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Abstract
To be implementable in safety critical applications, adaptive controllers must be
shown to behave strictly according to predetermined specifications. This thesis presents
two tools for verifying specifications relevant to practical direct-adaptive control sys-
tems. The first tool is derived from an asymptotic analysis of the error dynamics
of a direct adaptive controller and uncertain linear plant. The analysis yields a so
called Reduced Linear Asymptotic System, which can be used for designing adap-
tive systems to meet transient specifications. The tool is demonstrated in two design
examples from flight mechanics, and verified in numerical simulation. The second
tool developed is an algorithm for direct-adaptive control of plants with magnitude
saturation constraints on multiple inputs. The algorithm is a non-trivial extension
of an existing technique for single input systems with saturation. Boundeness of all
signals is proved for initial conditions in a compact region. In addition, the notion
of a class of multi-dimensional saturation functions is introduced. The saturation
compensation technique is demonstrated in numerical simulation. Finally, these tools
are applied to design a direct-adaptive controller for a realistic multi-input aircraft
model to accomplish control reconfiguration in the case of unforseen failure, damage,
or disturbances. A novel control design for incorporating control allocation and re-
configuration is introduced. The adaptive system is shown in numerical simulation to
have favorable transient qualities and to give a stable response with input saturation
constraints.
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Chapter 1

Introduction

This work is to be considered an initial step toward developing a set of tools and pro-

cedures that can be used for designing practical adaptive controllers for systems in

which safety and reliability are critical operating requirements. In the past, adaptive

control has been limited to applications without stringent safety requirements such as

high performance specialized robotics applications, or docile industrial control appli-

cations. Safety critical applications demand that controllers behave strictly accord-

ing to predetermined specifications. Unfortunately, the inherently nonlinear nature

of adaptive controllers makes them impervious to the analysis techniques relevant to

linear controllers. Consequently, the behavior of adaptive controllers in realistic sit-

uations involving input disturbances, sensor noise, model structure uncertainty, and

input saturation is difficult to characterize. Not only do we lack the means by which

to verify that an adaptive controller meets specifications, but it is unclear even how

such specifications ought to be posed. It is hoped that this thesis will address both

of these problems to some extent.

Two tools are presented in this thesis for the verification of adaptive systems. The

tools were developed with two overarching considerations

i) they should be analytically verified, and

ii) they should be practically useful for control design engineers.

The tools are introduced with a theoretical motivation. They are then demonstrated
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in several realistic design exercises involving aircraft control. The first tool we de-

rive, the Reduced Linear Asymptotic System (RLAS), provides a means by which

to estimate the asymptotic oscillatory properties of an adaptive system. The RLAS

leads to a simple design and verification procedure to systematically produce adaptive

controllers according to standard transient specifications. The second tool we derive

allows for stable adaptive control of plants with saturation constraints on multiple

inputs. A previous result for single input adaptive systems [20] is generalized to the

multi-input case, which is relevant to many safety critical applications.

1.1 Aircraft Control: An Archetypal Example

Aircraft control was chosen to serve as a backdrop to the theories and techniques

presented in this thesis. The application of adaptive control to aircraft promises

benefits in safety and robustness and is considered to be one of the main enabling

technologies for Unmanned Air Vehicles (UAV's). Early attempts at adaptive flight

control used controllers with unproven stability properties, sometimes with disastrous

consequences; for example the fatal crash of the NASA X-15 in November, 1967.

As a result, much of the theoretical work up to the present time has been rightly

focused on stability of adaptive architectures. Currently, there exists an assortment

of stable adaptive control strategies, as well as techniques for preserving stability in

the presence of unknown, bounded disturbances [27, 34]. In addition, recent military

interest in UAV's has caused a surge of adaptive flight control research. UAV's provide

an exciting test ground for experimental control techniques. It is reasonable to expect

that the viability of adaptive flight control systems must be proven in unmanned

vehicles prior to their implementation in manned aircraft, where safety is a much more

critical consideration. For this reason, the development of stable and robust adaptive

flight control systems for UAV's is a crucial gateway to the broader acceptance of

adaptive control strategies for other safety critical applications.

Three common adaptive architectures have been investigated in conjunction with

aircraft control. Perhaps the most promising architecture is direct adaptive control,
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in which control parameters are adapted based on some performance error. Direct

adaptive strategies were explored in [40, 2, 21, 37]. Another common adaptive control

architecture, indirect adaptive control, uses a controller derived from a plant model,

while the model is continuously updated using system identification techniques. A

notable application of an indirect adaptive flight controller is treated in [4] using a

multiple model approach. Finally, neural network based flight controllers have also

been a popular topic of research [7, 16]. Such controllers use one or more networks

of basis functions, which are adapted online using learning algorithms. Each of these

control techniques has been investigated in myriad embodiments and variations. In

addition, methods such as Training Signal Hedging (TSH) have been developed to

overcome the real-world problem of saturating actuators [20, 32, 23]. In [33], TSH

was used to develop a direct-adaptive controller for simultaneous control allocation

and reconfiguration. Based on this substantial body of research, it can be argued

that the study of adaptive flight control systems has reached sufficient maturity to

warrant research into more practical problems of integrating adaptive controllers with

aircraft systems.

1.2 Verifiable Transient Properties

Currently, one practical obstacle to transitioning adaptive flight controllers into aerospace

applications is an inability to analytically assert that the closed-loop system will have

acceptable transient behavior. As discussed previously, this is not a trivial task be-

cause the dynamics of an adaptive system in closed loop are nonlinear. For example,

there is currently no simple analytical technique to determine whether or not a control

signal produced by a given adaptive controller will exceed the bandwidth of control

actuators. Similarly, there is no simple technique to determine whether or not the

response of a given adaptive control system will produce frequencies that may interact

with, for instance, unmodeled structural modes. Such concerns can be grouped under

the umbrella of Verification and Validation (V&V) and are obviously of paramount

importance in application to aircraft and other safety critical systems. However these
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concerns have received curiously little attention in the adaptive control literature. Re-

searchers have generally relied on extensive simulation and trial and error to produce

adaptive control systems with suitable transient properties.

The V&V techniques that are currently in use for modern aircraft systems [6,

11, 30, 38] are unsuitable for adaptive flight control systems because they rest on

the assumption that the control system is linear (at least locally). The need for

completely new V&V techniques is expounded in [10, 9], and some necessary features

of a successful V&V procedure are laid out in [18]. Some specific techniques have

been proposed for neural network based controllers. For example, the method in

[17] relies on bounding neural network outputs using Lipschitz conditions imposed

on the chosen set of basis functions, and a second method employs Support Vector

Machines (SVM) to determine if a neural network will produce an output that is out

of specification [24]. These methods are specific to neural network based adaptive

control systems, and it is difficult to envision their use in an industry setting due to

their complicated and theoretical nature. In chapter 2 we address this problem by

deriving the RLAS. We propose a simple design and verification techniques based on

the RLAS that can be used to verify transient properties of adaptive systems. In

chapter 3 the RLAS design and verification procedure is applied to two realistic flight

control problems.

1.3 Saturation with Multiple Inputs

Another consideration of chief importance in the adaptive control of safety critical

systems is that of input saturation. Control of systems with constrained inputs is

a theoretically challenging problem and one of immense practical importance. Ac-

tuators subject to saturation and bandwidth constraints are ubiquitous in control

applications. Actuator constraints can degrade system performance and potentially

lead to instability if they are not accounted for in control system design. In par-

ticular, adaptive control techniques are especially susceptible to destabilization from

saturating actuators since saturation errors can lead to parameter estimation errors,
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in turn leading to instability.

In [20, 23, 26, 8, 36, 3], adaptive control approaches for plants in the presence of

saturation have been developed. In [20], Karason and Annaswamy introduce a sat-

uration compensation method for direct-adaptive control and show that for a single

input plant with output feedback, bounded trajectories can be guaranteed for a range

of initial conditions regardless of the stability properties of the open-loop plant. Ref-

erence [23] presents a modification of [20] that allows for stable adaptation without

hard actuator saturation. In [26], a viable control strategy is proposed without formal

proof of stability or boundedness. In [8], the authors review the current state of the art

of adaptive control with input constraints. They note that most current algorithms

are applicable to indirect-adaptive control, and many rest on the assumption that

the plant is open-loop stable. No multi-input saturation compensation strategies are

mentioned. An indirect adaptive control strategy is developed in [36] for open-loop

stable plants with possible zeros in the RHP. In [3], current saturation compensation

methods are used for the problem of reconfigurable flight control.

All of these papers have focused primarily on single input, single output (SISO)

systems. To the author's knowledge, there currently exist no formal attempts to

demonstrate stability or boundedness for multi-input, multi-output (MIMO), direct-

adaptive systems subject to saturation constraints. In fact, it can be argued that

susceptibility to saturation errors is a major factor inhibiting the implementation of

direct-adaptive control in a wide range of MIMO applications. In chapter 4 we derive

a stable adaptive control law for systems with multiple constrained inputs.

1.4 The Reconfiguration Problem

Finally, in chapter 5, we apply the multi-input saturation technique to design a re-

configurable flight controller for a realistic aircraft model with actuator failures and

uncertain dynamics. A reconfigurable controller is one that automatically redesigns

control laws so as to restore nominal control of a plant in the event of actuator failure

or other unforeseen changes in the plant dynamics. Reconfigurable controllers have
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the potential to provide a significant benefit in safety in several applications; most no-

tably in aircraft. It is estimated that 14% of all fatal aircraft failures could have been

prevented, in principle, by an effective reconfigurable flight control system [14]. Re-

configurable control is crucial to the development of Unmanned Air Vehicles (UAV's)

as well, since UAV's are required to follow navigational commands in the presence of

uncertain, possibly failure-related, disturbances. Several approaches to reconfigurable

control have been proposed for various applications [15, 28, 19], however, this work

will focus primarily on the use of adaptive control for reconfiguration.

Most modern aircraft have redundant control effectors, and thus employ so-called

control allocation techniques [39]. For such aircraft, it is logical to use the actuator

redundancy for the problem of reconfiguration. In other words, if an actuator fails

then it might be possible to compensate for its adverse effects by utilizing the re-

maining healthy controls. Control allocation algorithms such as Pseudo-Inverse [39],

Quadratic Programming [5], Linear Programming [13], Direct Allocation [12], and

others have been applied to the problem of reconfiguration with varying degrees of

success. Specifically, Durham's Direct Allocation has received much attention re-

cently, and has been shown to be among the most promising allocation algorithms

[12, 29].

To be useful for reconfiguration, all of the above allocation methods require an on-

line estimate of the aircraft dynamics after failure. The speed of convergence of such

online estimators depends on excitation of the external inputs, which can be some-

what alleviated by using multiple models as demonstrated by Boskovic and Mehra

[4]. In light of these potential difficulties, another direction of research has focused

on reconfiguration with fixed allocation [40, 2, 21, 7, 37] where direct-adaptation can

be applied straightforwardly in the realm of virtual-inputs. In [40] a reconfiguration

retrofit module is developed for transport aircraft, with a direct-adaptive input er-

ror approach. In [2] several adaptation methods are examined, and it is concluded

that a direct-adaptive input error formulation is most appropriate for the problem

of reconfiguration. Similar techniques are used in [21] with a cascading adaptive for-

mulation, and in [7] with an adaptive neural network. In [37], Tao et. al. consider
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direct-adaptation for reduced order, single input systems representative of aircraft

dynamics. In all of these cases, the controller was assumed to operate with fixed

control allocation. This is an inherent shortcoming because it fails to utilize the ver-

satility of an over-actuated aircraft. Specifically, it requires that independent control

surfaces be restricted to move in constant proportion to one another, thereby limiting

the moments attainable by the control system. The controller derived in chapter 5

attempts to combine the benefits of control allocation and direct adaptive control

while avoiding the drawbacks of either.
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Chapter 2

Verifiable Transient Properties

2.1 Introduction

In this chapter, we introduce a tool based on Lyapunov theory, asymptotic analy-

sis, and linear systems theory for analyzing the transient behavior and disturbance

rejection properties of adaptive systems. At the same time, the tool provides prac-

tical guidelines for tuning adaptive controllers to satisfy predetermined performance

criteria. The focus of this chapter is limited to the simplest embodiment of a direct

adaptive controller: Model Reference Adaptive Control (MRAC) using state feed-

back for a single input plant. In section 2.2, a general plant model is introduced and

its scope is discussed. In section 2.3 a simple direct adaptive control architecture

is developed for the model. In section 2.4, the Reduced Linear Asymptotic System

(RLAS) is derived and it's relevance to the problem is proven. Section 2.5 describes a

design procedure using the RLAS to produce adaptive designs with specified transient

properties. In section 2.6 we describe a procedure for using the RLAS to verify the

transient properties of an adaptive control design. Section 2.7 aims to characterize

the covergence rate from the nonlinear system to the RLAS. An approach to the

inherently nonlinear analysis is proposed in this section. Finally, a summary is given

section 2.8
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2.2 Model Development

The problem under consideration is the control of an uncertain, states accessible,

nonlinear plant of the form

X = fp(X, U)

where X E n and U C . For the purposes of control, the nonlinear plant is

approximated by a schedule of Linear Time-Invariant (LTI) systems of the form

: = Ax + bpad + dp (2.1)

where x = X - Xo, and ad = U - UO, and where Ap E Rnxn, bp C Rn , and dp E n

are unknown. X0 is a desired equilibrium state and U is an unknown constant "trim"

input that maintains the plant at Xo in the absence of the disturbance dp. Specifically,

Xo and Uo satisfy the relation bpUo = -ApXo. It is desired that the plant follow a

known reference model, which itself is nonlinear and of the form

Xm = fm (Xm, Um)

where Xm E ", and U E R is a bounded input from a pilot or a guidance/navigation

system. Moreover, the reference model is also expressed as a schedule of known LTI

systems with a known interpolation algorithm. Each LTI reference model can be

written as:

Xm = Axm + bmSc (2.2)

where x = X - X0, and ad = U - U0. It is assumed that Am E Rn is Hurwitz, and

Xo is the same equilibrium state used in Eq. (2.1), and Umo is the necessary trim

input for the reference model, so that bUo = -AmXo.

In this work, each LTI plant-reference model pair (Eqs. (2.1) and (2.2)) will be

treated separately, as is common in flight dynamics. It is assumed that the above

scheduled representation of a nonlinear system is adequate for the problem at hand

and questions pertaining to inaccuracies of this representation will not be consid-
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ered in this chapter. The representation described above is typical of flight vehicle

dynamics. Note that equation (2.1) may include physical dynamics as well as feed-

back dynamics imposed by the presence of a nominal controller, and the state x may

include controller states, such as integrators, as well as other physical parameters.

2.3 Direct Adaptive Controller

We would like to design a control input ad (, Xm, 6c) such that

lim (x - Xm) = 0. (2.3)
t-0oo

Let the input, ad, be given by the control law

6 ad = TW. (2.4)

where [ xT 6, 1 ] and [ 0T 6 d ]T, (2.5)

and 0 E n', 0 E R, and d C ~R are control gains. The control gains are adjusted

according to the adaptation law

= -Fwb Pe, (2.6)

where e = x - x, is the system tracking error, P is the unique symmetric positive

definite solution of the algebraic Lyapunov equation ATP + PA, = -Q, with Q > O.

Also, in (2.6), F > 0 is a positive definite symmetric matrix of adaptation rates.

Assuming that there exist ideal gains 0*, 0 > 0, and 0* such that

bpOT = A, - Ap, bpO = b, and bp O = d, (2.7)

the controller in (2.4) with the control law in (2.6) can be shown to achieve tracking

as specified in (2.3). Equations (2.7) are known as the model matching conditions.
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The control gains can then be redefined in terms of the ideal gains and gain errors as

O= -, 06 = 06-0, and ed= d = e (2.8)

Substituting equations (2.1), (2.2), (2.4), (2.6), (2.7), and (2.8), and recalling that

e = x - Xm gives

[e A0m ]gmW [-rg ] [ e~ ]· ~ '(2.9)

where As = 1/O, and = [ ST H6 d ]T- Equation (2.9) represents the error dynam-

ics of the closed loop adaptive system. Notice that the error dynamics are nonlinear

and time varying due to the presence of the linear regressor vector w. The problem

considered in this chapter is how to design adaptation gains F and Q in (2.9) to

produce an adaptive response for a given specification, and, once designed, how to

verify that the response is indeed within the given specification.

2.4 RLAS: An Adaptive Control Design Tool

The tools are here presented in two theorems which are then proven. The first theorem

states the well known properties of MRAC systems based on Lyapunov analysis. The

second theorem introduces the Linear Asymptotic System (LAS), which emerges from

an asymptotic analysis of (2.9). The LAS is then simplified to give the Reduced Linear

Asymptotic System (RLAS).

Theorem 2.1 The error dynamics in equation (2.9) have the following properties:

i) the plant state x is bounded,

ii) the controller gains 0 are bounded,

iii) limto e = 0.

Proof
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Consider the Lyapunov function candidate

V = eTPe + 0TAF-10. (2.10)

Taking time derivatives along the system trajectories gives V = -eTQe <0. This

implies that V is bounded, and hence e and 0 are bounded. Since A, is stable and

6, is bounded, xm is bounded. This, in turn, implies that x and 0 are bounded, and

i) and ii) are proven. Now, x bounded and 6, bounded imply w is bounded; and Am

stable, e bounded, and 0 bounded imply that is bounded. This implies that V is

bounded. Therefore, by Barabalat's lemma, limt,, V = 0, which directly implies

V

Definition 2.1 A dynamics, zl = f(zi), is said to converge to another dynamics,

2 = g(z2), if given an (, there exists T such that for each initial condition z 1(to) and

z2 (to),

Ilzl(t) - z2(t)ll < E t to + T.

a constant input, c, the error dynamics in equation (2. 9) converge

where wc C Rn+2 is a knot

bounded constants.

Am + A6bmOxT

-rFmcb P

A6bmWmcT

0 I- ea -
[8a 

(2.11)

vn constant, and A E JR and O8c EG R are unknown

Proof

The linear regressor, w, can be written

W = We + Wm,

where we = [ eT 0 0]T, and Wm=[ XT 5c 1] T
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With 6, constant and Am stable, w, converges exponentially to a constant wmc, where

Wmc[ XcT jc 1 T, and xmc =-Alb,c,.

Therefore the error dynamics in (2.9) converge

which can be expressed as

et A,

t = I L -EFwmcbT7P

exponentially to a new error dynamics,

AbwT J [ et ][A 6bmweTt
(2.12)

where wet = [ 0 eT . Notice that (2.12) is time-invariant and nonlinear.

We now show that for a constant input, 6, the parameter error, 0, converges

to an unknown constant vector 0c = [ 0~[ O5C 0 d, ]T. To prove this, recall the

Lyapunov function (2.10). Since V 0, by La Salle's Invariance Principle [22] the

state e, 0 converges to its largest invariant set. This implies that limto,, = 0 and

limtO, = 0. From theorem 2.1 and from (2.9) this implies that limtowT0 = 0.

Therefore

limt-oo = Oxc,

where wMc = 

Using this fact and Theorem 2.1, the dynamics in (2.12) can be

Taylor series about the equilibrium point et = 0 and at = 0c to give

expanded in a

Ke]l A + Abbm T AAb,: Ab T e f (e : ) ]
La -Fmc b mP ° a ea, a--0O - }- Ca {a(2.13)

where f and g contain only second order terms. Using Definition 2.1,

follows directly.

Theorem 2.2

V
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The properties of chief interest for V&V are the asymptotic state error dynamics,

ea, and the input dynamics, ad. Define the asymptotic input error dynamics to be

.= ma (2.14)

Substituting (2.14) into (2.11) and simplifying gives

[K: ] [ -AmAbm f Abm 3 [ ](2.15)

where y is defined to be the known scalar m TrJ.mc. Equation (2.15) is the Reduced

Linear Asymptotic Systems (RLAS). Notice that the LAS (2.11) has 2n + 2 eigen-

values, n + 1 of which are stable and the remaining n + 1 are identically zero. The

RLAS has n + 1 stable eigenvalues, which are equal to the n + 1 stable eigenvalues

of the LAS. The RLAS is a simple, linear, compact approximation to the dynamics

of the closed loop adaptive system. It is the main tool used in this chapter and the

next to predict the oscillatory behavior of adaptive systems for design or verification

purposes.

2.5 RLAS Design Procedure

The optimal selection of F and Q in (2.9) for a given set of performance metrics is

the eventual goal of this research. The RLAS is useful toward this end because F

and Q can be designed for the RLAS using linear design techniques to meet the given

performance metrics. The same F and Q can then be applied to the adaptive system,

which is proven to converge to the RLAS, and therefore, will satisfy the performance

metrics as well, after the transient delay. In this section we take a first step toward

this goal and find F and Q by a combination of analysis and numerical simulations.

In order to find the optimal F and Q, the unknown quantities A and SO in

(2.15) must be estimated. In this study, A, the control effectiveness uncertainty, was

chosen as an example of an extraordinary failure, though in practice expected bounds
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Figure 2-1: The figure illustrates the iterative procedure used to determine the values
of , Q, and O,.

on A6 would have to be determined based on the specifics of the plant and its range of

operation. The asymptotic gain error, Oc,, was estimated in an iterative process in the

following way. The unknown value Oc, was set to zero in the RLAS (2.15) and suitable

values of F and Q were determined using the root locus method. The trajectory of

the adaptive dynamics (2.9) was then found through numerical simulation using these

values of F and Q, and a new value of 0xc was determined. This process was repeated

until a value of xc, was converged upon. The iterative procedure is illustrated in figure

2-1. In practice, only one or two iterations were required since it was found that the

RLAS dynamics were typically not sensitive to variations in c. This observation

can be verified with a root locus of the RLAS with respect to each of the elements

of c. In the future it would be interesting to investigate methods for analytically

estimating ,,z, or bounding its effect on the RLAS, to avoid this iterative procedure.

We now discuss how F and Q are determined for a given value of xc. It is known

in a qualitative sense that increasing F and Q will cause more vigorous oscillation

and less overshoot in an adaptive system. The proposed RLAS design approach

allows these intuitions to be formalized. In the RLAS the pilot/navigation system

input, 3c, and the adaptive gain r appear as a single scalar, -y. A root locus of

(2.15) with respect to y can be used to verify the intuition that increasing r increases

response frequency. Likewise, the RLAS gives the additional insight that the response

frequency is roughly proportional to the square of the input signal 6c. Thus if one

wishes to limit the frequency of the adaptive response, one must have some control,

or at least some known bounds, on the input signal. The effects of the elements of the

vector b P can be determined similarly, noting that increasing these elements leads

to a more oscillatory response. Therefore, y and bp can be designed for the RLAS
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using the common arsenal of linear design techniques, such as the root locus method,

Bode plots, or Nyquist plots. These can then be used to back calculate F and Q

straightforwardly, taking care that both P and Q in the linear Lyapunov equation

are positive definite. For the studies in this work, F and Q were determined using the

root-locus method to obtain suitable eigenvalues for the RLAS. In particular, these

values were chosen so that the oscillatory mode of the RLAS corresponded to a given

design specification, while all 1st order modes were sufficiently fast not to inhibit

response time.

2.6 RLAS Verification Procedure

The RLAS can further be used to verify the adaptive design by comparing its trajec-

tory to that of the adaptive system. For this procedure, we explicitly simulate the

response of the RLAS and the adaptive system under some known failure (or uncer-

tainty) to ascertain how close their responses are and how quickly they converge. The

RLAS was formulated as previously (2.15) using the same values of As and S0. To

give a meaningful comparison with the trajectory of the adaptive system, the RLAS

trajectory must be added to the reference model trajectory to obtain a corresponding

linear "state" trajectory. For this purpose, an appropriate set of initial conditions

ea (to) and a (to) for the RLAS must be calculated from the corresponding conditions

of the adaptive system at to. The initial error, e (to) is easily found from the initial

states of the adaptive system and reference model as e (to) = x (to) - xm (to), while

the initial input error a (to) is found from 6, (to) = w,,,c ( (to)- 0*). Comparison

of the trajectories can then be used to infer whether the adaptive system satisfies

the design criteria. In the following chapter we will apply such a design/verification

methodology to design an adaptive controller with suitable transient properties for a

linear model of the aircraft short period mode and for a full nonlinear 6-DOF aircraft

model.
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2.7 Nonlinear Transients

Theorem 2.2 ensures that the dynamics converge to an RLAS, but one crucial piece

of information that this theorem does not provide is the rate at which convergence is

achieved. Unfortunately, the question of convergence rates for nonlinear systems, such

as the adaptive error dynamics in (2.9), is a difficult one, and in general there is no

method of determining such a rate. It would be valuable to be able to characterize the

convergence rate as bounded by some exponential curve (exponential convergence). In

this section we set forth a simple geometric requirement for exponential convergence,

however a means of proving that the requirement is verified for the dynamics in (2.9)

is out of reach at present.

We consider the simplest case of the dynamics in (2.9) which still retains the

necessary qualities of the system. In particular, let e E , 0E 2, bm = 1, and

Ap = ap C and A = A E are both uncertain. Also, we let F = I2 and we make

the assumption that w,(t) = wmc Vt. For this case, the dynamics in (2.9) can be

written

[ ] [-w O W] [ K] (2.16)

Breaking the system into linear and nonlinear parts and using the relations =

We + ame and 0 = 0 a + 0, we can write the dynamics in (2.17) as

-] am+ c J [ e ] W[ 1. (2.17)
80 -Am'0 + W ee

Close to the equilibrium, the linear terms dominate and exponential convergence is

ensured. Therefore we must examine the nonlinear terms away from the equilibrium.

The term Wee is quadratic and, therefore, contributes to faster than exponential con-

vergence away from the origin. The term XTWa is not necessarily large away from

the origin since it is possible that AweTta = 0 when Wae # 0 and Oa # 0 if We and 6a are

perpendicular. Thus the convergence rate of the adaptive system depends upon the

relative orientation of w, and 0 a. Also, recall that we = [ e 0 1 T, therefore AXwTa = 0
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Figure 2-2: The figure shows the vector quantities that determine the convergence
rates of the bilinear term. For exponential convergence, a must not become perpen-
dicular to we.

only when a = [ 6& IT. SO the requirement for exponential convergence becomes

that ,a z 0 Vt. This is depicted graphically in figure 2-2.

We have shown in simulation that this requirement can be satisfied for sufficiently

small initial conditions. However, even when this requirement is not met, the simu-

lation results in the next chapter show that in practice the convergence rates of the

nonlinear terms are indeed faster than the linear dynamics and play an insignificant

role in the over-all transient characteristics of the adaptive system.

2.8 Summary

In this chapter we introduced a new tool for designing and verifying the oscillatory

properties of adaptive systems. The RLAS was formulated to provide a compact

linear approximation to nonlinear adaptive systems. General design and verification

techniques using the RLAS were then described.
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Chapter 3

Designing to Transient

Specifications

3.1 Introduction

The tools developed in the previous chapter are here applied to two examples. First,

the usefulness of the RLAS approach is demonstrated using linear uncertain short

period aircraft dynamics with a state feedback nominal controller. The adaptive

controller is applied to the closed loop nominal system in an architecture that will

be referred to as adaptive augmentation. The design and verification capabilities of

the RLAS are then demonstrated in a simulation environment. Secondly, a more

realistic application is considered, in which the design and verification techniques are

applied to a full-nonlinear 6-DoF aircraft simulation. An LQ nominal controller with

integral action is designed to control the short period motion of the aircraft using the

uncertain, linear short period approximation. The adaptive loop is closed around the

closed loop nominal system to produce the adaptive augmented control architecture.

Simulation results are presented to verify the design and demonstrate the usefulness

of the RLAS.

In section 3.2 the linear short period model is introduced and the nominal LQ

state feedback controller is designed for the model. Section 3.3 details the develop-

ment of the adaptive augmentation and derives the RLAS for the closed loop short
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period system. In section 3.4 the design and verification procedures descried in the

previous chapter are applied to the short period model and results are presented from

numerical simulation. The nonlinear aircraft model and nominal LQ controller with

integral action are introduced in section 3.5. Section 3.6 develops the adaptive aug-

mented controller and derives the RLAS for the system. In section 3.7 the design and

verification procedures described in the previous chapter are applied to the nonlinear

model and numerical simulation results are presented. Conclusions and directions for

future research are given in section 3.8.

3.2 Short Period Model and Nominal Controller

From [35], short period dynamics of a fixed-wing aircraft with zero bank angle can

be expressed as

[: 1K a [ ][ ] + A 1 (6 + dtr,m) (3.1)

In 3.1, is the aircraft angle of attack (AOA) and q is the body pitch rate. The

scalars )A > 0, A,, and Aq represent uncertainties in the parameter values, and dtrm

denotes an unknown trim input component. In addition, it is assumed that the

aircraft state vector, x = [ q ]T, is available on-line for control purposes. The rest

of the parameters represent the so-called aircraft stability and control derivatives.

The values of the stability and control derivatives used in this example are

L, = 0.6582, Lq = -0.9705, M = -3.3105, Mq = -1.4741, and M = -3.6764.

They were found from a numerical linearization of a nonlinear aircraft model (see

section 3.5 for details). The dynamics in (3.1) can be expressed compactly as

i = Ax + Ab ( + dtrm) . (3.2)
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Likewise, let the dynmaics without uncertainty (i.e. (3.1) where A, = Aq = A = 1,

and dtr, = 0), be denoted

X5v = AspxSp + b8p. (3.3)

A nominal controller is designed assuming no uncertainty as in (3.3) and applied to

the uncertain dynamics in (3.1). The Linear Quadratic (LQ) optimal control design

technique 25] is straightforwardly applied to the dynamics in (3.3). A state-feedback

controller architecture is used for the nominal controller so that

6,,o = kTJx + k6Sc, (3.4)

where k = [ k, kq ]T. The feedback gain, kx, is found by minimizing the cost

function

J x T (QJ + kTRJkx) xdt, (3.5)

subject to the dynamics in (3.3). A suitable closed loop response is found with Qj =

diag([ 2 1 ]) and RJ = 1 to give the feedback gains k = [ -0.2816 -0.7434 ]T

The feed forward gain, k, is designed to produce angle of attack following so that

ka = 1/ge, where [ g, gq ]T = -[A5p + bspkx]-lbp is the steady state gain of (3.3)

with the feedback component kx. Then the closed loop dynamics of (3.3) with control

law (3.4) can be written

Xm = Amxm + bmdc, (3.6)

where Am - (Asp + b8 pkx) and b, = bpks. Defining the input to the actual dynamics

(3.2) to be = nom + ad, the actual closed loop dynamics becomes

x = (A + A6bkx) x + A6b (ad + dtrm). (3.7)

3.3 Adaptive Augmentation and RLAS

Assume that we desire for the uncertain closed loop system (3.7) to follow the closed

loop system without uncertainty (3.6). We can use (3.6) as a reference model for
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Figure 3-1: A block diagram of the augmented adaptive system for the short period
dynamics with multiple parameter uncertainties is shown.

an adaptive controller designed as in (2.4) and (2.6). The combined nominal and

adaptive architecture is referred to as an adaptive augmented controller. Using (2.4)

and (2.6), and (3.1) and (3.7), the error dynamics can be represented as

[ A,], -rbTP A bw [ ] (3.8)

where 0-00*, and 0 = [ 0 Oq 0 trm ]T and where 0 = -MaM 6 ,, Mq(l-Aq)+kqMS(1-A6) , -Xa )s_SOq = 6(1-q -), and trm = -dtrm. A block diagram of the

adaptive augmented systems is shown in Fig. 3-1. The RLAS can be seen directly

from (2.15) and (3.8) to be

[ ~a ]-[ = , , [ ,' ] [ ~a ] '(3.9)

where y = wmTrmc, and wn = [ - (AlbJ6c) T c 1 ]T.

3.4 Design and Verification Procedure

The design procedure described in section 2.5 was carried out using the error dynamics

in (3.8) and the RLAS in (3.9). The RLAS was tuned to produce a response within

the military specification for the short period mode frequency and damping ratio
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t (s

Figure 3-2: The a trajectory of the adaptive augmented system is shown with un-
certainties A = -1, Aq = 0.9, A = 0.7, and dtrm = 0.1. The RLAS was used to
design a suitable adaptive response to a random amplitude square-wave input. The
trajectories of the reference model and the nominal system are shown for comparison.
Note that the nominal system is unstable.

(MIL-F-8785C) [1]. This specification requires that, for Category A flight phase

(requiring rapid maneuvering) and Level 1 flying qualities (qualities adequate for the

flight phase) the allowable ranges for damping ratio, (, and natural frequency, w, are

0.35 < ( < 1.35 and 0.653rad/s < wn < 8.39rad/s. (3.10)

The design procedure resulted in F = diag([ 100 100 100 1 ]) and Q = diag([ 2 1 )

which give the damping ratio C = 0.518, the natural frequency wC, = 4.95rad/s, and

the 1st order time constant t = 3.57s.

A severe failure was simulated by setting, the uncertainties to be A = -1, Aq =

0).9, A = 0.7, and dtrm = .01. In figs. 3-2 and 3-3 the responses to a random

amplitude square wave input of the adaptive system and the nominal system are

shown for this failure. It can be seen that the nominal system becomes unstable

whereas the adaptive system is stable and tracks the reference model asymptotically.

The response of the adaptive system clearly provides suitable flying qualities using

the RLAS design methodology.

The verification of the design was carried out according to the procedure in section

2.6. In figs. 3-4 and 3-5, and in figs. 3-6 and 3-7, the trajectories of c and q are shown

for t = Os to t = 5s and for t = 80s to t = 85s respectively, for both the adaptive
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Figure 3-3: The q trajectory of the adaptive augmented system is shown with un-
certainties A = -1, q = 0.9, \A = 0.7, and dtrm = 0.1. The RLAS was used to
design a suitable adaptive response to a random amplitude square-wave input. The
trajectories of the reference model and the nominal system are shown for comparison.
Note that the nominal system is unstable.
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Figure 3-4: Close-ups of the o trajectory from figs. 3-2 is shown here from t = Os
to t = 5s. Although the nonlinear system is still in a transient regime, its oscillatory
properties are well approximated by the RLAS.

system and the RLAS for the failure described previously. These figures show that

the adaptive system converges to the RLAS and hence meets the specification (3.10).

Even during inital transients (figs. 3-4 and 3-5), the oscillatory characteristics of the

adaptive system are well approximated by the RLAS.

3.5 Nonlinear Model and Nominal Controller

A nonlinear 6-DoF simulation of a large transport aircraft was implemented accord-

ing to accepted aircraft simulation practices [35]. The aircraft was trimmed with
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Figure 3-5: Close-ups of the q trajectory from figs. 3-3 is shown here from t = Os to
t 5s. Although the nonlinear system is still in a transient regime, its oscillatory
properties are well approximated by the RLAS.

ID
1,

t (s)

Figure 3-6: Close-ups of the ac trajectory from figs. 3-2 is shown here from t = 80s
to t = 85s. The nonlinear adaptive system tracks the RLAS closely. The RLAS was
designed to have one oscillatory mode with ( ; 0.5 and w,n 5 and one first order
mode with 3.6s for a response well within military flying qualities specifications.
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Figure 3-7: Close-ups of the q trajectory from figs. 3-3 is shown here from t = 80s
to t = 85s. The nonlinear adaptive system tracks the RLAS closely. The RLAS was
designed to have one oscillatory mode with ~ 0.5 and wa, 5 and one first order
mode with T- ; 3.6s for a response well within military flying qualities specifications.

wings level to ensure that the longitudinal and lateral dynamics were decoupled. The

controllers (both the LQ nominal controller and the outer loop adaptive controller)

were designed using the short period approximation as a plant model to represent the

nonlinear aircraft dynamics. Care was taken to ensure that the short period approxi-

mation was valid over the trajectory of interest. The nonlinear aircraft was linearized

to produce the longitudinal dynamics. Then the short period approximation was used

to derive the second order short period model of (3.3) from the fourth order longi-

tudinal model. The short period dynamics in (3.3) serve as the plant model for the

LQ nominal controller and the adaptive controller to be used with the full nonlinear

aircraft.

The LQ control design technique [25] is straightforwardly applied using a proportional-

integral controller architecture to give zero steady state error to a step input com-

mand. The uncertain dynamics in (3.1) are expanded to include an integrator to

give

[ -La -Lq ]O O0

q AM, qMq 0 q + A 6 M (6 + dt,,) + 0 6a, (3.11)

e'I 1 0 0 el 0 -1
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where e is the state of an AOA integrator and = kT + Sad. Equation (3.11) can be

written in the compact form xi = Ax + ,Ab ( + dtrm) + bmc, and without uncertainty

the dynamics are denoted

&mLc -L -Lq 0 Om 0

[Imr M a + M 6kc~ q + Mkq Mke qm + 0 c 1 (3.12)

tIm 1 0 0 elm -

or, compactly, xm = Amx + bm6c. The feedback gain, kx, is found as before by mini-

mizing the cost function in (3.5) subject to the dynamics in (3.11) with no parameter

uncertainty. A suitable closed loop response was found with Q = diag([ I 1 10 ])

and R = 1 to give the feedback gains kx = [ 1.2996 0.5305 3.1623 T. The con-

troller described above was applied to the nonlinear aircraft. Figures 3-8 and 3-9

show the response of the closed loop system without uncertainty (dashed line) to an

elevator doublet.

3.6 Adaptive Augmentation and RLAS

The system in (3.11) is augmented with adaptation as in (2.4) and(2.6), using the state

error vector e = [ (a - cam) (q - q) (e - eIm) ]T. The resulting error dynamics

can be expressed

K ] [ ArbTbTPA X0T ] [ ]7 (3.13)

where w and 0 are as defined previously in (2.5). As before, the reference model is

chosen to be the closed-loop dynamics without uncertainty as in (3.12). The RLAS

of the closed loop aircraft with optimal PI controller and adaptive augmentation can

be seen directly from (2.15) and(3.13) to be

[ [ (Am+&b ) Ab][ ea I (3.14)
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where y = wm, and wc, and Oc are as defined previously.

3.7 Design and Verification Procedure

As before, the design task was to provide adaptive augmentation while still meeting

the military specification for short period frequency and damping (3.10). The de-

sign procedure described in section 2.5 was employed. It was found that for G =

100diag([ 1 i 1 1 0.0035 ]) and Q = diag([ 10 0.5 0.5 ]) the RLAS had a sec-

ond order mode with damping ratio ( = 0.492, and natural frequency w, = 1.48rad/s,

and 1 t order modes with time constants t = 0.294s and t2 = 124.8s. The second

1St order mode, although it is slow, has no noticeable adverse effect on the RLAS

response.

A moderate failure and a severe failure were simulated with the nominal and

adaptive controllers to compare their performance (see figs. 3-8 through 3-11). The

moderate failure, parameterized by A, = Aq = 1, A = 0.5, dtrm = 0.1563, and the

severe failure, parameterized by A, = -0.226, Aq = -0.470, A6 = 0.5, dtrm = 0.2623,

were introduced at t = 7s. It was observed that the performance of the adaptive

system (solid line) was similar to that of the nominal LQ controller (dotted line)

for the moderate failure, but for the severe failure, the adaptive augmented system

maintained stability and tracking while the system without adaptation diverged. This

shows that the adaptive controller clearly outperforms the nominal controller.

The severe failure in figs. 3-10 and 3-11 was explored more carefully for the

purposes of verification. Figures 3-12 and 3-13 show the a and q response of the

adaptive system to a random amplitude square-wave input for the severe failure.

After a transients of about five seconds, adequate model following is achieved for

a. For q, the unmodeled phugoid mode can be clearly observed in the q trajectory

of the nonlinear aircraft. The phugoid mode for this aircraft has a frequency of

w = 0.122rad/s corresponding to a cycle time of 51.5s, which agrees closely with

the low frequency oscillations observed in fig. 3-13. The model mismatch due to the

phugoid mode could be easily eliminated by using a more sophisticated longitudinal
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Figure 3-8: The a response of the LQ controller (nom) and the adaptive augmented
controller (ad) to two elevator doublets are shown for a moderate failure occurring at
t = 7s. The failure is parameterized by A = q = 1, A = 0.5, dtrm = 0.1563. For
the moderate failure, the responses of the two systems are similar.

Figure 3-9: The q response of the LQ controller (nom) and the adaptive augmented
controller (ad) to two elevator doublets are shown for a moderate failure occurring at
t = 7s. The failure is parameterized by A = q = 1, A = 0.5, dt,, = 0.1563. For
the moderate failure, the responses of the two systems are similar.

t s}

Figure 3-10: The ac response of the LQ controller (nom) and the adaptive augmented
controller (ad) to two elevator doublets are shown for a severe failure occurring at
t = 7s. The failure is parameterized by A = -0.226, Aq = 0.470, A = 0.5, dtrm =
0.2623. For the severe failure, the system with the LQ controller becomes unstable,
while the adaptive augmented systems maintains stability and tracking.
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Figure 3-11: The q response of the LQ controller (nom) and the adaptive augmented
controller (ad) to two elevator doublets are shown for a severe failure occurring at
t = 7s. The failure is parameterized by A, = -0.226, Aq = 0.470, A = 0.5, dtrm =
0.2623. For the severe failure, the system with the LQ controller becomes unstable,
while the adaptive augmented systems maintains stability and tracking.

e
In

t is)

Figure 3-12: The trajectory of the adaptive augmented system is shown with un-
certainties parameterized by = -0.226, q = 0.470, A6 = 0.5, dtrm = 0.2623.
The RLAS was used to design a suitable adaptive response to a random amplitude
square-wave input. The trajectories of the reference model and the nominal system
are shown for comparison. Note that the nominal system is unstable.

reference model, namely one including phugoid dynamics. This exercise demonstrates

that even with the crudest of plant models an adaptive controller with adequate

transient properties can be realized using the RLAS.

The verification procedure described in section 2.5 was carried out for the severe

failure. Figures 3-14 and 3-15 show in detail the first five seconds of the response

in comparison to the RLAS. During the transient period, although the RLAS does

not track the nonlinear system closely, its frequency of oscillation provides a good

representation of the oscillations of the nonlinear aircraft. As the adaptive system

evolves, the RLAS provides a more accurate representation of its trajectory (see figs.
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Figure 3-13: The q trajectory of the adaptive augmented system is shown with un-
certainties parameterized by A, = -0.226, q = 0.470, A6 = 0.5, dtm = 0.2623. The
low frequency oscillations in the q trajectory are from the unmodeled phugoid mode
of the nonlinear aircraft. The RLAS was used to design a suitable adaptive response
to a random amplitude square-wave input. The trajectories of the reference model
and the nominal system are shown for comparison. Note that the nominal system is
unstable.

3-16 and 3-17). Again, the offset of the nonlinear system in fig. 3-17 is attributed to

the unmodeled phugoid mode. It is clear that the RLAS tracks the adaptive system

relatively closely even for the nonlinear aircraft model.

It should be stressed, as well, that the closed loop trajectory is that of a full

nonlinear aircraft model with an LQ controller and an adaptive controller. Thus the

system is highly nonlinear, yet its qualities of oscillation can be inferred from the

simple linear RLAS to a practically useful degree. Figures 3-14 through 3-17 verify

that the adaptive system response is within the military flying qualities specification

(3.10) as expected from the RLAS design procedure.

3.8 Summary

In this chapter the RLAS was used to design an adaptive augmented control system

in two realistic examples from flight mechanics. The RLAS techniques were used with

a linear model of short period dynamics. The adaptive system was verified to have

properties that meet military specifications. The same design techniques were then

applied to a nonlinear 6-DOF aircraft simulation. Again, it was demonstrated that

an adaptive controller can be tuned to meet military specifications using the RLAS.
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Figure 3-14: The oa trajectory from fig. 3-12 is shown here in detail from t = Os
to t = 5s. The RLAS (dash-dot) gives a good indication of the adaptive response
frequency (solid) initially. The RLAS was designed to have a response well within
military flying qualities specifications.
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Figure 3-15: The q trajectory from fig. 3-13 is shown here in detail from t = Os to
t = 5s. The RLAS (dash-dot) gives a good indication of the adaptive response fre-
quency (solid) initially. The offset in the q trajectory is from the unmodeled phugoid
mode. The RLAS was designed to have a response well within military flying qualities
specifications.
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Figure 3-16: The c trajectory from fig. 3-12 is shown here in detail from t = 80s
to t = 85s. The RLAS (dash-dot) tracks the adaptive response (solid) well after
transients have died out. The RLAS was designed to have a response well within
military flying qualities specifications.
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Figure 3-17: The q trajectory from fig. 3-13 is shown here in detail from t = Os
to t = 5s. The RLAS (dash-dot) tracks the adaptive response (solid) well after
transients have died out. The offset in the q trajectory is from the unmodeled phugoid
mode. The RLAS was designed to have a response well within military flying qualities
specifications.
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Chapter 4

Saturation Constraints on Multiple

Inputs

4.1 Introduction

In this chapter, we develop an extension of the result in [20] to multivariable plants.

The technique proposed in [20] consists of modifying the error signal used for training

adaptive gains so as to remove the effects of saturation from the error, and will be

denoted in this chapter as Training Signal Hedging (TSH) as in [23]. The proof

methodology for the multi-input case is quite similar to the single input case, though

there are features that require significant modification. As in [20], we provide a region

of initial conditions for which bounded trajectories are guaranteed for a multi-input

adaptive system with magnitude-constrained inputs. This region is shown to extend

to the entire state space if the plant is open-loop stable.

This chapter is organized as follows: In section 4.2 we review the proof strategy

used in [20] and present the proof for a scalar plant. In section 4.3 we pose the multi-

input problem, state the stability result in a theorem, and provide a proof. Section

4.4 contains simulation results, and a summary is presented in section 4.5.
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4.2 Review of the First Order Case

It is valuable to gain a qualitative understanding of how TSH works as this will lead

to insights in the course of proving the multi-input case. The approach in [20] uses a

modified adaptive law in which the error signal used to adjust the control parameters

is augmented so as to remove the part of the error that is due to saturation and retain

the part that is due to a genuine mismatch between the plant and the reference model.

The proof of stability ensures that this modification does not lead to a destabilizing

action. The proof is reviewed below for the scalar case to acquaint the reader with

the proof strategy.

A first order plant with measurable state is described by the equation

x = apx + bpsat (u) (4.1)

where ap E R and bp E R+ are known, and where the sat (.) function is given by

sat (u) =if U • Umax (4.2)
Umaxsgn (U) if lUI > Uma

and where Umax E R+ is a known constant. A reference model is described by the

first order differential equation

Xm = -amxm + bmrm (4.3)

where am E R+ and bm E R are known constants and r is a known bounded function

so that

1rT rmax,

and rmax E R+ is a known constant. The reference model is chosen so that its state

is the desired state of the plant.

We seek a control law, u(t), such that all the signals in the system remain bounded

and the error, e = x- xm is as small as possible. A standard feedback/feedforward
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controller structure is chosen as

u(t) = kx(t)x(t)+ kr(t)r(t). (4.4)

Define the ideal control gains, k and k*, such that

ap + bpk = -am and bpkr =bin,

and define the parameter errors to be

k =k -k* and k = kr-. (4.5)

Then subtracting (4.3) from (4.1) and substituting with (4.4) and (4.5), the closed-

loop error dynamics can be written

=-ane + bpkx + bpkrr + bpAu,

where Au == u-sat(u) is the so called control deficiency signal. It is assumed that this

signal can be measured or reconstructed from available measurements. The effects

of saturation can be removed by treating Au as an input disturbance, which can be

removed from the training signal, e, by generating a signal eA given by

e/ = -ameA + k/Au,

*with initial condition eA(to) = 0. Then the augmented error is defined as eu = e- eA,

'which results in an augmented error dynamics given by

U = -ameu + bkxx + bpkrr + kAAIu, (4.6)

where k = bp - ka. Equation (4.6) is in a standard form for adaptive control, so we
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give the adaptive laws as described in [27] and [34] as

kx =-7xeux, kr =- -yreur, and kA =-y--yezAu, (4.7)

where yx, yr, ya > 0.

Consider the Lyapunov function candidate

1 2 b 2 1 b k i bp kV = e2 + P kZ + 2 + 
2 y yxx 2 yr 2 A

Taking the time derivative along the trajectories of (4.6) and (4.7) leads to V < 0,

which implies that eu, kx, kr, and k are bounded. Define kmax such that kmax 

max (supkxl, supikrl). Now define the following for notational efficiency:

7max = max(fyx, fyr),

bprmax (Ik*I + kmax)
Xmin --

am - bpkmax

bpUmaz
bma lax and

am -- lapllkr I ra
kmax r max

bp + la p rmax

Theorem 4.1 For the plant in (4.1) with the controller in (4.4) and the adaptive

laws in (4. 7), x(t) has bounded trajectories for all t > to if

i) Ix(to)I < Xmax, and

ii) VV(to) < 2Y max

Further, Ix(t)l < Xax Vt > to, and the error, e, is given by

le(t)[ = O[supAu(T)].
T<t

Proof:
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Let a positive definite function W be defined as

2W( ) 2X

and define an annulus region A as

A: {X!Xmin < x[ < Xmin},

where Xmi,, and Xmax are defined previously. Condition (ii) in Theorem 4.1 implies

that kmax < kmax. After substituting the definition for kmax and rearranging, we find

that this leads to Xmin < Xmax, thus A is non-empty.

Next we show W < 0 Vx C A by considering two cases, case A, where Au = 0,

and case B, where Au #~ 0. After this is established, we note that condition (i) in

Theorem 4.1 implies that W(x(t)) < W(x(to)) Vt > to. Theorem 4.1 follows directly.

Case A: Au = O

From (4.1), (4.4), and (4.5) we have

x = -amx bkr + br bpkzx + bpkrr,

which leads to

W = (-amX + bk)x bkTrx + bpx2 bp b

Bounding quantities on the right hand side gives

W < (bpkmax - am)lx12 + (bplk*lrmax + bpkmaxrmax)xlI .

Since kmax < kmax we have from the definition of kmax that bpkmax - am < 0. We

know then that

xl+ < + implies W < 0.
am - bpkmax
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Therefore, from the definition of Xmin, we conclude that

W < Vx E A in case A.

Case B: Au O 0

We proceed by considering two sub-cases.

Sub-case(i): sgn(u)= -sgn(x)

From (4.1) and (4.2) we have

j = apx + bpsgn(u)umax,

which leads to

W = apx2 + bpsgn(u)umaxx.

Based on the condition for sub-case(i) we can bound the right hand side as

W < lap xl2 - bpumaxIxl,

which, from the definition of x,ax, leads to

IxI < max implies W < 0.

Therefore we conclude that

W < Vx E A in case B, sub-case (i).

Sub-case(ii): sgn(u) = sgn(x)

From(4.1), (4.2), and (4.5) we have

= -amx - b pkAx + bpsgn(u)Umax,
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which leads to

W -ax - bkx 2 + bpsgn()maxx.

The condition for subcase (ii) implies that

bpux > bpSgn(u)UmaxX.

Substituting for u from (4.4) and(4.5) gives

bp(kxX + kx + krr)X > bpsgn(u)umaxX.

We can move the k term to the right hand side and add -a,x 2 to both sides to

create W on the right, so that

-amx2 + bpkx 2 + bpkrrx > W.

Bounding terms on the left hand side gives

(bpkmax - a)1x 2 1 + (bpkmaxrmax + bplk*lrmax)IXl > W.

From case A we saw that bpkmax - am < 0, so from the definition of Xmi, we have

that

x > xmin implies W < 0.

Therefore we conclude that

W <o Vx G A in case B, sub-case (ii). (4.10)

From (4.8), (4.9), and (4.10) we have that

W < 0 Vx E A.

V
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4.3 Formulation for a Multi-Input Plant

We now generalize the result of the last section to include state-accessible plants with

multiple inputs. Consider a plant model of the form

= A x + BpAE,(u) + BpAf, (4.11)

where x E An is the fully measurable state vector and u E ~Rm is the input vector.

Also, A E fnXn is unknown, Bp E nxm is known, A CE mxm is unknown and

diagonal with positive entries, and f CE R is unknown. The requirement that Bp

is known with A unknown can be replaced by a completely unknown Bp, but the

complication of the resulting adaptive controller obscures the main stability result.

The function E,(.) is an elliptical multi-dimensional saturation function defined by

u if lull _<g(u)E(u) = i (4.12)
if IIl > g(u)

where g(u) is given by

g(u) (E ei ]
i= Umaxima

-=- denotes the unit vector in the direction of u, Umaxi is the saturation limit of

the ith actuator, and u is given by

u= g(u). (4.13)

The actuators saturate symmetrically in this formulation, though asymmetric satura-

tion limits can be treated straightforwardly with the same approach. Two aspects of

this saturation function should be noted. First, the function g(u) returns the magni-

tude of the projection of u onto the boundary of the m-dimensional ellipsoid defined

by ull = g(u), and hence E,(.) is denoted as an elliptical saturation function. Sec-

ond, from (4.13) it is clear that the output of E,(.) is direction preserving (see fig.

4-1). The elliptical saturation function was used in this formulation for analytical

60



U 2

Figure 4-1: A schematic of the elliptical saturation function Es(.) for m = 2 is shown
in this figure. Notice that it is direction preserving.

expediency.. A more realistic rectangular saturation function will be discussed later.

A reference model whose state represents the desired sate of the plant is chosen

as

Xm = A,xm + Bmr (4.14)

where x WRn , and r CG R is a bounded reference input vector so that Ilrll < rmax.

Note that r and u are not necessarily of the same dimension, therefore this architecture

can be used for adaptive control allocation, as described in [31]. We also require that

A,m E RnX is Hurwitz, which is a standard requirement in adaptive control. The

goal is to choose u so that e = x - x, is as small as possible, and all signals in the

closed-loop systems remain bounded.

As before, a standard feedback/feedforward control structure is chosen as

u = Kxx + Krr + kf. (4.15)

We assume that there exist ideal gain matricies K E mxn and K E Rxl, and

an ideal constant vector k C 'm that results in perfect model following, so that

Ap + BpAK = A, BpAK = B, and BpA(k* + f) = 0. Define the parameter errors
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to be

K = K-K,, kr= K-K,and kf=kf-k . (4.16)

The subracting (4.14) from (4.11) and substituting with (4.15) and (4.16), the closed-

loop error dynamics can be written

e = Ame + BpA(Kix + k rr + kf + Au), (4.17)

where Au = u - E,(u) represents the control deficiency signal, as in the previous

section. To eliminate the adverse effect of the dicturbance Au, generate a signal ea

as

ea = Amea + Bpdiag(XA)Au,

where A E Rtm is a vector, the terms of which are the estimates of the diagonal terms

of the unknown matrix A. The effects due to saturation can be removed from the

error in (4.17) by defining the augmented error as e = e - ea, which can be written

eu = Ameu + BpA(Kx + Krr + kf) + Bpdiag(Au), (4.18)

where diag(X) = A - diag(A), and exploiting the fact that diag(X)Au = diag(Au)A.

Since (4.18) is in a standard form relevant to several adaptive systems, we choose

the adaptive laws for adjusting the parameters K, Kr, kf, and A as

c = -BpTPeux', K r = -FrBpTPeUrT ,

kf = -FfBpTPeu, and A = rxdiag(Au)BpTPeu,

where ATP + PAm = Q, and Q, rF, r, rf, and FA are positive definite. Define a

Lyapunov function candidate V as

V = eTPe +Tr(K 1 ± Tr(KT-AK) + Tr(KrT'rlAK) + kfPflAkf+ A (4.20)

Since all F and A are positive definite, V is positive definite in e, K, Kr, kf, and A.

Taking the time derivative along the system trajectories leads to 1V = -e'Qe < 0,
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which implies that the signals e, Kx, K, kf, and A are bounded. Define Kma so

that

Kma =max (supllIIkll, supikr Il, suplkf llI)

For efficiency of notation we define the following:

min = min eig(Q), Pmin = mineig(P), Pmax = maxeig(P),

p = P- -- Umin = min(umaxi), 1,max = ma(umax/),
Pmin

Pb = IIPBpA l, max(eig(rx), eig(rr), eig(rf), eig(rx)), Amin = mineig(A).

All vector norms are Euclidean norms and the matrix norm PB is the induced matrix

norm, which has the property IPBplAxjl IIPBIIIIxII. Also, define

PBKmax
/3 = + Kmax (4.21)

min K max

ao0= iKii + kmax 21fl, (4.22)

3PBKmaZ(rmax + 1) + 3PB II Kr rmaa, + 2PBmax + PB II (2
Xmin = (4.23)

qmin - 3 PBkmax

PBao
Xmax = qmin - 3PB K ' and (4.24)

I mi7 - 3PB IIK*I I I(

Kmx -- (fmin - l (311 Kr 1 rmax + 2max + i kf 1) qmin - 2PBK* (4.25)
kmax ao f (4.25)3 PB + 3(rma + 1) qmin - 2PBIIKx II

Assumption 4.1 imin is such that ao > 0.

Assumption 4.1 implies that there is a constraint on the size of the unknown

disturbance lfl given by
umin Kmax

2(K;l Kx II + Kmax)'

Theorem 4.2 Under assumption 4.1, for the system in (4.11) with the controller in

(4.15) and the adaptive laws in (4.19), x(t) has bounded trajectories for all t > to if

i) IX(to)1 < Xmax1, andX a
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ii) t < kmax Ymax

Further,

11X(t)|| < Xmax Vt > to,

and the output error e is of the order

le =0 sup IAu(T)l] kr<t

Proof:

We shall choose a positive definite function, W(x), as

W = XTpx (4.26)

and define a level set, B, of W as

B: {xiW(x) = PminXmin} (4.27)

where xmax is as defined in (4.24). Now define the annulus region A as

A: {XiX,in < x11i < Xmax}, (4.28)

where Xmin is defined in (4.23). The proof proceeds in 2 steps. In step 1 we show that

condition (ii) from theorem 4.2 implies that B C A. In step 2 we show that W < 0

Vx c A. Condition (i) from theorem 4.2 implies that

W(x(to)) < W(B).

Therefore the results of step 1 and step 2 imply that

w(x(t)) < W(x(to)) Vt > to.

Theorem 4.2 follows directly.
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Step 1:

In this step we show that B C A. First, from condition (ii) from theorem 4.2, it

follows that Kmax < Kmax. Substituting the expression for Kmax leads to

3Kmrx(rmaz + 1) + 3iiK*IrT max + 2max + Ik 11

min -- 3 PBKmax

a 0

Iqmin - 2PBIIKx IlI'

The inequality in (4.29) with the definition of xin and Xmax from (4.23) and (4.24)

respectively directly implies

PXmin < Xmax. (4.30)

From (4.26), W(x) can be bounded from below by pminllxI12 < W(x), which implies

from (4.27) that

lxll < Xmax Vx B.

Likewise, from (4.26), W(x) can be bounded from above by W(x) < maxllX112, which

implies from (4.30) and (4.27) that

1 l

Xmin < -Xmax < IIxII Vx c B.

From the definition of A in (4.28) we conclude therefore that B C A.

Step 2:

We now show that W < 0 Vx E A.

Case A: lAull = 0

From (4.11), (4.12), and (4.16) we get

= Amx + BpA(kx + BpA(Kx + r + kf),

which leads to

W = xT(Q + 2PBpAkx)x + 2PBpA(kr + Kr + kf)x.
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Bounding quantities on the right hand side using previous definitions gives

W < (2PBKmax - qmin)x 112 + 2PBKmax(Tmax + 1)lxII+

2PBIIK, rmaxX llos

From condition (ii) of theorem 4.2 and from the definition of Kmax it follows that

K<Kmax Kmax< qmin
3 PB

(4.31)

Therefore

W < 0 2PBKmax(rmax + 1) + 2PB IIK,*Irmax
(qmin - 2PBKmax)

The choice of Xmin in (4.23) implies that

Xmin >
2PBKma (max + 1) + 2PB II Kr Irmax

(qmin- 2PBKmax)

Hence,

W < Vx E A in case A. (4.32)

Case B: IlAul 7# o

Equations (4.11), (4.12), (4.15), and (4.16) give

= Ax- BpAKxx + BpAi + BpAf. (4.33)

Take the time derivative of (4.26) along the trajectories of (4.33) to get

W = -xTQx- 2xTPBpAKzx + 2xTPBpA(i + f). (4.34)

Sub-case(i): 2xTPBpAfu < -minPillxll

Using (4.34) and the condition for sub-case (i), and previously defined upper
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bounds, we can bound W by

WI < 11X12 2PBIIK-ll - qnl-±- I+X[[29PBffl - IIX[Umin.

This implies that if

PBao
IIx < PBjK then W < 0.

From the definition of x,,ax in (4.24), we have therefore that

W < Vx E A in case B, sub-case(i).

Sub-case(ii): 2xTPBp A i > -inl/3xj

From (4.13), the condition for sub-case (ii) implies that

2x T PBplA U IUIII + IlIxUmin/3 > 0.

Substituting for u in (4.15), and for Kx from (4.16) gives

2x TPBPA (x + Kr + kf) + Ilxj1m 'luinP1L > 2TPBpAK*Zx.

Adding terms to create W on the right hand side gives

1TQx + 2xTPBp (x + Kr+ kf) +

IIuminlt/3lu + 2xTPBpAiu + 2xTPBpf > W.

Simplifying with (4.16),

-XTQX + 2XTPB (x + Krr + kf) +

|IZlljlminiu}j + 2xTPB pA U > W,Hullji
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and using (4.25) and previous definitions to bound unknown quantities

-qmin IIXl2 + 21IX IPB (Kmax lIXll Kmaxrmax + IIK,*r llmax + Kmax) +

iixl Ilul/ + 2xlPBumax > W.

We note from (4.15) that

ull -< (KxIi + Kmax) lIxII (K[Iil Kmax) rmax (f;f1 + Kmax),

and from (4.21) that

o < < PB.

Using (4.38) and(4.39) in (4.37) gives

ilxi12 (3PBKmax - qmin) -+ XI (3PBKmax(rmax + 1) + 3PBI K* Ilrmax) +

l1xii (2PB.max + PBlkYI) > W.

Then, from (4.31) and (4.40) we know that

3PBKmax(rmax + 1) + 3PB IlKl Irmax + 2 PBfimax + PB Ilk* |
[xl >

qmin - 3PBKmax

implies that W < 0. From the definition of Xmin in (4.23), we have that

W < 0 Vx E A in case B, sub-case(ii).

From (4.32), (4.36), and(4.41) it follows that

W<0 Vx E A.

V

Remark 4.1 In the case of magnitude saturation, global stability is impossible for

an unstable plant. Initial conditions can always be found to cause the plant state to

become unbounded regardless of the controller. Thus any stability result for unstable
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plants must be local in nature, as the one presented in Theorems 4.1 and 4.2.

Remark 4.2 In the case of an open loop stable plant, bounded trajectories are guar-

anteed for all initial conditions. If Ap is stable, (4.11) is BIBO stable, and (4.12)

implies that Es(u) is bounded, therefore x is bounded.

Remark 4.3 Determining in (4.12) can be computationally burdensome, especially

for m > 2. A simpler and more intuitively compelling saturation function is given by

Rs(u), where the elements of Rs are defined by the ordinary saturation function

Rsi = sat(ui) = u if max (4.42)
Umxi sgn(ui) if ILl > Uma,

fori= 1,...,m.

This saturation function can be expressed as the sum of a direction preserving com-

ponent and an error component, so that

u if ull < h(u)

ud+ u if lul > h(u)

where d =: h(u). As before, is the unit vector in the direction of u, and h(u)

returns the magnitude of the projection of u onto the hyper-rectangle defined by the

saturation limits umaxi, where i = 1,..., m. In this formulation, d is in the same

direction as u and is an error vector. Figure 2 illustrates the nature of R,(.) for the

case when mn - 2. It can be shown that is a bounded vector, whose bound depends

upon the bound of the state Xmax. This in turn causes the extension of the above proof

to the case of rectangular saturation to become more complex, and is beyond the scope

of this chapter. However, this case is treated in the simulation results in the next

section, which show that for a rectangular saturation function, bounded trajectories

can be achieved for a larger set of initial conditions than for the elliptical saturation

function.
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Figure 4-2: A schematic of the rectangular saturation function Rs(.) for m = 2 is
shown the figure. Notice that it is not necessarily direction preserving. That is i 74 0
in general.

4.4 Simulations

Numerical simulations were carried out to demonstrate the usefulness of the proposed

saturation compensation technique. An unstable, second order, two input plant in

the form of (4.11) whose dynamics are given by

(4.43)= K l, and f = 
0 1 0

Ap= [ , Bp = [ A

was chosen for simulation. The reference

with dynamics given by

A, = , Bm =
0-2
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0 5 10 15 20 25 30 35
t (s)

Figure 4-3: The L2 norm of the tracking error is shown in this figure for the adaptive
system with and without multi-input TSH. With TSH the error converges asymptot-
ically to zero. Without TSH the error becomes unbounded.

The input, u, to the plant in (4.43) was constrained according to the rectangular

saturation function Rs(u) given in (4.42) where

Umaxl --- Uma2 2.5.

All initial conditions were set to zero except for the initial value for (t), which was

set to

A(t)=[ 1 ]T

A constant input r was given to the reference model at t = 0 where

r=[-1 1 ]T.

As stated previously, the task is for all signals in the adaptive system to remain

bounded while the error, e, remains as small as possible.

Simulation results are shown in figs. 4-3 through 4-8. Figure 4-3 shows the L2

norm of the tracking error for the adaptive system with and without multi-input

TSH. It can be clearly seen that with TSH the tracking error converges to zero

asymptotically, whereas without TSH the tracking error becomes unbounded.

The control input activity for the adaptive system with and without TSH is shown

in figs. 4-4 and 4-5. With TSH (fig. 4-4), the controls saturate, but remain relatively

well behaved. After t = 1Os the control signals remain within the saturation limits.

Without TSH (fig. 4-5), both input signals saturate severely and go unbounded.
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TSH on

- sat(u)

) :: I
- t 

0 5 10 15 20 25 30 35
t (s)

t (s)

Figure 4-4: The control input activity is shown in this figure for the adaptive system
with multi-input TSH. Saturation occurs initially for both inputs, however the control
signal remains well behaved. After t = 10s the control signal remains within the
saturation limits.

TSH off

0 5 10 1 5 20 25 30 35
t (S)

t (s)

Figure 4-5: The control
tem without multi-input
bounded.

input activity is shown in this figure for the adaptive sys-
TSH. Both input signals saturate severely and become un-
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Figure 4-6: The L2 norm of the tracking error is shown in this figure for the adaptive
system with rectangular and elliptical saturation functions. With the rectangular
function the error converges asymptotically to zero. With the elliptical function the
error becomes unbounded.

As discussed in Remark 4.3, it is interesting to see in simulation the difference

between the more realistic rectangular-type saturation function, Rs(u), and the more

analytically attractive elliptical saturation function, E(u). The same simulation

scenario described above was performed with the two saturation functions. Figure

4-6 shows that for the system with R/(u) the error converges to zero asymptotically,

whereas with Es(u) the error becomes unbounded, demonstrating that Es(u) leads to

a smaller region of initial conditions for which bounded trajectories are obtained.

Figures 4-7 and 4-8 show phase trajectories of the input signals for Rs and Es.

Partial outlines of the saturation boundaries can be seen in both cases. The input

signal for the rectangular function (fig. 4-7) saturates intermittently, but settles

within the saturation limits. The input signal with the elliptical function (fig. 4-8)

saturates and becomes unbounded, again demonstrating that Es leads to a smaller

region of initial conditions for which bounded trajectories are obtained.

4.5 Summary

In this chapter, we have developed an extension of the approach in [20] to multivari-

able plants with magnitude-constrained inputs. It is shown that for initial conditions

of the system state and the adaptive control parameters that lie inside a bounded

region, bounded trajectories are guaranteed. This region is shown to extend to the

entire state space if the plant is open-loop stable. This saturation compenstation tech-
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rectangular saturation

1

-1

-10 -5 0 5 10
U2

Figure 4-7: The input space is shown for the rectangular saturation function. The
outlines of the rectangular saturation boundary is visible.

elliptical saturation

1

-1

-10 -5 0 5 10
U2

Figure 4-8: The input space is shown for the elliptical saturation function. The
outlines of the ellitpical saturation boundary is visible.
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nique will be incorporated in a realistic adaptive controller for aircraft reconfiguration

in the next; chatper.
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Chapter 5

Application to Aircraft

Reconfiguration

5.1 Introduction

In this chapter, we develop a controller for a realistic multiple-input aircraft model

that simultaneously performs reconfiguration and control allocation by using a direct-

adaptive approach. This strategy combines the benefits of both direct adaptive

psuedo-control designs and indirect adaptive control allocating designs discussed in

section 1.4, while avoiding the limitations of either. In addition, the proposed con-

troller is able to suppress the adverse effects of actuator saturation by using the

multi-input saturation compensation techniques developed in the previous chapter

and in [32].

5.2 Problem Statement

We begin with a linearized model of a failed plant of the form

x= Apx Bpu Bpf, (5.1)
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where x C n is the state vector, u E Rm is the input to the control actuators,

Ap C Rnxn is unknown, and Bp E SRnxm is known. Actuator failures are represented

by the unknown matrix A E mxm and the unknown vector f C Rm. A is a diagonal

positive semi definite matrix with elements 0 < Ai < 1 for i = 1,..., m. For each

element, Ai = 0 represents a complete failure of the corresponding actuator, 0 <

Ai < 1 represents a class of partial actuator failures, and Ai = 1 denotes a healthy

actuator. The constant vector f accounts for the possibility that a failed actuator

may be locked in an out-of-trim position. Additionally, the dynamics matrix A is

considered to be unknown to account for two separate failure phenomena. First, if

a nominal state feedback controller is in place prior to actuator failure, the feedback

structure will cause A matrix changes in the event of failed actuators. Secondly,

actuator failures may be accompanied by aerodynamic changes, which are expressed

as uncertainties in the A matrix. Equation (5.1) can be considered as describing the

dynamics of a perturbation about a known trimmed state. The state is assumed to be

fully measurable, which is a common assumption and is reasonable given that modern

aircraft are equipped with a large number of sensors [4].

In the case of reconfiguration after a failure, we can expect a vigorous utilization of

the remaining operational actuators. It is therefore important to consider the effects

of saturation on the system dynamics. We introduce multidimensional saturation into

the model as

u = sat(uc)

where the sat(.) function is defined element-wise by

Umini if Ui < Umini

sati(uc) = Ui if Umini < Ui < Umaxi , (5.2)

U maxi if Ui > Umaxi

for i = 1,2,...,m,

and where the vectors ui and umax define the minimum and maximum position

limits respectively of the m actuators. We have assumed that the effects of actuator
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Figure 5-1: Redundant control actuators in an aircraft system are illustrated in this
figure.

dynamics are negligible, which is a reasonable and common assumption for large,

slowly maneuvering aircraft [4], [37].

The task of control allocation is to determine a suitable control input, u, given a

pilot command, r E R', where I < m. We therefore choose a reference model of the

form

Xmc = Amxm + Bmr, (5.3)

'where x E Rn, r E R1, Am E jRJXn is Hurwitz, and Bm E nxl, so that xm represents

the desired state plant. The goal is to choose u so that e(t) = x - xm is as small as

possible, and all signals in the closed-loop system remain bounded.

In most flight control applications, control allocation methods are used to distrib-

ute pilot commands (or guidance and navigation law commands) among available air-

craft control inputs. For example, a single pilot roll input can be allocated to produce

a movement of two aileron panels, usually constrained to move anti-symmetrically.

Actuator redundancies are introduced in the form of multiple aileron panels, rudder

panels, elevator panels, and/or power plants (see figure 5-1).
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5.3 Adaptive Controller

The controller we propose has a standard state-feedback/feedforward structure [27,

34]:

Uc = Kzx + Krr + kf. (5.4)

We assume that there exist ideal gain matrices Kx E Rm x n and Kr C mx1, and an

ideal disturbance vector k E m that result in perfect model following, so that

A + BpAK = Am, (5.5)

BpAK = Bin, (5.6)

Bp(Ak + f) =. (5.7)

Equations (5.5)-(5.7) are the so-called matching conditions for the adaptive system.

The ideal gains need not be known; their existence is sufficient to show stability.

Conditions (5.5) and (5.6) are standard in multivariable adaptive control [27, 34] and

(5.7) is required because of the possible constant moment from a locked actuator. Tao

et al [37], considered similar matching conditions in detail. In particular, situations

in which the conditions are achievable and unachievable were investigated. Such

matters will not be pursued here as this work is mostly concerned with the novelty of

the control allocating design and the incorporation of a multi-input TSH technique.

Substituting (5.2) into (5.1) gives

x = Apx + BpAu, + BpAAu + Bpf, (5.8)

where Au = u - u represents the control deficiency signal, as formulated in [20]

and the previous chapter. Then, after substituting (5.4) into (5.8), simplifying using

(5.5)-(5.7) and taking the difference with (5.3), the error dynamics of the system can

be written

e =Ae + BPA (kx + krr + kf + u) (5.9)
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where

Ix = K - K_*, Kr = K - K *, and kf = kf - k.

TSH is implemented to compensate for the adverse effects of saturation. To this end,

an auxiliary error is generated as in [20] and the previous chapter:

e = Ae + Bpdiag(A)Au,

where A C eim is a vector, the terms of which are the current estimates of the diagonal

terms of the failure matrix A. The effects due to saturation can be removed from the

error in (5.9) by defining the augmented error as e, = e - e , which can be written

eu = Ameu + BpA (xX + Krr + kf) + Bpdiag(Au), (5.10)

where diag(A) = A - diag(A), and exploiting the fact that diag(A)Au = diag(Au)A.

Since (5.10) is in a standard form relevant to several adaptive systems, we choose

the adaptive laws for adjusting the parameters Kx, K, kf, and A as

Kx= -rFBp'PeuxT, (5.11)

Kr = -r 2BpPeur, (5.12)

kf = -F 3B'Peu, (5.13)

A= F4diag(Au)BPe, (5.14)

'where A7TF + PA, = -Q, Q > 0, and ri is diagonal and positive definite for

= 1, ..., 4. The right hand side of equation (5.14) intentionally has the opposite sign

of the others.

Define a Lyapunov function candidate V as

V = eTPeu Tr (TFAk) + Tr (KT1Ar) + (5.15)

kfTr1 Akf + ATr-lA
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Since ri is diagonal, V is positive definite in e, A{K, AK, Akf, and A. Taking the

time derivative along the system trajectories leads to V =-eTQe, < 0, which implies

that the signals e, AK., AK, Akf, and A are bounded. We can define p = P-a

and reformulate the result from the previous chapter to give

Theorem 5.1 There exist positive scalars Xmax and Kmax such that for the system

in (5.1), with the controller described in (5.4) and (5.11)-(5.14), x(t) has bounded

trajectories for all t > to if

i) IIx(to)II < X 1Z p and

ii) V(to) <Kmax.

Further,

X (t)l < Xmax Vt > to,

and the output error e is of the order

ell = o [sup llAu(T)11]
L<t

Theorem 5.1 states what was found in the previous chapter and in [32], namely,

that the controller in (5.4) guarantees that the closed-loop system has bounded so-

lutions for a limited set of initial conditions. Note that the phrasing of theorem 5.1

is slightly different from the corresponding theorem in the previous chapter (theorem

4.2); specifically, it was simplified in this presentation to preserve the meaning with-

out being obscured by details. Two theorems similar to theorem 5.1 are proved in

[20], one for a scalar adaptive system and one for a single-input higher order adaptive

system.

The above formulation of an adaptive reconfigurable flight controller has two prin-

ciple improvements over other similar formulations. First, the controller does not rely

on a fixed control allocation, and consequently the range of allowable actuator fail-

ures is expanded. In particular, previous direct-adaptive strategies have focused on

designing ua ~R, where

Uc = Gua
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and where G E nmxl is a fixed control allocation matrix. This requires that the

failed system (Ap, BrAG) be controllable. The formulation in this chapter requires

that (Ap, BpA) be controllable, which is a less restrictive requirement. Second, this

formulation includes multivariable TSH, which, it was proved, will give bounded

solutions for certain initial conditions. It should also be noted that recent extensions

along the lines of [23] can be used to improve the transient performance of the adaptive

system further.

5.4 Simulation Results

While the results presented in this paper are applicable to any system of the form

(5.1) and (5.2), our focus is primarily on the 6 degree of freedom (6-DoF) aircraft

dynamics. For this system, the state vector is of the form

x= [ q p r ]T,

whose elements are the angle of attack, body pitch rate, angle of sideslip, body roll

rate, and body yaw rate, respectively. The first two and the last three states are

nearly decoupled in a linearized, trimmed system. We have implicitly used a common

time-scale separation approximation. The 5 states considered here are typical of

models of "fast" aircraft dynamics for stability augmentation, or "inner loop" control.

The "slow" dynamics, consisting of airspeed, 3 Euler angles, and 3 earth referenced

positions, are typically used in models for aircraft guidance and navigation, or "outer

loop" control, and will not be considered here.

Using a linear model representative of a large transport aircraft [35], the direct-

adaptive reconfigurable flight controller is designed according to the equations in (5.4)

and (5.11)-(5.14). In this simulation n = 5, m = 10, and 1 = 4. The aircraft, has

4 power plants, 2 independent elevator panels, 2 independent aileron panels, and 2
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Saturation Limits

Ul¢1 I = Ul= Ulla:
ff

Description

Anale OT AT[aCK

Body Pitch Rate
Oiue p "11 rl qie

Roll Rate
Yaw Rate

Actuators
(u)

ti

t2

t3

t4

el

e2

al

a2

rl

r2

D escription

Left Outboard
Throttle

Left I nboard
Throttle

Right Inboard
Throttle

Right O utboard
Throttle

Left Elevator

Right Elevator

Left Aileron

Right Aileron

Lower Rudder

Upper Rudder

tlmi = -.4331
tl ma = .5669

t2ml,= -. 4331
t2mac = .5669

t3m , = -. 4331
t3m = .5669

t4m = -. 4331
t4ma, = .5669

elm,, = -. 2797rad

elma = .3313rad

e2ml, = -. 2797rad

e2mat = .3313rad

alt, = -. 436rad
am,, = .436rad

a2m. = -.436rad
a2mm = .436rad

rlml, = -.524rad

rlma = .524rad

r2m = -. 524rad
r2ma = .534rad

Table 5.1: Table showing the aircraft states, actuators with saturation limits, and
pilot inputs used in the numerical simulations. Note that the saturation limits are
expressed as variations from a trimmed position.

independent rudder panels. The input vector is defined as

u=[ tl t2 t3 t4 el e2 al a2 rl rl IT.

The states, actuator deflections, and pilot inputs are denoted as shown in table 5.1.

The matrices Ap, Am, Bp, and B,, the simulation initial conditions, and adaptive

gains Fi and Q are shown in the appendix. The aircraft model is taken from a

nonlinear 6-DoF aircraft simulation linearized at a speed of mach 0.3 and an altitude

of 1000m. The reference model is chosen so as to decouple the aircraft roll and yaw

desired dynamics. The performance of the closed loop adaptive system is compared

with that of a nominal controller using a control law with the same structure as in

(5.4), but with fixed gains KOZ and Knom, designed to achieve model following for

the unfailed plant. The nominal gains are given in appendix A. The results of four
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simulation runs with different control failures are shown in figures 5-2 through 5-7.

Failure 1 shows a locked left elevator scenario, failure 2 corresponds to a locked left

aileron, failure 3 represents a left outboard engine-out scenario, and failure 4 is a

failed left elevator locked at full deflection. These failure scenarios are discussed in

detail below.

5.4.1 Failure 1

Figures 5-2 and 5-3 show the results of a failed left elevator locked at 20% of its

maximum upward deflection, which is represented as

A(5, 5) = 0, and f(5) = 0.2 x elmin,

where negative elevator corresponds to upward deflection. The aircraft is commanded

through two aggressive pitch doublets and the failure occurs at the beginning of the

first maneuver at t = 6 seconds. With the nominal controller, the aircraft performance

degrades quickly after the failure, as shown in figure 5-2. With the adaptive controller,

the model is followed closely through the maneuvers after a transient of about 2

seconds. Figure 5-3 shows the control activity required to follow the model. In this

example, the asymmetric elevator deflection due to failure causes a roll moment, which

is compensated for by the ailerons. The lateral dynamics are not shown for the sake

of brevity.

5.4.2 Failure 2

Figures 5-4 and 5-5 show the results of a failed left aileron locked at 40% downward

deflection, represented as

A7, 7 = 0, and f(7) = 0.4 x almax,

where positive left aileron corresponds to downward deflection. Similar to the previous

case, the aircraft is commanded through two aggressive roll doublets and the failure
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Figure 5-2: System response to failure 1, a failed left elevator locked at 20% of its
upward travel, is shown. The aircraft is commanded through two aggressive pitch
doublets and the failure occurs at t = 6s. Only the longitudinal states are shown.
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Figure 5-3: Actuator activity of the aircraft with failure 1, a failed left elevator
locked at 20% of its upward travel, is shown. The aircraft is commanded through two
aggressive pitch doublets and the failure occurs at t = 6s.
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Figure 5-4: System response to failure 2, a failed left aileron locked at 40% of its
downward travel. The aircraft is commanded through two aggressive roll doublets
and the failure occurs at t = 6s. Only the lateral states are shown.

occurs at the beginning of the first maneuver at t = 6 seconds. The nominal controller

causes the performance of the aircraft to degrade after the failure. The adaptive

system, on the other hand, follows the model closely throughout the maneuver after

a short transient. Notice that yaw and roll have been successfully decoupled, even in

the presence of failure and saturation, as can be seen by the clipped aileron signal in

figure 5-5. Also, it can be seen that the rudder must be actuated to achieve the yaw-

roll decoupling, and the elevators are actuated anti-symmetrically to help produce

the required roll moment.

5.4.3 Failure 3

Figures 5-6 and 5-7 show the results of a failed left outboard power plant giving zero

thrust, which is represented as

A(1, 1) = 0, and f(1)= 1 x timin.

In this case, the aircraft is commanded through two aggressive yaw doublets and,

as before, the failure occurs at the beginning of the first maneuver at t = 6 sec-
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Figure 5-5: Actuator activity of the aircraft with failure 2, a failed left aileron locked
at 40% downward travel. The aircraft is commanded through two aggressive roll
doublets and the failure occurs at t = 6s

onds. Again, the nominal controller causes the aircraft trajectory to differ from the

model, however the adaptive system follows the model despite failure. In addition,

yaw and roll are successfully decoupled. The failed power plant creates a large yaw

moment, which is counter acted by the rudders (see fig. 5-7). It should be noted that

adaptive control with actuators with slow dynamics, such as power plants, should be

undertaken cautiously. In these simulations, small adaptive gains, Fi, are used to dis-

courage fast engine actuation (see appendix for Fi values), such that the commanded

task does not exceed the engine bandwidth.

5.4.4 Failure 4

Figure 5-8 shows the stabilizing effect of the TSH in the presence of actuator satura-

tion. The pitch rate and elevator deflections are shown for a failed left elevator locked

at full upward deflection, which is represented as

A(5,5) = 0, and f(5)= 1 x elmin.
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Figure 5-6: System response to failure 3, a failed left outboard engine giving zero
thrust. The aircraft is commanded through two aggressive yaw doublets and the
failure occurs at t = 6s. Only the lateral states are shown.
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Figure 5-7: Actuator activity of the aircraft with failure 3, a failed left outboard
engine giving zero thrust. The aircraft is commanded through two aggressive yaw
doublets and the failure occurs at t = 6s
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Figure 5-8: The stabilizing effect of TSH is illustrated for failure 4. The aircraft is
commanded through two aggressive pitch doublets and the left elevator locks at 100%
of its upward travel at t = 6s. Only the pitch rate and elevator activity are shown

For this case, the aircraft is commanded through two aggressive pitch doublets and

the failure occurs at t = 6 seconds, as before. In comparison with failure 1, this

failure provokes the actuators to saturate because the disturbance due to the locked

actuator f(5) is greater. The plots show the undesirable effects of saturation on the

adaptive system without TSH. With TSH, the plant follows the model more closely,

with less control activity. In this case the open loop plant was, in fact, stable, so

stability is preserved despite the large saturation disturbance. An open-loop unstable

plant will be more easily provoked to instability by saturation.

5.5 Summary

The problem of reconfiguration in the presence of actuator failures and saturation

was considered in this chapter. A general linear model was formulated to adequately

describe actuator failures of various types. An adaptive controller was proposed that

incorporated two main improvements, which include an adaptive control allocation

scheme and the use of a multi-input variation of TSH to preserve stability in the

presence of saturation. It was proved in the previous chapter that the multi-input

90



TSH has bounded state trajectories for a set of initial conditions. The controller was

compared to a fixed nominal controller in a simulation of a large transport aircraft

with three different failures. The simulations demonstrated that the proposed con-

troller can achieve stable reconfiguration following actuator failures in the presence

of saturation. In addition to aircraft, the method proposed here is applicable to any

dynamic system with multiple actuators capable of reconfiguration.
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Chapter 6

Summary and Future Work

The tools and examples presented in this thesis are intended to form the beginning

of an adaptive control verification and validation methodology for adaptive systems.

First, we presented a simple set of procedures based on the RLAS to design adaptive

systems to meet linear transient specifications. The RLAS tool was then demon-

strated in two examples from flight mechanics; one involving uncertain linear short

period dynamics with a nominal state feedback controller, the other involving a full,

nonlinear, 6-DOF aircraft dynamics with a nominal LQ controller with integral ac-

tion. Secondly, a tool was developed for controlling plants with magnitude saturation

constraints on multiple inputs. The algorithm was shown to give bounded signals for

initial conditions in a compact region, and was demonstrated in numerical simula-

tion. Finally, a realistic design example was explored involving a linear aircraft model

with uncertain dynamics and actuator failures. An adaptive controller was used for

reconfiguration and control allocation. The controller was shown to give favorable

response with uncertain dynamics, actuator failures and magnitude saturation.

Much work remains to be done to realize a practical V&V methodology, and the

tools presented here must be further investigated and expanded to that end. For

example, although not pursed in this thesis, the RLAS can be used as a tool to

explore the effects of failures on the adaptive system dynamics. Uncertainties in the

adaptive dynamics translate directly to uncertainties in the RLAS. The effect of these

uncertainties on the RLAS can be straightforwardly investigated using the common
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linear systems techniques, such as the root locus method, Bode plots, or Nyquist plots.

Again, relying on the asymptotic convergence of the RLAS to the adaptive system,

we can infer the effects of failures on the adaptive system response. Additionally, an

analytically justified means of estimating the asymptotic gain error, xc,, should be

investigated as the laborious task of iterating with simulation and control design to

find appropriate values for F and Q is not sufficient in a practical setting.

Also, multi-input embodiments of the RLAS should be explored in conjunction

with multivariable design techniques. One interesting extension of the RLAS design

methodology is to use a cost function optimization to select adaptive parameters F and

Q, thereby fusing the benefits of optimal and adaptive control. Such an extension

ought to be easily within reach, and would automate the difficult and subjective

multivariable adaptive control design task. In this vein, modifying current control

design techniques to suit adaptive controllers will likely aid the transition of adaptive

control technologies into aircraft and other safety critical applications in the future.

Finally, it was found in simulation that the algorithm for magnitude saturation

compensation described in this thesis is also effective in compensating for rate satura-

tion constraints, as well as combined rate and magnitude constraints, provided that a

fast first order filter is applied to the control input rate, rather than a simple integra-

tor. The evidence in simulation is compelling, however a formal proof of boundedness

of signals has not been found for any open loop unstable case. Such a proof would

bridge a precarious theoretical gap in the applicability of adaptive control to safety

critical systems. Indeed, direct adaptive control with input rate constraints is an

uncharted theoretical landscape.

The above research topics and others not mentioned here are currently underway

toward integrating adaptive control with aircraft, automobiles, medical robotics and

other safety critical applications. There is little doubt that adaptive control will find

its uses in safety critical systems in the future, enhancing the reliability, autonomy,

and simplicity of technologies on which we rely for our modern way of life.
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Appendix A

Reconfiguration Simulation Values

Adaptive Gains:

Fi = 50diag ([ 0.1 0.1 0.1 0.1 1 1 1 1 1 ]), fori= 1,2,3,4

Q = diag ([ 1 0.5 1 1 1])

Linearized 'Transport Aircraft Model:

-0.6582 0.9705

-3.3105 -1.4741

0

0

0

0.0001

-0.0011

0

-0.0038

-0.0726

0

0

0

0

0

0

0 -0.1706 -0.0075 -1

0 -2.4792 -1.3585 0.5897

0 0.8050 0.0559 -0.5584

0.0001

0.0067

0

-0.0067

-0.1276

-0.0367 -0.0367 -0.0107 -0.0107

-1.8382 -1.8382 -0.0672 -0.0672

0 0 0 0

0.1276 -0.1276 0.5462 -0.5462

-0.120 0.0120 -0.0620 0.0620

95

0.00)1

0.0067

0

0.0067

0.1276

0.0001

-0.0011

0

0.0038

0.0726

0

0

0.0128

0.0410

-0.2366

0

0

0.0128

0.0830

-0.02339



Reference Model:

-0.6582 0.9705

-3.3105

0

0

0

-1.4741

0

0

0 0

0 0

0 -0.1706 -0.0075 -1

0

0

0

0

1 0

0 -1

0.0004 -0.0734

0.0112 -3.6764

0

0

0

0

0

0

-1.0924 0

Nominal Controller:

Knom = Ba(BpBa)+(Am-Ap), Knomr = Ba(BpBa)+Bm,

where (.)+ denotes pseudoinverse and where

BTa

1 1 1 1 0 0 0 0 00

000 0 1 1 0 0 00

0 0 0 0 0 0 -1 1 0 0

0 O O O O O O 000000011

Initial Conditions:

X(to) = O, Xm(to) = , r(to) = 0, u(to)

Knomr, kf(to) = O, (to) = 11 1 1

= Bar(to), Kx(to) = Knom,, Kr(tO)=

I 1 1 I 1 ,e (to)= O.
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