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Abstract

Microfluidics, microfabricated suspended heaters and electronic field effect sensors
have been successfully integrated on a single device chip. This integration enables
spatial cycling of as little as 11nL of reagents over different thermally isolated tem-
perature zones, to be coupled with the field effect sensing capabilities, for label-free
detection of biomolecules such as DNA. The microfluidic valves provide control over
reagent flow, and flow rates of up to 1.8nLs 1 have been demonstrated with the
on-chip pumps.

Initial characterization of the suspended heaters was successfully carried out us-
ing thermochromic crystals. Functionality of the heaters was shown and a rough
calibration was obtained. The subsequent implementation of temperature measure-
ment using fluorescent dyes, enabled real-time spatial temperature mapping. This
method demonstrated the capability of monitoring fluid temperatures in microfluidic
channels with 5YC accuracy at 2pum 2 resolution. Thermal isolation of the suspended
heaters was clearly observed from the steep gradients in the spatial temperature pro-
files captured. Finally, localized boiling of water in the microfluidic channels was
achieved, with only 30mW supplied to the heaters.

In order to evaluate the sensors, tests were carried out to determine its sensitivity
to surface charge. Buffer solutions of different pH were injected, and the sensors have
been able to measure pH values ranging from 2.2 - 7.4 and demonstrate sensitivity
of up to 38.8mV per pH unit change. Highly charged poly-electrolytes were also
investigated as model systems to validate sensor detection of charged biomolecules.
The adsorption and layer-by-layer deposition of multiple poly-electrolyte layers to the
sensor surface have been successfully detected.

This device paves the way for future integration of multiple microfluidic compo-
nents, for lab-on-a-chip applications.

Thesis Supervisor: Scott Manalis
Title: Associate Professor, Biological Engineering
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Chapter 1

Introduction

1.1 Motivation

Lab-on-a-chip devices are an appealing vision for the miniaturization of bulky test

equipment into portable, hand held devices that can be used for point-of-care diagnos-

tics as well as field applications. This has a wide range of uses from environmental

monitoring, pathogenic detection in the food industry, to agriculture and military

applications.

Current sensor technology for detection of biomolecules are dependent on tagging

target molecules with fluorescent or radioactive labels. These methods have been

well established and are highly sensitive to small numbers of molecules. However,

high quality optics, which are necessary for such high sensitivity measurements, are

inherently bulky. It is extremely difficult to miniaturize such systems without compro-

mising on the fidelity of the detection system. Therefore it is extremely advantageous

to develop a label-free detection method that does not require additional optics. The

field effect sensors developed by Cooper [6] and Russo [16] have demonstrated the

detection of the intrinsic charge of biomolecules, and the resultant electrical signal

output has been successfully measured.

The next step was then to incorporate an amplification stage upstream of the

sensors. This amplification would increase the overall sensitivity of the device, while

acting as a initial stage filter. In particular, DNA was chosen as a target for the
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device because of its wide spread biological applications. This device would be the

first device to carry out amplification and label-free detection of DNA on a single

chip.

The initial design was provided by work done in the Fall 2003, Microfabrication

Project Laboratory class (6.151) [5]. The goal of this thesis was to complete the

fabrication and packaging of the device, to characterize the device, and to iterate on

the design, in order to improve on performance characteristics.

1.2 Background

The field effect sensors are based on the electrolyte-insulator-semiconductor (EIS)

structure, which were pioneered by Bergveld [1, 2], who developed the ion-sensitive

field-effect transistor (ISFET). In this structure, the modulation of the silicon de-

pletion region is measured by the lateral conductance of the silicon below the gate

region. The measurement of electrical activity in muscle fibres was demonstrated

in this early use of ISFETs. Alternately, the electrolyte-insulator surface potential

can be measured with an EIS capacitor, as demonstrated by Siu et al. [18]. Finally,

the field effect sensors were successfully applied to detect deposition of charged poly-

mer layers as well as DNA, by Fritz et al. [8]. This sensor was then redesigned and

integrated with microfluidics by Russo [16].

The miniaturization of analytical methods by developing micro devices has been

an important trend, as noted by Kricka et al. [11]. The main goal of this work is to

develop a lab-on-a-chip with complete sample-to-signal solutions. In particular, much

effort has been put into miniaturizing of genetic testing to carry out polymerase chain

reaction (PCR) on chip.

There are two main types of PCR devices being developed. Spatially cycled PCR,

in continuous-flow PCR devices, such as the one developed by Kopp et al. [10], are

simple in design. Temporally cycled PCR, on the other hand is often carried out

using peltier thermoelectric elements, as demonstrated by Khandurina et al. [9]. A

more elaborate PCR device, incorporating on-chip pumps and valves, has also been

18



successfully developed by Liu et al. [14].

However, all the integrated systems that have been developed so far rely on fluo-

rescence optical readouts as detection methods (Burns et al. [3], Lagally et al. [12]).

Therefore, there is a urgent need for an integrated device that incorporates DNA

amplification with label-free detection. This would enable the coupling of a powerful

amplification tool with a sensitive and direct detection method, taking one step closer

to the ultimate goal of a lab-on-a-chip.

1.3 Thesis Outline

This thesis will present the integration of microfluidics, microfabricated suspended

heaters and electronic field effect senors onto a single device chip. The initial work

for this integrated device was carried out as part of the Fall 2003, Microfabrication

Project Laboratory class (6.151). The initial theory, design, and fabrication process

development was completed for the class. The actual fabrication of the first batch

of devices was also carried out together with Brian Chow, Tyrone Hill, Johnson

Hou, David Kong, Manu Prakash, and Brian Tang. This thesis continues to progress

the accomplishments of the class project. In particular, the fabricated silicon chip

was integrated with microfluidics and packaged. Instrumentation was assembled and

systems were developed to characterize the individual components of the device.

Details of the theory behind the suspended heaters are discussed in Chapter 2.

Chapter 3 discusses the initial design of the device and the improvements implemented

after initial testing. These improvements were critical to increased yield of packaging

and the robustness of the final devices. The fabrication and packaging of the device is

described in Chapter 4. This includes the development of tools to improve fabrication

and alignment of elastomer microfluidic chips. Chapter 5 details, the experimental

setups, test parameters, and results of characterizing each of the individual compo-

nents for the integrated device. The implementation of real-time spatial mapping of

fluid temperature in microfluidics, is also reported in this chapter. Finally, Chapter 6

summarizes the accomplishments, and possible future work is discussed.

19
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Chapter 2

Theory

The integrated device comprises microfluidics, field effect sensors, and integrated

heaters. The theory behind the microfluidic components are discussed by Unger et

al. [19] and Chou et al. [4]. The theory behind the field effect sensors have also been

explored by Russo [16]. This is discussed in Section 2.1 together with the simulation

done to determine the required process parameters. The heaters were developed as

part of the Fall 2003, Microfabrication Project Laboratory class (6.151) [5] and the

details are discussed in Section 2.2.

2.1 Field Effect Sensors

The sensors are a pair of lightly doped silicon field effect capacitors, where the ca-

pacitance of each sensor is determined by the sum of the oxide thickness and the

depletion width in the silicon. Since the depletion region can be modulated by the

charge on the sensor surface above the silicon oxide layer, the change in capacitance

can be used to measure the change in surface potential. As shown in Figure 2-1,

the binding of charged molecules can modulate the depletion region. Therefore this

binding event can be directly detected by monitoring the capacitance of the sensors.

Simulation on SUPREM was carried out in the Fall 2003, Microfabrication Project

Laboratory class (6.151) [5] to determine the process parameters that would result in

the desired doping concentrations for both the sensors and heaters. The P ++ boron
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C so
depletion

width

Figure 2-1: Schematic of the field effect sensors in an EIS structure, showing low
capacitance with no binding of charged molecules(left) and higher capacitance and
thus detection of molecular binding (right).

doping had to be above 5 x 10 19cm- 3 for the implanted heaters to serve as an etch

stop. Conversely, the P implant for the sensors had to be low in order to increase

the sensitivity and dynamic range of the sensors. The post-anneal implant profiles

of the dopants are shown in Figure 2-2, and the process parameters are shown in

Table 2.1. The annealing was carried out at 10500C for 70min, in an inert nitrogen

environment.

Implant Species Dose Energy [keV] R, [,um]
Boron, P ++ 1 X 1016 100 0.3

Boron, P 5 x 10" 100 0.3
Phosphorous, N ++ 5 x 1o15 125 j 0.2

Table 2.1: Implant Parameters for Silicon Doping

2.2 Suspended resistive heaters

The resistive heaters are fully suspended on a 1pm thin nitride membrane to maximize

the heat transfer to the reaction mixture, and to reduce the heat loss to the substrate.

This allows for well defined temperature zones, while reducing the power required to

be supplied to the heaters. A variety of heater designs were modeled to determine

the optimal geometry.
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Figure2-2: Simulated doping profiles.

Lumped thermal modeling was carried out to determine the transient response

of the heaters. Radiation was ignored in the analysis and the equations used in the

analysis are shown below:

Ct = Cm lwtpm (2.1)

Where Ct is the heat capacity, 1 is the length, w is the width, t is the thickness,

Pm is the mass density, and Cm is the specific heat capacity.

L
RA = (2.2)

Where R is the thermal resistance of the material block, L is the length of the

structure, K is the thermal conductivity, and A is the cross sectional area.

T = I 2 ReRT (2.3)

Where T is the temperature, I is the heat flux, Re is the electrical resistance of

the system, and RT is the total thermal resistance.
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The equivalent circuit of the lumped thermal model was constructed, as shown in

Figure 2-3. The material thermal properties used are shown in Table 2.2, and the

resultant lumped capacitance and resistance values used in the model are shown in

Table 2.3 .

C1
R1 13.5

133e-6

ti

C2 R2 70.3125
2.03e-7

C3 R3 1666.67
4.18e-5 1666.)

C4
1e-7 R4 5555.6

Figure2-3: Equivalent circuit of the lumped thermal model. Ct and Rt represent
the heat capacity and thermal resistance of the materials.

Material Thermal Conductivity, Specific Heat Capacity,
K [Wm-'K- 1] C [Jkg- 1K-1]

Doped Silicon 148 712
Silicon Nitride 32 750

Water 0.6 4184
PDMS 0.18 705.6

Table 2.2: Material thermal properties

The model was subjected to a heat flux of 200ps square wave of 20 - 87 C.

The results of the lumped model simulation revealed extremely fast response time

constants for the heating and cooling of the fluids, at 6.3ps and 6.4 ps respectively.

The heater and nitride membranes had similar response time constants at 5.9ps for

heating and 6.5ps for cooling. The full response is shown in Figure 2-4.

FEMLAB and ANSYS were used for finite element modeling. The complete 3D

geometry was modeled, and a 2D cross section profile is shown to represent the
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Element Value

Cheater 1.6 x 10-8
Rheater 67.6
Cnitride 2.03 x 10-8

Rnitride 3.12
Cwater 4.18 x 10-7

Rwater 1.6 x 10'
CPDMS 6.7 x 10

RPDMS 5.55 x 105

Table 2.3: Lumped model element values
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Figure2-4: T lransient response of the lumped thermal model for the heaters, showing

the heater temperature in blue (top) and the fluid temperature in black (bottom).



temperature profile. The fluid flow was ignored, in order to simplify the simulation.

The thermal analysis considered fluid convection and radiative heat loss from the

nitride membrane. As a result, a steady state thermal profile was obtained.

The resultant temperature profile for the design with heaters aligned perpendicular

to the flow axis is shown in Figure 2-5. The profile along the flow axis reveals a highly

non-uniform profile with large temperature gradients along the flow axis. Therefore,

the fluid would be exposed to this fluctuation in temperature as it flows across the

heaters, which is undesirable.

Figure 2-5: Simulated temperature profiles for heaters that lie across the flow axis.
The cross section of the channel is shown on the left and the profile along the flow
axis is shown on the right.

A design with heaters aligned parallel to the flow axis was subsequently chosen.

The temperature profile along the flow axis would be more uniform since the heaters

lay on the same axis. Although there is temperature variation across the cross sec-

tion of the channel, each element of fluid flowing over the heaters would see a uniform

temperature. This would be more ideal compared to the previous design. The tem-

perature profile for the design with three heaters aligned parallel to the fluid flow axis

is shown in Figure 2-6.

The results from the simulation have helped to determine that the heaters should

lie along the flow axis. This was applied to the design of the heaters for the device.
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Chapter 3

Device Design

The integrated device incorporates microfluidics (channels, valves, and pumps), sus-

pended resistive heaters, and electronic field effect senors on a single chip. The archi-

tecture was inherited from the Fall 2003, Microfabrication Project Laboratory class

(6.151) [5], and modifications have been made to improve the device characteristics,

as well as to increase ease of assembly and packaging.

3.1 Microfluidics

Integrated microfluidics allows flowing and manipulating fluids on the integrated de-

vice. The microfluidic dies are first fabricated independently and then integrated with

the silicon chip afterwards.

3.1.1 Initial design

The microfluidic devices consist of a double layer PDMS stack. The fluidic channels

are in the bottom layer, with channel heights of about 10pm. The control channels

are in the top layer and are about 100pm tall. The two layers are separated by a thin

membrane of 10am thickness.

All the channels were 100gm wide and are spaced at least 100pm apart. The

layout of the devices are shown in Section B.1.1.
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3.1.2 Improved design with on-chip degassing

During the initial tests of the microfluidic systems, the permeability of air in PDMS

became evident. Once the valves or pumps were pressurized, air bubbles would start

to form in the fluidic channels at the membranes. This bubble formation would render

the device completely useless because the presence of air in the sample loop would

most likely disrupt the PCR reaction. Air bubbles would also cause spikes in the

signal detected by the sensors and the measurements would then be inaccurate.

In order to arrest the problem of bubble formation in the fluidic channels, the

control lines were filled with degassed water. However this only delayed the formation

of bubbles. Basically, the air defuses into the column of water during pressurization.

However when the pressure is released, the dissolved air does not completely defuse

back out. Over time, the plug of dissolved air travels down the column of water and

eventually gets released into the fluidic channel.

Therefore, additional channels were added to both layers. These channels act as

vacuum lines such that the plug of dissolved air can escape out of the water before it

reaches the fluidic channels.

Also, pressurized helium is used in place of nitrogen. Helium was chosen because

the solubility of helium in water is lower than most other gasses, as demonstrated by

Leach et al. [13]. The mole fraction solubility of helium is 0.708 x 10- as compared

to 1.177 x 10' for nitrogen, as summarized by Scharlin et al. [17]. It also defuses

faster through water and PDMS. This allows the helium to escape into the vacuum

lines effectively.

The addition of channels in the valve layer also allows on-chip degassing of the

sample fluids, when a vacuum is applied. The layouts are shown in Section B.1.2.

Implementation of the design improvements solved the problem of bubble forma-

tion. However, there were some shortcomings to the design. The additional lines

added to degas the fluidic layer were large windows of thin membranes. These mem-

branes were very flexible and contribute to variation of the volume of fluid under the

membranes. This variation affected the optical properties during fluorescent mea-
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surements. Also, the large membranes were the most susceptible to failure when the

device is exposed to large pressure build ups.

Another problem was that the vacuum lines for degassing the valve layer were

placed too close to the fluidics lines. This made the device more susceptible to

delamination and failure of the PDMS-silicon nitride bonding.

3.1.3 Final design

The final design for the microfluidics aimed maintain the improvements of the design,

while resolving the problems observed during initial testing.

The functionality of on-chip degassing of sample fluids was sacrificed in order

to improve the robustness of the device as well as to maintain optical clarity for

fluorescence detection. The sample fluids can be degassed off-line before injection

into the device.

The use of helium significantly helps to reduce bubble formation. Therefore, the

vacuum lines could be moved further away from fluidic channels, closer to the injection

ports, to allow for the escape of the helium. The design of the vacuum lines was also

significantly simplified, with less number of ports required.

Injection ports were spaced further away from metal lines that were also re-

designed. This helped to improve the strength of the PDMS-nitride bond around

the injection ports. This is necessary because the PDMS around the ports is sub-

jected to very large stresses when tubing is inserted. The number of critical alignment

areas was also reduced. The final result was avoidance of shorting out the metal lines,

which occurred when the bond failed and water contacts the gold lines.

Lastly, the widths of the valves were increased to width of 200bpm to improve

sealing when actuated. A combination of 200pum and 100,am wide valves used for the

pumps, to ensure good sealing of the sample loop.

The final designs are shown in Section B.1.3.
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3.2 Silicon Device

The initial design of the silicon chip was carried out in the Fall 2003, Microfabrica-

tion Project Laboratory class (6.151) [5. Process modeling simulations were carried

out on SUPREM to determine the implant parameters, as discussed in Section 2.1.

Heat transfer modeling was carried out to simulate the thermal isolation of the thin

membranes and to determine the geometry of the heaters. The design incorporated

both the suspended heaters as well as the field effect sensors developed by Russo [16].

Layouts of the initial design are shown in Section B.2.1, and the layout of the sensor

region is shown in Figure 3-1. The cross section profile of the sensors and heaters is

shown in Figure 4-17.

Valve Lines
Gold traces

Implanted Traces Senso

Signal Electrode
I

Fluidic Lines

Substrate Bias

Figure3-1: Schematic layout of the sensors.

After initial testing of the fabricated devices, design changes were implemented

to improve the yield, quality and ease of assembly and packaging of the devices. In

particular, modifications were made to the gold traces.

The traces in the sensor area were rearranged so that there was more space between

the metal lines and the microfluidic channels. More spacing was also allowed around
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the microfluidic ports. This improved the bonding of the PDMS to the nitride and

reduced the occurrence of leakage that would short the device.

Due to the large number of ports required to control the on-chip valves and pumps,

the PDMS chip requires significant real-estate on the device and the edge is very

close to the bond pads. During wire bonding, the thickness of the PDMS blocks the

view of the bond pads, increasing the complexity of wire bonding the device. The

resultant wire bonds are often weaker and break easily. Therefore the bond pads were

extended closer to the edge of the die. This improved the visibility of the bond pads,

and increased the area for bonding. The result was an increase in the ease of wire

bonding process and the improvement in the quality and strength of the bonds.

The final layouts incorporating these design improvements are shown in Sec-

tion B.2.2.
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Chapter 4

Fabrication and Packaging

4.1 Microfluidic fabrication

The microfluidic dies are fabricated by casting silicone elastomer on a mold. The

elastomer used, polydimethylsiloxane (PDMS), is a two part mixture that cures after

mixing . Upon curing on the mold, the PDMS is then diced and cored to complete

the fabrication process. The whole process from start to finish was carried out in the

Manalis Lab.

4.1.1 Wafer layout

The design of individual dies are replicated on a wafer to create the wafer layout.

This exploits batch processing in the fabrication.

In the initial layouts, the dies were placed adjacent to each other, as shown in

Figure 4-1. However this made the preparation after curing very difficult. There was

very little space for alignment and there was no clear marking for dicing.

After a few iterations, the final layout incorporated improvements that resulted in

increased yield and the quality of the microfluidic dies fabricated. The final layouts

for both layers are shown in Figure 4-2.

Firstly, the dies are spaced 1.6mm apart in the layout for the valve layer. This

allows for ease of dicing the PDMS on the wafer, without damaging the mold. It
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Figure4-1: Initial layouts for the valve and fluidic layers.
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Figure4-2: Final layouts for the valve and fluidic layers.
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also allows for unused dies to be kept in contact with the wafer, thereby helping to

prevent contamination of the dies.

Secondly, the die outline for the control layer is about 2mm larger than that for

the fluidic layer. This ensures that there is enough excess material to allow for a

smooth trimmed edge after bonding.

Finally, there are only six dies on the layout of the fluidic layer. The 7mm space

between the dies to allows for maneuverability of the control layer during alignment.

4.1.2 Mold making

The mold for casting the PDMS is fabricated by patterning photoresist on a 4 inch

silicon wafer using standard lithography techniques. The masks are printed from the

wafer layout, at 1.5% larger than the actual size, to account for the shrinkage of

PDMS when curing at elevated temperatures.

The mold for the valve layer is fabricated by patterning SU8-50 (MicroChem

Corp.), a negative photoresist. The process steps are listed below:

1. Rinse wafer with acetone, isopropanol, and water

2. Dehydrate the wafer - Bake in oven for 10min at 120'C

3. Spin coat SU8-50 photoresist - Dispense SU8-50, ramp to 1500rpm, and spin

for 30s (P6204 Portable Precision Spin Coater, Speedline Technologies)

4. Pre-exposure bake - Bake on hotplate for 10min at 65'C followed by 30min

at 950C

5. Exposure - 40s at 50% intensity (Intelli-ray 400, Uvitron International Inc.)

6. Post-exposure bake - Bake on hotplate for 1min at 65'C followed by 10mirn

at 95 0C

7. Develop - develop in SU-8 developer for about 10min, until development is

complete
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8. Rinse with isopropanol and dry with air gun (continue developing if there is

undeveloped white residue remaining)

9. Hard bake - Bake in oven for 10min at 1500C

The wafer should be allowed to cool down after the post-exposure bake step, before

the development step. This reduces the formation of cracks in the SU8 due to stress

concentrations at the corners. The final hard bake also helps to anneal some of the

defects.

In order to prevent T-topping of the features, a Schott glass filter (BG-12) was

used to filter off wavelengths below 350nm from the broadband UV-light source. The

result was straight side walls of the valve channels, as shown in Figure 4-3. It is

also important to note that the post-exposure bake is rather sensitive to time. Over

baking could result in under-developed features. The final SU8 mold for valve layer

is shown in Figure 4-4.

Figure4-3: Cross-section of 100tm wide valve channels in PDMS, showing straight

side walls.

The mold for the fluidic layer is fabricated by patterning AZ-4620 photoresist (AZ

Electronic Materials). The photoresist has a glass transition temperature, that allows

the reflowing of the resist after development. This results in the desired semicircular

cross-sectional profile in the fluidic layer required for complete sealing of the valves.

The process steps are listed below:
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Figure4-4: A die on an SU8 photoresist pattern for a valve layer mold.

1. Rinse wafer with acetone, isopropanol, and water

2. Dehydrate the wafer - Bake in oven for 10min at 1200C

3. Spin coat hexamethyldisilazane (HMDS) - Dispense while spinning above

1000rpm and continue spinning until evenly coated (Rainbow colors appear

on the wafer and fade away)

4. Spin coat AZ-4620 photoresist- Dispense Az-4620, ramp to 1500rpm, and spin

for 50s (P6204 Portable Precision Spin Coater, Speedline Technologies)

5. Pre-bake - Bake in oven for 60min at 90'C

6. Exposure - 20s at 50% intensity (Intelli-ray 400, Uvitron International Inc)

7. Develop - develop in AZ-440MIF developer for about 2 - 3min, until devel-

opment is complete

8. Rinse with water and dry with air gun

9. Reflow - Bake wafer upsidedown in oven for 60min at 150*C
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The rounded profile of the photoresist pattern resulting from the reflow process

step is shown in Figure 4-5. Using this process, the desired semicircular cross-section

for the molded PDMS channels was achieved and it can be observed in Figure 4-6.

The final AZ-4620 mold for the fluidic layer is shown in Figure 4-7.

Figure4-5: The rounded edges of the reflowed photoresist pattern can be observed
from its dark field image.

Figure4-6: Cross-section of fluidic channels in PDMS, showing the desired semicir-
cular profile.

The height of the microfluidic channels is determined by the thickness of the pho-

toresist, which in turn is determined mainly by the parameters of the spin coating
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Figure4-7: A die on an AZ-4620 photoresist pattern for a fluidic layer mold.

step. Therefore a series of characterization wafers were processed, to relate the mea-

sured thicknesses to the spin coating parameters. An average of three measurements

at different parts of the wafer were used to determine the thickness of the patterns.

The thicknesses of the AZ-4620 patterns were measured on a Detak 3 profilometer

(Veeco Instruments Inc.) The results are summarized in Table 4.1.

Spin Speed [rpm] Post-Development [pam] Post-Reflow [,um]
1500 10.3 12.9
2000 9.3 10.3
2500 8.1 9.9
3000 7.3 9.8

Table 4.1: Average thicknesses for AZ-4620 photoresist characterization

The SU8 patterns were more than 501am thick which exceeded the range of the

profilometer. However since the thicknesses did not require high tolerances, they could

be measured on the Nikon trinocular microscope, using its scaled focusing knob. By

focusing on the top and bottom edges of the pattern, at 100x magnification, the step

height could be read off the scale. The estimated ±2pam accuracy was sufficient for

the control layer, and the results are summarized in Table 4.2 below.

After the molds have been made, the final step is to silanize the wafer to allow the
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Spin Speed [rpm] Average Thickness [pm]
1000 94
1500 70

Table 4.2: Average thicknesses for SU8-50 photoresist characterization

release of PDMS from the mold after curing. The wafers are placed in a aluminum

boat, with two drops of (tridecafluoro-1,1,2,2-tetrahydrooctyl)trichlorosilane on the

boat, facing the backside of the wafers. The boat is loaded into a desiccator, which is

then kept under vacuum for two hours. Under the low pressure, the silane vaporizes

and reacts with the mold to form a monolayer of silane, terminating the free radicals.

This prevents the PDMS from reacting with the wafer as it cures, thereby allowing

the cured PDMS to be released.

4.1.3 Materials and preparation

There are two types of PDMS currently used for microfluidic devices - Sylgard 187

from Dow Corning, and RTV 615 from GE Silicones. Both elastomers come in two

part mixtures, consisting of the base and a curing agent. The recommended standard

mixture is one part curing agent to ten parts base (1:10). After thorough mixing,

the elastomer is the cured at elevated temperatures. The molds have to be kept level

during curing in order to produce dies that have parallel surfaces. This is import for

successful for alignment and bonding steps later in the process.

The final stiffness of the cured PDMS has been observed to be inversely related to

the viscosity of the mixture. This is because the curing agent is less viscous than the

base. However when comparing the RTV and Sylgard silicones this relationship still

holds true. RTV elastomer is more viscous than Sylgard elastomer during mixing,

and upon curing the RTV elastomer is observed to be less stiff than the Sylgard

elastomer. Therefore it is desirable to use the RTV elastomer for the double layered

devices to reduce the actuation pressure required. However, the polyethylene tubing

(Intramedic, Becton Dickinson & Co) used to interface with the device spontaneously

pop out of the ports of the RTV devices. Therefore a combination of materials is

used to fabricated the double layered devices - Sylgard for the valve layer, and RTV
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for the fluidic layer.

The double layered devices are fabricated by bonding two separately molded lay-

ers. The PDMS for the valve layer is mixed with an excess of curing agent (1:7,
Sylgard 187). To obtain a 5mm thick valve layer, 10g of curing agent is mixed into

70g of the base. The PDMS for the fluidic layer is mixed with an excess of base (1:20,

RTV 615), 10g of curing agent and 20g of the base is sufficient for spinning on to the

mold wafer. The thoroughly mixed PDMS then has to be degassed in vacuum until

all the bubbles have been removed. The individual layers are then partially cured,

until they have just solidified and can be diced and cored. The two layers are then

processed, aligned, placed in contact with each other and allowed to completely cure.

The resulting bond of a successful process is extremely strong.

However, success of bonding relies heavily on how much the two layers have been

cured prior to being placed in contact with each other. Ideally the layers should be

minimally cured - just sufficient for handling, dicing, and coring. Also, cure times

vary depending on each batch of elastomer. Therefore it is important to track the

curing progress of the elastomer. The curing times have been observed to be about

9min for the valve layer using Sylgard elastomer, and about 10min for the fluidic layer

using RTV elastomer. Once the PDMS returns to room temperature, the curing rate

reduces significantly and there is ample time to process the PDMS without detriment

to the bond quality.

The thicknesses of spin-on PDMS for the fluidic layer was characterized to de-

termine the thickness of the thin membrane between the valve and fluidic channels.

This thickness determines the actuation pressure required to seal the valves. If the

membrane is too thick, high actuation pressures would be required. Conversely, if

the membrane is too thin, the valves would be slow to reopen, or even stay adhered

to the channel floor, after the release of pressure.

A series of experiments was carried out, whereby PDMS (1:20 mixture) was spun

onto separate wafers over a range of spin speeds. After curing, a part of the thin

membrane was torn off, and the step height was measured on a Detak 3 profilometer
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(Veeco Instruments Inc). Three measurements were taken for each sample and the

average of the measurements determined the required parameters for the spin coating

step. The results of the characterization experiments are summarized in Table 4.3.

Spin Speed [rpm] Average Thickness [pm]
2000 35
2500 26
3000 21
3500 19
4000 16

Table 4.3: Average thicknesses for characterization of spin-on PDMS

4.1.4 Alignment and bonding

The alignment of the two PDMS layers can be based on cross hairs designed into the

mold, or based on the alignment of critical features on each die. For this device, the

critical area of the sensor valves was chosen as the alignment feature.

An alignment stage was assembled for the purposed of aligning the two PDMS

layers as well as for alignment between the completed PDMS dies and the silicon

device. The stage included custom designed and machined parts, such as the vacuum

chuck turntable, and various acrylic plates for mounting the PDMS dies, and is shown

in Figure 4-8.

As mentioned in Section 4.1.3, successful bonding is dependant on the curing

times. However it is also highly dependant on the cleanliness of the surfaces. More-

over, large particles can land on the dies and cause clogging or leakage.

Therefore, the PDMS should be thoroughly cleaned, after dicing and coring the

valve layer, before bonding to the fluidic layer. This involves washing with detergents,

such as Micro-90 (International Products Corp.), followed by rinsing with water and

ethanol. The final step is to blow dry with an air gun.

The actual alignment step is then carried out in the fume hood, as shown in Fig-

ure 4-9. The filtered airflow through the hood helps to reduce particulate contamina-

tion. However, care must still be taken to keep samples covered, and to manipulate

the samples with the critical surface facing down.
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Figure4-8: Alignment stage.

Figure 4-9: Alignment for PDMS bonding or packaging is carried out in the fume
hood to reduce particulate contamination.
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The result of successful alignment and bonding is shown in Figure 4-10. The cross

section of the double layered stack is shown in Figure 4-11.

Figure4-10: Successful alignment for both PDMS-PDMS and PDMS-device align-

ment steps.

Figure4-11: Cross section of a double-layer PDMS stack.

4.1.5 Dicing and coring

There are many ports that are closely packed on the microfluidics die. Although

there is ample spacing between ports to prevent leakage, it was important to ensure
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that the ports were vertical. Dicing and coring was initially carried out completely

manually with razor blades and sharped needles. Therefore, it was difficult to achieve

the desired standards.

The "Micro-Guillotine" was designed, machined and assembled for this purpose,

and is shown in Figure 4-12. It consists of a fixture for securing a razor blade as well

as a needle, onto a linear translation stage. This allowed ports to be cored vertically.

It also produced vertically trimmed sidewalls that were optically clear, allowing for

easy lateral observation of the device. This is useful for observing the inserting of

tubing as well as introducing fluid into the channels, as shown in Figure 4-13.

Figure4-12: "Micro-Guillotine" for dicing and coring microfluidic dies.

The ports were cored using needles ranging from 18 - 20ga, depending on the

external diameter of tubing used. Initially, a luer stub adaptor (Becton Dickinson &

Co), which is basically a needle with a flat tip, was used to core the ports. However,

this produced rough edges and side walls, leading to frequent tearing of the ports

when inserting tubes. These tears often caused leakage of fluids.

To improve the quality of coring, the needles were hand sanded to sharpen the

edges, as shown in Figure 4-14. The ports cored with these sharpened needles had

very smooth edges and sidewalls, as shown in Figure 4-15. This improved the quality
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Figure4-13: Vertical port and
with the "Micro-Guillotine".

clear side walls of a device that was diced and cored

of the seal between the port and tubing, hence improving the yield of the microfluidic

devices fabrication process.

Figure4-14: The coring needle is significantly sharper after hand sanding.
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Figure 4-15: The ports cored with a sharpened needle (left) have a smooth round
edge compared to the jagged edges of the ports cored with a blunt needle (right).
The respective core samples are shown on the bottom.
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4.2 Silicon Device Fabrication

The silicon processing was carried out mainly in the MIT Microsystems Technology

Laboratories (MTL). Some steps were completed in the Manalis Lab, and the implant

steps were out performed by Innovion Corp.

The devices were fabricated on < 110 >, n-type, 6" wafers. The substrate resis-

tivity was measured at 50 - 75Qcm, and the wafer thicknesses are 600 - 650pm.

A micrograph of the microfabricated integrated device, with heaters and sensors

is shown in Figure 4-16 below.

Figure4-16: Micrograph of a Cobra-Lite silicon device, showing the integrated field

effect sensors and suspended heaters.

4.2.1 Initial process

The first batch of silicon devices were fabricated as part of the Fall 2003, Micro-

fabrication Project Laboratory class (6.151) [5], and the process flow is shown in

Appendix A. After the initial batch of wafers were packaged and tested, the results

revealed several improvements to the process that were required to improve device

quality and yield.
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Firstly, the yield of functional heaters was also rather low. All the resistive heaters

that worked had significantly higher resistances than the theoretical values. These

resistances were determined by measuring the I-V curve of the heaters. Many of these

curves were erratic and barely reproducible. Often, the resistances of these devices

could not even be measured on a multimeter. This applied even to optically intact

heaters, that had not been over-etched by potassium hydroxide.

Secondly, only one device, out of the many tested, had functional sensors. The

devices that failed had either signals with a largely attenuated range or had hardly

detectable signals that were close to the noise floor. This observation was consistent

with contact issues. The electrical contacts from the instruments all the way to the

metal traces were tested and were determined to be functional and robust. Also the

contact for the substrate bias was demonstrated to be working. This elimination

process isolates the problem with the sensors themselves.

After considering both issues, both problems were attributed to over-etching dur-

ing the nitride etch step for exposing up the sensors and contact holes (Step 28,

Appendix A). During fabrication, the nitride etch was timed longer, in order to en-

sure good electrical contact between the metal lines and the doped silicon. However,

given the chemistry used, the etch selectivity for doped silicon is similar to that of

nitride. Since the thickness of the nitride and the implant depth were both about

1ym, it was likely that over-etching had occurred.

In the case of the heaters, the contact area could be reduced by ten times due

from 40pm 2 to about 4pm 2 . This is also consistent with the observation of overly

high resistance and poor I-V curve characteristics. Also, the decomposition of PDMS

starting from the gold-silicon interface indicated that a large amount of heat was

generated at that interface, which is consistent with a large contact resistance.

For the sensors, this meant that the sensor itself had been etched away either

partially or completely. This is consistent with the small signals observed.

Both cases are illustrated in Figure 4-17.
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Figure4-17: A comparison of schematic cross-sections, between an ideal device (left)

and a device that was over-etched during the nitride etch step (right).

4.2.2 Process improvements

Several process changes were implemented to increase the fabrication yield, and im-

prove device performance.

In order to avoid over-etching into the device layer, the nitride etch step was

carried out in the Lam Autoetch 490b (Lam Research Corp). This machine was chosen

because it is capable of detecting the reaction endpoint. Also, all wafer handling is

carried out mechanically with out any vacuum system that could damage the thin

nitride membranes. Also the simple handling system is more robust and have a higher

capacity to accept mounted wafer stacks, if a handle wafer should be necessary. When

a wafer is loaded into the etch chamber, it is first placed on four raised pins, before

being lowered onto the chuck. These pins are situated close to the location of the thin

nitride membranes. As such, a handle wafer was required to prevent the possibility

of breaking the membranes.

Mounting the device wafer on a handle was also advantageous in eliminating the

need for the custom mechanical chuck, which used in the initial process. This allowed

the wafer to be coated on the spin coater using a teflon vacuum chuck, resulting in

a more even coat of photoresist. This even coat of resist helped to eliminate earlier

problems faced during the subsequent exposure step.
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However, mounting the device wafer on a handle is an intricate process. Photore-

sist is used to glue the two wafers together. If too little resist is used, the wafer stack

could delaminate, especially during the spin coating process. Conversely, if too much

resist is used, the resist would spread and coat the whole wafer, making it extremely

difficult to completely bake out the solvents. These solvents would eventually vapor-

ize during etching, due to the heat generated, and the outgassing would dislodge the

device wafer. This would result in uneven etching, and possibly even catastrophic

damaged to the device. This delamination was often observed by large spikes in the

readout for the optical end point detection.

Previously, thin resist (OCG825) was used as the adhesion layer to ensure levelness

of wafer for accurate alignment and good mask contact during exposure. However,

the thin resist is very fluid and will spread easily. It is therefore highly recommended

to try using thick photoresist (AZ-4620) as the glue for wafer mounting, for the etch

step. The viscosity of the thick resist would help avoid the spreading of resist, and

therefore allow the solvents to be baked out before the etch process. It would also be

worthwhile to try a test pattern on dummy wafers to ensure that there are still vents

to aid complete evaporation of solvents.

The process for mounting the device wafer on a handle is listed as follows:

1. Apply photoresist - Sparingly spot photoresist evenly across the back side of

the device wafer using a swab

2. Affix handle - Align the flats of the handle and device wafers and gently press

the wafers together

3. Soft bake - Bake for 15min at 90'C

4. Patterning - Proceed to spin coating, exposing, and developing

There a couple of important caveats to note. After the 15min soft bake, the

adhesion is strong enough for the wafer stack to be patterned conveniently. However,

there will probably still be solvents in the adhesion layer that would outgas if the

53



stack is put through any processes with elevated temperatures. This could cause the

wafers to separate.

Also, if the wafer stack is put through a complete lithography process, developer

will seep between the wafers during the development step. This would significantly

compromise the adhesion. Therefore, the wafers should be carefully separated using

a razor blade, and the mounting process can then be repeated to renew the adhesion.

The Lam Autoetch 490b is a RF dry etcher using sulfur hexafluoride (SF) and

oxygen (02) chemistry to etch the nitride windows. The general recipe is listed below

and details can be found on the MTL website.

o SF- 190sccm

* 02 - 19sccm

o Pressure - 300mT

o RF power - 130W

o Sessions - 3 x 4min

o Helium cooling

9 Optical endpoint detection

The endpoint detection uses an optical readout to monitor the gas composition

in the chamber. For detecting end point of etching nitride, the readout drops when

oxide is exposed and rises when silicon is exposed. The change in signal is only about

10 - 20%

The SF etch chemistry has only a slightly higher etch selectivity for nitride as

compared to oxide. Therefore, there is only a window of about 30s before the 300A of

oxide is etched away, and the underlying silicon starts getting attacked. Therefore, it

is important to monitor the optical read out and stop the etching in case the endpoint

is not successfully detected.
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There is also an alternative method to determine if the nitride has been completely

removed. By putting the wafer stack into a Buffered Oxide Etch (BOE), the wetability

of the etch windows would indicate if there was any nitride remaining. The only

drawback is that this method is time consuming, and it would take additional time

to reload the wafer if the etch has not been completed.

In order to characterize the etch rates for the wafer stack, the backside windows

on the device wafer were etched with the same process. The etch rate was determined

to be about 900Aminl and the reaction endpoint was successfully detected.

However, during the etching of the sensors and contact holes on the actual wafer,

endpoint not detected and etch was terminated at 13min. This could be attributed to

the small total area of nitride being etched, therefore reducing the amount of signal for

detection. Also, when the chamber was opened to unload the processed wafer, wafer

stack had delaminated and was caught in the doorway of the chamber. Fortunately

the machine was stopped in time, and the wafer was successfully salvaged.

At this point, the wafer was put through BOE, and it was observed that all the

nitride had been removed from the windows. Also, the BOE stripped of the thermal

oxide, allowing a fresh native oxide to grow in its place. This thin native oxide helps to

improve the sensitivity of the senors. Optical inspection of the etched windows reveal

that some of the windows had developed a rough surface, indicating that over-etching

could have occurred. The difference between a smooth and rough sensor surface is

shown in Figure 4-18.

Despite the difficulties, the move to use Lam Autoetch 490b for the nitride etch

step was a success. The yield and quality of both heaters and sensors improved

dramatically. Almost all the sensors and heaters tested were functional. Detailed

results of the characterization are discussed in Section 5.2.1 and Section 5.3. The

main cause for the remaining dysfunctional devices, was due to defects during the

KOH etch, resulting in shorting of metal traces to the biased substrate.

The final improvement to the fabrication process was the refinement of the KOH

etch process. After a bulk of the nitride membranes have been released, there was still
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Figure4-18: Surface roughness observable (right sensor) after nitride etch, indicating
possible over-etching.

much residue remaining. This residual silicon changes the electrical characteristics of

the heaters and consequently, the heating profile. This was the result of using single

side polished wafers.

The ideal KOH etch process has a very stable and even etch rate. However, in

order to cleanly release the implanted heaters, the starting surface has to be flat

and smooth. Since single side polished wafers were used for the process, the surface

roughness on the backside of the wafers propagated down to the nitride membrane

during the KOH etch. This resulted in an uneven surface that required additional

attention to complete the etch. This could potentially be avoided by using double side

polished wafers. The use of double side polished wafers would also help to improve

the uniformity of the heaters, thereby increasing the quality of the devices.

To ensure the complete release of the heaters, a final KOH etch was carried out

at room temperature after the wafer had been diced. The etch time for one of the

dies was about 3.5hrs, but the etch rate is slow and the endpoint can be determined

optically. However, it is important not to let the solution dry as that would increase

the concentration of the solution, thus increasing the etch rate. Also, it is important

to ensure that the KOH solution does not overflow and start etching the sensors on

the front side of the wafer.
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The process steps for this final KOH etch is listed below:

1. Prepare solution - 22.5% KOH solution

2. Load die face down on a glass petri dish

3. Dispense solution - 10 - 20pum

4. Observe to determine endpoint

5. Rinse die with water and dry with air gun

The additional KOH step was successfully carried out, as shown in Figure 4-19.

Significant improvement in resistance uniformity across heaters on the same device

was obtained, as a result. Details on the heater characterization are discussed in

Section 5.2.1.

4.3 Integration and Packaging

Integration of the microfluidics to the silicon device involves alignment and bonding

of the two parts. Plasma treatment can be used to permanently bond the PDMS

to nitride or oxide. First the plasma treatment creates free radicals on both the

PDMS and nitride surface. After surface activation, the two parts are aligned on the

alignment stage (Figure 4-8) and brought into contact with each other. A final bake

step helps the covalent bonds to form. Details of the procedure are listed below:

1. Clean silicon device - rinse silicon device with solvents and water

2. Clean PDMS - rinse with Micro-90 solution (International Products Corp.)

and water, and dry with an airgun

3. Plasma activation - load samples facing up in the plasma chamber

4. Start plasma treatment - Plasmod Plasma Etcher, GCM-200 Gas Control

Module (March Instruments Inc.)
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Figure 4-19: The residual silicon initially around the heater (top), is gradually
removed by KOH at room temperature, until the heater is completely released (bot-
tom.)
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5. Power - 15W

6. Pressure -- Torr

7. Time - 30 - 60s

8. Check the plasma stays on throughout the activation

9. Remove samples for alignment and bonding

10. Bake - 2hrs at 90'C

The bond strength and quality depends greatly on surface cleanliness. Also, it is

important to completely cure the PDMS, because residual unpolymerized oligomers

can defuse to the surface before bonding and affect the bonding.

One improvement to the packaging process was to extract the unpolymerized

oligomers from the PDMS. This is because the oligomers were a source of contamina-

tion, which affected the surface chemistry that was being carried out on the sensors.

However, the cleaning method has also proven to improve the quality of the bonds.

The extraction process is listed below:

1. Hexane - soak in hexane, while stirring, for one day, exchange hexane at least

once

2. Ethanol - exchange the hexane with ethanol and soak while stirring, for one

day, exchange the ethanol at least once more

3. Water - exchange the ethanol with water, and soak while stirring, for one day,

exchange the water at least once more

4. Dry PDMS - dry in vacuum overnight

An alternative packaging process is to use temporary adhesion. Clamps, springs,

and an acrylic plate are used to secure the PDMS onto the silicon device, as shown

in Figure 4-20. The springs help to regulate the clamping force and allow for even

application of pressure across the whole chip.
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Figure 4-20: Clamping scheme for temporarily securing PDMS on to the silicon

device.

In order to test the integrity of the seal, a fluorescent dye was flowed through the

system at a high flow rate of 100Lmin-1 for 60min. There was no leakage observed

as shown in Figure 4-21, proving that the clamping method is viable.

This packaging scheme is more flexible as it allows for swapping of fluidics for

different flow profiles. It also allows for the replacement of the PDMS in the case of

malfunction. The scheme is mainly used for flow through systems during sensor tests.

The assembled device is next mounted on a printed circuit board (PCB). The

PCB is custom designed and sent out to Advanced Circuits Inc. to be manufactured.

The traces on the PCB are plated with gold to allow for wire-bonding. These traces

are aligned to the bond pads on the device to facilitating wire-bonding.

Finally the device is wire-bonded using a 747677E Utrasonic Bonder (West Bond

Inc.) to complete the electrical connections. A final packaged device is shown in

Figure 4-22

With the batch process used to fabricate most of the components, it is actually

possible to mass produce this device. The fabrication of the microfluidic components

is currently done manually in a laboratory setting. However this tedious process

could conceivably be automated to increase throughput. The bottle neck of mass
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Figure4-21: Clamping is robust since no leakage is observed while flowing fluorescent
dye through the fluidic channels.

Figure4-22: Complete packaged device.
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producing this device would probably be the critical step of aligning and bonding the

microfluidics to the silicon die. However, with current technology in digital imaging

and image processing (as shown in the electronics fabrication), it could be possible to

automate this step. The main drawback remains to be high initial costs required to

setup a production facility, that could carry out such a complicated fabrication and

packaging process.

62



Chapter 5

Results

5.1 Microfluidics

The microfluidic devices were successfully characterized. Both valve and pump char-

acterization allowed the consistent operation of the fluidic devices. Tests were also

carried out to explore working with PCR samples and optical detection of the samples

on-chip.

5.1.1 Experimental setup

The microfluidic devices are operated by pressurization and de-pressurization of the

control channels, as discussed in Section 3.1. The control lines are exposed to a

pressurized working fluid when turned on and released to atmospheric pressure when

turned off. The experimental setup to control the system, is shown in Figure 5-1.

Pressurized helium is used to actuated the column of water in the connecting tubes.

Helium has a lower solubility in water than most gasses, as discussed in Section 3.1.2.

Also, it diffuses faster in wafer than other gasses. Together, this allows the helium

in the water column to defuse out quickly into the vacuum lines before reaching the

fluidic lines. Outgassing into the fluidic lines can therefore be avoided.

The main tank of helium is regulated at 80psi, which is then stepped down by

another regulator just before the valves. During the operation of the pumps, the
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Figure5-1: Experimental setup for microfluidics.
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pressure of the line fluctuates constantly. This fluctuation can affect the operation of

the valves, and may lead to leakage. Therefore, the pressurized helium is split into

two lines, just before the valves, and separately regulated. This allows for separation

of the gas flow supplying the valve lines and the pump lines, and helps to reduce the

variation in pressure for the valves lines.

A Labview program was written to control the whole fluidic system. It allows for

switching of each valve, as well as to control the operation of the pumps. The console

is shown in Figure 5-2.

Figure5-2: Microfluidics control console.

The valves used, LHDA1223111H (The Lee Co.), could take a maximum pressure

of 30psi. However, they would heat up significantly when turned on for long periods

of time. Therefore, since the control lines are usually turned off, the default position

was set at the high pressure.

There is a need to fill the control lines with water to prevent outgassing into the

fluidic lines, as mentioned in Section 3.1.2. This is done by filling the tubes that

connect to the ports of the microfluidic device. Vacuum is applied to the vacuum

lines to accelerate the process. The procedure is listed below.

1. Prepare filling fluid - degas DI water in vacuum

2. Fill an interconnecting tube using a syringe

3. Insert the filled tube into microfluidic port and connect with tubbing upstream
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4. Repeat steps 2 and 3 until all the lines have been connected

5. Pressurize lines and apply

been replaced with water.

the vacuum, until the air in the control lines have

6. Check for valve and pump functionality

5.1.2 Fluidic valve characterization

The performance on the fluidic valves was successfully characterized. Experiments

were carried out to determine the actuation pressure required to completely seal the

valves. The quality of the seal can be determined visually through the microscope,

as shown in Figure 5-3

Figure 5-3: Fluidic valve characterization: Depressurized, open valves (left), and
pressurized, completely closed valves (right).

The first set of tests were carried out on a static system, with no pressure through

the fluidic lines. The actuation pressure was increased and the valves were observed

under a stereo microscope. The sealing pressure was determined to be 4psi(30kpa).

The second set of tests were carried out with a 5psi(35kPa) line pressure. Partial

closing of the valves were observed, starting at 5psi(35kPa) actuation pressure. The

final sealing pressure was determined to be 10psi(69kPa)

Therefore, to ensure that the valves were properly sealed, actuation pressures of

15psi were used to operate the microfluidic valves and pumps. The higher pressure
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ensured complete valving despite pressure spikes in the fluidic channels. In later ex-

periments, the proper sealing also helped to reduced evaporation and prevent refluxing

of the reagents what were being heated in the fluidic channels.

5.1.3 Fluidic pump characterization

The pumping of fluids in the channels have been successfully characterized. Pump-

ing is a consequence of actuating three adjacent valves in a certain sequence. This

sequence determines the actual pumping characteristics - duty cycle, smoothness of

flow, pump strength (against line pressure), and pump rate. Another factor is also the

thickness of the valve membrane, which determines the optimum actuation pressure

required for successful pumping.

The peristaltic pumps can be actuated in a few different sequences. One or a

combination of the sequences can be used to pump fluids in the channels. The duty

cycle of a sequence, is a fraction of the actual steps which are pushing fluid over the

total number of steps. If there is a valve exposed to the line on both sides opening,

the space is assumed to be filled evenly from both sides. This results in a -0.5 flow

cycle. Conversely, closing a valve exposed on both sides will result in a +0, 5 flow

cycle.

All the experiments were carried out on pumps from the initial design, where all

the valves had and identical 100pm width. A typical actuation pressure of 15psi was

used. The characteristics of each sequence and its utility is described in detail below.

An open valve is denoted by Q, and a closed one is denoted by x.

The "Two Down" sequence (Table 5.1), seals the chamber well, and therefore has

good resistance to line pressure. However, it only has a duty cycle of 1/3, making the

flow very choppy.

1. 0 x x
2. x 0 x
3. x x 0

Table 5.1: Pump sequence: "Two Down"

The "Drumming Fingers" sequence (Table 5.2), creates the smoothest flow, having
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a high duty cycle of 2/5. However, it has low resistance to line pressure because the

channel is completely open in one of the steps. Therefore it is ideal for circulating

fluid in the loop during the reaction, but not for pumping fluids across the device.

1. 0 x x
2. QQ x

3. Q 0QQ
4. x Q0Q
5. x x Q

Table 5.2: Pump sequence: "Drumming Fingers"

The "Moving Chamber of II" sequence (Table 5.3), is a nice compromise, combin-

ing resistance to line pressure with smoother flow. The duty cycle is 1.5/4. Therefore,

this sequence was chosen for the pumping of fluids across the device.

1. 0 x x
2. Q x
3. x Q Q
4. x x 0

Table 5.3: Pump sequence: "Moving Chamber of II"

Initial tests showed that the peristaltic pumps do not hold up well to line pressure.

If there was an imbalance in line pressure, it would significantly affect the flow rate.

Therefore the pump rate experiments are all carried out in the PCR loop closed off

by the valves. Bubbles were used to visualize the flow of the fluid.

The pump rate was characterized for the "Moving Chamber of II" sequence, using

devices from the initial fluidic design (Section 3.1.1. A bubble was pumped around

the loop and the time taken for the bubble to travel a complete loop was timed with

a stop watch. The results are summarized in Table 5.4. The maximum pump rate

obtained, for a sample loop of llnL estimated volume, was 1.8nL- 1s.

The microfluidics from the final design layout (Section 3.1.3) were tested success-

fully. The increased width of the valves helped improve the sealing, and the function-

ality of the pumps was validated. However more test would need to be carried out to

fully characterize the sealing pressures and pump flow rates.
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Pump Frequency [Hz] Loop Time [s]
100 6
50 12
20 26
10 49

Table 5.4: Pump rate characterization for "Moving Chamber of II" sequence

5.1.4 Fluorescent detection of PCR products in microfluidic

channels

In order enable the independent characterization of successful PCR in the channels,

the fluorescent detection of PCR products in the fluidic channels was investigated.

The PCR reagents were prepared in the following concentrations, and then divided

into 100[tm aliquots. SYBR Green I (Invitrogen Corp) was added to the reagents at

10000x as prescribed.

* DNA template - 4nM

* dNTPs - 0.2mM

* Primer 1 - 6.8pM

* Primer 2 - 6.8paM

* Taq polymerase - 5u/100ftL

* PCR buffer -- x

* Water

PCR was then carried out on a PTC-100 Peltier Thermal Cycler (MJ Research).

The protocol took into consideration that the fluid would see room temperature be-

tween cycles, as it moves over the regions that are over bulk silicon. The protocol

used was 40 cycles of 40s at 94'C, 52.5 0C, 20s at 72'C, and 40s at 250C

The SMZ-1000 stereo microscope (Nikon), a P-FLA Fluorescence Attachment

(Nikon) with a 31001 FITC filter (Chroma Technology Corp), an X-Cite 120 Flu-

orescence Illumination System (Exfo), and a MicroMAX 1300YHS CCD Camera
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(Princeton Instruments, Roper Scientific Inc.) was used to detect fluorescence. The

parameters are listed below:

" Camera exposure - 30s

" Microscope zoom - 2 x

" Light source intensity - Maximum (100%)

The products were verified using gel electrophoresis. The results of the gel con-

firmed that PCR was carried out successfully.

The Matlab script, acqback.m (Section C.1.1), was used to acquire the background

noise floor of the CCD. imf ocus.m (Section C.1.2) was then used to monitor and save

images of the intensity profile. The intensities are measured on a 16-bit linear scale.

The baseline level was found to be 35 with a standard deviation of about 5, with

water in the channels.

Firstly, the pre-PCR reagents were first pumped into a fluidic channel dummy

(fluidic layer on nitride dummy) and allow to sit, and imaged. The average intensity

was found to be 470.44 with a standard deviation of 10.1. The resultant image is

show in Figure 5-4.

140

Figure 5-4: Fluorescent intensity profile of pre-PCR reagents.

Secondly, the loop is flushed with water and imaged. The intensity profile returned

70



to the initial background. This shows that there is undetectable residual DNA or

reagents left in the fluidic channels. The image is shown in Figure 5-5.

140

120
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20

Figure5-5: Fluorescent intensity profile after flushing out reagents.

Thirdly, the post-PCR product was pumped into the loop and imaging was carried

out. The average intensity measured was 93.43, and the standard deviation was 17.06.

This was a 65% increase in intensity compared to the pre-PCR reagents. The image

is shown in Figure 5-6.

100

Figure5-6: Fluorescent intensity profile of post-PCR products.

Finally, the fluidic channel loop is flushed yet again, to show that the intensity

profile returned to the baseline again. The image is shown in Figure 5-7.
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Figure 5-7: Fluorescent intensity profile after final rinse.

In conclusion, the PCR product was successfully detected in the fluidic channels

using the fluorescent dye SYBR Green I. Therefore, this method can be applied to

validating successful on-chip PCR reactions.

5.2 Implanted Heaters

The implanted heaters were successfully characterized. The results obtained from

heaters fabricated using the improved process, as discussed in Section 4.2.2, showed

significantly improved characteristics, that were more consistent and closer to the

theoretical predictions.

5.2.1 Electrical characterization

The electrical characterization consisted of measuring the resistance of the heaters

and determining the actual I-V curves. An amplifier circuit was build to amplify

the signal output from a NI-DAQ PCI-MIO-16XE-50 card (National Instruments).

This was used to step through voltages while a 428 Current Amplifier (Keithley

Instruments Inc.) was used to measure the current passing through the heater. This

shows the linearity of the I-V curves and the resistance can be obtained from the slope

of the curve. Figure 5-8 shows the curves of all the heaters on one of the Cobra-Lite
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dies with 20pm wide heaters.
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Figure 5-8: I-V curves of six resistors on a single device

fabrication process.

after using the improved

Characterization of devices from the initial fabrication run revealed heaters with

extremely high resistances. Often it was not possible to measure the resistances on

a multimeter. However, devices fabricated from the improved fabrication process

(Section 4.2.2) showed much better attributes. The resistance of the heaters were

actually measurable using a multimeter, and Table 5.5 shows the comparison between

the derived resistance from the I-V curves and the measurements obtained using a

multimeter.

The electrical characterization of the heaters has been completed successfully. The

heaters from the new process were much more consistent, with resistances that varied

by only t10% within the same device.
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Resistor # Ohm Meter [Q] Curve fit from I-V Curves [Q]
1. 315.8 321.9
2. 312.7 319.2
3. 387.5 396.8
4. 308.1 314.9
5. 328.6 336.0
6. 362.5 371.8

Table 5.5: Comparison of resistance measurements

5.2.2 Temperature measurements using thermochromic crys-

tals

Thermochromic liquid crystals (TLC) were initially used to characterize the tem-

perature profile in the channels. The TLC changes temperature with temperature,

depending in the bandwidth of the type of crystals. The NSL-33 Liquid Crystal Slur-

ries (Liquid Crystal Resources, L.L.C.) used had bandwidths of 5YC. One starts to

change color at 38 - 43'C and the other at 90 - 950C. Both samples were tested in

the microfluidic channels.

After flow the crystals through the fluidic channels, initial temperature profiles

were obtained and the heating of fluids could be observed as voltage supplied to the

heaters was increased. The images captured are shown in Figure 5-9.

However, the size of the crystals vary between 5- 15pm in diameter. They readily

clog up the device and cannot be removed. Therefore, the device cannot be used after

the characterization.

Moreover, the spatial resolution of the crystals is rather bad. Since coverage of

the surface is inversely related to the amount of water in the channels, the difference

in physical properties might reduce the accuracy of the measurements

Finally, the measurement is based on color, which is difficult to quantify. There-

fore, a better method was needed to carry out the temperature characterization.
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Figure 5-9: The color change of thermochromic dyes as temperature increases in
the fluidic channels is shown. These crystals are colorless at below 90*C (top) and as
temperature increases, they turn red, then green, and finally blue at 900C (bottom).
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5.2.3 Temperature measurements using a fluorescent dye

The use of a temperature sensitive fluorescent dye to determine the spatial tempera-

ture profile in the microfluidic channels has many advantages. This method has been

demonstrated both in the macro by Finegan [7] and the micro scale environment by

Ross [15].

This method allows the temperature of fluid in the channels to be measured accu-

rately because the fluorescent dye is dissolved in a water based buffer. Therefore the

thermal characteristics of the system will be similar to that for the actual reactions.

Also the dye can be easily flushed out of the channels without any clogging. Finally,

the fluorescence of the dye continuous and therefore spatial resolution is limited by

the optics and camera resolution.

The dye used, D-1824, Dextran-rhodamine B Conjugate, 10000MW (Molecular

Probes Inc.), has a good linear response in the temperature range of interest. It has

an absorbtion peak at 570nm and an emission peak at 590nm.

However, the fluidic channels have a semicircular cross-section (Figure 4-6). There-

fore the distribution of the dye across the channel is not constant. Imaging from ver-

tically above, there is more dye in the center of the channel than at the sides. It can

also be observed that there is significant variation in the height of the channels that

would affect the fluorescence intensity readout. Therefore a ratiometric approach is

needed, in order to eliminate the spatial distribution of dye concentration. An initial

image is taken at room temperature and the subsequent images taken are divided

by the initial image to normalize the intensity. The normalized intensity is then

converted to temperature using an empirically determined calibration curve.

The SMZ-1000 stereo microscope (Nikon), a P-FLA Fluorescence Attachment

(Nikon) with a 41002 TRITC filter (Chroma Technology Corp), and an X-Cite 120

Fluorescence Illumination System (Exfo) was used to excite and capture the fluores-

cence of the dye. The filter set allowed an emission spectrum of 510 - 560nm and

absorbtion spectrum of 572.5 - 647.5nm.

Initial measurements were carried out with a Coolpix 4500 Digital Camera (Nikon).
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The data confirmed the temperature dependance of the Rhodamine-B dye, however

it was not sufficient for quantitative characterization of the heaters. The images ob-

tained had poor spatial resolution of about 10pm 2 . Also the low sensitivity of camera

required the use of long exposure times to actually detect any fluorescence. Finally,
the built-in image processing of the camera resulted in non-linearity of the image

intensities. Therefore, a scientific grade CCD camera was required for quantitative

measurements.

The MicroMAX 1300YHS CCD Camera (Princeton Instruments, Roper Scientific

Inc.) was used in place of the digital camera. The increased sensitivity, linearity to

intensity and resolution made it possible for the spatial mapping of the temperature

in the fluidic channels. The experimental parameters are listed below:

* Dye concentration - 0.5mM in 7.2pH PBS buffer

* Camera exposure - 500ms

* Camera temperature - -20'C

* Microscope zoom - 2 x

* Light source intensity - Maximum (100%)

The initial data was captured using the camera's proprietary software WinView32

ver 2.5.8.1 (Roper Scientific Inc.), which was then imported into Matlab (The Math-

Works) for data analysis. This was slow and cumbersome.

Using drivers provided by Roper Scientific Inc., Matlab scripts were written to

communicate with the camera controller, thus allowing images to be acquired directly

into Matlab. This allowed for the realtime update of images using the imfocus. m

script (Section C.1.2).

An image centering script, imcenter.m (Section C.1.3), was written to align the

image captured with the image of the initial intensity, when calculating the intensity

ratio. This helped to eliminate spatial variation through vibrations and small shifts

in the microscope of equipment. The program accounts for lateral shifts in the x
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and y directions but rotation about the z - axis is assumed to be negligible. Due

to the semicircular profile, the fluorescence intensity is greatest at the middle of the

channel. Therefore, by searching for the maximum intensity from the middle of the

image, across the sum of the rows and columns, the image can then be accurately

centered. Implementation of the script significantly reduced the noise and was critical

in achieving measurements with temperature accuracy of 1 - 5YC.

The temperature calibration curve was empirically determined. A dummy fluidic

device is clamped to a hotplate, and the fluorescent dye is flowed into the channels.

T-type thermocouples were clamped to the surface of the chip and a HH506R Digital

Thermometer (Omega Technologies Co.), was used to monitor the temperature.

First, 20 consecutive background images are taken with all shutters closed, using

the script acqback.m (Section C.1.1) The background is an image of the intrinsic

noise of the camera and the average image of the 20 will be subtracted from all

images taken.

Next the temperature of the hotplate is slowly ramped up, and images are taken

at every 50C interval. At each temperature, the system is allowed to equilibrate for a

5min. The shutter for the light source is then opened and 20 consecutive images are

taken. The temperature reading from the thermocouple is noted. This was carried

out from room temperature (23.50C) to 850C, in 50C steps and then back down to

room temperature again.

The data obtained was then processed with imratio .m (Section C.1.4). The script

loads a target directory and automatically does the background subtraction, and

ratiometric calculations to determine the actual intensity ratio and related statistics.

A threshold is imposed to filter out all pixels that are outside of the fluidic channels

and only pixels with intensities above the threshold are considered for the analysis.

The result is a good ratiometric temperature measurement with a 5YC accuracy, as

shown in Figure 5-10.

However, since the temperature measurement is based on an initial intensity pro-

file, the calibration curve is only valid for the particular initial temperature. There-
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Figure 5-10: Fluorescence thermal measurement for temperature mapping, using

rhodamine-B.
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fore, the calibration curve needs to be shifted to account for differences in room

temperatures. The derivation of the conversion factor is shown as follows:

IR IT (5.1)
ITo

Where IR" is the measured intensity ratio, IT is the intensity at temperature T,

and ITO is the initial intensity at room temperature.

IRT = f (T) = C2T 2 + C1T + Co (5.2)

Where the intensity ratio is a function of the temperature, f(T), as determined

empirically (Figure 5-10). However, when the room temperature is shifted to T0 2,

IR IT (5.3)
ITo2

The new conversion function, g(T) can be expressed as,

g(T) = = - T f(T) (5.4)
ITo2  'To 1To2 f(Io 2)

Therefore, the conversion factor is simply 1/f(T2 ). The temperature can then be

determined from the inverse function,

T = g-,(I RS) (5.5)

tempccurve .m (Section C.2.3) was written to automatically calculate the inverse

function and scale it for the actual room temperature.

Once the calibration curve had been determined, tmap.m (Section C.2.2) was

written to run the real-time temperature mapping, in Matlab. The experimental

setup is the same as that for the dye calibration experiments. First an average

background is taken using acqback.m (Section C.1.1). Next, the average reference

image at room temperature is taken using acqio.m (Section C.2.1). Once the initial

reference data has been obtained, the real-time temperature mapping can be carried

out. The image refreshes at 2Hz, and the program allows the image to be stored.
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Figure5-11: Images saved from real-time temperature mapping, showing the spatial

temperature profile in the microfluidic channels.
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The real-time spatial temperature mapping of the microfluidic channels was achieved.

However heating causes the water in the channels to evaporate and diffuse into the

PDMS. When this happens, the PDMS becomes cloudy, which reduces the actually

fluorescence detected. This would cause the temperature reported to be higher than

the actual temperature in the channels. Therefore, more optimization of the heaters

will have to be carried out for actual reactions.

During all the characterization, it became evident that the thermal isolation of

the suspended heaters was excellent, as seen in Figure 5-11. Even when the fluid is

heated to high temperatures, it falls off rapidly in the channels, and substrate still

remains at room temperature. As a result of the thermal isolation, the power required

in heating up the fluids is very low due to the small thermal mass. Only 30mW at

5V was required to boil water in the channels.

Another advantage of the thermal isolation was the fast response of the heaters as

a result of the small thermal mass. The temperature response of the fluid, to changes

in the voltage supplied to the heaters, was virtually instantaneous in both heating

up and cooling down. This observation is consistent with the results of the transient

response from the lumped thermal model in Section 2.2.

5.3 Electronic Field-Effect Sensors

The field-effect sensors were characterized using a flow through system. This al-

lows the injection of all types of reagents. The sensors successfully detected buffer

injections of different pH as well as the deposition of poly-electrolyte layers.

5.3.1 Experimental setup

The packaged device is plugged in to a PCB that breaks out the connections allowing

connections to the various equipment. The substrate of the device is biased at 2V,

using a E3615A DC Power Supply (Agilent Technologies). The signal electrode is

driven at 4kHz (10mV signal about OV) with a DS345 Synthesized Function Gen-

erator (Stanford Research Systems Inc.). And each sensor is connected to a 428
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Current Amplifier (Keithley Instruments Inc.). The current amplifier allows control

over the bias voltage on the backside of the senor, while it measures the current flow-

ing through the sensors. The output of the current amplifiers are sent to SR830 DSP

Lock-In Amplifiers (Stanford Research Systems Inc.) and the signals are read using

Labview.

The sensors are very sensitive to both light and other disturbances. As such,
silver-silver chloride ground electrodes are introduced into the flow path, before and

after the device to isolate it from ambient disturbances. Also, the device is shielded

from light during experiments.

A running buffer is constantly pumped over the sensors using a "Genie" syringe

pump (Kent Scientific). The flow rate can be accurately controlled, and typical

flow rates are 2 - 20pm. An AS-4000 Intelligent Auto Sampler (Hitachi) is then

programmed to inject a plug of reagent, with a designated volume (5 - 100pZL)into

the flow. Peek tubing (Upchurch Scientific) of various inner diameters are inserted

directly into the PDMS to deliver the fluids into the device. The fluidic channels used

are single layered PDMS with 100um x 100pm channels.

5.3.2 Buffer injections

The sensors were first characterized by injecting buffers of different pH. The difference

in charge in the buffer can be detected by the sensors and there is no surface binding

involved. This is the most basic test of for the sensors, and is used as an initial

evaluation of performance for new sensors.

The running buffer used is 10mM phosphate citrate buffer. This buffer allowed

the injection of buffers with the same ionic strength but different pH, thereby isolating

the solution effect that was being measured.

The pH sensitivity of the sensors were good, and a typical injection curve is shown

in Figure 5-12. The signal to noise ratio is good and the sensitivity of 38.8mV per

pH unit.

The detection range of the sensors was also tested by injecting consecutive buffer

injections of pH ranging from 2.2- 7.4pH at 0.4pH intervals. The sensors successfully
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Figure5-12: The sensor has a good sensitivity of 38.8mVpH- 1, to an injection of
+0.8pH, with good signal to noise ratio as shown in the insert.

84



detected the whole range of pH, as shown in Figure 5-13.
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Figure 5-13: Sensor response to multiple buffer

showing an even response over a large pH range.
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injections from 2.2pH to 7.4pH,

Over the course of using buffer injections to evaluate sensors, it was discovered that

the weak buffers age when left in glass vials for too long. This effect depends greatly on

the buffer capacity, and it is therefore prudent to mix fresh samples from concentrates.

Figure 5-14 clearly shows the distinction between buffer that was allowed to sit for a

day and buffer that was freshly prepared. Consecutive injections of the aged buffer,

followed by an injection of freshly prepared buffer, proves that the buffer does indeed

deteriorate. It also shows that the sensors are extremely sensitive and can detect

minute changes.

After more detailed tests, it was determined that plastic inserts were more inert

than the glass vials. When using glass vials for weak buffers, it is important to rinse

the vials with the buffer before filling them with the actual sample. However, plastic

inserts are more suitable for sensitive measurements.
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Figure 5-14: The sensor response to old buffer versus the freshly prepared buffer,
has shown that weak buffers will age in glass vials.
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The characterization of sensor with buffer injections has been completed and the

sensitivity of the sensors to detecting changes to solution has been successfully demon-

strated.

5.3.3 Poly-electrolyte injections

The detection of deposited charged layers on filed effect sensors has been demonstrated

with previous generation sensors by Cooper [6] and Fritz et al. [8]. The deposition of

the poly-electrolytes, such as poly-l-lysine (PLL) and poly-l-glutamatic acid (PLG),

on the sensor surface cause the surface charge to change and this can be detected

by the field effect sensor. Also, the charged layers could potentially be used as non-

specific binders for detection of molecules or as control surfaces.

The poly-electrolytes are prepared by dissolving them in the flow buffer at a

concentration of 0. lmgmL-. This eliminated any other effects that could be detected

by the sensors. The buffer flow rate was 5pLmin- 1 and the sample injection was 50[L,

allowing a surface exposure of 10min.

The sensors are first tested with buffer injections to determine functionality and

sensitivity of the sensors (Section 5.3.2). The clean silicon oxide surface is then

exposed to an injection of PLL. The highly positive PLL adsorbs to the surface, and

after the plug is flushed off, the remaining PLL on the surface modulates the depletion

region of the sensor, and it shows as a shift in the baseline, as shown in Figure 5-15

On injecting a second plug of PLL, there is no baseline shift after the plug has been

flushed away, since there is no additional binding of PLL to the surface.

The surface of the sensor are now saturated with the highly positively charged

PLL. Therefore on injecting the negatively charged PLG, it adsorbs to the surface

and this can be observed in Figure 5-16, as the base line shift. Once again, the

injection of the second plug shows no baseline shift.

The curves also allow the visualization of the two effects during the injection of

poly-electrolytes. The first effect of the charged molecules binding to the surface can

be seen in the baseline shift after flushing off the initial injection. However on the

second injection, there is still a signal observed during the injection. This is the effect
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Figure 5-15: Sensor response to injection of poly-lysine onto silicon oxide surface,
showing binding on the first injection and no binding on the second injection.
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Figure5-16: Sensor response to injection of poly-glutamate onto a poly-lysine coated
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first injection and only the bulk solution effect on the second injection.
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of the poly-electrolyte in the bulk solution. After flushing, the baseline remains the

same and there is no surface effect observed, as consistent to no binding of molecules

to the surface.

The detection of binding of charged molecules has been successfully demonstrated

on the sensors. Therefore, the sensors are ready for more complicated surface modi-

fications and specific detection of charged molecules.
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Chapter 6

Conclusion

This thesis has explored the integration of microfluidics, on-chip heaters, and field

effect sensors, for such applications. In particular, the device was designed for the

purpose of integrated amplification and label-free detection of DNA.

The good thermal isolation of the heaters has many benefits, such as reduced

power consumption. Also, this device allows for good control over the temperature

zones. The multiple heaters available on the different designs also allow for better

resolution control of the the temperature profiles. However this comes at a cost of

having thin membranes that are fragile, which significantly increases the complexity

of device fabrication. The calibration of the heaters can also be tedious depending

on the quality of heaters fabricated.

Finally, the most notable contribution of the device is the integration of field effect

sensors, that allow direct electrical readout of fluidic monitoring, with on-chip fluidic

manipulation and thermally isolated heaters. This device paves the way for future

integration of multiple microfluidic components, for lab-on-a-chip applications.

6.1 Thesis Contributions

The integration of microfluidics, heaters and sensors has been successfully accom-

plished. The inherited fabrication process was updated and the improvements imple-

mented have greatly increased both the yield of functional devices and the quality of
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the devices.

Characterization of microfluidic valves and pumps in PDMS allow accurate ma-

nipulation of fluids on chip. The successful optical detection of PCR products on-chip

provides a platform for validating the device for the actual PCR reaction.

The electrical testing of the heaters was carried out and it showed that the mod-

ified fabrication process improved the yield and quality of the heaters. Temperature

measurements using thermochromic crystals was explored and determined to be inad-

equate for the system. The measurement of fluid temperature in microfluidic channels,

using fluorescent dyes was then successfully implemented. This allowed for realtime

spatial imaging of the temperature profile in the microfluidic channels.

Finally, the functionality of the sensors were validated using buffer injections. The

sensors showed good sensitivity and signal to noise ratios. They were then applied

successfully to detect the absorption of poly-electrolytes to sensor surfaces.

6.2 Future Work

Through working with engineering the device, there are a few challenges that have

become evident for future work to explore. Currently, the different components and

setups have been developed and are fully functional. However significant work will

still be required to get the integrated device running as a complete system, in order

to carry out the amplification and detection of DNA.

The microfluidic setup using PDMS is versatile, but it does not provide chemical

robustness that is required for use with harsh chemicals during sensor surface cleaning

and regeneration. Integration of the device with glass fluidics could be an option to

be explored to improve on this aspect.

Although the device was designed for a specific purpose, there are other relevant

applications such as chemical synthesis. It would be most beneficial to explore these

other opportunities and broaden the applicability of the integrated platform that has

been developed.
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Appendix A

Initial Fabrication Process
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Appendix B

Fabrication Masks

B.1 Microfluidic Fabrication

B.1.1 First generation microfluidic dies and mask layouts

FigureB-1: Cobra-Lite Microfluidics
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FigureB-2: Cobra Microfluidics

FigureB-3: Python Microfluidics
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FigureB-4: Cobra-Lite Controls Layer Mask Layout

FigureB-5: Cobra-Lite Fluidic Layer Mask Layout
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B.1.2 Second generation microfluidic dies and mask layouts

FigureB-6: Cobra-Lite Microfluidics II
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FigureB-8: Python Microfluidics II
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III.

FigureB-9: Cobra-Lite II Controls Layer Mask Layout

.3

FigureB-10: Cobra-Lite II Fluidic Layer Mask Layout
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B.1.3 Final generation microfluidic dies and mask layouts

I

Figure B-il: Cobra-Lite Microfluidics III
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FigureB-12: Cobra Microfluidics III

FigureB-13: Python Microfluidics III
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FigureB-14: Cobra-Lite III Controls Layer Mask Layout

FigureB-15: Cobra-Lite III Fluidic Layer Mask Layout
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B.2 Silicon Fabrication

B.2.1 Initial mask set dies

FigureB-16: Initial Cobra-Lite die
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FigureB-17: Initial Cobra die

FigureB-18: Initial Python die
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B.2.2 Final mask set dies

FigureB-19: Final Cobra-Lite die
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FigureB-21: Final Python die
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B.2.3 Wafer layout and other features

FigureB-22: Alignment Marks
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FigureB-23: Lithography inspection patterns
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FigureB-24: Implant test structures

109

'M -2K,



a

FigureB-25: Device Wafer layout
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Appendix C

Matlab Scripts

C.e Image Processing

C.1.1 acqback.m

z ACQBACK - Acquire Background

% Acquires 20 consecutive images and stores the average for background

% noise reduction

Initialise Variables

CameraID - 0; 2 Camera identification number

NumPics - 20; % Nunmber of consecutive frames acquired

Exposure = 500; 2 Exposure time in milliseconds

limits = [0 1299 0 1029]; :[Left Right Up Down] max:[O 1299 0 1029)

temperature = (); Leave blank

Acquire background

%CameraID = CameraInit; -initialise camera

ImageGray - acqimage (CameraID,NumPics, Exposure, limits);

SCameraClose (CameraID) ; %close camera

ImageGray - mean(ImageGray,3);

% Display and save data

iptsetpref (' Trues izel Trning , 'off')

figure, imagesc(ImageGray), colorbar, truesize, drawnow

title (' Background Noise' )

save ( 'bac kaver age .mat ', 'IrageGr a7 *, 'temperature')

disp(['File saved: pwd 'backaverage.mat char(10)J)
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C.1.2 imfocus.m

4 IMFOCU2 - Displays the image from the CCD

Press <s> to save image, <esc> to exit script

% Initialise Variables

CameraID = 0; % Camera identification number

NumPics = 1; % Number of consecutive frames acquired

Exposure = 30000; % Exposure time in milliseconds

limits = [0 1299 0 1029]; z[Left Right Up Down] max:[O 1299 0 1029]

h = figure;

%colormap (gray)

colormap (jet)
Siptsetpref (' Truesi2eWarning' , 'off')

warning off

- CameraID = CameraInit; tinitialise camera

while - strcmp (get (h, CurrentCharacter ) ,char (27))

ImageGray = acqimage (CameraID,NumPics, Exposure, limits);

figure(h), imagesc(ImageGray), colorbar, truesize(h), title('CCD Image')

drawnow

if strcmp (get (h, 'CurrentCharacr ' ) ,

filename = [datestr (now,'7 yimmudd-HHHW3S') mat'];

save (f ilename, ' ImageGray')

disp(['File saved: ' filename char(10)])

set (h, ' CurrentCharacter
end

end

warning on

%CameraClose(CameraID); %close camera
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C.1.3 imcenter.m

function ImageCentered = imcenter(ImageInput)

IMCENTER centers image

% ImageCentered = incenter (ImageInput, IntensityThreshold,EdgeThresh) centers

% the imace matrix input and returns the centered image matrix, ImageCentered

% IntensityTreshhold is the threshold above which a pixel is considered in

calculations. The script detects the centers of the channels by the

maximum intensity (due to the semicircular crossection of the channels)

% across the row or column.

Initialise variables

xdim = 0; % x dimensions

ydim = 0; y dimensions
center = [0 0]; 4 Center coordinates: [7 x]

edge=[O 0 0 0]; % Center of channel: [up down left right]

yshift - 0;
xshift = 0;
shift = [O 0 0 0;0 0 0 0]; sindexes for shifting [to;from]

[ydim xdim] = size(ImageInput);
center = [round(ydim/2) round(xdim/2)]; kcenter coordinates

ImageCentered = double (zeros ([ydim xdim]));

4 Find centers of channels
SumImageRows = sum(ImageInput,2,'double'); sum each row into a column vector (yshift)

[m,edge(1)] = max(SumImageRovs(1:center(1))); %Up

[m,edge (2)) = max (SumImageRows (center (1) :ydim) );Down

edge(2) = edge(2)+center(1)-1;

SumImageCols = sum(ImageInput,1, 'double'); %sum each column into a row (xshift)

[m,edge(3)] = max(SumImageCols(1:center(2))); %Left

[m,edge(4)] = max (SumImageCols (center (2) :xdim)) ;Right

edge(4) = edge(4)+center(2)-1;

Calculate shift

yshift = center(i) - round((edge(1)+edge(2))/2);

xshift = center(2) - round((edge(3)+edge(4))/2);

shift(1:2,1:2) CALCULATESHIFT(ydim,yshift); ;(to:from,start:end coords)

shift(1:2,3:4) = CALCULATESHIFT(xdim,xshift); 2(to:from,start:end coords)
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Shift Image

ImageCentered(shift (1,1):shift(1,2),shift(1,3):shift(1,4))

= ImageInput(shift(2,1):shift(2,2),shift(2,3):shift(2,4));

% Plot shift for inspection

%figure
subplot(2,1,1), imagesc(SumInmageRos)

subplot (2,1,2), imagesc(SutiInageCols)

%figure
% subp lot (2, 1, 1) , irnagesc ( Image Input ) ,...

% Titlei'Original Image')
%subplot(2,1,2), imagesc (ImageCentered),
4 Title 'Centered Image')

function shiftmat = CALCULATESHIFT(dim,shift)

if shift > 0 ;;positive direction (Right,Down)
shiftmat(1,l) = 1 + shift; Oto,start coord
shiftmat(1,2) = dim - shift; ;to,end coord
shiftmat(2,1) = 1; frorstart coord
shiftmat(2,2) = dim - 2kshift; %fro,end coord

elseif shift < 0 %negative direction (Left.,Up)
shiftmat(1,1) = 1 - shift;
shiftmat(1,2) = dim + shift;
shiftmat(2,1) = 1-2*shift;

shiftmat(2,2) = dim;
else kif shift == 0, no shift

shiftmat(1:2,1) = 1; %==1+shift
shiftmat(1:2,2) = dim;

end
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C.1.4 imratio.m

IMRATIO - Loads a reference temperature fluoresence image file and a

measured temperature fluoresence image file. It displays an image of the

ratiometric intensity and calculates the average intensity ratio wrt to

% the reference temperature

clear all

% Initialise Variables

threshold = 150; % set threshold for calculating average intensity

background 64.5; 4 set background intensity

llinit = 100; set boundaries when calculating ratios

rlimit = 1100; make sure to comment out reset below

total = 0; 4 total intensity

AverageRatio - 0; % average intensity calculated

MinRatio = 0; minimum intensity

MaxRatio = 0; maximum intensity

OriginalDir = pwd;

Input reference file

[reffilein, refpathin,FilterIndex] = uigetfile((' at', 'MAT-files .mar)',

'Cpen Image NAT-File for Reference Temperature');

if FilterIndex ~ 0 F IF a reference file is input

cd(refpathin)
[measuredfilein, measuredpathin,FilterIndex] =

uigetfile(({'! .iat' , ' MAT-f iles (.a )'}

'Open Image MAT-File for Measured Teperature');

if FilterIndex ~= 0 * IF a measured file is input

- Load background noise file

load([refpathin 'backaverage.mat'])

ImageBack = IrnageGray; F can use background file or average background level

;; Load images and initialise values

load([ref path in ref file in])

ImageGray = double(ImageGray) - ImageBack;
ReferenceImage = imcenter(ImageGray);
ReferenceTemperature = temperature;
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load([measuredpathin measuredfilein])
ImageGray - double(ImageGray) - ImageBack;
NeasuredImage = imcenter(ImageGray);

KeasuredTemperature = temperature;

[height,width] " size (ReasuredImage);

clear ImnageBack IvacieGra7 temperrAre %free up memory
IRDisplay = zeros(height,width); .for clearer illustration in figure
IRStats - zeros(width*60:1); %to help reduce memory reallocation

- Reset limits (to scan for the whole image)
;llimit = 1;

%rlimit = width;

Calculate Intensity Ratio
IntensityRatio - MeasuredImage ./ ReferenceImage;

Enforce Treshold (replacing for loops with more direct/faster method)
[scanv, scanh] = find(...

ReferenceImage(:,llimit:rlimit) > threshold);
& NeasuredImage(:,lliit:rliiit) > threshold);

idx - sub2ind(size(ReferenceImage),scanv, (scanh+llimit)); kconvert to linear index

IRStats = reshape(IntensityRatio(idx) ,1,[]);
IRDisplay(idx) = IntensityRatio(idx);

; Calculate Statistics

n_average = length(IRStats);
AverageRatio = mean(IRStats);
MinRatio = min(IRStats);

MaxRatio - max(IRStats);
StdDev - std(IRStats);

%figure, hist(IRStats,100);
:title(['Ratio Distribution : easuredTemperature C/' ReferenceTemperature 'C' )
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Compile Stats for display on figure

stats(1) = ([' Intensity Patio: I MeasuredTemperature 'C/' ReferenceTemperature 'C' ]);

stats (2) = { [char (10) 'Average Pat io: I num2str (AverageRatio) ] };

stats(3) - {[char(10) 'Standard Deviition: I num2str(StdDev)]};

stats (4) = { ['Threshn Ld: ' nu2str (threshold) ]);

stats(5) = (['NudmbeL tif pixels ameragled: ' num2str(n average)]);

stats(6) = {['Minimun Pain: num2str(HinRatio)]);
stats(7) = {[' t-ximu Pat io: num2str(MaxRatio)]);

% Display Intensity Ratio

h = figure;
set(h, 'pos it ion' ,300 100 560 600])

set(h, PaperPositionlode', 'manual');

set(h, 'PaperUnits', 'inches');

set(h, 'PaperPosition', [0.25 1.21 8.00 8.57]);

subplot (3,1,1), imagesc (easuredImage)

title ([' Measured Image at ' easuredTemperature ' 7 measured file in ''

colorbar

subplot(3,1,2), imagesc(IRDisplay)

title(['Tnrensitr Pario : easuredTemperature '0/' ReferenceTemperature ''7'

colorbar

subplot (3, 1,3, 'Visible' , 'off'

text(.1, .2,stats(1:3) , verticalAlimnment' , 'bottom' , fontsise',12)
text(.6,.2,stats(4:7),'verticalAlironent','bottom')

end

cd(OriginalDir) % return to original directory

end
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C.2 Real-time Spatial Temperature Mapping

C.2.1 acqio.m

% ACQIO - Acquire Reference Intensity

% Acquires 20 consecutive images and stores the average for reference image

2 Initialise Variables

CameraID = 0; Camera identification number

NumPics = 20; k Number of consecutive frames acquired

Exposure = 500; % Exposure time in milliseconds

limits = [0 1299 0 1029]; [Left Right Up Down] max:[0 1299 0 1029]

temperature = 0;

2 Acquire background

;CameraID = CameraInit; Zinitialise camera

ImageGray = acqimage (CameraID,NumPics, Exposure, limits);

:CameraClose (CameraID); 2 close camera

ImageGray = mean(ImageGray,3);

% Display and save data

iptsetpref (' Trues izewarning' , off

figure, imagesc(ImageGray), colorbar, truesize, drawnow

title (' Reference Intens ity' )

% Input ambient temperature

temperature = str2num(cell2mat(inputdlg( ...

['Please input the ambient temperature [C] for this Reference file: ],

[' Input Temperature'] , 1)));

save (' Ioaverage.mat' , 'ImaeGraY', 'temperature'

disp(['File saved: pwd '\Icaverage.mat' char(10) ...

'Telperature: num2str (temperature) char (10)])
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C.2.2 tmap.m

% TMAP - Temperature Mapping

% Displays a temperature map converted from the image aquired from the CCD.

% It takes the average of the frames and find the Intensity Ratio wrt the

reference image selected. The Intensity Ratio is converted to a

temperature map using 'IR2TEMP' or 'TEMPCCURVE'

4 Press <s> to save image, <esc> to exit script

% Initialise Variables
CameraID = 0; 2 Camera identification number

NumPics - 1; Number of consecutive frames acquired

Exposure = 500; 2 Exposure time in milliseconds

limits = [0 1299 0 1029]; ! [Left Right Up Down] max:[O 1299 0 1029]

threshold = 100; set threshold for intensity

warning (' off ', lATLAB divideByZer'

warning off

; Input Reference Image File

[reffilein, refpathin,FilterIndex] = uigetfile({' t.mat', 'MT-files (*.mat'

'Lcad Image MAT-Fi le for m eerence Tewperature')

if FilterIndex ~ 0 % IF a reference file is input

; Load background noise

load([refpath in backavarag±.mat'J)

ImageBack = ImageGray; can use background file or average background level

Load and initialise Io

load([ref_path in ref filein])

Io = double(ImageGray) - ImageBack;

Io - imcenter(Io);

clear ImageGray

2 Calculate calibration curve

CCurve = tempccurve(temperature);

% Apply threshold

[scanv, scanh] = find(Io < threshold);

idx = sub2ind(size(Io) ,scanv,scanh); ?convert to linear index
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Initialise figure

h = figure;
colormap(tempcolormap(40));

iptsetpref (' TruesizeTarning' ,'off'

% CameraID = CameraInit; Vinitialise camera

while ~ strcmp(get(h, CurrentCharacter' ),char (27))

% Acquire Image

It = acqimage(CameraID,NumPics,Exposure,limits)

It = I;

It = It - ImageBack;

It = imcenter(It);

4 Calculate Intensity Ratio

IRatio = It ./ Io;

% Convert to Temperature Map using calibration curve

Temp~ap = subs(CCurve(2),IRatio);

Temp~ap = ir2temp(IRatio);

Tempap(idx) = 0;

% Update Display

figure (h), image(TempIap), colorbar, title ('Temperature Mapping')

truesize(h), drawnow

if strcmp(get(h,'CurrentCharacter'),'S'
filename = [datestr (now,'y y imdd-HHH') . mat '] ;

save (filename,' Temp~ap')

disp(['File saved: ' filename char(10)])

set (h, ' CurrentCharacter' ,

end

end

i CameraC lose (CameraID) kclose camera

end

warning on
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C.2.3 tempccurve.m

function CCurve = tempccurve(TAwbient)

% TEMPCCURVE - Temperature Calibration Curve

Scales the initial calibration curve parameters to the ambient

% temperature that the readings are currently being taken in.

% Initialise constants

To = 23.0; % initial ambient temperature

a = 0.0001; % initial ccurve coefficients

b = -0.0232;

c = 1.4451;

syms T I

f = poly2sym([a b c],T);
f= sym('I.OOO1x^2 - 0.0232*x + 1.4451');

conversioncoef = subs(f,TAmbient);

h = f/conversioncoef;

CCurve = solve(h-I,T);
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