnishes

the space of all stabilizing controllers (including time-varying and nonlinear)
in terms of one parameter in a vector space, eventhough the space of all
stabilizing controllers is not in itself a vector space. The second advantage,

which is a great surprise, is that it transforms the complicated mapping T,w
which is a nonlinear expression in the controller, to an affine linear function

in the parameter Q. By simple manipulations, T,, is given by:

T,, = T1 - T2QT3

where

T1 = Gll + G 12M?'G2 1

T2 = G 12 M

T3 = MG2 1 .

Define the feasible space S as follows:

S = {R E e 1 IR = T 2QT3 , Q E el}.

The 4l optimal control problem is defined as follows:

inf IIT1 - R 1 .

5 Examples of Nominal Performace Objectives

In this section, a few examples are presented to illustrate this formulation,
These examples will show in a very simple way the advantages of using the

40 -norm on signals to reflect realistic time-domain specifications.
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5.1 Disturbance Rejection

In many real world applications, output disturbance and/or noise is per-

sistent, i.e. continues acting on the system as long as the system is in

operation. This implies that such inputs have infinite energy, and thus one

cannot model them as "bounded-energy signals". Also, disturbances can be

correlated with the inputs to the plant in a nonlinear fashion that makes

it difficult to get accurate information about its statistics. Nevertheless,

one can get a good estimate on the maximum amplitude of such inputs. In

general, we will assume that the disturbance is the output of a linear-time

invariant filter subjected to signals of magnitude less than or equal to one,

i.e

i

Figure 2: Disturbance Rejection Problem

d = Ww, Iwll _00 < 1.

The disturbance rejection problem is defined as follows: Find a feedback

controller that minimizes the maximum amplitude of the output over all

possible disturbances. The two-input two-output system shown in Figure 2

is given by

z = Pou + Ww
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y = Pou + Ww

5.2 Command Following with Saturations

The command following problem is equivalent to the disturbance rejection

problem and is shown in Figure 3. In here, we will show how to pose this

problem, in the presence of saturation nonlinearities at the input of the plant,

as an 4L -optimal control problem. Define the function

W -- K P

Figure 3: Command Following with Input Saturation

Sat(u) ={ Umax jul < Umax

Let the plant be described as

P, = PoSat(u)

where P0o is LTI. Let the commands be modeled as

r = Ww, IlWlloo < 1.

The objective is to find a controller K such that y follows r uniformly in

time. Keeping in mind the saturation function, it is clear that the allowable

inputs have to have Ilull. < Ums.. Let 7 be a performance level desired,

and define

Z= [ (yv10
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with

Y = Pou

The problem is equivalent to finding a controller such that

(sup Illll) < 1
to

which is an l1 -optimal control problem.

Comment It is known to many that for such a problem, one will introduce

some nonlinear function to minimize the effects of saturations on the plant.

The formulation of this problem as a 1l minimization problem is an example

of the usage of this theory to highlight the fundamental limitations of linear

controller design.

5.3 Robust Stability

Figure 4: Stability Robustness Problem

Figure 4: Stability Robustness Problem

Underlying most of the stability robustness results is the small gain theorem.

Basically the theorem guarantees the stability of a feedback system consist-

ing of an interconnection of two stable systems as in Figure 4 if the product

of their gains is less than unity. This theorem is quite general and applies

to nonlinear time-varying systems with any notion of ,-stability. The small

gain condition is in general not necessary for stability, however, it can be

necessary if one of the systems in the feedback was arbitrary. Most of these

results were previously treated in the literature for the case of 2-stability
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[14], but were not studied in the case of 4t-stability. The next theorem is a

surprising result in this sense and is due to Dahleh and Ohta [7].

Theorem 1 Let M be a linear time-invariant system and A be a linear

(possibly time-varying) stable system. The closed loop system shown in

Figure 4 is Lo4-stable for all A with gain supllfll< 1 IlAfIlIo < 1 if and only

if lMIt 1 < 1.

The theorem implies the following: if lJMIl1 > 1, then there exists a stable

time-varying perturbation with gain less than unity such that the closed loop

system is unstable. It is important that the perturbations A are allowed to

be time-varying, otherwise the theorem may not be satisfied.

Example 1 Let

M(A) = 0.9 0.50._ - .5A'
The 4e norm of M is equal to 1.35 and the Hak norm is equal to 0.9. Any

destabilizing linear time-invariant perturbation satisfies:

Ila11ll > 111M > _ > 1.0.9

However, a time-varying perturbation exists with a gain smaller than one.

As a consequence of the small gain theorem, it is possible to provide stability

robustness conditions for some classes of perturbed systems.

5.4 Unstructured Multiplicative Perturbations

Consider the case where the system has input uncertainty in a multi-

plicative form as in Figure 5, i.e.

Q = {PIP = Po(I + WIAW 2), A is time-varying withllAll < 1}.

If a controller is designed to stabilize Po, under what conditions will it sta-

bilize the whole set l? By simple manipulations of the closed loop system,

the problem is equivalent to the stability robustness of the feedback system

in Figure 4, with M = W 2 PoK(I - PoK)-lW1. A necessary and sufficient
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Figure 5: Multiplicative Perturbations

Figure 5: Multiplicative Perturbations

condition for robust stability is then given by IIMIIi < 1. The resulting

2-input 2-output description is given by:

y = POu + PoW1w

z = W 2 U

5.5 Robustness in the Presence of Stable Coprime Factor
Perturbations

Let Po be a linear time invariant, finite dimensional plant. As usual, Po =

G22. The graph of Po over the space eq is given by [5]:

G(Po) = Gpoeq where Gpo = N

Define the following class of plants as in Figure 6:

q{ = {PIGP M +A] and All I

where Ai's are eq-stable linear time-varying systems, and the norm is the

induced eq norm. The next theorem gives a necessary and sufficient condition

for a controller that stabilizes P0o to stabilize all P E foo. A similar result

in the case of P E 12 was proved in [8]. It is evident that Qoo contains

time varying plants which will be essential for the proof of the next theorem

capturing the stability robustness conditions [9]:
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Figure 6: Coprime Factor Perturbations

Theorem 2 If K stabilizes Po, then K stabilizes all P E lOO if and only if

II [X QN -Y Qu II < 1

It is interesting to note that this class of perturbations is a more natural one

in the case of unstable plants. It amounts to perturbing the graph of the

operator, rather than the operator directly. This class of perturbations al-

low unstable perturbations and can result in changing the locations and the

number of the unstable poles of the system. A description of the coprime

perturbations of a system can be derived in a natural way from parame-

teric identification techniques in which a fixed order polynomial is identified

for both M, N. The incorporation of such robustness results in adaptive

controllers has proved quite effective as shown in [10, 11].

If the above condition is not satisfied, then the theorem asserts that

there exists an admissible time-varying plant which the controller does not

stabilize. The 2-input 2-output description that results in the above criterion

is given by:

= Powl + w2 + Pou

z = M-lwl + M-lu

Comment There is a subtle difference between the construction of the plant

which is destabilized by the controller in this case and the plant in the case of

multiplicative perturbations. In the multiplicative perturbation case, if the
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stability robustness condition is not satisfied, the constructed destabilizing

perturbation results in a plant with an internal unstable cancellation, thus

cannot be stabilized by any controller. In the case of coprime factor per-

turbations, such plants can be ruled out from the set, and the destabilizing

perturbation results in a stabilizable plant, however, not stabilized with the

specific controller used [9].

5.6 How big is this class of perturbation?

As mentioned earlier, the small gain condition is applicable for general non-

linear time-varying systems, and hence tends to be a conservative condition

for stability robustness. Nevertheless, it is a powerful tool for represent-

ing realistic classes of uncertainty such as unmodelled dynamics, ignored

nonlinearities, time delays and so on.

Since the approach presented above is the same for the H, problem,

it is worthwhile comparing the class of perturbations that have gain less

than unity over £2 with the class of perturbations that have gain less than

unity over e,. If the perturbations are restricted to time-invariant ones, the

00-stable perturbations with gain less than unity lie inside the unit ball of

?2-stable perturbations (for the multivariable case, the unit ball will be scaled

by a constant). This follows directly from the norm inequality between £l

and He,. If the perturbations are allowed to be time-varying, then the two

sets are not comparable. Earlier, an example was presented that shows that

the Ho ball is larger than the tl ball. The next example furnishes a time

varying operator which is 40 -stable but not t2 stable.

Example 2 Define A as follows:

(Af)(k) = f(O)

Clearly, this operator is 1e stable but not 12 stable.

5.7 Duality between Stability and Performance

In the previous examples, each of the robust stabilization problems was

shown to be equivalent to some performance problem where a fictitious dis-
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turbance is injected at the output of the perturbation, and an error is mea-

sured at the input of the perturbation. So the transfer function to be mini-

mized is simply the function seen by the perturbations. This says that robust

stability is equivalent to some nominal performance problem. In the next

section, the dual of this idea will be used: Performance will be equivalent

to a robust stability problem in the presence of some fictitious perturbation.

This will make the derivation of robust performance conditions a tractable

problem.

6 A Unified Approach for Stability and Perfor-
mance Robustness

In this section, it is shown that a general class of plant uncertainty can

be described by linear fractional transformations. The robust performance

problem will be posed as a robust stability problem in the presence of struc-

tured perturbations.

6.1 Linear Fractional Transformation

Given a 2 x 2 Block matrix transfer function G, we can define linear fractional

transformations as

FL(G, K) = Gil + G12K(I - G22K)-1G21

F,(G, A) = G22 + G 21 A(I - GllA)-lGl2

Consider the 3 x 3 system matrix G shown in Figure 7 mapping

and z denote the exogenous inputs and

where v = Ar, A E 7D, u = Ky. w and z denote the exogenous inputs and

regulated outputs respectively, and V denotes the set of admissible pertur-

bations.
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Figure 7: Perturbations Through LFT

FL(G, K) is the transfer matrix mapping

(W z

with u = Ky. Fe(G, K) is the lower linear fractional transformation corre-

sponding to G partitioned conformally with

FU(G, A) is the transfer matrix mapping

u y

with v = Ar. Fu(G, A) is the upper linear fractional transformation corre-

sponding to G partitioned conformally with
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Consider the class of plants fl(G, V)) in Figure 7 described as:

fl(G, D) = {PIP = F,(G, A) for some A E ')}.

It will be shown later on that this represent a wide class of plant uncertainty.

6.2 A General Class of Structured Uncertainty

We now formally set up the stability and performance robustness problem for

a class of structured uncertainty. The configuration we shall use in the setup

of the robustness problem is shown in Figure 7. The 3 x 3 system matrix G

represents the particular structure of interconnection of the nominal plant

and the perturbations A, and is therefore linear, time-invariant, and stable.

The perturbation A has the form

A l ... O

· ' 0 A2

O ... 0 A,

Each Ai represents the perturbation between two points in the system, and

has norm less than or equal to one. Of course there is no loss of generality in

assuming that the chosen bound on the chosen bound on the norms of each of the Ai's is one, since

any other set of numbers could be absorbed in G. We will restrict the Ai's

to be strictly causal in order to guarantee the well posedness of the system.

This is not a serious restriction and can be removed if it is known that the

perturbation/nominal system connection is well-posed. Accordingly we can

define the classes of perturbations to which the A's belong. Assuming the

perturbations enter at n places, and that each has Pi inputs and qi outputs

we have

Ai E x(pi, qi)

where A(pi, qi):= { E PTv'q I a is strictly causal and I!Aii < 1)

Note that Ai is not dependent in any way on Aj when j $ i. The only

restriction is that Ai belongs to A(pi,qi) for each i. Next let p = ~iPi,
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and q = Fi qi. By V [(pl,q1); .;(Pn, q)] we mean the set of all operators

mapping Lq to iP of the form:

A1 0 ... ' O0

A 0 A2

". **O0
0 ... 0 An

where Ai belongs to A(pi, qi). When the pairs (pi, qj) are known, they will

be dropped from the notation and V will be understood to mean the above

set. We will say the system in Figure 7 achieves robust stability if the system

is stable for all A E D[(pl, ql); ... ; (P q,,)].

Stability Robustness Problem. Find necessary and sufficient conditions

for the controller K to stabilize the class of plants

{PIP = F,(G, A)lA E )}.

On the other hand, we will say the system in Figure 7 achieves robust

performance if the system is stable, and the effect of the exogenous inputs w

on the regulated output z is attenuated for all A E D[(pl, ql); ... ; (P, q,)].

Performance Robustness Problem. Find necessary and sufficient con-

ditions for the controller K to robustly stabilize the class of plants

{PIP = FU(G, A)la E D}.

and satisfy

IIT=zWIICTv < 1 VA E v.

When the controller is connected, the closed loop system of the plant

and controller is given by F}(G, K) and in the next section will be denoted

by M. The perturbation A will be connected to M as a feedback system.

6.3 Example

Consider the case where the system has both input uncertainty and out-

put uncertainty as shown in Figure 8. Define new variables v1,v 2, r l , r 2,
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Figure 8: Input and Output Perturbations

where vi is the output of Ai and ri is the input to Ai. Let G be the transfer

matrix from

a U y g by:

and is given by:
0 0 I

G= PoW1 0 Po
PoW1 W2 PO

Then, this class of uncertainty is represented as

a = (P = F,(G, A)l A diagonal, lHall < 1}.

6.4 Performance Robustness Versus Stability Robustness

In this section, we will establish a useful relationship between stability and

performance robustness, that will be used later in the solution of our prob-

lem. This is achieved in the theorem below proved by Khammash and Pear-

son [12]. It states that performance robustness in one system is equivalent

to stability robustness in another one formed by adding a fictitious pertur-

bation. A similar result has been shown to hold when the perturbations

are linear time-invariant and when the 2-norm is used to characterize the

perturbation class. The same proof does not apply here though, due to the

assumed time-varying nature of the perturbations. The usefulness of this

theorem stems from the fact that we can now concentrate on finding con-

ditions for achieving stability robustness alone. Once we do, performance

robustness comes for free.
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System I System II

Figure 9: Stability Robustness vs. Performance Robustness

Consider the two systems shown in Figure 9, where M E el pXq and

Ai E A(pi, qi). In system II, w is an input vector of size P and z is an output
vector of size {. In system I, Ap E Ai(A, ). It follows that p = i+ pi Pi and
q = q + Ai qi. Subdivide M in the following manner:

M =( M1 MA)

where M1l E t1PX.

We now state the following theorem establishing the relation between

System I and System II.

Theorem 3 The following four statements are equivalent:

i) System I achieves robust stability.

ii) (I- MA) -1 is £e- stable for all A E 'V[(pl,qj);...; (Pn,,q); (A )]

iii) (I - l1 1 A)-' iseo,- stable and 11f722+1M21 A(I - llr1A)-' f1211 <
1, for all A belonging to V[(pl, q1); ... ; (Pn, q,)].

iv) System 11 achieves robust performance.
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The theorem basically says the following: to achieve robust performance,

wrap a fictitious Ap mapping z to w, and design a controller to achieve

robust stability for the new system.

7 Conditions for Stability Robustness

In the previous sections, we have shown that the general Robust Perfor-

mance problem is equivalent to a Robust Stability problem in the presence

of structured perturbations. For any stabilizing controller, the conditions

for Robust Stability are equivalent to necessary and sufficient conditions for

the invertibility of (I - AM), where M is a stable transfer function and A

is block diagonal, i.e. A E D. The next section will present these conditions

in an exact form, which are due to Khammash and Pearson [12].

7.1 Structured Small Gain Theorem

Our Interest is to derive non-conservative conditions to guarantee the in-

vertibility of (I - AM), where A E V7. From the small Gain Theorem, one

condition is given by

1IM111 < 1

This condition is clearly conservative, i.e. if IIMII1 > 1 then the destabilizing

perturbation may not have the diagonal structure shown. We can reduce the

conservatism of the small gain theorem by introducing diagonal scalings that

commute with the class of perturbations VD. In the sequel, we will treat the

case of scalar AWs. The MIMO case follows in the same way.

Let X denote the class of all diagonal matrices with positive elements,

X E X if X = diag(xl,..., xn) and xi > 0. It is evident that

XAX- 1 = A VA E D, X E X

Hence, (I - AM) is given by X-(I - AXMX-')X, and is stable if

IIXMX'111 < 1
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In otherwords, if the above equation is valid for some X, then (I - AM) has

a stable inverse. The least conservative choice will be

inf ]IXMX-111 < 1.
XEX

While the above condition is less conservative, it is not clear how far it Is

from being necessary. The surprising fact is that the above condition is both

necessary and sufficient, the proof of necessity will be highlighted below.

Denote by M the matrix (Ilmill), i.e. the matrix constructed by taking

the norms of the ijth entry. It is straightforward to show that

hIIMl = IIll

where IAl1 = maxi j laijl. The next theorem is a standard result from

linear algebra known as the Perone-Frobenious theorem [13], and applies

to all positive matrices. For simplicity, it is assumed that M has strictly

positive elements.

Theorem 4 Given any matrix M, let M be defined as above, then the

following hold:

i) infxEx IIXMX-'Il 1 = A,,a(M)

ii) 3i E JRn, xi > O suchthat Mi = Ama=(M-)i.

iii) Define X = diag(il,...,n,), then

inf IIXMX-'1Ii = IIXM- 11l 1.
XEX

It is interesting to note that X gives the optimal scaling of both inputs and

outputs to incorporate the directional information in the least conservative

way. The theorem shows that the computation of X is straightforward for

every fixed matrix M.

To summarize, a sufficient condition for robust stability in the presence

of structured perturbations is given by:

inf 11XMX-11 1 = Xmax(Sf) < 1.
XEX
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In the sequel, it is shown that the above condition is also necessary. To

do that, we will present two key lemmas from which the proof will follow

immediately.

Lemma 1 Given any G E /"xn such that IIGill, = gi > 1, where Gi is the

ith row of G. Then, 3f E Ie,,\eIn (unbounded), n* > 0 and m > 1 such

that
llPk-IGjfllo > m Vk > no Vi

IIPkf lloo1

In words, this Lemma says that if the norm of each row of a matrix function

G is greater than 1, then there exits an unbounded signal f which gets

amplified (in the 1e0 sense) at each output channel after some fixed time

n*. This signal is then used to generate a time varying A that results in an

unstable (I - AM)- 1.

Lemma 2 Given Gi E liXn such that IlGill1 = gi > 1. There exists a

Ai E LTV, IlAill < 1 s.t.

fi - AiGif E e,

Equivalently

(I - AG)f E eo with A = diag (A ,.. , An).

The idea of the construction is quite straightforward: The signal Gf has

components that are amplified in comparison to each component of f, after

some time n*. Thus it is possible to map back (Gf)i to fi through a linear

operator with norm less than 1, for all time greater than n*. With this, we

are in a position to prove that condition (1) is both necessary and sufficient.

Theorem 5 Let M E £tXn, A E D. A necessary and sufficient condition

for the inverse of (I - AM) to be 1t0 -stable is given by

inf IIXMX-11'1 = AX,m((M) < 1
XEX

where M is the matrix of norms of M.
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Proof. : Suppose ),mar() > 1, then there exists a positive vector x E IR"

s.t.

Mi = Amaxx

Define X = diag (zl . . .,), and Mi be the ith row of M. We have

IIMiXII = I'Mizi = Amaxi

or equivalently

111 MXI = Amx. > 1.

Let G = X-'MX, then Gi = 1 MiX and IIGill > 1. By Lemma 2, 3 a

A E D s.t (I - AG)-1 is not Lt-stable. However, (1 - AG)- 1 = X(I -

AM)-'X- 1. Hence (I - AM)- 1 is not te-stable. U.

Another interpretation of X is simply the direction for the worst input,

i.e. if we redefine the input f in Lemma 1 as I = Xf, then M exerts the

maximum amplification in that direction, the amplification is given by Amax.

Finally, it is worth noting that the problem of Stability Robustness and

Performance Robustness of structured perturbations were originally formu-

lated and developed by Doyle [14, 15] in what is now known as the p theory.

Similarities and contrasts between the /l theory and the method presented

here are discussed in [16].

8 Synthesis of 1-Optimal Controllers

The basic synthesis problem can be stated as follows: Find a controller K

such that

inf IIXMX'-111 = X,,,(M) < 1
XEX

Incorporating the Q parameterization, the problem is equivalently stated as:

inf inf IIX(Tz - T 2QT3 )X-lll1.
QELl XEX

Exact synthesis by simultaneously minimizing over Q and X is still an open

problem. The best known method is an iterative method in which opti-

mization in each of these variables is done independently. The infimization
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in X can be done exactly using Perone-Probenious theorem for every fixed

Q. Infimization over Q is the main topic of the 4l synthesis problem and

will be described in the sequel. It is interesting to note that the problem

is not jointly convex in both of these parameters and hence this scheme is

guaranteed to converge only to local minima.

The problem of 4l minimization was formulated by Vidyasagar in [17] as

a minimax criterion that parallels the standard Ho, problem [18] and was

solved by Dahleh and Pearson in [19, 20]. Much work has been done on this

problem afterwards, some of which can be found in [9, 16, 21, 22, 23, 24,

25, 26]. The solution of Dahleh and Pearson hinged on the duality theory of

minimum distance problems. In the sequel we will show that solutions can

be obtained using only standard linear programming ideas, and the duality

theory of Linear Programs.

8.1 Characterization of the subspace S

Recall the £l minimization problem:

inf IIT1 - Rll1 (OPT)

where the subspace S is given by:

S = {R E f1lR = T 2QT3, Q E ea}

The subspace S is in general limited by many factors such as zeros of T'2

and T3 inside the unit disc, the rank of both of these systems and so on.

There are two cases that arise, the first we term the good rank case in which

the only constraints on S are the zeros of '2, T3 in the unit disc, and the

second we term the bad rank case in which rank constraints also exists. One

should bear in mind that the basic idea behind this characterization is the

solvability of the equation

A = T2QT3

for a stable Q.
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8.2 Good Rank Case

In here, it is assumed that T2 has full row rank (= m) and T3 has full column

rank (= n). The reason for the term good rank is that the characterization

of the subspace S is obtained by finitely many equations and thus the op-

timization problem over S will have an exact solution. For simplicity, it is

assumed that T2, T3 have full rank for all IAI = 1.

The good rank problem usually arises in situation where one is interested

in only one error function. An example of this is the sensitivity minimization

problem discussed earlier. It is worthwhile noting that most of the interesting

control problems violate these conditions, however, solutions for this class

of problems offer a great insight into the solution of the general problem. In

the next few sections, the presentation is essentially identical to [24], and is

presented here for completeness.

Consider the Smith McMillan form decomposition of T2, T3:

T2 = L2 M2 R 2
(3.1)

t3 = L,3l3M3R

where L 2, R 2, L3, and R3 are (polynomial) unimodular matrices and M 2,

M3 are rational matrices which have the familiar diagonal forms:

M2=/:' M3 = [ -,

0 ... 0

Let Z23 denote the set of all A E D which are zeros of either T2 or T3.

Then for each Ao E 2,3 we can define a non-decreasing sequence of non-

negative integers E 2(AO) corresponding to the multiplicities with which the

term (A - AO) appears on the diagonal of ¥12. That is:

E2(Ao) := (02(Ao)),=

means:

;(A)- = ( - AO)2(0)() i = 1, .. m27
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where 9i(A) has no poles or zeros at A = Ao. We can define similarly a set of

sequences S3 (Ao) for each Ao E Z 23 which correspond to the multiplicities

of the AO's on the diagonal of M 3. A sequence s 3(Ao) is sometimes referred

to as the sequence of structural indices of A0 in t 2.

We can also define m polynomial row vectors of dimension m and n

polynomial column vectors of dimension n as follows:

i)= (L)i() i = ,...,m

j(A)= () = ,...,n

where subscript i indicates the i-th row and superscript j indicates the j-th

column. Given the above definitions, a precise notion of interpolation which

will be used in the sequel is presented.

Definition 1 Given t'2 and t3 as above and 1A E Amxn, we say R interpo-

lates t'2 (from the left) and T3 (from the right) if the following condition is

satisfied: Given any zero A0o E Z 23 of t2 and/or T3 with structural indices

E 2(Ao) and E3(Ao) in T2 and t 3, respectively, we have for all i E {1,.. ., m}

andj E {1,...,n}:

i). (&iR)(k)(Ao) = 0, k = O,..., a - 1

ii). (Rfj)(k)(Ao) = O, ... ,3 -
iii). x'"Ck-ao ,S-1 (k)(k-l)[& )tk-l-))]( = 0- tr:'°- l
Or

Sk- 2 E01 -1 (k) (-l-) [&(z)R(k-l-r)i-()](,o) = ° I.., *,3 + a-1
/1=0 /r=O I '' I ol 2 2

where the argument of ai(.) and aJ(.) is understood to be Ao and superscript

(k) indicates the k-th derivative with respect to z.

Note that this condition simplifies greatly in the case of a zero A0 which is

not common to t2 and T3; if it is a zero only of t2, for example, we have

EIs(Ao) = (O)1 = and parts (ii) and (iii) are trivially satisfied for all i and

j. The next theorem gives a characterization of the subspace S in the good

rank case. These conditions can be interpreted as a set of bounded linear

functionals annihilating elements in S.
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Theorem 6 Let T2, T3 satisfy the good rank assumptions, and A E Amxn".

Then there exists Q E A satisfying R = T 2QT3 if and only if A interpolates

T2 and T3s.

Proof. It is easily shown that for A E Am X n there exists Q E A m n" if and

only if for all Ao E Z 2 3, i E {1,..., m} and j E {1,..., n} we have:

(&Ai1j)(k)(Ao) = 0, k = 0, ... ,a2(' 0) + 3j(Ao) - 1

The proof of the theorm follows from Weiner's theorm. The detailed proof

can be found in [24].

The conditions captured in the above theorm can be viewed as forcing a

collection of linear functionals to annihilate the subspace S. The construc-

tion of such functionals is straightforward and follows similar to the SISO

example shown in the sequel.

8.3 The Bad rank Case

In this case, T2 has full column rank = n2 and T3 has full row rank = n3.

This situation occurs frequently in controller design since one is in general

interested in many objectives for minimization. An example of the bad rank

problem is the tracking example with saturations presented earlier.

In the sequel, it is assumed that there exists n2 rows of T2 and n3 columns

of T3 which are linearly independent for all A on the unit circle. This as-

sumption simplifies the exposition although it is not necessary. In general,

it is enough to assume the above for one point on the unit circle [27]. Under

this assumption, T'2 and T3 can be written in the following form without loss

of generality (possibly requiring the interchange of inputs and/or outputs):

1- ()T2)
T2=( T31 T32 )

where T21 has dimensions n2 x n2 and is invertible and T31 has dimensions

n3 x ns and is invertible. Moreover, T21 and T31 have no zeros on the unit

circle. Thus A = T2QT3 can be written:

(T22 )) 1 2 292
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Notice that T21 and '31 define a good rank sub-problem, forcing All to

interpolate their zeros. Nevertheless, this is not enough to characterize all

the admissible R's. The choice of R1l determines uniquely Q. The rest of

the elements in the R matrix have to be consistent with this solution, which

in turn dictates a set of relations between the Rij. Define the following

polynomial coprime factorizations:

T2 2T21 l = D2 N 2

T31 T3 2 = N3 D3-3

Using these definitions, we state the following result characterizing the

feasible set S for this case.

Theorem 7 Given T2, T3 with the assumption on the bad rank case, and

A E A, there exists Q E A satisfying A = T 2Q3 if and only if:

i). (-N2 D2) (,21 =22 0

ii). R(An rla1 2)( D3 ) = 

iii). All interpolates t21 and T31.

The conditions shown in parts i, ii are convolution constraints on the

4l sequence. The interpolation condition in the last part can be tightened,

since only the common zeros of T21 and T22 need to be interpolated.

The discussion above shows that the characterization of this subspace

can be summerized by defining two operators:

V: mx" -n ],'

and

C mlXn" ;r

where a and r are some integers. The first operator captures the interpolation

constraints, and thus has a finite dimensional range, and the second captures

the convolution constraints. These two operators can be constructed in a

straightforward fashion, book-keeping being the only difficulty. To overcome
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this problem, it is helpful to think of R as a vector rather than a matrix.

To illustrate this, let the operator W be a map from el'x to ten defined as
follows:

rml(k)
(WR)(k) = r2 1 (k)

rmmn(k)

The operator W is a one-to-one and onto operator, whose inverse is equal to

its adjoint ( a fact used later). It simply re-arranges the variables in R. The

conditions on R presented in the above theorem can be written explicitly in

terms of each component of R.

To construct the first operator V, recall that each interpolation condition

is interpreted as a bounded linear functional on R. By stacking up these

functionals, the operator V is constructed. The following is an illustrative

example.

Example 3 Suppose Tl2 and T31 are SISO and both have N distinct zeros

ai in the open unit disc. Then the matrix V is given by V = VoW where

( Re(ap) 0 0 0 Re(al) 0 ... Re(aJ) 0 ...
XV. Im(ao) O O O Im(al) O ... Im(aj) 0 ...

for i = 1,...,Nandj = 0,1,2,....

For the second operator C, recall that convolution can be interpreted as a

multiplication by a block Toeplitz matrix, in this case with finite memory.

By simple rearrangement, the operator is constructed with its image inside

It. Hence C is given by C = TW where T is a block lower triangular matrix.

For a detailed example, see (20, 24]. To illustrate the construction of the

operator T, consider the following example.

Example 4 consider the coprime-factor perturbation problem presented

earlier for a SISO. The condition for stability robustness is given by [9]:

I[vi -i - + QM] II < 1
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In this case, T2 = 1 and T3 = (N - M). Since Af-1N = NM-' with

N, M coprime, the conditions in the above theorem translate to

(R,, R2) N = 0

The matrix T is then given by (since W = I):

(m(O) n(0) 0 o o 0 ...
(m(l) n(1)) (m(O) n(O)) 0 0 0

T = (m(2) n(2)) (m(l) n(1)) (m(O) n(O)) 0o o .
(m(3) n(3)) (m(2) n(2)) (m(l) n(1)) (m(O) n(O)) O

It is interesting to note that the operator C captures all the conditions and

no interpolation conditions are needed. The conditions presented in the

theorem can be redundant, and can be significantly reduced [27]. Generally,

the operator W $ I and so the operator T will not be exactly a Toeplitz

matrix, although it will have a similar structure.

The subspace S is then the set of all elements R E £exn such that VR = 0

and CR = 0. Let b, = lVT and b2 = CT,. The 4t optimization problem can

be restated as:

inf 1Il1 subject to VI = bl, C¢ = b2 (OPT).

9 Duality in Linear Programming

It is well known that optimization problems minimizing the tl-norm with

linear constraints inside ER
n are equivalent to linear programming (LP) prob-

lems. For this reason, it is natural to expect that the £l optimal control

problem (OPT) is also equivalent to a linear programming problem. The

difference is that such problems may have infinitely many variables and con-

straints, and thus only solvable by approximation. The duality theory in

linear programming is primarily motivated by a desire to reduce the number

of variables in a problem. It will be quite interesting if the infinite dimen-

sional linear programs can be converted to finite-dimensional ones through

some duality argument. In this section, it is shown that the good rank
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problems can be exactly transformed to finite-dimensional linear programs,

however the bad rank problems may not. For the later, only approximate

solutions can be obtained.

The following result is standard in linear programming and is known as
the duality theorem: Let z E IR", A is an m x n matrix, b is a 1 x m vector

and c is a 1 x n vector. The following two problems are equivalent:

mincTx = maxbTy
subject to subject to

Az < b ATy > c
>0 Y20

In words, a minimization problem with n variables and m constraints is

equivalent to a maximization problem with m variables and n constraints.

The constraint matrix of the second problem is the adjoint matrix (trans-

pose) of the first. In a more mathematical terminology, y is in the range of

the adjoint matrix, hence is an element of the dual space of IR'.

9.1 The 4t problem as a Linear Program

In this section, only the SISO case is treated. The objective is simply to

highlight the basic ideas involved in solving such problems not to present

the most general solutions. Notice that in this case, the only constraints are

due to V presented in the example above. An equivalent statement of OPT

is given by:
min g

subject to

11111 < IL

VI, = bI

To show the resemblance between OPT and standard linear programs, we

can perform the following changes: P can be split into negative and positive

components, P = -1 _ 12 where +1(k), 4b2(k) > 0. This is a standard

trick in linear programming that allows one to convert the 4l norm to a

linear objective function. By performing the minimization over 91, p2 the
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solution lies on the corners of the constraints, and hence at least one of the

+1(k), +2(k) will be zero for every k. This shows that OPT is equivalent to:

min A

subject to

E '(k) + +2(k) -_ < 0
0

V(Il _ 12) = b1

4k(k), 2(k) > 0

Let eT - (1,1,1,...). To put this problem in a matrix form, define the

space X = 4l x El x ]R which can be viewed simply as an infinite sequence

of variables. Define the matrix A decomposed conformally with X, whose

range lie inside ]R2N+1 as follows:

/ eT eT -1

\-V V o

Also, define the vector x E X, b E IR2N+1 and the infinite vector c (also

decomposed conformally with X) as follows:

= j2) b = ( ) C (= O)
A -bl 1

The matrix A has 2N + 1 rows and an infinite number of columns. OPT is

equivalent to the following linear program:

min cT 

subject to

Ax < b

x>0

Using the LP duality theorem, OPT is equivalent to another maximization

problem in terms of a vector of dimension 2N + 1. Let 3 E IR2N+1 be

decomposed as:

= 21 1E IR, 32 ,,P3 E
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The maximization problem is given by:

max(]32 - 03)Tbl

subject to

13e + (P 2 - 0 3)TV > 0

,3e - (/2 - 03)TV > O

-P1 > -1

/ 1 E AR, /32,/3 E RN

Finally, substituting a = /2 - P3, then OPT is equivalent to the problem:

max aTbl

subject to

IaTVI < e

where the inequality is taken pointwise. This problem is a finite dimensional

linear program with infinitely many constraints. However, the matrix V has

coefficients that decay exponentially, and one can show that only a finite

number of constraints is needed to obtain an exact solution [19]. An explicit

bound on the length of the finite dimensional problem can be derived.

Once a finite-dimensional dual problem has been determined and solved,

the solution of the original problem (i.e. solution for f) can be obtained di-

rectly from the linear program. The process of obtaining the primal solution

is known as the alignment problem.

Note that in the above, an inequality formulation of the LP problem

was chosen instead of the equality one. Although in the SISO this is not

needed, for MIMO problems, the equivalent linear program will always have

mixed constraints: equality and inequality constraints, and thus the above

formulation is more direct. Similar results follow from the duality theory for

Lagrange Multipliers and are reported in [16].

9.2 The General Case

In general, OPT may not be equivalent to a finite dimensional Linear Pro-

gramming problem. In that case only approximate solutions can be obtained.
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We will not treat this case in here, however a good treatment is found in

[16, 20, 24, 27]. A straightforward way for solving the problem is to consider

only finite length solutions for TV, and solve a finite dimensional LP as de-

scribed earlier. As the length of the solution increases, suboptimal solutions

to OPT can be obtained. Duality theory can then be invoked to provide

estimates for the distance between the actual minimum and the norm of the

suboptimal solution.

10 Conclusions

This chapter presented an overview of the 4l design methodology as a tool

to synthesize controllers to achieve good performance in the presence of un-

certainty. It was shown through prototype problems that this formulation is

well suited for problems where Peak-to-Peak specifications and constraints

are required. A general framework that allows incorporating stability ro-

bustness and performance robustness was presented from which computable,

non-conservative conditions were derived. These conditions were shown to

be equivalent to computing the spectral radius of some matrix, which was

then simplified tremendously with the utilization of Perone-Frobenious the-

orem. The synthesis problem involved solving an el optimization problem,

which was shown to be intimately related to infinite Linear Programming

problems.

The results presented in this chapter were only discrete-time results. The

interest in discrete-time systems stems from the fact that in many practical

situations, one is interested in designing digital controllers for a continuous-

time plant. Such problems are known as sampled-data systems and has re-

cently received a lot of attention in the literature. For hybrid systems with

Peak-to-Peak specifications, it is shown in [28, 29, 30] that these specifica-

tions can be met by solving a higher dimensional discrete-time 41 problem.

This in turn justifies the body of work on the pure discrete-time case.

There are many related results in the area of L1 optimal control design.

The sampled-data problem mentioned earlier is one area. A related area is
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the design of controllers for multi-rate sampled systems, or periodic systems

[31]. Recently, a lot of attention has been given to the study of the structure

of the el controllers for the bad rank case searching for some separation

structure similar to that of the H2 and Ho problems [32]. Exact solutions

have been constructed for simple bad rank problems in [26, 27]. Also, it was

shown that optimal solutions can require dynamic controllers eventhough all

the states are available [22]. Other properties of optimal 4l solutions are still

under investigation [23]. Good demonstrations of the 4l theory on practical

problems can be found in [33].

In many practical problems, the external inputs include some fixed sig-

nals such as reference inputs. In such problems, the design methodology

does not fall under the worst case paradigm, however still tractable using

the above methods. In particular, controllers that will achieve performance

objectives in terms of overshoot and settling time can be synthesized by solv-

ing linear programming problems and are discussed in details in [34, 35, 21].

There are quite a few directions of research that are needed for the de-

velopment of this methodology. To mention some of these, the problem of

studying the structure of the 4l controllers is quite important. Apart from

providing a better insight into the design, the knowledge of the structure of

the optimal controller can simplify the computations involved in a non-trivial

fashion. Another research problem is concerned with model reduction: How

can the order of the controller be reduced so that both stability and a level

of performance is maintained. Also, the exact synthesis problem which in-

volves a minimization of a spectral radius objective function is still an open

problem.
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