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Abstract
Reducing plant order consequently introduces unmodeled

Typical issues and tradeoffs resulting from dynamics into the system, which must then be
application of various modern multivariable controller accounted for via stability and performance robustness
design techniques to large-scale systems are illustrated considerations. Additionally, parametric errors in the
herein by synthesis of robust H2 optimal, H,- optimal, open-loop system model invariably exist, and their
and H.. loop-shaped compensators for a space-based laser effects must be considered. The lightly damped nature of
bearmr control example problem using reduced-order typical large-scale systems is also a design issue of
models. A design framework is adopted which allows concern, leading to extremely slow oscillatory transient
stability robustness in the presence of resulting responses, and, due to the location of lightly damped

poles near the complex plane imaginary-axis, potentialneglected dynamics to be guaranteed via unstructured
uncertainty representation and the Small Gain Theorem,n obtaining closed-loop stability andor
and performance robustness to be independently verified.
Infinity-norm bounds on two closed-loop transfernfunctions provide the key figures-of-merit foer This paper addresses several of the above issues in
functions provide the key figures-of-merit for the context of multivariable feedback design for a chosen
guaranteeing the desired stability robustness and nominal context of muluvaable feedback design for a chosen

performance conditions. A final design is obtained example problem. The results presented in this paperperformance conditions. A final design is obtained
which is verified to meet nominal performance st control ofinuing research effort focusing on
specifications, and is also seen to possess robustness of robust control of large-scale systems. Previous
both stability and performance to dynamics truncated in researchl discussed mode ultivaiable design
the model reduction process. The effects of open-loop methodologies, and addressed possible application t
pole parametric uncertainty are also examined, the main primary mirror beam jitter control of a space-based laser
result observed being a severe degradation in closed-loop (SBL). In a subsequent work 2, H, optimization and
system performance. reduced-order models were employed to perform

requirements analysis for the combined beam jitter and
1. Introduction segment phasing aspects of the SBL beam control

problem, and preliminary H2 /H,. designs were
The complexity of large-scale dynamic systems examined. The results given in this paper extend the

provides a challenging proving ground for modem results of the previous research to include application of
multivariable control system analysis and design loop-shaping design methodologies to 6btain a final
techniques. High plant dimensionality inherent in large- design which meets specified beam jitter/segment
scale systems can lead to breakdowns in numerics of phasing performance objectives, and possesses both
state-space algorithms or intolerably long computational stability and performance robustness to modeling errors
times, necessitating use of model reduction techniques. introduced during the model reduction process.

Additionally, the effects of open-loop pole parametric
This paper was prepared by the authors under uncertainty on closed-loop stability and performance are
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chosen for illustration of design issues is a wide-field-of each primary mirror segment in three orthogonal
view rapid-retargeting space-based laser (SBL) with directions, thereby enabling desired Cool unCon o0
features typical of large-scale flexible space structures. be accomplished The secondary mi.rror Ismaled as a
Before proceeding further, a brief and somewhat general rigid body kinenatically mounted by cmntrd atum to
description of an assumed SBL physical system concept the tripod metering truss, although the secondary mirror
and relevant terminology is presented to facilitate actuators are not employed in this study. Te bulkhead
discussion. and metering trusses are modeled using beam bending

elements, and additional lumped masses arm included in
The envisioned spacecraft includes both the flexible the finite element model to account for all nonstructral

forward body, referred to as the beam expander assembly masses, such as the mirror electronics and target tracker.
(BEA, see Figure 1) due to its primary purpose of laser
beam pointing and magnification, and the aftbody,
which houses the laser generating equipment and
satellite attitude control system. While these two major
components necessarily interact dynamically, the
analysis of the forward body is the most critical due to 4
its structural flexibility and importance to beam control
functions, and, therefore, this study addresses only the
performance of the beam expander with the structural 1
model "isolated" from the aftbody. The role of the
aftbody is limited to imparting two vibrational torque
disturbances to the forebody via an imperfect gimbal
isolation subsystem, thereby necessitating active
feedback control of the BEA optics. A finite element
model of the BEA, described in Section 2, was derived to
facilitate control system design.

t.4m

Figure 2. Primary Mirror Segments and
BACXa LPEro^iRv suwo:~rr Segment Phasing Measurement Locations.

:YI-zt ,b,:~ ~ ~SECONOARY Since the ultimate objective of a space-based laser is. //1/ M MD) to destroy targets by the efficient transfer of energy,
MA" God l omen optimizing worst-case laser wavefront quality and

-'-U -r - - - - - - - pointing performance in the presence of the assumed
fl to an w.Om C O f torque disturbances is identified as the primary SBL

1 .t-a 961 a z to1.0 m control system requirement. Therefore, for a given level
80T0 I\v xUESw of disturbance torque (characterized by a bound on its

r \\\Y r~10.0 M z root-mean-square (RMS) value), system performance
specifications are identified as minimizing RMS beam
deviation from the desired aimpoint (jitter control) and
simultaneous minimization of RMS longitudinal

tZ0 m separations between primary mirror segment edges
(segment phasing). Such segment edge separations

Figure 1. SBL BEA Concept. induce destructive optical interference, aberrating the
laser wavefront, and thereby degrading beam quality.

2. The SBL Model Note that laser beam wavefront aberration due to
deformation of the primary milror segments themselves

The optical design of the SBL beam expander is not considered in this study. An outgoing wavefront
consists of a 10-m diameter paraboloidal primary mirror sensor (OWS), collocated with the secondary mirror,
with a 12-m focal length and a confocal secondary mirror measures line-of-sight (LOS) jitter errors in the plane
with a 0.8-m focal length and a 0.67-m diameter. Due normal to the line of sight, while six segment edge
to deployment and manufacturing limitations, the sensors provide information necessary for segment
primary mirror is composed of four segments or petals phasing control (reference Figure 2).
attached to rigid reaction structure plates (one center and
three outer segments, see Figure 2). Each segment Finite element analysis provides a modal model of
reaction structure is in turn kinematically mounted by the system, consisting of 195 structural modes, which
six segment position actuators to a graphite-epoxy in turn is readily transformed into a state-space system
bulkhead truss. The six segment position actuators per representation consisting of 390 states, i.e.,
petal provide six independent degrees-of-freedom for
controlling the rigid body rotation and translation of x = Ax + Br
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y = Cx + Dr system input/output behavior as the first 68 states,'ad
may thus be removed from the system model. 7

where x represents the system's 390 states, y consists of
the 2 LOS jitter sensor measurements at the OWS and 6 . .
segment phasing edge gap measurements, and r is a I
concatenation of the primary mirror's 24 rigid body 0
segment position actuator commands and 2 disturbance
inputs creating moments ?bout the base of the mirror. I
(A damping ratio, C, of 0.005 is assumed for all
structural modes.) This linear state-space model can be " '
employed in model reduction techniques and modern
multivariable linear systems analysis, as illustrated in
Sections 3 and 4.

3. Model Reduction
0 0o 100 15o 20o 250o 1300 

Due to the large dimension of the state-space model c e oa a
developed, reduction of model order is necessary to ease
the computational requirements associated with control Figure 3. B&T Reduced Order Model Absolute Error.
system design. A thorough and systematic treatment of
reduced-order model (ROM) development was published Additionally, examination of individual
by Moore 3 . The technique proposed by Moore, which observability and controllability gramians from the
is often called balance and truncate (B&T), uses a state- separate disturbances and actuators reveals that while the
space representation (A,B,C,D) of the plant describing six rigid body mode pairs are very observable in the
the relationship between the inputs, states, and system outputs, they are almost totally uncontrollable
measurements in which the respective steady-state from the system segment position actuator inputs.
controllability and observability gramians Consequently, rigid body motion of the BEA must be

controlled by other actuators, and, therefore, the rigid
body modes can be removed from the system model.

P = exp(At) BBTexp(ATt) dt Doing so yields a 56 state ROM of the BEA for control;Jo system design purposes. The maximum singular value
bode plots for the full-order model (FOM) and the 56-
state ROM, both with the 12 rigid body states removed,

Q = exp(ATt)CTCexp(At) dt appear in Figure 4. As is evident from the figure,
application of the B&T method gives a ROM that
includes the important low-frequency structural modes,

are diagonal and equal. The diagonal elements of the while neglecting the much higher frequency bending
gramians, referred to as Hankel singular values (HSVs), mode dynamics.
provide the basis for model reduction. Large HSVs
correspond to states that are easily controlled and
observed, while small HSVs define states that are
difficult to control and observe. Thus, the state-space
model can be partitioned into strongly and weakly
controllable/observable states and the subspace of s 0 FM
weakly controllable/observable states may be deleted.

In Figure 3, a plot of absolute modeling error
versus ROM order for the SBL BEA model, as measured :
by the infinity-norm, is given for the B&T method.* A 20
significant knee in this plot is seen at order 12 where all 0 
six rigid body mode pairs of the BEA are included in the 101 1
ROM, and another pronounced knee is found for a ROM UQUY ()
of 34 mode pairs (68 states). This suggests that states
beyond the 68-state level are not as significant to the Figure 4. Full-Order and 56-State ROM Maximum

Singular Value Frequency Responses.

Let Gk denote a kth order ROM approximation to 4. A Framework for Robust Control System Design
the plant, G. The absolute error is given by IIG - Gkll,,,
where l1TIT1 indicates the HO-norm (or infinity-norm) of Model reduction introduces errors into the design
T (i.e., the maximum singular value of the transfer model that must be accounted for in system stability and
function, T, over all frequency). performance analysis, and, hence, robust control
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techniques that ensure both stability and performance in
the presence of modeling errors are required. For the 2 i

SBL BEA segment phasing/jitter control problem,
analysis with the well-known Small Gain Theorem
(SGT) in combination with an appropriate controller
design technique such as H2 or H, optimal control G (3Y
provides a suitable framework for robust control system
design. Such a framework is convenient because it
allows both stability robustness constraints and nominal Figure 6. ROM with Modeling Error.
performance conditions to be simply posed in terms of
bounds on infinity-norms of certain transfer functions.
Since the disturbance torques (and assumed measurement
noise) provide the primary limitations on how small the
segment phasing and LOS errors may be kept, nominal
system performance can be characterized in terms of the
frequency-dependent transfer from a combined disturbance 
vector, d, to a combined LOS and segment phasing error
vector, e, while stability robustness may be guaranteed
in terms of the following argument. For the system G (s)
depicted in Figure 5, the Small Gain Theorem states that
the nominally stable plant M(s) is stable for all stable u
perturbations A(s) if IIM(s)llollA(s)Ill < 1. Y

/- i(|)- :C ,2 Figure 7. 3-Block Open-Loop Plant.

These nominal performance and stability robustness
Figure 5. Topology for the Small Gain Theorem. conditions may be restated more clearly by considering

Figure 8, which illustrates the closed-loop transfer
Consider Figure 6, where G(s) represents the open-loop function from w and d to z and e, obtained from setting
plant ROM transfer matrix, AM(S) is the error due to u = K(s)y.
model reduction modeled as a multiplicative error at the
plant output, u represents the actuator commands, and y
includes the measured LOS and segment phasing errors. M(S)
Further, assume without loss of generality that
IIAM(s)IIl < 1i. The block diagram of Figure 6 can be
augmented to include the disturbance and performance
signals, d and e respectively, as shown in Figure 7, and z
scaling may be performed so that the disturbance is
RMS bounded by unity (i.e., cd < 1) and nominal
performance specifications are met if ae < 1. Since the d T(s) e
infinity-norm of a system transfer function bounds the
ratio of the associated output/input RMS values, an Hoo
performance optimization problem may be constructed
to minimize the infinity-norm of the closed-loop transfer Figure 8. Closed-Loop Transfer Function.
from d to e, and if this quantity can be made less than 1
(implying nominal performance specifications are met), Since the closed-loop transfer function, T(s), can be
then stability robustness may be ensured via the SGT by partitioned such that
verifying that IIM(s)ilJllAM(s)l 0 o < 1.

z = 1 [_T l l(s) T1 2 (S) [w]
le] = T21 (s) T 22 (s) ld

then, in the context of the framework discussed above,

* Scaling of Am is easily incorporated into the plant nominal system performance specifications are met as
by augmenting frequency-dependent weighting functions long as
to the system matrices.
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ITT22(s)ll, <_ 1 from Figure 9, both controllers result in achieving
nominal performance specifications (closed-loop transfer

and stability robustness is ensured if infinity-norm from d to e less than 1 (0 dB)), but the
Hoo response is flatter and has a smaller infinity-norm (5

irT1 (s)II <c 1 dB less) than the H2 design, indicating better worst-case
disturbance rejection properties. From Figure 10 it is

A two-Riccati equation algorithm4, commonly clear that both unconstrained bandwidth designs violate
referred to as y-iteration, provides an efficient solution the stability robustness test of the SGT. This seems to
to the H,4 optimization problem. Also, although be occurring due to high gain being injected by the
performance objectives for the example problem controllers at high frequencies, where a large modeling
considered have been posed as minimizing the infinity- error exists due to neglected high-frequency dynamics.
norm of a certain transfer function, the design framework m

presented is compatible with other controller synthesis
techniques such as H2 optimal control, for which I
standard solution methods are well known.
Additionally, another suitable compensator synthesis
technique is HF loop-shaping, which results from y , .
augmenting frequency-dependent weighting functions to . . ......-.
the system errors and/or controls, and applying the y- z3 .02
iteration procedure to the resulting augmented plant.
Results of application of all three of these design
methods to the BEA segment phasing/jitter control
problem are presented in Section 5.

Before leaving this section, however, it should be FREQUENCY (rad/s)
mentioned that the framework for robust control system
design presented here addresses only stability robustness Figure 9. Open- and Closed-Loop Transfer from d to e.
issues, and allows no general provisions for testing the
robustness of performance. Performance robustness, or
the guaranteeing of system performance in the presence
of uncertainty, is not specifically designed for in the
example problem. Performance robustness of the final
design selected is, however, independently assessed in
Section 7 for certain known types of system errors. ' 

5. Compensator Designs

Results of application of the various compensator H-2

synthesis techniques are now presented. Arbitrary H
bounds selected for the allowable RMS values of the
disturbance torque, segment phasing, and LOS error ____ ......... -
vectors are 0.35 Newton-meters (N-m), 0.15 FReOUENCY (r-a)
micrometers (pm), and 0.10 microradians (prad)
respectively. Insignificant sensor noise is assumed. For Figure 10. Closed-Loop Transfer About AM (T Dl).
purposes of convenient comparison, only maximum
singular value response plots of the T1 1 and T22 blocks To verify this, consider Figure 11, which shows the
of each design and associated compensators are shown. maximum singular value frequency responses of the
Note that the disturbance and error vetors have been unconstrained bandwidth H2/H, compensators. The
scaled as described in Section 4 so that ad, ae < 1.

high bandwidth nature of these compensators is obvious
Figures 9 and 10 show open- and closed-loop from the figure, as they can be seen to indeed inject very

transfer maximum singular value plots from d to e and high gain at high frequencies, creating a possibility for
about AM, respectively, for unconstrained bandwidth H2 excitation of the truncated bending mode dynamics, and

leading to possible instability due to high-frequency gain
considerations. Thus, from Figure 11 it is obvious why

said to be of unconstrained bandwidth because although the unconstrained bandwidth closed-loop systems violate
both the H2 and H,,o optimal control algorithms require the stability robustness test of the Small Gain Theorem.
inclusion of some multiple of all the controls in the
system error (performance) vector, for these designs that
multiple was chosen to be very small. As can be seen
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FREQUENCY (radl&) FREQUENCY (rd/s)

Figure 11. Unconstrained Bandwidth Compensator Figure 12. Open- and Closed-Loop Transfer From d to e
Maximum Singular Value Frequency Responses. (Controls Penalized).

Traditional means of overcoming this high gain, .
high frequency problem involve increasing the constant
multiple control penalty portion of the system error 'u
vector to a significant level. This tends to limit the H i f
amount of gain injected by the compensator at all Ha2
frequencies so that the system bandwidth is decreased,
which is desirable from a stability robustness point of v
view, but also has the undesirable consequence of
degrading low-frequency performance. Stability /
robustness is obtained via this technique by increasing
the penalty weighting on u until the gain injected at
high frequencies diminishes enough to offset the large
modeling error present.

FREQUENCY (rad,)
Figures 12 and 13 show open- and closed-loop

transfer maximum singular value plots from d to e and Figure 13. Closed-Loop Transfer About AM (T 11)
about AM, respectively, for H2 and Ho designs with an (Controls Penalized).
error vector that has been augmented with a suitably
large control penalty term. The figures indicate that (40 dB) drop in gain injected at low frequencies as
stability robustness is attained with both designs by compared to the unconstrained bandwidth designs
frequency-independent penalization of u, but at a price of (reference Figure 11), resulting in the robust designs'
sacrificing about one order of magnitude (20 dB) in observed degradation in nominal performance. This is
closed-loop d to e infinity-norm, so that nominal the expected result of constant control penalty, which
performance specifications are no longer met. Thus, acts at low as well as at high frequency.
although the constant control penalty reduced bandwidth
designs are robustly stable to the truncated dynamics and
do outperform the open-loop system, their disturbance
rejection performance properties are unacceptable.

To gain more insight into how stability robustness H-
has been achieved with these designs, consider Figure 
14, which shows the maximum singular value frequency M 
responses of the robust H2 and H,o reduced bandwidth z M
compensators. The most significant point to be
observed from the figure is that now both compensators S
are rolling off the injected gain at a frequency of -100
rad/s, which allows the designs to meet the stability
robustness test of the Small Gain Theorem. Also V u . . .
important to note is the over two orders of magnitude FREQUENCY (rads)

Figure 14. Robust Compensator Maximum
Singular Value Frequency Responses.
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From the results presented thus far, it can be seen 3 -
that penalizing the system control at all frequencies m
proves effective in attaining closed-loop stability -
robustness, but results in an unacceptable degradation of
system disturbance rejection performance, particularly at
low frequencies. Alternate means of achieving stability U ·

robustness without greatly sacrificing achievable
performance are therefore required. From Figures 11 and Z
14, it seems that what is needed is a methodology that 
induces the compensator to inject higher gain at low n
frequencies (thereby improving performance), while still
forcing a fast roll-off of gain at high frequencies in order
to meet the stability robustness constraint This design, 
objective suggests the use of frequency-dependent design FREQUENCY (rads)
techniques, otherwise known as loop-shaping methods.

Figure 15. Control Shaping Filter Frequency Response.
As mentioned previously, the technique of H,

loop-shaping is carried out by augmenting frequency- .
dependent weighting functions to the system -u
performance vector, and subsequent solution of the H,
Riccati equations in the y-iteration process. For the
problem at hand, the results shown thus far suggest that
frequency-dependent penalty of the controls portion of -
the performance vector offers hope for an acceptable -
solution to be obtained. Penalizing the controls
significantly more at high frequencies than at low
frequencies should allow the design to inject high gain at
low frequencies, thereby improving low-frequency -
disturbance rejection properties, while simultaneously
forcing the compensator to roll-off the high-frequency -
gain so as to meet the stability robustness constraint. FREQUENCY (rad/a)
Such a design is now presented

Such a design is now presented. Figure 16. Closed-Loop Transfer from d to e (T22)
Consider Figure 15, which shows the singular value (Weighted-Control H,~ Design).

frequency response for a single-input/single-output
control weighting function with a zero at s = -5 rad/s, a
pole at s = -500 rad/s, and a dc gain of 77, selected to
meet the above criteria and arrived at via trial and error -
iteration. Figures 16 and 17 show the closed-loop
transfers from d to e and about AM for the -H,o loop- a
shaped design obtained by augmenting the dynamics of !/
the above control weighting transfer function to every
control channel of the open-loop model and solving the
H,~ Riccati equations. As can be seen from Figure 16,
the maximum singular values of the T22 block are less
than 1 (0 dB) at all frequencies, so that the H.,, loop-
shaped control design obtained meets nominal
performance specifications. Similarly, Figure 17 
indicates that the H, loop-shaped control design is FREOUENCY (rd/)

guaranteed to be robustly stable. Thus, this design is Figure 17. Closed-Loop Transfer about AM (T11)
dee m ed acceptable. (Weighted-Control H,,, Design).

Figure 18 shows the maximum singular value
frequency response of the weighted-control H,, design higher gain maintained by the loop-shaped H,
compensator. The most significant difference between compensator over the low-frequency region. This allows
the frequency response of this compensator and the the H, loop-shaped control compensator to meetrobust H2/Hh, compensator responses is the markedly performance specifications in the frequency range where

the other designs do not Further, it is the ability of the
Ho. loop-shaped control compensator to preserve high
gain through -100 rad/s and still roll-off fast enough to
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meet the stability robustness constraint that is especially Figures 19 and 20 show representative time
crucial to the success of this design. Finally, Figure 18 responses of two BEA torque disturbances, generated by
indicates that there is a region of particularly high passing white noise through a simple first-order low
compensator gain between -18 and 30 rad/s, including pass filter with bandwidth just greater than the
what appears to be a very lightly-damped compensator bandwidth of the loop-shaped Hoo closed-loop system.
pole at -28 rad/s. The clear presence of this pole seems The random nature of the torque disturbances is obvious
to indicate that the compensator is performing some from the plots, as any two consecutive values seem to
type of critical pole-zero cancellation of the plant be highly uncorrelated. The RMS values of the torque
dynamics at -28 rad/s, in order to extend the design's disturbances also seem to be accurately represented, as it
disturbance rejection capability to higher frequencies. appears that 95 percent of the values lie within the 30

margins of : 0.75 N-m (note that two individual torque
RMS values of 0.25 N-m combine to yield the chosen
0.35 N-m torque vector RMS value).

LI

A4
FREQUENCY (rad/)

-I

Figure 18. H,o Loop-Shaped Control Compensator A s .'s i at i -s i 
Maximum Singular Values. nm (sc)

6. Design Simulation Figure 19. Torque Disturbance 1 Time Response.

In this section, the HI loop-shaped control e

compensator obtained in Section 5 is validated via time
domain simulation. Representative time responses are
presented which illustrate characteristic system behavior
under the influence of filtered white noise disturbances
and demonstrate satisfaction of nominal performance 
specifications. Open- and closed-loop results are
presented simultaneously in order to facilitate
comparison between the two cases.

Since large-scale flexible space structures like the
SBL envisioned here have yet to be built and tested, the
time-domain nature and spectral properties of the torque %- B!1 a L: ; .
disturbances and measurement noise present in the BEA 'ime (s:c)
system are not precisely known. Therefore, the
assumption is made that the disturbances can be Figure 20. Torque Disturbance 2 Time Response.
represented as random processes with typically broadband
spectral characteristics and bounded RMS values. One Figures 21 and 22 respectively show the open- and
convenient way of modeling such processes is to closed-loop segment phasing errors at measurement
represent them as outputs of linear-time-invariant low- position 4 (reference Figure 2) resulting from
pass systems driven by white noise, otherwise known as application of the disturbance torques of Figures 19 and
colored noise processes. As long as the bandwidth of 20. From the figures, it can be seen that, on the
the coloring filter is selected to be greater than the average, the open-loop response is significantly larger
bandwidth of the system being driven, colored noise than the closed-loop response, as expected. In fact, the
inputs may be used to excite all system natural largest amplitude of the open-loop error is more than
frequencies. Modeling the system disturbances as twenty times the magnitude of the largest closed-loop
colored noises therefore allows the dominant frequency- error amplitude, indicating a significant improvement in
dependent behavior of the system to be elicited. performance between the closed and open-loop systems.

The open-loop error also appears in general to be less
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jagged than its closed-loop counterpart, or in general It is well-known that optimal controllers alter the
more slowly time varying. This can be interpreted as behavior of the open-loop plant via the mechanism of
meaning that the open-loop error is dominated by low- "approximate plant inversion", in which undesirable
frequency components, while the closed-loop error is system poles and zeros are respectively cancelled with
dominated by higher-frequency components. Since the compensator zeros and poles, and the best system
compensator employed in the closed-loop system was response achievable is then obtained via selection of any
designed specifically to reject low-frequency additional compensator pole/zero locations. One
disturbances, this interpretation makes sense. Also note obvious flaw in such a design methodology is that
that both these error time responses are significantly less uncertainty invariably exists in the location of the open-
jagged than the torque disturbances. This effect can be loop poles, due to approximations and errors in the
attributed to the high-frequency attenuation resulting modeling process. If the true system poles are not
from passing the colored-noise disturbances through a exactly the same as those of the design model, then the
lower-bandwidth system. As a final remark, note that a multivariable pole-zero cancellations employed by plant-
rough estimate of the closed-loop RMS position 4 inverting techniques are not likely to be completely
segment phasing error of 0.02 gm projected into a 6 successful, and may even lead to serious degradations in
element segment phasing vector yields a total RMS nominal system stability and performance. It is thus of
value of 0.05 mun. Since this value is significantly less interest to the designer to somehow assess the potential
than the specified segment phasing performance bound impact of open-loop pole location errors prior to
of 0.15 gpm, it appears that the H, loop-shaped control compensator implementation. Therefore, in this section
design can indeed be seen to meet nominal performance it is demonstrated how the Small Gain Theorem may be
specifications. used to assess the stability robustness of the weighted-

control H- loop-shaped compensator closed-loop system
...... to five percent parametric uncertainty in the open-loop

finite-element model stiffness matrix elements,8· ^corresponding to two and one-half percent parametric
uncertainty in the open-loop natural frequencies. Since

ta I l althe Small Gain Theorem is known to be conservative,
the actual effects of open-loop pole location errors on
closed-loop stability for two specific perturbed natural
frequency models is then directly verified via

c1h Vtlll § 1lzl l lcomputation of the closed-loop poles. Finally,
, _ V 11 V l robustness of performance of non-perturbed and perturbed

models is assessed via computation of closed-loop d to e
transfer function frequency responses.

lbs 4 4MS 3
Time (s) As discussed in Section 5, the Small Gain Theorem

may be used to conservatively assess the stability
Figure 21. Open-Loop Position 4 Segment Phasing robustness of any system containing uncertainty, as

Error Time Response. long as that uncertainty may be gain-bounded as a
function of frequency. In particular, a framework has
been developed for testing the stability robustness of
systems where the only uncertainty in the plant is

,m lmodeled as a multiplicative error at the plant output. As
was previously developed, stability robustness of such
an uncertain system may be guaranteed by ensuring that
the infinity-norm of the closed-loop transfer about the

uncertainty block, IITl l(s)ll I, is less than one, as long
as the infinity-norm of the uncertainty block is unity
bounded. Consider Figure 23, which shows the
maximum singular value frequency responses of

,~ll1 ·I.m multiplicative errors, AM(s), at the plant output for two
perturbed natural frequency systems, and of a transfer

.Ms i Bt o -'xc i~ al .1 a !.function which effectively bounds both the errors. As
Time (sec) can be seen from Figure 23, the nominal design model

possesses large errors at high-frequency due to model-
Figure 22. Closed-Loop Position 4 Segment Phasing reduction truncation of the high-frequency modes (as was

Error Time Response. previously the case for the unperturbed system), but now
7. Performance Robustness and Effects of there is also significant error at low frequency due to the
Open-Loop Pole Parametric Uncertainty difference between modeled and "actual" open-loop

natural frequencies.
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stability robustness test of the Small Gain Theorem.
The conservatism of the SGT is thus made apparent.
Severe degradations in closed-loop performance do

U F(s) F however result, as can be seen from Figures 25 and 26
below, which show the maximum singular value closed-
loop d to e transfers for the systems with respectively
five percent greater and less stiffness than the original
model. The figuree clearly illustrate the importance of

i I / W 10 q| JJ feeding the precise location of the open-loop poles and
-m "rr / I Yzeros to the optimal control problem. Note that even in

.r 14 (s/ the presence of open-loop natural frequency parametric
uncertainty, closed-loop performance specifications are
met at low frequency, and the degraded higher frequency
performance is, in general, still superior to that of the

FREOUENCY (radhs) open-loop system.

Figure 23. Perturbed System Multiplicative Errors
at the Plant Output and Bounding Transfer Function -

Frequency Responses.

Figure 24 shows the closed-loop transfer maximum
singular values about the delta block for the perturbed
plant models. As can clearly be seen from the figure, il
the maximum singular values of the closed-loop transfer a
about the uncertainty block exceed unity (O dB) over
almost all of the frequency range of interest. Figure 24
therefore indicates that the closed-loop system is not
guaranteed to be robustly stable to two and one-half
percent error in open-loop natural frequencies according .'. ..... ; .
to the sufficient test of the Small Gain Theorem. The FREQUENCY (rad/s)
Small Gain Theorem is based purely on gain
considerations, however, and is known to be Figure 25. Closed-Loop Transfer from d to e (T22)
conservative. Therefore, the actual closed-loop systems (5% More Stiff Open-Loop System).
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FREQUENCY (radh) FREQUENCY (rad")

Figure 24. Closed-Loop Transfer about AM (T1 1) Figure 26. Closed-Loop Transfer from d to e (T22)
(Perturbed Open-Loop Natural Frequency Systems). (5% Less Stiff Open-Loop System).

using the perturbed natural frequency models and Since performance specifications are not met in the
weighted-control H. loop-shaped compensator may be presence of two and one-half percent open-loop natural
formed, and the closed-loop poles and d to e transfer frequency parametric uncertainty, the closed-loop system
function maximum singular value frequency responses does not possess robustness of performance to these
computed to verify the actual effects of the parametric types of structured parameter errors. This observation
uncertainty. In doing this for the two perturbed open- raises the question of whether or not the closed-loop
loop models chosen, the resulting closed-loop systems system displays robustness of performance to the errors
are found to be stable, in spite of the indications of the due to truncation of modes brought about by model
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reduction. To answer this question, consider Figure 27, 1. Flueckiger, K., Dowdle, J. and Henderson, T., "A
which shows the closed-loop frequency response from d Control System Design Methodology for Large-Scale
to e for the full-order model with no parametric Interconnected Systems", Proceedings of the 1990
uncertainty. As can be seen from the figure, the system American Control Conference, San Diego, CA, pp.428-
does indeed possess robust performance for the errors due 434.
to model reduction. 2. Hammett, K., Dowdle, J., Athans, M., and

Flueckiger, K., "Robust Control System Synthesis for
Space-Based Laser Beam Control", to appear Proceedings

.~ of the 1991 American Control Conference, Boston, MA.
3. Moore, B.C., "Principle Component Analysis in

__ Linear Systems: Controllability, Observability and
Model Reduction," IEEE Trans. on Auto. Control, Vol.

-_ AC-26, pp. 17-32, 1981.
4. Glover, K. and Doyle, J., "State-Space Formulae

;z J "for All Stabilizing Controllers that Satisfy an I-IH-norm
Bound and Relations to Risk Sensitivity," Systems &
Control Letters, 11(1988) 167-172, North-Holland.

FREQUENCY (rad/s)

Figure 27. Closed-Loop Transfer from d to e (T22)
(Full-Order Open-Loop System).

8. Conclusions

In this paper, the utility of applying optimal
controller synthesis methodologies in conjunction with
model reduction techniques and the stability robustness
test of the Small Gain Theorem to robust control of
large-scale systems has been demonstrated, and several
interesting consequences of adopting this design
approach have been illustrated. Controller design for
large-scale systems necessitates reduction of model order,
and in this paper ideally performing but unconstrained
bandwidth designs were developed for a space-based laser
example problem to illustrate the dangers of totally
ignoring the effects of the resulting unmodeled
dynamics. In particular, the Small Gain Theorem was
used to show the strong possibility of closed-loop
instability for these designs. Reduction of closed-loop
bandwidth via constant control penalty was seen to
achieve guaranteed stability robustness, but at an
unacceptable cost of large sacrifices in performance. The
added degrees-of-freedom afforded by Ho loop-shaping
techniques were then used to overcome this problem,
resulting in a design meeting both robust stability and
nominal performance conditions. However, severe
degradations in performance were seen to result from
parametric uncertainty in open-loop pole/zcro locations,
illustrating the fact that one should not realistically
expect ideal performance in a practical setting. Finally,
although it had not been specifically designed for, the
H,, loop-shaping design was seen to possess
performance robustness to the dynamics removed in the
model reduction process.
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