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ABSTRACT

The phenomenal success in the manufacture of multi-layer, Ultra-Large-Scale-Integrated
(ULSI) semiconductor devices is in part due to the local and global planarization capabilities of
the chemical-mechanical polishing (CMP) process. At present, copper is widely used as the
interconnect material in the ULSI technology. The greatest challenge in Cu CMP now is the
control of wafer surface non-uniformity-primarily due to dielectric erosion and copper dishing
at various scales-to within the ever stringent industry specifications.

In this thesis, an integrated non-uniformity model is developed by combining wafer-, die-
and feature-scale non-uniformities. A feature-scale pressure calculation scheme based on surface
step-height is adopted, and the evolution of the surface in each polishing stage is modeled in
terms of geometric, material and process parameters. Various pad/wafer contact mechanics
regimes have been considered to model oxide erosion and Cu dishing, from submicron device
level to the global wiring level. The plausible causes of erosion and dishing at wafer-, die- and
feature-scales were identified and integrated into the feature-scale step-height models. Such
parameters include: initial pattern geometry, wafer-scale uniformity, and Cu-to-oxide slurry
selectivity, material properties, and surface topography of the pad.

Based on the developed erosion and dishing models, the effects of model parameters on the
wafer-surface non-uniformity in Cu CMP are discussed, and parameter sets to satisfy both
dishing and erosion specifications are obtained. In single-step polishing, for example, the Cu
deposition factor should be less than 0.1 and the wafer-scale uniformity factor needs to be greater
than 0.95 to maintain both erosion and dishing within 5% of interconnect thickness across the
wafer if the polishing slurry has a selectivity of 15.

Results of polishing experiments on 100 mm patterned Cu wafers validated both the step-
height models and the integrated non-uniformity model. Based on the present models, erosion
and dishing across the wafer was bounded by predefined parameters. Additionally, as predicted
by the models, it was observed that the step-heights of the slowest and the fastest dies evolve in
the ratio of the wafer-scale uniformity factor.
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Thesis Supervisor: Dr. Nannaji Saka
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CHAPTER 1

INTRODUCTION

1.1 Background

Over the past decade and a half, the semiconductor industry has grown rapidly to meet the

ever-increasing demand for high-performance, ultra-large-scale integrated (ULSI) electronics.

The number of components on a chip has doubled approximately every two years with more than

108 devices currently, as Moore had predicted decades ago [Moore, 1965; Chang and Sze, 1996].

As a result, the semiconductor industry is motivated to design and fabricate submicron features

of ever-finer resolution, denser packing and multi-layer structures. Table 1.1 lists the wiring

needs of interconnects between 2005 and 2009 for high-performance microprocessors

[International Technology Roadmap for Semiconductors (ITRS) - Interconnect, 2003]. For

example, in 2005, the requirement for minimum pitch at the submicron device level of

microprocessors is 95 nm, and 11 metal layers on a chip.

By virtue of its low electrical resistivity and resistance to electromigration, in the past decade,

copper has rapidly emerged as the preferred interconnect material in lieu of aluminum. Figure

1.1(a) is a schematic cross section of a typical chip with Cu interconnects. The metal 1 layer is

called the submicron device level, the interconnect levels up to five layers are designated as

intermediate levels, and the interconnect layers higher than the sixth as the global wiring levels.

The wiring specifications for the submicron, intermediate, and the global wiring levels are listed

in Table 1.1. Figure 1.1(b) is a scanning electron micrograph of a sample multi-layer Cu

interconnect chip.

In the relentless endeavor to meet the ever-stringent specifications, the chemical-mechanical

planarization or polishing (CMP) process has played a key role due to its local and global

planarization capabilities in both Al and Cu techniques as shown in Fig. 1.2. In Al interconnect

technology, shown in Fig 1.2(a) - (c), the interconnect lines are generated by metal deposition,

patterning and etching processes. Then, an oxide layer is deposited over the interconnect lines

and planarized by the CMP process, which is defined as inter-level dielectric (ILD) CMP. In the

15



Table 1.1 Microprocessor interconnect technology requirements [ITRS Interconnect, 2003].

Year of Production 2005 2007 2009

Technology Node hp90 hp65 hp65

Dram V2 Pitch (nm) 80 65 50

MPU/ASIC 2 Pitch (nm) 95 76 60

MPU Printed Gate Length (nm) 45 35 28

MPU Physical Gate Length (nm) 32 25 20

Number of metal levels 11 11 12

Total interconnect length (m/cm2) - active wiring only, excluding 907 1117 1559
global levels

Metal 1 wiring pitch (nm) 190 152 120

Metal 1 A/R (for Cu) 1.7 1.7 1.8

Interconnect RC delay (ps) for 1 mm Metal 1 line 284 384 595

Cu thinning at minimum pitch due to erosion (nm), 10% x height, 16 13 11
50% areal density, 500 pm square array

Intermediate wiring pitch (nm) 240 195 156

Intermediate wiring dual Damascene A/R (Cu wire/via) 1.7/1.5 1.8/1.6 1.8/1.6

Interconnect RC delay (ps) for 1 mm intermediate line 182 229 358

Cu thinning at intermediate pitch due to erosion (nm), 10% x 20 18 10
height, 50% areal density, 500 gm square array

Minimum global wiring pitch (nm) 360 290 234

Ratio range (global wiring pitches/intermediate wiring pitches) 1.5-6.7 1.5-8.0 1.5-8.0

Global wiring dual Damascene A/R (Cu wire/via) 2.2/2.0 2.2/2.0 2.3/2.0

Interconnect RC delay (ps) for 1 mm global line at minimum pitch 69 92 139

Cu thinning at maximum width global wiring due to dishing and 176 172 144
erosion (nm), 10% x height, 80% areal density

Cu thinning global wiring due to dishing (nm), 100 pm wide 24 19 15
feature

Barrier/cladding thickness (for Cu intermediate wiring) (nm) 9 7 6

Intermediate metal insulator (minimum expected) - bulk dielectric <2.7 <2.4 <2.4
constant (ic)
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Figure 1.1 (a) Schematics of typical chip cross section [ITRS Interconnect, 2003] and (b)
Scanning electron micrograph of IBM's six-level copper interconnect technology in
an integrated circuit chip [IBM Corporation, 1997].
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Figure 1.2 Comparison of the Al and Cu interconnect metallization processes. Al
metallization: (a) Interconnect deposition, (b) Oxide deposition and (c)
Planarization by ILD CMP. Cu metallization: (d) Interconnect pattern etch and
barrier layer deposition, (e) Cu deposition and (f) Planarization by Cu CMP.
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Cu technology, interconnect lines are produced by a so-called damascene scheme, shown in Fig.

1.2(d)-(f). After a dielectric layer is deposited, interconnect trench patterns are generated by

photo-lithography and etching processes. Then, a barrier layer and Cu are deposited over the

trenches and the excess Cu and barrier material are removed by the CMP process, which is called

Cu CMP. Due to the material and geometric complexities, however, systematic approaches to

resolve non-uniformities in Cu CMP are still lacking. In this research, therefore, the primary

concern is on Cu CMP. It is hoped that by modeling and optimizing Cu CMP, it is also possible

to optimize inter-level dielectric (ILD) and shallow trench isolation (STI) CMP, and the

manufacture of novel micro- and nano-scale devices.

1.2 The Copper Chemical-Mechanical Polishing Process

The CMP process is both a material removal and surface planarization process. Based on the

relative motion of the pad and the wafer, CMP equipment may be classified as linear, rotary, or

orbital. Figure 1.3 shows a schematic of the most common rotary-type CMP process. The wafer

to be polished is mounted on a wafer carrier with its polishing surface facing downward, and is

pressed against a rotating platen that holds a polishing pad. As the platen and the wafer carrier

rotate, abrasive slurry is fed onto the pad at the edge of the wafer carrier and is carried

underneath the wafer by the polishing pad.

The purpose of the Cu CMP process is to remove excess Cu and barrier layer in the

damascene Cu metallization process shown in Fig. 1.2(d)-(f). Copper is deposited by

electroplating or physical vapor deposition (PVD) process over the oxide trenches with various

pattern geometries as in Fig. 1.4(a). Ideally, polishing should end when the excess Cu and the

barrier layer are completely removed across a wafer while the polishing surface remains

perfectly flat as shown in Fig. 1.4(b). In the real CMP process, however, there are always wafer-

surface non-uniformities, termed as dielectric erosion and Cu dishing, as shown in Fig. 1.4(c).

In Cu CMP, the material removal and planarization mechanisms are a complex combination

of chemical and mechanical interactions dependent on the wafer geometry and materials, slurry

and pad, and process parameters as shown in Fig. 1.5. It has been argued that the chemical

component of the process is the reaction of the wafer surface with slurry chemicals to form a

chemically modified surface for enhancing material removal rate [Cook, 1990; Kaufman et al.,
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Figure 1.3 Schematic of the conventional face-down, rotary-type CMP process.

(a)

SiO2

(b)

Dishing (D) Erosion (e)

(------ ---------
SiO 2

(C)

Figure 1.4 Schematics of pattern cross-sections: (a) before CMP, (b) after CMP (ideal case)

and (c) after CMP (real case).
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1991; Hariharaputhiran et al., 2000; Singh and Bajaj, 2002; Jindal and Babu, 2004], and the

mechanical component of the CMP process is the material removal from the wafer surface by the

abrasive particles in the slurry [Liu et al., 1996; Saka et al., 2000; Ahmadi and Xia, 2001; Fu et

aL, 2001; Luo and Dornfeld, 2003; Seok et al., 2004]. Notwithstanding the enormous research

on CMP to meet the ever-stringent demands, fundamental understanding of the process is still

inadequate. Although the semiconductor industry has managed to meet the ever-stringent

specifications so far, CMP now faces great challenges in the transition to nano-scale IC device

fabrication, due to the shrinking device size, and novel materials like low-k dielectrics.

1.3 Scope of Present Thesis

There are three important requirements in the Cu CMP process. First, it is necessary to

increase the throughput by increasing the material removal rate of Cu. For this, three approaches

are typically attempted: mechanical, chemical and electrochemical enhancements. The

mechanical approach is to increase the applied pressure or relative velocity, to decrease the size

of abrasives or to use fixed abrasive pads, and to increase the concentration of abrasives [Fu et

al., 2001; Luo and Dornfeld, 2003]. In the present industrial application, for example, the size of

abrasive varies from 100 nm to a few micrometers. The chemical approach is to use additives

that react with Cu and form a softer Cu layer [Singh and Bajaj, 2002]. For example, hydrogen

peroxide (H202) is the most common additive to enhance the material removal rate of Cu in

CMP. Recently, an electrochemical approach has been adopted based on electropolishing

technique [Padhi et al., 2003; Huo et al., 2005]. As a second key requirement, the wafer surface

non-uniformities, dielectric erosion and Cu dishing, should be reduced. As the interconnect

linewidth decreases and the number of layers increases, the control of dielectric erosion and Cu

dishing has emerged as the greatest challenge in Cu CMP. Generally, dielectric erosion is more

prevalent than Cu dishing in the dense sub-micron, copper-line region, whereas dishing is more

significant than erosion at the global wiring level, Table 1.1. Third, defects after CMP should be

minimized. In this thesis, however, defects during Cu CMP will not be considered.

The main concern in this thesis is to reduce dielectric erosion and Cu dishing across the

wafer in Cu CMP. Past efforts to characterize the relationships between dielectric erosion and

Cu dishing and process parameters have been primarily empirical. Several semi-theoretical
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models have been advanced, but such models essentially address the effect of one variable at a

time, and are confined to only the feature-scale or at most die-scale. As the size of the wafer

increases, however, the significance of non-uniformity, not only at the feature-scale but also at

the die- and wafer-scales, on erosion and dishing increases. Therefore, it is timely to develop

integrated erosion and dishing models to express wafer surface non-uniformities at wafer-, die-

and feature-scales. Throughout this thesis, the following two conditions are considered both in

the analysis and in the experiments.

Single-step polishing: Although it is common to use a multi-step polishing scheme in the

industry [Dejule, 1998; Moinpour et al., 2002], the single-step polishing scheme is analyzed to

understand the physics of surface non-uniformity evolution more clearly and to suggest a

possible approach to mitigate both erosion and dishing.

Bimaterial structure: We will assume the patterned wafer as two-material damascene

structures, i.e., Cu and oxide. In Cu CMP, the barrier layer is usually very thin and can be

treated either as Cu, if the material removal rate of barrier is the same as that of Cu, or as oxide if

the material removal rate of barrier is close to that of oxide.

1.4 Thesis Organization

The overall goal of the thesis is to develop dielectric erosion and dishing models that

integrate the wafer surface non-uniformities at the wafer-, die- and feature-scales, and to propose

practical solutions to mitigate erosion and dishing.

Chapter 1 describes the background and the scope of thesis. In Chapter 2, feature-scale

polishing models based on the local pressure calculation scheme with various contact mechanics

at the pad/wafer interface and the step-height are introduced. The pad/wafer contact regimes

include: smooth, discrete pad; smooth, continuous pad; uniformly rough, continuous pad;

randomly rough, continuous pad. In Chapter 3, the non-uniformities at the wafer-, die- and

feature-scales are identified, and integrated into the dielectric erosion and Cu dishing model.

The effects of physical and geometric parameters on dishing and erosion are discussed based on

the parameter sensitivity analysis. The developed Cu dishing and dielectric erosion models are

validated by 100 mm patterned wafer polishing experiments in Chapter 4. Finally, conclusions

of this thesis and suggestions for future research on Cu CMP are presented in Chapter 5.
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CHAPTER 2

FEATURE-SCALE STEP-HEIGHT MODELS

2.1 Introduction

To develop integrated erosion and dishing models, it is necessary to characterize the feature-

scale polishing behavior first, since both in CMP are due to differential material removal rates.

The material removal rate (MRR) is in general proportional to the pressure and relative velocity.

The pressure distribution on the polishing surface is determined by the pad/wafer contact

mechanics at a given step-height. Over the past decade, there have been many efforts to describe

the evolution of polishing surface based on various contact mechanics models as shown in Fig.

2.1. Previous works may be categorized as:

Smooth pad model: Contact between the wafer and the pad is analyzed based on the

assumption that the polishing pad is elastic and smooth [Chekina et al., 1998; Lai et al., 2002].

This approach assumes that the elastic deformation of the smooth, monolithic pad itself as Cu

dishing.

Discrete pad model: This approach assumes that the pad deforms as discrete blocks or a

series of linear springs. These springs may or may not be connected each other [Runnels et al.,

1994, 1999, 2003; Grillaert et al., 1998; Elbel et al., 1998; Chen and Lee, 1999; Yang, 2000; Fu

and Chandra, 2003; Guo et al., 2004; Noh et al, 2004]. These models account for dishing fairly

well, but rely on the physically inadmissible discontinuous deformation of the pad.

Rough pad model: Several contact models have also been proposed based on the contact of

random rough surfaces [Yu et al., 1993; Vlassak, 2001, 2004; Borucki, 2002; Nguyen et al.,

2003; Seok et al., 2003]. The rough pad/wafer contact is modeled by adopting the classical

analysis by Greenwood and Williamson [Greenwood and Williamson, 1966]. In these models,

the asperity height distribution is assumed to be either Gaussian or exponential.

In all these models, the general procedure is to calculate the step-height as a function of

contact geometry, average pressure, relative velocity, material properties and surface

topographies of the pad, and polishing time. Section 2.2 describes step-heihgt evolution. First,
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Contact Mechanics Models

Discrete, Smooth Pad

- Runnels et a/., 1994, 1997
- Grillaert et al, 1998
- Elbel et al., 1998
- Chen and Lee, 1999
- Yang, 2000
- Fu and Chandra, 2003
- Noh et al., 2004

Continuous, Smooth Pad

- Chekina et al., 1998
- Lai et al., 2002

Continuous, Rough Pad
(Simplified)

(1) Fully elastic
- Present Work

(2) Fully plastic
- Present Work

Contiouous, Rough Pad
(Gaussian or exponential)

(1) Fully elastic
- Yu et al., 1993
- Viassak et al., 2001, 2004
- Borucki, 2002
- Nguyen et al., 2003
- Seok et al., 2003
- Present Work

(2) Fully plastic
- Present Work

Figure 2.1 Classification of contact mechanics models for patterned wafers in CMP.
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the contact pressure distribution at a given step height is related to the elastic deformation of the

pad surface in the smooth pad assumption, or to the elastic/plastic deformation of asperities in

the rough pad analysis. Then, the evolution of step-height in a patterned wafer is calculated by

combining the effects of pad profile and the geometry of Cu interconnects at each polishing

stage. Based on the developed step-height model, dielectric erosion and Cu dishing in Cu CMP

can be expressed as a function of geometric, material and process parameters. Such parameters

include: wafer-scale uniformity factor, pre-CMP wafer surface topography, radius of curvature

and spacing of pad asperities, Young's modulus of the pad, yield strength of the pad, the nominal

pressure, slurry selectivity, and so on.

Subsequent sections then apply the general step-height model calculation procedure of

section 2.2 to various pad/wafer contact conditions. Section 2.3 presents a smooth pad

derivation. In this section, the pad deformation based on the contact mechanics model by Lai et

al. is revisited and extended to the case when interconnect is filled with Cu to a certain step-

height. Section 2.4 adapts the previous one-dimensional discrete pad block models and

investigates the step-height evolution. Section 2.5 presents a simplified rough pad model. The

mean asperity contact radius and the asperity spacing are estimated by the analysis based on the

general random rough surface of the pad in section 2.6. Section 2.6 follows the Greenwood-

Williamson approach like previous rough pad models. In this section, however, a new approach

to extend a rough pad/blanket wafer contact into a patterned wafer analysis is presented. Both

elastic and fully plastic deformations of pad asperities are considered and the effect on the

evolution of the step-height during polishing is compared. Sample calculations of each model

are presented at the end of each section, based on material properties and surface topographies of

a commercial polishing pad.

2.2 The General Procedure

Figure 2.2 shows the general procedure for tracking step-height, which is similar to that

presented by several previous researchers [Grillaert et al., 1998; Park et al., 2000]. Nevertheless,

we formulate the model and define the terminology to enable comparison of the smooth, discrete

and rough pad modes in sections 2.3 through 2.6.

To characterize the evolution of the step-height, it is necessary to have an expression for a
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Figure 2.2 Schematic of feature-scale step-height calculation: (a) Definition of high and low
features, (b) Stage 1, (c) Stage 2 and (d) Stage 3.
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material removal rate at a give feature first. The local material removal rate in CMP is expressed

by the Preston equation [Preston, 1926]:

dh

where h is the thickness of the layer removed, t the polishing time, p the pressure, vR the

relative velocity, and k, the Preston constant. Although the Preston equation represents the

local material removal rate at any point on the wafer, it does not explain the actual material

removal mechanism. Nevertheless, several researchers have experimentally demonstrated that

the above functional relationship is generally valid in CMP at many scales [Steigerwald et al.,

1994; Stavreva et al., 1995 and 1997; Lai, 2000]. The Preston constant, obviously, is not a

fundamental constant. It depends on the pad/wafer contact condition, slurry concentration and

chemistry, abrasive size and shape, pad stiffness and surface topography, and so on [Liu et al.,

1996; Saka et al., 2000; Ahmadi and Xia, 2001; Fu et al., 2001; Luo and Dornfeld, 2003; Seok et

al., 2004]. Thus, any variation in these quantities at any scale is expected to result in non-

uniformity in material removal rate at that scale. In this thesis, the wafer-scale material removal

rate, MRR, is defined by the average applied pressure, p,,, and the relative velocity, vR, in

blanket wafer polishing.

MRR = kp -p, - vR (2.2)

where pa, is the average pressure defined as a ratio of applied load, F , to the projected area of

the wafer, Aw.

A complex aspect of Cu CMP is that there are at least three different materials - Cu,

dielectric and barrier layer - to be polished, sequentially or simultaneously. Therefore, the ratios

of material removal rates, or selectivities, are important in characterizing polishing non-

uniformity. The selectivities of Cu, oxide and barrier layer are obtained by blanket wafer

polishing under the same process or experimental conditions as the patterned wafer polishing.

Since the definition of selectivity is based on blanket wafer experiments, with the same nominal

pressure and relative velocity, it is the ratio of Preston constants. Thus, the selectivities in Cu

CMP are defined as:
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where the subscripts Cu, b, ox, respectively, represent copper, barrier and oxide. As described in

Chapter 1, throughout this paper, we consider the Cu interconnect structure as two material

structure, Cu and oxide. The selectivity depends both on the hardness of the material polished

and the chemistry of the slurry [Moinpour et al., 2002; Lai et al., 2002; Jindal and Babu, 2004].

For instance, hydrogen peroxide, a common additive in commercial Cu slurries, reacts with Cu

and forms a "soft" layer so that the material removal rate of Cu increases and thus Sc1/ox too

increases.

The geometry of interconnects is expressed by Cu linewidth, w, pitch, A, and interconnect

thickness, h1 . Cu is deposited by the amount of the thickness, hcu, and the pattern geometry of

the initial surface profile is represented by the "surface linewidth", acw, and the initial step-

height, hj, as shown in Fig. 2.2(a). In the present step-height, erosion and dishing models, the

focus is not on the evolution of the complete profile of a feature but on the evolution of the

maximum value of the step-height, erosion and dishing. Therefore, the center of two

interconnect lines, x = A /2, and the center of the individual Cu interconnect line itself, x = 0,

are designated as the high and low features locations, respectively as shown in Fig. 2.2(a).

Therefore,

hh(t) = h(A/2,t) = h(-A/2,t) (2.4)

h1(t) = h(0,t)

where hh and h1 , respectively, are the polishing surface heights of the high and low features

relative to the top of the oxide.

The step-height, h, (t), is defined as the height difference between the high and low features

at any given time t, as shown in Fig. 2.2(b).

h8(t) = hh t) - h1(t) (2.5)

The material removal rates at the high and low features, and thus step-height, can be expressed

by the Preston equation as:
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dhh kp hWV
dh -(2.6)

dh _
dt = kpI(t)v

where kp, and kp, are the Preston constants, and -h and P, the mean pressures at the high and

low features, respectively. The evolution of the step-height can be calculated as:

dhs _ dhh dh (2.7)
dt dt dt

The material removal rate at any instant is based on the local pressure distribution, which

varies as the polishing surface profile changes and can be solved by assuming appropriate

pad/wafer contact conditions. Although the real contact pressure may vary along the pitch, A,

and there might be rounding of the edges, it is not considered since the focus of this study is to

characterize the maximum dishing and erosion. Therefore, it is assumed that the high and low

features remain horizontal during polishing and the mean pressures at the high and low features

are defined to calculate the corresponding material removal rates. Both the mean pressure at the

high and low features, Ph and - , generally vary with time as shown in Fig. 2.2(b) - (d),

depending on the pad/ wafer contact conditions and the feature geometries.

To calculate Ph and y, two relationships are invoked. One is the force equilibrium equation

and the other is compatibility, or the relationship between the pressure and the step-height. The

force equilibrium at any stage can be represented as:

Pay = Ph (1 - W/A) + A (w/A) (2.8)

where pa, is the average pressure, w the linewidth and A the pitch.

The relationship between the pressure and the step-height can be solved by expressing the

deformation of the pad (asperity) at the high and the low feature, 6 h and 61, as a function of the

mean pressures, yh and T1. Thus,

bh = hPh, (2.9)

61 =61 (Fh i A)

The functions, 6h and 61 , represent the relationship between the deformation of the pad

(asperity) and the pressure, and depend on the pad/wafer contact mechanics. Furthermore, 5h
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and 61 include parameters such as Young's modulus, yield strength, initial thickness, asperity

geometry and spacing of the pad. The step-height at any given polishing time can be represented

either as the difference between 6 h and 61, if both the high and low features are in contact, or as

an independent values. From Eqs. (2.8) and (2.9), the mean pressure and thus the material

removal rates at the high and the low features can be calculated.

The evolution of pad/wafer contact surface and the step-height are represented in three stages

as shown in Fig. 2.2(b) - (d) and Fig. 2.3, respectively.

Stage 1: Initially, pad contacts the high feature only if the relative deformation of the pad

between the high and low feature under the given load is smaller than the initial step-height,

6 < h8 . The material being polished at the high and low featuress is Cu. The end of Stage 1 is

designated by t1 : 0 < t < t .

Stage 2: The pad starts contacting both high and low features. The material being polished at

the high and low features is Cu. The end of Stage 2 is designated by k: t1 5 t < k2.

Stage 3: The pad contacts both the high and low features. The materials being polishing at

the high and low features, however, are different: oxide at the high feature and Cu at the low

feature. The end of Stage 3 is designated as the process endpoint t,: t2 t tep .

2.2.1 Stage 1

Initially, i.e., without any load, the pad contacts only the high feature. When load is applied,

the pad may or may not contact the low feature. If the load is sufficiently high to deform the pad

at the high feature more than the initial step-height, then the pad will touch the low feature. If

the load is low, by contrast, the deformation of the pad at the high feature is less than the initial

step-height and thus the load will be supported by the high feature only. In Stage 1, the latter

case is assumed to apply.

The reference line for the heights of high and low features is the top of the oxide layer.

Therefore, initial conditions for hh(t), h, (t) and h, (t) are expressed as:

hh(0) = hou (2.10)

h(0) =hu - ha

h,(0) =ha (2.11)

To calculate the mean pressure at the high and the low features, force equilibrium in Stage 1 is
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expressed as:

Pay = Ph( -- aw/A) + p (aw/A) (2.12)

Since only the high feature contacts the pad, the deformation of the pad (asperity) and the step-

height do not affect the mean contact pressure. Thus, the mean contact pressure can be easily

solved from Eq. (2.12) as:

Ph - Pav 1 - aw/A) (2.13)

If pressures at the high and low features are constant in Stage 1, material removal rates also

remains constant. Additionally, the material being polished at the high feature is Cu: kp, =k, .

Thus, material removal rates at the high and low features, and the step-height are:

dhh kpavVR 1
dt = pu 1 - aw/A) (2.14)

dh 0
dt

dh= -k pavvR (2.15)
dt 1 -aw/A

Combining with the initial conditions, the height at the high and low features and the step-height

can be solved as:

hh(t) = hcu kpcu PavVR 1 W/A) (2.16)

h, (t) = h - hs

h8 (t) = h8i kpc PavVR / t (2.17)
(I- aw/Al

The end of Stage 1, t=t1 , is determined as the moment when the low feature, too, starts

supporting load. If the pad were perfectly smooth and rigid, it would contact the low feature

only when the height at the high feature decreases by the amount of the initial step-height. A

compliant pad, however, contacts the low feature even before the high feature reaches the level

of the low feature due to pad (asperity) deformation, 6, under the given load. Thus

6 = Sh(p,0) - Sl(phO) (2.18)
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The relative pad deformation, 6, depends on the pad/wafer contact assumption and the pattern

geometry. If the calculated 6 is smaller than the initial step-height hi, the assumption to begin

with Stage 1 is valid. But, if 6 > h8i, the step-height model needs to begin with Stage 2. Thus,

the requirement to start with Stage 1 is:

6 < h,; (2.19)

At the end of Stage 1, t = t1, h, reaches the pad deformation, 6, and the low feature, too, starts

supporting the normal load. Thus the final heights of the high and low features, and the step-

height at the end of Stage 1 are:

hh(tl) -e- hs1  6 (2.20)

h1(t1) = hCu - h82

h8(ti) = 6 (2.21)

Once the pad deformation is calculated from the contact mechanics, t1 can be expressed as:

ti = (h - 6)(1 - aow/A) 2.22)kp0u PavVR (.2

2.2.2 Stage 2

As the pad contacts low features, they too get polished. This stage is designated as Stage 2.

At the beginning of Stage 2, t = t1 , the initial step-height is 6 and the initial heights of the high

and the low features are given by Eqs. (2.20) and (2.21). The mean pressures Ph and - can be

solved by Eq. (2.12) and the relations between the pressure and the step-height depending on the

pad/wafer contact mechanics, 6 h and 61. In Stage 2, both the high and the low feature are in

contact, and thus the step-height can be rewritten as:

hs = 6 h - 61 (2.23)

In this stage, the material being polished at the high and low features is Cu, and thus

kp, =kp, =kp,, . Therefore, the material removal rates at the high and low features are:

dhh _k

dt - p0 Ph (2.24)

dt - kpuP(t)VR
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The evolution of the step-height can be calculated from the difference between the heights of the

high and the low feature as in Eq. (2.7). During Stage 2, material removal rates at high and low

feature approach to that of blanket wafer polishing as polishing progresses and the step-height

decreases. The rate of step-height reduction depends on the pad/wafer contact mechanics. If the

step-height decreases exponentially, for example, the time-constant in Stage 2, T2 , is the index

of how fast the step-height approaches to zero.

The end of Stage 2 is marked by the polishing time t2 , when the pad surface at high feature

reaches the oxide surface. Thus,

hh() = 0 (2.25)

The step-height at the end of Stage 2, h, (k ), represents the minimum step-height, if So, /.> 1,

and thus k is the ideal process endpoint at the feature as shown in Fig. 2.3. However, due to the

initial surface geometry variation in a die, the field region in the same die takes more time to

reach Stage 3, which is designated as t2f . Additionally, if the die is not the slowest die in a

wafer, the time to reach Stage 3 at the field region in the slowest die, kf , is greater than kf .

2.2.3 Stage 3

To calculate the mean pressure -h and y, the force equilibrium is considered first. Since

the linewidth is changed to the designed Cu linewidth, w, instead of aw, there are three cases to

consider: the high feature with oxide, high feature with Cu and low feature with Cu. In most

cases, h,(t) is relatively small compared with the interconnect thickness and thus the high

feature with Cu can be assumed to be the low feature with Cu. Therefore, in Stage 3, oxide

region is considered as high feature and Cu region as the low feature. Thus

Pa =Ph (1-W/ A+ (w/) (2.26)

Second, the relationship between the pressure and the step-height can be obtained from the

pad/wafer contact mechanics used in Stage 2.

In Stage 3, the materials being polished at the high and low features are oxide and Cu,

respectively: kph = k, and kP, =k,, . Therefore, the material removal rates at the high and low

features can be calculated as:
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dhh kp, ThhVR

dt p(2.27)

dh1  _kpc A-
dt PuPV

Again, the evolution of the step-height is calculated from the difference between the heights at

the high and the low features.

Now, the normal load is supported by both high and low features, and the pressure and

material removal rates at the high and low features depend on the step-height and slurry

selectivity, Sc.I/o,. If Scl/.x= 1, the step-height decreases, and the pressure and the material

removal rate at the high and the low feature approach the same values as those of field region. In

most of conventional polishing practices, however, SC./,;> 1. In the beginning of Stage 3, the

material removal rate of Cu is greater than that of oxide, thus the step-height increases. As the

step-height increases, the pressure and the material removal rate at the high feature increase and

those at the low feature decrease. If the step-height increases in a form of 1 - exp(-t / T), the

time-constant in Stage 3, T3 , is the index of how fast the step-height increases. If the polishing

time is long enough or (tp, - t2) > T3 , the step-height approaches an asymptotic value, h,(oo).

As SC 0 ,, increases, h,(oo) approaches the maximum relative pad deformation, 6,,, which is the

pad deformation when the Cu interconnect area is empty, or recessed enough, so that it does not

support load.

As the polishing time increases, material removal rates at both high and low features

approach the same value. Thus, the asymptotic material removal rate of the high and low

features is calculated by equating material removal rates of high and low features.

MRR = kpcP. v r(/A ), /A (2.28)

Although it is desirable to set the process endpoint as t2 at each feature, in the conventional

face-down CMP setup, it is impossible to set different endpoints at any two points on a wafer.

Thus, there is only one process endpoint across the entire wafer, which is designated as t,.
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2.3 The Smooth Pad Model

In this section, we apply the procedure described in section 2.2, for a pad that is assumed

homogeneous, monolithic, elastic and semi-infinite as shown in Fig. 2.4. The smooth,

continuous pad models have been developed based on the contact mechanics between the pad

and the pattern on a feature. First, the characteristics of the steady state regime are analyzed on

the basis of approaches developed in contact mechanics [Chekina et al., 1998]. The polishing

pad is assumed to be a perfectly smooth elastic half-space and the displacement of the pad is

expressed as a function of local pressure. The effect of pattern geometry is investigated by

considering one dimensional periodic feature with a steady-state material removal rate

assumption. Another approach was to calculate the maximum pad deformation based on the

contact mechanics between the perfectly smooth pad and the pattern trench [Lai et al., 2002]. In

this model, the pad deformation was much smaller than the amount of dishing from experiments.

The pad deformation based on the smooth pad assumption does not explain the large pad

asperity deformation in the large feature size. Moreover, most commercial polishing pads are

rough and there are many pad asperity/wafer contacts. Nonetheless, if the size of the contact

between pad and wafer is smaller than the width of Cu interconnects, the smooth pad assumption

is valid. As Cu linewidth decreases, it become more important to explain non-uniformities based

on the smooth pad condition, for instance, dielectric erosion in the submicron device level.

The key assumptions of the contact model are:

* The pad is an isotropic, elastic, semi-infinite medium.

* The pad surface is perfectly smooth.

* The wafer surface always remains horizontal.

" The deformation is plane-strain.

" The pad surface outside contact region is stress-free: UZ = Tz= 0.

* The friction coefficient in the contact region is small: [~ 0.1.

2.3.1 Theory

The elastic deformation of the homogeneous, monolithic smooth pad, 6, for a periodic

structure in the elastic half space with plain strain condition has been solved [Lai et al., 2002].

In this section, that model is employed with the uniform pressure boundary condition as shown

38



A
aw

SF

-- Undeformed
Pad Surface

(a)

Ph Ph

(b)

Ph Ph

(c)

Schematics of the pattern/smooth-pad contact interface: (a) initial stage with
uniform pressure distribution specified on the high feature and pressures on the high
and low features when (b) h, > 6 and (c) h, < 6. The wafer surface to be

polished is facing down.
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in Fig. 2.4. The displacement of the pad surface, - (x), in Stage 1 can be solved as [Johnson,

1985, pp. 11-44]:

= -~ (2a){[(1 + - b in(i + b + (- - x - b - x - b)
UZ W E 7r \ a /n \ 1 / \ a In \I a (2.29)

+ ( + x + b In 1+ x + b ) + (i b In 1 -x + b + C (

where a=(A-oaw)/2, b = A/2, E*=Ep/(1 - v,) which represents the elastic modulus in

the plane strain problem, and C1 is a constant determined by any arbitrary reference point.

The model by Lai et al. predicts the maximum pad deformation when the Cu line is load-free,

and thus can be used in Stage 1. To explain the evolution of step-height under the pattern filled

with Cu, the model by Lai et al. is extended here with uniform pressure boundary conditions at

both high and low features. In this case, the pad displacement can be expressed as:

'(X)= (2 1(+ x-b )ix -b)+ (ix-b l - b

a | \ a / a a

+ + +b 'ln1+ b+ +(ix b 1 n 1 z~I (2.30)

- 2(b - a)- 1+ b )ln(l+ X )+(I- X )ln(l- b a +C 2
E 7 \ b-a \ b- a \ b- a \ b- a

While C2 varies with the position of datum, since we are interested in relative displacement of

the pad, it can be any value. Thus, C2 is set as zero.

Accordingly, the deformation of the pad at the high and the low features can be expressed as:

A 5(hP) = ilz'(x =A/2) (.1 6h 6 (Thipl(2.31)

61= 6( A = ( 0)

Thus,

6h(Ph,AP) = Ahhw (4) + h )(

61( h, i A)= AhW() + A (

where
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1 f+[(-w/ A 3 3-w/A 1+w/A 1+w/A

Ah =11n 
-w/A j I nwiAJ I+w/A In[I+w/AJn (2.33)

7 1-w/A 1-w/A 1-w/AJ 1-w/A)]A 1 3-w/A )I('-W/ A 1+w/A l~l+ w/A (.3

7r w/A w/A w/A w/A

Stage 1

The initial relative pad deformation, 6, can be represented as the relative displacement of

pad at the high and low features as in Eq. (2.18). By combining Eqs. (2.31) - (2.33) with the

condition A = 0 and the surface linewidth aw instead of w, 6 can be rewritten as:

6 = Aia (--)w (2.34)

where A1 is a dimensionless coefficient determined by replacing w by aw in Eq. (2.33). Thus,

A,= 1 3-(aw/AIn 3-aw/A) 1+aw/A)In 1+aw/A (2.35)
,7(aw/A)l 11-aw/Al 11-aw/Al) 1-aw/Al 11-aw/All

By combining with force equilibrium, 6 can be rewritten as:

6 = A a a )w (2.36)
(1 - aw/ A) \E*/

The relative pad deformation, 6, is much smaller than the Cu interconnect thickness, h1 ,

under most of polishing conditions and pad materials: pa, / E* ~ 10 4. In this case, it is

reasonable to assume the pad as a flat surface during polishing, especially in the submicron

feature level. If the local stiffness value is much lower than the bulk value of the pad, however,

the flat pad surface assumption is not valid anymore, and the pad deformation should be into

consideration. Nonetheless, in this section, we accept the bulk Young's modulus of the pad and

thus, the flat pad assumption is used.

Based on this assumption, the end of Stage 1, t1, in Eq. (2.22) is expressed as time at which

the pad just touches the low feature and starts supporting the normal load. Thus,

ti = h, (1 - aw / A) (2.37)
kPavVR
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At the end of Stage 1, t = t1 , the polishing surface at high and low feature become the same and

thus the step-height becomes zero.

hh(tl) = h1(t1) = hCu - hi (2.38)

h,(t) = 0 (2.39)

Stage 2

Since the pad is assumed to be flat during polishing in Stage 1, the pressure and material

removal rates in this stage are the same as those of the field region, and we do not need to

consider the deformation of the pad based on the uniform pressure boundary condition. Thus,

Ph = P = Pay (2.40)

dhh-k,, Pav (2.41)
dt dt kpuaV

Therefore, heights at the high and the low features decrease linearly and the step-height remains

zero during Stage 2.

hh(t) = h1(t hou - h - kp,, PavVR ( t - (2.42)

h,(t) = 0 (2.43)

Stage 2 ends when the pad reaches the top of the oxide at the high feature. Thus the end of Stage

2, k, can be expressed as:

-C= - (aw /A )h's (2.44)
kp, PavVR

At the end of this stage, t = t2, the polishing surface of both high and low features reaches the top

of the oxide, while the step-height remains zero.

hh(k) = h1(t2) = 0 (2.45)

h,(t) = 0 (2.46)

Stage 3

As the pad surface reaches the top of oxide, the materials being polished at the high and low

features are oxide and Cu, respectively. Since the pad is in contact with both high and low

features at this moment, and the materials in general have different polishing rates, a step is

created by further polishing. Even though the maximum step-height is expected to be very small
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since the maximum pad deformation is small, this analysis is useful for two reasons. First, by

calculating time constant of step-height change, it can verify later that the "steady-state"

assumption in Stage 3 is valid in the smooth pad erosion and dishing model. Second, this

analysis will be useful to calculate Cu dishing at the submicron features if Young's modulus of a

pad is much smaller than that of current polishing pads or if we know the local value of Young's

modulus instead of the bulk material property.

The step height can be solved by the pad surface height difference between the high and the

low features as:

= ( Ahh -)Ahw() +(Aih - A )w(A. (2.47)

where h,, Ph and T, are time-dependent variables. The pressure at the high and low features in

Stage 3 can be expressed as the step-height by solving the following linear equations:

[1-w/A w/A JphI Pav

Ah - Ahi Ah~ Ai J E*hs / w

We define the inverse matrix of the pressure coefficient matrix as:

Bll B1 2  1 - w / A w/A

B2 1 B22  Ahh - Ah "ih ~ A4i

where B11 , B12 , B21 and B22 are also dimensionless values determined by the area fraction of

Cu interconnects, w / A. Therefore, pressures and material removal rates at the high and low

features can be expressed as:

Th =Pav B11 + B12 *Ih
h 

Pay WI (2.50)

I3=Pav B 21 + B 22 (k*)hs

diI Pa Wdhh - _k p,, a V [ B 1 + B 12EV I hsdt IR1 'P I W(2.51)

= -kpc,,PavVR B21 +B22 Idt Pav W

Thus, the step-height can be obtained by solving the following ordinary differential equation:
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dh___B E- i1 (, B11dh+ k" PVR B 1 2  - B 2 2  - - h = kpc PavVR B21 - (2.52)
dt SCU /Ox Pay W SCu/ox)

At the end of Stage 2, the step-height when the pad touches the top of oxide layer, t = t2 , is zero.

The general solution for the step-height, therefore, can be expressed as:

hs(t) = B21SCu / ox - B11 (av )I t - t2 (2.53)
B12 - B22SCu /ox )\E* T3 )

and

T3 = SCU/ O 1 W Pav (2.54)
B12 - B22SCul/ox kPuPavR )\ E

If (t - t2 ) > - 3 , the step-height approaches h,(oo) and the material removal rates at the high

and low features approach MRR& very quickly. Thus,

h ((oo) = B21SCu / ox - B 1 1 Pay ) (2.55)
B12 - B2 2SCulox E*

hh(t) = -MRR(t - t2 )

hh(t) = -MRR(t - t2 ) - hs(oo)

2.3.2 Sample Calculation

Results of step-height calculation for various pattern geometries based on the smooth pad

model are listed in Table 2.1. The model parameters are decided based on conventional blanket

and patterned wafer polishing data with commercial pad and slurry, which will be described in

Chapter 4. In the conventional CMP practice, the time constant of the smooth pad model, T 3 , is

much smaller than the overpolishing time at each feature, (tep - k) > T 3 as listed in Table 2.1.

Therefore, the step-height approaches h,(oo) soon after it enters Stage 3, and the material

removal rates at both the high and low features approach MR&i. It may be noted that,

however, the commercial polishing pads are rough, and thus the application of smooth pad model

is limited to the features for which linewidths are smaller than the contact diameter of pad

asperities.

Table 2.2 and Fig. 2.5 show the time evolution of pressure, material removal rate, height of

the high and low features and the step-height based on the smooth pad model for comparing with

other models described later. The polishing time is normalized by the ideal endpoint of a wafer,

44



Table 2.1 Step-height based on the smooth pad model: w = 50 pm and a= 1.

w/A A1  B11  B 12  B21  B22  6 t, t2 T3  h,(oo) hs(tep)

(nm) (s) (s) (s) (nm) (nm)

0.1 1.122 0.957 3.688 1.388 -33.196 4.8 194 338 0.35 3.8 3.8

0.2 1.202 0.871 1.683 1.515 -6.730 5.1 173 317 0.69 4.1 4.1

0.3 1.291 0.939 1.100 1.143 -2.568 5.5 151 295 1.13 4.4 4.4

0.4 1.393 1.073 0.803 0.891 -1.205 6.0 130 273 1.74 4.9 4.9

0.5 1.512 1.283 0.612 0.717 -0.612 6.4 108 252 2.66 5.1 5.1

0.6 1.657 1.621 0.471 0.586 -0.314 7.0 86 230 4.17 5.6 5.6

0.7 1.842 2.215 0.355 0.479 -0.152 7.9 65 209 6.88 6.3 6.2

0.8 2.101 3.476 0.251 0.381 -0.063 8.9 43 187 12.45 7.1 7.0

0.9 2.543 7.587 0.145 0.268 -0.016 10.9 22 166 27.39 8.7 8.5

* Parameters include:

hsi = 900 nm

hIC= 1500 nm

h, = 1000 nm

kou 3.31x10" Pa'l

k, = 0.23x10~" Pa7'

Son / z= 14.1

pa,= 14 kPa

VR 0-9 m/S

E= 300 MPa

v = 0.3
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Table 2.2 Evolution of step-height based on the smooth pad model:
w = 50 pm, A = 50 pm, a= 1.

Time

(s)

0

30

60

90

120

150

180

210

240

270

300

330

360

390

420

450

480

hs

(nm)

900

650

400

150

0

0

0

0

0

1

1

1

1

1

1

1

1

hh

(nm)

1500

1250

1000

750

546

421

296

171

46

-9

-26

-43

-59

-76

-92

-109

-125

h,

(nm)

600

600

600

600

546

421

296

171

46

-10

-27

-44

-60

-77

-93

-110

-126

Ph

(kPa)

28

28

28

28

14

14

14

14

14

26

26

26

26

26

26

26

26

ii

(kPa)

0

0

0

0

14

14

14

14

14

2

2

2

2

2

2

2

2

I dhh/dt|

(nm/min)

500

500

500

500

250

250

250

250

250

33

33

33

33

33

33

33

33

I dh / dt I

(nm/min)

0

0

0

0

250

250

250

250

250

33

33

33

33

33

33

33

33

* Parameters include:

h,j = 900 nm

he.= 1500 nm

h1 = 1000 nm

k, = 3.31x10~" Pa'

kp = 0.23x10~" Pa

SCU/ 0z= 14.1

p,= 14 kPa

VR= 0-9 M/S

E= 300 MPa,

v= 0.3
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Figure 2.5 Time evolution of various parameters in the smooth pad model: (a) pressure, (b)
material removal rate, (c) polished surface height at the high- and low-feature and
(d) step-height (continued).
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Figure 2.5 Time evolution of various parameters in the smooth pad model: (a) pressure, (b)
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t28f, at the wafer reference point, i.e., field region of the slowest die in a wafer.

In Stage 1, the pressure at the high feature is twice the average pressure, for w / A = 0.5, and

the pressure at the low feature is zero. Because the pad is not in contact, the material removal

rate at the low feature is zero and the height at the low feature remains unchanged. The pad can

be approximated as a perfectly smooth and flat surface, and thus as soon as the low feature

contacts the pad, the pressure and the material removal rates at both high and low features

become that of field region. When the pad at the high feature contacts the top of the oxide,

material removal rate at the high feature is changed to that of the oxide. In this sample

calculation, ScU1O 0 is about 14. Since the step-height reaches h,(oo) very quickly, the material

removal rate reaches MRR, almost instantly, and the pressure at the high feature is greater than

that at the low feature by the ratio of selectivity.

2.4 The Discrete Pad Model

The previous section describes a smooth pad model derivation. The second approach is to

relate the pressure on the Cu interconnect to pad deformation by assuming that the pad deforms

as discrete, uniaxially loaded elastic blocks.

Due to its simplicity, the discrete pad assumption has been adopted by many researchers.

Runnels et al. [1994, 1999 and 2003] presented a model by idealizing the polishing pad as a

series of vertical springs, and horizontal springs connected to the vertical springs. Combined

with Preston equation, the evolution of feature- and die-scale surface profile was calculated.

Grillaert et al. [1998] studied the step-height planarization behavior in ILD CMP based on the

assumption that pad deforms as discrete blocks and separated the step-height reduction into two

stages: linear and exponential reduction. Elbel et al. [1998] proposed a mathematical approach

to describe erosion and dishing for tungsten CMP. In this model, the polishing pad is

represented as a network of both vertical and horizontal springs to simulate the profile of dished

tungsten line. They assumed a linear relationship between the pressure and the step-height at Cu

and oxide regions. The stiffness of vertical and horizontal spring was determined by

experimental results of maximum dishing.

Chen and Lee [1999] presented pattern planarization model based on the assumption that the
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pad completely conforms wafer pattern and the pressure difference at the upper and the lower

surface is proportional to the step-height. The proportional constant is defined as the loading

density coefficient and used to explain the stiffness of the pad. However, since the pattern

geometry effect is integrated into the loading density parameter, it requires large amount of

experiments to apply for various pattern geometries. Yang [2000] also proposed a copper

planarization model by assuming a perfectly conformal pad. In this model, the pressure at the

high and low features was determined by the vertical deformation of the pad, and the step-height

was calculated by combining with Preston equation. However, he related the pad deformation to

the Cu interconnect linewidth only by assuming that the relative change of pad compression

distance is proportional to the relative change of the feature size. Fu and Chandra [2003]

assumed that the pad behaves like an elastic foundation or linear springs with certain bending

ability, while the influences of pad viscosity and pad asperities are ignored. Based on this

assumption, step-height reduction and dishing model was developed and effects of pattern

geometries were investigated. It was assumed that the pad always touches both the high and the

low features. In this model, however, the stiffness of the pad is related to the initial thickness of

a polishing pad, and how to determine the bending factor value is not fully explained. Later,

Guo et al. [2004] extended the previous model to apply viscoelastic pad material properties, i.e.,

Young's modulus and bending factor.

In this section, we specialize the model structure of section 2.2 by adopting the discrete pad

model in the following derivation. The high and low features are assumed as shown in Fig. 2.6.

The key assumptions of the model are:

* The pad is an isotropic, elastic material.

" The wafer surface always remains horizontal.

" The pad deforms as separate uniaxially-loaded blocks under the uniform pressure boundary

condition.

* The deformation is plane-strain.

" The pad surface is perfectly smooth across each loaded block.

* The pad-surface in x -direction is stress-free and does not expand: ux= Tz= =0, V= 0.

" The bottom of each block remains at the same level and is free to move horizontally.
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Figure 2.6 Schematics of the pattern/discrete pad contact interface when (a) h, > 6 and
Af ==aw/A,and(b)h, < and Af =w/A.
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2.4.1 Theory

Stage 1

Again, the initial relative pad deformation, 6, can be represented as the relative displacement

of the pad between the high and the low features as in Eq. (2.18).

6 = ( H (2.57)
E,

By combining with force equilibrium, (2.57) can be rewritten as:

6 = / )(PavJ HO (2.58)
1 - aw/A Ep

In this section, we start with the condition 6 < h, so that the low feature does not support the

load initially. If 6 > hs;, the analysis starts with Stage 2.

The final heights at the high and low features, the step-height, and the time at the end of

Stage 1, t1, can be obtained by substituting 6 into Eqs. (2.20) - (2.22), respectively. Thus, the

discrete pad model discussed here provides an expression for the height at which low area

contact first occurs, as previously mentioned in the general modeling framework of section 2.2.

Stage 2

In Stage 2, the pad is in contact with both the high and low features. Deformations of the pad

at the high and the low features, 6 h and 61, in Stage 2 can be expressed as:

bh 6h (Ph i A _h-I HOp ) ((2.59)

61 = (Ph = ( jHO
E,

where E, is the Young's modulus of the pad material and H the undeformed pad thickness.

Therefore, pad blocks pressing the high and low features act like springs.

Although the discrete pad model relies on finite pad thickness and physically inadmissible

discontinuous deformation of the pad, it gives a simple conceptual picture of how a rough pad

would behave if the pad asperities act as individual contacts.

The step-height can be expressed by the thickness difference of the high and low features,

and the pressure difference by combining Eqs. (2.23) and (2.59) as:
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hs = J)HO - [ HO (2.60)
E, E,

where h,, Ph and T, are time dependent variables. By combining Eq. (2.60) with the force

equilibrium, the pressure and the material removal rate at the high and low features at any given

time t can be expressed as:

Ph =Pa 1 + (aw /A) E) h
Pav Ho (2.61)

t = Pav 1-(1-aw/) (Ep h
Pav Ho

and

dhh = kO 1P~avR 1 + (w/A) (Ep I)h

dt a .vO (2.62)
d =-kpcPavR 1-(1-aw/A) E) hdt Pav HO

Thus, the step-height, h,, is expressed by the first-order ordinary differential equation

dh, kpcuEp VR- s= 0 (2.63)
dt HO

At the onset of Stage 2, t = t1 , the low feature barely contacts the pad, and thus h, (t) = 6.

For t > t1 , the high feature is polished faster than the low feature, thus the step-height gradually

decreases. The general solution for step-height in Stage 2, t1 <t < t, is expressed as:

h,(t) = 6 exp -T (2.64)

where

T2 = ( (2.65)

From (2.61), (2.62) and (2.64), the pressure and material removal rates at the high and low

features can be rewritten as:

1(aw/A_)extiPh W Pav [1-aw/AjP( T2 (2.66)

A (t)= pav 1-exp( -T2)I
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and,

dhh -kpav 1 + a e / t 2t1 j
dt 1- awA T2(2.67)

dh= kp, pavR 1 - exp -T2>

By applying initial values of Stage 2 at the high and low features, hh(t) and h, (t) for Stage 2 can

be solved as:

hh(t) = hCu - hi + 6 - kpPavVR (t - t1) - (aw/ )/[1 - exp -
'rT 2  (2.68)

hi(t) = hcu - hsi - kp, pavvR (t - t1 ) + (1 - aw /)6[1 - exp - t

At the beginning of Stage 2, the high and low features have a step-height 6. Material removal

rates at high and low features approach that of blanket wafer polishing as polishing progresses.

Stage 2 ends when the pad reaches the top of the oxide at the high feature. Thus, the

dimensionless time interval, 4, defined as (t2 - t1 )/T2 , can be obtained by solving the

following equation

4 = ("-hsi)(E + + aw/A)exp(- 4 ) (2.69)
H,, Pav 1 - aw / P(4 (.9

The step-height when t = t2 is written as:

h,(k) = exp(-*) (2.70)

The step-height at the end of Stage 2, h, (t2 ), is determined by the initial pad deformation, 6,

and the ratio of the polishing interval to the time constant (t2 - t ) / -r2 , which needs to be

solved numerically. However, if (hou - hgi ) Ep / Hopav> 3, which is valid for most commercial

polishing pads, then 4> 4 and thus the exponential term may be neglected for most pattern

geometries except when aw /A is close to unity. Additionally, even though t for the general

pad is comparably smaller than that for perfectly rigid pad due to its elastic deformation 6, the

time at the end of Stage 2, t2 , is almost the same as the flat pad case, as 4 increases. Finally, as

4 increases, the step-height decreases exponentially. For example, when 42> 4, h,(k2) is less

than 2% of the maximum pad deformation, 6, which may be ignored and considered as a flat

surface.
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Stage 3

The pressure and the material removal rate in the oxide and Cu

represented by the step-height in the same way as in (2.61) and (2.62).

regions in Stage 3 can be

Ph(t) = Pa, 1+(w/A) E) i(t)]

p1(t) = Pa11 -(1-w/A

(2.71)

)(EP hH(t)
Pav ) H0

and

dhh =-kpPaVR 1
dt

=~ -k, pavVR 1

+(w/A) (Ep ):]
-(1-

The step-height, h, in Stage 3 is expressed by the first-order ordinary differential equation as:

dh + [(1 - w / A) kc, + (w/ A) k,. ] PavvR HI h=[ k -
dt IPay v ~-kC

At the onset of Stage 3, t =t 2 , there is an initial step-height, h,,(k).

solution for step-height in Stage 3 is:

h,(t) = hs(k) + [hs(oo) - hs(k)]{1 -

h,(oo) = 1
S Cu/ox-1

w/A)Scu/ox+w/A
Pa( H
EJ

7- = S /ox / Ik[ HO ]
(I - wh / )Scu / Ox +w /A kpc EpVR

k, I Pa VR (2.73)

Therefore, the general

(2.74)

(2.75)

(2.76)

where h,(oo) is the asymptotic step-height when t -+ 00, and T3 the time constant of Stage 3.

The maximum pad deformation in Stage 3, 6,, defined as the pad deformation when the Cu

interconnect area is empty, is:

1 -w/A )( EP
(2.77)

In this stage, the normal load is supported by both high and low features, and the pressure
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and material removal rates at the high and low features depend on the step-height and the slurry

selectivity. If the selectivity is large, the material removal rate of Cu is greater than that of

oxide, and the step-height increases. As the step-height increases, the pressure and the material

removal rate at the high feature increase and those at the low feature decrease and the material

removal rates at both high and low features approach MRR& in Eq. (2.28).

At the onset of Stage 3, t = t2 , the surface heights of the high and low features are:

hh(t2)= 0

h,2(k) = -h(k2) = -3exp(t') (2.78)

Therefore, the general solution for hh(t) and h1(t) are solved as:

hh(t) = -MR (t- t2 )[+ - w/ /A ][h(t) - hs(t2 )]

(1- w / A1 )-
h(t) = -hs(t2 )- MRR(t- t2 1 - /"A) S +/A [ hs(t) - hs(t2)]

(1 - w / A)Scu/ox + w/ A

In Stage 3, pressure in the oxide region, now the high feature, is greater than that in the Cu

region, low feature. Since the material removal rate depends both on the Preston constant and

pressure, the Cu-to-oxide selectivity, Scu/lo, between oxide and Cu comes into consideration.

2.4.2 Sample Calculation

The results of step-height calculations for various pattern geometries based on the discrete

pad model are listed in Table 2.3. Table 2.4 and Fig. 2.7 show the time evolution of pressure,

material removal rate, height at high and low features and the step-height. In this calculation,

(t2 - t1 )/r 2 = 11 and thus the step-height reaches almost zero before it enters Stage 3.

Additionally, (tp, - t2 ) / r3 is in the range between 4 and 10 as listed in Table 2.3. Therefore,

the final step-height at the polishing endpoint is close to h, (oo), and the material removal rates at

both the high and low features are close to MR&.

56



Table 2.3 Step-height calculation based on the discrete pad model: w =50 pm and a = 1.

w/A 60 t1 T2 t2 T3 to* hs(t2) h8(oo) h8(tep) hh(tep) hi(tep)

(nm) (nm) (s) (s) (s) (s) (nm) (nm) (nm) (nm) (nm)

0.1 67 67 180 15 340 16 11.0 10.0 0 62 62 -58 -120

0.2 76 76 158 15 318 18 11.0 10.2 0 69 69 -73 -143

0.3 87 87 137 15 297 20 11.0 10.1 0 78 78 -88 -166

0.4 101 101 115 15 275 23 11.0 9.7 0 90 90 -111 -201

0.5 121 121 93 15 253 27 11.0 9.1 0 105 105 -137 -242

0.6 152 152 72 15 232 33 11.0 8.2 0 127 127 -173 -300

0.7 202 202 50 15 210 42 11.0 7.0 0 161 161 -230 -391

0.8 303 303 29 15 189 57 11.0 5.5 0 220 219 -316 -535

0.9 607 607 7 15 167 89 11.0 3.7 0 344 336 -476 -812

On'

* Parameters include:

ha = 900 nm

hIC= 1500 nm

h, = 1000 nm

k, = 3.31x10~" Pa

k, = 0.23x10~" Pa'

SCU/OX= 14.1

Pav =14kPa

VR =0-9 MS

E,= 300 MPa

H= 1.3 mm t28f= 4 3 5 s

te,= 480 s



Table 2.4 Evolution of step-height based on the discrete pad model:

w =50 pm, A= 100 pm and a= 1.

Time

(s)

0

30

60

90

120

150

180

210

240

270

300

330

360

390

420

450

480

h,

(nm)

900

650

400

150

18

2

0

0

0

47

86

99

103

105

105

105

105

hh

(nm)

1500

1250

1000

750

559

426

300

175

50

-14

-28

-44

-60

-76

-93

-110

-126

h,

(nm)

600

600

600

600

541

424

300

175

50

-61

-114

-143

-163

-181

-198

-215

-231

Fh

(kPa)

28

28

28

28

16

14

14

14

14

19

24

25

26

26

26

26

26

(kPa)

0

0

0

0

12

14

14

14

14

9

4

3

2

2

2

2

2

I dhh/dt|

(nm/min)

500

500

500

500

288

254

251

250

250

25

30

32

33

33

33

33

33

|dh / dt I

(nm/min)

0

0

0

0

212

246

249

250

250

152

72

46

37

34

34

33

33

* Parameters include:

h,; = 900 nm

hc.= 1500 nm

h1 = 1000 nm

k =3.31x10~'3 Pa-

k.= 0.23x10-1 Pa&1kpox .3l

SCU/ oz= 14.1

Pav= 14 kPa

VR= 0-9 M/S

E,= 300 MPa

HO= 1.3 mm
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Figure 2.7 Time evolution of various parameters in the discrete pad model: (a) pressure, (b)
material removal rate (c) polished surface height at the high- and low-feature and
(d) step-height (continued).
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Figure 2.7 Time evolution of various parameters in the discrete pad model: (a) pressure, (b)
material removal rate (c) polished surface height at the high- and low-feature and
(d) step-height.
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2.5 The Simplified Rough Pad Model:

Uniform Asperity Height Distribution

In the smooth and discrete pad models, sections 2.3 and 2.4, the pad is assumed to have

perfectly smooth contact surfaces, and thus the true contact areas are the same as the areas of the

high and the low features. However, the real polishing pad is rough and the wafer is supported

by many pad asperities. Therefore, the true contact area is much smaller than the nominal area.

In this section and the following section, we consider the contact between pad asperities and

the wafer based on the measured pad surface profile, which will determine the local pressure and

material removal rate realistically. It is assumed that the slurry distribution is uniform across the

wafer, there are enough abrasive particles in the contact area, and each asperity carries at least

one abrasive particle. The mechanism of abrasive entrapment by the pad asperities, however,

requires further study [Luo and Dornfeld, 2003].

The wafer-scale nominal pressure, pa,, is defined as the ratio of the normal load to the

projected area of the wafer. The true contact pressure, or stress, however, cannot be determined

from the average pressure unless of course the asperities on the pad are flattened elastically or

plastically, so that the real contact area is close to the nominal area. In CMP practice, for

example, the pad surface contains many pores and the ratio of the average pressure to the

Young's modulus of the pad is about 10 4. Therefore, the deformation at each pad asperity is

small and the real contact area is much smaller than the nominal area.

Many of the rough pad models in CMP adopt the Greenwood-Williamson approach to

calculate the contact area and the spacing of pad asperities in contact with the wafer [Greenwood

and Williamson, 1966; Johnson, 1985]. The effect of pad roughness on the material removal rate

in CMP was considered by Yu et al. although the area fraction effect was not considered [Yu et

al., 1993]. Vlassak proposed a feature-scale wafer surface evolution model based on the contact

mechanics between a rough pad and a patterned wafer [Vlassak, 2001, 2004]. The pad asperity

contact is modeled based on the Greenwood-Willamson approach with exponential asperity-

height distribution. Then, the average pressure and the pad deformation profile was expressed by

integral form based on the smooth contact mechanics analysis, which was used by Chekina et al.

The pad deformation and average pressure profile was calculated iteratively by assuming an

initial pressure distribution. This model requires a full profile of pad deformation in the nominal
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area to calculate average pressure profile, and thus the calculation is cumbersome. Borucki

presented a mathematical analysis of the evolution of blanket wafer material removal rate based

on the rough pad contact [Borucki, 2002]. Nguyen derived a dishing model based on the rough

pad surface with Gaussian pad asperity-height distribution [Nguyen et al., 2003]. This model

has two different contact modes. The first is the rough pad asperity contact when Cu linewidth is

larger than diameter of the asperity contact. In this mode, the Greenwood-Williamson approach

has been adopted to investigate the contact pressure of pad asperities under a given load. The

other is when the pad asperity contact diameter is smaller than the Cu linewidth. In this mode,

the maximum pad asperity deformation is assumed to be proportional to Cu linewidth and the

pressure is expressed as a first-order ordinary differential equation. In this model, however,

erosion is neglected, therefore, dishing rate is assumed to be directly proportional to the pressure

at Cu area only, which is valid only when a high-selectivity slurry is used. Furthermore, the

model considers only the overpolishing stage and does not explain the evolution of step-height.

Finally, it assumes the mean contact pressure is the same regardless of the area fraction of Cu

interconnects.

Seok et al. [2003] presented a multiscale model for material removal in CMP. Abrasive

particle, asperity and wafer-scale were considered based on the deformation of hyper-elastic

asperities attached to a linear elastic pad. The asperity deformation behavior was combined with

the Greenwood-Williamson rough pad analysis to calculate the blanket wafer polishing behavior.

Then, the time evolution of a feature is analyzed by using an iterative numerical analysis from

the complete wafer surface profile. This model, however, relies heavily on the finite element

analysis and thus requires intense computation. Additionally, how to determine each model

parameter and the physical meaning of each step are not fully described.

In this section, a simplified rough surface model is developed for step-height evolution in

patterned wafer polishing. The pad topography is idealized as uniform with all asperities having

the same height, radius of curvature, and of a certain spatial density. This idealization is valid

for two reasons. First, when the mean deformation of the pad is so small that only the high end

of the distribution is actually in contact with the wafer, variation in the number of asperities in

contact is relatively small during polishing. Second, the pad/wafer contact is not static but

dynamic. Therefore, the effect of actual contact pressure on any feature of the wafer during

polishing can be represented as an average value. That is, even though the heights of pad
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asperities in contact at any given moment are different between two features, if the number of

pad asperities that pass over a feature during the total polishing time is large, the effect of pad

asperity height can be averaged as long as the spatial distribution and the radius of curvature of

asperities are the same.

As shown in Fig. 2.8(a), let R. be the radius, k the spacing of pad asperities, r, and r,,,

the radii of the asperity contact areas, pa, and F, the mean pad asperity contact pressures at the

high and low features, respectively.

2.5.1 Elastic Contact

Contact between the pad asperities and the wafer is assumed to follow the Hertz theory of

elastic contacts. The key assumptions of the model are:

* The pad is isotropic, linear elastic material.

* The wafer surface remains horizontal.

* Each pad asperity behaves as an elastic half-space if Ra < Aa.

* The strain of pad asperity is very small: r,,r, r .

* The mean contact pressure is much less than the fully plastic stress: <ah , 1a, <3Yp.

* Friction between the pad and the wafer is negligible: p~ 0.1.

Let 7a be the number of pad asperities per unit area. Then, the mean spacing of the pad

asperities, Xa, is:

(2.80)

Since pad asperities can be considered as moving bodies on the wafer, the mean pressure, 5, in

the nominal area, 4, can be expressed by the pad asperity contact pressure, pa, as:

Pa = p r ""(2.81)

In this case, the radius of the asperity contact area, r, the deformation, 5 a, and the asperity

contact pressure, pa, at each asperity contact can be expressed as:
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Pih Ph
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Figure 2.8 Schematics of the pattern/simplified rough pad contact interface: (a) pad asperity
contact pressure and radius of contact and (b) average pressure at the high- and low-
feature.
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ra= ( 2Ra

ba = [ l6Ra 1 

2p = 1/3 1/E2 3
Pa = i3 R;2 p

If the pad asperities are assumed to deform independently, the deformation of pad asperities at

the high and the low features can be expressed as:

3 2/33( Ph )2/
El*

(2.85)
( 2/3

\

Stage 1

The pad deformation, 6, is represented as the relative deformation of the pad asperities at the

high feature with the condition M = 0 as:

(fh 2/E *
[ 9 P /
1 6Ra

(2.86)

From force equilibrium, Eq. (2.86) can be rewritten as:

6 = 1-aw/A

If 6 > h82 , the low feature is also in contact and thus the polishing starts with Stage 2.

(2.87)

If the

polishing starts with Stage 1, 6 < h8j, then the general procedure in section 2.2 can be applied.

Stage 2

Since both the high and low features are in contact with the pad now, the step-height is

expressed as the difference of the pad asperity deformation at the high and low features as:

/3 9V

1l6Ra J 1/3

\2/3 9 1/3

(E* / 16Ra
(2.88)

By combining Eqs. (2.85)and (2.88), the force equilibrium in Stage 2 is expressed as:
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(2.82)

(2.83)

(2.84)

941/3

16Ra I

(h )2h, =y*/

/3 ( 2/3

6h = 1 1 R 11/

av )2/3 9,V 11/3
2/3 

(k
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6h 2 (1- aw/A) + (6h - h,)3/ (aw/A) - (P/2 1 6Ra (2.89)

This equation needs to be numerically solved for 6 h at a given h,. Therefore, the procedure to

determine the evolution of step-height is iterative. Once 6 h and 61 are determined at a given

step-height, the pressure, material removal rates at the high and low features and step-height

reduction rate can be calculated as:

- -. 16,6f 1/2
Ph ErV ~1/ 

(2.90)

A16R 63 )1/2

dhh =k pavEVR ]1/21

t C9Pav 9a
dhl kc,,aV E* 16 1f1/2 (.1

=t -kPPa v 9V
(2.91)

dh1 -kPaV (E )(16Ra J1/2

dhs -kp f Eavl6Ra )1/2 (63/2 _ 6132) (2.92)
dt = p Pav ) 9A )

The pressure and material removal rate at the high and low features, and the step-height

reduction rate at any given time t can be calculated recursively. The end of Stage 2 is marked

by the polishing time, t2 , when the pad surface at high feature reaches the oxide surface, that is,

hh(2)=0.

Stage 3

In this stage, the materials being polished at the high and low features are oxide and Cu,

respectively: kph = k,. and kp, =k,, . The new area fraction in Eq. (2.12) is calculated based on

the designed Cu linewidth, w, instead of aw. Although the pressure at the high and the low

features in Stage 3 are the same with those in Stage 2, the material removal rates in the oxide and

Cu regions in Stage 3 are different due to the different Preston constants. Thus,
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dh- E* 1 12a

(2.93)
dhi [r E* 16Ra3
dt = 9kV PavVR ij 16 )1

dh kpPavVR E* 1 16Ra]2 1 3/2 - 63/2] (2.94)
dt -I**v Pav 9V 9Ox

At the onset of Stage 3, t = 2, there is an initial step-height, h, (k). The step-height in Stage 3

can also be solved numerically by the same procedure as that of Stage 2.

2.5.2 Fully Plastic Contact

In the fully plastic contact mode, the deformation of pad asperity and the mean pressure at

the high and low features has linear relationship as [Johnson, 1985]:

= (1h(A2 
(2.95)

= 67r a

Therefore, the step-height analysis procedure of this subsection is exactly the same as the

discrete pad model by replacing the initial pad thickness H with 7 /6irRa and the Young's

modulus of the pad, Ep, with the yield strength of the pad, Y.

Stage 1

The initial relative pad deformation, 6, is the same as the pad displacement at the high

feature:

6 =jh ) (2.96)
Y 67rkR

Combined with the force balance equation and the condition j = 0:

6=( 1 1 )Pav ][ a) (2.97)
1 - awh /A Yp 6,7r Ra

The final heights at the high and low features and the step-height, and the time at the end of

Stage 1 can be obtained by subsituting 6 in Eq. (2.97) into Eqs. (2.20) - (2.22), respectively.
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Stage 2

The pressure and the material removal rates at the high and low features at any given time t

can be expressed as a function of the step-height:

Ph(t) = Pa[ 1 + (aw/A)( ( 6  a )h8 (t)]
Pav Ag(2.98)

W(t) = Pay 1 - (1 - aw A)( 2 )(6 ) hs (t)
Pav hAg

dh, -kpcpavvi41 + (ckw/A) (IL)(6[~ Jhs(t)] 2.9

=h -kpo pavvR I - (1 - aw| /A6-! jhs(t )dt -k v1(-w/"Pay Aa

The step-height, h,, is expressed by the first-order ordinary differential equation as:

dhs + kY 6R ah = 0 (2.100)

At the onset of Stage 2, t = t1 , the low feature barely contacts the pad: h, (t1 ) = 6. Therefore, the

general solution for step-height in Stage 2, t1 <t <k, is expressed as:

h8 (t) = 6exp -t -TJ (2.101)

T2 = (kp vR)67] (2.102)

The analysis is the exactly the same as that of the discrete pad model. Thus, once the 6, ti, and

T 2 are solved, the final heights, hh and hl, step-height, h, polishing time, t2, at the end of

Stage 2 can be obtained by replacing H, by Xg / 6rRa and E, by Y in the discrete pad model.

Stage 3

The pressure and the material removal rate in the oxide and Cu regions in Stage 3 can be

represented by the step-height in the same way as in Eqs. (2.71) and (2.72).

Ph(t) = PaF 1 + (w/A)( Y )( 6 ,a )hs(t)]

I [1a)( (Al(2.103)

TI(t) =Pav 1 - (1 - w /) 6P) Ihs(t)l
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and,

= kp PavvR + (W/ I) IsI(t
dt Pv AZ(2.104)

dt kp,,PpaVR 1 - (1 - W/A) (K)6 )h(t)

The step-height, h, in Stage 3 is expressed by the first-order ordinary differential equation:

s+ [(1 - w/)kp, + (w/A)kpav 6 I hRjh=[k - k,. ] PavvR (2.105)
dt +LIPupjaJ .Pay IVaJ

At the onset of Stage 3, t =t, there is an initial step-height, h,(k). Therefore, the general

solution for step-height in stage 3, t > t2:

h,(t) = h(t2 ) + [h,(oo) - h,(t)] 1 - exp - t 3 (2.106)

h,(oo) _ SC/ox-1 +Pa ([R (2.107)
(1-w / )SCu/Ox+w / Y, 67rRa

T3= SCU/OX _ 1 I ( 2 (2.108)
(1-w/A)SC/ 0. +w /AI kcYvR )(6]rR 0

where h, (oo) is the asymptotic step-height as t - oo and T3 the time constant of stage 3.

2.5.3 Sample Calculation

Results of step-height calculation for various pattern geometry based on the simplified rough

pad model are listed in Table 2.5 and 2.7. Tables 2.6 and 2.8, and Fig. 2.9 show the time

evolution of pressure, material removal rate, height at high and low feature and the step-height

based on the simplified rough pad model for both elastic and plastic contact conditions.

The initial relative pad deformation, 6, in the simplified rough pad model is greater than that

of the discrete model. However, the ratio of the polishing interval to the time constant, t* and

t*, is still greater than 4 but it is smaller than that of the discrete pad model. Thus, the step-

height decreases in Stage 2 and increases in Stage 3 slower than that in the discrete case. The

step-height increases until the polishing endpoint and the material removal rates at both the high

and low features also approach to the asymptotic material removal rate, MRR,.
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Table 2.5 Step-height based on the simplified rough pad model (elastic contact):
w = 50 pm and a= 1.

t

(

1t2

(s)

)7 339

89 318

71 297

3 276

7 254

0 234

5 213

- 193

- 174

hs(k)

(nm)

11

12

13

15

17

19

22

28

34

h,(oo)

(nm)

331

356

386

423

471

535

626

769

1037

hs(tep)

(nm)

262

289

320

355

398

451

522

620

771

hh (te,)

(nm)

-51

-63

-78

-93

-110

-139

-172

-222

-302

h, (tep)

(nm)

-313

-352

-397

-448

-508

-590

-694

-843

-1073

* Parameters include:

ha = 900 nm

hc.= 1500 nm

h1 = 1000 nm

kp = 3.31x10 3- Pa7'

k, = 0.23x10 3- Pa~1

SCU/ ox= 14.1

pa,= 14 kPa

VR = 0.9 m/s

E= 300 MPa

v,= 0.3

R=6 m

Aa= 100 Pm

70

w/A

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

'5

(nm)

402

435

475

527

595

690

836

1096

1739

t2f = 360 s

tk 81= 435 s

tep =480 s



Table 2.6 Evolution of step-height based on the simplified rough pad model (elastic contact):
w = 50 pm, A= 100 pm and a= 1.

Time

(s)

0

30

60

90

120

150

180

210

240

270

300

330

360

390

420

450

480

h,

(nm)

900

650

418

257

156

94

57

34

21

72

158

223

274

313

345

369

388

hh

(nm)

1500

1250

1009

803

628

472

329

192

60

-5

-16

-28

-42

-55

-70

-85

-100

h,

(nm)

600

600

591

547

472

378

271

158

40

-77

-174

-252

-316

-369

-415

-454

-489

Ph

(kPa)

28

28

25

21

18

17

16

15

15

16

18

20

21

23

23

24

24

(kPa)

0

0

3

7

10

11

12

13

13

12

10

8

7

5

5

4

4

I dhh dt

(nm/min)

500

500

447

376

328

297

279

267

260

20

23

26

27

29

29

30

31

I dh1 / dt I
(nm/min)

0

0

53

124

172

203

221

233

240

214

172

140

116

98

84

74

65

rh

(pam)

1.54

1.54

1.49

1.40

1.34

1.30

1.27

1.25

1.24

1.28

1.34

1.38

1.41

1.43

1.45

1.46

1.47

ra,

(pm)

0

0

0.73

0.97

1.08

1.14

1.18

1.20

1.21

1.16

1.08

1.01

0.95

0.90

0.85

0.81

0.78

Pah

(MPa)

54

54

52

49

47

45

44

44

43

45

47

48

49

50

51

51

51

Pa1

(MPa)

0

0

26

34

38

40

41

42

42

41

38

35

33

31

30

28

27

* Parameters include:

h,i = 900 nm

hc.= 1500 nm

h1 = 1000 nm

k, = 3.31x10-'P1 a-I

kPOx= 0.23x10~" Pa~1

SCo /ox= 14.1

Pav= 14 kPa,

VR = 0.9 m/S

E= 300 MPa

vp= 0.3

Ru= 6 pm

k= 100 pm

71

t21 = 360 s

t2,f= 435 s

t,= 480 s



Table 2.7 Step-height based on the simplified rough pad model (plastic contact): w = 50 pm and a = 1.

w/ A 6 60 t1 T2 t2 3 to* hs(t2) h,(oo) hs(tep) hh(tep) hi(tep)

(nm) (nm) (s) (s) (s) (s) (run) (run) (nm) (nm) (nm)

0.1 149 149 162 32 340 35 5.5 4.5 1 137 135 -61 -197

0.2 167 167 141 32 319 39 5.5 4.6 1 153 151 -72 -223

0.3 191 191 119 32 297 44 5.5 4.6 1 172 170 -89 -259

0.4 223 223 98 32 276 51 5.5 4.4 1 198 195 -106 -301

0.5 267 267 76 32 254 60 5.5 4.1 1 232 228 -128 -356

0.6 334 334 54 32 232 73 5.5 3.7 1 281 274 -162 -435

0.7 446 446 33 32 211 92 5.5 3.2 2 355 340 -203 -544

0.8 668 668 11 32 189 125 5.5 2.5 2 484 444 -268 -712

0.9 1337 1337 0 32 179 196 5.6 1.6 3 758 611 -395 -1007

* Parameters include:

hj = 900 nm

hCj= 1500 nm

h, = 1000 nm

k,= 3.31x10 3- Pa7'

k, = 0.23x10~ Pa&'

SCU/OX= 14.1

pa,,= 14 kPa

VR =. 9 MS

Y,= 20 MPa

Ru= 6 im

k= 100 pm

t2f = 3 6 0 s

t28f=
4 3 5 s

te,= 480 s

NIMMON MOMM. - _1 , , - , '' , "



Table 2.8 Evolution of step-height based on the simplified rough pad model (plastic contact):
w = 50 Spm and A= 100 pm and a= 1.

Time

(s)

0

30

60

90

120

150

180

210

240

270

300

330

360

390

420

450

480

hs

(nm)

1500

1250

1000

761

583

438

305

177

51

-13

-25

-39

-54

-69

-85

-101

-118

hh

(nm)

600

600

600

589

517

412

295

173

49

-69

-150

-206

-247

-278

-303

-325

-344

h,

(nm)

900

650

400

171

66

26

10

4

1

55

125

168

193

209

218

223

227

Ph

(kPa)

28

28

28

23

17

15

15

14

14

17

21

23

24

25

25

26

26

(kPa)

0

0

0

5

11

13

13

14

14

11

7

5

4

3

3

2

2

I dhh / dt|

(nm/min)

500

500

500

410

312

274

259

254

251

21

26

29

31

32

32

33

33

I dh / dt

(nm/min)

0

0

0

90

188

226

241

246

249

198

133

93

69

55

46

41

38

rah

(pLm)

1.46

1.46

1.46

1.32

1.16

1.08

1.05

1.04

1.04

1.14

1.25

1.32

1.36

1.38

1.39

1.40

1.41

'ra

(PM)

0

0

0

0.62

0.90

0.98

1.01

1.03

1.03

0.92

0.75

0.63

0.54

0.49

0.45

0.42

0.40

Pah

(MPa)

60

60

60

60

60

60

60

60

60

60

60

60

60

60

60

60

60

Pal

(MPa)

0

0

0

60

60

60

60

60

60

60

60

60

60

60

60

60

60

* Parameters include:

ha = 900 nm

hC.= 1500 nm

h, = 1000 nm

k,=3.31x10 3- Pa~'

kpo= 0.23x10- 3 Pa1

SCU/0x= 14.1

pa,= 14 kPa

VR 0-9 M/S

Y = 20 MPa,

Ru= 6 pm

Aa= 100 pM

t2f = 3 6 0 s

t28f= 435 s

t,= 480 s
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2.6 The General Rough Pad Model

In this section, a general rough surface model is developed for step-height evolution in

patterned wafer polishing. First, a rough surface contact on the blanket wafer is analyzed and a

set of model parameters is determined. By using these parameters, the surface contact on the

patterned wafer at a given step-height is analyzed.

2.6.1 Rough Surface Contact with a Blanket Wafer

Figure 2.10 shows the sample surface profile, asperity height distribution, and cumulative

height distribution of a commercial pad. Although the polishing process wears out the pad

asperities, the "continuously conditioned" pad profile is used in the analysis by assuming

continuous conditioning of the pad during polishing.

From the profilometer measurements, the average surface roughness, R.,, , and the root-

mean-square surface roughness, RRMS, can be expressed as:

Ravg =ZIz I (2.109)
n=1

1n 21/ 2

RRMS = ( )/ (2.110)

where n is the total number of data and z; the ith height from the mean line of the profile.

Throughout the analysis of the surface profilometer measurement, peak, summit and asperity

are separately defined as follows.

* Peak: Points of convexity throughout a two-dimensional surface profile in the (x, z) plane,

subscripted p.

* Summit: Points of convexity by extending two-dimensional surface profile to the three-

dimensional (x, y, z) plane, subscripted s .

* Asperity: Summits actually in contact with the wafer, subscripted a.

The slope, m, and the curvature, r, of the peaks are defined as:

Mi Zi+1 - Zi (2.111)

AX 2
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Peaks are decided by selecting data points where zi is greater than both zZi+ and zi_1 .

Figure 2.11 shows spatial distribution, peak height distribution, and cumulative height

distribution of a commercial pad from the profile in Fig. 2.10. The distributions of surface

height and pad peak heights are nearly Gaussian as shown in Fig. 2.12. In this case, the mean

radius of curvature of summits and pad asperites, R, and Ra, can be approximated as [Johnson,

1985]:

R8 =R ~ 1/o (2.113)

where o, is the standard deviation of the curvature of the peak defined by Eq. (2.112).

In the Gaussian distribution, the number of summits per unit area, 7,, can be estimated by

the number of peaks per unit area, ,, as:

~~ 1.8, (2.114)

The number of summits, n 8, in the nominal area, A, are calculated as:

n, = n, (2.115)

Figure 2.13 shows a schematic of a general rough pad and the blanket wafer contact

interface. Under no load, there will be only one contact between the pad and the wafer with a

zero contact area. In this case, the separation between the mean line of the pad surface and the

blanket wafer, d, is the maximum summit height, z,_ . As the load is increased, d decreases

and the summits whose height z, is greater than d start supporting the load. In this case, the

total number of pad asperities in contact with the wafer in the nominal area A, na, can be

calculated as:

na = n8fd 0(z, )dz, (2.116)

Thus, the average spacing of the pad asperities in contact with the wafer, Xa, is defined as:

-1 1/2
( -)1/ (2.117)

where qa is the number of pad asperities per unit area, which is defined as 77a = na / A.

Each asperity is assumed to have a spherical shape. Let the deformation of the pad asperity

be Sa ,the radius of contact r . The asperity contact area A, and the load by each pad asperity

F is a function of 6a.
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commercial polishing pad (Rohm and Haas, IC 1400).
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Figure 2.13 Schematic of the blanket wafer/rough pad contact interface. The vertical scale of
the pad surface is greatly amplified for clarity.
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Aa = 7rr f (ba) (2.118)

F = (6a (2.119)

The total area of contact, Ac, and the total applied load, F, when the separation between the

mean line of the pad surface and the wafer is d can be expressed as:

A, = nf f (z, - d) (z, )dz, (2.120)
Jd

F = TA, = n,f g (z, - d) -(z, )dz, (2.121)

where P is the average pressure in the nominal area A,.

The mean pad asperity contact area, A 3 , and the mean applied load, F, for each

asperity in contact, are defined in indicial If and I,, respectively.

_ '0 f ( z, - d ) -#( z. dz,I Ac - d (2.122)
if Aa n a I # ( z. dz,,

- F g(z. - d) ( z, dz,
F fd(2.123)

fna L 0 (z, dz,

Therefore, the mean contact radius, -r, and the mean contact pressure, ya, per each asperity in

contact, can be expressed as:

Ta= (2.124)

I9 f g (z, - d) -(z,)dz,
Pa - -- - (2.125)

If f f (z, - d) -(z) dz,

The ratio of the total true contact area and the nominal area, Ac /A, is calculated by:

Ac IfAc - (2.126)

In the rough pad analysis, the index parameter If and Ig are determined by the asperity

contact area, A4, and the load by each pad asperity, F dependency on the pad deformation,

which categorized either elastic or plastic contact.
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Elastic contact

Assuming that the asperities are spherical and the contact is the Hertzian, the contact area and

load per asperity are given as a function of the asperity deformation 6, as:

A. = -rRa,6 (2.127)

Fa = ( /26a3/2 E* (2.128)

Although the complete surface profile data should be used in the full analysis, it is common

to approximate the surface profile distribution either as Gaussian or as exponential as shown in

Fig. 2.14. In the case of a Gaussian distribution,

_ 1 (z2
#$(z8) = I exp: - 00 < z < 00 (2.129)

In the exponential distribution case,

O(z,) = exp - : z8 > 0 (2.130)

where a, is the standard deviation of the summit heights.

Figure 2.15 shows the summit distribution by the Gaussian assumption. Since only small

portion of asperities whose height is large are actually in contact, the difference between the

Gaussian and exponential distribution is small in the area of interest. If the asperity distribution

is assumed to be exponential, the number of pad asperities can be expressed as:

(d
na = -"exp -- (2.131)

Furthermore, the mean asperity contact area and the mean load per asperity are:

;a = If = 7rRea, (2.132)

Fa= I = *1/2,r/2 (2.133)

The mean contact pressure and the ratio of the total contact area to the nominal area are:

aJ E* (2.134)

1 2 ((2.135)
AO O \E
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Figure 2.14 Schematics of Gaussian and exponential distribution of pad asperties.
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Fully Plastic contact

As the applied load increases, pad asperity deformation increases and the contact mode

changes from elastic to plastic. Assuming that asperities are in perfectly plastic contact mode,

the contact area and the load per asperity are calculated as:

A. = 27[Raba (2.136)

F = (67rRa. )Y, (2.137)

If pad asperity distribution is assumed exponential, the mean asperity contact area and the mean

applied load per asperity in contact is expressed as:

A, = If= 27rRa (2.138)

F = Ig (67rRau, )Y, (2.139)

where Y is the yield strength of the asperity. The mean contact pressure and the ratio of the

real contact area to the nominal contact area are:

-a = = 3Y, (2.140)

c If = (2.141)
AO Ig 3Yp

Here, the plastic contact pressure, p-a = 3Y, is the hardness of the asperity, Hp.

To delineate the actual contact mode, the plasticity index, /, is defined as the mean contact

pressure ratio between the elastic and fully plastic cases for the exponential distribution.

a )Elastic a ( 1/2 E* 1/2 E*(2142)
pa )plastic 7rRa) 3Yp IrRaJ H(

The interpretation of the plasticity index in the rough surface contact is described by Greenwood

and Williamson [Greenwood and Williamson, 1967]. If 4 < 0.3, the contact can be assumed to

be in the elastic mode and if V)> 1 in the full plastic mode. However, most polishing contacts

are neither elastic nor fully plastic. Some portion of the pad asperities, with large summit

heights, are in the plastic mode while others are in the elastic mode.
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2.6.2 Rough Surface Contact with a Patterned Wafer

When a patterned wafer is in contact with the pad as shown in Fig. 2.16, the high and low

features can be considered separately. The number of summits at the high and low features, n,

and n,, , respectively, can be expressed as:

n h =ns(1-Af) 
(2.143)

ns, =rsAf

The number of pad asperties, na , and contact area and contact force indices, If and I, in Eqs.

(2.116), (2.122) and (2.123) will be represented as a function of the gap between the pad and the

wafer, d: na = na(d), If = If (d) and Ig = I9 (d). Assuming that the summits at the high and

low features have the same statistical properties, the number of pad asperities in contact with the

high and low features for a step-height, h,, can be expressed as:

na4 = nshf 4(z,)dzs = (I - A na (d)
00 (2.144)

na = f h, (z, )dzs = Af - na (d + h, (

The asperity contact area at the high and low features are calculated as:

A, nsfd f (z, - d)- (z,)dz = (1 - A) -na (d) If (d)
(2.145)

Aq= f (z, - d). - (zs)dz., = A - na (d + h,) If (dh)

The total applied load at the high and low features are expressed as:

Fh = nshfo g(zs -d) -4(zs)dzs (1 -Af n.a(d) Ig (d)
(2.146)

F', = n,, f+h. g(z- d) - (zs)dz= Af - na (d + h) Ig (d + h)

Therefore, the total applied load at the nominal area is represented as:

F = (1 - A )- na (d) -Ig (d) + A - na (d + h) -I (d + hs) (2.147)

The mean pressures at the high and low features are expressed as:

- _ Fh na (d)Ig (d)

A A(2.148)
_- F na ( d + h )Ig (d + hs)

Pi - _ _ _ _ _ _ _ _

A1  A0

where A0 is the nominal area, typically A0 = A - L.
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Figure 2.16 Schematics of the pattern/rough pad contact interface: (a) asperity contact pressure

and radius of contact and (b) average pressure at the high and low features.
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Finally, the material removal rates at the high and low features can be expressed by the Preston

equation:

dhh _khaV ()I d
dt AAovvR
d k APav 1(2.149)

dh n( d + h)I(d + h,)

dt - AoPav

where hh and h, are the polishing surface heights of the high and low features relative to the top

of the oxide, kp, and kph are the Preston constants, and -h and y; are the average pressures at

the high and low features as shown in Fig. 2.16(b). The step-height, h, (t), at any given time t is

the height difference between the high and low features and can be solved numerically.

2.6.3 Sample Calculation

Table 2.9 shows the statistical topography parameters of the Rohm and Haas IC1400 pad

before polishing. Tencor P10 profilometer was used to measure the surface profile; scan lengh

was 2 mm. From the analysis, the average radius of curvature of the summit is 6.0 pm. Based

on the parameters in Table 2.9, the contact between the blanket wafer and the pad was analyzed

as in Table 2.10 and Fig. 2.17. The applied pressure, mean asperity contact pressure, mean

asperity deformation, mean contact radius, mean asperity spacing and plasticity index are plotted

in terms of the maximum asperity deformation. The maximum asperity deformation can be

calculated for a known average applied pressure. For example, for pay,= 14 kPa (2 psi), the

maximum asperity deformation in case of elastic contact is 0.85 pm. Once the maximum

deformation of the contact is determined, the other parameters listed in Fig. 2.17 can be

determined. In this case, i,= 40 MPa, (,= 0.45 pm, - = 1.15 pm, \ 3= 120 pm. The plasticity

index 0 is about 0.7, which implies that there are both elastic and plastic contacts between the

pad asperities and the wafer.

Given the relationship between the maximum pad deformation and the average applied

pressure, the relationship between the step-height and the maximum asperity deformation, and

the mean pressures at the high and the low feature can be expressed as shown in Fig. 2.18. Thus,

at a given step-height, the mean pressure and thus material removal rate can be calculated,

Tables 2.11 and 2.12.

Figure 2.19 shows the time evolution of pressure, material removal rate, height of the high
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Table 2.9 Surface topography parameters of the IC 1400 pad.

Property Value

Scan Length, L (gm) 2,000

Average Surface Roughness, Ray9 (pm) 6.7

RMS Surface Roughness, RRMS (gm) 8.8

Maximum Surface Roughness, Rma (pm) 43

Number of Peaks, n, 87

Maximum Peak Height, z,, (pm) 13.56

Number of Summits, n, 14,000

Average Summit Radius of Curvature, R, (jim) 6.0
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Table 2.10 Contact area and pressure calculation based on the rough pad model on the blanket
wafer.

Contact bmax d 5a 7 na A /A Ta

Type (pm) (pm) (kPa) (MPa) (pm) (x10-3) (11m) (pm)

0 13.6 0 0 0 0 0 0 -

0.5 13.1 3 32 0.24 102 0.08 0.9 198

1.0 12.6 19 43 0.44 253 0.34 1.2 126

1.5 12.1 58 52 0.64 446 0.88 1.5 95

2.0 11.6 129 60 0.84 655 1.71 1.7 78

Elastic 2.5 11.1 244 67 1.04 906 2.92 1.9 66

3.0 10.6 415 72 1.21 1215 4.56 2.0 57

3.5 10.1 655 77 1.39 1559 6.71 2.2 51

4.0 9.6 977 81 1.56 1944 9.42 2.3 45

4.5 9.1 1397 86 1.73 2386 12.78 2.4 41

5.0 8.6 1934 89 1.87 2908 16.88 2.5 37

0 13.6 0 0 0 0 0 0 -

0.5 13.1 3 60 0.24 102 0.15 1.3 198

1.0 12.6 19 60 0.44 253 0.69 1.7 126

1.5 12.1 58 60 0.64 446 1.76 2.1 95

2.0 11.6 129 60 0.84 655 3.43 2.4 78

Plastic 2.5 11.1 244 60 1.04 906 5.84 2.7 66

3.0 10.6 415 60 1.21 1215 9.13 2.9 57

3.5 10.1 655 60 1.39 1559 13.41 3.1 51

4.0 9.6 977 60 1.56 1944 18.84 3.3 45

4.5 9.1 1397 60 1.73 2386 25.56 3.4 41

5.0 8.6 1934 60 1.87 2908 33.77 3.5 37

*Parameters include: L = 2 mm, E,= 300 MPa, v, = 0.3 and Y= 20 MPa.
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Figure 2.17 Results of rough pad contact model on the blanket wafer. Parameters include: L =
2 mm, Ep= 300 MPa, vp= 0.3 and Y,= 20 MPa.
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Figure 2.18 Plots of step-height versus mean pressure and maximum deformation at the high
and low features.
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Table 2.11 Step-height calculation based on the general rough pad model: w =50 pim and a= 1.

Contact w/A 6 k h,(t) h,(oo) h,(te,) hh(te,) hi(te,)

Mode (nm) (s) (nm) (nm) (nm) (nm) (nm)

0.1 770 339 24 490 309 -53 -362

0.2 800 319 25 520 338 -63 -401

0.3 850 297 26 550 373 -73 -446

0.4 900 276 27 580 410 -90 -500

Elastic 0.5 960 256 30 610 450 -108 -558

0.6 1050 235 32 650 498 -133 -632

0.7 1160 215 35 710 556 -169 -726

0.8 1350 194 39 790 634 -221 -856

0.9 1730 175 43 920 745 -314 -1061

0.1 500 338 12 360 267 -51 -318

0.2 530 317 13 380 291 -63 -354

0.3 560 296 13 400 320 -75 -395

0.4 600 276 14 430 351 -91 -442

Plastic 0.5 660 254 15 470 388 -112 -499

0.6 730 234 18 510 432 -140 -572

0.7 840 213 19 560 489 -177 -665

0.8 1010 192 23 660 566 -238 -804

0.9 1370 171 26 800 683 -338 -1021

* Parameters include:

h,i = 900 nm

hc.= 1500 nm

h1 = 1000 nm

k, = 3.31x10~" Pa"'

kpox = 0.23x10-13 Pa-1

SCU/ o= 14.1

p,= 14 kPa

VR = 0.9 mIS

E= 300 MPa

vp 0.3

Y= 20 MPa
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Evolution of step-height based on the general rough pad model (elastic contact):
w = 50 pm, A= 100 m and a= 1.

Time

(s)

0

30

60

90

120

150

180

210

240

270

300

330

360

390

420

450

480

hs

(nm)

900

658

454

303

198

129

83

54

34

76

164

235

292

338

376

408

435

hh

(nm)

1500

1254

1027

827

649

490

342

204

68

-7

-17

-29

-42

-55

-69

-84

-99

h,

(nm)

600

596

573

524

452

361

259

150

33

-83

-181

-264

-334

-393

-445

-492

-533

Th

(kPa)

28

26

24

21

19

17

16

15

15

16

18

20

21

22

23

23

24

(kPa)

0

1

4

7

9

11

12

13

13

12

10

9

7

6

6

5

4

I dhh / dt I

(nm/min)

497

470

420

373

340

310

281

272

263

20

23

25

26

27

29

29

30

I dh1 / dt I
(nm/min)

0

22

72

125

168

197

212

228

237

212

182

155

130

108

98

85

80

* Parameters include:

h8 = 900 nm

hc.= 1500 nm

h1 = 1000 nm

k,,= 3.31x10~" Pa~'

k,,= 0.23x10-3 Pa&'

SCU /ox= 14.1

Pav= 14 kPa

VR 0-9 M/S

E= 300 MPa,

VP 0.3
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t2f = 360 s

t2f= 4 3 5 s

te,= 480 s

Table 2.12



Evolution of step-height based on the general rough pad model (plastic contact):
w = 50 pm, A = 100 gm and a= 1.

Time

(s)

0

30

60

90

120

150

180

210

240

270

300

330

360

390

420

450

480

hs

(nm)

900

650

417

252

149

88

52

31

18

70

154

218

267

304

334

359

377

hh

(nm)

1500

1250

1008

801

625

469

327

192

60

-6

-17

-29

-43

-56

-71

-86

-101

h,

(nm)

600

600

591

549

476

381

275

161

42

-76

-171

-247

-309

-361

-405

-445

-478

Ph

(kPa)

28

28

25

21

18

16

15

15

15

16

18

21

21

22

23

24

25

(kPa)

0

0

3

7

10

11

12

13

13

12

10

8

6

5

5

4

4

I dh /dt
(nm/min)

501

501

454

383

330

294

271

271

260

20

23

26

27

28

29

30

31

|dh / dt I

(nm/min)

0

0

49

123

172

200

219

239

239

209

172

139

109

96

83

71

65

* Parameters include:

hj = 900 nm

he= 1500 nm

h, = 1000 nm

k, = 3.31x10-13 Pa'l

kp = 0.23x10-13 Pa&l

SCU/0x= 14.1

Pav= 14 kPa

VR = 0-9 M/S

Table 2.13

Y,= 20 MPa t2f = 3 6 0 s

t2,f= 4 3 5 s

te,= 480 s
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Figure 2.19 Time evolution of various parameters in the general rough pad step-height model:
(a) pressure, (b) material removal rate, (c) polished surface height at the high and
low features and (d) step-height (continued).
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Figure 2.19 Time evolution of various parameters in the general rough pad step-height model:
(a) pressure, (b) material removal rate, (c) polished surface height at the high and
low features and (d) step-height.
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and low features and the step-height based on the general rough pad model. If the initial relative

pad deformation is higher than the initial step-height, 6 > h82 , the process starts from Stage 2.

As polishing progresses, the step-height decreases. The step-height at the end of Stage 2, h,(),

is greater than that in the smooth-pad or discrete-pad model. Furthermore, the step-height

increases much faster than in the smooth-pad and the discrete-pad cases, and the asymptotic

value of the step-height in Stage 3 is also greater than the other two cases.

2.6.4 Comparison with Previous Models

The effect of pad roughness on the material removal rate in CMP has been addressed by

several researchers [Yu et al., 1993; Vlassak, 2001 & 2004; Nguyen et al., 2003; Seok et al.,

2003]. In these models, an in the present model, the pad/wafer contact is analyzed by the

Greenwood and Williamson approach.

Nguyen et al. derived a dishing model based on the rough pad surface with Gaussian pad

asperity distribution. In their model, however, evolution of high-feature was neglected and thus

step-height reduction rate was assumed to be directly proportional to the pressure on Cu area

only. As a result, this model is valid only a high-selectivity slurry is used. Moreover, the model

considers only the overpolishing stage and does not address the evolution of step-height.

Furthermore, it assumes the mean contact pressure is the same, regardless of the area fraction of

Cu interconnects.

Vlassak's model requires a full profile of pad deformation in the nominal area to calculated

average pressure profile and thus calculation is intensive. Additionally, due to the smooth pad

contact mechanics model for the average pressure, dishing is almost linearly proportional to the

interconnect linewidth, which is valid only in the intermediate-wiring level. In Cu CMP, for

example, in the global wiring level where linewidth is larger than 100 pm, Cu dishing remains

almost constant regardless of the linewidth and mainly depends on the amount of overpolishing.

In the model by Seok et al., the time evolution of a feature is also analyzed by using the

iterative numerical analysis from the complete wafer surface profile. This model heavily relies

on the finite element analysis and thus requires intense computation. How to determine each

model parameter and its physical meaning are not fully discussed, however.

The present rough pad model uses the blanket wafer analysis in the patterned wafer analysis.

The mean pressures at the high and low features are solved by combining the force balance
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equation and index functions from the blanket wafer analysis. This model is expected to reduce

the computational time dramatically compared with the other models, since it only needs a

blanket wafer analysis and simple time-step iterative calculation at the high and low features, not

based on the full profile of wafer surface.

2.7 Summary

In this chapter, feature-scale step-height models based on various pad/wafer contact

conditions are developed. First, contact between the wafer and the pad is analyzed on the

assumption that the polishing pad is elastic and smooth. This assumption is valid only in the

submicron device level where Cu linewidth is smaller than the diameter of asperity contact. This

model explains the small step-height and "steady-state" material removal behavior in the

submicron level. Second, the pad is assumed to deform as discrete blocks. This model explains

the step-height reduction behavior in the global wiring level fairly well, but relies on the finite

thickness and the physically inadmissible discontinuous deformation of the pad. Third, a

simplified rough pad model, which idealizes that the pad asperities are of uniform height and of

the same radius of curvature, is developed. The mean asperity contact radius and the asperity

spacing are estimated by the analysis based on the general random rough surface of the pad.

Both elastic and plastic deformations of pad asperities are considered and the evolution of the

step-height during polishing is followed. In the case of a plastic contact, the simplified rough

pad model establishes the step-height reduction model in a simple algebraic form. Finally, the

rough pad/wafer contact is analyzed by adapting the classical analysis by Greenwood and

Williamson. Throughout the general rough pad model analysis based on a given pad surface

profile, surface topography parameters for the simplified rough pad model are obtained.

For all the contact conditions listed earlier, the general procedure to calculate the step-height

at the given polishing time is the same. First, the contact pressure distribution at a given step

height is related either to the elastic deformation of the pad surface, in smooth pad assumption,

or to the elastic/plastic deformation of pad asperities, in the rough pad analysis. Then, the

evolution of step-height in a patterned wafer is calculated by integrating the effects of pad profile

and the geometry of Cu interconnects at each polishing stage.

From the developed step-height models, integrated dielectric erosion and Cu dishing models

will be presented in terms of geometric, material and process parameters in the next chapter.
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Nomenclature

Aa = contact area of each pad asperity (m2)

Acu = total Cu interconnect area in a characteristic area (m2 )

Ac = total pad/wafer contact area (M2)

A, = nominal area (m2)

Af = area fraction of Cu interconnects

A1, Ahh, Ah Ah, A 11 = dimensionless geometric coefficients

B11, BA2 , B21, B22 = dimensionless geometric coefficients

E,, E* = Young's modulus and effective Young's modulus of a pad (N/m2)

F = applied normal force (N)

f(b), g(5) = functions of contact area and normal load per pad asperity

H, = undeformed pad thickness (m)

h = film thickness (m)

hCu, he,, h = film thickness of Cu, barrier layer and interconnect (m)

hh, hi = height of the high and the low features (m)

h,, hsi, h, (0) = step-height, initial step-height and asymptotic step-height (m)

If, Ig = integral functions of contact area and normal load of asperities

k, = Preston constant (m2/N)

kphkp1 = Preston constant of high and low features (m2/N)

kpc, kp. = Preston constant of Cu and oxide (m2/N)

MRR = material removal rate (m/s)

MRR = asymptotic material removal rate (m/s)

m = slope of peaks in pad profile

n, ns = number of asperities, peaks and summits in a nominal area

P = pressure (N/m2)

Pay = average pressure (N/M 2)
Ph, P = mean pressure at high and low features (N/m2)

Pah )PaP = mean contact pressure at high and low features (N/M2)
R, R, = radius of curvature of asperity, summit (m)

Ravg, RRMs = average and RMS surface roughnesses (m)

ra, rah ra, = radius of pad asperity contact (m)

SCU/ ox,/ Sb/ ox = Cu-to-oxide and barrier-to-oxide selectivities
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t = polishing time (s)

tep = process endpoint (s)

ti, k, to = polishing time at the end of Stage 1, Stage 2 and overpolishing time (s)

t, to = dimensionless polishing time of Stage 2 and Stage 3

uZ, z' = displacement of pad surface (m)

vR = magnitude of relative velocity (m/s)
W, w. = designed Cu interconnect linewidth and "surface linewidth" (m)
X, Y, lZ = Cartesian coordinates

Yp = yield strength of pad material (N/m2)

Ahff, A Ihsf = material removed in the fastest and slowest fields (m)

Aho = amount of overpolishing at the wafe reference point (m)

a = Cu deposition factor
6 ,6o = maximum deformation of pad (asperity) (m)

6. = deformation of each pad asperity (m)
6 h, 6 = deformation of pad (asperity) at the high and the low features (m)

q(z,) = frequency function of summit distribution

77la , J ?77s = number of asperities, peaks, and summits per unit area (m7 2)

n = curvature of peaks (m-1 )

A = pitch of Cu interconnect lines (M)

Aa = spacing of pad asperities (m)

P1h = mean of the amount of material removed in a wafer (M)
VP = Poisson's ratio of pad material

us = standard deviation of summit distribution (i)

UX, TXYT x= normal and shear stress (N/M 2 )

OAh = Standard deviation of the amount of material removed in a wafer

72 , 7T3 = time constant of Stage 2 & 3 (s)

V = plasticity index
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CHAPTER 3

THE INTEGRATED NON-UNIFORMITY MODELS

3.1 Introduction

In Chapter 2, the feature-scale polishing behavior based on local pressure distribution at the

pad/wafer interface was studied and the evolution of step-height and wafer surface height was

characterized. The pad/wafer interaction regimes include contact of smooth, discrete and rough

pads with patterned wafers.

The primary problem in Cu CMP, however, is that the material removal rate across the wafer

is non-uniform due to non-uniform pressure and velocity distributions, and even the Preston

constant. Figure 3.1 shows the definition of various length scales across the wafer: wafer-, die-,

subdie- and feature-scales. In patterned wafer polishing, there is not only inter-die variation

depending on the location of dies on a wafer, but also inter-subdie or feature-scale variations

depending on the pattern layout of subdies in a die. Therefore, it is necessary to extend feature-

scale models to a model that include the die- and wafer-scale variations.

In this chapter, the possible causes of non-uniformities at the wafer-, die- and feature-scales

are identified in terms of geometric, material and process parameters. Then, integrated dielectric

erosion and Cu dishing models are developed by combining wafer-, die- and feature-scale

variations with feature-scale step-height models. Finally, the effects of model parameters on

dishing and erosion are discussed.

3.2 Surface Non-uniformities at Various Scales

3.2.1 Feature-scale Non-uniformity

Feature-scale variation is mostly represented by pattern geometry. From the early days of

CMP, pattern geometry dependency has been experimentally demonstrated. Warnock proposed

a phenomenological model in ILD CMP to predict material removal rates of arrays of features

for various pattern geometries quantitatively [Warnock, 1991]. In this model, he described the
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material removal rate as a microscopic mathematical model based on the behavior observed

during polishing, such as the effect of extrusion and protrusion of a feature and the neighboring

points. In this model, however, the physical meaning of the correlation between pattern

geometry and material removal rate mechanism was not addressed. The effect of pattern

geometry on erosion and dishing in Cu CMP was experimentally studied by Steigerwald et aL.

They proposed that dielectric erosion depends primarily on the area fraction, and Cu dishing on

the linewidth of Cu interconnects. The effect of overpolishing on step-height reduction was also

observed by Stavreva et aL. [Steigerwald et aL., 1994; Stavreva et aL., 1997].

Feature-scale pattern geometry of the wafer surface prior to CMP is represented by the

linewidth and the step height. Due to the different characteristics of the Cu deposition processes,

such as PVD and electroplating, the surface Cu topography is generally different from the

underlying trench pattern. The effect of Cu deposition on the initial pattern geometry was

recognized by Lee [Lee, 2002]. He defined three different types of initial patterns: positive

deposition, zero deposition, and negative deposition biases as shown in Fig. 3.2. Later, Park et

aL. presented a methodology for characterizing and modeling of the Cu electroplated wafer

surface topography [Park et aL., 2004]. Semiempirical response surface models have been

generated and model parameters extracted from conventional and superfill plating processes. In

the present models, however, hC. is assumed to be uniform, i.e., zero deposition bias as shown

in Fig. 3.2(b), regardless of the underlying pattern geometries since the experimental wafers are

deposited by the PVD process.

Since h/z, is assumed to be uniform in this thesis, surface profile can be expressed by the

"surface linewidth," w,, and the initial step height, h, as shown in Fig. 3.3. The "surface

linewidth," w,, and the initial step height, hj, may be smaller than the underlying Cu linewidth,

w and the interconnect thickness, h1 . The Cu deposition factor a is defined as:

a = - (0 < a <1) (3.1)

If a= 0, the initial Cu surface topography is flat regardless of the underlying pattern geometry as

in Fig. 3.4(a), and if a =1 and h. =1, the initial surface topography is a true replica of the

underlying trench pattern as in Fig. 3.4(c).

Even though hcs is assumed uniform, the general surface of deposited Cu can be expressed

by setting appropriate hC., a and hs, values depending on the Cu deposition methods.
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Figure 3.3 Definition of pattern geometry in Cu damascene structure based on the Cu
interconnect linewidth, w, pitch, A, Cu deposition factor a and the initial step-
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Figure 3.4 Effect of Cu deposition factor, a, and initial step-height, hj, when (a) a = 0 or
hj = 0, (b) 0 < a < 1 or 0 <h < I and (c) a = 1 or h = h.
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3.2.2 Die-scale (Inter-subdie) Non-uniformity

In addition to the feature-scale non-uniformity, there are die-scale non-uniformities in each

die on the wafer. The die-scale variation mainly depends on the pattern geometry and the

materials in contact with the pad at each polishing height.

There have been several researches that try to simulate die or chip scale variations depending

on the pattern layout. First approach was to develop a chip-scale step-height reduction simulator

based on the planarization length. In this simulation, the average pressure at each pattern density

unit is calculated based on the smooth contact mechanics model. The effect of pattern geometry

on the material removal rate was investigated and a pattern density model was defined based on

the planarization length concept in ILD CMP [Stine et al., 1998]. In this pattern density model,

the material removal rate of high-feature was assumed the same as the blanket wafer material

removal rate divided by the pattern density. Later, a chip scale step-height reduction model was

proposed based on the assumption that pressure at the high-feature decreases and pressure at the

low-feature increases linearly as step-height decreases, if the step-height is less than a critical

step-height [Tugbawa et al., 2002]. Another approach was to develop a chip scale erosion

simulator based on the feature-scale fluid based erosion model [Runnels et al, 1999].

To express pattern geometry at die-scale of complex chip-style patterns, it is required to

define a characteristic area that can be considered as a separate region in a die in terms of an

average pressure. The average pressure in the characteristic area mainly depends on the area

fraction, Af , of Cu in the underlying pattern. This area fraction can be expressed as the ratio of

the Cu interconnects area, Ac., to the total characteristic area, Atotai.

Af = A (0 < Af 1) (3.2)
Aotal

If Af = 0, the region is an oxide field region and there are no Cu lines within the area. On the

other hand, if Af = 1, the entire area is monolithic Cu. In this study, each die in a patterned

wafer consists of 16 separate subdies with various periodic patterns as shown in Fig. 3.5(a) and

(b), and thus each subdie will be assumed as the characteristic area. Thus, the area fraction Af

of a subdie for linear features may be expressed the same as the area fraction of each feature as:

Af = W (0 < Af < 1) (3.3)
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Figure 3.5 Examples of patterned die with periodic features: (a) photograph of a die, (b)
micrograph of a subdie and (c) schematic cross-section of a subdie after CMP.
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where w is the Cu linewidth and A the pitch of the underlying pattern geometry in a Cu

damascene structure as shown in Fig. 3.5(c).

Therefore, die-scale (inter-subdie) variation in this thesis is expressed by feature-scale

variation due to its periodic pattern geometry.

3.2.3 Wafer-scale (Inter-die) Non-uniformity

Wafer-scale non-uniformity is due to non-uniform pressure and velocity distributions, and

non-uniform Preston constant due to uneven slurry distribution.

Runnels et al. proposed a wafer-scale phenomenological model to represent the wafer-scale

material removal rate [Runnels et al., 1998]. In this model, they analyzed the kinematics of

rotary-type CMP process and considered a wafer-centered quadratic pressure distribution. Then,

interpolation formulae were developed to determine the relationship between the material

removal rate and relative velocity and pressure distribution. Tichy et al. presented a model to

predict the wafer-scale pressure distribution during CMP by using one-dimensional contact

mechanics and hydrodynamic lubrication theory [Tichy et al., 1999]. Fluid pressure across the

wafer in one direction and an effective gap between the rough pad and the blanket wafer were

measured. Fu and Chandra presented an analytical expression for wafer-scale pressure

distribution at the pad/wafer interface for a viscoelastic pad [Fu and Chandra, 2002]. They

showed that the material removal rate decreases as polishing progresses due to the pressure

decay except in the edge area of a wafer. Seok et al. modeled the wafer-scale pressure based on

the assumption that the wafer acts as a thin beam resting on an elastic foundation [Seok et al.,

2004]. The simulations show high contact pressure at the edge of the wafer.

A complete analysis of wafer-scale variations is complicated since not only the individual

contributions require thorough investigation, but also the effect of one parameter on another

needs to be considered.

In CMP, the wafer-scale non-uniformity is expressed as within-wafer non-uniformity

(WIWNU), defined as:

WIWNU = Uh (3.4)
I'h

where 7h is the standard deviation and IUh is the mean of the amount of material removed in a

given time at the sampled points.
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The WIWNU estimation requires statistical analysis. To compare non-uniformity at any two

points, however, the ratio of material removed by polishing in a given time is more useful. In

this thesis, therefore, the maximum wafer-scale non-uniformity is focused. Although the

reference point in a die can be any pattern geometry so long as the subdies with the same pattern

geometry in the slowest and the fastest die are compared, the field region is the best to compare

with in part due to the ease of measurement. Thus, the wafer-scale uniformity factor, 3, is

defined as the ratio of the material removal rates at the slowest and fastest field regions. Thus,

3 = (0 < 3 < 1) (3.5)
A hff

where Ahf and Ahff are the thicknesses of material removed in the slowest and the fastest

field regions, respectively, in a given time.

As shown in Fig. 3.6, the edge region of the wafer polishes faster and hence erosion and

dishing are the greatest in the outer dies in many of the conventional face-down CMP tools. In a

blanket wafer, every point in a wafer can be considered as a field region as shown in Fig. 3.6(a).

Therefore, 3 expresses the maximum material removal ratio in a wafer. If 3 = 1, the wafer is

polished uniformly across the entire area; if /3< 1, the wafer is polished nonuniformly. In a

patterned wafer, on the other hand, it is important to differentiate between the wafer-scale non-

uniformity and the die-scale non-uniformity. The simplest way to do this is to compare a subdie

of the same pattern geometry in each die. The fastest or the slowest polishing region in a die, in

some cases, may not be the field region, however. Nevertheless, it is convenient to select the

field region in each die as a reference point as shown in Fig. 3.6(b). Even when / = 1, there

could be die-scale non-uniformity. This means that a subdie at the same relative position in each

die on a wafer will have the same non-uniformity. If / < 1, of course, subdies in each die will

have different non-uniformities.
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3.3 Cu Dishing and Dielectric Erosion

3.3.1 General Approach

The first approach to integrate wafer- and die-scale variations into the feature-scale Cu

dishing model was addressed by Yang [Yang, 2000]. He introduced the concept of dishing

susceptibility, x, to quantify the dishing dependence of over-polishing in Cu CMP. In this

model, x represents the slope of the line between two points connecting final and initial dishing

when the x-axis is the amount of corresponding overpolishing at field region. Then, he

expressed the overpolishing time at each feature in terms of the standard deviation of the wafer-

scale non-uniformity. Although this is conceptually similar to the current model in this chapter,

there are several limitations in Yang's model. First, there is no physical model describing

feature-scale dishing and it assumes the final dishing is linearly proportional to the overpolishing

time. Second, the dishing susceptibility X is a lumped parameter which depends not only on the

feature-scale initial pattern geometry but also on the final dishing and the process end-point at

wafer-scale. Thus X requires new measurements whenever the process end-point varies.

In this section, integrated dielectric erosion and Cu dishing models are developed by

combining wafer-, die- and feature-scale variations into the feature-scale step-height calculation

models. Figure 3.7 shows the evolution of the pad/wafer contact surface based on the feature-

scale step-height models in Chapter 2. In these models, the polishing surface in the general Cu

CMP is represented in three stages and end of each stage is separated as polishing time:

Stage 1: Initially, the pad contacts high-feature only if the relative deformation of the pad

between the high- and low-feature, 6, under the given load is smaller than the initial step-height

hj: 6 < hi. Materials being polished at high- and low-feature are the same: Cu. End of the

Stage 1 is designated as t1 : 0 < t < ti.

Stage 2: The pad starts contacting both high- and low-feature. Materials being polished at

high- and low-feature are the same: Cu. End of the Stage 2 is designated as t: t1 <t < t.

Stage 3: The pad contacts both high- and low-feature. Materials being polishing at high- and

low-feature, however, are different: oxide at the high-feature and Cu at the low-feature. End of

the Stage 3 is designated as the process end-point tp,: k 5 t < t, .
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Figure 3.7 Schematics of the evolution of the polishing surface and non-uniformity definition
at the feature-scale for 0 < t < t,. Polishing time: (a) t = 0, (b) t=t, (c) t =t2

and (d) t = tp .
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Cu dishing, D, and dielectric erosion, e, are defined as the step-height and the height at

high-feature at each pattern geometry when the polishing process ends, t = tp,, as shown in Fig.

3.7(d). Thus,

D - hs(tep) (3.6)

e = hh(t) - hh(tep) (3.7)

As far as the single feature is concerned, it is ideal to end the polishing process when the

polishing surface reaches the top of the oxide, i.e., dielectric layer, tE, = k. Cu dishing at this

moment can be is defined as an initial dishing, Di, and there is no erosion. Thus,

Di hs(k) (3.8)

e =0 (3.9)

Based on the step-height model analysis in Chapter 2, the step-height decreases as polishing

progresses in Stage 2 and thus, the initial dishing is almost zero. If the thickness Cu deposition is

relatively smaller than the initial step-height, however, there may not be enough time to reduce

the step-height and there can be a significant initial dishing. In any case, the initial dishing, Di,

is the minimum dishing at the feature during polishing process if the selectivity is greater than

one.

The polishing times at the end of Stages 1 and 2, t1 and k, are not global variables across a

wafer. They depend on the non-uniformity variations at wafer-, die-, and feature-scale as

defined in Section 3.2. In the case of the smooth and perfectly flat mode, for example, t and k

in the fastest die are expressed as:

-i (I - a( /A) 3.10)
kpc PavVR

hc. - (aw/A)h's (3.11)
kp, PavVR

In this case, k increases as Cu deposition factor a, initial step-height hj, and the area fraction

w / A decreases. This is reasonable since the total amount of Cu to be polished until Stage 2

increases as a, h. and w / A decreases.

Although it is desirable to end the polishing process at t = t at each feature, in the
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conventional face-down CMP setup, it is impossible to setup different endpoints on a wafer since

the whole area of the wafer is always in contact with the polishing pad. There is only one

process endpoint across entire wafer. Most of previous feature- or at die-scale dishing and

erosion models [Runnels, 1999; Park et al, 2000 and 2004; Vlassak, 2001 and 2004; Fu and

Chandra, 2003], a process end-point in CMP is independently expressed at a time-scale and

determined by an end-point setting by a process operator. However, in this approach, it is

difficult to characterize effect of wafer-scale variation on erosion and dishing at each feature in a

wafer.

The key approach to integrate wafer-scale variation into the feature-scale erosion and dishing

is to express time-scale variables in terms of model parameters. For example, required polishing

time of a wafer can be expressed by blanket material removal rate, pattern geometry and wafer-

scale non-uniformities. It is expressesd as the time when the excess Cu in the field region of the

slowest die, i.e., wafer reference point, is completely removed, t = as shown in Fig. 3.8. That

is,

f h u (3.12)
Ok,uPavVR

In polishing practices, however, the wafer is slightly overpolished to ensure that there is no

excess Cu or barrier material on the entire wafer, the so-called "overpolishing". The amount of

overpolishing, A h, is defined as the amount of oxide polished in the field region of the slowest

die. Therefore, the process end-point, tp,, is expressed as:

tep = + Ah (3.13)
Okpu PavOR pk, PavR

The amount of erosion and dishing are closely related to the amount of time the pad spends

after it reaches the top of oxide at the feature. Accordingly, the overpolishing time at each

feature, t, is defined as the additional time spent after the polishing time reaches the top of

oxide at the general feature in the fastest die. Thus,

to te, - = 1hu + a(w/A)hs + Sculox - Aho (3.14)
kp, Pav VR[ ) 0 3

Since k depends on pattern geometry and non-uniformity parameters, the overpolishing time,
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to, also varies from feature to feature in a die, and from die to die in a wafer. Equation (3.14)

shows three terms that affect the overpolishing time, t,. Each terms represents lenth-scale

variation parameters instead of time-scale variation. First, if 3 = 1, there is no wafer-scale

variation and thus each die in a wafer will have exactly same die-scale variation regardless of its

location in a wafer. Second, if a= 0 or h,,i= 0, the initial feature surface is perfectly flat and

thus material removal rate is the same as that in the field region. In this case, there is no subdie-

to-subdie variation or feature-to-feature variation in a die and the wafer surface height decreases

at a rate of blanket wafer material removal rate until the polishing surface reaches the top of

oxide layer. Third, if Ah, = 0, there is no erosion and dishing developed in the wafer reference

point. Additionally, if there is no wafer- and feature-scale variation, /3= 1 and a = 0 or hj = 0,

the overpolishing time at each feature, t0 , becomes zero and thus, there is no erosion and dishing

across a wafer. If any of these three conditions are not satisfied, there is always certain amount

of overpolishing at each feature and so are erosion and dishing.

The amount of oxide overpolishing at the field region at the slowest die, Ah, , can be

calculated based on the material removal rate of oxide and the overpolishing time as:

Aho = 3 - kPO, PavVR - (tep - 2sf) (3.15)

As the overpolishing time at each feature, t0 , increases, erosion and dishing increase. Cu

dishing, however, does not increase linearly and may approach an asymptotic value, since the

maximum step-height is limited by the oxide area surrounding Cu interconnects as observed in

Chapter 2. This asymptotic value is represented by D" . Cu dishing D , Di and D" are

expressed in dimensionless forms D*, D, and D*, , respectively, the ratio of dishing to the

nominal Cu interconnect thickness, h1 .

* =D D * D_
D* h, IDi h, , D* = h (3.16)

Dielectric erosion, e, is defined as thickness of oxide worn out as expressed in (3.7). In the

integrated erosion model, wafer-scale and die-scale erosions are decoupled to explain the effects

of non-uniformity parameters. Wafer-scale dielectric erosion e, is defined as the amount of

overpolished oxide in the fastest die field region by the time polishing reaches the end-point, t,,
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as shown in Fig. 3.8. Furthermore, die-scale dielectric erosion ed is defined as the amount of

overpolished oxide in each suddie relative to the field region in the same die. Total dielectric

erosion, e, is defined as the amount of overpolished oxide at the surrounding oxide and also the

sum of the wafer-scale erosion, e, and the die-scale erosion, ed .

e = ew + ed (3.17)

Dielectric erosion, e, ew and ed are also expressed in dimensionless form e*, e* and ed* as:

* e * _ew ed
e - e, -, ed = (3.18)

h, h, h,

Integrated erosion and dishing models are developed by combining various step-height

models described in Chapter 2 and the non-uniformity parameters defined in section 3.2.

Feature-scale step-height models in Chapter 3 can be expressed as three different types in

terms of calculation method: iterative, numerical and analytic.

" Iterative solution: General rough pad model with elastic and plastic contacts

" Numerical solution: Simplified rough pad model with elastic contact.

" Analytic solution: Smooth pad, discrete pad model and simplified rough pad model with

plastic contact.

Although it is possible to develop integrated erosion and dishing model in iterative,

numerical solutions, only analytic solutions are considered in this chapter to develop integrated

erosion and dishing model in simple symbolic forms. In this section, therefore, three feature-

scale step-height models are considered: smooth, discrete and simplified rough pad with fully

plastic contact models. Figure 3.9 shows schematics of each feature-scale pad/wafer contact

models and Table 3.1 lists the final form of the step-height models.

3.3.2 The Smooth Pad Model

In the smooth pad step-height model, the pad is assumed as a homogeneous, monolithic

elastic semi-infinite body as shown in Fig. 3.9(a). Although most of commercial polishing pad

have rough surfaces and there are many asperity/wafer contacts during polishing, the smooth pad

model is valid if the size of asperity contact area is sufficiently smaller than the width of Cu

interconnects. In the submicron device level, for example, Cu interconnect linewidth is from 65
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Figure 3.9 Schematics of feature-scale step-height for three contact modes: (a) smooth pad, (b)
discrete pad and (c) simplified rough pad.
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Table 3.1 Comparison of feature-scale step-height models.

Model Initial Pad Deformation, Step-height, Height at the High Feature Values

6 A (Pav )
(1-aw / ) \E*/

h8 (t) = B2 1Scu/ Ox - B11 J(PL-)Wl -e t2x1
B12 -B22SCulox\E* 7 3

Smooth Pad T3 / Ox 1B12 -B 22Sulox )(kpE*vR

hh(t) = -MRR(t -t 2 )

where MRR. - kpPavV RF- / A)R/ AI

8( = -/Q)W/A)(E+)Ho

1 aw / Ep

h = (t) =SC/Ox+w/] (P )Ho 1 - exp -

Discrete Pad 1

SCu/ ox 1 H
( 1-W/A)Scu/lo +w / A kp, EpVR)

hh (t) = -MR& (t -t2 ) + 1- W /A hscuo +(t)X

Rough Pad 2/3 2/3 9 X 1/3

- Simplified, 6 = Pav

Elastic /16R

6 = (lPajw/A(PJ 
6 -5r aJ

[( ,Cu/oxj\ )hs ( t
Rough Pad h,(t) = (1 - W/AS /+w / A Yv I 6WRa ) 3 )J

-Simplified, lw )Suxw/ p6raIl-e T

Fully plastic T 3 -C /_ + I / 1 1 [ I Sipiid 1w/ AScuox w / AJkpuYpvR )6-7r?,)

hh(t)= -MRR (t - t2) + -/)WS + / + h8 (t)

* Simplified rough pad (elastic contact) and general rough pad models are calculated iteratively.

** h8 (k) is assumed zero for all models.
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nm to 500 nm and the radius of pad asperity contact area is about 1-2 pm when the applied

pressure is 14 kPa (2 psi).

Additionally, the Cu deposition factor, a, and the initial step-height, h,2, at the sub-micron

device level are much smaller than those at the global wiring level. For example, in PVD Cu

coating, a = 0.1 and hj / h, = 0.1 when Cu linewidth is 0.5 pm. Thus, the pad can be assumed to

be perfectly smooth and flat during Stage 1 since the initial relative deformation in the smooth

pad model is much smaller than the initial step-height: 6 / hj <10-3. Based on this assumption,

the polishing time t1 and t2 in the smooth pad model are the same as in (3.10) and (3.11),

respectively. Furthermore, at the end of Stage 2, the step-height is zero, h,(t2)= 0. Therefore,

the step-height can be expressed as listed in Table 3.1.

As the polishing time increases, material removal rates at both high- and low-features

approach the same value. This asymptotic material removal rate at the high- and low-features

was defined as MRR., and is useful to compare material removal rates of oxide of each step-

height models.

In Stage 3, material removal rates in the oxide and Cu region remain almost the same since

the Stage 3 time constant of the smooth pad step-height model is much smaller than the

overpolishing time: t, > T3 . Thus, hh(t) decreases at the rate of MRR.

Cu Dishing

In the conventional CMP practice, the time constant of the smooth pad model, - 3 , listed in

Table 3.1 is much smaller than overpolishing time at each feature, t, / T3 > 10. Thus the Cu

dishing can be considered time-independent. From the smooth pad step-height in Table 3.1,

D = B21Cu2ox-BZ PaJw (3.19)
B12 - B22SCul ox Ep*

In this model, dishing is proportional to the Cu linewidth. However, this model is valid in the

region that Cu linewidth is smaller that the radius of the pad asperity contact area. Furthermore,

in the conventional polishing practices, Pa, / E* ~ 10-4, and thus the amount of dishing is

negligible in the submicron device level.

Dielectric Erosion

From Eq. (3.7), dielectric erosion in the smooth pad model can be expressed as:
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e = MRR (tp - t2 )

Therefore, dielectric erosion increases linearly as the polishing time increases and is independent

of Cu dishing. Combined with MR& and the overpolishing time, to, in Eq. (3.14), erosion can

be rewritten as:

e - 1(h)u + a(w/A)hi + Scu/ox - Ah (3.21)
=(1 - W/ A)SCU/o +W i '3 /

Wafer-scale erosion can be simply obtained by substituting w= 0 in Eq. (3.21). Thus

ew= -1Shhu + - Aho (3.22)
SCU/ox (0

Die-level erosion is calculated by subtracting the wafer-level erosion, ew, from the total erosion,

e , as:

ed 1)hcu + ac(w/A)hi + Scuiox - Aho
(1 - e/ A)SCU/o, +W 1 

/(3.23)

~1  1i1)hcu Aho

3.3.3 The Discrete Pad Model

In this model, the pad is assumed to be discrete, uniaxially loaded blocks as shown in

Fig. 3.9(b). Although the model relies on the finite pad thickness and physically inadmissible

discontinuous boundary conditions, it reflects the evolution of the step-height in the simplest

form and fairly well.

Stage 2 ends when the pad reaches the top of oxide at the high feature. The end of Stage 2,

t2 , of the discrete pad model approaches to that of the smooth pad model, Eq. (3.11), and h.,(t2)

approaches zero, as the ratio (t2 - 1)/ T2 increases. As described in the sample calculation in

Chapter 2, (t2 - t1 ) /T 2 > 4 in conventional Cu CMP. Therefore, in this section, h,(k) is

assumed zero and thus the final h, (t) and hh(t) are listed in Table 3.1.

Cu dishing

Ideally, polishing should end when the excess Cu at the high-feature is completely removed:
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t = k. Cu dishing at this moment is defined as the initial dishing, Di. However, since h, (k) is

assumed zero, the initial dishing is also zero.

Therefore, Cu dishing can be rewritten as:

D = [(1 o/ ] ( Pa H 1 - exp(te - )2 (3.24)
(1 - w/A)SCu/Ox+w /A E, T3

To evaluate the amount of exponential term in Eq. (3.24), it is useful define a dimensionless

overpolishing time, t,, as:

t* te, - t (3.25)

The dimensionless overpolishing time, to is an index of how close Cu dishing is to the

asymptotic value, D,. For example, if to> 4, the Cu dishing, D approaches D. within 2%.

Therefore, the final form of Cu dishing of discrete pad is:

D = SCU/OX-1 I[ P/a I HO[1 -exp(-to*)] (3.26)
(1 - w/ A)SCu/ Ox+w /A E,

where,

(1- w/A)SC 1  +w 1 
/ Eh u + a (w / A )hsi + Sculox 1  Ahl

to*/ Pyp HO )3

(3.27)

Dielectric erosion

Based on the step-height model in Table 3.1, dielectric erosion in the discrete pad model is

represented as a similar form to that in the smooth pad model:

e = MRROO (tep - [ ) -[1 A D (3.28)
(1 - w / A) )Scu/ox +w /A

The first term in (3.28) is the same as the dielectric erosion in the smooth pad model. The

second term reflects the effect of Cu dishing on erosion. In the smooth pad model, the pressure

at the high-feature is assumed to have the steady-state value during Stage 3. In the discrete

model, however, the pressure at the high-feature increases from the pressure at the field area to

the steady state value and the time constant to approach the steady state value is not negligible.
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Therefore, the erosion in the discrete model, if the overpolishing time is the same, is smaller than

that in the smooth pad model. Additionally, the effect of dishing on the erosion increases as area

fraction of Cu interconnect increases. If w / A= 0, reduction in erosion due to Cu dishing is

D / Scu / . As w / A approaches unity, reduction is erosion due to Cu dishing increases to D .

As the overpolishing time t0 increases, erosion increases almost linearly with MRR,, since

the dishing approaches an asymptotic value D, . Combining with the steady state material

removal rate in (3.28) and the overpolishing time in (3.14), erosion can be rewritten as:

e -1) hcu+ a(w /X Ahsi +Scu /ox-Aho
( '1-w/A)S eo+w/AI[I1 u #w/~8( /A) Cu/ox +(3.29)

w/A
(1 - / A) SU/Ox+w/AI

Since the wafer-scale erosion is defined in the field region, there is no dishing. Thus, the wafer-

scale erosion in the discrete pad model is the same as that in the smooth pad model as in (3.22).

Die-scale erosion, ed, is calculated by subtracting the wafer-scale erosion, ew, from the total

erosion, e, as:

ed = 1 hcu + a (w /,\) )hq + Scu/ox Aho(1 - W/A)SC/O2 + /A (3.30)

- w/A D - 1)hcu - Ah
(1 - W /A ) SCU/ O + W /A Scu / Ox 13)

3.3.4 The Simplified Rough Pad Model with Plastic Contact

In the simplified rough pad model, the pad topography is idealized to have pad asperities

with a uniform height and the same radius of curvature as shown in Fig. 3.9(c). Contact between

the pad asperities and the wafer are assumed as either fully elastic or fully plastic.

In the elastic pad asperity contact condition, the relationship between the contact pressure

and the pad asperity deformation follows the Hertzian contact theory. Unlike the discrete pad

model, therefore, the pressure and the material removal rate at the high- and low-features are not

linear with the step-height. Thus, the pad deformation at the high-feature 6 h at a given step-

height h, needs to be solved numerically. Therefore, in this section, the deformation of each pad
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asperity is assumed to be fully plastic.

In the plastic contact, the deformation of pad asperity and the mean pressures at the high- and

low-features are linear. Therefore, the step-height analysis procedure is exactly the same as in

the discrete pad model, replacing H0 by 7 /6irR, and E, by Y as listed in Table 3.1.

Cu dishing

Similar to the discrete pad analysis, the initial dishing in this case is also much smaller than

the interconnect thickness, thus can be neglected. Therefore Cu dishing in the simplified rough

pad model with plastic contact mode is solved as:

D = [(/11 a- )[1 - exp(-t*)] (3.31)
(1 - w / A)SCu/Ox+w /A Y 6,7r R

where,

(1 - w/A)SU/OT + W/A]( YP h6rRa 
to= ( j 1 hou +a(w/A)hi+ Sculox-h

SCU / O Pav Ag )3

(3.32)

Dielectric erosion

The relationship between the dielectric erosion and Cu dishing in this model is the exactly

the same with that in the discrete model, described in Eqs. (3.29) - (3.30). It is noticeable that

the effect of material properties and the surface topography of polishing pad on dielectric erosion

are marginal as long as Cu-to-oxide selectivity is high. However, if slurry selectivity approaches

to unity, the amount of dishing should be considered to calculate erosion in the global wiring

feature.

3.4 Process Parameter Sensitivity Analysis

In the previous section, integrate erosion and dishing models are developed based on the

feature-scale step-height models for various pad/wafer contact regimes. Table 3.2 lists the

summary of the developed integrated models.

In this section, the effects of model parameters on dishing and erosion are discussed. As

described earlier, Cu dishing is dominant at the global-wiring level and dielectric erosion is
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Table 3.2 Summary of developed integrated erosion and dishing models.

Model Cu Dishing and Dielectric Erosion Values

D B 2 1SCu/ ox - B11 I(Pav\D=B12 - B22Scu10 JVo \ *w

Smooth Pad

e = (1 - /A)S + / 1)hcu + a(w/A)hsi + Scuio Aho

f(1-w/A)SCu/1 0 +w/AI1(E_(
D = [(1- - )/ox+w/A H - ep (-to)

Discrete Pad to* = (1 - w/A)Scu/o + w Y/ )(I I - 1 hu + a (w / A)hi + Scu /o1 Aho

FullySC plsi [suox Pay, HtO #~a )3j Su~zL

e = - w1/ A)S 1 hCu + a (w / A)hj + Scuox j.Aho -K w /A +/ D

D =i ( -wi / A)S on) x +w / A Y 6rR a expl a toe

Rough Pad, e (1 - w/ A)SCu/Ox + w /A 1- 1) hou + a (w / A) )hs + Scu/o 1 h

Fully plastic SU/O yp

=(1 - w/A)SCu/Ox + w/AIO -1h18~/~a Sc/x (1 - w/A)Scu/ox-4- + /AD

*Simplified rough pad (elastic contact) and general rough pad models are calculated iteratively.

N)
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dominant at the submicron device level in Cu CMP. Therefore, erosion of the smooth pad

model, listed in Table 3.2, is considered to express erosion at the submicron level. Since the

extent of dishing at the submicron device level is already below the industrial specification, the

focus will be on the minimization of dielectric erosion by adopting the smooth pad model. At

the global wiring level, on the other hand, rough pad models are applicable to express erosion

and dishing. It is well known that die-scale erosion at the global wiring level is much less than

the industrial specification. Since the wafer-scale erosion in a die depends on the wafer-scale

uniformity factor and the amount of overpolishing only, it is considered in the erosion at the sub-

micron level. Cu dishing, therefore, is mainly discussed based on the simplified rough-pad

model, listed in Table 3.2, at the global wiring level.

3.4.1 Parameter Analysis

All the model parameter values for parameter sensitivity analysis in this chapter are listed in

Table 3.3. The smooth pad model is used for the analysis of dielectric erosion and the rough pad

model with fully plastic contact is considered for the analysis of Cu dishing.

Figure 3.10 shows the effect of slurry selectivity (Sc. 1o,) on dishing and erosion. When Cu-

to-oxide selectivity is unity, the pad polishes Cu and SiO 2 at the same rates, and the step-height

decreases with polishing time even after the pad contacts the dielectric. From the simplified

rough pad model analysis, the step-height becomes much less than 5% of Cu thickness before the

pad contacts the top of the oxide layer regardless of the location of die or pattern geometry. Cu

dishing in this case is much less than 5% of Cu interconnect thickness.

As slurry selectivity is increased, dishing increases since Cu in the interconnect region

polishes faster than the surrounding dielectric. However, the amount of Cu dishing depends on

the amount of overpolishing time at a specific feature, which is determined by the initial pattern

geometry, wafer-scale uniformity factor, and the extent of overpolishing at the global reference

point. By contrast, dielectric erosion decreases as the selectivity is increased if the material

removal rate of Cu is fixed. If the selectivity is unity, both SiO 2 and Cu are polished at the same

rate as a blanket SiO 2 or Cu wafer. If the selectivity is very large, either the dielectric is

completely rigid or the Cu is polished very fast. Since a fixed Cu material removal rate is

considered, the latter case is applied, and there is no erosion regardless of the model parameters

and the pattern geometries. With a fixed selectivity larger than one, erosion depends on the
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Table 3.3 Model parameters for parameter sensitivity analysis.

Property Value

Thickness of Cu Interconnect, h, (nm) 1,000

Area Fraction of Cu Interconnect, w / A 0.5

Cu-to-oxide Selectivity, Scu/o 14.1

Wafer-scale Uniformity Factor, 3 0.83

Thickness of Cu Deposition, he, (nm) 1,500

Cu Deposition Factor, a, for Erosion Model 0.1

Cu Deposition Factor, a, for Dishing Model 1

Initial Step-height, h,8 (nm) 900

Amount of Overpolishing, Aho (nm) 10

Applied Pressure, py (kPa) 14

Young's Modulus of Pad, E, (MPa) 300

Poisson's Ratio of Pad, v, 0.3

Yield Strength of Pad, Y, (MPa) 20

Radius of Pad Asperity, Ra (pm) 6.0

Spacing between Pad Asperities, k. (pm) 120
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Figure 3.10 Effect of the slurry selectivity on (a) Cu dishing (simplified rough pad model, fully
plastic) and (b) dielectric erosion (smooth pad model).
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amount of overpolishing time at any specific feature, which is determined by the initial pattern

geometry, wafer-scale uniformity factor, and the amount of overpolishing at the global reference

point.

Figure 3.11 shows the effect of Cu deposition factor, a, on dishing and erosion. If a is

zero, the initial surface can be considered as a field region and thus, there will be no die-scale

variation until the polishing surface reaches the top of oxide layer. Both dishing and erosion

developed up to this moment are zero, so are the final erosion and dishing if there is no wafer-

scale variation and the global overpolishing: 3 = 1 and Ah0 = 0. If /3< 1 or Ah0 > 0, however,

the interconnect pattern affects erosion and dishing. As a increases, the material removal rate at

the feature increases and thus this feature will reach the top of oxide layer earlier than the in the

field region. Combined with the effect of / and Ah0 , a also affects the overpolishing time,

and dishing and erosion increase.

Figure 3.12 shows the effect of wafer-scale uniformity factor, 3, on dishing and erosion. If

3 = 1, there is no wafer-scale variation. Additionally, if a is zero, there is no die-scale variation

before the polishing surface reaches the oxide layer, and the dishing and erosion can be

maintained as zero if polishing is stopped at the exact end-point, i.e., Ah = 0. If 3 < 1, the

feature in the fastest die reaches the oxide earlier than that in the slowest die, and thus the

amount of overpolishing in the fastest die increases. Although the commercial equipment claims

that within-wafer non-uniformity (WIWNU) less than 5%, based on the standard deviation of the

material removal rate distribution across the wafer, standard deviation is not a good measure of

wafer-scale uniformity since it may not have information about the worst case in a wafer.

Therefore, 3 represents the maximum value of the wafer-scale material removal rate variation to

focus on the maximum dishing and erosion in a wafer.

Figure 3.13 shows the effect of the amount of overpolishing, Ah0 , at the global reference

point on dishing and erosion. If / = 1 and a= 0, there is no wafer- and die-scale variations in a

wafer, and thus dishing and erosion can be zero if Ah = 0. As Ah increases, however, the

amount of overpolishing at the fastest die increases and thus, dishing and erosion increase. In the

polishing process, Ah, is determined by various end-point detection techniques and maintained

as the certain value to ensure there is no excess Cu, or barrier layer residue, on the oxide. This is

because first, the slowest region in the slowest die may or may not be the field region depending
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Figure 3.11 Effect of the Cu deposition factor, a, on (a) Cu dishing (simplified rough pad

model, fully plastic) and (b) dielectric erosion (smooth pad model).
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pad model, fully plastic) and (b) dielectric erosion (smooth pad model).
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pad model, fully plastic) and (b) dielectric erosion (smooth pad model).
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on the layout of subdies and, second, the time to polish the barrier layer may not be significantly

low if the hardness of the barrier layer is harder than that of Cu.

Figure 3.14 shows the effect of applied pressure and the yield strength of the polishing pad

on dishing and erosion. Cu dishing is proportional to the amount of maximum pad deformation

if the pattern geometry of the feature and the slurry of selectivity is fixed. As pa / Y, decreases,

i.e., the nominal pressure decreases or the yield strength of the pad increases, dishing decreases.

In the general rough pad contact, deformations of pad asperities are not fully elastic or

plastic. Only some of the pad asperities are in the plastic contact mode and rest in the elastic

mode. The ratio of elastic and plastic deformation depends on the surface topography and the

applied load. In the case of elastic contact mode, the yield strength of the pad in Fig. 3.14 is

replaced by the Young's modulus of the pad with corresponding range of parameter, Pa / E,.

The pad stiffness or yield strength does not significantly affect dielectric erosion in the

submicron level based on the smooth pad erosion model. However, the decrease of yield

strength or Young's modulus of pad decreases erosion at the global wiring level, since erosion

depends on dishing. As the applied pressure increases, material removal rates of both Cu and

SiO2 increase at the same rate. Accordingly, in the smooth pad model, erosion is the time

independent value if Ah is fixed instead of overpolishing time and does not depend on the

applied pressure.

Figures 3.15 and 3.16 show the effect of pad topography, expressed by the spacing, k, and

the radius curvature, R, of pad asperities, on erosion and dishing. These parameters represent

how much of the pressure is localized on the pad asperities. With the same radius of curvature

and height of the pad asperities, the normal load on each pad asperities decreases as k decreases

since the number of the pad asperities per unit area increases. Therefore, the deformation of pad

asperities decreases and thus Cu dishing decreases. On the other hand, if A. is fixed, Cu dishing

decreases as a increases. Additionally, as k increases or R. decreases, the contact regime

can change from the elastic to the plastic contact, which requires the investigation of pad wear.

Furthermore, as the pad gets smoother, slurry flow and the number of abrasive particles trapped

in the each pad asperities may decrease.
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Figure 3.14 Effect of the applied pressure and yield strength ratio, pa / Yp, on (a) Cu dishing

(simplified rough pad model, fully plastic) and (b) dielectric erosion (smooth pad
model).
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Figure 3.15 Effect of the pad asperity spacing, Xk, on (a) Cu dishing (simplified rough pad

model, fully plastic) and (b) dielectric erosion (smooth pad model).
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rough pad model, fully plastic) and (b) dielectric erosion (smooth pad model).
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3.4.2 Process Optimization

From the model analysis in the previous subsection, the model parameters needs to be

optimized to minimize dishing and erosion as follows.

To reduce Cu dishing,

" Use slurry with a low selectivity: Sc,/ 0 x - 1

* Decrease the initial pattern geometry variation: a -> 0

* Increase wafer-scale uniformity: 3 --+ 1

* Minimize the amount of overpolishing: Ah, --> 0

* Use a low pressure and/or a stiff pad: decrease pa, / E, or Pay / Y

" Use a smooth pad: decrease k and increase Ra

To reduce dielectric erosion,

" Use slurry with a high selectivity: SC,,. > 1

" Decrease the initial pattern geometry variation: a -+ 0

" Increase wafer-scale uniformity: / -+ 1

* Minimize the amount of overpolishing: Ah0 -+ 0

The amount of overpolishing depends primarily on the end-point technique during polishing,

which can be controlled separately. Thus in this section, it is assumed that there is no

overpolishing, Ah, = 0. Although the low applied pressure is beneficial in reducing dishing, it

also reduces the material removal rate, which is directly related to the throughput. The polishing

pad requires a higher Young's modulus and a smooth surface. The effect of pad properties on

the slurry and abrasive distribution is beyond the scope of this work and requires further

investigation.

Thus the Cu deposition factor a , the wafer-scale unformity factor 3 , and the slurry

selectivity Sc. 10 are chosen as optimization parameters. Slurry selectivity Scu/10  conflicts

with minimum dishing and erosion requirements in single-step polishing. Nevertheless, by

decreasing a and increasing 3 , the single step-polishing can be made to satisfy a given

specification.

In Figs 3.17 and 3.18, requirements for Cu deposition factor (a), wafer-scale uniformity

factor (/3) for various selectivites (S,,/,_), to satisfy the industrial specifications (5%) of
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Figure 3.17 Requirement of the wafer-scale uniformity factor, 3, and Cu deposition factor, a,
to meet the industrial specification (5%) for (a) Cu dishing (simplified rough pad
model, fully plastic) and (b) dielectric erosion (smooth pad model) with various
slurry selectivities.
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dielectric erosion and Cu dishing, are presented. As the selectivity of the slurry increases, the

requirements of a and 3 for erosion becomes more flexible but for dishing becomes tighter. In

single-step polishing, for example, Cu deposition factor should be less than 0.1 and the wafer-

scale uniformity factor needs to be greater than 0.95 to maintain both erosion and dishing within

5% of the interconnect thickness across the wafer if the polishing slurry has a selectivity of 15.

3.5 Summary

In this chapter, integrated erosion and dishing models have been developed by combining

wafer-, die- and feature-scale non-uniformities with feature-scale step-height models. First, non-

uniformities in Cu CMP at various scales are defined. The plausible causes of erosion and

dishing at wafer-, die- and feature-scales are identified in terms of the geometric and physical

parameters. Such parameters include: Cu interconnect deposition factor, a , wafer-scale

uniformity factor, 3, and Cu-to-oxide selectivity, Scl/_,. To model wafer-, die- and feature-

scale non-uniformities, it is required to consider three separate points on the wafer. First, to

calculate the wafer-scale non-uniformity, field regions in the slowest and the fastest dies are

considered. These two field regions are defined as the wafer and die reference points,

respectively. Additionally, to calculate die-scale non-uniformities, the general feature in the

fastest die, which is the same die with the local reference point, is considered. Feature-scale

non-uniformity is characterized as Cu dishing and dielectric erosion.

Second, an overpolishing time at each feature is expressed in terms of non-uniformiy

parameters at wafer-, die- and feature-scales, and erosion and dishing is calculated from the step-

height model at the process end-point. In the smooth pad model, the amount of dishing is

neglected due to its small pad deformation and erosion increases at the asymptotic material

removal rate, MRR.. In the discrete pad model, the amount of dishing is related to the pattern

geometry, slurry selectivity, Young's modulus of pad, initial thickness of pad. In the simplified

rough pad model with plastic asperity contact condition, the dishing and erosion analysis is

exactly the same as that in the discrete pad model by replacing H, by A / 6-rR and E, by Y,.

In both discrete and simplified rough pad model, erosion increase at the asymptotic material

removal rate as polishing progresses. However, the actual amount of erosion is less than the
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smooth pad model due to the time required to develop a dishing.

Finally, based on the parameter analysis, the following conclusions are drawn to reduce

dishing and erosion.

" Use slurry with a low selectivity to decrease dishing or a high selectivity to decrease

erosion,

" Decrease the initial pattern geometry variation,

" Increase wafer-scale uniformity factor,

" Minimize the amount of overpolishing, and

" Use a low pressure and a stiff, smooth pad.

The requirements of wafer-scale uniformity and the initial deposited pattern geometry to

satisfy both dishing and erosion specification for a given slurry selectivity were obtained. In

single-step polishing, for example, Cu deposition factor should be less than 0.1 and the wafer-

scale uniformity factor greater than 0.95 to maintain both erosion and dishing within 5% of the

interconnect thickness across the wafer if the slurry selectivity is 15.
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Nomenclature

Acu = total Cu interconnect area in a characteristic area (M2)

Ao = nominal area (m2 )

Af = area fraction of Cu interconnects

B11, B12, B21, B22 = dimensionless geometric coefficients

D, Doo, Di = total, asymptotic and initial Cu dishing (m)

D*, Do, D = dimensionless total, asymptotic and initial Cu dishing

EP, E* = Young's modulus and effective Young's modulus of pad (N/m2)

F = applied normal force (N)

Ho = undeformed pad thickness (m)

MRR = material removal rate (m/s)

MRR = asymptotic material removal rate (m/s)

Ra = radius of curvature of asperity (m)

SCu /ox, Sb o = Cu-to-oxide and barrier-to-oxide selectivities

WIWNU = within-wafer non-uniformity

Yp = yield strength of pad material (N/m2)
e, ed, ew = total, die-scale and wafer-scale dielectric erosion (M)

e ,ed, ew = dimensionless total, die-scale and wafer-scale dielectric erosion

h = film thickness (M)

hcu, hb, hI = film thickness of Cu, barrier layer and interconnect (m)

hh, h1 = surface height at high and low features (m)

h, h,, h, () = step-height, initial step-height and asymptotic step-height (m)

kp = Preston constant (m2/N)

k,,kp. = Preston constant of Cu and oxide (m2/N)

P = pressure (N/m2)

Pay = average pressure (N/m2)

t = polishing time (s)

tep = process end-point (s)

ti, t2 , to = polishing time at the end of Stage 1 & 2, and overpolishing time (s)

t, to = dimensionless polishing time at Stage 2 & 3

yR = magnitude of relative velocity (m/s)
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x'y'z

Ahf, Ahsf

Aho

a

'3
#5 ~

6,60
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IAh

VP

Th

T2,T3
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= Cartesian coordinates

= material removed in the fastest and the slowest regions (M)

= amount of overpolishing (m)

= Cu deposition factor

= wafer-scale uniformity factor

= maximum deformation of pad (asperity) (m)

= spacing of pad asperities (M)

= mean of the amount of material removed in a wafer (m)

= Poisson's ratio of pad material

= standard deviation of the amount of material removed in a wafer

= time constants of Stage 2 & 3 (s)
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CHAPTER 4

EXPERIMENTAL VALIDATION

4.1 Introduction

In this chapter, experimental means of determining the model parameters are outlined. The

model parameters include: blanket wafer material removal rate, selectivity, wafer-scale

uniformity factor, Cu deposition factor and the initial step-height. The parameters are obtained

by polishing experiments on blanket and patterned wafers followed by profilometry and scanning

electron microscopy (SEM). The feature-scale step-height models in Chapter 2 are validated by

100 mm patterned wafer polishing experiments and measurement of step-heights at various

polishing times. Polishing rates of the slowest and the fastest dies are compared to determine the

effect of the wafer-scale uniformity factor. The effect of pattern geometry is explained by

measuring each subdie in the slowest and the fastest dies. Finally, Cu dishing and dielectric

erosion at each subdie in the fastest die is measured and compared with the integrated erosion

and dishing models developed in Chapter 3.

4.2 Parameter Determination: Experiments and Measurement

4.2.1 Consumables and Equipment

Commercial pads, Rohm and Hass IC1400, with K-type grooves were used in the

experiments. The groove geometry and the thickness of the stack are shown in Fig. 4.1, and the

material properties are listed in Table 4.1. The top layer is polyurethane with high Young's

modulus and pores on the surface. The bottom layer is more compliant than the top layer to

increase conformity between the wafer and the pad. The concentric K-type grooves are for

enhancing slurry distribution during polishing. The sample surface profile of polishing pad is

shown previously in Chapter 2, Fig. 2.10. The Young's modulus of the polishing pad is 300

MPa at room temperature and the yield strength is assumed to be 20 MPa.

A commercial slurry with alumina abrasive particles, Cabot Microelectronics iCue5001, was
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1.5 mm .*Ij

-f

Figure 4.1 Schematic of Rohm and Haas IC1400 pad geometry.

Property

Designation

Material

Diameter (mm)

Thickness (mm)

Young's Modulu

Poisson's Ratio

Hardness (Shore

Yield Strength (

Type of Groove

Size of Groove,

Pitch of Groove

Size of Pore (pnm

Table 4.1 Properties of Rohm and Haas

Top Layer

IC1000

Polyurethane

300

1.27

s (MPa) at 24 C 300

0.3

D) 57

MPa)* 20

Concentric K

(mm x mm) 0.254x0.375

(mm) 1.5

L) 20-60 (isolated)

IC 1400 pad.

Composite

IC1400

Polyurethane + Urethane

300

2.62

56

- Rohm and Haas Corporation [http://www.rohmhaas.com].
* Polyurethane Elastomer [http://www.matweb.com].
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used in both blanket and the patterned wafer polishing experiments. The particle diameter is

between 0.8 pm to 11 Im as shown in Fig. 4.2 and the mean particle size is 3.6 pm. The

physical properties of the slurry are listed in Table 4.2. Hydrogen peroxide was added during the

slurry preparation process by the amount of 2.5% of total slurry volume and mixed before

polishing for at least 30 min. It is well known that hydrogen peroxide reacts with Cu to form a

thin soft Cu layer and thus increases Cu material removal rate.

All polishing experiments were conducted on a face-down, 100 mm CMP tool shown in Fig.

4.3. The wafer was mounted underneath the wafer carrier and pushed against the polishing pad

with a certain normal load and both were rotated in the same direction. The experimental

conditions for both blanket and patterned wafer are listed in Table 4.3. During both blanket- and

patterned-wafer experiments, the average pressure was either 14 kPa (2 psi) or 28 kPa (4 psi) and

the rotational speeds of wafer and pad were the same. Slurry was fed from the edge of the wafer

and was carried by the pad through the pad/wafer interface. Slurry flow rate was 50 ml/min.

4.2.2 Material Removal Rate and Selectivity

To characterize selectivity in the Cu CMP process, the material removal rate in a blanket

wafer for each substrate was determined. Although it is required to achieve material removal

rates of each layer in substrate stacks as shown in Fig. 4.4, it is convenient to use separately

coated blanket wafers to determine material removal rate of each substrate material. Thus, 100

mm blanket wafers with various coatings, Cu, SiO 2 , Ta, and TaN, were polished. The properties

of these coatings are listed in Table 4.4. The total polishing time was limited to 1-2 min to

ensure that only the coatings were polished across the wafer. The loss of weight, Am, was

measured to a resolution of 0.01 mg and converted into thickness removed, Ah, using the

material density listed in Table 4.4.

Tables 4.5 and 4.6 show results of polishing experiments on blanket wafers. The Preston

constant of Cu is between 2.5 and 3.5x10' 3 Paw, similar to that of the industrial value [Park et

al., 2000; ThomasWest Inc., 2005]. Although the material removal rate increases as the applied

pressure increases, the nominal pressure in the patterned wafer polishing experiments was set at

l4kPa (2psi) for better observation of surface profile evolution as polishing progresses. The

current set of consumables shows the Cu-to-SiO 2 selectivity to be 14.1 and 11.1, depending on

the process parameter sets listed in Table 4.6. The Ta-to-SiO 2 selectivity is 1.9, which is much
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Mean: 3.6 pm
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Diameter (pm)

Figure 4.2 Abrasive particle size distribution in Cabot iCue5001 slurry:
Cabot Microelectronic Corporation [http://www.cabotcmp.com].

Table 4.2 Properties of Cabot iCue5001 slurry.

Property Value

Abrasive Material A120 3

Mean Particle Size (pm) 3.2

Hardness of Abrasive (MPa) 29,400

Volume Percent of Abrasive 5

pH 7.5

Viscosity (Pa-s) 0.0082

Additive H20 2

Volume Percent of H202  2.5

- Cabot Microelectronic Corporation [http://www.cabotcmp.com].
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Figure 4.3 Photograph of the face-down, 100 mm CMP tool.
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Table 4.3 Experimental conditions

Parameter

Diameter of Wafer (mm)

Diameter of Pad (mm)

Normal Load (N)

Normal Pressure (kPa)

Rotational Speed of Wafer (rpm)

Rotational Speed of Pad (rpm)

Center-to-Center Distance (mm)

Relative Velocity (m/s)

Slurry Flow Rate (ml/min)

Polishing Time (s)

Present Work

100

300

110-220

14-28

75-100

75-100

85

0.67 - 0.90

20-100

60-480

Industrial CMP

200-300

600-1000

440 - 880

14-28

50-120

50-120

200-300

0.5-3.0

50-200

60-300
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100 mm
(a)

Cu
TaN

Si

(b)
Figure 4.4 The 100 mm blanket Cu wafer: (a) photograph and (b) schematic of substrate stacks.

Table 4.4 Mechanical and physical material properties of coatings and the substrate.

Property Cu TaN SiO 2  Si

Thickness, h (nm) 1,000 20 1,500 0.5 x 106

Deposition Process PVD CVD TEOS -

Young's Modulus, E (GPa) 128 180 73 112

Hardness, Brinell (MPa) 686 10,800 7,840 24,500

Density, p (kg/M 3) 8,941 13,800 2,500 2,330

Electrical Resistivity, p (pQ-cm) 1.741 130 1.0 x 1020 1.0 x 105

Reflectivity (%) 90 78 - 28

- CRC Materials Science & Engineering Handbook, CRC Press Inc.
- ASM Metals Reference Book, American Society for Metals.
- Matweb Inc., [http://www.matweb.com].
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Table 4.5 Results of polishing experiments on blanket wafers with various coatings.

Experimental Coating At m2  mf Am Ah MRR k,
Conditions (min) (mg) (mg) (mg) (nm) (nm/min) (x10- 3 Paw)

2 9031.98 9000.72 31.26 446.6 223 2.94

2 9000.72 8972.08 28.64 409.1 204 2.70

Cu 2 8972.08 8942.96 29.12 416.0 207 2.74

2 9046.26 9018.30 27.96 399.4 199 2.63
p= 14 kPa 2 9018.30 8987.02 31.28 446.9 223 2.95

yR = 0-9 M/S 2 8987.02 8957.44 29.58 422.6 211 2.79
Q =50 mI/mi 2 8694.48 8693.94 0.54 7.7 14 0.18

2 8693.94 8693.23 0.71 10.1 18 0.24

2 8693.23 8692.71 0.52 7.4 13 0.18
SiO2

2 8694.09 8693.43 0.66 9.4 17 0.22

2 8693.43 8692.85 0.58 8.3 15 0.20

2 8692.85 8692.24 0.61 8.7 16 0.21

1 11262.15 11239.42 22.73 324.7 324 2.88

1 11269.46 11244.01 25.45 363.5 362 3.22

Cu 1 11294.71 11263.48 31.23 446.2 445 3.95

1 11276.45 11246.66 29.79 425.6 424 3.77

1 11270.34 11243.70 26.64 380.6 379 3.37

1 11275.67 11247.66 28.01 400.1 399 3.54
p= 28 kPa 2 8693.72 8692.50 1.22 17.5 31 0.28

vQ= 0m6 min SiO2  2 8692.50 8690.98 1.52 21.7 39 0.34

2 8690.98 8689.64 1.34 19.1 34 0.30

2 9418.60 9411.11 7.49 107.0 62 0.55

Ta 2 9418.11 9411.36 6.74 96.3 56 0.50

2 9414.55 9405.47 9.08 129.7 76 0.67

2 9149.18 9140.76 8.42 120.3 39 0.35

TaN 2 9158.70 9151.14 7.56 108.0 35 0.31

2 9057.86 9048.34 9.52 135.9 44 0.39
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Table 4.6 Experimental results on blanket wafers: MRR, Preston constant and selectivities.

Experimental Parameter Coating Present Work Industrial Value*
Conditions

MRR Cu 211 -
p= 14 kPa (nm/min) SiO2  15 -

vR= 0.9 ml/s Cu 2.79
Q=50ml/min (x10- " Pa') Si2 0.20 -

Selectivity SCU / O 14.1 -

Cu 389 800
MRR Ta 65 60

(nm/min)

p= 28 kPa SiO2  35 20

VR 0.67 m/s k Cu 3.45 3.80

Q= 150 ml/min Ta 0.58 0.29
(x10^ 3 Pa')

Si02  0.20 0.10

Selectivity SCU /Ox 11.1 40.0

S /Ox 1.9 3.0

* Industrial values are based on the conditions that pay= 28 kPa, vR =1.25 m/s.
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lower than that of Cu-to-SiO2 . Although the hardness of Ta is close to the hardness of Cu, the

material removal rate of Ta is much less than that of Cu.

4.2.3 Cu Deposition Factor and Initial Step-Height

Figures 4.5 - 4.8 show schematics and photographs of the dies and subdies in the patterned

masks. Tables 4.7 - 4.10 list the mechanical and physical properties of film substrates on the

patterned wafers and the pattern layout of each mask. The linewidths of Cu interconnect in

Mask 1 are mostly smaller than 5 pm, except two 25 pm and one 100 pm subdies. On the other

hand, Mask 2 has global wiring level interconnects, in the range 10 - 100 pm.

In the intermediate and global wiring level, both Cu deposition factor, a, and initial the step-

height, h, , can be easily measured by the surface profilometer as shown in Fig. 4.9. As

linewidth decreases, however, the proflometer reaches its measurement limit. The Tencor P-10

surface profilometer used in this investigation can only measure features separated by 5 Pm or

more. When the linewidth is smaller than 5 gm, SEM was used to measure a and hi. Figure

4.10 shows SEM micrographs of each subdie in Mask 1. Table 4.11, Figs 4.11 and 4.12 show

the a and hj values for both masks. Both a and hj decrease as the interconnect linewidth

decreases. However, if the linewidth is greater than 25 pm, which lies in the global wiring level,

a is close to one and hj is close to the thickness of interconnects. That is, the underlying trench

pattern is closely reproduced by Cu deposition. In the submicron linewidth level, a becomes

less than 0.1 and h, decreases to about 10% of interconnect thickness, which makes the subdie

resemble to the field area.

4.2.4 Wafer-scale Uniformity Factor

The wafer-scale uniformity factor 3 was obtained by blanket and patterned wafer polishing

experiments by comparing the polishing time when the excess Cu in the field subdie at the fastest

and the slowest die. The material removal rate of field region is the same as that of blanket

wafer and the excess Cu thickness, ho, across the wafer is assumed to be the same in PVD Cu

deposition. Therefore, the wafer-scale uniformity factor, 3, the ratio of material removed at the

slowest and the fastest fields, can be rewritten as the ratio of the polishing times as:
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Figure 4.5 The 100 mm wafer patterned with Mask 1: (a) Photograph, (b) schematics of die

layout and (c) schematic of cross-section.

Table 4.7 Mechanical and physical material properties of Cu and substrates (Mask 1).

Property Cu Ta SiO 2  Si

Thickness, h (nm) 1,500 20 1,500 0.5 x 106

Deposition Process PVD CVD TEOS -

Young' Modulus, E (GPa) 128 180 73 112*

Hardness, Brinell (MPa) 686 980 7,840 24,500

Density, p (kg/M 3) 8,941 16,656 2,500 2,330

Electrical Resistivity, p (pQ-cm) 1.741 12.5 1.0 x 1020 1.0 x 10 5

Reflectivity (%) 90 78 - 28

- CRC Materials Science & Engineering Handbook, CRC Press Inc.
- ASM Metals Reference Book, American Society for Metals.
- Matweb Inc., [http://www.matweb.com].
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0.5/200 0.7/200 5/200 25/200
0.0025 0.0035 0.025 0.125

0.5/1 0.5/2 0.5/4 0.5/10
0.5 0.25 0.125 0.05

0.5/50 1/100 2/200 5/500
0.01 0.01 0.01 0.01

2/4 25/50 100/200 Field
0.5 0.5 0.5

Linewidth (pm) / Pitch (pm)
Area fraction

(a) (b)

Figure 4.6 Schematics of Mask 1: (a) die layout and (b) feature geometries in each die.

Table 4.8 Pattern layout of Mask 1.

Subdie Cu linewidth, w Pitch, A Area Fraction
No. (ptm) (ptm) Af =w/A

1 Field - -

2 100 200 0.5

3 25 50 0.5

4 2 4 0.5

5 0.5 50 0.01

6 1 100 0.01

7 2 200 0.01

8 5 500 0.01

9 0.5 10 0.05

10 0.5 4 0.125

11 0.5 2 0.25

12 0.5 1 0.5

13 0.5 200 0.0025

14 0.7 200 0.0035

15 5 200 0.025

16 25 200 0.125
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Figure 4.7 The 100 mm wafer patterned with Mask 2: (a) photograph, (b) schematic of die

layout and (c) schematic of cross-section.

Table 4.9 Mechanical and physical material properties of Cu and substrates (Mask 2).

Property Cu Ti SiO2  Si

Thickness, h (nm) 1500 20 1500 0.5 x 106

Deposition Process PVD CVD TEOS -

Young' Modulus, E (GPa) 128 186 73 112*

Hardness, Brinell (MPa) 686 950 7840 24500

Density, p (kg/M 3) 8941 16650 2500 2330

Electrical Resistivity, p (jg-cm) 1.741 12.5 1.0 x 1020 1.0 x 105

Reflectivity (%) 90 - - 28

- CRC Materials Science & Engineering Handbook, CRC Press Inc.
- ASM Metals Reference Book, American Society for Metals.
- Matweb Inc., [http://www.matweb.com].
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Figure 4.8 Schematics of Mask 2: (a) die layout and (b) feature geometries in each die.

Table 4.10 Pattern layout of Mask 2.

Subdie Cu linewidth, w Pitch, A Area Fraction
No. (9m) (pm) Af =w/A

1 25 100 0.25
2 50 100 0.5

3 75 100 0.75
4 87.5 100 0.875

5 62.5 100 0.625

6 37.5 100 0.375
7 12.5 100 0.125
8 Field - -

9 37.5 100 0.375

10 62.5 100 0.625

11 25 100 0.25

12 75 100 0.75
13 10 20 0.5
14 50 100 0.5

15 125 250 0.5

16 250 500 0.5
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Figure 4.10 Measurement of Cu deposition factor, a, by SEM micrographs of each subdie
(Mask 1): Cu linewidth, w / Pitch, A (Area fraction, w / A )
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Table 4.11 Cu deposition factor, a, and initial step-height, hj, of each subdie in the patterned Cu wafers.

Mask 1 Mask 2
Subdie W A W/A a h3 W A W/A a ha

No.
(im) (pim) (jm) (pm) (jm) (9m)

1 Field - - - - 25 100 0.25 0.97 0.87

2 100 200 0.5 1.0 0.95 50 100 0.5 1.0 0.90

3 25 50 0.5 0.9 0.95 75 100 0.75 1.0 0.90

4 2 4 0.5 0.5 0.12 87.5 100 0.875 1.0 0.90

5 0.5 50 0.01 0.1 0.10 62.5 100 0.625 1.0 0.90

6 1 100 0.01 0.22 0.10 37.5 100 0.375 1.0 0.90

7 2 200 0.01 0.5 0.12 12.5 100 0.125 0.95 0.87

8 5 500 0.01 0.7 0.75 Field - - - -

9 0.5 10 0.05 0.1 0.10 37.5 100 0.375 1.0 0.90

10 0.5 4 0.125 0.1 0.10 62.5 100 0.625 1.0 0.90

11 0.5 2 0.25 0.1 0.10 25 100 0.25 0.97 0.87

12 0.5 1 0.5 0.1 0.10 75 100 0.75 1.0 0.90

13 0.5 200 0.0025 0.1 0.10 10 20 0.5 0.9 0.85

14 0.7 200 0.0035 0.15 0.10 50 100 0.5 1.0 0.90

15 5 200 0.025 0.7 0.75 125 250 0.5 1.0 0.90

16 25 200 0.125 0.9 0.80 250 500 0.5 1.0 0.90

0)
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Figure 4.11 Plot of Cu deposition factor, a, of wafers patterned with Masks 1 & 2 versus Cu
interconnect linewidth, w.
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Figure 4.12 Plot for initial step-height, hj, of wafers patterned with Masks 1 & 2 versus Cu
interconnect linewidth, w.
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Ahf _ t2ff (4.1)A = =(4t2.f

where tf and kff is the time to remove the excess Cu at the slowest and the fastest fields,

respectively.

Blanket and patterned wafers were polished under conditions listed in Table 4.3. Figs 4.13

and 4.14 show the evolution of the wafer-scale non-uniformity during polishing. In blanket

wafer polishing experiments, the edge of the wafer is polished faster than the center of the wafer

and thus the Cu/SiO 2 boundary propagates from the edge to the center as polishing progresses.

In patterned wafer polishing, the wafer-scale non-uniformity needs to be combined with the die-

scale non-uniformity. However, by determining the polishing time of the field regions, the

boundary between Cu and SiO2 can be defined in the same way as the blanket wafer. In

patterned wafer with Mask 2, the region in the edge of the wafer with width 10 mm does not

have any die. Therefore, the material removal rate of this area is lower than that of the other

regions.

Table 4.12 shows wafer-scale uniformity. The wafer-scale uniformity factor of patterned

wafers is slightly higher than that of the blanket wafers. This may be due to better slurry

distribution in patterned wafers. In the current setup, 3 values are in the range 0.67 - 0.83. The

wafer-scale uniformity factor, 3 , depends not only on process parameters but also on

consumables, patterns on the wafer, and especially the polishing tool. Therefore, it is important

to determine 3 under exactly the same set of experimental conditions before characterizing step-

height, dielectric erosion and Cu dishing.

The amount of overpolishing of the slowest field, Ah/, can be calculated from the wafer-

scale unformity factor and the oxide material removal rate as:

Aho = 3 -k,, Pv - (tep - t2sf (4.2)
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t=0 min t= 3 min

t=4min t=5min

t=6 min t=7 min

Figure 4.13 Wafer-scale non-uniformity in blanket wafer polishing.
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t= 0 min t= 5 min

t= 6 min t = 6.5 min

t=7 min t=8 min

Figure 4.14 Wafer-scale non-uniformity in patterned wafer polishing (Mask 2).
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Table 4.12 Wafer-scale uniformity factor, /3, and the amount of overpolishing, Ah,.

Experiment kff tSf teP Ato ) MRRvx Aho

(s) (s) (s) (s) (nm/min) (nm)

Blanket
Wafer 240 360 420 60 0.67 18 12

Polishing

Patterned

Poien 330 420 480 60 0.80 15 14

(Mask 1)

Patterned

Poien 360 435 480 45 0.83 15 11

(Mask 2)
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4.3 Step-height

Wafers patterned by Mask 2, Fig. 4.7, were used to investigate the evolution of step-height

due to its large linewidth. The mechanical and physical properties of patterned wafer substrates

are listed in Table 4.9. Each die has 16 subdies with various pattern geometries as shown in Fig.

4.8 and listed in Table 4.10. Most of the lines are in the range of global wiring level, and the

area fraction is between 0.125 and 0.875. The polishing conditions for patterned wafers are

listed in Table 4.3. The average pressure was 14kPa (2psi). The slurry was fed at the

circumference of the wafer at a flow rate of 50 ml/min. Eight wafers were polished to observe

the time evolution of the step-height. Each wafer was polished from 1 min to 8 min and the

polished wafer surface topography was measured by Tencor PlO surface profilometer. Table

4.13 lists the material removal rate, Preston constant, and the observations by naked eye. The

oxide in the field region in the fastest die was exposed after 6 min, and that in the slowest die

shortly after 7 min of polishing time. Polishing was continued up to 8 min to ensure that the

excess Cu on the entire wafer is removed.

Tables 4.14 and 4.15 show the step-heights in the slowest and the fastest dies, respectively.

Figs. 4.15 and 4.16 show the profilometer data and light micrographs as polishing progresses.

The initial step-height decreases and becomes less than 50 nm at 6 min, and it is very hard to

catch the interconnect region by profilometer. However, as polishing progresses further, the Cu

region recesses more than the oxide region, i.e., Cu dishing, profilometer measurement becomes

viable again.

Figure 4.17 shows the evolution of step-height in Cu CMP for various area fractions when

the pitch is fixed at 100 pm. The data in the slowest die in Fig. 4.17(a) show almost the same

behavior with the fasted die in Fig. 4.17(b) by stretching the time scale by a factor of 11/3. This

is reasonable since the wafer-scale uniformity factor, 3, is defined based on the field regions and

thus represents the material removal rate ratio between the slowest and the fastests. As the area

fraction increases, the step-height decreases faster. The end of Stage 2, k, however, shows the

almost the same value, which represents that the die-level variation is relatively small. This can

be explained as follows. Although the Cu deposition factor in the Mask 2 patterned wafer is

almost uniform, a= 1, the effect of pattern geometry is less because subdies with large and the

small area fractions are located alternately. This is especially observed at the subdie with 0.625
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Table 4.13 Experimental results of patterned wafer (Mask 2) polishing.

At Mi mf Am Ah MRR kp Coating Exposed
(min) (mg) (mg) (mg) (nm) (nm/min) (x10-13 Pa')

1 9761.24 9747.95 13.29 190 189 2.50 Cu

2 9616.68 9589.83 26.85 384 191 2.53 Cu

3 9747.85 9706.54 41.31 590 196 2.59 Cu

4 9598.12 9544.08 54.04 772 192 2.54 Cu

5 9624.84 9559.75 65.09 930 185 2.45 Cu

6 9591.85 9519.44 72.41 1,034 172 2.27 atepo s

7 9609.95 9530.94 79.01 1,129 161 2.13 Patte partially

8 9595.33 9508.45 86.88 1,241 155 2.05 atesd.
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Table 4.14 Step-height in the various subdies of the slowest die during patterned wafer
polishing (Mask 2).

Subdie w A w / A Polishing Time (min)

No. (pm) (pm) 0 1 2 3 4 5 6 7 8

87.5

12.5

37.5

62.5

25

75

10

50

125

250

100 0.875

100 0.125

100 0.375

100 0.625

100 0.25

100 0.75

20 0.5

100 0.5

250 0.5

500 0.5

900 425

870 750

900 650

900 650

870 700

900 500

850 550

900 600

900 625

900 600

175 150 65

600 325 250

450 250 160

450 225 130

475 300 150

225 175 75

290 200 90

325 225 125

380 250 140

400 270 175

35

135

70

30

80

20

10

30

30

30

25

5

10

5

5

10

5

5

5

15

75

10

30

30

30

45

25

50

50

50

130

75

75

100

85

135

85

110

125

125

Table 4.15 Step-height in the various subdies of the fastest die during patterned wafer polishing
(Mask 2).

Subdie w A w/A Polishing Time (min)

No. (pm) (m) 0 1 2 3 4 5 6 7 8

4 87.5 100 0.875 900 340 140 96 52 20 75 130 150

7 12.5 100 0.125 870 600 440 260 140 30 10 75 100

9 37.5 100 0.375 900 536 360 196 128 35 30 75 130

10 62.5 100 0.625 900 496 360 180 120 20 30 100 125

11 25 100 0.25 870 560 368 240 120 20 30 85 120

12 75 100 0.75 900 392 180 140 60 10 50 135 150

13 10 20 0.5 850 440 220 180 60 10 25 85 100

14 50 100 0.5 900 480 260 180 96 20 45 110 130

15 125 250 0.5 900 500 304 200 112 20 50 125 150

16 250 500 0.5 900 480 320 200 140 20 50 125 150
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Figure 4.15 Evolution of the surface profile in Cu CMP for various times: (a) t = 0 min,
(b) 2 min, (c) 4 min, (d) 6 min and (e) 8min. w = 250 pm and A= 500 pm.
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Figure 4.16 Evolution of the surface profile in Cu CMP for various times: (a) t = 0 min,
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Figure 4.17 Evolution of the step-height in Cu CMP for various area fractions and pitch
A = 100 pm: (a) slowest die and (b) fastest die.
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area fraction. Since this subdie is located between subdies with 0.325 area fraction and the field

region, the actual pattern geometry effect is diminished. This effect is closely related to the so-

called "planarization length", which will not be addressed in this study.

Figure 4.18 shows the effect of linewidth. Since the range of Cu linewidth is in the global

wiring level, the effect of linewidth is relatively small. This explains that the smooth pad model

cannot be used in the global wiring level because the wafer is in contact with the pad asperities,

not the complete nominal area. Therefore, as far as the Cu linewidth is greater than the asperity

contact size, the effect of linewidth on the step-height can be ignored.

Finally, the developed models are compared with the experimental data as shown in Fig.

4.19. Again, the difference between the models in the slowest die and the fasted die is the wafer-

scale uniformity factor, 3, and thus it can just stretch at the time scale. The duration of Stage 1

is short, which explains why the smooth pad model is not appropriate to explain the step-height

in the global wiring level. However, the smooth pad model is useful in the submicron region

since the asperity contact diameter is greater than the interconnect linewidth. Among developed

models, the general random rough pad model gives the best fit in the step-height reduction

regime, but it overestimates dishing in the overpolishing regime. The simplified rouph pad

model and the discrete pad explain the evolution of step-height best in the overpolishing regime.

Although the general random rough pad model may be the best way to explain the feature-

scale contact between the pad and the wafer, the simplified rough pad model may be the best

choice for developing an integrated non-uniformity model and to avoid the tedious iterative

statistical calculations. Since our focus is on the step-height behavior during overpolishing, the

simplified rough pad model with plastic contact is selected to describe dishing and erosion.

The discrete pad model assumes that the real contact area is the same as the nominal area,

which in general is not true. Additionally, the discontinuous boundary condition and the fact that

the local stress is affected by the initial pad thickness make the discrete pad model difficult to

interpret the actual contact behavior. Therefore, the discrete pad model will not be considered

further to describe erosion and dishing.
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Figure 4.18 Evolution of the step-height in Cu CMP for various Cu linewidths and w / A = 0.5:
(a) slowest die and (b) fastest die.
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4.4 Dishing and Erosion

To verify dielectric erosion and Cu dishing in the both sub-micron and the global-wiring

levels, wafers patterned by both masks were used. Each die in both masks has 16 subdies with

various pattern geometries. In Mask 1, the Cu linewidth varies from 0.5 pm to 100 pm with area

fractions between 0.0025 and 0.5. There is a field subdie and each subdies are surrounded by

field region with 500 pm width. This sidewall will be considered as a field region and assumed

to have the same thickness as the field subdie after polishing to compare the dielectric erosion.

In Mask 2, Cu interconnect lines are between 10 pm and 250 pm and the area fraction is between

0.125 and 0.875. Wafers patterned by Mask 2 are used to express Cu dishing in the global

wiring level. Although Mask 2 also has a field subdie, it is hard to calculate erosion at each

subdie since there is not enough sidewall field area between subdies.

Figure 4.20(a) shows surface profiles for various linewidths with a fixed area fraction,

w / A = 0.5. At the subdie where Cu linewidth is 100 pm, most of non-uniformity is expressed

by Cu dishing and the amount of Cu dishing is 150 nm. In the 0.5 pm linewidth subdie, by

contrast, dielectric erosion is responsible for most of the non-uniformity and Cu dishing is less

than 20 nm, which is about 10% of that in the 100 pm subdie. Figure 4.20(b) shows the effect of

area fraction in the sub-micron subdies. As the area fraction increases, erosion increases while

Cu dishing is still less than 20 nm.

Figure 4.21(a) shows the surface profiles as the Cu linewidth varies. Cu dishing in the subdie

where the linewidth is 50, 125, 250 gm is 135 - 150 nm and does not vary significantly with Cu

linewidth. In the 10 pm linewidth region, Cu dishing is less about 100 nm and erosion starts to

increase. The effects of area fraction and linewidth on Cu dishing are shown in Fig. 4.21(b).

Although, to observe the effect of area fraction, it is required to fix the linewidth and vary pitch

between interconnect lines only, in Mask 2 the pitch is fixed as 100 Pm and Cu linewidth varies

to set area fractions in the rage of 0.125 - 0.875. In this case, Cu dishing increased from 100 nm

to 150 nm as area fraction increases from 0.125 to 0.875.

Dielectric erosion and Cu dishing data from the experiments on wafers patterned by both

masks versus Cu interconnect area fraction and linewidth are plotted in Figs. 4.22 and 4.23.

Both erosion and dishing are expressed in dimensionless forms, the ratio of erosion or dishing to

the oxide trench depth or the nominal Cu interconnect thickness, h1 . In the submicron area, the
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Figure 4.20 Surface profile and micrograph of Mask 1 after Cu CMP of (a) various linewidths
with an area fraction of 0.5 and, (b) various area fractions with a linewidth of 0.5
gm (continued). p= 14 kPa, VR = 0.9 m/s, t = 8 min.
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Figure 4.20 Surface profile and micrograph of Mask 1 after Cu CMP of (a) various linewidths
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dielectric erosion is responsible for most of the non-uniformity and it mainly depends on the area

fraction of Cu interconnects - erosion increases as the area fraction increases. In the global

wiring level where Cu linewidth is greater than 50 pm, the die-scale erosion is relatively smaller

than the wafer-scale erosion and thus the total erosion is close to that in the field region.

Dielectric erosion at the global wiring level is less than that in the submicron level when the area

fraction is fixed. This is explained by the discrete or rough pad model since the time evolution

of erosion is affected by the amount of dishing.

Cu dishing mainly depends on Cu interconnect linewidth as shown in Fig. 4.23(b). If the Cu

linewidth is submicron, the amount of dishing is well under the specification, 5% of interconnect

thickness [ITRS - Interconnect, 2003]. If Cu linewidth is greater than 50 sm, Cu dishing is

about 15% of the interconnect thickness and does not vary significantly with Cu linewidth.

Figure 4.24 compares experimental data with two different models: smooth pad and

simplified rough pad model. From the previous section, the simplified rough pad model is

chosen to describe the feature-scale contact behavior at the global-wiring level. The smooth pad

model is added to compare contact behavior at the submicron linewidth level.

The dielectric erosion dependency on the area fraction of Cu interconnects are well explained

by both smooth and simplified rough pad models. Although erosion in the rough pad model is

slightly less than erosion in the smooth pad model as shown in Fig. 4.24(a), the difference

between two models is marginal unless the area fraction is close to one. Therefore, the smooth

pad model is selected to characterize erosion and parameter analysis.

Cu dishing, however, is more complicated. At the submicron device level, the amount of

dishing is well below 50 nm and does not vary with Cu linewidth. In this region, the smooth pad

model needs to be applied since diameter of pad asperity contact is greater than linewidth. In the

global wiring level, by contrast, rough pad surface should be considered. From the step-height

model comparison, it was shown that the simplified rough pad model is the best fit. If w > 100

pm, amount of dishing does not depend on the interconnect linewidth and the simplified rough

pad model reflects it. As interconnect linewidth decreases, Cu dishing slightly decreases even in

the simplified rough pad model. This is due to the initial pattern variation in a die. Although the

present model does not explain the linewidth dependency in the intermediate level, our main

concern is on the maximum dishing at the global wiring level and the model follows the data

reasonably well.
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4.5 Summary

In this chapter, experimental and analytical means of determining the model parameters, are

outlined. Feature-scale step-height models are validated by 100 mm patterned wafer polishing

experiments and measurement of step-heights at various polishing times. Cu dishing and

dielectric erosion in each subdie of the fastest polishing die is measured, and compared with

integrated erosion and dishing models. Based on the experiments, the following conclusions are

drawn.

The general random rough pad model explains the step-height reduction data fairly well, and

the simplified rough pad model explains best in the overpolishing regime. Since our focus is on

the step-height behavior during overpolishing, the simplified rough pad model with plastic

contact is the best choice to describe dishing and erosion at the global wiring level.

Dielectric erosion at the submicron device level is well explained by the smooth pad model.

Cu dishing in the global wiring level was characterized by the simplified rough pad model and

the model follows the data reasonably well.
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Nomenclature

Af = area fraction of Cu interconnects

D = Cu dishing (m)

D* = dimensionless Cu dishing

e = dielectric erosion (m)

e* = dimensionless dielectric erosion

h = film thickness (M)
hu,, hb, hi = film thickness of Cu, barrier layer and interconnect (m)

h8, hi, hs (0, ) = step-height, initial step-height and asymptotic step-height (m)

kp = Preston constant (m2/N)

MRR = material removal rate (m/s)
MRRCu, MRR.X = material removal rate of Cu and SiO 2 (m/s)

m, mf, Am = initial and final mass, mass change in polishing (kg)
P = pressure (N/M 2)
Q = slurry feed rate (m 3/s)

SCu/ox, Sb/ ox = Cu-to-oxide and barrier-to-oxide selectivities

t = polishing time (s)

tep = process end-point (s)

if, )t>sf = polishing time at the end of Stage 2 of fastest and slowest dies (s)

VR = magnitude of relative velocity (m/s)

w = linewidth of Cu interconnect (m)

Ahff, Ahsf = material removed in the fastest and the slowest regions (m)

Aho = amount of overpolishing (m)

a = Cu deposition factor

,= wafer-scale uniformity factor
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CHAPTER 5

CONCLUSION

5.1 Summary

In this thesis, dielectric erosion and Cu dishing models that integrate non-uniformities at the

wafer-, die- and feature-scales have been developed by computing the step-height evolution

during CMP. Based on the developed models, practical solutions to reduce erosion and dishing

are suggested.

Chapter 2 presents feature-scale step-height models for various pad/wafer contact conditions.

First, the contact between the wafer and the pad was analyzed on the assumption that the

polishing pad is perfectly elastic and smooth. This model is applicable in the submicron device

level of where the linewidth is much smaller than the size of the pad asperities. Second, the pad

is assumed to have flat surface and deforms as discrete blocks. This model accounted for step-

height fairly well, but relied on the finite thickness and the physically inadmissible discontinuous

deformation of the pad. Third, a simplified rough pad model, which idealizes that pad asperities

have uniform height and the same radius of curvature, was developed. The mean asperity

contact radius and the asperity spacing were estimated by the analysis based on the general

random rough surface of the pad. Finally, a general random rough surface contact between the

pad asperities and the patterned wafer during polishing was considered. In these models, the

asperity height distribution was assumed to be either exponential or Gaussian. Both elastic and

plastic deformations of pad asperities were considered, and their effect on the evolution of step-

height during polishing was compared.

Chapter 3 proposes integrated, dielectric erosion and Cu dishing models by combining wafer-,

die- and feature-scale wafer surface non-uniformity variations with feature-scale step-height

models of Chapter 2. The plausible causes of erosion and dishing at wafer-, die- and feature-

scales were identified in terms of the geometric and physical parameters. Such parameters

include: Cu interconnect deposition factor, a, wafer-scale uniformity factor, 3, and Cu-to-oxide

slurry selectivity, Scl/_. To model wafer-, die- and feature-scale non-uniformities, it was
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required to consider three separate points on a wafer. First, to calculate the wafer-scale

uniformity, field regions in the slowest and the fastest die were considered. These two field

regions were defined as the global reference point and local reference point, respectively.

Additionally, to calculate die-scale non-uniformities, the general feature in the fastest die, which

is the same die with the local reference point, was considered. The polishing time at various

polishing stages were expressed by predefined parameters at the wafer-, die- and feature-scales,

and integrated into the feature-scale step-height models.

Based on the developed erosion and dishing models, the effects of model parameters on the

wafer-surface non-uniformity in Cu CMP are discussed. To reduce dishing and erosion,

" Use slurry with a low selectivity to decrease dishing or a high selectivity to decrease

erosion,

* Decrease the initial pattern geometry variation,

" Increase wafer-scale uniformity,

" Minimize the amount of overpolishing, and

* Use a low pressure and a stiff and smooth pad.

Requirements of the wafer-scale uniformity and the initial deposited pattern geometry to

satisfy both dishing and erosion specification with a given slurry selectivity were obtained. In

single-step polishing, for example, the Cu deposition factor should be less than 0.1 and the

wafer-scale uniformity factor needs to be greater than 0.95 to maintain both erosion and dishing

within 5% of interconnect thickness across the wafer if the polishing slurry has a selectivity of 15.

Chapter 4 comprises the general procedure for experimental validation. Experimental and

analytical means of determining the model parameters were outlined. The chemical and chemo-

mechanical effects were included as slurry selectivities and obtained by the average material

removal rates from the 100 mm blanket Cu, barrier (Ta) and SiO2 wafer polishing experiments.

The interconnect deposition factor,, a, of patterned wafers was obtained by profilometry and

SEM. The initial step-height, hj, was measured by a surface profilometer. In PVD Cu

patterned wafer, the results showed that the surface profile is almost the same as the underlying

pattern geometry: a = 1 and h, f h1 . On the other hand, in the submicron region, the surface

profile was close to the field area: a ~ 0 and h, < h, . The wafer-scale uniformity factor '3

in a patterned wafer was obtained by comparing the polishing times between two selected points,

the field regions in the fastest and slowest dies on the same wafer. Results of polishing
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experiments on 100 mm patterned Cu wafers validated both the step-height models and the

integrated non-uniformity model. Based on the present models, erosion and dishing across the

wafer was bounded by predefined parameters. Additionally, as expected in the model, it was

observed that the step-heights of the slowest die and the fastest die evolve at the ratio of the

wafer-scale uniformity factor.

5.2 Suggestions for Future Work

Based on the integrated erosion and dishing models, further research in the following areas is

recommended to reduce erosion and dishing in the CMP process: wafer, equipment, and

consumables.

Wafer: The two critical parameters to control erosion and dishing are the initial pattern

geometry variation and the wafer-scale uniformity factor. Initial pattern geometry can be

controlled by Cu deposition method or additional processing before CMP, e.g., electropolishing.

Equipment: To enhance wafer-scale uniformity, a face-up type CMP equipment is

recommended. A kinematic wafer-scale uniformity control scheme is proposed in this thesis, but

not validated. Thus, SiO2 blanket wafer experiments, due to the capability of film thickness

measurement, will be useful to verify the theory. Furthermore, a wafer-scale end-point detection

mechanism should be incorporated to minimize the overpolishing time of each feature of a wafer

in face-up CMP.

Slurry: In this thesis, it is assumed that the material removal is done by pad asperity and

wafer contacts. Each pad asperity is assumed to have at least one abrasive particle. The effect of

abrasive particles, however, needs more careful investigation, especially on the actual abrasive

entrapment mechanism between pad asperity/abrasive/wafer contact interface to increase

material removal rate in CMP.

Pad: Based on the proposed integrated erosion and dishing model, the stiffness, yield

strength and surface topography of polishing pad play important roles to reduce erosion and

dishing. Thus, further investigations employing pads of different characteristics are suggested.
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APPENDIX A

FACE-UP CMP:

KINEMATICS AND MATERIAL REMOVAL RATE

A.1 Introduction

The primary concern of this thesis is to model and minimize dielectric erosion and Cu

dishing across the wafer. The developed erosion and dishing models suggest that the initial Cu

surface profile and the wafer-scale uniformity, in addition to selectivity, are the key factors that

affect surface polishing non-uniformity. In single-step polishing, the Cu deposition factor should

be less than 0.1 and the wafer-scale uniformity factor greater than 0.95 to maintain both erosion

and dishing within 5% of the interconnect thickness across the wafer if polishing slurry has a

selectivity of 15.

At present, 300 mm wafers are the industry standard. When these wafers are polished by the

conventional face-down rotary CMP tools, shown in Fig. A. 1, the edge polishes faster than the

center. An example of wafer-scale non-uniform polishing of 100 mm wafer is shown in Figs.

4.13 and 4.14. This results in both dielectric erosion and the dishing of Cu interconnects. From

the Preston equation, non-uniform polishing at the wafer-scale is due to variation in relative

velocity, pressure, or the Preston constant. Even if the relative velocity can be precisely set and

controlled, and the pressure, too, maintained fairly uniform over the wafer, wafer-scale non-

uniformity still cannot be eliminated. In some of the commercial polishers, the wafer carrier is

so designed that different pressures are applied in different annuli of the wafer, the so-called

zone-pressure-control. While this method is promising, accomplishing uniform wafer-scale

polishing is still a formidable task.

The architectures, i.e., geometry and kinematics, of the current commercial CMP tools are

compared in Fig. A. 1 (a)-(d). In the face-down CMP, it is difficult to maintain uniform slurry

distribution for achieving uniform material removal across the standard 300 mm wafer. Even in

the polishing of 100 mm wafer, the problem is acute. Accordingly, a new CMP tool

196



Fixed-Abrasive Pad F
I

(a)

F
F

+ Wafer

Pad
(Orbital) Slurry

(c)

F

Slurry

Pad
(Annulus)

Wafer

(d)

F

Slurry

-W -

Wafer

(e)

Figure A. 1 Geometry and kinematics of the various CMP tools: (a) Face-down, linear; (b)
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"architecture" is proposed to control wafer-scale non-uniformity as shown in Fig. A.1(e). In this

configuration, the wafer is polished face up, and the pad diameter is about the wafer radius.

Slurry is fed uniformly in the contact region through perforations in the pad.

A detailed kinematic and kinetic analyses for the conventional face-down polisher were

conducted by Lai [Lai, 2001]. But because theface-up architecture is an inverted version of the

face-down, the kinematics, material removal rate, etc., need to be reworked in detail. In this

appendix, therefore, the kinematic and kinetic analysis are presented for the face-up polishing

scheme.

A.2 Theory of Face-up Polishing

A.2.1 Geometry

Since the wafer is not completely covered by the pad in theface-up scheme, as shown in Fig.

A.2, the pad "contact angle" 0, directly affects on the material removal rate at any radius, r, of

the wafer. From the triangle 0,0,P,

r = r2 + c (A.1)

where rp is the radius of the pad and rc the distance between the centers of the wafer and the

pad. The expression for 0, has different forms, depending on the center-to-center distance, r,

wafer radius, re, and pad radius, r,, as shown in Figs. A.2 and A.3.

7r r < (r, - rC)

(r2+ r2 -r2
0 <; rc < r,: Oc(r)= cos-1 r (r, -rc)< r <(r, +rp)

0 r > (rC + r,)

COS_1 r 0 < r < (rc + r,)
rec =r,: O(r) = (rec) (A.2)

0 r > (reC + r,)
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0,(r)= 

0

2 2 2)'
2+r2~ -r

cos-r "r

2rrc

0

The maximum contact angle is calculated from the condition d9e / dr 0:

r2 -c(r2, - r2)]

d9c _ 2rcr2  =0
dr r2 + (r 2 - r2)

1 -
2rrm

Therefore, Oc (r) is maximum when r = r2 P and

r~r)2=Cos- 1 -
rc)

2 (r2 -r2 )_
e"""2)re, 

- 2 - re

It is useful to express the pad contact angle in Eq. (A.2) by the dimensionless variable r / r, as:

9 (r / r.) = Cos

0

9,(r /r) =

0,(r/rw) =

Cos-1 r /rw
.2(r, / rW)

0

0

-1cos

0

Figure A.4 shows the contact angle, 0e, for various pad locations when r, = 0.5 rw.
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re r,- .> -:
rw rw,

(A.5)

(r /r.)2 + (r. /r.)2 - (r, / r)W)

2 (rrc / rw

(rC - r,)<: r <(r" + r,)

+ (r cc 
.)2

P / rj

2 (rrc )2
r

I



I I I I

= 0.25r,

-- r = 0.50rw
. = 0.75rw

,---

iT

3
-T

4

1
Oc ~~72

1
-T-

4

0
0.5 0.75

r / r,

1 1.25

Contact angle for three different pad positions.

201

0.25)

Figure A.4

1.5



A.2.2 Kinematics

Figure A.5 illustrates the coordinate systems for the conventional face-down CMP machine

in Fig. A. 1(b) and for the face-up polisher in Fig. A. 1(e). The Cartesian and polar coordinate

systems, fixed at the center of the wafer are represented by (x, y) and (r, 0), respectively. The

polar coordinate systems, fixed to the pad and rotating with it, is represented by (r', 0'). Let the

rotational centers of the wafer and the pad be O, and O, , and the angular velocities,

respectively, be w,, and w,. The two rotational axes are normal to the polishing plane with an

offset r,. Additionally, the pad may translate horizontally with a velocity ve, along the x -axis.

VC = -ecex = vecex (A.6)

The coordinates of a point P' on the pad (r', 0'), shown in Fig. A.5(b), can be readily converted

to the wafer coordinates (r, 0), by the transformation relations:

r cos0 = re + r'cos0' (A.7)

rsin9 = r'sin '

The velocity at point P'(r', 0') on the pad can be expressed as:

Vp/ = (vcc - wr'sin0') ex + wr'cos 9'ey (A.8)

In the wafer coordinate (r, 0) system,

Vp' = (vec - wr sin 0 )ex + (wr cos 0 - w,,r )ey (A.9)

The velocity at a point P(r, 0) on the wafer is expressed as:

Vp = -w.r sin Oex + wWr cos ey (A.10)

Therefore, the velocity of the wafer relative to the pad, VR, at a point P(r, 0) is calculated in

the wafer coordinate system as:

VR(rO) = -[( w - p,)rsinO + vcc ]ex + [(ww -p)rcos + Wrc ley (A.11)

In the rotating pad coordinate system

vR(r,) = - w p r'sin 0' + vc] ex + [(w - wp ) r'cos 0' + wwrc] ey (A.12)

The magnitude of the relative velocity, vR ( vR I), is expressed as a function of r and 9 in

the wafer coordinate system as:

v(r,0) = V[(w - wp ) r sin0 + cc]2 + [(w - wp )rcos+wprc ]2 (A. 13)
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In the rotating pad coordinate system,

VR - + [(ww - wp )r' cos 0 + wrcc 2

Equations (A.12)-(A.14) are applicable for the region in contact between a pad and a wafer at a

given time. When the translational velocity is zero or negligible, i.e., v, = 0, the relative

velocity can be rewritten as:

vR = w ~- wp )r 2 + (wpcc 2 + 2 w ~ w ) W)prccr cos 0 (A.15)

If the wafer and the pad rotate at the same speed, w = wp = w, the relative velocity from Eq.

(A. 13) is uniform over the wafer. Thus,

VR = + C(Wr, )2 (A.16)

Additionally, if vec = 0 or vec / wrcc < 1, then

VR = cc (A.17)

Suppose that the center of the wafer, Ow, is just covered by the pad, the relative velocity at

the center of the wafer is:

vR (0 )=wprcc

In this case, vR (r, 0) relative to vR (0,0) can be expressed as:

1 ) sin 0 +
V 2:

+ r
1 -(c~ J Cos 0

Again, if v., = 0

vR,) [(w
p cc [ Wp

- cos 0
)c

(A.20)

Equation (A. 19) can be expressed in the wafer-centered Cartesian coordinate system as:

VR (X, y) W

Wpr Ic WP
~iJ( J + Vc

WprCe
+ WW (A.21)

Figure A.6 shows examples of normalized relative velocity (vR / wrec) profiles for various

ww / W, ratios.
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A.2.3 Material Removal Rate

Material removal rate at P(r, 0) on the wafer at a given time t is expressed by the Preston

equation [Preston, 1927]:

dh
dt k, -p -vR ( A.22)

where h is the thickness of the layer removed, t the polishing time, p the nominal pressure, yR

the relative velocity, and k, the Preston constant. Since Preston equation represents the local

material removal rate, the amount of material removed Ah at P(r, 0), during the time for one

wafer rotation, At, can be calculated as:
Ah f At dh I 2 r 1 dh

h= - dt = I- dO ( A.23)
a dt J wW dt

where dt = d9/ww and At = 27r/w..

In conventional face-down CMP tools, the pad is always in contact with the wafer during

polishing. Therefore any point on the wafer is always under pressure. However, if there is a

non-contact region in the wafer, as in the face-up CMP scheme shown in Fig. A.7, the material

removal rate is zero. Thus, the pad size affects material removal rates and the Preston equation

is valid only in the contact region. Thus,

dh [kpPvR Oc, < 0 < Oc,

dt 0 otherwise

where 0, and 0, are pad contact angles at incoming point P and outgoing point P2

respectively. At any given time, the pad contact angle Oe is determined by r, r, and rce as

described in the previous section. Therefore, if rc changes while the wafer rotates, 0, and 9,

would be different.

OCI = OC (r, t), (C = 9C (r, t) (A.25)

Combining Eq. (A.23) with Eq. (A.24), the amount of material removed during one wafer

rotation at any radius r on the wafer can be expressed as:

Ah(r) = kppvR dO (A.26)
wq Cw
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In general, the Preston constant, k,, and the applied pressure, p, may not be constant across

the wafer-scale for various reasons. In the current analysis, however, we assume that kp and p

are uniform in the contact area because the pad is much smaller than the wafer. Thus Eq. (A.26)

can be rewritten as:

Ah(r) = kppf- +vR dO (A.27)

Replacing vR in (A.27) with (A. 13),

Ah(r) = kpp [f ' L [ (w - wp)rsinvec] +[(w -w,)rcos+w~rec]2 dO (A.28)

The parameters, ww, w, and r, may be time-dependent. Similarly, 0, and 0, may be

time-dependent but are determined by r.

w= w(t),wo = ,(t)

rec = rcc(t) (A.29)

, = O, (r, t), O = Oc(r, t)

Although these are time-dependent parameters, since Ah(r) is defined as the thickness of

material removed in each wafer rotation, it is a function of both radius, r, and the number of

wafer rotations, n .

Ah = Ah(r,n) (A.30)

Let the center of the wafer, Q, be a reference point, when the periphery of the pad is at 0..

Thus,

,'c(0) = r, (A.31)

In this initial position, the contact angle 0, is:

0, (0,0) = 0,(0,0) = (A.32)

The thickness of the material removed at the center of the wafer in the first revolution of the

wafer can be expressed as:

1 ir/2 w,(0)
Ah(O, 1) = krp f w,(0) rc(0) dO = kpp - 7rrc(0). L (A.33)w,(0) J- /2 pw (0)
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Thus, a new dimensionless variable, Ah', is defined as the ratio of the material removed at

radius r to the initial material removed at the center of the wafer during one wafer rotation as:

Ah*(r,n) Ah(r, )
Ah(O, 1)

(A.34)

Therefore,

Ah*(r,n) = lf(e2 ()

(W s(P I,0)cc(0) { w + 7 ] [ r Cos)
+ w )reC(0) I 2dO

(A.35)

The amount of material removed AH, during the polishing time, t, (t / At > 1), can be

expressed as the sum of Ah for each wafer rotation.

N

AH(r, N) = ZAh(r, n)
n=1

N

= Z Ah(0,1)Ah*(r,n)
n=1

N

where t = At(n) and N the number of wafer rotations in time t.
n=1

A. Stationary pad: In this case, all variables are time-independent, i.e.,

W,(t) = W,

wP(t) = WP

rc(t) = re

Additionally, if vc(t)= 0, Ah and Ah* are even functions. Thus,

Ah(r) = kpp -[(w, -wp)rsinO] 2 u+ [(w, -w,)rcosO "+ r ]2

(A.36)

(A.37)

(A.38)

Ah*(r) = 2 f0
_7 I

(w, 1 r sin 0
rce

- ()cosO + 1 dO
-1 -Ce

Figure A.8 shows Ah* plot versus radial location in wafer coordinates for various rotational

speed ratios.
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Thus,

Oc(r,t) = 9,(rt) = 0,(r)

Ah(r,n) = Ah(r), Ah*(r,n) = Ah*(r)

dO (A.39)

(A.40)
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Expressing Eq. (A.39) in a dimensionless form

Ah(r) = kpp(irrc)i&P 2 0 W - 1 sin 0 + 9COS + 1 d

(A.41)

The thickness of material removed, AH, in time t can be calculated as:

AH(r, N) = kpp(wprcc)]- Ah*(r). t (A.42)

where t = 27rN / w.

Assuming that the initial thickness of Cu, hc,, is uniform across the wafer, the required

polishing time or end-point, tp (r), to remove excess copper at a radius r is expressed as:

te,(r) = hcu (A.43)
,pkpp(wprcc )Ah*(r)

Thus at the center of a wafer, r= 0,

tep(0) = 1"h = hCu (A.44)

2 kp (wprcc ) Ah*(0) [2kp (wprcc )

A new dimensionless variable, te,, which represents the ratio of the required polishing time at

radius r to that at the center of a wafer to remove any given Cu thickness, is represented as:

t*(r) = tep (r) _ 1 (A.45)
te,(0) - Ah*(r)

The dimensionless polishing time t,*P versus the radial location of the wafer for various

wafer/pad rotational speeds are shown in Fig. A.9.

Incidentally, in the conventional face-down CMP tool, Ah* is represented by the same

expression as in face-up configuration.

Ah*(r) = - - sinO + __" +_ 1] rCos 0 + 1 dO (A.46)
.7r 0 rCC UjrC p ccp CC

Figure A.10 shows Ah* across the wafer for various wafer/pad speed ratios in the face-up CMP.

Since the wafer is always in contact with the pad now, 0, = ir, there is no geometric effect of

the pad and thus Ah* is affected by relative velocity profile only.
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B. Moving pad: In this case, it will be assumed that there is only one time-dependent variable,

rc = reC(t). Thus

~(t) 
(A.47)

W(t) =

Since r, is not the same during one turn of the wafer, 0, ; 0 ,

Ah(r,n) = kpp W,[w, - w, )r sin0 + vee|2 + [ (w, - w )r cos 0 + wprc 2 dO (A.48)

C1 1 2

Ah*(r, n)= r Isin+ _ ++ v i r Cos0 + r dO
7r -oc W, rec (0) W~e rC, re(0) rc0

(A.49)

In many practical cases, however, the pad may translate in a quasi-static manner, i.e., rec(t)

is a step-function. In these cases, vec = 0 during most of the polishing period, and thus the

following conditions can be considered:

0,(r,t) = 6 (r,t) = Oe(rt) (A.50)

vec(t) = 0

Therefore, Eq. (A.49) is reduced to

Ah*(r,n) -2 0c w r s1 2 + _ 11 r s r C (
Ah*~) r o -, )[rc(O) J I , )1rc(O)]J re(0)=r foi I1 p r,()1sino WP fl--ill coso + jC(0 dO (A. 51)

Figure A. 11 shows Ah* plot versus radial position in the wafer coordinate for various rce and

rotational speed ratios between the wafer and the pad. The total material removed after polishing

time, t, is

N

AH(r, N) = kpp - 7rreC(0) - WPIAh*(r,n) (A.52)

To remove excess Cu layer uniformly over the wafer, the following condition should be

satisfied by adjusting r, (t) based on the speed ratio, ww / wp,.

N

hc, = Ah(0,1) - Ah*(r,n) (A.53)

There may be many scenarios for choosing rec(t) under the condition in (A.53). Since the

center of the wafer has the highest value of Ah when w,, / w, < 1.5 for the initial condition
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r=. as shown in Fig. A.8, the simplest way to satisfy Eq. (A.53) is to move the pad in one

direction, from the center to the edge of the wafer.

In this case, the pad maintains the initial condition r, = r, until the total material removed

at the center of the wafer reaches hc. as:

hcu = Ah(0,1) -N = Ah(0, 1) . te (0) (A.54)

After the polishing time t reaches t (0)), the pad starts to move outward in a quasi-static way.

After the pad is moved to the next position by the amount of Ar, it stays until the closest point

to the center of a wafer, which is r = r, - r, in this case, is completely polished. Thus,

N

hku = Ah(0,1) - Ah* (rc - r,n) (A.55)
n=1

Since the pad is moving from the center to the edge of a wafer, the end-point of polishing, t,, is

when the edge of a wafer is completely polished. That is,
N

hcu = Ah(O,1) - E Ah*(r,n) (A.56)
n=1

Since the pad moves in a quasi-static way, the value of Are must be limited by the required

wafer-scale uniformity specification. Figure A.12 shows the location of the center of the pad,

re, during polishing to satisfy 1% of wafer-scale uniformity, 3= 0.99, for various wafer/pad

rotational speed ratios. The final wafer surface profile is shown in Fig. A. 13.

A.2.4 Determination of the Preston Constant

From the Preston equation, the decrease of film thickness can be expressed by

dh = -k, - p -ds (A.57)

For one wafer revolution, the decrease of film thickness, Ah, and the average volume, A V, at

any radius r can be expressed as:

Ah(r) = k, - p - As(r) (A.58)

dV(r) = k, p - As(r) -27rrdr -N (A.59)

where N = At - w, /27r .

Therefore, the total material loss during polishing can be expressed as:
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A V = L dV(r) = f kpps(r). 2irrdr - N = f kpps(r)w.rdr - At (A.60)

However, it is more convenient to use the pad coordinate to evaluate the total loss of material as:

AV = f fPf kpvr'd'dr'dt (A.61)

Assuming constant angular velocities and substituting the relative velocity in pad coordinates,

AV = kppAtf[ j[(w - w, ) r'sin0' +V" ]2 + [ (ww - w, ) r'cos0' + wwre ]2r'dO'dr'

(A.62)

If WW =w = w, the relative velocity becomes constant, thus,

AV = k~p vRAt_ J r'dO'dr' = kppvRAt4A (A.63)

where A, is the area of the pad. Therefore, the Preston constant can be expressed as

A V _Am

kp=- A (A.64)
PVRAtAp ppvRAtAA

where Am is the mass loss of the wafer during the polishing time At and p is the density of

the material being polished.

A.2.5 Friction Force and Torque

The frictional force on the wafer at a point P, dFw, is oppositely directed to the relative

velocity, v11 , as shown in Fig. A. 14. The direction of vR can be expressed by

cos ORe. + sin ORey (A.65)
VR

where

COSOR -[(w - w )r sin0 + ve,]

(w -w, w)rsin9 + veI + [(w. -w, )rcos9 + w, (A.66)

sinOR( WW - o, )r cos 0 + wprc
sinlOR =

(W, - w, ) r sin0 + vee|] + [(w - w, )r cos0 + wre

If a friction coefficient is p and a nominal pressure p, the amount of frictional force on the

differential area dA = rd~dr on the wafer is expressed as:

dF = I dFwI = pupdA = pprd~dr (A.67)
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dFw = -pprd~dr (cosORe_ + sinORe) (A.68)
= dFwex + dF. ey

where,

d Fw = p [ ( w,- wp )r sin 0 + v,,e]rd~dr

W[(w, - wp ) r sin0 + v, 2 + [ (w,, - w, r cos 0 + wpr] ( )
(A.69)

dF = pP [(WW ) r Cos 0 + Wrce rd~dr

[(w, - w )rsin9 + v, ]2 + [(ww - wp )rcosO + wrec

At a given time t , the pad and the wafer contacts in the region -9, 5 0 < 9. Here 0, is

dependent on the radius r and the center to center distance re, which may be time-dependent.

F. = Fwe. + Fy (A.70)

F = li p [ (w, w, ) r sin 0 + vec]r dd
O-e V[ (w, - w, ) r sin0 + v ]2 + [ (ww - w, ) r cos0 + W drc|]2

Fw, = f f [ - p[(W--w )rcos9+w r c]r d~dr
I -oc [ (w, - w, ) r sin0 + Vcc ]2 + [(Ww - w, )rcosO + wprc |2

Since F, = -Fw,

F, = Fex + F ey (A.72)

F -p [(w - w, wp)rsin +vecr ddr
_O-e [ - w)rsin9 + v, ] + [(ww - w,)rcos+wrc ]2 (A

Fy = C= ddr (A.73)
If f-', j[(w, - wp, )rsin + v ]2+ [(w - w, )rcos + W rc 12

The frictional torque about the center of the wafer Ow, Tw, is defined as:

dTw = r x dFw (A.74)

d T, = (r cos OdF,, - r sin OdF,. ) ez (A.75)

d Tw = pp [ (w - w, ) r' + wprccr2 cos 0 + veer2 sin ] d~dr (A.76)
[w - w, )rsin9 + vec ]2 + [ (WW - w, )rcos9 + U rce 2

Thus,
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= f -pp[(w -w)r-

c - [(ww -w )rsin0+vec
+- w rcr2 cos0 + veer2 sinG]

+[(WW - W, )rcos+9 + c 12
d~dr (A.77)

The frictional torque about the center of the pad O, is defined as T,.

dT = r'x dF,

dlT, = (r'cos9'dF,, - r')sine'dF )e,

By using relationship between Tw and T,,

d T, =

Thus,

Tf C p[ (W - W,

-, V[ (ww - w, ) r sin 0 + vce

) r cos9 + w rce I r

]2 + [(w, - w, )rcos9 + wpr

d~dr - dT

- d~dr - Tw
ce|

If the wafer fully covers the pad, the range of integration will be simplified to -7r < 9' < 7r

and 0 < r' rp. Therefore, the frictional force is

[(ww - w, ) r' sin9' + vce

F= - 1-p[(w-W
- [0 (WJ - w, ) r' sin0' + vce

)p)r'sin90' + v,]r'

]2 + [(ww - wi,, )r'cos0, + W"r2

, )r'Cos 0' + rcIr'

]2 + [(w, - w, ) r'cos 0' + wwrc 2

and,

1r -ILp [(w - w, )r1 2 + wP
T- [ I f- w, ) r' sin 0' + vce

cc (rc + r'cos 0') + ver'sin0']r'

]2 + [(w, - w, ) r'cos0' + wrc 
2

) r' cos0' + WerCe I r'r"

+2 +[(ww - w, ) r'cos 0' + "re]2
T- [ 

)I si 'W - W v
~i [(W - Wp ) r'sin 0' + vc

When the pad and the wafer rotates at the same speed, ww = w, = W

Fw. =pp(irr)2 Vcc

v 2 + (wrc)

F~~=1 rp2m ) 2rc
F, =-Pp('7r ,2 2 + Wrc +( cr)2
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(A.78)

(A.79)

pp [ (w, wp ) r cos 0 + wrc ]rr

WW - w, )rsin9 + Ve 12 + [(w. - w, )rcosO + WPree2
(A.80)

(A.81)

dO'dr'

dO'dr'

(A.82)

dO'dr' (A.83)

dG'dr' - Tw

(A.84)

(A.85)



T. = P (,rr, ) re WrC

TP = 0

(A.86)

Additionally, if vec = 0,

F. 0

Fw, = [p (7rr,2)

T=

(A.87)

(A.88)

Figures A.15 and A.16 show the frictional force and torques, respectively, in the face-up

configuration for various wafer/pad rotational speed ratios.
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Nomenclature

A , Ap = areas of the wafer and the pad (m2 )

ex, e , ez = unit vector in the x -, y - and z -direction

F = applied normal force (N)

Fw, F = frictional forces applied on the wafer and the pad (N)

F,,, F,, = the x - and y -direction frictional force components on the pad (N)

Fwx, F, = the x - and y -direction frictional force components on the wafer (N)

h = thickness of the film (m)

kp = Preston constant (m2/N)

N = number of wafer rotations during polishing time t,

n = index of wafer rotations

Ow O, = center of the wafer and the pad

P, P' = point in the wafer and the pad

P = nominal pressure (N/M 2 )

r, = stationary polar coordinates of the wafer

r', ' = rotating polar coordinates of the pad

rce = distance between the centers of the wafer and the pad (m)

rw, r, = radii of the wafer and the pad (m)

Tw, T = torques on the wafer and the pad (Nm)

t = polishing time (s)

te,, t* = polishing end-point (s) and dimensionless end-point

vec = rate of change of rce (m/s)

vR = relative velocity of the wafer with respect to the pad (m/s)
X Y, Z = Cartesian coordinates

A H = material removed during polishing time t, (M)

Ah, Ah* = material removed during one wafer rotation (m) and normalized value

A = friction coefficient

0, = pad contact angle (rad)

OR = angle of vR with respect to the x -axis (rad)
w1 Wp = angular velocities of the wafer and the pad (rad/s)
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