
Dynamic Simulation of Heart Mitral Valve with Transversely Isotropic
Material Model

by

Eli Weinberg

B.S. Mechanical Engineering
Massachusetts Institute of Technology, 2002

SUBMITTED TO THE DEPARTMENT OF MECHANICAL ENGINEERING IN
PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE IN MECHANICAL ENGINEERIN MASSACHUSETTS INSTITUTE
AT THE OF TECHNOLOGY

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
JUN 16 2005

JUNE 2005

Copyright ©2005 Eli J. Weinberg. All rights reserved. LIBARIES

The author hereby grants to MIT permission to reproduce and to distribute publicly paper
and electronic copies of this thesis document in whole or in part.

Signature of Author
Department of Mechanical Engineering

May 26, 2005

Certified by
Dr. " ammad R. Kaazempur-Mofrad

Assisi .nt Professor, Department of Bioengineering, University of California Berkeley
Visiting Assistant Professor, Department of Mechanical Engineering

Thesis Supervisor
iJ

Certified by
Dr. Jeffery Borenstein

Charles Stark Draper Laboratory
Thesis Supervisor

Certified by
Dr. Lallit Anand

Professor, Department of Mechanical Engineering
Chairman, Department Committee on Graduate Students

BARKER





Dynamic Simulation of Heart Mitral Valve with Transversely Isotropic
Material Model

by

Eli Weinberg

Submitted to the Department of Mechanical Engineering on May 26, 2005 in Partial
Fulfillment of the requirements for the degree of Master of Science in Mechanical

Engineering

ABSTRACT

This thesis develops two methods for simulating, in the finite element setting, the
material behavior of heart mitral valve leaflet tissue. First, a mixed pressure-displacement
formulation is used to implement the constitutive material behavior with general 3D
elements. Second, a shell is formulated that incorporates the 3D material behavior by use
of a local plane stress iteration method.

Both of these works are based on an existing invariant-based strain energy function that
has been experimentally determined for the mitral valve leaflet tissue. Since this material
is considered to be nearly incompressible, a mixed pressure-displacement (u/p)
formulation is needed to apply the material model in 3D elements. The standard (ulp)
formulation is employed with a modification to ensure positive definiteness of the
constitutive tensor at low strains.

The shell formulation is introduced as a computationally less expensive alternative to the
use of 3D elements. A 4-node shell with mixed interpolation of transverse shears is
implemented. To incorporate the 3D material model into this shell, a local plane stress
iteration is used to enforce that the shell stress assumption at each integration point.

Comparisons of numerical results to analytical predictions verify the accuracy of both the
(u/p) formulation and shell element. These methods provide useful bases for finite
element simulations of mitral heart valve behavior.
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Title: Assistant Professor, Department of Bioengineering, University of California
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1. Overview of Heart Mitral Valve and Project Goals

1.1 Heart Mitral Valve Function

The heart mitral valve is a one-way valve allowing blood to flow from the heart's left

atrium to the left ventricle. The mitral valve consists of two leaflets (also referred to as

"cusps"), the anterior and the posterior, that are anchored to the papillary muscles, which

are connected to the interior wall of the ventricle. The chordae tendinae are chord-like

structures that connect the leaflets to the papillary muscles. This arrangement is depicted

in Figure 1.1.

A" AIus

AsrrCuwp

Figure 1.1. Heart cross-section and mitral valve with labeled features
(Gahmbir, 2005)

When the pressure in the atrium is higher than that in the ventricle, the leaflets flap open

and blood can flow through unobstructed. When the pressure is higher in the ventricle

than the atrium the leaflets fold shut against each other, supported by the chordae

structure, and do not allow blood to flow through.

A correctly functioning mitral valve is vital to overall heart function: if the valve either

obstructs flow from the atrium to ventricle or allows flow in the opposite direction, the

heart's efficiency drops radically and the heart must work harder to deliver the required

flow of blood to the body. The case of a valve obstructing normal flow is known

13



generally as stenosis, while a valve allowing backwards flow is known as regurgitation.

Both mitral stenosis and mitral regurgitation are generally caused either by congenital
heart defects or by acute rheumatic fever, which can inflame, thicken, or stiffen the
leaflets and damage the chordae (Roberts, 1983).

In some cases, valves that have become highly stenotic or regurgitant can be surgically
repaired: examples include shortening the chordae or replacing them with artificial
material (Reimink, 1996), and implanting an annuloplasty ring around the valve to
support the surrounding tissue or alter the diameter of the valve (Kunzelman, 1998).
Often the valve cannot be repaired, and the entire mitral apparatus must be replaced.

1.2. Current Methods for Mitral Valve Replacement

Currently, there are four types of heart valve replacements available: mechanical

prosthesis, xenograft, allograft, and autograft. Here we briefly describe each and discuss
their relative benefits.

Mechanical prostheses are completely composed of synthetic materials. The two common
types are the caged-ball or tilted disk designs. Approximately one-half of all current valve
replacements use the St. Jude Medical bileaflet tilted-disk model (Schoen and Levy,
1991), an example of which is shown in Figure 1.2. Mechanical replacements in general
are more common than the other types of valve replacement. Mechanical prosthetic
valves are constructed from high-strength, high-thromboresistance materials and are
designed to provide minimal obstruction to blood flow.

Figure 1.2. Example mechanical heart valve prostheses, the St. Jude Medical bileaflet
tilting-disk valve (St. Jude Medical, 2005)

14



Xenograft, allograft, and autograft valves are not completely synthetic; all include at least

some human or animal tissue. The term xenograft refers to tissue transplanted between

species. In the context of heart valve replacement, xenografts are composed of

gluteraldehyde-fixed tissue, either porcine aortic or bovine pericardium, mounted on a

stent. Because of their use of biologic tissue and mechanical supports, xenograft valves

are commonly referred to as bioprosthetic valves. Bioprostheses based on porcine aortic

tissue represent one-third of all valve replacements. One such valve is shown in Figure

1.3. Allografts are transplants between members of the same species. An allograft heart

valve is a complete valve taken from a human donor. Autografts consist of tissue taken

from one part of the patient's body and implanted in another site. Tissue may be taken

from a patient's pericardium or fascia lata and formed into a heart valve to create an

autograft. In some cases, one of the patient's own valves can be moved to another valve

location (Schoen and Levy, 1991).

Figure 1.3. Carpentier-Edwards porcine aortic prosthesis (Edwards Lifesciences, 2005)

Each type of valve replacement has advantages and disadvantages over the others.

Mechanical prostheses rarely wear out, but are significantly thrombogenic and thus

require lifelong anti-coagulation (blood-thinning) of the patient. Additionally, all

mechanical valves cause more obstruction of blood flow than natural valves, and

mechanical valves are susceptible to infection that can only be remedied by re-operation.

Tissue-based valves have better hemodynamic properties than mechanical valves and do

not require anti-coagulation treatment. However, they have different associated problems.

Bioprosthetic valves generally have a shorter implant life than the mechanical valves.

After a few years of implantation, significant calcification (Vyavahare, 1997) and

15
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mechanical fatigue of both the natural and synthetic components (Butany, 1990) are seen.

Allografts also have durability problems (Niwaya, 1999) and, since they require a

genetically matched donor, suffer from undersupply (Stark, 1998). Autografts have

shown unacceptable failure rates due to shrinkage, tearing, and other effects (Silver,

1975) and are not widely used.

The development of heart valve replacement procedures over the past three decades

represents an enormous medical and technological accomplishment. Each year, 40,000

heart valve replacements are performed in the US and 170,000 worldwide (Schoen,

1999), effectively curing end-stage valvular disease in many of the patients. This cure is

imperfect, however. In practice, the surgeon commonly must choose between a

mechanical valve, with its associated risk of thromboembolic complications, and a

bioprosthetic valve with limited durability. Within 10 years of implant, approximately

50% of patients have valve-related complications (Bloomfield, 1991), and approximately

20% of all valve surgery is accounted for by re-operations on replaced valves (Schoen,

1991). Additionally, none of the approaches described above allow for remodeling of the

valve, and thus cannot be used in a pediatric case where the patient is going to grow

(Fuchs, 2001). In the next section, we discuss the possible advantages of a tissue-

engineered heart valve over current replacement options.

1.3. Tissue Engineering of Heart Valves

Driven by the limitations of existing valve replacement options listed above, many

researchers are now investigating methods to construct a replacement valve by tissue

engineering. In this approach, appropriate live cells are extracted from the patient and

used to fabricate a replacement valve. This method would create functioning, living

valves replacements. Since natural valves have far superior thrombogenic properties,

durability, and remodeling capabilities to current artificial and bioartificial valves, it is

hoped that tissue engineering can create an improved valve replacement.

A heart valve leaflet is composed mainly of extracellular matrix (ECM), deposited and

maintained by fibroblasts and smooth muscle cells scattered throughout the ECM. The
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leaflet also has a non-thrombogenic coating of endothelial cells. The most common

approach to tissue-engineer this structure is to seed fibroblasts within a degradable

polymer and endothelial cells on the surface. Upon implantation, the material should

dissolve in a controlled fashion to leave a completely biologic structure of ECM

supported by and coated by the correct cells. Hopeful early results have been

demonstrated for this approach (Sodian, 2000b; Shinoka 1996) in animal models.

In the effort to tissue engineer a heart valve, a great amount of research has taken place to

create the cell manipulation techniques necessary (Perry, 2003; Laube, 2001), to seed a

valve (Hoerstrup, 2002), and to find materials with the desired biocompatibility and

degradation rates (Sodian, 2000a). Though the functionality of the valve is driven by the

valve's mechanical properties, the study of the valve mechanics has been largely

neglected in current efforts. It is well known that the nonlinear, anisotropic leaflet tissue

behavior is vital to valvular function, but studies in tissue engineered heart valves have

considered the material to be linear elastic and isotropic (Booth, 2002), if they consider

the material properties at all. Current efforts in the tissue engineering of heart valves can

be greatly enhanced by analysis of the mechanical behavior of the heart valve structure.

1.4. Numerical Simulation of Mitral Heart Valve

Finite element analysis is a powerful tool for investigating the mechanical behavior of the

mitral valve. A number of numerical models of the mitral valve have been published.

Such a model of generally consists of three components: a description of the physical

geometry, a constitutive model for the solid mechanics, and a description of the fluid

behavior.

Mitral valve geometry has been painstakingly measured by various researchers.

Measurements have been taken from thousands of excised valves, (Rusted, 1952) and the

full 3-D geometry has been determined by digitizing cross-sections of the apparatus

(Kunzelman, 1994).
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Figure 1.4. 3-dimensional digitized mitral valve geometry (Kunzelman, 1994)

Other researchers have contributed histological measurements and echocardiograph

images to provide a full description of the valve's geometry.

Early finite element models of the mitral valve described the fluid behavior simply as

pressure boundary conditions applied to the leaflet surfaces and an inertial component

(Kunzleman, 1993). Recent models perform fluid-structure interaction to determine the

complete dynamic solid and fluid behavior of the system (Einstein, 2004).

The leaflet material exhibits highly non-linear, anisotropic stress-strain behavior.

Currently, no valve simulations have been published where the full three-dimensional

material behavior is included. Shell models have captured the three-dimensional stress

state but without an accurate material model (Kunzelman, 1993; Votta, 2002.), and

membrane models have rigorously handled the in-plane deformations without bending or

out-of-plane shear stresses (Einstein, 2004). A description of the 3D stress-deformation

behavior of the tissue is known (May-Newman and Yin, 1998), and numerical tools are

available for implementing such a description in the finite element setting. Thus, a

numerical simulation of the mitral valve including accurate 3D material constitutive

behavior is possible.

18



1.5. Overall Project Goals

The computational methods discussed in this thesis are part of a larger project, in

collaboration with Massachusetts General Hospital's Department of Cardiovascular

Surgery, to create a mitral valve replacement combining synthetic and tissue engineered

components. A hybrid valve could have the non-thrombogenic and remodeling

capabilities of a fully tissue-engineered valve, but a skeleton of synthetic material would

provide support for the cells and ECM. The support structure would ease manipulation of

the valve before the cells and ECM fully mature, and would make possible attachment of

the thin chordae tendinae to the rest of the structure. A schematic of the design is shown

in Figure 1.5. The synthetic components will likely consist of segmented polyurethane,

which is highly elastic, has been used in other cardiovascular applications, has low

thrombogenicity, and has excellent durability (Hayashi, 1994), and ePTFE, the flexible

but nearly inextensible material currently used for sutures in valve surgery.

tissue-engineered
components

assembled leaflet
synthetic with tendinae
component

Figure 1.5. Schematic of hybrid tissue engineered/synthetic mitral valve leaflet

The design of such a structure requires an understanding of how each mechanical

component affects the overall function and the ability to control the mechanical

parameters. Towards controlling the mechanical parameters, we have developed a set of
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physical tools for the production and measurement of biological and hybrid tissues of the

size scale needed for mitral application. Figure 1.6. shows a device we designed to apply

cyclic strain to a thin tissue for long periods of time in an incubator environment, a

necessary condition for creation of proper ECM.

Figure 1.6. Chamber (left) and actuator (right) of device to apply cyclic strain to thin
biological and hybrid biological/synthetic membranes in an incubator.

In order to achieve our ultimate goal of design and manufacture of the hybrid

synthetic/tissue engineered mitral valve, a computational model of the heart valve motion

that includes the material effects is crucial as the model allows us to evaluate prospective

hybrid designs through simulation. Such a model could also be used to investigate the

mechanics of normal and abnormal mitral valve function. In this thesis, we develop

numerical tools necessary for this purpose.

1.6. Specific Goals of This Thesis

The goal of this thesis is to develop methods for simulating mitral valve material in the

finite element setting. To be useful in simulating the motion of mitral valve leaflets, these

material models must be robust, accurate, and computationally efficient. We begin in

Chapter 2 by reviewing relevant analytical models for the stress-deformation behavior of

thin biological materials. From these, we select one particular model that is accurate in

modeling mitral valve leaflet mechanics, general to three-dimensional deformations, and

appropriate for numerical implementation. In Chapter 3, the analytical material model is

20
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implemented in general three-dimensional elements by application of a mixed pressure-

displacement formulation. We show this model to be accurate by comparison to

analytical and experimental data. This implementation is useful for simulating leaflet

mechanical behavior, but its requirement of high-order three-dimensional elements is

computationally expensive for simulating the whole valve. In Chapter 4, we develop and

implement a computationally inexpensive method. By using a local plane-stress

algorithm, the analytical material model is incorporated into a 4-node MITC shell

element. The shell includes all three-dimensional deformation effects, and thus is as

effective as the mixed formulation while representing a significant computational

savings. In Chapter 5, we discuss the future uses for the numerical tools we have

introduced.
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2. On the Constitutive Models for Heart Valve Leaflet Mechanics

2.1 Introduction

Any numerical implementation of a material behavior must be based on an accurate

description of the material. Numerous constitutive models have been developed to

describe heart valve tissue and other similar biological tissues. In this chapter we discuss

the observed behavior of heart valve leaflet tissue and review analytical models proposed

to describe the mechanical behavior.

2.2. Basic Properties of Heart Valve Tissue

The basic physical properties of heart valve tissue govern the assumptions that can be

made in the formulation of a constitutive model. Heart valve tissue consists of a fibrous

tissue network, mainly collagen and elastin, saturated with a fluid that is mostly water.

SEM of leaflet tissue shows that the fibrous network is wavy and uniaxially aligned (see

Figure 2.1).

Figure 2.1. SEM of tricuspid valve leaflet material, showing characteristic aligned

waviness (Broom, 1978).

The aligned fibers of the leaflet tissue make the stress-strain response highly anisotropic.

Tensile testing (Billiar and Sacks, 2000a) has shown that the aortic leaflets are

significantly stiffer in the circumferential direction than the radial direction, and similar

results have been recorded for mitral valve tissue (Clark, 1973). Data for mitral valve
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tensile testing is shown in Figure 2.2.

2Js - '.4me o

1440
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Figure 2.2. Uniaxial stress-strain data for fresh human mitral leaflet tissue, showing

highly nonlinear and anisotropic response (Clark, 1973).

A material supported by uniaxially aligned fibers can be described by a special case of

anisotropy known as transverse isotropy. In transverse isotropy, the material has one

preferred direction parallel to the fiber direction, and the responses in every direction

perpendicular to the preferred direction are identical to each other.

The waviness of the fibers also significantly affects the stress-strain response. Generally,

less force is required to stretch a wavy fiber than a straight fiber. At low strains, the fibers

in heart valve tissue are wavy, and the tissue can be extended by relatively low stresses.

As strains increase, the fibers are straightened, and the stress required to extend the tissue

increases dramatically. This nonlinear response is evidenced in Figure 2.2, as the slope of

the stress-strain curve increases with increasing strain.

Water comprises between 60% and 70% of a collagenous tissue by weight (Weiss, 1996).

This volume of water appears to be tightly bound to the fibrous network, as evidenced by

fact that it is difficult to exude any significant amount of fluid by compression (Hvidberg,

1960). Thus, models should consider the tissue to be nearly or completely incompressible
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(Weiss, 1996; Holzapfel, 1995; May-Newman and Yin, 1998).

Since the tissue consists of a combination of solid and fluid components, it would be

natural to assume that the solid component would contribute an elastic response to

loading and the fluid component would contribute a viscous response, so that the overall

reponse would be viscoelastic. It has been shown, however, that biological tissues can be

preconditioned by repeatedly loading and unloading the specimen (Fung 1967, Fung

1993). After a number of cycles, the response will reach a steady state where the tissue

shows one non-linear response for the loading phase and a separate non-linear response

for the unloading cycle. Once this steady state has been reached, both phases are

insensitive to the loading rate: the viscous effect disappears after preloading. A material

with this response can be treated as one hyperelastic material in loading, and a separate

material in unloading. Such behavior, known as pseudoelasticity, has been shown to

apply to heart valve tissue (May-Newman and Yin, 1995).

A constitutive model for heart valve tissue must incorporate all of the features listed

above: it should describe a pseudoelastic, incompressible, anisotropic, nonlinear material.

While relatively few models have been formulated specifically for heart valve tissue, a

number of models exist for biological soft tissues in general and for similar tissues.

2.3. Constitutive Models

This section surveys a few different derivations for the stress-strain behavior of heart

valve and similar tissues. These derivations include a range of information about the

structure of the tissue, from phenomological models that include no information about the

structure to unit-cell models that are derived completely from the observed fibrous

structure.

Many constitutive models for biological tissues are derived by extending theories

developed for rubber deformation. Rubber models apply generally to large-strain,

isotropic, hyperelastic materials, therefore extending these models to include anisotropic,

pseudoelastic behavior creates models appropriate for biological tissues. The essential
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concept of this class of theory is that the energy density in the material can be determined

as a function of the strain state. Once the strain-energy function W is known, the stress

state can be determined by taking the derivative of W with respect to a strain measure,

such as

W aw(2.1)

DE

where S is the 2"d Piola-Kirchoff stress tensor and e is the Green-Lagrange strain tensor.

One form commonly used to determine stresses for the materials considered here is

pW T (2.2)
a -pI + F FE . ,

where a is the Cauchy stress tensor, F is the deformation gradient, p is a Lagrange

multiplier to enforce incompressiblilty, and I is the identity matrix (Holzapfel, 2001).

2.3.1. Phenomological Models

A phenomological model is typically developed by guessing either a form of the stress-

strain response or of the strain-energy function. The resulting stress-strain response is

then fit to experimental stress-strain data.

A large-strain constitutive model can be formulated by extension of one of the many

well-known models for linear elastic materials. Li, have created a model for heart valve

tissue by extending the linear transversely isotropic model (Li, 2001). The stress-strain

relation for the linear transversely isotropic model is

o = [E jc, (2.3)

where the stiffness matrix [E] is a function of one Young's modulus in the direction

parallel to the main fiber E, and one perpendicular Ey, two Poisson's ratios vy and Y, and

a shear modulus Gy. Here the nonlinear material behavior is accounted for by letting the

Young's moduli with an effective strain c-,

( )2+ 2+X 2 3 (2.4)

2
+ =)
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E, and Ey are assumed to have exponential forms, and fitting to uniaxial strain data gives:

E =l927.2e 9 .827e (2.5)

E, = 118.34e 3 .2e

with Ex>>Ey, Gxy can be calculated in the linear elastic sense from

El (2.6)

S2(l + v,'

and the two Poisson's ratios are assumed to be equal 0.45 at all strains to represent

incompressible tissue. This model is reported to achieve a good fit with uniaxial data

from porcine aortic heart valve.

Many models exist that are based on an assumed strain-energy function for the tissue.

Based on observations for rat mesentery, Fung and co-workers (Tong and Fung, 1974)

proposed that that the strain energy should be exponentially related to the strain,

(2.7)
W =-eQ - 1),

2

where c is a constant and Q is a function of the strain state such as

Q = ; i, (2.8)

where all c's are material constants and ei is the i-j term of the Green-Lagrange strain.

A similar function can be written including only planar tension terms

[2~i1  b 2~ bE 1(2.9)
W = BO exp 2 +exp 222 1 +exp 33 ,2.9

2 2 2

where BO, by, b2, and b3 are constants. This function fits well with canine pericardium

biaxial data (Choi and Vito, 1990). When the coupling terms is removed to leave

w= [exp(A +A 2 en -1, (2.10)

2

where A, and A 2 are constants, only a poor fit could be achieved with biaxial human

aortic tissue data (Billiar and Sacks, 2000b).
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2.3.2. Transversely Isotropic Models

The models in this section determine strain-energy functions based on the assumption of

transverse isotropy and in terms of strain invariants. Transverse hyperelasticity can be

completely described by the three strain invariants and two pseudo-invariants (Holzapfel,

2001). The three basic invariants are

I, =tr(C), I2= - (trC)2 - tr(C)21 I=det(C),
2

where C is the right Cauchy-Green deformation tensor and the two pseudo-invariants are

14 = N -C -N, IS= N C2 - N , (2.12)

where N is a vector describing the local fiber direction.

Stress-strain data suggests that the strain-energy function of passive myocardium depends

strongly on I, and 14, and is independent of the other invariants (Humphrey and Yin,

1989). Thus, a subclass of transversely isotropic materials is defined by I, and a, where a

is the stretch in the fiber direction,

a 2 = I (2.13)

The strain strain-energy function may be broken into two independent isotropic and

anisotropic contributions,

W =W, +W4', (2.14)

where each term is represented by a Fung-like exponential,

W = W, +WA = c{exp[b(I - 3)]- 1}+ Alexpla(a - 1)2]_-1. (2.15)

This function mimics the biaxial myocardium data reasonably well (Humphrey and Yin,

1989).

Other functions of I, and a have been proposed, such as

W = c,(a -1) 2 + c2 (a -) 3 +c 3 1 -3)+c 4(I - 3)(a -1)+ c5 (1 -3)2. (2.16)

This function was formulated to fit one specific set of data, and achieved fairly accurate

predictions of biaxial data that was not included in the formulation (Humphrey, 1990).
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A transversely isotropic strain-energy function can be written with analogy to the

exponential form of Equation 2.7,

Q =c1 (1, -3) 3 +c 2 (a-1)4. (2.17)

This equation achieved favorably agreed with biaxial data from both mitral valve leaflets

(May-Newman and Yin, 1998). It should be noted that this formulation requires only

three coefficients, cj and C2 from Equation 2.20 and c from Equation 2.7.

2.3.3. Planar Fiber Models

The models in this section take a variety of approaches to tie the overall tissue behavior

to the behavior of a single fiber or bundle of fibers. A strain-energy function or stress

function may be proposed for a single fiber or group of fibers, then geometric

assumptions are used to extrapolate the stress-strain or strain-energy model for the whole

tissue.

Again the strain-energy function can be broken into components. In this case (Humphrey

and Yin, 1987), it is assumed that the fluid matrix, collagen, and elastin each contribute

independent terms to the strain-energy,

W =W, +ZWc +yWe, (2.18)

where W,, is the strain-energy function of the fluid matrix, and W and W are the

collagen and elastin components, respectively. The fiber components must be summed to

represent fibers oriented in different directions. Elastin behaves generally as a linear

spring, so its behavior is represented by

W e =b[y-lny-], (2.19)

where b is a constant and yis the stretch ratio in the direction of the elastin fiber, and

represents the net effect of the collagen fibers by

W C = A [xp a(# - 1)2 _ 4, (2.20)

where A and a are constants and 8 is the stretch ratio in the direction of the collagen fiber.

The summation of the fiber strain energy terms for a transversely isotropic material is

evaluated as
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WT =(2.21)
w=Zwc ±Zwe =j(wc +We ,

where p represents an angle in the plane of the tissue. The fluid matrix is assumed to

contribute only a hydrostatic pressure, which is incorporated into the Lagrange multiplier

in Equation 2.2. This function was shown to fit pleura data reasonably well (Humphrey

and Yin, 1987).

Separate models have been proposed for collagen and elastin fibers (Lanir, 1979). The

force to extend an elastin fiber is

Fe = K, [A -1], (2.22)

where Ke is the spring constant for an elastin fiber and A is the stretch ratio of the fiber. A

crimped collagen fiber is assumed to stretch with zero force until it is straightened, and

once it is straightened acts as a linear spring,

0,< 
(2.23)

where A, is the critical stretch needed to straighten the fiber and K is the spring constant

for a straightened collagen fiber. This work also proposed that, rather than calculating

exactly when each collagen fiber reaches its straightening stretch, a probability function

can be used to determine what percentage of fibers are straight for any tissue strain state

(Lanir, 1979). Subsequent models generally ignore the elastin component to model the

network entirely in terms of probabilistic collagen fibers (Lanir, 1982).

One such model based on the previous work represents the fiber stress-strain relationship

with

C _ (2.24)

f (ef K2 JD(x) " dx,
0 1+2x

where cy and e are the stress and strain in the fiber, respectively, x is the variable of

integration, and D(x) is defined by a Gamma distribution,

1a) x aIexp j -(2.25)

where a and 8 are positive constants. The tissue stress-strain relationship can then be
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found by

a= R()u, (e, IN N ]dO, (2.26)

where R represents the angular distribution of the fibers. The fiber stress-strain relation

can also be represented by

af (ef )= A[exp(Be, )- 1], (2.27)

where A and B are constants, and both Equation 2.27 and Equation 2.30 have good fit and

predictive ability for bovine pericardium biaxial data (Sacks, 2003). Equation 2.30 has

been found to give a good fit and predictive behavior for biaxial aortic valve cusp

samples (Billiar and Sacks, 2000b).

2.3.4. Unit-Cell Models

A common approach in the constitutive modeling of rubber and elastomer materials is to

derive the entire model from knowledge of the material's microstructure. Entropy-based

models are used to predict the behavior of a single fiber and a unit-cell approach is used

to determine the bulk tissue properties. Many such models have been presented for

modeling of rubber; for a review the reader is directed to Boyce and Arruda, 2000.

Rubber models are generally isotropic, so modeling of heart valve tissue and the like

requires extension to anisotropy. Unit cell models can be readily extended to orthotropy,

and the derivation of one such model is followed here.

The strain-energy equation for a single fiber can be determined using a freely-jointed or

wormlike chain model. Using a Langevin freely-jointed chain model appropriate for large

strains gives the increase in strain energy from undeformed length R to deformed length r

for a chain of total length L,

~ 8(2.28)

Aw = kBN 8P +In '8 P,p+In ,
N sinh fi N sinhfpi

where kB is Boltzmann's constant, E is the absolute temperature, N is the number of

links in a single chain, and p and P are the normalized chain lengths r/L and RIL,

respectively (Bischoff, 2002) . /3 is defined by the inverse Langevin function so that 3p=L-
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I(p/L), /R=L 1(R/L). Using an eight chain unit-cell model, as shown in Figure 2.3, the

strain energy needed to stretch the chains within the cell is

~ (I) (2.29)

wChains = wo+2kN 8, + In
N smnh

where i sums over half of the chains.

b

X1 C

C .a

X3

Figure 2.3. Eight chain unit-cell model (Bischoff, 2002).

There also exists a strain energy due to repulsion between the chains,

8kBO In

a 2 +b 2 +C

where a, b, and c are the dimensions shown in Figure 2.3 and b Jb, and 2 a are the

stretches in the directions along the principal material axes. Assuming the material is

incompressible, the complete strain energy function is given by

w n ((2.31)
n18 8

where n is the chain density. N can be directly related to a, b, and c, so this model is

applicable with four free variables: n, a, b, and c. This function provides a good fit to

uniaxial skin data (Bischoff, 2002).
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2.4. Discussion

The main challenge in constructing a constitutive model for heart valve leaflet tissue is

that the tissues are thin, and experimentally can only be rigorously tested in states of

planar tension. In normal heart valve function, however, the leaflets are subjected to

significant out-of-plane and compressive stresses. The researcher's task is to create a

model from two-dimensional data that will predict three-dimensional behavior.

While heart valve tissue cannot be readily tested in three-dimensions, results from other

materials show that the some of the models presented here apply in three-dimensional

states. Microstructural unit-cell models have been verified in three-dimensional stress

states in rubber (Boyce and Arruda, 2000) and transversely isotropic models have been

similarly verified in artificial (Kominar, 1995) and biological materials (DiSilvestro,

2001). The planar fiber and phenomological models are generally formulated only for the

in-place stresses and are not applicable to three-dimensional stress situations.

The unit-cell and transversely isotropic models seem equally applicable to describing the

behavior of heart valve tissue, and researchers have achieved similar results fitting either

model to biaxial data. There are some differences between the two classes of models that

may help in deciding which to use. Equation 2.17 has the advantage that its constants can

be determined in a relatively straightforward fashion through constant-invariant tests,

while finding the constants of a unit-cell model requires fitting curves to multiple sets of

data. A unit-cell model includes data on the microstructure of the material, and therefore

may be preferred when the microstructural features are of interest. The numerical

implementation of an invariant-based approach may be computationally cheaper than that

of the unit-cell model simply by virtue of a simpler strain-energy function (Equation 2.17

versus Equations 2.28-2.31).

There are effects that none of these models incorporate. Heart valve leaflets are

composed of three layers known to have different mechanical properties from each other

(Vesely and Noseworthy, 1992) while all of these models assume that the material is

33



homogonous through the thickness. A better model would either include the three

different layers as one laminated body or provide three separate regions, each with a

different constitutive model. All three of the layers are structurally similar, so the model

for each layer can be in the same form as the homogenous models shown in this paper.

Additionally, the pseudoelastic behavior observed in uniaxial testing (Fung, 1967) has

not been extended to multidimensional deformations.

2.5. Conclusions

We have reviewed a number of various models proposed for heart valve leaflet or similar

biological tissue. Of these, the unit-cell microstructural models and the transversely

isotropic models are applicable to describing a general three-dimensional stress-strain

state. An invariant-based strain-energy function (Equation 2.7 with Equation 2.17) has

been rigorously determined for heart mitral valve leaflet tissue. We determine that this

function is appropriate for the specific application of numerical simulation for the mitral

valve.
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3. A Mixed (u/p) Formulation for Mitral Valve Leaflet Tissue

Mechanics

3.1. Introduction

This chapter presents a method for implementing the invariant-based constitutive model

for mitral valve leaflet tissue in the finite element setting. A mixed pressure-displacement

formulation is used so that the material model can be used with general 3D elements. A

modification is made to the strain energy function to aid in maintaining positive

definiteness of the stiffness matrix at low strains. The numerical implementation is shown

to be accurate in representing the analytical model of material behavior. The mixed

formulation is useful for modeling of soft biological tissues in general, and the model

presented here is applicable to finite element simulation of mitral valve mechanics.

Much research has been done in determining material constitutive models for soft

biological tissues. In the previous chapter we reviewed models specific to heart valve

tissue. We have identified a transversely isotropic hyperelastic representation of mitral

valve leaflet tissue (May-Newman and Yin, 1998) as applicable for implementation in

finite elements.

We implement the model for use with general 3D finite elements by following the mixed

pressure-displacement (ulp) formulation of Sussman and Bathe (1987). A number of

similar finite element implementations have been published for incompressible,

transversely isotropic materials (Holzapfel, 2001; Almeida and Spilker, 1998; Ruter and

Stein, 2000; Schrbder and Neff, 2003). We introduce a modification to the strain energy

function in order to maintain positive definiteness of the stiffness matrix at low strains

with the exponential form of the strain-energy function. The implemented model is

verified by comparing the numerical solution to analytical results, showing that the

implementation accurately represents the original strain-energy function.
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3.2. Continuum Mechanics Definitions

All calculations here are performed in terms common to large-strain continuum

mechanics. The deformation gradient is denoted as

(3.1)
F =

where X is the original (undeformed) configuration and x is the deformed configuration.

The right Cauchy-Green deformation tensor is

C=F T -F,

the strain invariants in terms of C are

(3.3)II = trC,

I2 = i((trC)2 _trC

13=detC.

and the Jacobian is J = 13. Transverse isotropy is incorporated into the model by

introducing a vector that defines the preferred fiber direction of the material. Denoting

the vector as N, the stretch in the fiber direction is

a=-N -C N, (3.4)

and two pseudo-invariants can be defined in terms of the right Cauchy-Green strain

(Spencer, 1972):

(3.5)

15 =N-C 2 .N.

(3.2)

The stress state is calculated from the deformation state based on a strain energy function,
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S-=2 aW 
(3.6)

where S is the 2"d Piola-Kirchoff stress tensor, and the Cauchy stresses can be determined

by

u=J-F-S-FT. (3.7)

The material constitutive tensor is

a2W (3.8)
C=4 .C

The three invariants described in Equation 3.3 are recognized to describe isotropic

hyperelasticity. Spencer (1972) has shown that the full set of five invariants, defined in

Equation 3.3 and Equation 3.5 can be used to describe the strain-energy function of

transversely isotropic hyperelasticity.

3.3. Experimentally Determined Strain-Energy Function for Mitral Valve Leaflet

Tissue

A strain energy function for mitral valve leaflet tissue was carefully determined and

verified by May-Newman and Yin (1995, 1998). The mitral tissue's stress-deformation

response was shown to be chiefly a function of the first invariant and the stretch in the

fiber direction,

W = W(I,a). (3.9)

Specifically, the response was modeled by a form analogous to the exponential proposed

by Fung (1967),
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W(I,1I 4 )=cO exp c(I, -3)2+c12(I2 -1 -1 , (3.10)

where co, cj, and c2 are constants fit to the experimental data, and we have used Equation

3.5 to substitute 14 for a. The anterior and posterior leaflets have slightly different

responses, reflected by the difference in values for the three constants shown in Table 1.

Table 3.1: Coefficient Values for Mitral Valve Tissue

co [kPa] c1  C2

Anterior 0.399 4.325 1446.5

Posterior 0.414 4.848 305.4

The strain-energy function in Equation 3.10 along with the coefficient values in Table I

accurately predict the stress-deformation behavior of the leaflet tissue.

3.4. Mixed (u/p) Formulation

In the modeling of incompressible and nearly incompressible solid media, a

displacement-based finite element formulation gives large errors in the predicted stresses.

An involved discussion of these errors is provided in Bathe (1996). A formulation where

the material is considered to be nearly incompressible and the nodal displacements and

pressures are separately interpolated is considered to be the most attractive for modeling

these materials. Sussman and Bathe (1987) refer to such an approach as a mixed

displacement-pressure (u/p) formulation and provide a general framework. Here we apply

the mixed formulation to the above energy function.

The deformation gradient is determined by standard method from the displacements (see

Bathe, 1996 for details), from which the invariants of Equations 3.3 and 3.5 are

calculated. The original strain-energy function must be made insensitive to volume

changes. This is done by substituting modified invariants for the original invariants

(Weiss, 1996),
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(3.11)
Jl =II 1/3

J4 = 1 4I3-1/

and we follow Sussman and Bathe (1987) in defining J3 = 1 3

Defined as such, J and J4 are dependent on deviatoric deformations and independent of

volumetric changes. Substituting these modified invariants into the original strain-energy

function gives a strain-energy term that is completely deviatoric and determined entirely

by the displacements,

W(J,,J 4 ) =co exp [c, (J-3)2 + (J 4"
2 _1)]_},

where the overbar denotes quantities determined as functions solely of the nodal

displacements.

An additional potential is supplied by Sussman and Bathe to include the effect of the

interpolated pressure,

2 (3.13)

2

where P is the interpolated pressure and - is the pressure determined by displacements,

(3.14)
p =-( 3 -)-.

The complete strain energy function is then

W=W+Q.

The stresses and material stiffness tensor are found by substituting Equation 3.15 into
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Equations 3.6-3.8, and the steps for assembling the element matrix entries from the strain

energy function are given in Bathe, 1996.

3.5. Modification to Strain Energy Function

Efficient solution of the global finite-element matrices may require a positive definite

stiffness matrix, so we would like the stiffness matrix derived here to be positive definite.

The stiffness associated with the exponential strain energy function approaches the zero

matrix at zero strains. We add a term to Equation 3.15 to ensure that the matrix can be

decomposed at low strains,

W(PD) )= cPD(JI 3) (3.16)

where CPD is a constant small enough to guarantee that WP"<<W, so that W PD) does not

contribute appreciably to the stress response. W PD) may be recognized as the first term in

a standard Mooney-Rivlin model. The strain energy function is now

W=W+Q+W(PD). (3.17)

See Appendix A for a derivation of all terms required to evaluate Equations 3.7 and 3.8.

3.6. Software Implementation and Verification

The formulation derived above was implemented as a user-supplied material model in the

finite element package ADINA (ADINA R & D, Inc. Watertown). To verify the

constitutive model, a unit-length cube of tissue was and meshed with a single 27 node

solid element. 27 node interpolation was used for displacements and 8 node interpolation

for pressures. Full Gauss integration was used for all terms. The fiber direction N was

aligned with the x-axis. Uniaxial and biaxial strain conditions were simulated by applying

displacements to the tissue boundaries in the x- and y- directions. Material constants

listed in Table 3.1 were used, along with CPD=10-8 and _=106
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To verify the material model, the tissue was subjected to biaxial strain conditions

replicating experiments run by May-Newman and Yin (1998). The range of stresses in

these experiments is consistent with the range of stresses expected in a functioning mitral

valve (Kunzelman, 1993). Resulting stresses output by the finite element solution were

compared to the analytical solution (see Figures 3.2-3.5). The analytical responses were

found by applying biaxial strain conditions, solving for the out-of-plane strain directly

from incompressibility, and calculating the stresses from the original strain-energy

function. We also include the experimental data on the plots. In all cases, the stress in the

direction parallel to the fiber is plotted against the stretch in the fiber direction, and the

stress in the direction perpendicular to the fiber is plotted versus the stretch perpendicular

to the fiber.
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-- Perpendicular to
* Parallel to Fiber,
* Perpendicular to
* Parallel to Fiber,
* Perpendicular to

Analytical
Fiber, Analytical

Experimental
Fiber, Experimental
Numerical
Fiber, Numerical

-~ ~~~ n-~v , Q~ C) jZ

1.05 1.1

Stretch [-]

1.15

Figure 3.1. Equibiaxial strain applied to anterior leaflet.

41

500

450

400

350

300

250

200

150

100

a)
,-

-a

/ 0
I

p

50

U
1

0/
1.2



- -Parallel to Fiber,
Perpendicular to

o Parallel to Fiber,

L Perpendicular to

* Parallel to Fiber,

* Perpendicular to

Analytical

Fiber, Analytical

Experimental

Fiber, Experimental

Numerical

Fiber, Numerical

U EN~D~'~I~113

1 1.05 1.1 1.15

Stretch [-]

Figure 3.2. 2:1 Off-baxial strain applied to anterior leaflet
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Figure 3.3. Equibiaxial strain applied to posterior leaflet.
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Figure 3.4. 2:1 Off-baxial strain applied to posterior leaflet

In these four cases, the result of the finite element solution matches the analytical

solution with errors within the limits of numerical accuracy. The stiffness matrix was

positive definite at all steps. Within the stress range of these experiments and at stresses

up to 5x10 4 kPa, the volume ratio stayed within ±0.001% of 1, showing that

incompressibility was maintained.

3.7. Discussion

Data plotted in Figures 3.1-3.4 show that the numerical implementation accurately

represents the analytical solution in biaxial conditions. Adding a term to the strain energy

to maintain positive definiteness was effective without introducing significant error to the

stresses.
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The mixed formulation relies on the volumetric stresses being much larger than the

deviatoric in order to enforce incompressibility. Due to the high exponential material

behavior, strains just beyond those in the protocols used here can cause deviatoric

stresses large enough to affect the incompressibility. Our approach still enforces

incompressibility at stresses well beyond those expected in a functioning mitral valve.

3.8. Conclusions

The model presented here is accurate in predicting mitral valve leaflet behavior over the

necessary stress range. With use of general 3D elements, this model is applicable to

finite-element simulation of mitral valve function.
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4. A finite shell element for heart mitral valve leaflet mechanics,

with large deformations and 3D constitutive material model

4.1. Introduction

In the previous chapter we present a method for using the constitutive material model for

heart mitral valve leaflet tissue with general three-dimensional elements. With the thin-

body geometry of the leaflet, accurate results of the bending behavior require a high-

order element and fine meshing that exert high computational expense. To handle this

simulation more efficiently, we propose here a shell element formulation that includes the

3D constitutive material model.

A 4-node mixed-interpolation shell is formulated in convected coordinates. This shell

model is made capable of handling arbitrary three dimensional (3D) material models by

use of an algorithm that satisfies the shell stress assumption at every element integration

point. Comparison to analytical solutions show this element gives the correct large-

deformation behavior for linear-elastic, Mooney-Rivlin, and for a transversely isotropic

model specifically for mitral valve leaflet tissue. This element is well-suited to simulating

heart valve mechanics, as it is computationally efficient compared to similar methods and

can handle the necessary large-deformation dynamic behavior.

In large-deformation shell calculations, the through-thickness strain contributes

significantly to the stress response and stiffness tensor. This strain cannot be calculated

using the standard interpolations used for other strains, but a variety of ways to calculate

the through-thickness strain have been described. 3D shell elements are attractive, in that

they generally do not require manipulation of the material model to fit shell stress

assumptions (Chapelle, 2004; Sze, 2004). Methods to incorporate a 3D material model

into a conventional shell by use of an extensible normal vector have received much

attention (Betsch 1996, Simo 1990, Basar 2003). A simpler method to achieve the same

has been proposed by Klinkel and Govindjee (Klinkel, 2002). Both conventional shell

methods are expected to be cheaper than the 3D shell in our case. The 3D shell model

will require significantly more nodes than a conventional shell, particularly requiring
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multiple nodes through the thickness to represent bending behavior. Additionally, for an

incompressible material like that of mitral leaflet tissue, the 3D shell model will require

the added complexity of a mixed pressure-displacement formulation (Sussman, 1987)

that the conventional shell will not. We have chosen to use the latter shell method on the

basis that it is more computationally efficient than methods involving the extensible

normal (Klinkel, 2002).

A 4-node quadrilateral with mixed interpolation of the transverse strains is currently

accepted as the most cost-effective shell (Bathe, 1996). This shell is implemented

(Dvorkin, 1984a) and the method of Klinkel is used to incorporate the 3D material

models. The formulation is verified first with familiar analytical solutions for linear-

elastic and Mooney-Rivlin material behavior. Next, the model for leaflet tissue is applied

and numerical results are shown to match in-plane analytical results. Out-of plane results

are shown and the element is demonstrated in a dynamic case important for simulating

heart valve motion.

4.2. Methods

4.2.1. Continuum Mechanics Definitions

The shell calculations are performed in the Green-Lagrange strain tensor,

=-(F T -F-I), (4.1)
2

where I is the identity tensor. Here we restate some of the definitions from previous

chapters in terms of the Green-Lagrage strain. The right Cauchy-Green deformation

tensor is

C=F T -F =2e+I, (4.2)

and the stress state is calculated from the strain energy function, W, using
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5 W =2 
(4.3)

a3e aJc

where S is the 2 Piola-Kirchoff stress tensor. The material constitutive tensor is now

42W a2W (4.4)
C 4 .

aC2  aC 2

4.2.2. Constitutive Material Model

A strain-energy function for mitral valve leaflet tissue has been discussed in previous

chapters (May-Newman, 1998),

W(1 1, 4 )= co exp cI, (I, - 3)2 + c 2 (14112 _ 1)4 , (4.5)

with constants for the anterior and posterior leaflet given previously.

As in the previous chapter, a neo-Hookean term is added to avoid the zero matrix at low

strains and a volumetric term is added to enforce incompressibility.

W(1,1 4 )= co exp cI (I, -3)2 +c 2 ( 4
1 4 -1) - +CPD (I1 -3)+v(,j-1) (4.6)

where CPD is a constant chosen to be very small compared to the other effective material

moduli and Kis the compressibility, chosen to be a value much higher than any other

effective material moduli. This term is the same as that used in the pressure-displacement

formulation (Sussman,1987). The deviatoric and volumetric responses do not have to be

isolated from each other in this method. Thus the rest of the modifications to the strain-

energy function performed in the mixed formulation in the previous chapter are not

necessary.

4.2.3. Shell Element Description

The 4-node shell element with 5 degrees of freedom known as the MITC4 is described in

convected coordinates and uses mixes interpolation of the transverse strains to avoid
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locking (Dvorkin, 1984a; Dvorkin. 1984b). Here we outline the basis of this formulation.

In the global Cartesian coordinate system (ei, e2, e), the coordinates (xI, x2, x3) of a

particle having natural shell coordinate (ri, r2, r 3) is

tk +LahtVk (4.7)
Sk 2 k k nij2

where x is the global position of node k, V, is the director vector at node k, hk(rJ, r2) is

the interpolation function corresponding to node k, 'ak is the thickness at node k measured

in the direction of V, at time t. We allow the thickness ak to vary in time (Dvorkin, 1995)

and also recalculate ak at each time step to reflect changes due to the rotation of Vn.

Throughout, the left superscript t refers to the time and the right subscript i refers to the

component in the x, direction. Local orthogonal vectors are defined:

oVk _ e2X 0 Vnk (4.8)

e 2X O nk '

and the rotation of these vectors in time is achieved by rotation matrix (Argyris, 1982).

The displacement tui and incremental displacement ui are

tht k'3 (r L O (4.9)
'Ui =k h, s + 3a k hk ('Vnk - 0Vn1 t

2

ui =hku, +' akh( V-'Vl a+'VI)
2

where a and are the rotational degrees of freedom. Covariant base vectors are given by

t  
___ (4.10)

gi = arar

and the contravariant base vectors tgl are calculated to analytically satisfy tgi - tg'= 6ij. The

Green-Lagrange strains are calculated in the covariant system,

= I 1g.~ t g -0 g ~0~),(4.11)
'z = 'g - gi - g )"

where the tilde overbar denotes values measured in the covariant system.

The stress-strain (Equation 4.3) and constitutive stiffness (Equation 4.4) calculations

must be performed in a Cartesian coordinate system. We introduce a particular Cartesian
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system for the current application. First the fiber direction N is defined in global

coordinates and transformed to covariant coordinates, 'R , by standard vector transform

(Bathe, 1996). In heart valve leaflet tissue, the fiber direction lies in the plane of the

leaflet (May-Newman, 1998), so we assume that the fiber direction lies parallel to the

element mid-plane. We define a local fiber-aligned Cartesian coordinate system e by

t- = t t
, '1 = 92 t - t (4.12)

N , -x 'g 3

where the hat overbar denotes quantities measured in this system. The first direction of

this system is parallel to the fiber direction (so that N = [1 00] at all times), and the third

direction is parallel to the through-thickness direction. This coordinate system is

convenient to use with the Klinkel method described in the next section.

The Green-Lagrange strains are transformed from the covariant system to the Cartesian

local,

.A (4.13)

The constitutive material tensor in the local Cartesian coordinate system is denoted C,

which contains the shell assumption of zero stress in the through-thickness direction. For

nonlinear materials, this tensor may be calculated as in Equation 4.4 using the Green-

Lagrange strain in Cartesian coordinates from Equation 4.13. In the case of linear

elasticity C is constant. The constitutive tensor is made to relate the incremental

covariant strains to the incremental contravariant stresses by the transformation

In linear elasticity, the contravariant stresses can be calculated by:

g = 6ijkl'k (4.15)

For nonlinear materials, the stresses are calculated in the local Cartesian coordinates as in

(Equation 4.3), then transformed to the covariant coordinates,
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t= (', - 'g ' - 'g ) , (4.16)

All strain components are computed in the standard manner (Bathe, 1996), expect for the

transverse shear strains which are found using separate interpolations to avoid locking:

613(1 1 1(4.17)
'? 3 (r, r2 r31)= (1+ r. ) 3 + Z3 3(, r2 , r31= - r2 )r3

2 A2 C

23 (rl, r2, r3) - (1+ r, )'23 + z ,3(r, r 3)= -- '+ r, ),232 D 2 B

where A is the location (r=O, r2=1, r3=0), B is (r1 =-1, r2 =O, r3=0), C is (r=0, r2=-1,

r3=0), and D is (r1 =1, r2=0, r 3=0).

In a Total Lagrangian formulation with convected coordinates, the linearized equation of

motion is

f 06 k 0 jkji5 ii OdV + f 0'i5ojS - A 1V = tAt9 1 - f tg3i O AdV , (4.18)
jO 0kIOl J~)0 Ii~ J 0LVe 1

OV (V OV

where W, and ij are the linear and nonlinear parts of the Green-Lagrange strain

components e- (Dvorkin, 1984b). All terms are calculated using the above definitions.

For use in dynamic simulations, the mass matrix is

JpH THdOV, (4.19)

OV

where H is the matrix of interpolation functions (Bathe, 1996).

4.2.4. Local Plane-Stress Algorithm for Calculation of Stresses and Constitutive

Tensor

In the MITC shell formulation, the stresses and material stiffness tensor needed to

compute the finite element matrices must reflect the stress assumption of zero through-

thickness stress. Klinkel and Govinjee provide a simple, rigorous method for

incorporating an arbitrary 3D material model into a shell element (Klinkel, 2002). They

refer to this method as the local plane stress algorithm. In this method, the stress vector,

strain vector, and stiffness tensor are partitioned:
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where, for the shell, we have the definitions

1A 13T z (4.21)

The stress, strain, and stiffness components here are those in the fiber-aligned Cartesian

system defined by Equation 4.12. The following are the steps of the plane stress

algorithm incorporated into the shell model. This routine is run for each integration point

in each iteration.

1. The Green-Lagrange strains E, not including the through-thickness strain, are

calculated in the local Cartesian system by Equations 4.11 and 4.13.

2. An initial guess is made for the through-thickness strain s'33. We use the value

of 33 from the previous converged iteration for this guess.

2. The second Piola-Kirchoff stresses S and material stiffness tensor C are

calculated by applying Equations 4.3 and 4.4, respectively to the strain energy function

(Equation 4.5), with the fiber direction N = [10 0].

3. If S. is larger than a chosen tolerance, the through-thickness strain is updated

by

(4.22)

Cl

and the method is returned to step 2. If the S. is smaller than a chosen tolerance, the

algorithm continues to step 4.

4. With S, =0, the stiffness matrix can be condensed using

- - (4.23)

Ccondensed -rn - C C .(2
C Z

5. A row and column of zeros are inserted into C condensed to represent the through-

thickness direction, yielding the stiffness matrix with shell assumption C in the local
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Cartesian system. At this step, the stresses S are the stresses in the local fiber-aligned

Cartesian system, with the through-thickness stress equal to zero within the chosen

tolerance.

The stiffness tensor is then transformed to the natural shell coordinate system using

Equation 4.14, and the stresses are transformed to the covariant system by Equation 4.16.

Thus the stiffness tensor and stresses from a 3D constitutive model are incorporated into

our shell.

4.3. Numerical Tests and Results

We have implemented our element in the commercially available finite element software

ADINA (Watertown, MA), using 2x2x2 Gauss integration for all terms. Here we describe

a series of tests on the implemented element.

First we verify that the element behavior matches well-known analytical solutions with

and without the plane-stress iteration. A shell is subjected to stretching in one in-plane

direction while unconstrained in the other in-plane direction. The shell with linear elastic

material model and no plane stress iteration was compared to analytical plane strain

solution. The shell with linear elastic material model and plane stress iteration was

compared to analytical uniaxial stress solution. The stress-stretch behavior exhibited by a

shell model with single-term incompressible Mooney-Rivlin (neo-Hookean) material was

compared to analytical uniaxial stress solution (Figure 4.1). In these cases, the numerical

results matched the analytical within the limits of numerical accuracy.
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Figure 4.1. Numerical and analytical solutions for uniaxial stretching. Linear elastic
model with E= 100, t=O.3; Neo-Hookean with C=100, x-Ie5.

The next test case is to compare the full model, with strain-energy function for mitral

valve mechanics and plane-stress iteration, to planar analytical results. Equibiaxial stretch

was applied to the element with the material models for anterior and posterior leaflets.

The range of deformations here is the same as that in the May-Newman and Yin data

(1998), which reflects the range of deformations expected in physiological leaflet

function. The numerical results (see Figures 4.2 and 4.3) match the analytical within the

limits of numerical accuracy.
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Figure 4.2. Numerical and analytical results for equibiaxial stretching of anterior leaflet
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Figure 4.3. Numerical and analytical results for equibiaxial stretching of posterior leaflet
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The element is further tested in cantilever bending, with an applied tip rotation. Results of

the moment versus applied tip rotation for the anterior and posterior leaflet, with the

rotation applied parallel to the fiber direction and perpendicular to the fiber direction, are

plotted in Figure 4.4. Dimensions are typical of a piece of leaflet tissue: 1cm square with

a thickness of 0.45mm. The element is converged to tip rotations of ir/2. Exponential

material behavior is seen in the moment, and the directional behavior is seen as both

leaflets are stiffest in the direction parallel to the fiber.

9.00E+01 -

-B- Anterior, Fiber Parallel to Bend
8.00E+01

-6-- Anterior, Fiber Perpendicular to Bend

7.OOE+01 - - - Posterior, Fiber Parallel to Bend

- Posterior, Fiber Perpendicular to Bend

i 6.00E+01

5.00E+01z

4.00E+01
0

.E 3.OOE+01

2.OOE+01

1.00E+01

0.00E+00 _-- --

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

Applied Tip Rotation [radians]

Figure 4.4. Moment versus applied rotation at tip of cantilevered element, for anterior
and posterior leaflet materials with bending parallel and perpendicular to fiber direction.

Our final test case is to verify that the element can represent physical situations typical of

leaflet motion. Particularly, leaflets are pushed through changes in curvature by dynamic

forces. Here, we apply a pressure to a curved shell to push the shell through its snap

point, and let the inertia of the shell control the snapping. A curved body having length of

3mm, width of Imm, and thickness of 0.45mm is meshed with three elements. We use

the anterior leaflet material model with a density of 10kg/m 3. A time-varying pressure is
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applied to the outer surface of the body. The initial and final configurations of the leaflet

model are shown in Figure 4.5. To further quantify the behavior of the model through the

snap motion, we examined the displacement of the shell apex and applied pressure versus

time (see Figure 4.6). As evident in the figures, the shell model passes through the snap

point and settles in the opposite stable position.

Initial Configuration,
with applied pressure

Figure 4.5. Initial and final geometry in dynamic snapping test.
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Figure 4.6. Applied pressure and resulting displacement versus time for dynamic snapping test.

4.4. Conclusions

A shell model appropriate for simulation of heart mitral valve leaflet motion has been

presented. This model combines three rigorously derived parts: the MITC4 shell element,

a 3D constitutive model for the tissue, and the plane stress iteration for incorporating a

3D material into the shell. Here we have shown that our element combining these parts is

effective and accurate in modeling large deformations. The element is accurate in

matching analytical solutions and can represent the dynamic curvature changes found in

leaflet motion. This shell element models the tissue with a 4-node shell, achieving a

radical savings in computational expense over the method using a 27-node mixed-

interpolation solid element presented in the previous chapter. Promising future

applications of this element include finite element simulations of mitral valve function,

examination of the bending behavior of leaflet tissue, and extension to include the layered

histology of the leaflet.
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5. Conclusions and Future Directions

This thesis presents methods for applying a three-dimensional material model for heart

mitral valve mechanics in finite elements. Mitral valve physiology, ailments, and

treatments are outlined in the context of motivation for development of a new hybrid

synthetic/tissue engineered mitral valve replacement. The usefulness of numerical

modeling of the mitral valve to this effort and to general understanding of mitral valve is

discussed. A review is given of analytical constitutive modeling for heart valve leaflet

tissue. An invariant-based strain energy function for mitral valve leaflet tissue mechanics

is selected for numerical implementation. The novel work of this thesis is two

implementations of this strain energy function. A mixed pressure-displacement

formulation is used to implement the material model in general three-dimensional finite

elements. A shell model is formulated that includes the three-dimensional material

behavior by use of a local plane stress iteration. These two implementations are valuable

to mitral valve research: either can serve as the basis for the solid phase of a finite

element simulation of the valve.

The immediate use of this model is application in finite element modeling of the normal

mitral valve. We have prepared the geometry of the normal mitral valve in finite elements

for both the 3D and shell elements. The geometry of the flattened geometry has been

measured (Kunzelman, 1994), and we have drawn this geometry in CAD software

(Solidworks Corporation, Concord MA) as shown in Figure 5.1.

(a)
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t~ H

(b)

(c)
Figure 5.1. Normal mitral valve flattened (a) (Echo In Context, 2005), characteristic

dimensions of explanted mitral valve leaflets (Kunzleman, 1994), and CAD
representation of mitral valve leaflet geometry (c).

Once the leaflet geometry has been generated, it is given a thickness and wrapped around

the shape of the mitral orifice to give a three dimensional body with shape representative

of the mitral leaflets close to their zero-stress state. This body is imported into the finite

element software (ADINA, Watertown, MA) and then meshed with either three-

dimensional or shell elements. Chordae are represented by nonlinear spring elements

The body meshed with three-dimensional elements is shown in Figure 5.2.
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Figure 5.2. Mitral valve geometry meshed with three-dimensional elements

Boundary conditions are taken from physiological observations. Beating of the heart

muscles applies a time-varying contraction to the mitral annulus and a displacement of

the point where all of the chordae meet (the papillary muscle). The fluid can be

represented simply as a pressure boundary condition on the leaflet surface (Kunzelman,

1993) or full fluid-structure interaction can be incorporated (Einstein, 2004). We are

currently implementing these conditions to create a complete model of the healthy mitral

valve that we can verify against dynamic measurements from human valves (Levine,

1989). The next step will be to include the synthetic materials, for which the numerical

models presented in this thesis can be applied, to evaluate hybrid designs. The model can

also be used to evaluate physical mechanisms of valvular diseases.

Other significant directions for future work include further refinements of the

formulations presented here and extension to other tissues. The most notable refinement

would be to examine the assumption that the leaflet tissue is homogenous through its

thickness. While leaflets comprised of three distinct layers, all models yet presented
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assume homogeneity of the tissue. A model including the effects of the layers would help

elucidate the function of the multiple layers. The shell formulation can be readily

extended to multilayer behavior by inclusion of additional integration points through the

thickness and allowing the material constitutive tensor to vary through the thickness. This

does not require additional meshing through the thickness, and thus does not represent a

large computational expense. Additional refinements should include experimental

verification of the model in deformation states other than biaxial tension and

determination of the effects of the ridged histology of the leaflet on its stress-deformation

behavior.
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Appendix A: Derivation of all terms for mixed pressure-displacement formulation

The original strain energy function is

(A.1)
W(I 1 ,I4 )= co xp [ci(1, - 3)2 +c 2 ( 4 1 /2 _ )]_I}

In the mixed formulation, a term is added including the interpolated pressure and pressure
calculated from the displacements,

(A.2)

2
and the pressure is calculated from the displacements by

S - (I3 -1). (A.3)

We also include a term to ensure positive definiteness of the constitutive tensor at low
strains,

W(PD) (I,)= cp, (I, - 3).

The invariants of the right Cauchy-Green strain that are used are
I = trC,

13 = det C,

14 = N -C -N.

(A.4)

(A.5)

Modified invariants are defined to make I, and I4 independent of volume changes, and to
make Ij equal exactly the volume ratio,

l = II - ,1/3

13 = ,

J4 = 14I3 -

The complete strain energy function with modified invariants is

W (J 1 J 4 )= cO exp c[
1
2

(JI -3)2 +C2 (41/2

(A.6)

(A.7)_p)2 +cPD (JI -3).

We need to calculate the second Piola-Kirchoff stresses
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aW (A.8)

and the constitutive tensor

C=4 . (A.9)
aC2

We need to calculate a number of derivative terms. We will use the notation

(a) = -()- + (A.10)

1. Derivatives of modified invariants w.r.t. invariants
aJi = [ -1/3

aJl = 1 11-4
aI3 3

J3  = 1 -1/ 
(A.11)

a13 2

J4 = 1 _34/3

a13 3
J4 -1/3

a14

2. Second derivatives of modified invariants w.r.t. invariants
a 2j 1 4

-I8I 3
il13 -

a
2 j 1 4 7

-,2 91173
3132 13

a2j3_ 1 3= - 3 2 (A.12)
aI32 4

a 2J4  4 7

2 43

a2j4 - -! 4
3 3

DI3aI 4 3

72



3. Derivatives of invariants w.r.t. strain

(I,=2

(13) =2C~'det C

4 =2N0N

4. Derivatives of modified invariants w.r.t. strain

a (I +aj (z13
I I3

(J3 ) J (13)

(J4) = (I + a (I4)
a 14 4

5. Second derivatives of modified invariants w.r.t. invariants and strain

ail

aJ 3 *i

aJ4

a13 i

a~ -(I3 )*
a11lJI3 (1)

a 2j
a31 -

1 3

a2 3

a 2 J
2j(13);

a
2

j

a 3 2 ( 3

(A.15)

a
2

j

+ (I4
34j

(J4 j 324
aI4 aI34 4

6. Second derivatives of invariants w.r.t strain

(I, );;r = 0

(13 ) = Le,rcej + £lsf. +,.csf + sc 8 f

7. Second derivatives of modified invariants w.r.t strain
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(J 1) (I) + (Is)
( ai a33)r

(J3 3)rs3

(J4;) = a (13)

+ (I4

+ (I3 3);;,

(A.17)

+ a:r

Derivatives of the complete strain energy function (Equation A. 1) with respect to the
modified invariants will be required. Using the notation,

W= , Waw~ W I = ,3 . (A.18)

(A.19)W,= 2coc,(JI - 3)exp c (J, - 3)2 + c 2 J412 - I1
W4 = 2cOc 2 (j41/2 _ i)3 J412 exp[ci (J - 3)2 + c2 (J412 _I

W'1 =cJ2cI +4c 2 (J1 , -3)2 expfc (Ji -3)2 +c 2 (1 4 -1)4

W14 = 4cOcIc 2 (JI -3)(J14"2 _1)3J412 exp[c (J -3)2 +c 2 (14 -- 1)41

W44 = [3c(c 2 (J1/2 1)2 J 4 - 2 - C1C2 (J12 4 -3 + 4cC 2
2 (14/2 _ 1)6 4 ]

*exp[c(JI -3)2 +c 2 (14 -)4

The 2"d Piola Kirchoff stress tensor is

S =);

which is found by taking the derivative of each term,

(A.20)

(A.2 1)
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we have

and



S ,(W(D)) + (W(V)) + (W(PD).

(W ) =* W(J)* + W4(J 4 ),

(W(v)) =k(J (A.22)

(W(PD) CPD (J)*

Si] = (W +cPD)(JI)+. +W 4 (J,)* + k(J 3 -1)(J 3 )

where the derivatives are given above.

The constitutive tensor is

C =(Sj )* (A.23)
ijrsy Mjr

Substituting with Equation A.22 gives

E (W(= W *D +(W(V))** +(W(P)*
Ejsrs -rs +rs

(W(D) (W (Jl)* +W 4 (J4)
ijrs - M(A.24)

(W(V) = (k(J3 - 1) (J3*)
ijrs rs

(W(PD))** =(CPD(J 1 )*,

To evaluate C, we define

B-r = W4 (J4*]Iir M (A.25)

Dap t dk(J-stofn

Ejr = CPD (j)

and apply the derivatives to find
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A WI (J ) +W (J 4 )r ](JI ) +W (J )

B W (J) +W44 (J4)W W (4) +W4 (J)
. (A

D [((J3)* (J3)*, +(J3 - )-)*

E.. CP ( J X.rS

All derivatives are given above, and then the constitutive tensor is calculated by

C.. = A+ B. +D.+ E, . (A

The equations given here are sufficient to completely define the response based on the
given strain-energy function (Equation A. 1) for finite element analysis.
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