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Introduction

This dissertation is a collection of three independent essays in theoretical and applied economet-

rics, organized in the form of three chapters. In the first two chapters, I investigate the properties

of parametric and semiparametric fixed effects estimators for nonlinear panel data models. The

first chapter focuses on fixed effects maximum likelihood estimators for binary choice models,

such as probit, logit, and linear probability model. These models are widely used in economics

to analyze decisions such as labor force participation, union membership, migration, purchase

of durable goods, marital status, or fertility. The second chapter looks at generalized method

of moments estimation in panel data models with individual-specific parameters. An important

example of these models is a random coefficients linear model with endogenous regressors. The

third chapter (co-authored with Joshua Angrist and Victor Chernozhukov) studies the interpre-

tation of quantile regression estimators when the linear model for the underlying conditional

quantile function is possibly misspecified.

Chapter 1, "Estimation of Structural Parameters and Marginal Effects in Binary Choice

Panel Models with Fixed Effects," analyzes the properties of maximum likelihood estimators

for index coefficients and marginal effects in binary choice models with individual effects. The

inclusion of individual effects in these models helps identify causal effects of regressors on the

outcome of interest because these effects provide control for unobserved time-invariant charac-

teristics. However, it also poses important technical challenges in estimation. In particular, if

these individual effects are treated as parameters to be estimated (fixed-effects approach), then

the resulting estimators suffer from the well-known incidental parameters problem (Neyman and

Scott, 1948).

This chapter derives the incidental parameter bias for fixed effects estimators of index co-

efficients and introduces analytical bias correction methods for these estimators. In particular,

the first term of a large-T expansion of the bias is characterized using higher-order asymptotics.

For the important case of the probit, this bias is a positive definite matrix-weighted average

of the true parameter value for general distributions of regressors and individual effects. This

13



implies, for instance, that probit estimates are biased away from zero when the regressors are

scalar, which helps explain previous Monte Carlo evidence. The expression of the bias is also

used to derive the bias of other quantities of interest, such as ratios of index coefficients and

marginal effects. In the absence of heterogeneity, fixed effect estimates of these quantities do not

suffer from the incidental parameters problem. Moreover, numerical computations and Monte

Carlo examples show that the small bias property for fixed effects estimates of marginal effects

holds for a wide range of distributions of regressors and individual effects. The methods and

estimators introduced in this chapter are applied to the analysis of the effect of fertility on female

labor force participation.

Chapter 2, "Bias Correction in Panel Data Models with Individual-Specific Parameters,"

introduces a new class of semiparametric estimators for panel models where the response to

the regressors can be individual-specific in an unrestricted way. These estimators are based on

moment conditions that can be nonlinear functions in parameters and variables, accommodat-

ing both linear and nonlinear models and allowing for the presence of endogenous regressors.

In models with individual-specific parameters and endogenous regressors, these estimators are

generally biased in short panels because of the finite-sample bias of GMM estimators. This

chapter derives bias correction methods for fixed effects GMM estimators of model parameters

and other quantities of interest, such as means or standard deviations of the individual-specific

parameters. These methods are illustrated by estimating earnings equations for young men

allowing the effect of the union status to be different for each individual. The results suggest

that there is large heterogeneity in the union premium. Moreover, fixed coefficients estimators

overestimate the average effect of union status on earnings.

Chapter 3, "Quantile Regression under Misspecification, with an Application to the U.S.

Wage Structure," studies the approximation properties of quantile regression (QR) estimators

to the conditional quantile function. The analysis here is motivated by the minimum mean

square error linear approximation property of traditional mean regression in the estimation of

conditional expectation functions. Empirical research using quantile regression with discrete

covariates suggests that QR may have a similar property, but the exact nature of the linear ap-

proximation has remained elusive. This chapter shows that QR can be interpreted as minimizing

a weighted mean-squared error loss function for specification error. The weighting function is

an average density of the dependent variable near the true conditional quantile. The weighted

least squares interpretation of QR is used to derive an omitted variables bias formula and a

partial quantile correlation concept, similar to the relationship between partial correlation and

14



OLS. General asymptotic results for QR processes allowing for misspecification of the condi-

tional quantile function are also derived, extending earlier results from a single quantile to the

entire process. The approximation properties of QR are illustrated through an analysis of the

wage structure and residual inequality in US census data for 1980, 1990, and 2000. The results

suggest continued residual inequality growth in the 1990s, primarily in the upper half of the

wage distribution and for college graduates.
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Chapter 

Estimation of Structural Parameters
and Marginal Effects in Binary

Choice Panel Data Models with

Fixed Effects

1.1 Introduction

Panel data models are widely used in empirical economics because they allow researchers to

control for unobserved individual time-invariant characteristics. However, these models pose

important technical challenges. In particular, if individual heterogeneity is left completely un-

restricted, then estimates of model parameters in nonlinear and/or dynamic models suffer from

the incidental parameters problem, first noted by Neyman and Scott (1948). This problem arises

because the unobserved individual characteristics are replaced by inconsistent sample estimates,

which, in turn, bias estimates of model parameters. Examples include probit with fixed effects,

and linear and nonlinear models with lagged dependent variables and fixed effects (see, e.g.,

Nerlove, 1967; Nerlove, 1971; Heckman, 1981; Nickell, 1981; Greene, 2002; Katz, 2001; and

Hahn and Newey, 2004).

Incidental parameters bias is a longstanding problem in econometrics, but general bias cor-

rection methods have been developed only recently. Efforts in this direction include Lancaster

(2000), Hahn and Kuersteiner (2001), Woutersen (2002), Arellano (2002), Alvarez and Arellano

(2003), Carro (2003), Hahn and Kuersteiner (2003), and Hahn and Newey (2004). I refer to the

17



approaches taken in these papers as providing large-T-consistent estimates because they rely

on an asymptotic approximation to the behavior of the estimator that lets both the number of

individuals, n, and the time dimension, T, grow with the sample size.1 The idea behind these

methods is to expand the incidental parameters bias of the estimator in orders of magnitude of

T, and to remove an estimate of the leading term of the bias from the estimator.2 As a result,

the adjusted estimator has a bias of order T - 2 , whereas the bias of the initial estimator is of

order T - 1. This approach aims to approximate the properties of estimators in applications that

use panels of moderate length, such as the PSID or the Penn World Table, where the most

important part of the bias is captured by the first term of the expansion.

The first contribution of this chapter is to provide new correction methods for parametric

binary choice models that attain the semiparametric efficiency bound of the bias estimation

problem. The improvement comes from using the parametric structure of the model more inten-

sively than in previous studies by taking conditional moments of the bias, given the regressors

and individual effects. The correction is then constructed based on the new formulas. This

approach is similar to the use of the conditional information matrix in the estimation of asymp-

totic variances in maximum likelihood, instead of other alternatives, such as the sample average

of the outer product of the scores or the sample average of the negative Hessian (Porter, 2002).3

The adjustment presented here not only simplifies the correction by removing terms with zero

conditional expectation, but also reduces incidental parameter bias more effectively than other

large-T corrections.

The second contribution of the chapter is to derive a lower bound and a proportionality result

for the bias of probit fixed effects estimators of model parameters. The lower bound depends

uniquely upon the number of time periods of the panel, and is valid for general distributions of

regressors and individual effects. According to this bound, for instance, the incidental parameters

bias is at least 20 % for 4-period panels and 10 % for 8-period panels. Proportionality, on the

other hand, establishes that probit fixed effect estimators of model parameters are biased away

from zero when the regressor is scalar, providing a theoretical explanation for the numerical

evidence found in previous studies (see, for e.g., Greene, 2002). It also implies that fixed effects

1 Fixed-T-consistent estimators have been also derived for panel logit models (see Cox, 1958, Andersen, 1973,
Chamberlain, 1980, for the static case; and Cox, 1958, Chamberlain, 1985, and Honor6 and Kyriazidou, 2000, for
the dynamic case), and other semiparametric index models (see Manski, 1987, for the static case; and Honor6
and Kyriazidou, 2000, for the dynamic case). These methods, however, do not provide estimates for individual
effects, precluding estimation of other quantities of interest, such as marginal effects.

2To avoid complicated terminology, in the future I will generally refer to the first term of the large-T expansion
of the bias simply as the bias.

3Porter (2002) also shows that the conditional information matrix estimator attains the semiparametric effi-
ciency bound for the variance estimation problem.
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estimators of ratios of coefficients do not suffer from the incidental parameters bias in probit

models in the absence of heterogeneity. These ratios are often structural parameters of interest

because they can be interpreted as marginal rates of substitution in many economic applications.

Finally, the bias of fixed effects estimators of marginal effects in probit models is explored.4

The motivation for this analysis comes from a question posed by Wooldridge: "How does treating

the individual effects as parameters to estimate - in a "fixed effects probit" analysis - affect

estimation of the APEs (average partial effects)?"5 Wooldridge conjectures that the estimators

of the marginal effects have reasonable properties. Here, using the expansion of the bias for the

fixed effects estimators of model parameters, I characterize the analytical expression for the bias

of these average marginal effects. As Wooldridge anticipated, this bias is negligible relative to

the true average effect for a wide range of distributions of regressors and individual effects, and

is identically zero in the absence of heterogeneity. This helps explain the small biases in the

marginal effects estimates that Hahn and Newey (2004) (HN henceforth) find in their Monte

Carlo example.

The results presented in this chapter are also consistent with Angrist's (2001) argument

for cross-sectional limited dependent variable (LDV) models. Angrist argues that much of the

difficulty with LDV models comes from a focus on structural parameters, such as latent index

coefficients in probit models, instead of directly interpretable causal effects, such as average

treatment effects (see also Wooldridge, 2002; Wooldridge, 2003; and Hahn, 2001). He recom-

mends the use of simple linear models, where the structural parameters are directly linked to

the effects of interest, just as if the outcomes were continuous. Here, I show that the same

approach of focusing directly on causal effects rather than structural parameters also pays off

in panel data models. However, unlike Angrist (2001), I use nonlinear models that incorporate

the restrictions on the data support explicitly. These models are better suited for LDVs in cases

where some regressors are continuous or the model is not fully saturated.

Monte Carlo examples show that adjusted logit and probit estimators of model parameters

based on the new bias formulas have improved finite sample properties. In particular, these

corrections remove more effectively the incidental parameters bias and provide estimators with

smaller dispersion than previous methods. Accurate finite sample inference for model parameters

and marginal effects is obtained from distributions derived under asymptotic sequences where
4Marginal effects are defined either as the change in the outcome conditional probability as a response to

an one-unit increase in a regressor, or as a local approximation based on the slope of the outcome conditional
probability. For example, in the probit the marginal effects can be defined either as qb((x + 1)0) - (xO) or as
?0(0), where b(.) and ¢(.) denote the cdf and pdf of the standard normal distribution, respectively.

5C.f., Wooldridge (2002), p. 489 (italics mine).
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T/n 1/3 oc for static panels with 4 periods and dynamic panels with 8 periods. Results are

also consistent with the small bias property of marginal effects for static models; they suggest

that the property holds for the effects of exogenous variables in dynamic models, but not for the

effects of lagged dependent variables. Simple linear probability models, in the spirit of Angrist

(2001), also perform well in estimating average marginal effects.

The properties of probit and logit fixed effects estimators of model parameters and marginal

effects are illustrated with an analysis of female labor force participation using 10 waves from

the Panel Survey of Income Dynamics (PSID). The analysis here is motivated by similar studies

in labor economics, where panel binary choice processes have been widely used to model female

labor force participation decisions (see, e.g., Hyslop, 1999; Chay and Hyslop, 2000; and Carro,

2003). In particular, I find that fixed effects estimators, while biased for index coefficients, give

very similar estimates to their bias corrected counterparts for marginal effects in static models.

On the other hand, uncorrected fixed effects estimators are biased away from zero for both

index coefficients and marginal effects of the fertility variables in dynamic models that account

for true state dependence. In this case, the bias corrections presented here are effective reducing

the incidental parameters problem.

The chapter is organized as follows. Section 1.2 describes the panel binary choice model

and its maximum likelihood estimator. Section 1.3 reviews existing solutions to the inciden-

tal parameters problem and proposes improved correction methods for binary choice models.

Section 1.4 derives the proportionality result of the bias in static probit models. Section 1.5

analyzes the properties of probit fixed effects estimators of marginal effects. Section 1.6 extends

the previous results to dynamic models. Monte Carlo results and the empirical application are

given in Sections 1.7 and 1.8, respectively. Section 1.9 concludes with a summary of the main

results.

1.2 The Model and Estimators

1.2.1 The Model

Given a binary response Y and a p x 1 regressor vector X, consider the following data generating

process

Y = 1{ X'Oo -+ 0, (1.2.1)

where 1{C} is an indicator function that takes on value one if condition C is satisfied and zero

otherwise; o00 denotes a p x 1 vector of parameters; a is a scalar unobserved individual effect; and

20



c is a time-individual specific random shock. This is an error-components model where the error

term is decomposed into a permanent individual-specific component ca and a transitory shock

e. Examples of economic decisions that can be modeled within this framework include labor

force participation, union membership, migration, purchase of durable goods, marital status, or

fertility (see Amemiya, 1981, for a survey).

1.2.2 Fixed Effects MLE

In economic applications, regressors and individual heterogeneity are correlated because regres-

sors are decision variables and individual heterogeneity usually represents variation in tastes or

technology. To avoid imposing any structure on this relationship, I adopt a fixed-effects ap-

proach and treat the sample realization of the individual effects {i}i=l...,n as parameters to

be estimated, see Mundlak (1978), Lancaster (2000), Arellano and Honor6 (2000), and Arellano

(2003) for a similar interpretation of fixed effects estimators. 6

To estimate the model parameters, a sample of the observable variables for individuals fol-

lowed in subsequent periods of time {yit, it}t=l,...,T; i=l,..,n is available, where i and t usually

index individuals and time periods, respectively.7 Then, assuming that c follows a known dis-

tribution conditional on regressors and individual effects, typically normal or logistic, a natural

way of estimating this model is by maximum likelihood. 8 Thus, if eit are i.i.d. conditional on xi

and ai, with cdf Fe(' X, ao), the conditional log-likelihood for observation i at time t is9

lit(O, aci)- it logFit(O, ai) + (1 - Yit) log(1 -Fit(O, ai)), (1.2.2)

where Fit(O, ai) denotes Fe(xitO + aiX = xi, a = ai), and the MLE of 0, concentrating out the

aei's, is the solution to

n T T

0 argmaxE lit(O&i(O))/nT, &i(O)-argmax-lit(O,a)/T. (1.2.3)
i=1 t=l t=l

6Note that Kiefer and Wolfowitz's (1956) consistency result does not apply to here, since no assumption is
imposed on the distribution of the individual effects conditional on regressors.

7In the sequel, for any random variable Z, zit denotes observation at period t for individual i; Z denotes a
random vector with T copies of Z; and 2i denotes an observation of Z, i.e. {zil ... , ZiT}.

8Since the inference is conditional on the realization of the regressors and individual effects, all the probability
statements should be qualified with a.s. I omit this qualifier for notational convenience.

9Following the common practice in fixed effects panel models, I will assume that the regressor vector X is strictly
exogenous. See Arellano and Carrasco (2003) for an example of random effects estimator with predetermined
regressors.
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1.2.3 Incidental Parameters Problem

Fixed effects MLEs generally suffer from the incidental parameters problem noted by Neyman

and Scott (1948). This problem arises because the unobserved individual effects are replaced

by sample estimates. In nonlinear model, estimation of the model parameters cannot generally

be separated from the estimation of the individual effects.10 Then, the estimation error of

the individual effects introduces bias in the estimates of model parameters. To see this, for

zi - (i, xi) and any function m(i, ai), let E[m(&i, cai)] Ega {Ey [m(2, a)lX, ca] }, where

the first expectation is taken with respect to the unknown joint distribution of (X, a) and the

second with respect to the known distribution of YIX, a.1 l Then, from the usual maximum

likelihood properties, for n -oc with T fixed,

P8 T, T- argmaxE [ lit(,&i(O))/T] . (1.2.4)
t--1

When the true conditional log-likelihood of Y is lit(o00, ai) generally T # 0, but T - 00 as

T -- oc. For the smooth likelihoods considered here, T = 00 + 0 + (~-) for some B.12 By

asymptotic normality of the MLE, /n-T(- OT) d N(O, -J-1) as n - oc, and therefore

( - ) = VX ( - T) + -T + ( )(1.2.5)

Here we can see that even if we let T grow at the same rate as n, that is T = O(n), the MLE,

while consistent, has a limiting distribution not centered around the true parameter value. Under

asymptotic sequences where T grows large no faster than n, the estimates of the individual effects

converge to their true value at a slower rate than the sample size nT, since only observations for

each individual convey information about the corresponding individual effect. This slower rate

translates into bias in the asymptotic distribution of the estimators of the model parameters.
10In static linear models the individual effects can be removed by taking differences with respect to the individual

means without affecting the consistency of the estimator of model parameters. There is no general procedure,
however, to remove the individual effects in nonlinear models. An exception is the panel logit, where the individual
effects can be eliminated by conditioning in their sufficient statistics.

"When the observations are independent across time periods the conditional cdf of Y given (X, a) can be
factorized as F(YIX, a) x ... x F(YIX, ca). For dependent data, if Y = (YT, ... , Y,), then the conditional cdf of Y
given (,Yo, a) factorizes as F(YTIX,YT-1,...,Yo,a) x ... x F(Yi1X,Yo,a). The conditional cdf of Y can then
be obtained from the conditional cdf of e, which is assumed to be known.

12To see this intuitively, note that MLEs are implicit smooth functions of sample means and use the following
result (Lehmann and Casella, 1998). Let XI, ..., XT be i.i.d. with E [X1] = sx, Var [Xi] = ax:, and finite fourth
moment; suppose h is a function of real variable whose first four derivatives exist for all x E I, where I is an
interval with Pr{X1 E I} = 1; and hiv(x) < M for all x E I, for some M < o. Then E [h(ZTI Xt/T)] =

h(px) + C2h"(x)/2T + O(T-2).
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1.2.4 Large-T Approximation to the Bias

In moderate-length panels the most important part of the bias is captured by the first term of the

expansion, B. A natural way to reduce bias is therefore to remove a consistent estimate of this

term from the MLE. To implement this procedure, however, we need an analytical expression

for B.13 This expression can be characterized using a stochastic expansion of the fixed effects

estimator in orders of T.

A little more notation is useful for describing this expansion. Let

uit(0, ) _= a9lit(0, a), vit(0, a) =_ (9 lit(0� a), (1.2.6)

and additional subscripts denote partial derivatives, e.g. uito(O, oa) - uit ( o) /&0'. Then, the

first order condition for the concentrated problem can be expressed as

n T

0 = - E E Uit(, i(O)). (1.2.7)
i=1 t=l

Expanding this expression around the true parameter value 00 yields

0 =(0o) + (0)( - o) - 0- So = -j()-,(0 0o), (1.2.8)

where 6 lies between 0 and o;

n T

fL(00) -nT~ E uit(00, (di(00)) (1.2.9)
i=1 t=l

is the fixed effects estimating equation evaluated at the true parameter value, the expectation

of which is generally different from zero because of the randomness of &(00) and determines the

bias; and

J(0)~~~~~~~~~~~~(iO } (12.01'I(0) _ UitO(0, i(0)) + Uita (0, i(0)) a (1.2.10)

i=1 t= 1

is the Jacobian of 2(0).

For the estimators of the individual effects, the first order condition is -tT=l vt(0, (&i(O))/T =

13Jackknife is an alternative bias correction method that does not require an analytical form for B, see HN.
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0. Differentiating this expressions with respect to 0 and &i yields

O'i(O) ET [Vito(O, i (O))]

a0 ET [Vita(O, (ai ()]

where FT [fit -- E T=i fit/T, for any function fit f(zit). Plugging this expression into (1.2.10)

and taking (probability) limits as n, T - oo

J(0) E [ET [ut - T ut] T [it][ (1.2.12)

where ET [fit] -- limT, ET=1 fit/T EZ [fitlyo], by the Law of Large Numbers for i.i.d. se-

quences. For notational convenience the arguments are omitted when the expressions are eval-

uated at the true parameter value, i.e. vito - vito(Oo, oi). Here, - - 1 gives the asymptotic

variance of the fixed effect estimator of So under correct specification.

For the estimating equation, note that using independence across t, standard higher-order

asymptotics for the estimator of the individual effects give (e.g., Ferguson, 1992, or Rilstone et

al., 1996), as T -- o

T
ai = ai + i/V¢7 + i/T + op(1/T), i = it/V- d JV(0, i2), (1.2.13)

t=1

fit = ovit, 2 = -ET [Vit] -, i a {ET [VitT it] ± 12ciET [Vitce]}. (1.2.14)

Then, expanding u(OO) around the ai's, and assuming that orders in probability correspond to

orders in expectation, we have as n, T oo

n

T(00o) T X {ET [uit] +ET [Uit(&i-a)] + ET [Uitaac(&i- a)2] /2 + op(1/T)}
i=1

P-> jO + ET [it,,]ji + ET [uitalit] + 2ET [uita]} b (1.2.15)2 

Finally, the (first term of the large-T expansion of the) asymptotic bias is14

T( - 00) P) T(OT - 00) -plimJ(0) -1 plimTS(Oo) = -J- 1 b . (1.2.16)

14This expansion also provides an alternative explanation for the absence of incidental parameters bias in the
static panel linear model. In this case it = it - xitO - ei, ita = -1, vita = 0, and uit = vitxit. Then,
,i = b = 0 since E[vitait] = E[uita&Pt] = 0 and E[vitoz] = E[uito,] = 0. Moreover, the bias terms of higher
order are also zero because the second order expansions are exact.
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1.3 Bias Corrections for Discrete Choice Panel Data Models

Large-T correction methods remove the bias of fixed effects estimators up to a certain order

of magnitude in T In particular, the incidental parameters bias is reduced from O(T- 1) to

O(T- 2 ) as T -- o, and the asymptotic distribution is centered at the true parameter value if

T/n U/3 -oo. To see this, note that if Qc is a bias corrected estimator of 0o with probability

limit 0T = 0o + 0 (T- 2 ), then

iT(Oc - o) = r)T(c +O( ( ). *(1.3.1)

These methods can take different forms depending on whether the adjustment is made in the

estimator, estimating equation, or objective function (log-likelihood). The first purpose of this

section is to review the existing methods of bias correction, focusing on how these methods can

be applied to panel binary choice models. The second purpose is to modify the corrections in

order to improve their asymptotic and finite sample properties. Finally, I compare the different

alternatives in a simple example.

1.3.1 Bias Correction of the Estimator

HN propose the following correction

B01~ _ A_ IS ~~~(1.3.2)

where B is an estimator of B. Since B generally depends on 0, i.e., B = 1(0), they also suggest to

iterate the correction by solving 0° = 0- B(0c). To estimate B, HN give two alternatives. The

first alternative, only valid for the likelihood setting, is based on replacing derivatives for outer

products in the bias formulas using Bartlett identities, and then estimate expectations using

sample means. The second possibility replaces expectations for sample means using directly the

bias formulas for general estimating equations derived in Section 1.2. These expressions rely

only upon the unbiasedness of the estimating equation at the true value of the parameters and

individual effects, and therefore are more robust to misspecification.

I argue here that the previous distinction is not very important for parametric discrete

choice models, since the estimating equations are only valid under correct specification of the

conditional distribution of e. In other words, these estimating equations do not have a quasi-

likelihood interpretation under misspecification. Following the same idea as in the estimation

of asymptotic variances in MLE, I propose to take conditional expectations of the bias formulas

25



(conditioning on the regressors and individual effects), and use the resulting expressions to

construct the corrections.15 These new corrections have optimality asymptotic properties. In

particular, using Brown and Newey (1998) results for efficient estimation of expectations, it

follows that the estimator of the bias proposed here attains the semiparametric efficiency bound

for the bias estimation problem.16 Intuitively, taking conditional expectations removes zero-

mean terms of the bias formula that only add noise to the analog estimators.

To describe how to construct the correction from the new bias formulas, it is convenient to

introduce some more notation. Let

Fit() Fe(x'itO + &i(O)lXa), fit(O)- fe(xi tO + 6&i(I)IX, a), (1.3.3)

git(0) - f(xit + &( (0)jX, ), Hit() (1 - Fit(O)) (1.3.4)

where f is the pdf associated with F, and f is the derivative of f. Also, define

ai2(O) -- ET [Hit (0) fit(0)] - 1 , t(O) &i 2(O)Hit (0) [Yit - Fit(O)] (1.3.5)

Here, &2(0) and fit(O) are estimators of the asymptotic variance and influence function, respec-

tively, obtained from a expansion of &i(0) as T grows after taking conditional expectations, see

(1.2.13) and the expressions in Appendix .A. Let

pi(0) = -&ai4(0)ET [Hit (0) git ()]/2, (1.3.6)
n

3(0) -- 1- {ET [Hit(O)fit(O)xitxit] - 2(O)ET [Hit(0)fit(0)xit] ET [Hit (0) fit(0)xit] }
n 

i=1
(1.3.7)

where 3 i(0) is an estimator of the higher-order asymptotic bias of &i(o) from a stochastic ex-

pansion as T grows, and J (0) is an estimator of the Jacobian of the estimating equation for 0.

Then, the estimator of B is

n13(0) = -j(0y-1b(0), b(09) = -- E {ET [Ht0 i() id0) ± FT [HtH9t0Xt c3Q(0)/2},i=1
(1.3.8)

15Appendix 1.A gives the expressions of the bias for discrete choice models after taking conditional expectations.
16Brown and Newey (1998) results apply here by noting that the bias formula can be decomposed in uncon-

ditional expectation terms. The efficient estimators for each of these terms is the corresponding sample analog
of the conditional expectation, given the regressors and individual effects. Then, the argument follows by delta
method. See also Porter (2002).

26



where b(0) is an estimator of the bias of the estimating equation of 0.

One step bias corrected estimators can then be formed by evaluating the previous expression

at the MLE, that is B = L(0), and the iterated bias corrected estimator is the solution to

0=- l(0 ). Monte Carlo experiments in Section 1.7 show that the previous higher-order

refinements also improve the finite sample performance of the corrections.

1.3.2 Bias Correction of the Estimating Equation

The source of incidental parameters bias is the non-zero expectation of the estimating equation

(first order condition) for 0 at the true parameter value 0o, see (1.2.15). This suggests an

alternative correction consisting of a modified estimating equation that has no bias at 0, up to

a certain order in T (see, for e.g., Woutersen, 2002; HN; and Ferndndez-Val, 2004).l7 For the

discrete choice model, the score-corrected estimator is the solution to

n T

= 1 ( Uit (6, i (0) - b(H).(1.3.9)
i=1 t=1

HN and Fernandez-Val (2004) show that this method is equivalent to the iterated bias correction

of the estimator when the initial estimating equation is linear in 0. In general, the iterated

estimator is the solution to an approximation to the unbiased estimating equation.

1.3.3 Modified (Profile) Maximum Likelihood (MML)

Cox and Reid (1987), in the context of robust inference with nuisance parameters, develop a

method for reducing the sensitivity of MLEs of structural parameters to the presence of incidental

parameters.' 8 This method consists of adjusting the likelihood function to reduce the order of

the bias of the corresponding estimating equation (see Liang, 1987; McCullagh and Tibsharani,

1990; and Ferguson, Reid and Cox, 1991). Lancaster (2000) and Arellano (2003) show that the

modified profile likelihood, i.e. concentrating out the ai's, takes the following form for panel

discrete choice models

n~~~~~ -- T[Vt('i8)~ l o n'
1 t T -ET vit,(0,ai(0)) 1 log T.

(1.3.10)rT ZZ~ °lit(t))-2T- ET- [it(()fi()] 2 (
i=1 t=1 i=1

17 Neyman and Scott (1948) suggest this method, but do not give the general expression for the bias of the
estimating equation.

18 "Roughly speaking nuisance' parameters are those which are not of primary interest; 'incidental' parameters
are nuisance parameters whose number increases with the sample size." C.f., Lancaster (2000), footnote 10.
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Appendix 1.D shows that the estimating equation of the modified profile likelihood is equivalent

to (1.3.9), up to order op(1/T). The difference with (1.3.9) is that the MML estimating equation

does not use conditional expectations of all the terms. For the logit, however, the two methods

exactly coincide since the correction factor of the likelihood does not depend on e. In this case

tT [vita(O, &i(O))] = -T [Hit(O) fit(O)], Hit(O) = 1, and the modified likelihood takes the simple

form
T I 1

nT E{ lit(0o &i(0)) + 2T C-logET [fit(0)] + logT. (1.3.11)
i=1 t i=1

1.3.4 Example: Andersen (1973) Two-Period Logit Model

The previous discussion suggests that the most important distinction between the correction

methods is whether to adjust the estimator or the estimating equation, and in the former case

whether to use a one-step or an iterative procedure. Here, I compare the asymptotic properties

of these alternative procedures in a simple example from Andersen (1973). This example is

convenient analytically because the fixed-T probability limit of the MLE has a closed-form

expression. This expression allows me to derive the probability limits of the bias-corrected

estimators, and to compare them to the true parameter value.

The model considered is

it = 1 {XitO + i-Eit > O}, it £(O, 2/3) t= 1,2; i = 1,..., n, (1.3.12)

where xi, = 0 and xi2 = 1 for all i, and C denotes the standardized logistic distribution.

Andersen (1973) shows that the MLE, , converges to 2 -QML, as n - o, and derives a

fixed-T consistent estimator for this model, the conditional logit estimator. Using the probability

limit of the MLE and the expression of the bias in (1.3.8), the limit of the one-step bias-corrected

estimator is

1 - (e/2 e-0/2) /2 P 20 - (eO - e-) /2 _ 1. (1.3.13)

For the iterated bias-corrected estimator, the limit of the estimator () is the solution to the

following nonlinear equation

O' = 20 - (e0/2 _ e - 0 °/2) /2. (1.3.14)
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Finally, Arellano (2003) derives the limit for the score-corrected estimator 9

l¥_ +1P 2log ( 5 + s. (1.3.15)

Figures 1 and 2 plot the limit of the corrected estimators as functions of the true parameter

value o0.20 Here, we can see that the large-T adjustments produce significant improvements over

the MLE for a wide range of parameter values, even for T = 2. Among the corrected estimators

considered, no estimator uniformly dominates the rest in terms of having smaller bias for all

the parameter values. Thus, the one-step bias correction out-performs the other alternatives for

low values of 0, but its performance deteriorates very quickly as the true parameter increases;

the score correction dominates for medium range parameter values; and the iterated correction

becomes the best for high values of 0.

1.4 Bias for Static Panel Probit Model

The expression for the bias takes a simple form for the static panel probit model, which helps

explain the results of previous Monte Carlo studies (Greene, 2002; and HN). In particular,

the bias can be expressed as a matrix-weighted average of the true parameter value, where

the weighting matrices are positive definite. This implies that probit fixed effects estimators are

biased away from zero if the regressor is scalar (as in the studies aforementioned). This property

also holds regardless of the dimension of the regressor vector in the absence of heterogeneity,

because in this case the weighting matrix is a scalar multiple of the identity matrix (Nelson,

1995). In general, however, matrix-weighted averages are difficult to interpret and sign except

in special cases (see Chamberlain and Learner, 1976). These results are stated in the following

proposition:

Proposition 1 (Bias for Model Parameters) Assume that (i) itlXi,ci - i.i.d. Af(0, 1),

(ii) E [XX'Ia] exists and is nonsingular for almost all a, (iii) Xitlac is stationary and strongly
c~ 59/60/missing with missing coefficients such that -1 =l m 6 /m < oc, for almost all a, (iv) ci are

independent, (v) E [ (X, a)11120] < oc, and (vi) n = o(T3 ).21 Then,

1.

2 = -E [j]-I E [2] 00, (1.4.1)
2

19He obtains this result for the MML estimator, but MML is the same as score correction for the logit case.
20See Arellano (2002) for a similar exercise comparing the probability limits of MML and ML estimators.
21 l[ 1[ denotes the Euclidean norm.
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where

$ = ET [Hitfititx't] - O2ET [HtfitXit] ET [Htftxj , (1.4.2)

: ET [Hitfit]- = ETft {*(xit0o + it)2/ [4(xtOo + x) (1 - (x 0o + i))]} 1-

(1.4.3)

2. E [i] - C 2c i is positive definite for almost all aci.

3. If ai = a Vi, then
I2oo15= 230-o, (1.4.4)

2

where o(2 = ET {4(x/to + a)2/ [(x'tOo + a) (1 - (x'tOo + a))]}

Proof. See Appendix 1.C. 

Condition (i) is the probit modelling assumption; condition (ii) is standard for MLE (Newey

and McFadden, 1994), and guarantees identification and asymptotic normality for MLEs of

model parameters and individual effects; assumptions (iii), together with the moment condition

(v), and (iv) are imposed in order to apply a Law of Large Numbers;22 and assumptions (v) and

(vi) guarantee the existence of, and uniform convergence of remainder terms in, the higher-order

expansion of the bias (HN, and Fernandez-Val, 2004). Note that the second result follows because

a2 is the asymptotic variance of the estimator of the individual effect ae, and Ji corresponds

to the contribution of individual i to the inverse of the asymptotic variance of the estimator of

the model parameter 00. Moreover, since a? > (0) [1 _ q(0)] /(0) 2 = 7r/2, B can be bounded

from below.

Corollary 1 Under the conditions of Proposition 1

JIL31 > 1 100o1.(1.4.5)-4

When the regressor is scalar or there is no heterogeneity, this lower bound establishes that the

first order bias for each index coefficient is at least 7r/8 40%, 7r/16 20% and 7r/32 10%

for panels with 2, 4 and 8 periods, respectively.23 In general, these bounds apply to the norm

of the coefficient vector. Tighter bounds can be also established for the proportionate bias,
22The stationarity condition can be relaxed to accommodate deterministic regressors, such as time dummies or

linear trends.
23For two-period panels, the incidental parameters bias of the probit estimator is 100 % (Heckman, 1981). Part

of the difference between the bias and the lower bound in this case can be explained by the importance of higher
order terms, which have growing influence as the number of periods decreases.
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1II11111oll, as a function of the true parameter value 00o. These bounds, however, depend on

the joint distribution of regressor and individual effects, and are therefore application specific.

Thus, using standard matrix algebra results (see, e.g., Rao, 1973, p. 74), the proportionate bias

can be bounded from below and above by the minimum and maximum eigenvalues of the matrix

E [fi]- P [2,?Ji] /2, for any value of the parameter vector 00.24

The third result of the proposition establishes that the bias is proportional to the true

parameter value in the absence of heterogeneity. The intuition for this result can be obtained

by looking at the linear model. Specifically, suppose that it = x'tf3o + ai + it, where it 

i.i.d.(O, C72). Next, note that in the probit the index coefficients are identified only up to scale,

that is 00 = 0/cc. The probability limit of the fixed effects estimator of this quantity in the

linear model, as n -4 oc, is

/ 1 1T / = 1 + I 0 +O(T 2), (1.4.6)

where the last equality follows from a standard Taylor expansion of (1 - 1/T)- 1 /2 around 1/T =

0. Here we can see the parallel with the probit, where T = [1 + o2 /2T] o + O(T- 2). Hence,

we can think of the bias as coming from the estimation of oe, which in the probit case cannot be

separated from the estimation of Qo. In other words, the over-fitting due to the fixed effects biases

upwards the estimates of the model parameters because the standard deviation is implicitly in

the denominator of the model parameter estimated by the probit.

Proportionality implies, in turn, zero bias for fixed effects estimators of ratios of index

coefficients. These ratios are often structural parameters of interest because they are direct

measures of the relative effect of the regressors, and can be interpreted as marginal rates of

substitution in many economic applications.

Corollary 2 Assume that the conditions of the Proposition hold and ai = a Vi. Then, for

any j k c {1, ...,p} and 0 = (01, ... , Op)

'j p o0j + O(T- 2 ). (1.4.7)
0k 00,k

In general, the first term of the bias is different for each coefficient depending on the distribution

of the individual effects, and the relationship between regressors and individual effects; and

shrinks to zero with the inverse of the variance of the underlying distribution of individual
24Chesher and Jewitt (1987) use a similar argument to bound the bias of the Eicker-White heteroskedasticity

consistent covariance matrix estimator.
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effects.

1.5 Marginal Effects: Small Bias Property

1.5.1 Parameters of Interest

In discrete choice models the ultimate quantities of interest are often the marginal effects of

specific changes in the regressors on the response conditional probability (see, e.g., Angrist,

2001; Ruud 2001; Greene, 2002; Wooldridge, 2002; and Wooldridge, 2003). However, unlike in

linear models, structural parameters in nonlinear index models are only informative about the

sign and relative magnitude of the effects. In addition, an attractive feature of these models is

that marginal effects are heterogeneous across individuals. This allows, for instance, the marginal

effects to be decreasing in the propensity (measured by the individual effect) to experience the

event. Thus, individuals more prone to work are arguably less sensitive to marginal changes on

other observable characteristics when deciding labor force participation.

For a model with two regressors, say X1 and X2, and corresponding parameters 1 and 2,

the marginal effect of a one-unit increase in X1 on the conditional probability of Y is defined as

Fe((xl + 1)01 + x202 + aXl, X2, ) -Fe(xl + x202 + aXl,X 2,a). (1.5.1)

When X1 is continuous, the previous expression is usually approximated by a local version based

on the derivative of the conditional probability with respect to xl, that is

lFe(xl + 202 + aXl, X2, o) = lfe(xlOl + X202 aXl,X 2, a) (1.5.2)
ax,

where fe 1X, a) is the conditional pdf associated with Fe(-X, a). These measures are heteroge-

nous in the individual effect a and the level chosen for evaluating the regressors.

What are the relevant effects to report? A common practice is to give some summary

measure, for example, the average effect or the effect for some interesting value of the regressors.

Chamberlain (1984) suggests reporting the average effect for an individual randomly drawn from

the population, that is

/(X 1) = [Fe((Xl + 1)01 + X202 + alXl, X2 , a) - Fe(xOl + x202 + aIX1, X 2, ace)] dG£2,( 2, a),

(1.5.3)
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or

A= J fe(XlO1 + X202 + a.Xl, X2, a)dH,. 2,o1, :X2, a), (1.5.4)

where G and H are the joint distribution of (2, a) and (X, a), respectively, and x1 is some

interesting value of X1. The previous measures correspond to different thought experiments.

The first measure, commonly used for discrete variables, corresponds to the counterfactual

experiment where the change on the outcome probability is evaluated as if all the individuals

would have chosen x1 initially and receive an additional unit of X1. The second measure, usually

employed for continuous variables, is the average derivative of the response probabilities with

respect to x, i.e., the average effect of giving one additional unit of X1. The fixed effects

estimators for these measures are

n T

(xl) = I E E [Fe((X1 + 1)01 + X2it02 + diXl, X2, a) - Fe(X1O + x2it62 + &iX1, X2, )]
i=1 t=1

(1.5.5)

and
n T

= nT E O1 fe(xlitO + X2it02 + 6iXl, X2 , o), (1.5.6)
i=1 t=l

respectively. Note that the first measure corresponds to the average treatment effect if X1 is a

treatment indicator.

These effects can be calculated also for subpopulations of interest by conditioning on the

relevant values of the covariates. For example, if X1 is binary (treatment indicator), the average

treatment effect on the treated (ATT) is

PATT / [Fe(01 + X2 02 + aiXi, X 2 , a) - F(x 2 02 + aIXl, X2, oz)] dGx 2,a (x2, aIXl = 1),

(1.5.7)

and can be estimated by

n T

AATT = 1 E E [Fe(61 + 2it 02 + i Xl X2, o -F(2it 02 + iIl,2, 2c) 1 {lit - 1},
1 at=l

(1.5.8)

where N1 = i-l1 t= 1 {Xlit = 1}. Other alternative measures used in cross-section models,

such as the effect evaluated for an individual with average characteristics, are less attractive

for panel data models because they raise conceptual and implementation problems (see Carro,

2003, for a related discussion about other measures of marginal effects).25

2501 the conceptual side, Chamberlain (1984) and Ruud (2000) argue that this effect may not be relevant for
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1.5.2 Bias Correction of Marginal Effects

HN develop analytical and jackknife bias correction methods for fixed effect averages, which in-

clude marginal effects. Let m(r, 0, a) denote the change in the outcome conditional probability as

a response to a one-unit increase in the first regressor

Fe ((rl + 1)01 + r 1 q- + aIX, o) -Fe(rl0l+r' _lO1+alX, a), or its local approximation Olfe(r'O

aIX, a) if X1 is continuous.26 The object of interest is then

a = E [m(r, o, a)], (1.5.9)

where r = (xl, X 2) for discrete X1 and r = X for continuous X1.27 The fixed effects MLE of 

is then given by

1 n T
i=1 t=l

where rit = (,x2it) or rit = xit. For the bias corrections, let 0 be a bias-corrected estimator

(either one-step, iterated or derived from a bias-corrected estimating equation) of 00 and &i =

&i (0), i = 1, ..., n, the corresponding estimators of the individual effects.28 Then, a bias-corrected

estimator of p is given by

nT , m (rit ai) 1A (1.5.11)
i=1 t=1

£ Z ES {mn ( rite , &i) [i (6) + sit (6)] + 2 ( ) ( ) }
i,=1 t=l

(1.5.12)

where subscripts on m denote partial derivatives. Note that the fit (o) term can be dropped

since rit does not depend on eit.

most of the population. The practical obstacle relates to the difficulty of estimating average characteristics in

panel models. Thus, replacing population expectations for sample analogs does not always work in binary choice

models estimated using a fixed-effects approach. The problem here is that the MLEs of the individual effects

are unbounded for individuals that do not change status in the sample, and therefore the sample average of the

estimated individual effects is generally not well defined.
26 For a p x 1 vector v, vi denotes the i - th component and v-i denotes (Vi, ... ,v i+, ... Vp).
27If X1 is binary rl is usually set to 0.
28Bias-corrected estimators for marginal effects can also be constructed from fixed-T consistent estimators.

Thus, the conditional logit estimator can be used as 0 in the logit model. This possibility is explored in the Monte

Carlo experiments and the empirical application.
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1.5.3 Panel Probit: Small Bias Property

Bias-corrected estimators of marginal effects are consistent up to order O (T- 2) and have asymp-

totic distributions centered at the true parameter value if T/n 1/ 3 -+ oc. This can be shown using

a large T-expansion of the estimator, just as for model parameters. The question addressed here

is whether these corrections are indeed needed. In other words, how important is the bias that

the corrections aim to remove? This question is motivated by Monte Carlo evidence in HN,

which shows negligible biases for uncorrected fixed effects estimators of marginal effects in a

specific example. The following proposition gives the analytical expression for the bias of probit

fixed effects estimators of marginal effects.

Proposition 2 (Bias for Marginal Effects) Let 4 = 0 -i t= { (Xito + &i(O)) /nT and

/ = 00 [ (X'0o -r a)], then under the conditions of Proposition 1, as n, T -- o

PI A + T8 / + O(T-2), (1.5.13)

where

1M = 2E {I (tit) [(it 0 (it - OriT [HitPtit]) - i] (uIp-E iF1 E [ui2i) } 00,

(1.5.14)

(it = Xit0O + ai, (1.5.15)

~Yi , ~~~~~~~~~~~~~~~~~~~~(1.5.16)eQ = FT [Hitfit]1 = FT {(g(it)2/ [((it)(-it)]} , (1.5.16)

i - { ET [itfitxitxt] - O2 E T T [Hi tfitxi5t]J } (1.5.17)

and Ip denotes a p x p identity matrix.

Proof. See Appendix 1.C. 

When xit is scalar all the formulas can be expressed as functions uniquely of the index (it as

= Eo [B3i] = Ec [iTri] Oo/2, (1.5.18)

with 6i-- F x {q(~it) [(itt it- T [Hitfit]-l ET [Hitfitit])-1] o}, 7 i _= 2-E [j]-1 [2 j

and Ji = -{ET [iti 2 ] - 2ET [Witit]2}. Here, we can see that the bias is an even function

of the index, it, since all the terms are centered around weighted means that are symmetric

around the origin.29 The terms i and 7ri have U shapes and take the same sign for ai = 0 (when
29A function f: Rn -+ R is even if f(-x) = f(x) Vx E n.
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the mean of the regressors is absorbed in the individual effects); the term ((tit) in i acts to

reduce the weights in the tails, where the other components are large. This is shown in Figure

3, which plots the components of the bias for independent normally distributed regressor and

individual effect. In this case the bias, as a function of a, is positive at zero and takes negative

values as we move away from the origin. Then, positive and negative values compensate each

other when they are integrated using the distribution of the individual effect to obtain B,.

The following example illustrates the argument of the proof (in Appendix 1.C) and shows a

case where the bias is exactly zero.

Example 1 (Panel probit without heterogeneity) Consider a probit model where the in-

dividual effect is the same for all the individuals, that is ai = a Vi. In this case, as n, T --* o

^P - + Op(T- 2). (1.5.19)

First, note that as n - oo

t P J {OTET [ (Xit0T + &i(T))] } (1.5.20)

Next, in the absence of heterogeneity (see Proposition 1, and proof of Proposition 2 in Appendix

1.C)

2
ST = 0 + a200 + O (T- 2 ), &i(OT) a + i// + a 2 /2T + R/T 3/2, (1.5.21)

where under the conditions of Proposition 2

i a N(0, ao2 ), 2 = ET [Hitfit]- , [R] O(T 2) (1.5.22)

Combining these results, the limit of the index, it = xitOT + &i (OT), has the following expansion

=it = (1 + 2/2T) (it + +i/Y/ + Ri/ + O(T2), it = xto + a. (1.5.23)

Finally, replacing this expression in (1.5.20), using the convolution properties of the normal

distribution, see Lemma 1 in Appendix 1.C, and assuming that orders in probability correspond
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to orders in expectation,

f A E {OT E [q(it)X, o }=E [OT J 0(dv4>it+v) _( dV ]

±c2/T ( ±c/T) l
+ O(T - E2) ( [i( + 2 T 0 ( )] + O(T 2) = - + O(T 2),

,\/I + U2/1VI a2/T
(1.5.24)

since by a standard Taylor expansion

(1 + 2/T) 1 /2 (1 + cr2/2T) 1- 2 + O(T - 2) 1 + ) = 1 + O(T- 2).

(1.5.25)

In other words, the standard deviation of the random part of the limit index exactly compensates

for the first term of the bias in the conditional expectation of the nonlinear function 0(.).

The intuition for this result is the equivalent for panel probit of the consistency of av-

erage survivor probabilities in the linear Gaussian panel model. Thus, HN show that S -

Ji= (xx'+~(0)) /n is a consistent estimator for S - {4) (I)x'+a)} for fixed T, because

averaging across individuals exactly compensates the bias of the estimator of o. In the nonlin-

ear model, however, the result holds only approximately, since averaging reduces the bias of the

MLE of the average effects by one order of magnitude from O (T- 1 ) to O (T- 2).

This example shows that, as in linear models, the inclusion of irrelevant variables, while

reducing efficiency, does not affect the consistency of the probit estimates of marginal effects.

Moreover, this example also complements Wooldridge's (2002, Ch. 15.7.1) result about neglected

heterogeneity in panel probit models. Wooldridge shows that estimates of average effects that do

not account for unobserved heterogeneity are consistent, if the omitted heterogeneity is normally

distributed and independent of the included regressors. Here, on the other hand, I find that

estimates of marginal effects that account for heterogeneity are consistent in the absence of such

heterogeneity.

In general, the bias depends upon the degree of heterogeneity and the joint distribution of

regressors and individual effects. Table 1 reports numerical values for the bias of fixed effects

estimators of model parameters and marginal effects (in percent of the true value) for several

distributions of regressors and individual effects. These examples correspond to an 8-period

model with one regressor, and the model parameter 00 equal to 1. All the distributions, except
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for the Nerlove process for the regressor, are normalized to have zero mean and unit variance.30

The numerical results show that the first term of the bias for the marginal effect is below 2%

for all the configurations considered, and is always lower than the bias for the model parameter,

which is about 15% (larger than the lower bound of 10%). The values of the bias for Nerlove

regressor and normal individual effect are close to their Monte Carlo estimates in Section 1.7.

Thus, the theoretical bias for the model parameter and marginal effect are 15% and -0.23%, and

their Monte Carlo estimates are 18% and -1% (see Tables 2 and 3).

When can we use uncorrected fixed effects estimators of marginal effects in practice? The

expression of the bias derived in Proposition 2 is also useful to answer this question. Thus, since

the bias is a fixed effects average, its value can be estimated in the sample using the procedure

described in HN. Moreover, a standard Wald test can be constructed to determine whether the

bias is significantly different from zero.

1.6 Extension: Dynamic Discrete Choice Models

1.6.1 The Model

Consider now the following dynamic version of the panel discrete choice model

Y = 1 {0,oY-1 + X'Ox,o + - e > 0}, (1.6.1)

where Y- 1 is a binary random variable that takes on value one if the outcome occurred in the

previous period and zero otherwise. The rest of the variables are defined as in the static case.

In this model, persistence in the outcome can be a consequence of higher unobserved individual

propensity to experience the event in all the periods, as measured by , or to alterations in

the individual behavior for having experienced the event in the previous period, as measured

by vy,OY-1. Heckman (1981) refers to these sources of persistence as heterogeneity and true

state dependence, respectively. Examples of empirical studies that use this type of specification

include Card and Sullivan (1988), Moon and Stotsky (1993), Roberts and Tybout (1997), Hyslop

(1999), Chay and Hyslop (2000), and Carro (2003).

To estimate the model parameters, I adopt a fixed-effects estimation approach. This ap-

proach has the additional advantage in dynamic models of not imposing restrictions on the

initial conditions of the process (Heckman, 1981). Then, given a sample of the observable vari-

3 0The Nerlove process is not normalized to help me compare with the results of the Monte Carlo in Section 1.7.
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ables and assuming a distribution for e conditional on (Y- 1, X, a), the model parameters can be

estimated by maximum likelihood conditioning on the initial observation of the sample.

1.6.2 Large-T Approximation to the Bias

In the presence of dynamics, fixed effects MLEs of structural parameters suffer from the inci-

dental parameters problem even when the model is linear; see, for e.g., Nerlove (1967), Nerlove

(1971), and Nickell (1981). Formulas for the bias can be obtained using large-T asymptotic

expansions of the estimators, which in this case include Hurwicz-type terms due to the corre-

lations between the observations. Thus, let Zt denote (X,Yt-1,...,Yo), and ET-j[zt-k] denote
T

limT-+c [t=k+l E [Zt-klt-j, a] /(T-k) for k < j, then a large-T expansion for the estimators

of the individual effects can be constructed as

T
di oi ±+ (d/-+ 3i/T + op(1/T), id = E id/4 x/ A(0, 2,d) (1.6.2)

t=l
T-1

7idt = -ET [ita] - 1 Vit, di2 -ET [Vita 1 + 2 lim ET-j itjit], (1.6-3)
T--oox

j=.71

T-1~ ~ d d,2r[it]·
pi d - ET [ita]l lim ET-J [vitt-J + 2i T (1.6.4)T L :ET-jli~q- 

j=0

As in the static model, idt, i2 and /3id are the influence function, first-order variance and

higher-order bias of si as T -- oc. For the common parameter, the expressions for the Jacobian

and the first term of the bias of the estimating equation are

= = E {ET [UitO] - ET [it t] [ ] }(1.6.5)L E~~~~JT [Vitl '
T-1 [ ] 1d

d [ iUitia 4

bd = E [ET [Uitt]/3i' -im Z ET-J juitait-j + 2i FT [uit] (1.6.6)T--~oo ETjuia t 2t
j=0

The first term of the bias of the fixed effects estimator of 00 is then B3d = - (jd) 1 bd. This

expression corresponds to the bias formula for general nonlinear panel models derived in Hahn

and Kuersteiner (2003), where all the terms that depend on Y have been replaced for their con-

ditional expectation given (X, Y-1 , a). This adjustment removes zero conditional mean terms

without affecting the asymptotic properties of the correction.31 Monte Carlo results in Sec-
31Appendix 1.A derives the bias formulas for dynamic discrete choice models, and Appendix 1.B describes the

corrections.
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tion 1.7 show that this higher-order refinement improves the finite sample performance of the

correction for a dynamic logit model.

1.6.3 Marginal Effects

Marginal effects can be defined in the same manner as for the static model. Bias corrections for

fixed effects estimators also extend naturally to the dynamic case by adding some correlation

terms. Thus, using the notation of Section 1.5, the estimator of the bias can be formed as

Tad = 1 hf {me (nt, ~ , ai) [I (~) + fi (s)] ± 1 ( , a) ? ( ) }
nTi=1 t-1

d- E E rii 6' si) it-j ( (1.6.7)
i=1 t=l j=l

Here, J is a bandwidth parameter that needs to be chosen such that J/T 1/ 2 -O 0 as T --+ o,

see Hahn and Kuersteiner (2003).

The small bias property for fixed effects estimators of marginal effects does not generally

hold in dynamic models. The reason is that averaging across individuals does not remove the

additional bias components due to the dynamics. To understand this result, we can look at the

survivor probabilities at zero in a dynamic Gaussian linear model. Specifically, suppose that

Yit = OOYi,t-1+ci+eit, where eitYi,t-i, ..., Yi,o, ai N(0, or2), YioIi -- Af(a i/(1-0o), r2/(1-02)),

and 0 < 0 < 1. The survivor probability evaluated at i,t-1 r and its fixed effects estimator

are

--={ ( °d )} S 1I (- ())' (1.6.8)
1 O

where 0 and &2 are the fixed effects MLEs of 0o and a 2 . It can be shown that 0 converges to

T = 00 -(1 + o)/T + O(T- 2), and a2 converges to c = 2 _ U 2/T + O(T- 2), as n -- oc
(Nickell, 1981). For the estimator of the individual effects, a large-T expansion gives

&i(OT) = i Vi -(OT -0) 1 + op(1/T), vi - (0, r 2 /T). (1.6.9)
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Then, as n, T - oo

S P E {E[ T + ai(T))] }
TT

_ { [ (Ho + aj + i + (T -0) ( - + o (T l)
O'T

_ f t°U + i -1 I+ 0o) (u1_ ) + 0-) 
= E (1.6.10)

by the convolution properties of the normal distribution, see Lemma 1 in Appendix 1.C.

In (1.6.10) we can see that averaging across individuals eliminates the bias of 2, but does

not affect the bias of . The sign of the bias of S generally depends on the distribution of the

individual effects. When there is no heterogeneity (i = a Vi), for example, S underestimates

(overestimates) the underlying survivor probability when evaluated at values above (below) the

unconditional mean of the response, a/(1 - O). This means that if the marginal effects are

thought of as differences in survivor probabilities evaluated at two different values ul and u,

fixed effects estimates of marginal effects would be biased downward if the values chosen are

ul = 1 and uo = 0. For exogenous variables, Monte Carlo results suggest that the bias problem

is less severe (see Section 1.7). Intuitively, it seems that the part of the bias due to the dynamics

is less important for the exogenous regressors.3 2

1.7 Monte Carlo Experiments

This section reports evidence on the finite sample behavior of fixed effects estimators of model

parameters and marginal effects for static and dynamic models. In particular, I analyze the finite

sample properties of uncorrected and bias-corrected fixed effects estimators in terms of bias and
32For example, assurne that in the previous dynamic linear model we add an exogenous regressor X with

coefficient /3o, such that xit i.i.d. (0, a2) (the individual means are absorbed in the individual effect). Then,
it can be shown that the fixed effects estimator of o is fixed-T consistent, and the estimators of So and 2 have
the same probability limits as before. The fixed effect estimator of the survivor probability, evaluated at (uu, u.),
converges to, as n, T -* o,E=! ( u+_u ) E ® O ou,, + /3ou. + ai -1 ( ) +( )

(1.6.11)
Hence, if there is no individual heterogeneity (i = a Vi) and the probability is evaluated at the unconditional
mean of the lagged endogenous variable, i.e. u = a/(1 - Oo), then the fixed effects estimator of the survivor
probability is large-T-consistent for every value of us. As a result, the derivative with respect to us, which is the
analog of the marginal effect of X, is also large-T-consistent.
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inference accuracy of the asymptotic distribution. The small bias property for marginal effects is

illustrated for several lengths of the panel. Robustness of the estimators to small deviations from

correct specification is also considered. Thus, the performance of probit and logit estimators is

evaluated when the error term is logistic and normal, respectively. All the results presented are

based on 1000 replications, and the designs are as in Heckman (1981), Greene (2002), and HN

for the static probit model, and as in Honor6 and Kyriazidou (2000), Carro (2003), and Hahn

and Kuersteiner (2003) for the dynamic logit model.

1.7.1 Static Model

The model design is

Yit = 1 Xito + ai-it > 0}, it -Jf(0, 1), aoi -fX(0, 1), (1.7.1)

xit = t/10 + xi,t_1/2 + uit, xio = uio, uit -U(-1/2, 1/2), (1.7.2)

n = 100, T = 4, 8, 12; 00 = 1, (1.7.3)

where X and U denote normal and uniform distribution, respectively. Throughout the tables

reported, SD is the standard deviation of the estimator; P; # denotes a rejection frequency with

# specifying the nominal value; SE/SD is the ratio of the average standard error to standard

deviation; and MAE denotes median absolute error.3 3 BC1 and BC2 correspond to the one-

step analytical bias-corrected estimators of HN based on maximum likelihood setting and general

estimating equations, respectively. JK is the bias correction based on the leave-one-period-out

Jackknife-type estimator, see HN. BC3 is the one-step bias-corrected estimator proposed here.

CLOGIT denotes Andersen's (1973) conditional logit estimator, which is fixed-T consistent

when the disturbances are logistically distributed. Iterated and score-corrected estimators are

not considered because they are much more cumbersome computationally.34

Table 2 gives the Monte Carlo results for the estimators of o00 when eit is normally distributed.

Both probit and logit estimators are considered and logit estimates are normalized to help

compare to the probit.35 The results here are similar to previous studies (Greene, 2002; and

HN) and show that the probit MLE is severely biased, even when T = 12, and has important

distortions in rejection probabilities. BC3 has negligible bias, relative to standard deviation,

33I use median absolute error instead of root mean squared error as an overall measure of goodness of fit because
it is less sensitive to outliers.

34 HN find that iterating the bias correction does not matter much in this example.
3 5Estimates and standard errors for logit are multiplied by v/3/7r in order to have the same scale as for probit.
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and improves in terms of bias and rejection probabilities over HN's analytical and jackknife bias-

corrected estimators for small sample sizes.36 It is also remarkable that all the bias corrections

and the conditional logit estimator are robust to the type of misspecification considered, even

for a sample size as small as T = 4. This resembles the well-known similarity between probit

and logit estimates in cross sectional data, see Amemiya (1981), but it is more surprising here

since the bias correction formulas and conditional logit estimator rely heavily on the form of the

true likelihood.

Table 3 reports the ratio of estimators to the truth for marginal effects. Here, I include

also two estimators of the average effect based on linear probability models. LPM - FS is the

standard linear probability model that uses all the observations; LPM is an adjusted version

that calculates the slope from individuals that change status during the sample, i.e., excluding

individuals with yit = 1 Vt or Yit = 0 Vt, and assigns zero effect to the rest. The results are

similar to HN and show small bias in uncorrected fixed effects estimators of marginal effects.

Rejection frequencies are higher than their nominal levels, due to underestimation of dispersion.

As in cross-section models (Angrist, 2001), both linear models work fairly well in estimating the

average effect.3 7

1.7.2 Dynamic Model

The model design is

Yio = 1 {Ox,oxio + i - io > 0}, (1.7.4)

Yit = 1 {OyoYi,t_1 + Ox,oXit + i - eit > 0}, t1, ... ,T - 1, (1.7.5)

eit - £(0, r2 /3), xit N (0, r2/3), (1.7.6)

n = 250; T = 8, 12, 16; Oyo = .5; Ox,o = 1, (1.7.7)

where denotes the standardized logistic distribution. Here, the individual effects are corre-

lated with the regressor. In particular, to facilitate the comparison with other studies, I follow
36In this case the bias correction reduces the dispersion of the fixed effects estimator. This can be explained

by the proportionality result of the bias in Proposition 1. Thus, the bias corrected estimator takes the form
9p- A/T] 0, which reduces to [1 - &2/2T] 0 in the absence of heterogeneity.

37Stoker (1986) shows that linear probability models estimate consistently average effects in index models (e.g.,
probit and logit) under normality of regressors and individual effects. In general, however, the bias of the linear
probability model depends on the covariance between the conditional probability of the index and the deviations
from normality of the index, and on the covariance between the conditional probability of the index and the
deviations from linearity of the conditional expectation of regressors and individual effects given the index (see
equation (6.1) in Stoker, 1986).
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y3Honor6 and Kyriazidou (2000) and generate czi = -t=0 xit/4. The measures reported are the

same as for the static case, and logit and probit estimators are considered.38 BC1 denotes the

bias-corrected estimator of Hahn and Kuersteiner (2003); HK is the dynamic version of the

conditional logit of Honor6 and Kyriazidou (2000), which is fixed-T consistent; MML is the

Modified MLE for dynamic models of Carro (2003); and BC3 is the bias-corrected estimator

that uses conditional expectations in the derivation of the bias formulas.39 For the number of

lags, I choose a bandwidth parameter J = 1, as in Hahn and Kuersteiner (2003).

Tables 4 and 5 present the Monte Carlo results for the structural parameters 0y,o and Ox,0.

Overall, all the bias-corrected estimators have smaller finite sample bias and better inference

properties than the uncorrected MLEs. Large-T-consistent estimators have median absolute

error comparable to HK for T = 8.40 Among them, BC3 and MML are slightly superior to

BC1, but there is no clear ranking between them.41 Thus, BC3 has smaller bias and MAE for

Oy,o, but has larger bias and MAE for Ox,o0. As for the static model, the bias corrections are

robust to the type of misspecification considered for moderate T.

Tables 6 and 7 report the Monte Carlo results for ratios of the estimator to the truth for

average effects for the lagged dependent variable and exogenous regressor, respectively. These

effects are calculated using expression (1.5.5) with x = 0 for the lagged dependent variable,

and expression (1.5.6) for the exogenous regressor. Here, I present results for MLE, BC1, BC3,

linear probability models (LPM and LPM - FS), and bias-corrected linear models (BC - LPM

and BC - LPM - FS) constructed using Nickell's (1981) bias formulas. As in the example of

the linear model in Section 1.6, uncorrected estimates of the effects of the lagged dependent

variable are biased downward. Uncorrected estimates of the effect for the exogenous variable,

however, have small biases. Large-T corrections are effective in reducing bias and fixing rejection

probabilities for both linear and nonlinear estimators.

1.8 Empirical Application: Female Labor Force Participation

The relationship between fertility and female labor force participation is of longstanding interest

in labor economics and demography. For a recent discussion and references to the literature, see
3SProbit estimates and standard errors are multiplied by r/v3 to have the same scale as for logit.
39HK and MML results are extracted from the tables reported in their articles and therefore some of the

measures are not available. HK results are based on a bandwidth parameter equal to 8.
40An aspect not explored here is that the performance of HK estimator deteriorates with the number of exoge-

nous variables. Thus, Hahn and Kuersteiner (2003) find that their large-T-consistent estimator out-performs HK
for T = 8 when the model includes two exogenous variables.

41Note, however, that BC3 is computationally much more simpler than MML.
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Angrist and Evans (1998). Research on the causal effect of fertility on labor force participation is

complicated because both variables are jointly determined. In other words, there exist multiple

unobserved factors (to the econometrician) that affect both decisions. Here, I adopt an empirical

strategy that aims to solve this omitted variables problem by controlling for unobserved individ-

ual time-invariant characteristics using panel data. Other studies that follow a similar approach

include Heckman and MaCurdy (1980), Heckman and MaCurdy (1982), Hyslop (1999), Chay

and Hyslop (2000), Carrasco (2001), and Carro (2003).

The empirical specification I use is similar to Hyslop (1999). In particular, I estimate the

following equation

Pit = 1 {6t + Pi,t-lOP + XtOx + oai -it > 0}, (1.8.1)

where Pit is the labor force participation indicator; t is a period-specific intercept; Pi,t_- is

the participation indicator of the previous period; and Xit is a vector of time-variant covariates

that includes three fertility variables - the numbers of children aged 0-2, 3-5, and 6-17 -, log of

husband's earnings, and a quadratic function of age.42

The sample is selected from waves 13 to 22 of the Panel Study of Income Dynamics (PSID)

and contains information of the ten calendar years 1979-1988. Only women aged 18-60 in 1985,

continuously married, and whose husband is in the labor force in each of the sample periods are

included in the sample. The final sample consists of 1,461 women, 664 of whom change labor

force participation status during the sample period. The first year is excluded to use it as initial

condition for the dynamic model.

Descriptive statistics for the sample are shown in Table 8. Twenty-one percent of the sample

is black, and the average age in 1985 was 37. Roughly 72% of women participate in the labor

force at some period, the average schooling is 12 years, and the average numbers of children

are .2, .3 and 1.1 for the three categories 0-2 year-old, 3-5 year-old, and 6-17 year-old children,

respectively.43 Women that change participation status during the sample, in addition to be

younger, less likely to be black, and less educated, have more dependent children and their

husband's earnings are slightly higher than average. Interestingly, women who never participate

do not have more children than women who are employed each year, though this can be ex-

plained in part by the non-participants being older. All the covariates included in the empirical

42Hyslop (1999) specification includes also the lag of the number of 0 to 2 year-old children as additional
regressor. This regressor, however, is statistically nonsignificant at the 10% level.

43 Years of schooling is imputed from the following categorical scheme: 1 = '0-5 grades' (2.5 years); 2 = '6-8
grades' (7 years); 3 = '9-11 grades' (10 years); 4 = '12 grades' (12 years); 5 = '12 grades plus nonacademic training'
(13 years); 6 = 'some college' (14 years); 7 = 'college degree' (15 years); 7 = 'college degree, not advanced' (16
years); 8 = 'college and advanced degree' (18 years). See also Hyslop (1999).
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specification display time variation over the period considered.

Table 9 reports fixed effects estimates of index coefficients and marginal effects obtained from

a static specification, that is, excluding the lag of participation in equation (1.8.1). Estimators

are labeled as in the Monte Carlo example. The results show that uncorrected estimates of in-

dex coefficients are about 15 percent larger than their bias-corrected counterparts; whereas the

corresponding differences for marginal effects are less than 2 percent, and insignificant relative

to standard errors. It is also remarkable that all the corrections considered give very similar

estimates for both index coefficients and marginal effects (for example, bias-corrected logit es-

timates are the same as conditional logit estimates, up to two decimal points).44 The adjusted

linear probability model gives estimates of the marginal effects closer to logit and probit than

the standard linear model. According to the static model estimates, an additional child aged

less than 2 reduces the probability of participation by 9 percent, while each child aged 3-5 and

6-17 reduces the probability of participation by 5 percent and 2 percent, respectively.

In the presence of positive state dependence, estimates from a static model overstate the effect

of fertility because additional children reduce the probability of participation and participation is

positively serially correlated. This can be seen in Table 10, which reports fixed effects estimates

of index coefficients and marginal effects using a dynamic specification. Here, as in the Monte

Carlo example, uncorrected estimates of the index and effect of the lagged dependent variable

are significantly smaller (relative to standard errors) than their bias-corrected counterparts for

both linear and nonlinear models. Moreover, unlike in the Monte Carlo examples, uncorrected

estimates of the effects of the regressors are biased away from zero. Bias-corrected probit gives

estimates of index coefficients very similar to probit Modified Maximum Likelihood.45 The

adjusted linear probability model, again, gives estimates of the average effects closer to logit

and probit than the standard linear model. Each child aged 0-2 and 3-5 reduces the probability

of participation by 6 percent and 3 percent, respectively; while an additional child aged more

than 6 years does not have a significant effect on the probability of participation (at the 5 percent

level). Finally, a one percent increase in the income earned by the husband reduces a woman's

probability of participation by about 0.03%. This elasticity is not sensitive to the omission of

dynamics or to the bias corrections.

44Logit index coefficients are multiplied by V/7r to have the same scale as probit index coefficients.
45 Modified Maximum Likelihood estimates are taken from Carro (2003)
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1.9 Summary and conclusions

This chapter derives bias-corrected fixed effects estimators for model parameters of panel dis-

crete choice models that have better asymptotic and finite sample properties than other similar

corrections. The idea behind these corrections is analogous to the use of the conditional in-

formation matrix in the variance estimation problem. Thus, the corrections presented here are

based on bias formulas that use more intensively the parametric structure of the problem by

taking conditional expectations given regressors and individual effects.

The new bias formulas are used to derive analytical expressions for the bias of fixed effects

estimators of index coefficients and marginal effects in probit models. The expression for the

index coefficients shows that the bias is proportional to the true value of the parameter and can

be bounded from below. Moreover, fixed effects estimators of ratios of coefficients and marginal

effects do not suffer from the incidental parameters problem in the absence of heterogeneity,

and generally have smaller biases than fixed effects estimators of the index coefficients. These

results are illustrated with Monte Carlo examples and an empirical application that analyzes

female labor force participation using data from the PSID.

It would be useful to know if the small bias property of fixed effects estimators of average

effects generalizes to other statistics of the distribution of effects in the population, like median

effects or other quantile effects. However, such analysis is expected to be more complicated be-

cause these statistics are non-smooth functions of the data and therefore the standard expansions

cannot be used. I leave this analysis for future research.
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Appendix

1.A Bias Formulas for Binary Choice Models

1.A.1 Static Case

The conditional log-likelihood and the scores for observation i at time t are

lit(O,aj) = YitlogFit(O,ai) + (1- Yit)log(1 - Fit(O,ai)), (1.A.1)

Vit(O, ai) = Hit(O, oai) (Yit -Fit(O, a)), uit(O, ai) = vit(O, ai)Xit, (1.A.2)

where Fit(O, ai) denotes F,(xitO + aiIX = i, a = ai), f is the pdf associated to F, and Hit(0, ai) 

fit(O, ai)/ [Fit(0, ai) (1 - Fit(0, ai))].
Next, since by the Law of Iterated Expectations Ez [h(zit)la] = EX [Ey [h(zit) X, a] (a] for any

function h(zit), taking conditional expectations of the expressions for the components of the bias in

Section 1.2 yields

21
ai2 = ET [Hitfit]- , i = -i4ET [Hitgit] /2, (1.A.3)

b = - {+ T [Hitfitxit]i ET [Hitgitxit] a 2/2}, (1.A.4)

Jf= -E {ET [Hitfitxitxt]-oET [Hitfitxit]ET[Hitfitx't]) , (1.A.5)

where g denotes the derivative of f and all the expressions are evaluated at the true parameter value

(0o, ai).

1.A.2 Dynamic Case

The conditional log-likelihood and the scores for observation i at time t are

lit(O, ati) = Yit logFit(O, ai) + (1 - Yit) log(1 - Fit(O, ai)), (1.A.6)

vit(O, ai) = Hit(, i) (Yit-(O ,(, cti(,a)), uit(O, ati) = vt(O,ai)xit, (1.A.7)

where Fit(O, ai) denotes F(Oyyi,t-1 +xitO + oilYt- = yi,t- ...,Yo = yo,X = io = ai), Hit(O,oi) =

fit(0, cai)/ [Fit(O, ai) (1 -Fit(O, ca))], and f is the pdf associated to F.

Next, taking conditional expectations of the expressions for the components of the bias in Section 1.6
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and using the formulas for the static case, yields

T-1

V+imit, O'{Fq 2 lim ETE j [ Hit i j] (1.A.8)T--+ it o j=l
T-1

/37 =[ +i,2fiM ~ ~ t3 + ET-j Iv, i ttj] E/3 = T + 2 li {ET-j [Hitfitmi~t-j] iti, ET [Hitgit + 2Gitfit] ,
j=l

(1.A.9)

( = E{ T[ifti] T[i~ti] i/ 1 Tj Hti~d T}-1
bd -tE FT [ ifx]3 + FT [ Hgtgitxit] Q/2 + lim ET-j [HtfitodtdXt]

T--oo j
5=1

{[T-1 F
- E i m [Od Odt-j]--E Tiloo Z ET-j [it i,-] ET [Hitgitxit q- 2Gitfitxit ,

j=l
(1.A.10)

J, = J, (1.A.11)

where g denotes the derivative of f, Git = (gitFit(1 - Fit) - f2( - 2Ft)) / [Fit(l-Fit)] 2 is the deriva-

tive of Hit, and all the expressions are evaluated at the true parameter value (o, ari).

1.B Bias Corrections in Dynamic models

Here, I use the expressions in Appendix 1.A to construct bias-corrected estimators for the dynamic model.

Let 0 (IO)', zit -- (yi,t-l,Xit)' and

Fit() FE(zit0 + &i(0)12t, o),

git()- f(zito &i(O)12t, a),
Gi( __ -= git(0) _fit(0)2(1-2Fit(0))Gt V ) = Fit (0) (1-Fit (0)) [Fit(O)(1-Ft(O))2 '

fit (0) =f (zt0 + ai(0)Z12t, a),

Hit(0) - fit()(-(0))

Then, the components of the large-T expansion for the estimator of the individual effects can be estimated

adding some terms to the analogous expressions for the static case. Thus,

(1.B.2)

a d,2 (0)i. -= 2(0) + 2ET [(0)()]
j=l

(1.B.3)

-= i(0)+& 2 (0)5ETj [Hit (0)
j=1

J
+ & (0) dtE)

j=1

fET [Hit (0) g() + 2G ( ) fit()]
)] T [Hit () git () + 2Git (0) fit (0)]
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(1.B.4)

(1.B.1)

:= Hit(O) [yit - z',O - &i(O)] ,71



Similarly, for the estimator of the common parameter

jd(0) = (0) (1.B.5)

bd(0 = nE{T[i()i ) id X(S) + tT-j [Hit (O)git (O)Xit~d,_j (0)] kT Hit(O)fi + [itxit] o~i'tt()
n ZE( , 3n=1 j=1

ET-a [it(0)?i't- j(0)] ET [Hit (0) git(0)xit + 2Git (0) fit(0)xit] 
n i=1 j=1

ln_ 1 2 (0) T [Hit ()git (O)xit] /2. (1.B.6)
n i=1

Here, J is a bandwidth parameter that needs to be chosen such that J/T 1/ 2 0 as T --+ o, see Hahn

and Kuersteiner (2003). For the first-order variance of the estimator of the individual effects, a kernel

function can be used to guarantee that the estimates are positive, e.g., Newey and West (1987). From

these formulas, all the bias-corrected estimators described in Section 1.3 can be formed.

For dynamic binary choice models, Lancaster (2000) and Woutersen (2002) derive score bias correction

methods, and Carro (2003) extends the Modified Maximum Likelihood estimator of Cox and Reid (1987).

The exact relationship between all these methods and the approach followed in Hahn and Kuersteiner

(2003) is not yet known. The reason is that the equivalence results from the static model do not generalize

directly to the dynamic case.

Finally, note that the asymptotic variance of the estimator of the common parameter needs to be

adjusted to take into account the dependence across the observations, and is no longer the inverse of the

Jacobian of the estimating equation. In this case, we have the standard sandwich formula

V ( d) 1 (Jd) 1 , V TI/2ET [Uit] Uit = it-Vit ET [ut] (1.B.7)i i ET [vita]--'

where Q can be estimated using a kernel function to guarantee positive definiteness, see Hahn and

Kuersteiner (2003).

1.C Proofs

1.C.1 Lemmas

Lemma 1 (McFadden and Reid, 1975) Let Z (pz, a'), and a, b E R with b > . Then,

) Z + a z Jo (za) 1 Lz - z ) dz, (1. C. I)(/O2 b + -z U /

and

1 X I/LZ + a 8 1 -(z + a) 1 (z-/tz (d.C.2)
v/b2 + or} c V 2+ o J = b b Oz Cz
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where 4)(.) and (.) denote cdf and pdf of the standard normal distribution, respectively.

Proof. First, take X independent of Z, with X A/(-a, b2). Then,

Pr{X-Z < O}1 = I z+a) (1.C.3)-~~~/ + cr2
since X - Z A(-a -,uz, b2 + o2). Alternatively, using the law of iterated expectations and XfZ X

by independence,

Pr {X- Z < O = Ez [Pr{X ZZ}] = J (z a) z Z )dz. (1.C.4)O-Z UzlZ

The second statement follows immediately by deriving both sides of expression (1.C.1) with respect to a.

E

1.C.2 Proof of Proposition 1

Proof. First, note that for the probit git = -(xitOo + ai)fit. Then, substituting this expression for it

in the bias formulas of the static model, see Appendix 1.A, yields

p = I U{4ET [Hitftxit] o + ., } /2, (1.C.5)

3 = -E {ET [Hit fiTitxH'ft]-aiFT [H fit] x [Iitfitit] } = [Ji], (1.C.6)

b = -E {O4ET [Hitfitxit] ET [Hitfitx'it] Oo + 2ET [Hitfitxit] i} /2

+ E {Oi2ET [Htfitxitxit] 00 + Oi2ET [Hitfitxit] ki } /2

= E {oQi2 (FT [Hit fi~t~t- OQET [fitit] ET [Hitfitx't]) } Oo/2 -E [OJi] 0o/2.

(1.C.7)

Finally, we have for the bias

=-j-'b = [si ] 0o (1.C.8)
2

The second and third results are immediate and are described in the text. 

1.C.3 Proof of Proposition 2

Proof. We want to find the probability limit of = .in -T= (xAit ± &i(O)) /nT, as n, T - oo,

and compare it to the population parameter of interest - F [0 (xit + i)].

First, note that; by the Law of Large Number and Continuous Mapping Theorem, as n -+ o

a , E {OTET [ (XitOT + &i(OT))]}. (1.C.9)
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Next, we have the following expansion for the limit index, it(OT) itsT + &i(OT), around io

(it*) = XitOO + i(00) + + aai(t ) | (0T - 00) (1.C.10)

Using independence across t, standard higher-order asymptotics for &i(0o) give (e.g., Ferguson, 1992, or

Rilstone et al., 1996), as T -o oc

ai(0o) = cei + +1iv/--/3/2, +i d (,o2 _-ET [ito]- ), (1.C.11)

where Ri = Op(1) and ET [Ri/T 2] = 0(1) uniformly in i by the conditions of the proposition (e.g., HN

and Fern6ndez-Val, 2004). From the first order conditions for &i(0), we have, as T -o 00

0&i () ET [vtuo]
90' -_ T [vit + R2i/v4 = OiET [vo] + R 2i /vT, (1.C.12)
09' -EF [vita]

where R2i = Op(1) and ET [R2 i/T] = 0(1) uniformly in i, again by the conditions of the proposition.

Plugging (1.C.11) and (1.C.12) into the expansion for the index in (1.C.10) yields, for Git = xitO0 + oi,

~it(OT) = Git + +i/ + I/T + R 3i/T
3 /2, (1.C.13)

where /3 = ,3i + T (xit + i2ET [vito]) (OT - Co), R3i = Op(1) and ET [R3i/T 2 ] = 0(1), uniformly in i by

the properties of Rli and R 2i.

Then, using the expressions for the bias for the static probit model, see proof of Proposition 1, and

ET [vito] = -ET [Hitfitx'it], we have

/~ = (T4ET C[Hitfitxit o00 + i ai) /2 + (xit - aoi2ET [Hitfitxtit]) 3 + O(T 2 )

= crt~i/2 -(xi _i2ET [H2tftxi,]) 200/2 (x [- O2E T [Hititxt] ) [i] [2i] 0

+ O(T-2) = o, t /2 -Di + O(T-2), (1.C.14)

- -E Hitfitx i]where Di = (x- 2ET [H f ) (cIp - E [j]-1 [aJi]) o/2, and Zp denotes the p x p identity

matrix. Substituting the expression for & in (1.C.13) gives

'it(OT) = [1 + ai2/2T] it + pi/V -Di/T + Ri/T3/2 , i/v'T a 'A(O, oi/T) (1.C.15)

where Ri = Op(1) and ET [Ri/T 2] = 0(1) uniformly in i.
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Finally, using Lemma 1 and expanding around 00, it follows that

j P OTE[q$(Ti(9T))]}

EOTf 0 ([1 + ci/2T] it + v D /TI)0 (-) d + O(T2

U2 - ~~1 + 2/£ {(1i-F vi /T) /OT ( ± +UIT -- ) + O(T2)}

= i-- + 2TE {0(Nit) (ito (Xit- Oi2ET [Htfitxit])' -ip)(2 p - []1 ' [O2i]) 00o}

+ O(T-2) = , + .1 + O (T2) (1.C.16)

as T grows, since

2T

.V1o2T = 1+ 2T) (1- + O(T 2)= 1+ O(T- ().C.17)+U' -~T +2T} 2Tj

1.D Relationship between Bias Correction of the Estimating
Equation and Modified Maximum Likelihood

The first order condition for the MML estimator is

T -EE Uit (0) - -b(0), (1.D.1)
i=1 t=1

where

1 T [it"O (0) + ita(0)9&i( )/09] + ET [(Ht(O)gjt(O) + Gt(O)fit(9)) (it + i(O)/60')] 
n i=l 2 tT [vita(O)] + ET [Hit(O)fit(O)] f

(1.D.2)
From the first order condition for &i(0), note that as T - oo

a-(0) ET [vito(0) () (1.D.3)
a( FT [vi~t(O)]

Replacing this expression in (1.D.1), and using the Bartlett identities vito = uit, and vitao = uit, as
n, T -- oo

1 T [Hit(O)gt(O)] 1 T [Hit(O)gft(O)xjtj
b(0) PI 2 T [H((OO)fit(O)xjt]2 E H (- __ ft]}

2 FT [Hit((O)i(O)xit] )---- -F' ET [Hit(O)ft(O)xt] /3(O) + ET [Hit(9)git(9)xit] o2(O)/2} = b(O). (1.D.4)
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Figure 1-1: Asymptotic probability limit of estimators: Andersen (1973) two-period logit model.
0 is the limit of the conditional logit estimator (true parameter value); 9ML is the limit of the

fixed effects maximum likelihood logit estimator; 1 is the limit of the one-step bias-corrected
estimator; O' is the limit of the iterated bias-corrected estimator; and Os is the limit of the score
(estimating equation)-corrected estimator.
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Figure 1-2: Asymptotic probability limit of estimators: Andersen (1973) two-period logit model.
0o is the limit of the conditional logit estimator (true parameter value); 6 ML is the limit of

the fixed effects maximum likelihood estimator; 0' is the limit of the iterated bias-corrected
estimator; and Os is the limit of the score (estimating equation)-corrected estimator.
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Figure 1-3: Components of the bias of the fixed effects estimator of the marginal effect: B3I =
EQ [3Bi = EQ [Siri]. Individual effects and regressor generated from independent standard
normal distributions.
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Table 1: First Order Bias, T = 8
(in percent of the true parameter value)

Regressor
Individual Effects Nerlove Normal X2 (l) X2(2) Bi(10,.9)

A - Index Coefficients

Normal 14.59 15.62 16.56 15.93 15.62

X2 (1) 12.57 14.77 13.82 14.00 14.85

Z2(2) 13.17 14.95 13.04 14.55 15.16

Bi(10,.9) 15.46 15.53 16.36 16.47 15.44

B -Marginal Effects

Normal -0.27 -0.07 1.89 0.95 -0.03
X2 (1) -0.21 -0.06 -0.18 -0.24 0.34
Z2(2) -0.28 -0.05 -0.54 -0.10 0.31
Bi(10,.9) -0.27 -0.08 1.56 1.59 -0.26

Notes: Bias formulae evaluated numerically using 10,000 replications.
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Table 2: Estimators of 0 (00 = 1), - N(0,1)

Estimator Mean Median SD

T=4

p; .05 p; .10 SE/SD MAE

PROBIT 1.41 1.40 0.393 0.25 0.36 0.82 0.410
JK-PROBIT 0.75 0.75 0.277 0.11 0.19 1.08 0.265
BC1-PROBIT 1.11 1.10 0.304 0.04 0.11 1.03 0.215
BC2-PROBIT 1.20 1.19 0.333 0.09 0.16 0.95 0.253
BC3-PROBIT 1.06 1.06 0.275 0.02 0.06 1.13 0.195

LOGIT 1.30 1.29 0.374 0.17 0.26 0.83 0.331
JK-LOGIT 0.71 0.70 0.239 0.18 0.28 1.15 0.307
BC1-LOGIT 0.97 0.96 0.266 0.04 0.08 1.08 0.180
BC2-LOGIT 0.95 0.94 0.263 0.03 0.09 1.09 0.178
BC3-LOGIT 0.94 0.94 0.253 0.04 0.07 1.13 0.173
CLOGIT 0.95 0.94 0.263 0.04 0.08 1.09 0.177

T=8

PROBIT 1.18 1.18 0.151 0.28 0.37 0.90 0.180
JK-PROBIT 0.95 0.96 0.118 0.05 0.11 1.09 0.085
BC 1-PROBIT 1.05 1.05 0.134 0.05 0.11 0.98 0.099
BC2-PROBIT 1.05 1.05 0.132 0.05 0.10 1.00 0.097
BC3-PROBIT 1.02 1.02 0.124 0.03 0.07 1.05 0.085

LOGIT 1.12 1.12 0.148 0.14 0.23 0.91 0.129
JK-LOGIT 0.91 0.91 0.114 0.12 0.20 1.09 0.105
BC1-LOGIT 0.97 0.97 0.127 0.06 0.13 1.00 0.087
BC2-LOGIT 0.96 0.95 0.122 0.07 0.13 1.03 0.087
BC3-LOGIT 0.95 0.95 0.121 0.07 0.13 1.04 0.089
CLOGIT 0.96 0.96 0.122 0.07 0.13 1.03 0.088

T= 12

PROBIT 1.13 1.13 0.096 0.30 0.41 0.94 0.129
JK-PROBIT 0.98 0.98 0.080 0.05 0.10 1.06 0.055
BC1-PROBIT 1.04 1.04 0.087 0.07 0.13 0.99 0.062
BC2-PROBIT 1.03 1.03 0.085 0.06 0.11 1.01 0.058
BC3-PROBIT 1.01 1.01 0.082 0.04 0.09 1.05 0.056

LOGIT 1.09 1.09 0.097 0.15 0.25 0.96 0.095
JK-LOGIT 0.95 0.95 0.080 0.08 0.15 1.07 0.068
BCI1-LOGIT 0.99 0.99 0.086 0.06 0.10 1.01 0.059
BC2-LOGIT 0.98 0.97 0.083 0.06 0.11 1.04 0.060
BC3-LOGIT 0.98 0.97 0.082 0.06 0.10 1.05 0.059
CLOGIT 0.98 0.98 0.083 0.06 0.10 1.04 0.059

Notes: 1,000 replications. JK denotes Hahn and Newey (2004) Jackknife bias-corrected estimator; BC 1
denotes Hahn and Newey (2004) bias-corrected estimator based on Bartlett equalities; BC2 denotes Hahn
and Newey (2004) bias-corrected estimator based on general estimating equations; BC3 denotes the bias-
corrected estimator proposed in the paper; CLOGIT denotes conditional logit estimator.
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Table 3: Estimators of p (true value = 1), £ - N(0,1)

Estimator Mean Median SD p; .05 p; .10 SE/SD MAE

T=4

PROBIT 0.99 0.99 0.242 0.10 0.16 0.82 0.163
JK-PROBIT 1.02 1.02 0.285 0.12 0.19 0.75 0.182
BCI-PROBIT 1.00 1.00 0.261 0.12 0.18 0.79 0.176
BC2-PROBIT 1.04 1.04 0.255 0.12 0.19 0.80 0.176
BC3-PROBIT 0.94 0.94 0.226 0.08 0.13 0.91 0.158

LOGIT 1.00 0.99 0.246 0.10 0.16 0.82 0.164
JK-LOGIT 1.01 1.01 0.279 0.13 0.19 0.76 0.189
BC I -LOGIT 0.98 0.97 0.257 0.11 0.17 0.81 0.178
BC2-LOGIT 0.94 0.94 0.236 0.09 0.15 0.88 0.164
BC3-LOGIT 0.93 0.93 0.230 0.08 0.14 0.90 0.166
BC-CLOGIT 0.94 0.94 0.237 0.09 0.15 0.87 0.168

LPM 0.98 0.98 0.233 0.09 0.15 0.84 0.156
LPM-FS 1.00 1.00 0.242 0.10 0.16 0.87 0.163

T=8

PROBIT 0.99 0.99 0.104 0.08 0.14 0.82 0.070
JK-PROBIT 1.00 1.00 0.107 0.07 0.14 0.84 0.071
BC1-PROBIT 1.01 1.01 0.110 0.09 0.15 0.80 0.073
BC2-PROBIT 1.00 1.00 0.105 0.07 0.13 0.83 0.070
BC3-PROBIT 0.97 0.97 0.103 0.08 0.13 0.86 0.071

LOGIT 0.99 0.99 0.106 0.08 0.13 0.83 0.071
JK-LOGIT 0.99 1.00 0.108 0.07 0.13 0.84 0.072
BCI-LOGIT 1.00 1.00 0.112 0.08 0.15 0.81 0.073
BC2-LOGIT 0.98 0.98 0.106 0.07 0.13 0.85 0.071
BC3-LOGIT 0.98 0.98 0.106 0.08 0.13 0.85 0.071
BC-CLOGIT 0.98 0.98 0.106 0.08 0.13 0.85 0.071

LPM 0.98 0.98 0.104 0.07 0.14 0.84 0.071
LPM-FS 1.00 1.00 0.109 0.07 0.13 0.87 0.075

T= 12

PROBIT 0.99 0.99 0.062 0.05 0.11 0.75 0.043
JK-PROBIT 1.00 1.00 0.064 0.05 0.11 0.76 0.042
BC1-PROBIT 1.00 1.00 0.065 0.06 0.11 0.74 0.042
BC2-PROBIT 0.99 0.99 0.062 0.05 0.10 0.76 0.042
BC3-PROBIT 0.98 0.98 0.062 0.05 0.11 0.77 0.043

LOGIT 0.99 0.99 0.063 0.05 0.10 0.77 0.043
JK-LOGIT 1.00 1.00 0.065 0.05 0.11 0.77 0.042
BC1-LOGIT 1.01 1.00 0.067 0.06 0.12 0.74 0.044
BC2-LOGIT 0.99 0.99 0.064 0.06 0.10 0.77 0.043
BC3-LOGIT 0.99 0.99 0.064 0.05 0.10 0.77 0.044
BC-CLOGIT 0.99 0.99 0.064 0.05 0.10 0.77 0.044

LPM 0.99 0.99 0.065 0.06 0.11 0.76 0.041
LPM-FS 1.01 1.01 0.067 0.05 0.11 0.80 0.045

Notes: 1,000 replications. JK denotes Hahn and Newey (2004) Jackknife bias-corrected estimator;
BC1 denotes Hahn and Newey (2004) bias-corrected estimator based on Bartlett equalities; BC2

denotes Hahn and Newey (2004) bias-corrected estimator based on general estimating equations; BC3
denotes the bias-corrected estimator proposed in the paper; CLOGIT denotes conditional logit
estimator; LPM denotes adjusted linear probability model (see text); LPM-FS denotes linear
probability model.
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Table 4: Estimators of 0y (0v,o = .5), £ - L(0,1)

Estimator Mean Median SD p; .05 p; .10 SE/SD MAE

T=8

PROBIT -0.26 -0.26 0.161 1.00 1.00 0.92 0.763
BC1-PROBIT 0.25 0.25 0.148 0.43 0.54 0.96 0.251
BC3-PROBIT 0.48 0.48 0.140 0.05 0.10 0.99 0.101

LOGIT -0.24 -0.24 0.154 1.00 1.00 0.92 0.740
BC1-LOGIT 0.39 0.38 0.134 0.14 0.23 1.00 0.131
HK-LOGIT 0.45 0.131
MML-LOGIT 0.39 0.11 0.127
BC3-LOGIT 0.45 0.45 0.134 0.06 0.12 1.00 0.101

T= 12

PROBIT 0.06 0.06 0.111 0.97 0.99 0.99 0.435
BC1-PROBIT 0.39 0.39 0.103 0.16 0.26 1.04 0.115
BC3-PROBIT 0.50 0.50 0.101 0.04 0.10 1.05 0.066

LOGIT 0.06 0.06 0.105 0.98 0.99 1.00 0.436
BC1-LOGIT 0.44 0.44 0.094 0.07 0.13 1.07 0.079
BC3-LOGIT 0.47 0.48 0.095 0.05 0.10 1.06 0.064

T= 16

PROBIT 0.20 0.20 0.097 0.89 0.93 0.94 0.302
BC1-PROBIT 0.44 0.44 0.091 0.11 0.18 0.98 0.080
BC3-PROBIT 0.51 0.51 0.091 0.06 0.11 0.98 0.061

LOGIT 0.19 0.19 0.091 0.93 0.96 0.95 0.312
BC1-LOGIT 0.46 0.45 0.084 0.07 0.14 1.01 0.067
HK-LOGIT 0.45 0.074
MML-LOGIT 0.48 0.067
BC3-LOGIT 0.48 0.48 0.085 0.06 0.11 1.00 0.059

Notes: 1,000 replications. BC1 denotes Hahn and Kuersteiner (2003) bias-corrected estimator; HK
denotes Honor6 and Kyriazidou (2000) bias-corrected estimator; MML denotes Carro (2003) Modified
Maximum Likelihood estimator; BC3 denotes the bias-corrected estimator proposed in the paper; LPM
denotes adjusted linear probability model (see text); LPM-FS denotes linear probability model.
Honor6-Kyriazidou estimator is based on bandwidth parameter = 8.
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Table 5: Estimators of Ox (Ox,o = 1), £ L(O,1)

Estimator Mean Median SD p; .05 p; .10 SE/SD MAE

T=8T = 8

PROBIT 1.28 1.28 0.082 0.97 0.99 0.92 0.277
BC1-PROBIT 1.19 1.19 0.077 0.78 0.86 0.89 0.187
BC3-PROBIT 1.10 1.09 0.065 0.32 0.44 0.97 0.094

LOGIT 1.22 1.22 0.082 0.84 0.90 0.93 0.222
BC1-LOGIT 1.08 1.08 0.074 0.22 0.32 0.90 0.079
HK-LOGIT 1.01 0.050
MML-LOGIT 1.01 0.06 0.039
BC3-LOGIT 1.05 1.04 0.067 0.12 0.18 0.96 0.054

T= 12

PROBIT 1.19 1.19 0.057 0.94 0.97 0.93 0.185
BC1-PROBIT 1.11 1.11 0.053 0.61 0.73 0.92 0.110
BC3-PROBIT 1.08 1.08 0.050 0.35 0.48 0.95 0.076

LOGIT 1.13 1.13 0.057 0.67 0.77 0.94 0.126
BC1-LOGIT 1.03 1.03 0.051 0.10 0.16 0.94 0.039
BC3-LOGIT 1.02 1.02 0.050 0.08 0.13 0.96 0.035

T= 16

PROBIT 1.15 1.15 0.045 0.95 0.98 0.97 0.148
BC 1 -PROBIT 1.09 1.09 0.042 0.59 0.71 0.96 0.090
BC3-PROBIT 1.07 1.07 0.041 0.41 0.54 0.99 0.070

LOGIT 1.09 1.09 0.044 0.53 0.66 0.98 0.088
BCI-LOGIT 1.02 1.01 0.041 0.07 0.13 0.98 0.029
HK-LOGIT 1.01 0.023
MML-LOGIT 1.01 0.029
BC3-LOGIT 1.01 1.01 0.040 0.06 0.10 0.99 0.027

Notes: 1,000 replications. BC I denotes Hahn and Kuersteiner (2003) bias-corrected estimator; HK
denotes Honore and Kyriazidou (2000) bias-corrected estimator; MML denotes Carro (2003) Modified
Maximum Likelihood estimator; BC3 denotes the bias-corrected estimator proposed in the paper; LPM
denotes adjusted linear probability model (see text); LPM-FS denotes linear probability model.
Honore-Kyriazidou estimator is based on bandwidth parameter = 8.
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Table 6: Estimators of py (true value = 1), £ - L(0,1)

Estimator Mean Median SD p; .05 p; .10 SE/SD MAE

T=8

PROBIT -0.38 -0.39 0.235 1.00 1.00 0.92 1.386
BC1-PROBIT 0.43 0.42 0.254 0.68 0.77 0.87 0.577
BC3-PROBIT 0.86 0.85 0.255 0.14 0.22 0.88 0.211

LOGIT -0.37 -0.37 0.236 1.00 1.00 0.93 1.374
BC1-LOGIT 0.72 0.70 0.257 0.28 0.38 0.88 0.304
BC3-LOGIT 0.85 0.85 0.260 0.14 0.24 0.87 0.212

LPM -0.40 -0.40 0.238 1.00 1.00 0.92 1.399
BC-LPM 0.77 0.77 0.267 0.23 0.32 0.85 0.261
LPM-FS -0.45 -0.46 0.257 1.00 1.00 0.92 1.459
BC-LPM-FS 0.84 0.83 0.289 0.16 0.24 0.85 0.236

T= 12

PROBIT 0.11 0.11 0.183 1.00 1.00 0.99 0.894
BC1-PROBIT 0.70 0.70 0.189 0.38 0.49 0.96 0.297
BC3-PROBIT 0.93 0.93 0.190 0.08 0.13 0.96 0.136

LOGIT 0.11 0.11 0.182 1.00 1.00 1.00 0.889
BC1-LOGIT 0.86 0.86 0.187 0.13 0.19 0.98 0.169
BC3-LOGIT 0.93 0.94 0.191 0.08 0.13 0.97 0.133

LPM 0.09 0.09 0.188 1.00 1.00 1.00 0.908
BC-LPM 0.91 0.91 0.202 0.09 0.15 0.94 0.151
LPM-FS 0.09 0.09 0.192 1.00 1.00 1.00 0.909
BC-LPM-FS 0.93 0.93 0.207 0.08 0.14 0.94 0.143

T= 16

PROBIT 0.34 0.34 0.167 0.98 0.99 0.94 0.660
BC1-PROBIT 0.81 0.80 0.170 0.25 0.35 0.93 0.201
BC3-PROBIT 0.95 0.94 0.171 0.09 0.15 0.92 0.125

LOGIT 0.35 0.34 0.166 0.97 0.99 0.95 0.658
BC1-LOGIT 0.91 0.90 0.168 0.10 0.18 0.95 0.139
BC3-LOGIT 0.95 0.94 0.171 0.08 0.14 0.93 0.128

LPM 0.34 0.33 0.170 0.97 0.99 0.96 0.666
BC-LPM 0.95 0.95 0.180 0.09 0.15 0.91 0.129
LPM-FS 0.34 0.34 0.172 0.97 0.99 0.96 0.665
BC-LPM-FS 0.96 0.95 0.181 0.08 0.15 0.92 0.128

Notes: 1,000 replications. BC1 denotes Hahn and Kuersteiner (2003) bias-corrected estimator; HK
denotes Honor6 and Kyriazidou (2000) bias-corrected estimator; MML denotes Carro (2003) Modified
Maximum Likelihood estimator; BC3 denotes the bias-corrected estimator proposed in the paper; LPM
denotes adjusted linear probability model (see text); LPM-FS denotes linear probability model; BC-
LPM denotes Nickell (1981) bias-corrected adjusted linear probability model; BC-LPM-FS denotes
Nickell (1981) bias-corrected linear probability model. Honor6-Kyriazidou estimator is based on
bandwidth parameter= 8.
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Table 7: Estimators of Px (true value = 1), L(0,1)

Estimator Mean Median SD p; .05 p; .10 SE/SD MAE

T=8

PROBIT 0.97 0.97 0.041 0.11 0.19 0.93 0.034
BC1-PROBIT 1.02 1.02 0.044 0.11 0.17 0.85 0.032
BC3-PROBIT 0.98 0.97 0.041 0.11 0.19 0.88 0.033

LOGIT 0.98 0.98 0.042 0.07 0.14 0.93 0.031
BCI-LOGIT 1.01 1.01 0.046 0.09 0.15 0.83 0.031
BC3-LOGIT 0.99 0.99 0.043 0.08 0.15 0.86 0.030

LPM 0.96 0.96 0.040 0.19 0.29 0.91 0.043
BC-LPM 0.98 0.97 0.040 0.09 0.16 0.92 0.033
LPM-FS 0.97 0.97 0.040 0.10 0.17 0.97 0.034
BC-LPM-FS 0.99 0.99 0.040 0.05 0.10 0.98 0.028

T= 12

PROBIT 0.99 0.99 0.031 0.07 0.14 0.92 0.021
BC1-PROBIT 1.01 1.01 0.032 0.08 0.13 0.89 0.022
BC3-PROBIT 0.99 0.99 0.031 0.07 0.14 0.90 0.020

LOGIT 0.99 0.99 0.031 0.06 0.11 0.93 0.020
BC1-LOGIT 1.01 1.01 0.032 0.06 0.13 0.89 0.022
BC3-LOGIT 1.00 1.00 0.032 0.06 0.13 0.90 0.021

LPM 0.99 0.99 0.031 0.08 0.14 0.93 0.023
BC-LPM 0.99 0.99 0.031 0.06 0.11 0.93 0.021
LPM-FS 0.99 0.99 0.031 0.07 0.12 0.94 0.022
BC-LPM-FS 1.00 1.00 0.031 0.06 0.11 0.95 0.020

T= 16

PROBIT 0.99 0.99 0.025 0.05 0.10 0.98 0.017
BCI-PROBIT 1.01 1.01 0.025 0.06 0.11 0.95 0.017
BC3-PROBIT 1.00 1.00 0.025 0.05 0.10 0.96 0.017

LOGIT 1.00 1.00 0.025 0.04 0.09 0.98 0.017
BC 1-LOGIT 1.00 1.00 0.026 0.05 0.11 0.95 0.017
BC3-LOGIT 1.00 1.00 0.025 0.05 0.10 0.96 0.017

LPM 0.99 0.99 0.026 0.06 0.12 0.97 0.019
BC-LPM 1.00 1.00 0.026 0.05 0.11 0.98 0.018
LPM-FS 0.99 0.99 0.026 0.05 0.11 0.98 0.019
BC-LPM-FS 1.00 1.00 0.026 0.05 0.10 0.98 0.018

Notes: 1,000 replications. BC1 denotes Hahn and Kuersteiner (2003) bias-corrected estimator; HK
denotes Honore and Kyriazidou (2000) bias-corrected estimator; MML denotes Carro (2003) Modified
Maximum Likelihood estimator; BC3 denotes the bias-corrected estimator proposed in the paper; LPM
denotes adjusted linear probability model (see text); LPM-FS denotes linear probability model; BC-
LPM denotes Nickell (1981) bias-corrected adjusted linear probability model; BC-LPM-FS denotes
Nickell (1981) bias-corrected linear probability model. Honord-Kyriazidou estimator is based on
bandwidth parameter = 8.
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Chapter 2

Bias Correction in Panel Data

Models with Individual-Specific

Parameters

2.1 Introduction

Random coefficients panel models are attractive because they allow for heterogeneity in the

individual response to the regressors. However, they pose important technical challenges in the

estimation of average effects if the individual heterogeneity is left unrestricted. In particular, if

some of the regressors are endogenous and different coefficients are estimated for each individual

(fixed-effects approach), then averages of these individual IV estimates are biased in short panels

due tlo the finite-sample bias of IV estimators. A way to overcome this problem is to neglect the

individual heterogeneity and estimate the same coefficients for all the individuals. However, in

the context of cross-section models, Imbens and Angrist (1994) and Angrist, Graddy and Imbens

(1999)) show that the estimands of these fixed coefficients IV estimators are weighted-averages

of the underlying heterogenous individual effects. The implicit weights in these averages are

typically correlated with the individual effects, and therefore these estimators do not converge

to population average effects.1

In this chapter I introduce a new class of bias-corrected fixed effects estimators for panel

models where the response to the regressors can be individual-specific in an unrestricted fashion.

Thus, instead of imposing the same coefficients for all the individuals, I treat the sample real-
1Angrist (2004) finds homogeneity conditions for the estimands of fixed coefficients IV estimators to be the

average effects for models with binary endogenous regressors.
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ization of the individual-specific coefficients as parameters (fixed-effects) to be estimated. For

linear models, the new estimators differ from the standard fixed effects estimators in which, not

only the constant term, but also the slopes can be different for each individual. Moreover, unlike

the classical random coefficients models, no restriction is imposed in the relationship between

the regressors and the random coefficients. This allows me to incorporate, for instance, Roy

(1951) type selection where the regressors are decision variables with levels determined at least

in part by their returns. Treating the random coefficients as fixed effects also overcomes the

identification problems for these models in the presence of endogenous regressors, see Kelejian

(1974).

The models proposed here are semiparametric in the sense that they are based on moment

conditions. These conditions can be nonlinear functions in parameters and variables, accommo-

dating both linear and nonlinear models, and allowing for the presence of endogenous regressors.

In addition to identifying the model parameters under mild assumptions about the nature of

the stochastic component, these moment conditions can be used for estimation via GMM pro-

cedures. The resulting fixed effects GMM estimates, however, can be severely biased in short

panels due to the incidental parameters problem, which in this case is a consequence of the

finite-sample bias of GMM estimators (see, for e.g., Nagar, 1959; Buse, 1992; and Newey and

Smith, 2004). Analytical corrections are then developed to reduce this bias.

These bias corrections are derived from large-T expansions of the finite-sample bias of GMM

estimators. They reduce the order of this bias from O(T - 1) to O(T - 2 ) by removing an estimate

of the leading term of the expansion from the fixed-effects estimator. As a result, the asymptotic

distribution of the corrected estimators is normal and centered at the true parameter value under

asymptotic sequences where n = o (T 3). These corrections therefore aim to work in econometric

applications that use long panels, for e.g., PSID or Penn World Table, where the most important

part of the bias is captured by the first term of the expansion. Other recent studies that use a

similar approach for the analysis of fixed effects estimators in panel data include Phillips and

Moon (1999), Rathouz and Liang (1999), Alvarez and Arellano (2001), Hahn and Kuersteiner

(2002), Lancaster (2002), Woutersen (2002), Hahn and Kuersteiner (2003), Li, Lindsay and

Waterman (2003), and Hahn and Newey (2004)

A distinctive feature of the corrections proposed here is that they can be used in situations

where the model is overidentified, that is when the number of moment restrictions is greater than

the dimension of the parameter vector. This situation is very common in economic applications

where the moment conditions come from rational expectation models, or more generally when
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there are multiple sources of exogenous variation to instrument for the endogenous variables. For

example, Hansen and Singleton (1982), Holtz-Eakin, Newey, and Rosen (1988), Abowd and Card

(1989), and Angrist and Krueger (1991), all use quite large numbers of moment conditions in

their empirical work. This feature, however, complicates the analysis by introducing an initial

stage for estimating optimal weighting matrices to combine these moment conditions. Thus,

overidentification precludes the use of the existing bias correction methods.

To characterize the bias of fixed effects GMM estimators, I use higher-order asymptotics.

The results obtained here extend the bias formulas of Newey and Smith (2004) for cross sectional

GMM estimators to panel data GMM estimators with fixed effects. Analytical bias-correction

methods are then described for model parameters and smooth functions of the individual-specific

parameters, such as averages or other moments of the distribution of the random coefficients.

These corrections are computationally more attractive than other alternatives, such as Bootstrap

or Jackknife, especially when the moment conditions are nonlinear in parameters. Different

methods are considered depending on whether the correction is made on the estimator or on the

estimating equation, and on whether the correction is one-step or iterated.

The finite sample performance of these corrections is evaluated using a Monte Carlo example.

Here, I consider a linear IV model with both common and individual-specific coefficients. I find

that estimators that do not account for heterogeneity by imposing constant coefficients can have

important biases for the common parameter and the mean of the individual effects. I also find

that analytical bias corrections are effective in removing the bias of estimators of the standard

deviation of the individual effects.

Finally, the estimators introduced in the chapter are illustrated in an empirical application. I

use 14 waves of the National Longitudinal Survey (NLS) to estimate earnings equations for young

men allowing the effect of the union status to be different for each individual. I consider both OLS

and IV methods. The latter accounts for the possibility of endogeneity in the union membership

decision. The results suggest that there is important heterogeneity across individuals in the

effect of union status on earnings. Moreover, estimators that impose a constant coefficient for

the union status overstate the average effect.

The rest of the chapter is organized as follows. Section 2.2 illustrates the type of models

considered and discusses the nature of the bias with a simple example. Section 2.3 introduces

the general model and GMM estimators. Section 2.4 derives the asymptotic properties of the

estimators. The different bias correction methods and their asymptotic properties are given in

Section 2.5. Section 2.6 compares the finite sample performance of these and other methods
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through a Monte Carlo experiment. Section 2.7 describes the empirical application and Section

2.8 concludes. Proofs and other technical details are given in the Appendices.

2.2 Example: A Linear IV Panel Model with Individual-Specific

Coefficients

2.2.1 The Model

A simple example of the type of models considered is the following

Yit = Oai + OliXit + Eit, (2.2.1)

where Yit is a response variable; xit is a regressor; eit is an error term; and i and t usually index

individual and time period, respectively.2 This is a linear random coefficients model where the

effect of the regressor is heterogenous across individuals, but no restriction is imposed on the

distribution of the individual effects vector ci = (aoi, ali). 3 The regressor can be correlated

with the individual effects and the error term, and a valid instrument Zit is available for xit, that

is E[ziteitlai] = 0 and E[zitxitai] 4 0. All the random variables are i.i.d. across time periods

and independent across individuals.

2.2.2 Example

An important case that is encompassed by this simple set-up is the panel version of the treatment-

effect model, see, for e.g., Wooldridge (2002, Chapter 10.2.3) and Angrist and Hahn (2004). Here,

the objective is to evaluate the effect of a treatment (D) on an outcome variable (Y) for some

population of interest. The average causal effect for each level of treatment is defined as the

difference between the potential outcome that the individual would get with and without the

treatment, Yd - Y, averaged across the individuals of the population of interest. If individuals

can choose the level of treatment, then outcome and level of treatment are generally corre-

lated, and an instrumental variable Z is needed to identify the causal effect. This instrument is

typically a random offer of treatment that generates potential treatments (Dz) indexed by the

possible values of the instrument. For the binary treatment-instrument case, the panel version
2More generally, i denotes a group index and t indexes the observations within the group. Examples of groups

include individuals, states, households, schools, or twins.
3 Random coefficients models usually assume that ai is uncorrelated with the regressor it. See Hsiao and

Pesaran (2004) for a survey of these models.
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of this model is

it = Yoit + (Ylit - Yoit)Dit, (2.2.2)

Dit = Doit + (Doit - Dlit)Zit. (2.2.3)

Potential outcomes and treatments can be represented as the sum of permanent individual

components and transitory individual-time specific shocks, that is Yjit = Yji + ejit and Djit 

Dji + vjit for j E {0, 1}, yielding

it = coi + liDit - + it, (2.2.4)

Dit = 7roi + 7rliZit + vit, (2.2.5)

where aoi = Yoi, a1 i Yli- Yoi, it = (1 -Dit)Eoit + Ditelit, 7roi = Doi, 7li Dli- Do i,

and it = (1 - Zit)voit + Zitvlit. In this model, under independence of the instrument with

the transitory shocks to potential outcomes, and monotonicity on the effect of the instrument

on the treatment, that is either Dlit - Doit > 0 or Dli - Doit 0 with probability one, local

average treatment effects are identified for each individual as the number of time periods grow,

see Imbens and Angrist (1994).

2.2.3 The Problem

Returning to the linear IV example, suppose that we are ultimately interested in the average

response to the regressor, i.e. E 1i], and we run fixed effects OLS and IV regressions without

accounting for heterogeneity on the slope of xit, i.e. we estimate

Yit = io + l1Xit + uit, (2.2.6)

where uit = xit(ali - a1) + sit if the true model is (2.2.1). In this case, OLS and IV estimate

weighted averages of the individual effects in the population, see for example Yitzhaki (1996)

and Angrist and Krueger (1999) for OLS, and Angrist, Graddy and Imbens (2000) for IV. OLS

puts more weight oni individuals with higher variances of the regressor because they give more

information about the slope; whereas IV weights individuals in proportion to the variance of

the first stage fitted values because these variances reflect the amount of information that the

individuals convey about the part of the slope affected by the instrument. These weighted

averages, however, do not necessarily estimate the average effect because the weights can be
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correlated with the individual effects.

To see how these implicit OLS and IV weighting schemes affect the estimand of fixed-

coefficients estimators, assume for simplicity that the reduced form of xit is linear, that is

Xit = 7rOi + 7rliZit + Vit, (2.2.7)

7ri - (roi, 7r1i), (eit, vit) is normal conditional on (zit, ci, ri), zit is independent of (i, ri), and

(si, ri) is normal. Then, it is straightforward to find that OLS and IV estimate the following

population moments4

OLS Efaii] + Cov[Eit, vit] + 2E[Trli]V[zit]Cov[cjli, rli]
X1 = E[(X~i] + Var[xit] '

IV ~~~Cov[°zi', 7rij]ctl = E[oai] + E[71-i ] (2.2.10)

These expressions show that the OLS estimand differs from the average effect in presence of

endogeneity, i.e. correlation between the individual-time specific error terms, or whenever the

individual coefficients are correlated; while the IV estimand differs from the average effect in

the latter case.5

The extent of these correlations can be explained in the panel treatment-effects model. In

this case, there exists correlation between the error terms in presence of endogeneity bias. Corre-

lation between the individual effects arises when individuals who experience a higher permanent

effect of the treatment are relatively more prone to accept the offer of treatment. In other words,

constant effects estimators do not estimate average effect in the presence of Roy (1951) type

selection, that is if individuals choose the level of the regressors knowing the effects of these

regressors (up to random deviations). Angrist (2004) finds special circumstances where the

estimand of the IV estimator coincides with the average effects in models with binary endoge-

nous regressors. For models with continuous regressors, Angrist's conditional constant effects

restriction corresponds to Cov[oli, 7rli] = 0.

To overcome this problem, i.e. that estimands of constant coefficients estimators generally

differ from average effects, I propose to estimate the population moments of interest based
4 The limit of the IV estimator is obtained from a first stage equation that imposes also fixed coefficients, that

is xit = 7ri + rlzit + Wit. When the first stage equation is different for each individual, the limit of the IV
estimator is

= [1]±2E[iri]Cov[ci, 7li]
fv = E,li + 2E[r]Co + V[i, 7r] (2.2.8)

See Theorems 2 and 3 in Angrist and Imbens (1995) for a related discussion.
5 This feature of the IV estimator is also pointed out in Angrist, Graddy and Imbens (1999), p. 507.
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directly on estimators of the individual effects. This strategy consists of estimating each of

the individual effects separately, and then obtaining the population moment of interest as the

corresponding sample moment of the individual estimators. For example, the mean effect in the

population is obtained using the sample average of the estimated individual effects. As a result,

the estimands are the population moments of interest and consistency of the sample analogs

follows from consistency of the individual estimators, as the number of time periods grows.

However, since a different slope is estimated for each individual, the asymptotic distributions of

these estimators can be biased due to the incidental parameters problem (Neyman and Scott,

1948).

2.2.4 Incidental Parameters Bias

To illustrate the nature of this bias, consider the estimator of the average slope constructed

from individual IV fixed effects estimators. 6 In this case the incidental parameters problem is

caused by the finite-sample bias of the individual IV estimators. This can be explained using

some expansions. Thus, using independence across t, standard higher-order asymptotics gives

(e.g. Rilstone et. al., 1996), for T -+ co

1 1 T E[Z2Xiteit]a1j =c i + - + GExit + op(T- 1), it = E[xitzit]-lzitit, i --= - _it 2
T T 1E[Z~tX~t]2

(2.2.11)

where 3i is the higher-order bias of lV, see also Nagar (1959) and Buse (1992). In the previous

expression the first order asymptotic distribution of the individual estimator is centered at the

truth, as T -- co, because it is determined by the influence function, third term of the expansion,

since

T
I 1i2) 1 1dT-2(22( I i ) + t + --op(T-l/2) d N(O, E[xitzit]2[e2tzt]). (2.2.12)

=o(1) =Op (1)

However, the asymptotic distribution of the sample mean of the MIV's has bias in short panels,Xii

more precisely under asymptotic sequences where T = o(n). Averaging reduces the order of the

variance of the influence function without affecting the order of the bias. Thus, under regularity
6In the rest of the section I assume that the individual constant terms have been partialled out by taking

differences of all the variables with respect of their individual means.

77



and uniform integrability conditions,7 the expansion for the sample mean is

nl-fz n1 T Tvkn¶ ( y- ali)= - 1- Eli- / Sit + (1) (2.2.13)
i= 1 __ _ __ _ __ _ __ _ _i=1 t=l t=l

=O(VT) =Op(1)

This expression shows that the bias term becomes first order in the asymptotic distribution of

the sample average of the individual estimators if T = o(n).

2.2.5 Bias Corrections

One solution to center the asymptotic distribution of the average estimator is to use higher-order

unbiased estimators for the ci's (see, for e.g., Hahn and Hausman, 2002, and Newey and Smith,

2004). These estimators can be constructed by removing estimates of the higher-order biases

from the &IV's. For example, using the sample analog of the expression for i evaluated at the

individual IV estimators, yields
/• i ~~~~Tl Z2Xit(Y it X It&V\

jV (11T) _t~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~l~~- Zitlit((&iV) = (1/T) ET=j1 4tXit(Yit-xit&{ ) (2.2.14)

((1/T) T=i Zitxit)

and

&(BC) = iv-- (it) . (2.2.15)

Then, the average of the bias-corrected estimators has an asymptotic distribution correctly

centered at the true parameter in moderate length panels, that is if n = o(T3). To see this, note
that ~ _/nT Enthat /-n-i (/3i -f3i)/nT P 0 because 3i is a smooth function of ali and &V is consistent

as T -- oc. Then, for T/n1 / 3 -- oc

-,/B - fi = ( - + 1 T T v + 0o ( #) (2.2.16)n/~ T(n.f© O~i -~-~~ i) + Zn= Z it,n i=1 ~ ~~~~~~~~~~t=l t=l
=o1l) =P(-o(1)

where this expansion is again correct under regularity and uniform integrability conditions.

Finally, note that the procedure for the bias correction of the individual estimators can be
7I will establish precisely these conditions in Section 2.4.
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iterated by solving the equation

a(IBC) -IV - 1A[' I (IBC) 'iIBC) = al- 1 (2.2.17)

which in this case has closed-form solution given by

v -TZ
2

X.~(IBC)~ ET= I itit q-L--1 it ,tZT 2

(IB) Et= Zityit + w,t-i i(it
&li T (2.2.18)

Et~l ZitXit + T ZitXtEt=litt

2.3 The Model and Estimators

The general panel model I consider is one with a finite number of moment conditions m. To

describe it, let {Zit, t = 1, ..., T}, for i = 1,...,n, be sequences of i.i.d. observations of a ran-

dom variable zi, where {zi, i = 1,...,n} are independent across i (not necessarily identically

distributed). Also, let 0 be a p x 1 vector of common parameters; cai, i = 1, ..., n, be a sequence

of q x vectors of individual effects; and g(z; 0, ai) be an m x 1 vector of functions, where

m > p q. The model has true parameters So and o0, i = 1, ... ,n, satisfying the moment

conditions

E[g(zit;Oo, o)] =0, i = 1,..., n, (2.3.1)

where E[.] denotes expectation taken with respect to the distribution of zi. In this model, the

ultimate quantities of interest are smooth functions of parameters and observations, which in

some cases could be the parameters themselves,

n T
= lim CnT, nT-Z f(Zit; 00 iO)- (2.3.2)

n T--oo ?2
nT-oo n. i=1 T=1

For example, in the linear IV model considered in the previous section g(zit; 00, cio) = zit(Yit -

-1o), 0 = 0, p = 0, q = 2 and nT = naoi - 1i0), 0 =- 0, p - 0, q = 2 and nT - n i-1 °;i0'
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2.3.1 Some Notation

Some more notation, which will be extensively used in the definition of the estimators and in

the analysis of their asymptotic properties, is the following

E [g(zit; , ozi)g(zit; , ai)]

9g(zit; 0, ai)
00' 

F9(zit; H a)
E[ aR' I

(2.3.3)

(2.3.4)

- i(O. ai),

- E[Go(zit; O, oai)] = Goi(O, ai),

_ E[G(z-t;6,ai)] =Ga( i) (2.3.5)

where superscript ' denotes transpose and higher-order derivatives will be denoted by adding

subscripts. Here Qi is the variance-covariance matrix of the moment conditions for individual i,

and Go, and Gai are individual average derivatives of these conditions. Analogously, for sample

moments

(2.3.6)T
E (Zit; 8, 1i)g(Zit; 8, Oi) - Qi(0, Oi),
t=l

! f g(zit; 0, )
T 08t=l

1 9 (Zit; , i)
T t=1 Oai

T E Go (zit; 0, a) = do (, 7 i)IT

-- T Go(Zit; O' Oai) =-- 8i (, Oai)t=l
T
=t G(i ) = Gc1(9,Oi).
t~l

In the sequel, the arguments of the expressions will be omitted when the functions

at the true parameter value (, ci0)', for example g(zit) means g(zit; o, a/o).

are evaluated

2.3.2 Fixed Effects GMM Estimator (FE-GMM)

In cross-section models, parameters defined from moment conditions are usually estimated using

the two-step GMM estimator of Hansen (1982). To describe how to adapt this method to models

with fixed effects, let i(, aj) T - 1 ET=1 g(zit; 9, ci), and let (', {&d}U )' be some preliminary

one-step estimator, given by (',{}n ) = arginf{(o,)}n 8 i(,ci)' W,71)i( }= ¥),{O~~i~~i=1) --Y arin I ,,1 a i=gi )'Ol Wi'- iOOi
where T denotes the individual parameter space, and Wi, i = 1, ..., n, is a sequence of positive

definite symmetric m x m weighting matrices. The two-step fixed effects GMM estimator is the

solution to the following program

n
(6~', {_ 1)' = arg inf ZE i(0, aO)'Qi(, di)-i(0, ai),{(",a9)'}= ¥1E11 - i=1

(2.3.9)
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where Q(O, di) is an estimate of the optimal weighting matrix Qj for individual i. Note that for

exactly identified models without common parameters, i.e., m = q, the solution to this program

is the same as to the preliminary estimator, and the choice of weighting matrices becomes

irrelevant.8

2.3.3 First Order Conditions for FE-GMM

For the posterior analysis of the asymptotic properties of the estimator, it is convenient to

consider the concentrated or profiled problem. This problem is a two-step procedure. In the

first step the program is solved for the individual effects = ( ... , )', given the value of

the common parameter 0. The First Order Conditions (FOG) for this stage, reparametrized

conveniently as in Newey and Smith (2004), are the following

i(i 0) = - dGi(, )&i(0))' A/(0) =0, i = 1,..., n, (2.3.10)
i(), 6,i(0)) + i(~, &i) i(0)

where Ai is a m x 1 vector of individual Lagrange multipliers for the moment conditions, and

?i = (a', A')' is the new (q + m) x 1 vector of individual effects. Then, the solutions to the

previous equations are plugged into the original problem, leading to the following first order

conditions for 0

n n.Sn( i))=-jEG (H.'()) A() =0. (2.3.11)

Note that the problem in this form lies within Hahn and Newey's (2004) framework, with the

difference that the individual effects are multidimensional. 9 Moreover, if the model is over-

identified, then the initial estimation of the optimal weighting matrices complicates the analysis

by introducing additional terms in the bias formulas.

8In this model the inclusion of common parameters 0 gives rise to over-identification. Intuitively, this case
corresponds to having different parameters Oi for each individual with the additional restrictions Oi = j V i $ j.

9In the original parametrization, the FOC can be written as

n'Whe the sprci -0, dnt a0 i gei (>i)nverse, =0, (2.3.12)i= z

where the superscript - denotes a generalized inverse.
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2.4 Asymptotic Properties of Panel Data GMM Estimators

In this section I analyze the asymptotic properties of one-step and two-step FE-GMM estimators.

In both cases, I assume that the initial weighting matrices are deterministic (for example, the

identity matrix for each individual).1" Consistency and asymptotic distributions for estimators

of individual effects and common parameter are derived, along with precise rates of convergence.

Results and necessary conditions are established separately for one-step and two-step estimators.

The section concludes with a simple example that illustrates the procedure followed to derive

the results.

To simplify the notation I give results for scalar individual effects, i.e., q = 1, but all the

formulas can be extended to the multidimensional case without special complications. The

arguments for obtaining the properties of GMM estimating procedures are general, and can be

used to analyze the properties of other estimators based on moment conditions. In particular,

all the results can be extended to the class of generalized empirical likelihood (GEL) estimators,

which includes empirical likelihood, continuous updating and exponential tilting estimators.

Condition 1 (i) zit,t = 1,2,...} are i.i.d. and independent across i. (ii) n, T - co such that

O(T) < n o(Tr), for some r > 1. Alternatively, n T/a T , where aT = o(Te) for any e > 0

and r > 1. (iii) dim [g(-; 0, ai)] = m < oo.

The alternative definition of the relative rate of convergence in Condition (ii) is just a repre-

sentation and does not impose additional restrictions on this rate. It is adopted for notational

convenience, because it allows me to jointly treat cases where n = O(T r ) and more general

relative rates. The parameter r can be interpreted as a minimum polynomial rate of T that is

not dominated by n. For example, if n = O(T), then aT = C for some constant C > 0, or if

n = 0 (Tr/logT), then aT = ClogT for some constant C > 0.

Condition 2 (i) The function g (.; 0, a) = (gi (; 0, a),..., g (.; 6, 0c))' is continuous in (, a) E

T; (ii) The parameter space T is compact. (iii) dim (, a) - p + q < m; (iv) there exists a

function M(zit) such that 19k (it; 0, ao)I < M (Zit), Igk(zit9'ai)I < M(zit), for k- 1, m,

and supi E [M (zit)2s] < co; (v) s > r; (vi) for each 7 > 0 and any sequence of symmetric

l0Alternatively, stochastic initial weighting matrices can be used by adding a condition on the stochastic
expansions of these matrices. This condition is slightly more restrictive than in Newey and Smith (2004), because
it requires uniform convergence of the remainder terms.
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deterministic positive definite matrices {Wi, i = 1, 2, ...},

inf [Q (o, aio)- sup Q ( o)] > , (2.4.1)
{(0,a): (O,ce) - (Oo,aio) I >,q

where

QW (,a i) - -gi (0, 0)' Wi lgi (0, ai), (2.4.2)

gi (, oei) _ E [i (0, oxi)]. (2.4.3)

Conditions 2(i), 2(ii) and 2(iii) are standard in the GMM literature and guarantee the identifica-

tion of the parameters based on time series variation, see, for e.g., Newey and McFadden (1994).

Conditions 2(iv), 2(v) and 2(vi) are needed to establish uniform consistency of the estimators

of the individual effects and are similar to Conditions 2 and 3 in Hahn and Newey (2004), but

applied to moment conditions instead of log-likelihoods.

Theorem 1 (Consistency of First Stage Estimator for Common Parameters)

Suppose that Conditions and 2 hold. Assume also that, for each i, Wi is a finite symmetric

positive definite deterministic matrix. Then,

Pr 0-0 > 71} = (T,- 8 ) = o(1) V7 > 0, (2.4.4)

where 0 C arg max{((0a )r=¥ n Zi=i Q(6(, cai), and Q(iW (0, ai) -- -i (, aci)' W-1'i (, ai)

Proof. See Appendix 2.A. 

Theorem 2 (Consistency of First Stage Estimator for Individual Effects)

Suppose that Conditions and 2 hold. Assume also that, for each i, Wi is a finite symmetric

positive definite deterministic matrix. Then,

Pr max Idi- aiol 71} = o (T r- s ) = o(l), (2.4.5)

for any r > 0, where di c argmaxa Q a(, ). Also, Pr {maxl<i<n AiI > 71 = (Tr-) = o(1),

for any > 0, where i -=-Wi i(, di).

Proof. See Appendix 2.A. 

These theorems establish (uniform) consistency of first stage estimators of common param-

eters and individual effects. Let J _ G_ PoYGCo and Js = limn-oc n Ei= J0~~~ ~~~- n i/
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Condition 3 (i) For each i, (o, ceio) E int []. (ii) r < 3. (iii) For any sequence of symmetric

positive definite deterministic matrices Wi,i = 1,2,...}, J is finite positive definite, and

{(GiW- 1Gai)}=1 is a sequence of positive definite matrices Vn.

Condition 4 There exists some M (zit) such that, for k = 1, ..., m

d 1+d2 gk (zit; 0, ai) < M (z t)

&O0di aced 2 _ M(it) 0 < d +d 2 < 1,...,6

and supi E [M (Zit)2s] < o for some s > 4r.

Conditions 3(i) and 3(iii) are analogous for panel data to the standard asymptotic normality

conditions for GMM, see, for e.g., Newey and McFadden (1994). Condition 3(ii) establishes the

minimum polynomial rate of T that is not dominated by n, i.e. it is a condition in the relative

rate of convergence of the two dimensions of the panel, and it is the same as in other studies

in nonlinear panel data (see Hahn and Newey, 2004; or Woutersen, 2002). Condition 4 extends

Assumption 3 in Newey and Smith (2004) to the context of panel data, and guarantees the

existence of higher order expansions for the GMM estimators and the uniform convergence of

their remainder terms.

Let w = (G'Wi- G ) 1Ga), HW = WG' W ,-1 and pw W-1 Wi-GCiHW. Let e-

denote a m x 1 unitary vector with 1 in column j, and pW denote the j-th column of pWa~ia~ ai'

Theorem 3 (Asymptotic Limit of First Stage Estimators for

Under Conditions 1, 2, 3 and 4, we have

V/-(6 - ) d ) N (-/p (JsW)-lBrW, (JsW)-lVW(JW)-),
l T(O - Go) - * -(Jr'>' lB r,T(- 00),,>(w-sW

Common Parameters)

if n = pT;

otherwise.
(2.4.7)

where

JW = limnoo P E=1 GIPWiGo,

I n = { + W BBW = limn-I BE i BBi+B C +B B,
S n -1 1 St St 81 J'1W

Vw-l- 1 n t W WVs = limn- oo _ 1 Gl Pi'i PGoi,

(2.4.8)
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with

BWC = WGE[GoP (zit)'PH, gi (Z it))], -- 1 ejH-QiPi)
6, ~~~~~~ '~-'A ej~ Hi LJi Ptck\zt 2Bsi Bsi 20, ~ ~ "~~ j=i,,WB -G B +Bw,G +Bwls) BXI=PZE[Gai(zit) Hwgi(zit)]-P GBwJp E w

Bsi - O,~ ,x Ai A, Ai Ai 2A,

B,,= HWj' E[Ga(zit)'PHgi(zit)] - BWs H G, (PaQiH + Em I ejHWQiPZ j) .A, (i)Pgii)] Ai - a, a,'az-c,- j=l j~ i~~ 
(2.4.9)

Proof. See Appendix 2.B. 

The bias in the asymptotic distribution of the GMM estimator comes from the non-zero

expectation of the concentrated score of the common parameter at the true parameter value.

This bias in the estimating equation in turn is caused by the substitution of the unobserved

individual effects for sample estimates. This estimates converge to their true parameter value

slower than the sample size under asymptotic sequences where T = o(n). Intuitively, only

observations for each individual convey information about the corresponding individual effect.

In nonlinear model, the bias in the estimation of the individual effects is transmitted to the

estimates of the rest of parameters. This can be explained with an expansion of the first stage

plug-in score around the true value of the individual effects1 l

F [i [W' [(o, ii)]o E [( - i -[iE'io] [(w ^Wo)]-Y~~~~~~~_ .i]) i -Z - ?iO]

+ E [(Vi - io)'E [wi] (i - yio)] /2 + o(T-1 )

= O+ {B 'B + B C + BV V }/T + o(T-1). (2.4.12)

This expression shows that the bias has three components as in the MLE case, see Hahn and

Newey (2004). The first component (Bsw 'B) comes from the higher-order bias of the estimator

of the individual effects. The second component (BsW'C ) is a correlation term and is present

because individual effects and common parameters are estimated using the same observations.

The third component (Bw' V) is a variance term. The bias of the individual effects (B W'c) can be

further decomposed in three terms corresponding to the asymptotic bias for a GMM estimator

"Using the notation introduced in Section 2.3, the plug-in score for the first stage is

SW (00) = IW(00,Ii) -- E Go,(o,)A, (2.4.10).. 71 ) (2.4.10)
,--1 i -- 1

where , = (&, A), i = 1, n, are the solutions to

t, i (3',) = - ( =0(0 , Wi = O, i =1, ...,n. (2.4.11)( (0, ~'~ w~i)=
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with the optimal score (By'), when W is used as the weighting function; the bias arising from

estimation of Gi (BrWG); and the bias arising from not using an optimal weighting matrix

(Bws).

Condition 5 (i) There exists a function M (zit) such that I9k (it; 0, ai) < M (zit), 9k(0,t;,) i <

M (zit), for k = 1, ... , m, and supi E [M (it)4s] < oC. (ii) {Qi, i = 1, ...} is a sequence of finite

positive definite matrices. (iii) s > 4r.

Condition 5 is needed to establish the uniform consistency of the estimators of the individual

weighting matrices.

Theorem 4 (Consistency of Second Stage Estimator for Common Parameters) Suppose

that Conditions 1, 2, 3 and 5 hold. Then,

Pr{ 0-ol > }-o(Tr-s) = o(1) V > , (2.4.13)

where 0 G arg max{(o,,)} = e n Zi= QQ(6, °ati), and Qi (, ai) -Pi (, ai)' Qi(O, &i) 1 i (, ai).

Proof. See Appendix 2.C. 

Theorem 5 (Consistency of Second Stage Estimators for Individual Effects)

Suppose that Conditions 1, 2, 3 and 5 hold. Then,

Pr max &i- aol > T1 -=o (T r - s) = o(1) (2.4.14)
[. <i<n

for any > 0, where &i E argmaxQ Qc( , a). Also, Pr {maxl<i<n Ai_ > }= o (Trs) = o(1),

for any > 0, where gi(0, &i) + Qi(0, i)Ai = 0.

Proof. See Appendix 2.C. 

Condition 6 There exists some M (zit) such that, for k = 1, ..., m

1+d2 9k (Zit; ' C) < M (t) 0 < dl + d2 < 1, .. .,6 (2.4.15)
a0 d &ad2

and supi E [M (Zt)4s] < 0o for some s > 4r.

Condition 6 guarantees the existence of higher order expansions for the estimators of the weight-

ing matrices and uniform convergence of their remainder terms. Conditions 5, and 6 are stronger
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versions of conditions 2(iv) and 2(v), and 4, respectively. They are presented separately because

they are only needed when there is a first stage where the weighting matrices are estimated.

Let ,q (GQ' i 1Go) , HQi = roiG' Q71 , and Pi= Q- 1 - Q -lGiHi.

Theorem 6 (Asymptotic limit of Second Stage Estimators for Common Parameters)

Under the Conditions 1, 2, 3, 4, 5 and 6, we have

-nT( - o) N (- (J.)-'Bs, J- 1), if n = pT;

T( - 0o) -JS 1 BS _ B (), otherwise.

where

n i Tn
n~~~~~~B = limn-oo iI[s/-J-BCq VJs = limn-o 1 Gaio Bs = lim = [BE + Bi + B0]

BC = E[Goi(zit)'Paig(zit)], BV= 0, (2.4.17)

B =-GI, [B' + B , + B + B,

with

BA= Pai E[Gai(zit)Haig(zit)]- aGaai Ei, = H'E[Ga,(zit)'Pa (zit)]i (2.418B'Phjai , Bi (2.4.18)

B = PiE [g(zt)g(zt)tPig(zit)], BW = PiQai (Hw - Hi)Ai Ai

Proof. See Appendix 2.D. 

Theorem 6 establishes that one iteration of the GMM procedure not only improves asymp-

totic efficiency by reducing the variance of the influence function, but also removes the variance

and non-optimal weighting matrices components from the bias. The higher-order bias of the es-

timator of the individual effects (BB ) now has four components, as in Newey and Smith (2004).

These components correspond to the asymptotic bias for a GMM estimator with the optimal

score (B'); the bias arising from estimation of G,, (BG); the bias arising from estimation of

fQi (BU); and the bias arising from the choice of the preliminary first step estimator (BW).

Moreover, an additional iteration of the GMM estimator removes the B TM term, which is the

most difficult to estimate in practice because it involves Q.

The general procedure for deriving the asymptotic properties of the estimators consists of

several expansions. First, higher-order asymptotic expansions for the estimators of the indi-

vidual effects are derived, with the common parameter fixed at the true value 00. Next, the

asymptotic expansion for the plug-in score of the common parameter is obtained from the indi-

vidual expansions. Finally, the properties of estimator for the common parameter follow from

the properties of its plug-in score. This procedure can be illustrated in the classical Neyman-
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Scott example of estimation of the common variance in a panel data with different means for

each individual. This model has been extensively studied in the literature. It is included for an-

alytical convenience, because it allows me to obtain exact stochastic expansions and closed-form

bias-corrected estimators.

Example 2 (Neyman-Scott) Consider the model

xit= aio + eit, itCio - i.i.d. (0, So), t = 1, ..., T, (2.4.19)

where the observations are independent across i, and eit has finite fourth moment. The parameter

of interest is the common variance of the disturbance 0o. I analyze the properties of the following

estimators for the individual effects and common parameter

i Zxit, i-=-1, n., I T-1E1E(..0
i n ( it __ &i)2 (2.4.20)

t= i1 t1

First, the stochastic expansion for the estimator of the individual effects can be obtained by

substituting (2.4.19) into the expression of &i. This yields the following exact expansion

T
T d

v - ;T(&i- ajo) = AdE4it = p N(0, 0 ), (2.4.21)
t=-1

which does not depend on 0. Note that, unlike in the linear IV model, the estimators of the

individual effects do not have higher-order bias. Second, plugging this expansion into (2.4.20),

the exact stochastic expansion for the estimator of the common parameter is12

'-n 1-0 + 0-+I - b X (2.4.22)T /n~

with

n T n
= ~(e 2t- o00) N(0, E[e4t] - o2), 1 ( - 0o) P 0, (2.4.23)

i=1 t=l i=l

where the second result follows from the properties of the V-statistics.13 Therefore, the asymp-

12In this case the plug-in score is linear in 0, and therefore the expansion of the common parameter coincides
with the expansion of the plug-in score.

' 3 See Lemma 59 in Appendix 2.J.
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totic bias for is

1
E[] - o = -.T o (2.4.24)

which is the well-known bias formula for the estimator of the variance that does not correct for

degrees of freedom. Note that in this case the sources of the bias are the correlation between the

estimators of the individual effects and common parameter, and the variance of the estimators

of the individual effects. Moreover, in this simple example the first term of the expansion cap-

tures all the incidental parameters bias because there are no remainder terms in the previous

expansions.

2.5 Bias Corrections

When T grows large, the FE-GMM estimators, while consistent, have asymptotic distributions

not centered around the true parameter value under asymptotic sequences where T = o(n).

These sequences seem appropriate to capture the behavior of the estimators in empirical ap-

plications, since the time dimension is usually moderate but much smaller than the number

of individuals in commonly used micro-panels, for e.g., the PSID. The presence of this bias

has important practical implications because invalidates any inference that uses the standard

asymptotic distribution. In this section I describe different methods to adjust the asymptotic

distribution of the FE-GMM estimators of the common parameter and smooth functions of the

data and model parameters, and therefore to provide valid inference for these quantities. All

the methods considered are analytical. These corrections have computational advantages for

nonlinear models over other alternative methods, such as Bootstrap and Jackknife. The main

disadvantage is that they require closed-form expressions for the bias, but the results derived in

previous section can be used. Moreover, Hahn, Kuersteiner and Newey (2004) show that ana-

lytical, Bootstrap, and Jackknife bias corrections methods are asymptotically equivalent up to

third order for MLE. This result seems likely to apply also to GMM estimators, but the formal

proof is beyond the scope of this chapter.

The methods proposed differ in whether the bias is corrected from the estimator directly,

or from the estimating equation or plug-in score. For methods that correct the bias of the

estimator, one-step and fully iterated procedures are considered. All these methods are first

order asymptotically equivalent, reduce the incidental parameters bias from O(T - 1) to O(T- 2 ),

and yield asymptotic normal distributions centered at the true parameter value under asymptotic

89



sequences where n = o(T 3). However, they are numerically different in finite samples, and vary

in their computational complexity. Thus, score methods are the most computationally intensive

because they require solving highly nonlinear equations. Fully iterated methods can also be

computationally cumbersome when they do not have closed-form solution. In both cases, bias-

corrected estimators can always be obtained by iterative procedures, using as initial value the

FE-GMM estimates. Here, it is important to note that, despite the faster rate of convergence

of the estimator of the common parameter, it is necessary to recompute the estimators of the

individual effects at least in the first iteration. This is because the bias of the estimator of the

common parameter affects the higher order bias of the estimator of the individual effects, which,

in turn, is part of the bias of the estimator of the common parameter. This can be seen in the

following expansion

&°i(O) - i(0o) = I& B(O) + o(T-1) (2.5.1)

However, no re-computation is necessary in subsequent iterations because the one-step estimator

of the common parameter is already consistent, up to order O(T- 2).

2.5.1 Bias Correction of the Estimator

This bias correction consists of removing an estimate of the expression of the bias given in

Theorem 6 from the estimator of the common parameter. Hence, it only requires computing

Bn(O) = -Js Bsn, (2.5.2)

where Jn = =1 Jsi and sn =n E= 1 Bsi. The components of Jsi and Btsi can be calculated

using individual averages evaluated at the initial estimates of the parameters. The bias-corrected

estimator is then (BC) = 0 _ tn(0).

In practice, this bias correction is straightforward to implement because it only requires

one (possibly nonlinear) optimization. The estimates of 0 and ai's are obtained from a GMM

procedure, including dummy variables for the individual effects, and then the expressions of the

bias are calculated using these estimates. The computational complexity of the initial estimation

of the FE-GMM can be reduced by constructing an appropriate algorithm, e.g., adapting the

methods of Greene (2002) to GMM. This procedure can be fully iterated in order to improve

the finite sample properties of the bias-corrected estimators.14 This is equivalent to solving the
14 See MacKinnon and Smith (1998) for a comparison of one-step and iterated bias correction methods.
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following nonlinear equation

=(IBC) = - "B (6 (IBC)) (2.5.3)

When the expression of the bias is a linear function in 0, or more generally when 0 + B7 (0) is

invertible, it is possible to obtain a closed-form solution to the previous equation. Otherwise,

an iterative procedure is needed.

2.5.2 Bias Correction of the Plug-in Score

An alternative to the previous method consists of removing the bias directly from the first

order conditions, instead of from the estimator. This procedure, while computationally more

intensive, has the attractive feature that both estimator and bias are obtained simultaneously.

This feature contrasts with the previous (one-step) method, where the estimator of the bias is

calculated using uncorrected estimates of the parameters. The score bias-corrected estimator is

the solution to the following estimating equation

n( (SBC) ((B)) = 0, (2.5.4)Ts

where Bsn is a sample analog of the expression for the bias of the plug-in score. This adjusted

estimating equation can be highly nonlinear increasing the computational complexity of the

estimator.

This method is related to the fully iterated bias correction of the common parameter. Thus,

using a Taylor expansion of n((SBC)) around 0o, (2.5.4) can be written as

Moo) + J ((SBC) -1 B. (0 (SBC)) 0, (2.5.5)

where 0 lies between t(SBC) and 0o, and can be different across rows of Jn(-). For the iterated

method, noting that .(0) = 0 and B1n(O) = -Jn(0)- 1Bsn(0), (2.5.3) can be written

S () + J (d(IBC)) ((IBC) _- - B.((IBC)) = 0. (2.5.6)k I~T
Comparing (2.5.5) with (2.5.6), we have that both methods solve the same estimating equation

but centered at different points: o00 for the score correction and for the iterated correction.

Moreover, the two estimating equations are the same when the score is linear in 0. This can be

seen here, by noting that

.Sn(6) = .Sn(0o) + Jn(0)(0 - 00), (2.5.7)
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where 0 lies between 0 and 0o. Then, when Jsn(O) = Js,, replacing the previous expression in

(2.5.6) yields

n(006) + Jsn (O(IBC) _ - -Bsn(0(IBC)) 0, (2.5.8)

which is precisely the estimating equation for the score method (see also Hahn and Newey, 2004).

Example 3 (Neyman-Scott model) The previous methods can be illustrated in the Neyman-

Scott example. Here, the one-step bias-corrected estimator of Oo is given by

P(1) 0/ + 61(2.5.9)

This procedure can be iterated using the recursion formula 6(k) _ + 6(k-1)/T. In this case, it

is straightforward to show that

6 (k) 00+ =o( ) [1 _Tk+I o+[ T + +Tk -n
[ ~ 1 1 1] n

1+ + + Tni:1 (ai-0 . (2.5.10)

Hence, each iteration reduces the order of the bias by T - 1. The fully iterated bias-corrected

estimator is obtained by taking the limit as k - oo

6IBC (oo) = y T 6o T 1 1 E 2 _o T -0
OIBC _ ~(o) __O0 +T - 1 nT T - T n i= =1a T - i

(2.5.11)

which corresponds to the standard unbiased estimator of the variance.

Alternatively, the bias can be removed directly from the first order conditions by centering

the score of the common parameter. In this case the plug-in score and its bias are given by

TI 1
.§i(0, &i) = E a (Xt - &i)2 _ 0, E [i(0 o, i)] -T0 (2.5.12)

t=l 

Then, the bias-corrected score can be constructed as

T
iSBC(0, &i) = i(0, i) + = T (xit&i)2 - T 0 (2.5.13)

t=1 

Finally, the score bias-corrected estimator for 6 can be obtained by solving the first order condi-
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tion in the the modified score, that is

nTZ 5iBC( SBC (i) = 0 = SBC = IBC = T (2.5.14)
n 0T- 1

In this simple example bias correction of the estimator (when iterated) and bias correction of the

score are equivalent and remove completely the bias, even for fixed T.

2.5.3 Asymptotic Properties of bias-corrected FE-GMM Estimators

The bias reduction methods described before remove the incidental parameters bias of the com-

mon parameter estimator up to order O(T- 2), and yield normal asymptotic distributions cen-

tered at the true parameter value for panels where n = o(T3 ). This result is formally stated

ill Theorem 7, which establishes that all the methods are asymptotically equivalent, up to first

order.

Theorem 7 (Asymptotic Distribution of bias-corrected FE-GMM) Under Conditions

1, 2, 3, 4, 5 and 6, for C C {BC, SBC, IBC} we have

V ( (c) - 00o) d N (0, J-1) (2.5.15)

where

0(BC) = O- Bn (0), (2.5.16)T ki
t(SBC) · n ((SBC)) - sn ((SBC)) = 0,(2.5.17)- 3sn ~~~~~~~(2.5.17)

9 (IBC) 9(IBC) = 0 _ -Bn ("(IBC)) (2.5.18)
T 

n
=" lim jG,J- n- GIPa~G°~' (2.5.19)

Proof. See Appendix 2.E. 

Theorem 7 also shows that all the bias-corrected estimators considered are first order asymptot-

ically efficient, since their variances achieve the semiparametric efficiency bound for this model,

see Chamberlain (1992).

In nonlinear models the ultimate quantities of interest are usually functions of the data,

model parameters and individual effects. For example, average marginal effects of the regressors

on the conditional probability of the response are often reported in probit and logit models.
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The following corollary establishes bias corrected estimators for this quantities, along with the

asymptotic distributions for these estimators.

Corollary 1 (Bias correction of smooth functions of the parameters) Let f(z; 0, cei) be

a twice differentiable function in its third argument. For C c {BC, SBC, IBC}, let

-(C)T n
i1 T nT(O~~~~~~~~~~), ~~(2.5.20)(CT) = nE f ( i t; ( C) , i( (C )) )- AnT(0(C)) (25.20)nt=l i=1T

n T

nT() = ZnT Z {fa (zit;O' i()) [Bai ( 0) + -ait (0)] + facQ(zit; 0, i (0))Zai()} 
i=1 t=1

(2.5.21)

where the subscripts on f denote partial derivatives, Ba (.) is a consistent estimator of the first

component of Bvi, V)uit(.) is a consistent estimator of -Haig(zit), and Z(.) is an estimator of

2ai. Then, under the conditions of Theorem 7

d
V(nT -) N(0, V), (2.5.22)

where

n T

= lim (nT= lim 1 E f (zit; 0 0, aio), (2.5.23)
n,T-oc nT-oo nT

n T

V = lirm IT + [f (zit; fo, Z o) i + fo (zi(zt; Oio) s f(zit; o, aio)]
i--1 t=1
n T

n, lirn +ZZ (f(z t; JO, oti)- )2] (2.5.24)
i'=l t=l

A consistent estimator for Vc is given by

n T

n7= T E EfS(Zit; +(C), &i(O(C))).ai ± .fo(zit; (C), (i((C)))/,J-lfO(zit; 6(C), di((C)))]
i==1 t=1

n T
1 (C))2]nT Y ~ [k(kzit; Oo, ajo) _ . (2.5.25)

i=1 t=l
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2.6 Monte Carlo Experiment

For a Monte Carlo example I consider a linear IV model with both common and individual-

specific parameters. This model is a simplified version of the specification that I use for the

empirical application in next section. The model design is

Yit = Xitaio + 2itOO + eyit, (2.6.1)

Xlit - Zit7riO X2it7r2,0 + Ex,it,

where

6~~~ ~ ~~~~~~~~, , P a~.N , e2,J(.y,it) i.i.d.(( o (1 ii)d
cx'it 0 p 1 Jrio 7To V 1 

( yit ((0 ) 0l)) (2.6.2)
zit 0 0 1

and

n = 100; T = 8; ao = 7ro = o = 7r2 ,0 = 2O 1;

p = 0, 0.1, 0.5, 0.9; 1= 0, 0.1, 0.5, 0.9. (2.6.3)

I report results for estimators of 0o, and for the mean and standard deviation of the io0's,

that is for ao and or0. OLS and IV estimators that impose a constant coefficient on it are

compared to OLS and IV estimators that allow for the coefficient to be different for each in-

dividual. In the estimators that allow for individual-specific coefficients I impose a constant

coefficient for X2it in the reduced form of xlit to avoid identification problems due to weak in-

strurnents at the individual level. In particular, these estimators are the result of two GMM

procedures. In the first GMM an instrument, lit, is obtained for xit using the moment condi-

tions E [Zit(Xli t -- zit7ri - x2itr2)] = 0 with Zit = (it, X2it) t. Then, estimates of So and aio's are

obtained from the moment conditions E [Xit(yit - ilitOi - X2it)] = 0 with X = (lit, X2it)!

Throughout the tables SE/SD denotes the ratio of the average standard error to standard

deviation; p; .05 is the rejection frequency with nominal value .05; FC refers to fixed coefficient

for Xlit; RC refers to random (individual-specific) coefficient for Xlit; BC refers to one-step

bias correction; and IBC refers to fully iterated bias correction. Standard errors are clustered

at the individual level for fixed coefficients estimators (see Arellano, 1987), and are robust to
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heteroskedasticity for random coefficients estimators.1 5

Table la reports the Monte Carlo results for the estimators of o00 when T = 8 and o00 = 1.

I find important bias in the estimators of the common parameter that do not account for het-

erogeneity, with the bias of OLS depending on the degree of endogeneity, p, and the correlation

between the fixed effects, 7r; whereas the bias of IV depends only on . For random coefficients

estimators, OLS is only consistent in the absence of endogeneity and the bias corrections have

little impact. This is because the true conditional expectation is linear and therefore the first

order term of the bias is zero. Random effects IV estimators work fairly well in terms of hav-

ing small biases for all the configurations of the parameters, but their performances deteriorate

slightly with the degree of endogeneity (p). Random coefficients estimators also show large im-

provements in rejection frequencies, which are smaller, due to overestimation of the dispersion,

but much closer to their nominal values than for fixed coefficient estimators. Bias corrections

have little impact here.

Table lb shows similar results for estimators of the (mean) coefficient of xlit. Here, as in

Section 2.2, fixed coefficient OLS estimates the average effect in the absence of both endogeneity

(p = 0), and correlation between the individual coefficients of the structural and reduced form

(7 = 0). IV estimates the average effect in the latter case. On the other hand, random coefficients

IV estimators have small biases and give accurate rejection probabilities in all the configurations

of the simulation parameters.

Table c gives properties for the estimators of the standard deviation () of the individual

coefficients of xlit. I find that the bias corrections are relevant for IV and remove most of the

bias. Surprisingly, OLS estimates have small bias for most parameter configurations, and only

deteriorate when both p and r are large. This is probably due to cancellation of bias terms in

this particular design.

2.7 Empirical Application

The effect of unions on the structure of wages is a longstanding question in labor economics, see

Freeman (1984), Lewis (1986), Robinson (1989), Green (1991), and Card, Lemieux, and Riddell

(2004) for surveys and additional references. Most empirical studies that look at the causal

effect of union membership on earnings or union premium (increase in worker wage for being

l5The standard errors for IV random coefficients models should account for estimated regressors. However,
this bias downward is more than compensated by the heteroskedasticity adjustment. In particular, the standard
errors reported without accounting for estimated regressors are biased upward.
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member of a union) recognize the presence of unobserved differences between union and nonunion

workers. This heterogeneity has been accounted for by estimating different equations for union

and nonunion sectors, e.g., Lee (1978); by using longitudinal estimators, e.g., Chamberlain

(1983), Chowdhury and Nickell (1985), Jakubson (1991), and Angrist and Newey (1991); by

including sample selection corrections, e.g., Lee (1978), Vella and Verbeek (1998), and Lemieux

(1998); or by using instrumental variables techniques, e.g., Robinson (1989), and Card (1996).

The validity of all these approaches depends on the underlying selection mechanism of the

workers into union and nonunion workers, see Green (1991).

Individual heterogeneity in the union premium arises naturally as a consequence, for instance,

of differences in the union presence at the firm level. Thus, bigger gains of union membership are

expected for individuals in firms with a higher proportion of unionized workers, even comparing

to other firms in the same industry. Here, I consider a different estimation strategy to model this

heterogeneity in the union effect. I impose no structure in the selection mechanism by estimating

wage equations allowing the union effect to be different for each individual. A similar idea is

explored in Lemieux (1998), but he uses a more restrictive random effects specification.

Both OLS and IV methods are considered. For the IV, I follow Vella and Verbeek (1998) and

use lagged union status as an instrument for current union status. The identification assumption

is that past union statuses have no effects on wages, except through current union status. This

is likely to be satisfied when there is queuing for union employment, or when union employment

produces long-term advantages. To simplify the analysis, I also assume that union status is

measured without error. See Chowdhury and Nickell (1985), Card (1996), and Kane, Rouse

and Staiger (1999) for examples of how to deal with measurement error problems when the

dependent variable is binary.

The empirical specification is also similar to Vella and Verbeek (1998). In particular, I

estimate the following equation

wit = t + Uitoli + XltO + aoi + eit, (2.7.1)

where wit is the log of the real hourly rate of pay on the most recent job; t is a period-specific

intercept; Uit is the union status; and Xit is a vector of covariates that includes completed years

of schooling, log of potential experience (age - schooling - 6), and married, health disability,

region and industry dummies.

The sample, selected from the National Longitudinal Survey (Youth Sample), consists of full-

time young working males who had completed their schooling by 1980, and are then followed
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over the period 1980 to 1993. I exclude individuals who fail to provide sufficient information

for each year, are in the active forces any year, have negative potential experience in at least

one year, their schooling decrease in any year or increase by more than two years between two

interviews, report too high (more than $500 per hour) or too low (less than $1 per hour) wages,

or do not change union status during the sample.16 The final sample includes 294 men. The

first period is used as initial condition for the lagged union variable.

Table 2 reports descriptive statistics for the sample used. Union membership is based on

a question reflecting whether or not the individual had his wage set in collective bargaining

agreement. Roughly 40 % of the sample are union members. Union and nonunion workers have

similar observed characteristics, though union workers are slightly more educated, are more

frequently married, live more often in the northern central region, and live less often in the

South. By industries, there are relatively more union workers in transportation, manufacturing

and public administration, and fewer in trade and business. Union membership reduces wage

dispersion and has high persistence. Note that all variables, except for the Black and Hispanic

dummies, display time variation over the period considered. The unconditional union premium

is around 20 %.

Table 3 reports pooled, fixed effects with constant union coefficient, and uncorrected and bias-

corrected fixed effects estimates with individual-specific union coefficients of the wage equation.

Pooled estimators include time-invariant covariates (dummies for Black and Hispanic). Pooled

and standard fixed effects estimates display the same pattern observed in previous studies, with

the effect of union increasing when instrumental variables are used, and decreasing when omitted

individual time-invariant characteristics are taken into account, see for example Vella and Ver-

beek (1998). Estimates based on individual-specific coefficients show a slightly different picture,

with the average union effect around 9 % and large heterogeneity across workers, although this

dispersion is not precisely estimated with the IV individual estimators. Here, as in the Monte

Carlo example, the bias corrections have significant impact on the estimator of the dispersion

of the union effect. The results also show that estimators that impose a constant coefficient for

the union status overstate the average effect. Overall, the pattern of the results is consistent

with strong Roy type selection and negative endogeneity bias.

16Note that for individuals that do not change union status the union effect is not identified.
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2.8 Conclusion

This chapter introduces a new class of fixed effects GMM estimators for panel data models where

the effect of some variables c(an be heterogenous across agents in a unrestricted manner. Bias

correction methods are developed because these estimators suffer from the incidental parameters

problem. An empirical example that analyzes the union premium shows that not accounting for

this heterogeneity on the effect of the regressors can lead to biased estimates of the average ef-

fects. In particular, fixed-coefficients estimates overstate the average effect of union membership

on earnings.

Other estimators based on moment conditions, like the class of GEL estimators, can be

analyzed using a similar methodology. I leave this extension to future research. Over-identified

dynamic models, extending the results of Anatolyev (2005) for cross sectional GMM estimators

to panel data, is another promising avenue of future research.
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Appendix
Throughout the appendices Oup and oup will denote uniform orders in probability. For example, for a

sequence of random variables {i, i = 1, ..., n}, (i = Oup(1) means max,</<n ,i = Op(1), and (i = oup(1)

means maxi<<n ~ = op(1). ej denotes a unitary vector with a one in position j. For a matrix A =

(aij),i= 1, ..., m, j = 1, ..., n, AI denotes Euclidean norm, that is Al2 = trace[AA']. The rest of notation

is standard.

2.A Consistency of the First Stage GMM Estimator

2.A.1 Some Lemmas

Lemma 1 (HN) Assume that 6t are i.i.d. with E [t] = 0 and E [2s] < o. Then,

E [ Gt) = C(s)T' + o(T8 ) (2.A.1)

for some constant C(s).

Proof. See HN. 

Lemma 2 (Modification of HN) Suppose that {t, t = 1,2,.. .} is a sequence of zero mean i.i.d. random

variables. We also assume that E [[ktj2s] < c. We then have

Pr [j t > ] = O (T- ) (2.A.2)
t=l

for every > 0.

Proof. Using Lemma 1, we obtain

E [ZEt ]S < CT" E [It12s , (2.A.3)
t=l

where C > 0 is a constant. Therefore, by Markov's inequality

Pr E > < SE [lt] = O(T-). (2.A.4)
PTt=l 

Lemma 3 Suppose that, for each i, {zit, t = 1,2,...} is a sequence of i.i.d. random variables. We

assume that {zit, t = 1,2,...} are independent across i. Let h(zit; 0, i) be a function such that (i)

100



h(zit; 0, ci) is continuous in (0, oi) T; (ii) T is compact; (iii) there exists a function M(zit) such

that h(zit; 0, ai)I < A (zit) and oh(zat;xi) < M(zit), with E [M(zit) 2s] < c¢. Then, we have

Pr { hi(0, ai)- hi(0, (Yi) > } = 0 (T ), (2.A.5)

for every > 0, where
T

hi(0, o'i) = h(zit; 0, °ci), (2.A.6)
t=l

hi(0, oai) = E[hi(0, oai)]. (2.A.7)

Proof. For any > 0

E hi(0, oai)-hi(O, ai) 2s] E IT (h(zit; 0, ai) -hi(0, ai)) 2]
Pr{ hi(, ai)-hi(0, a i) >7} < T2s -r] 2sT2s

CTsE [lh(zit; , ai) - hi(O, ai)1 ]< ~~~~~~~~~~~~~t2sT2s< =-S2 O (T-), (2.A.8)

where C is some positive constant. The first inequality follows by Markov Inequality, the second inequality

is immediate and the third inequality follows by Lemma 4 and Lemma 1. 

Lemma 4 Under the conditions of Lemma S

E [h(zit; 0, ci) - hi(O, cti)l2s ] < 00oo (2.A.9)

Proof. By the triangle inequality, we have

E [Ih(zit; 0, ci) - hi(O, oai) 2s] < E [(Ih(zit; 0, oi)l + Ihi(0, ai)I)2 ] < E [(M(Zit) + E[M(zit)])2s ]

< C(s) E [M(zit) 2s ] < 00, (2.A.10)

for some constant C(s). 

Lemma 5 (Modification of HN) Under the conditions of Lemma 3

Pr sup hi(0, a)-hi(0,a) >r 7 }=O(T-S). (2.A.11)
(G'a) I

Proof. Let s > 0 be chosen such that 2e maxi E [M (xit)] < 3. Divide T into subsets T1 , T 2 , ...

TM(), such that I(0, a)- (', a') < whenever (0, ca) and (0', a') are in the same subset. Note that

M () is finite by compactness of T. Let (0j, aj) denote some point in Tj for each j. Then,

sup hi (0, a)- hi (0,a) = max sup hi (0, a) - hi (0, a), (2.A.12)
(,a) J j
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and therefore

Pr sup hi (, a) - hi (O,a) >7]
(O,~)

For (0, a) E Tj, we have

|hi (0, a) - hi (, a) <hi (0j, aj) - hi (s, aj) + (M (zit) - E [M (zit)]) + 2EE [M
I _T t=l

Pr[sp hi 72 < Pr [hi (j,aj)-hi (j, aj) > 3]

+ Pr T (M(zit)-

= (T-)

by Lemmas 2 and 3. 

Lemma 6 Under the conditions of Lemma 3, if n = o(Tr), then

Pr max sup
1<i<n (,,)EcT

Ihi(, a) - hi(O, a)l 

for every > O.

Proof. Given r > 0, note that

Pr max sup Ihi(0, a) - hi(O,a) > 7}1<i<n (,a)e y

n

< Pr sup Ihi
i=1 (0,)ET

(, (Oa) - hi(O,.a)l >
7}

= no(T-s) = o(Tr-s). (2.A.17)

U

Lemma 7 Suppose Conditions 1 and 2 hold and for each i, Wi is a finite positive definite symmetric

deterministic matrix. Then, for every > 0

Pr max sup
1<i<n (e,a)ET

rQi(0,a) - QW(0,a) > 71} = o(Tr-s),
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M(e) 1
< C Pr su hi(O,a) -hi (O, ) > r (2.A.13)

Then,

(zit)] 

(2.A.14)

E [M (zit)]) Ži7]

(2.A.15)

77} = o(Tr-) (2.A.16)

(2.A.18)

(0, a) - hi (0, a) I>



where

Q(4 (o, a) = - i(0, a)'Wi-i(0, a),

Qi (0, a) = -gi(0, a)'Wi-1gi (0, a),

gi(0, a)

Proof. First, note that

Q(, ) - QiW(o,a)I< (o(,c) - gi(,a))'Wi-'((0, a) - gi(,))
+2 Igi(0, ac)'Wi- (i(0, Ca) - gi(0, a))

< m2 max (ki(0, a)-9k,i(O, ))12 Wil -1
l<k<m '

+2m2 max E[M(zit)] Wij- 1 max (§k,i(O, o) - gk,i(O, a)).
1<i<n 1<k<m

Then, we have

Pr max sup
l<i<n (O,)ET

| 70, a) - Qi (0, a) > }

< Pr{ max sup m2 max I(qk,i(0, )- gk,i(0,a)) 2 lWil - 1
1<i<n (,a)ET l<k<m

+ Pr {max j IWi-1
1 <i<n

sup max (ki (0,a) - gki (0, a)) > m2 77
(O'a)T 1<k<m ~ ' -4' - 2 maxl<i<n, E[M(zt)] J

(2.A.23)

The conclusion follows by Condition 2 and Lemma 6. *

Lemma 8 Suppose that Conditions 1 and 2 hold. Assume also that, for each i, Wi is a finite ymmetric

positive definite deterministic matrix. Then,

sup QW(o, a)-QW(O, a)| <C. E[M(zt)] 2 10-0'1a ,
ot

(2.A.24)

for some constant C > O.

Proof. Note that

IQw(0a) -w < lgi(,a)'Wi-1(gi(O, a) - gi(Ot,a))I

+ (gi(O, .a) - gi(0t, ))'Wi-'gi(0' ,a)I

< 2. m2 E[M(zit)] 2 Wi1- 1 - 0'1. (2.A.25)

.
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2.A.2 Proof of Theorem 1

Proof. Let r be given, and let - infi [Qw (G0 o) - sup{(0,,)l(0,)(0o, o)l>n} QW (0, a)] > 0 by

Condition 2. With probability 1 - o(T r- s) , we have

max
O-00o]>17,cqI, ... an

n

n-i E Vw (0, a)
i=1

< max n- E / (0, a.)
I(OC)-( 0o0io)l>r7 i

n~~~~~
< max n-'E QW (0, ai) + -c

I(o,o)-(Oo ,Cio)1>1 > l 3

< n-1~EQiW(00, Ci0)- 1~,
i=1

< n-l eQw (o, a) li o-s

where the second and fourth inequalities are based on Lemma 7. Because

n

max n -1 3
Oai I1...,tn =i=1

(2.A.26)

(2.A.27)
( i=) > n-1 E w (o o)i=l

by definition, we can conclude that Pr [ 1- 0ol > 7] = o (Tr-s) = o(1). 

2.A.3 Proof of Theorem 2

Proof. Part I: Consistency of &i.

We first prove that

Pr max sup IQ<i<n a

for every r > 0. Note that

max sup Qw (0 ) - Qw (00o, ca) l_<in ot ~ Il

max sup aQ)/ (0, 0 )-Q w (, a) + max sup QW (~, a) - QW (0o, C)l~~na _< i _

< max sup QW (0, )-QW (0, a) + max C.E[M(zit)] 2 . 0-00
wier (ta) l <i<n

where the last inequality hold by Lemma 8. Therefore,

Pr max sup |Q (, a) -QT(0o,a)I> r]
[1<i<n a J

(2.A.28)

(2.A.29)

< Pr [max sup I W (0, )- Qw (0, a) > ][ <i< (oa) 2 I+ Pr [ -> [ (772)
- 2 C (axl<i<n E [M ( Zit) ) 1 2

= (Tr-8) (2.A.30)
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by Lemma 7 and Theorem 1.

We now get back to the proof of Theorem 2. Let 7 be given, and let

sup Q (o0, ai) > O.
{ci: i-ai o>77}

- = inf [QW (0o, io)-
i

Condition on the event

{ max sup I (, a) - Qw (0o, ) 
1<i<n ,

which has a probability equal to 1 - o (T r- s ) by (2.A.28). We then have

max QiP (, ai <
{ai -- aio I> 

: m x w , ) 1 2max Qi (0O,ci)+-e<Q (0o,io)- <V 0,ajo
Ioi-o{I>V 3

1
- ~ (2.A.33)

--3

This is inconsistent with QW (, &i) > QW (, ai0), and therefore,

Part II: Consistency of Ai-
Idi - aic <r q for every i.

First, note that

[,i = YvJ-1 yi(O, i) < m Wi- <ma (k,i(O, &i) - gki( i) + g9k,i(O, &i) )

< mWj-1 max1<k<m sup gk,i(0, X) -9gk,i(0, ai)j]
(O,[ i)IT

+ m lWilw-'1 M(zit) 6-0o I+ m Wil-V 1 (zit) l&i-aCiol. (2.A.34)

Then, the result follows by Lemma 6, Theorem 1 and the first statement of Theorem 2. 

Corollary 2 Suppose that Conditions 1 and 2 hold. Assume also that, for each i, Wi is a finite symmetric

positive definite deterministic matrix. Then,

Pr max Idio
l<i<n

- aiol I> } = o(Trs) = o(1),

dio E arg max Qi (0o, ao).
el

(2.A.35)

(2.A.36)

Also,

Pr max io > 7} = o(Tr - s) = o(1)

for any r > 0, where

AiO = -Wi i (00, &io)

Proof. The arguments in the proof of Theorem 1 go through replacing 0 for 00.

(2.A.37)

(2.A.38)

.
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2.B Asymptotic Distribution of the First Stage GMM Estima-

tor

2.B.1 Some Lemmas

Lemma 9 (Modification of HN) Suppose that, for each i, {it (4), t = 1, 2,...} is a sequence of zero

mean i.i.d. random variables indexed by some parameter E . We assume that {(it (4), t = 1, 2, . . . }

are independent across i. We also assume that supE I~it (X))I < Bit for some sequence of random

variables Bit that is i.i.d. across t and independent across i. Finally, we assume that maxi E [B2t] < 0o,

and n = o (Tr), with s > r. We then have

Pr [<maxn 6 d it (0i) > T = o(1) (2.B.1)
L1< '-<

n \I =1

for every > O. Here, {i} is an arbitrary sequence in 1.

Proof. For each i, we have

[ l T 1Pr sup 7QEZ~it (i) > T OE'11 V t=1~~~~~~
= Pr sup 1 it (fi) >T+2

E [supke~ ZTl (4If)2s]

- /2s T28(2+.)

C(s) supE, T 8E [it (i) 128]
-2sTs+r

C(s) maxi E [Bty] C
7r2 sTr Tr 

(2.B.2)

for some C > 0, where the second inequality is based on Lemma 2. Therefore, we have

(2.B.3)

Lemma 10 Suppose that Conditions and 2 hold. Then, for every r > O we have

Lemma 10 Suppose that Conditions 1 and 2 hold. Then, for every ij > 0, we have

Pr{ 0-0o > = o(1)

for any 0 between 00 and 0,

Pr {max io - ol I> 7} = o(1)
[ <i<n 
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for any aio between caio and &io,

Pr { max Ti- aio > 7} = o(1) (2.B.6)
[ <i<n

for any i between caio and &i,

Pr { max io >} = o(1) (2.B.7)
[l<i<n

for any Ai between Aio = 0 and io, and

Pr { max Ail >} =o(1) (2.B.8)
l<i<n

for any Ai between A = 0 and Ai.

Proof. The four statements hold by Theorems 1 and 2, and Corollary 2, noting that

V-(o < o ,( (2.B.9)

for ( E{O, ati,Ai}. 

Lemma 11 Suppose that, for each i, zit, t = 1,2, ... } is a sequence of i.i.d. random variables. We

assume that {zit, t = 1,2, .. .} are independent across i. Let h(zit; 0, ai) be a function such that (i)

h(zit; , a) is five times continuously differentiable in (0, ai) E T; (ii) T is compact; (iii) there exists a

function M(zit) such that h(zit;O,ai) < M(zit) and ad +d2 h(zi;o 'ai) < M(zit) for 1 < d + d2 < 5,aodl d2

with E [M(zt) 2 s] < oc. Let Hi (zit; 0, a) denote

adl+d2 h(zit; , ai) (2.B.10)
ad, ard2

Hi (0, ai) denote
T

E Hi(zit; 0, i), (2.B.11)
t=1

and Ii (0, ai) denote

E [i (0, i)], (2.B.12)

for some 0 < d + d2 < 5. Let a* be defined as

ai =arg sup Qi (0*, a), (2.B.13)

such that a - io = oup(Ta-) and O*- 0 = op(Tae), with - (1 - r/s) < a max(a~, a) < 0.

Assume also that n = o(Tr), with s > r. Then, for any 0 between * and 0o, i between a* and aio,
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and > 0, we have

Pr [max E ti(, i)-Hi(0o, tio) >7Ta =(1)

<i<nPr [max I =(1)

Prmax v Ifi (O, i)- i (O, i) > r/T] = =o0(1) .[l<i<n

Proof. Note that we can write

Hi (0, i) - [Ift(0o, io)] = (i (0ci) - Hi(0o, io)) + (i (0aio) - E [Hi(0oaio)])

_ aiJ ' *) D (**, ((/ - Cio) + (fr(o, +Cio) - E [Hi(00, io)],
traai 1),

where (**, c**) lies between (0o, co) and (, i). Next, observe that

IT
< 1-0o I 7 E M(Zit)

'- e , -t=l
=op(T') I

=0,(1)+o.p(l)

1T
+ I|i - T io MM(zit)

T t=l=o.p(TI) ,,
=O,(1)+o~p(1)

+ jfi (Oo, aio)-E [fti (Oo, io)] I= op(T a), (2.B.17)

=Oup(T-(1 - r / s ) )

by the conditions of this Lemma and Lemma 9.

Finally, the second statement holds by Lemma 9 for it(0i) = Hi(zit; , Zi)- E [Hi(zit; ,i)], with

qi = (', i)' and Bit = M(zit). *

Lemma 12 Let {~j,i, i = 1, 2, ... }, j = 1, 2, be two sequences of independent random variables such that

xi = oup(Ta), 2,i = oup(Ta2) and al > a 2, then

~1,i + ~2,i = Oup (Tal ), (2.B.18)

x1,i ' ~2,i = Oup(Tal+a2). (2.B.19)

Proof. For the first statement, note that

max (61 + 2,i) 5 <max |1i + ma x |11,i I = op(T al (. 2.B.20)
1<i<n 1 <i<n l<i<n

The second statement follows similarly by

max (1,i 2,i) < max I(li1<i<n 1<i<n *max 1,i = op(Tal) op(Ta2 ) = op(Tal+a2).l<i<n

.
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Lemma 13 Let (gj,i, i = 1, 2, . .}, j = 1, 2, be two sequences of independent random variables such that

~1,i = El,i + oup(Tal), ~2,i = ~2,i + (Ta2), [~j,iI < , j = 1,2, and O > al > a2 ; then

(2.B.22)

Proof. Note that

< (=1,i- 1,i)' (+2,i - 2,i) + (,i - Eli) 2,iI + ((B2,i - 2,i) 1,i

< 1,i - 1i[' 12,i - 2,i[-+ 1[l,i - l,i[ I [12,i + 12,i - 2,i * ]~l,i[

= Oup(Tal+a 2) + oup(Tal) + oup(Ta2) = Oup(Ta,), (2.B.23)

by Lemma 12. 

Lemma 14 Assume that

of the fixed effects, that is

Conditions 1, 2, 3 and 4 hold. Let ti(-yi; 0) denote the first stage GMM score

= - ( Gi (0, =- (2.B.24)
gi (G, ai) + Wi Ai

where yi = (ai, Ai)'. Let T (i; 0) denote 'i (v;°) Define ~io as the solution to ti (i; 0 o) = 0.

Then, for any Yio between Yio and io, we have

vTiW(iO) = Oup (Ts), (2.B.25)

TiW(;iO) -TW = oup (1). (2.B.26)

Proof. The results follow by inspection of the score and its derivative (see Appendix 2.K), Lemma

10, Lemma 11 applied to 0* = 0 and a = ao, Lemma 11 applied to 0* = 00 and ac = io, and Lemmas

12 and 13. 

Lemma 15 Suppose that Conditions 1, 2, 3, and 4 hold. We then have

v(Tio - Yio) = oup(Tr/28). (2.B.27)

where io is the solution to tw(7i; 0o) = 0.

Proof. By a first order Taylor Expansion of the FOC for 7io, we have

O = iiW (~io) = iW(io) + T (i)(.io - Yio)

= i!W(TYi0) + TW(r o - 'M io) + (iw(5 i) - TW) (io - Yio), (2.B.28)
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where Yi lies between ^io and Yio. Next

(~io - yio) = - (TW)- V W (yi) - (TW) (ti(Ti) - T ) v(io- io)

=Ot,(1) =op(T"/28) =O() M =o,(1)

= Oup(Tr/2S) + o ('f io- Yio)) (2.B.29)

by Condition 3 and Lemma 14. Therefore

(1 + op(1)) vT(7io - 'yio) = Oup(Tr/2 s) - VT(io - yio) = Oup(Tr/2s) (2.B.30)

Lemma 16 Assume that Conditions 1, 2, 3 and 4 hold. Let iV(-yi; 0) denote the first stage GMM score

for the fixed effects, that is

, O ( G,(0, aj)'Ai ) (2.B.31)
= (, ce,) + WiABi

where yi= (i, Ai)'. Let 9W(0, i(O)) denote thefirststageGMM plug-in score for the common parameter,

that is

iw (0, i(0)) = -GoOi(0, i(0))' Ai (0), (2.B.32)

where 'i(0) is such that i (i(0);0) = 0. Let td (-y; 0) denote dt(_, for some 1 d < 4. Let

NI' (^-i; 0) denote O'Iv(^it';) Let Md(0o, i) denote , for some 1 < d < 4. Let SW(0, i) denote00' ', or --
o.(§W,o0) Let (0, {i}inl) be the first stage GMM estimators.

Then, for any 0 between 0 and 00, and i between ~i and Yio, we have

Tt d (03 Yi)_Tr = Oup (1), (2.B.33)

',~d( ,;i) Mrd = OUp (1), (2.B.34)

_Iw(0,7)-N/ = oup(1), (2.B.35)

siW(0, i) - Sr = OUp (1) (2.B.36)

Proof. The results follow by inspection of the scores and their derivatives (see Appendices 2.K and

2.L), Theorem 1, Theorem 2, Lemma 10, Lemma 11 applied to * = 0 and ai = ai with a = 0, and

Lemmas 12 and 13. 

Lemma 17 Assume that Conditions 1, 2, 3 and 4 hold. Let i(yi; 0) denote the first stage GMM score

for the fixed effects, that is W (- i) ( G(0,ct,) + W(2.B.37)2 M~~iO, ai) + WjZ~
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where yi = (i, Ai)'. Let .sW ( 'i(O)) denote the first stage GMM plug-in score for the common parameter,

that is

i (, i(0)) = -Goi(O, ai(0))'i(o), (2.B.38)

where yi(O) is such that iw(Q(0);0) = 0. Let T^ (yi; 0) denote a dt), for some 1 < d < 4. Let

NiW (-yi; 0) denote af(`Oi). Let W (0ij) denote I(,) for some 1 < d < 4. Let sW(0 , i) denoteai' (~;)LtA~.(,7)dent ,for , _ 
°'w (7",0) Let 7io denote i(0o).

a0'

Then, for any 5i between io and "yiO, we have

v/tV (i) = oup (T s X),

(Ttrd (;)-TX d) =Oup (T28),

(Al2d ( -Mi-d) = Oup (T )

(2.B.39)

(2.B.40)

(2.B.41)

Proof. The results follow by inspection of the scores and their derivatives (see Appendices 2.K and

2.L), Theorem 1, Theorem 2, Lemma 15, Lemma 11 applied to 0* = 00 and a = io with a = T2(1r/s)

and Lemmas 12 and 13. 

2.B.2 Proof of Theorem 3

Proof. From a Taylor Expansion of the FOC for 0, we have

ds9 (60°
O= s nj()= sn (00)d+ -0) (00o), (2.B.42)

where 0 lies between and 00.

Part I: Asymptotic limit of &Lf). Note thatdO'

ds. (,)
dO'

dsW (, ())
dO'

(2.B.43)
1 E dsiW (S i 0 

= I d ' (0 , ( a) 0 )-- n1 dO''
= sW - - aw( i() + --z( i() 9i(9 (2.B.44)

From Lemma 16, we have

00,
s5w (0' Vi ())

= S V + o'up(1) = Oup(),

M-iW+ up(1).

(2.B.45)

(2.B.46)

Then, differentiation of the FOC for ~j, tiw((6); O) = 0, with respect to 0 and Yi gives

iW - - Yi( O )
TW(i j(0); 0) o + W 5(i ; ) = O, (2.B.47)
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By repeated application of Lemma 16 and Condition 3, we can write

a (0) -(TW) - l N + oup(l).
0I (2.B.48)

Finally, replacing the expressions for the components in (2.B.44) and using the formulae for the derivatives

from Appendices 2.K and 2.L, we have

ds (0)
dO'

inn
= J++ o1n + o(1()= I .) w+p=),

i=1

jW = lim Jw = (1).S n- c

(2.B.49)

(2.B.50)

Part II: Asymptotic Expansion for - 0 0. For the case n = O(T), from (2.B.50) and Lemma

46 we have

o = n (O) +
Op(l)

ds7 (O) v¶(0 - o).
dO'

0(1)

(2.B.51)

Therefore, I;(O -00) = Op(1). Then the result follows by using again (2.B.50) and Lemma 46.

Similarly for the general case T = o(n), from (2.B.50) and Lemma 46 we have

o = TsW(Oo) +

0(1)

ds4 ( )T( -Oo).

dO(1)
O(1

Therefore, T(0 - 00) = O(1). Then the result also follows by (2.B.50) and Lemma 46. 

Corollary 3 Under Conditions 1, 2, 3 and 4, we have

T(0S WQW+ aT w W
T(0 - 00) -T Qw n r (r - l )/ 2

7 __ 7~20

FT) for any e >0,
n

= _ (JW ) - 1 nE si X

= _(Jr)-1 X1,SiW
i=1

= o (VT).i

if n = O(Ta) for some a E ;

otherwise,

Proof. The result follows by using the expansion of T.4w(00) in the proof of Lemma 46. *
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(2.B.52)

(2.B.53)

C,
aT =

o ('
(2.B.54)

(2.B.55)

(2.B.56)

(2.B.57)



2.C Consistency of Second Stage GMM Estimator

2.C.1 Some Lemmas

Lemma 18 Assume that Conditions 1, 2, 3 and 5 hold. Then, for any 7 > 0, we have

Pr max i(0 i)- Qi(0o, oCio) = (Tr-s), (2.C.1)

where

T
Q!(#, ci) = -Eg(zit;O,oa)g(zit;Oa)', (2.C.2)

t=1

Qi(0, ci) = E [hi(O, aoi)] (2.C.3)

Proof. By Triangle inequality and Conditions 2 and 5, we can write

I2(0, di) - Qi(0o, oaiO) < i (O, di) - Qi(0, di) + IQi(G, di) - Qi (00, aio)

< di(, i) - Qi(0, di) + m2 E [M(zit) 2 ] (6, i) - (o, (iO) . (2.C.4)

Therefore, we have

Pr max [}i(0,<i)-Qi(0o,aio)_ } < Pr { m a x i(,&i)-Qi(0, i) > /2}
l1<i~n Il77Ii~n

+ Pr { (, i) - (o, O'iO) > 7 } (2.C.5)
- 2m2 maxi E [M(zit)2] }

Then, the result follows by Lemma 6 (applied to maxl<kl<m 9kgl - E [gkgl]l) and Theorems 1 and 2. 

Lemma 19 Let {fi,i = 1, 2,...}, be a sequence of independent random variables such that ~i = i +

Op (Ta), with a < 0 and mini i > 0, then

-1 =- ~-1 + oup (Ta). (2.C.6)

Proof. By Mean Value Theorem

--1 = 1 (i)- 1 (iy -- i) (i) 1 =- i1 _+ up(Ta), (2.C.7)

where ~i lies between i and Ci, and is non-singular with probability 1 - oup (Ta). *

Lemma 20 Assume that Conditions 1, 2, 3 and 5 hold. Then, for any q > 0, we have

Pr max sup Qi (0,a) - Qi (0, ) > = o(TrS), (2.C.8)
[lin (0,a)ET J
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QiQ(S,'2i : -i(O, OL)fii(O, ~i)-- gi(O, OL),Qi (0, ai) =

Q'(Oa-) = -gj(O,a)'Q-gj(O,a),

gi(O,a) = E[qi(6,a)].

Proof. First, note that with probability 1 - o(T r- s)

&Q(o, a) - Q?(, a) < I (j (0, ) - gi (0, v) )'Q (. &j) -'(§i ( o) - gi (0, )) I

+ 2 Igi (O )'-i (j, ji)-- (gi (0, o) - gi (0, aO))I

+ gi(6, ci)' (i(O, i)-l - Qi -') gi(0, a) 

< m 2 max sup
l<k<m ik,(O,oeT

(3ki(6 a) -gk )) ) |2
I (.k,i(e, C) - gk, (0,a))l I jij-1

+ 2m2 max E[M(zit)] li 1 max ( sup (k,i(0, )- k,i(O, a)))l<i<n l <k<m (0,a)ET

+ m2 max E [M(zit)]2 Qi(6, &i)- - Q-i . (2.C.12)
l<i<n 

Then, the conclusion follows Condition 5, and Lemmas 6 and 19. 

Lemma 21 Suppose that Conditions 1, 2, 3 and 5 hold. Then, with probability 1 - o(1)

sup Q/(0, a) - Q(0', a)I < c E[M(zt,,)]2 1 1l,
a

for some constant C > 0, where

Q?(o,a i) = -gi(O, )'Qi-lgi(O, ),

gi(, ot) = E[3i(O, c)].

Proof. Note that

IQ?(o, ) - Q(0', ) < Igi(Ox a)'Qi-l(gi(O.~) - gi(O'.a))J

+ (gi(,a) -gi (9, ))'Q-gi(, )
< 2 m2 E[M(zit)] 2 IQil 10 - 0'1.

.
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(2.C.9)

(2.C.10)

(2.C.11)

(2.C.13)

(2.C.14)

(2.C.15)

(2.C.16)



2.C.2 Proof of Theorem 4

Proof. Let Tr be given, and let infi [Q/ (0o, aio) - sup{(O,):1(,)(ocio)l>v} Q (0, )] > 0 with

probability 1 - o (Tr-- s ) by Conditions 2 and 5. With probability equal to 1 - o (Tr-s), we have

max
10-0oI>,1:al Ci n

max
I (0,a)-(0o ,iO)I>.,

i=n1n-'T E Q (0, ai)
i=l

7-1 E Q9 (0, i)
i=1

< max n -1 Q (0, aji)
I (0,a)-(0o,oo)1>rl i

< n-1 Qi (o, aio)- e
i=1

3

< n -1 (0o, aio) - fe,
i=1

where the second and fourth inequalities follow from Lemma 20. Because

1
+ E

3

(2.C.17)

n

max n 
eHutl ... ,< i=1

i=1

n
(0 ai) > n - 1 Q (0o, aio)

i=1

by definition, we can conclude that Pr [ - ol > 7] = (Tr-S).

2.C.3 Proof of Theorem 5

.

Proof. Part I: Consistency of &i. We first prove that

Pr max sup q~ (, a)- Q (o, a) > r =o(T r- s)
[1_i<n 

for every r > 0. Note that

nmax sup (b, a - Q (0, )

< max sup a) -Q(a) + max sup QQ (0 a) Q (0o ,a) Il<i<n r~) l9(1a <i<n a, 

< max sup Qi (0, )-Qi (0, ) + max C. E[M (it)] 2 . - 0 [,

by Lemma 21. Therefore,, <i<n

by Lemma 21. Therefore,

Pr max sup 1I (, a) - Q (00, ) > ]
[1<i<n a J

< Pr [max sup /
[<i<n (Oa)

(0, a) - Q (0, a)

TI
+Pr [l

= (Trs)
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(2.C.18)

(2.C.19)

(2.C.20)

2

]
(2.C.21)

-0o I > -1
2 -C (maxl<i<. E [M (Zit)]2 )



by Lemma 20 and Theorem 4.

We now get back to the proof of Theorem 5. Let be given, and let

E - inf [Q (0o, ajo) -i

by Conditions 2 and 5. Condition on the event

{ max sup IQ (& a) - Q/l _<in _a n e

sup Q (o, ai)] > 0
{ai:[c i-caiol>7} 

which has a probability equal to 1 - o (Tr-s) by (2.C.19). We then have

max (, j) < max Qi (0o, i) + -e < Qi (o, io)--E <
Icai - io> [ > ci-aio> 1 - o )3 i 3 2 (Q -1

This is inconsistent with QQ (, &i) > Qi/ (, aio), and therefore, & i- ajioI < 7 for every i.

Part II: Consistency of Ai. First, note that with probability 1 - o (T r- s)

)ii < IQil- mmax (gk,i(O, &i) -gk,i(O, &i) + gk,i(O,' i) -gk,i(00o, io))

< Qij-1 mmax sup gk,i(O, ai)-9gk,i(O,ai)
k (0,ai)ET

+ Qil-lM(zit)m - 0o + Qil-1 M(zit)m li -a iol,

(2.C.24)

(2.C.25)

where (, i) are between (o, a/o) and (, &i). Then, the results follow from Lemma 6, Theorem 4 and

the first statement of Theorem 5. 

Corollary 4 Suppose that Conditions 1, 2, 3 and 5 hold. Then,

for any > 0, where

Pr { max &io- - iO > 77 = o(Tr-s) = o(1),

<i<n e argmaxQ(o)

&zi E arg max i (0, Cl).

Also,

Pr max Aio > 47} = o(Tr- ' ) = o(1)

for any > 0, where

io= -Wi- gi (0 , &io) -

Proof. The arguments in the proof of Theorem 4 go through replacing 0 for 00. 
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(2.C.22)

(0o,a) < 1 C (2.C.23)

(2.C.26)

(2.C.27)

(2.C.28)

(2.C.29)



2.D Asymptotic Distribution of the Second Stage GMM Esti-

mator

2.D.1 Some Lemmas

Lemma 22 Assume that Conditions 1, 2, , 4 and 5 hold. We then have

V(i - Yio) = oup(Tr/ 2 s). (2.D.1)

where "i is the solution to w (-yi; 6) -= 0, i.e. the first stage estimator for the fixed effects.

Proof. We show that

VT(i - io) = oup(1), (2.D.2)

and then the result follows by Lemma 15.

Note that

v/T io) ) ( V(- 0o), (2.D.3)00 I

where 0 lies between 0 and o00. Following an analogous argument as in the proof of Theorem 3, we have

V( -'yiO) (TW)l NWv/7( Oo) + oup (V(O- o00)) = oup(1). (2.D.4)

=Ou (1) =oup(1)

Lemma 23 Suppose that, for each i, {zit, t = 1,2,.. .} is a sequence of i.i.d. random variables. We

assume that {zit, t= 1,2,...} are independent across i. Let hj(zit;0, i), j = 1,2 be two functions

such that (i) hj(zit; 0, ai) is five times continuously differentiable in (, ci) E T; (ii) T is compact;

(iii) there exists a function M(zit) such that hj(zit; , ai) < M(zit) and a°+hj(zt;ai) < M(zit)
aodli,' 2

for 0 < d + d2 <: 5, with E [M(zit)4"] < oo. Let f(zit;0, i) denote h(zit;O, ai) h2(zit;0, ai). Let

Fi(zit; O, ai) denote
adl+d2f(zit; , aj) (2.D.5)

aOO, c2

Fi(0, ai ) denote
T

y Fi(zit; , i), (2.D.6)
t=l

and F (0, ai) denote

E [i (, oi)], (2.D.7)
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for some 0 < d + d2 < 5. Let a be defined as

a* = argsup Qw(0*, a), (2.D.8)

such that a - aio = oup(Ta-) and 0* - Oo = op(Ta,), with 0 > a = min(aa, ao).

Assume also that n = o(Tr), with s > r. Then, for any O between O* and 0o, i between ai and cio,

and > 0, we have

Pr max JI i(, Si) - Fi(0o, io) > TTa] (1) (2.D.9)
[l<i<n

and

Pr max T Pi(0, Zi) -Fi(O, i) > 7rT2] = o (1) (2D.10)
[l<i~n

Proof. Same as for Lemma 11, replacing Hi for Fi, and M(zit) for M(zit) 2.

U

Lemma 24 Assume that Conditions 1, 2, 3, 4 and 5 hold. Let Qi(, &i) denote the estimator of the

weighting functions
T

T > g(zit; 0 ,&i)g(zit; , &i) i= 1,..., n, (2.D.11)
t=l

where (', &i)' are the first stage GMM estimators. Let Qd 1 Od2i(, &i) denote its derivatives

a d~ @(d2 ~ f 0~~ '(~ di(2.D.12)
addlaiad20

for 0 < dl + d2 < 3 Then, we have

V/ ( idlod2 i(O, ai)- Qadlod2 i) = Oup (T ). (2.D.13)

Proof. Note that

|g(Zit; , &i)g(zit; 5, di)'- E [g(zit; &, i)g(zit; H, i)] |

< m2 max gk(zt;0 g(zit ; O, i)(Zit; , i) E [gk(zit; O, &i)g1(zit; O, i)] (2.D.14)
1<k,l<m

Then, by Theorem 3 and Lemma 22, we can use Lemma 23 for f = gkg1 - E [gkg] with a = o (T2 (-r/s)).

A similar argument applies for the derivatives, since they are sums of products of elements that satisfy

the assumptions of the Lemma 23. 

Lemma 25 Assume that Conditions 1, 2, 3, 4 and 5 hold. We then have

= Qi + 1 + TQ 1 W aT QW QW RW 
£i(6, &i) = fi + Vbli q- i T(r+l)/ 2 Qrwi + T3/-2 Q2Wi ± -T(r+2)/2 Q2ri + -R3fi' (2.D.15)
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C, if n = O(Ta) for some a E R;
aT = I o(T e ) for any > 0, otherwise,

T

= -TE g (z it ; 0° a ) g ( z i t ; H. a),t=l

E [ (,o i)]

(i- i) +- ± ci iW el oup(Tr/2s),

=~ ~~ -a~l el+/f(oai)f/4W ei + ojlo +2,( (w )= T + Q', el = /p (
~p

= S QT 1 (4, - , el + oji'e ej + -
~~j=1~~~j=l=Oup(Tr/s),

= Qo~iV)7'ej= Oup(1)'
j=l

= QQw'el +v -~(,- Qai )Q1''el + - QOji) Ql ej
p

E vIT fQo

j=l

+ -9 (i eI) Q',ti/ elQ1Wel + I4 eai - (aa w e) 22 '~~~~~~i - S- Q)(i
P W'+ 10Q eojii el + 1

j=l6

p

= E VNoi
j=l

( W eI ) 3 3r/2s)~i el) = Oup(T~r2)

p

- QOyi V4 ej + 0O ejii el = o°up (Tr 2 s),
j=l

RW = oup(T2r/s) = OUp(V).

Proof. By a standard Taylor expansion around (00, a/o), we have

= Qi + o!i(ai- - Oio) + -oOj(j -00,j) + 2xi( i-,i0)2
j=l

P 1 P P

+ p 0oji(, T)(j - 0O,j)(ai - iO) + E fo -i) j
j=l j=l k=l

- Oo,j)(Ok - 0O,k)

lS 1 ~ ooP i~~)~_OOj(iZ O2+ Q. .,(O°Ti)(&i-aio) 3 + _ ,a~ Oi(O, i)(Oj - o,j)(& a.o)2, (2.D.25)
j=1

where (, i) lies between (, &i) and (0o, aoi). The expressions for w, Qwi, Qwi, Qwi, and Qw

can be obtained using the expansions for 'io in Lemma 42 and for 0 in Corollary 3, after some algebra.

The rest of the properties for these terms follow by the properties of their components and Lemmas 12,
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(2.D.16)

Qi( (, ali)

Qi (0, ai)

-W

QWQlei

wlrfi

(2.D.17)

QW
2Qi

(2.D.18)

(2.D.19)

(2.D.20)

(2.D.21)

QW2ri

Qi (O, di)

(2.D.22)

(2.D.23)

(2.D.24)



58, 59, 60, and 61. For the remainder term, we have

P P
= Q,Rei e V+ V'(fQeiQ- +)RW el + E poj Rw ej E V fO

3=1 j=1

1 rQwX' w' w' 1+ , kel R2 ei l+ Q' elRl' el + R'el\vT(&i- a0)
2 2 L jli ii 2i

+ - 2cj ai) [Wi el Rl' ei + el v (di2~~~~~ -w w' l
p

+ Qaoji 'W el R2W ej + Rli elT (j
j=l

P+ Y • (S20ji( R, ai) - Qfoji)
j=1

+ E VokOji(O, i)T (-
j=1 k=l

-Q) RWe
- Oji) R20 e

- aio)]

1 F i w i \ 2 w ' w(w .) w r F , - - ) ] 2
+ -Q~ I~ W'ei R1 'el +V' eiR 1 'eivT(cx -aio) +R1w el-\vT [ivT(cj -i+6 Q ckcxa L iiz l l Ci

6 o (\acki) [ ( i- io)]

= O"p(T2r/s) -= 0p(V ).

Qcsj i(0, Li)(Oj - oj) [v/-(&i - aio)]

(2.D.26)

The uniform rate of convergence then follows by Lemmas 12, 15, 40, 41 and 24, and Condition 3.

U

Lemma 26 Assume that Conditions 1, 2, 3, and 5 hold. Let tii(i; O) denote the first stage GMM score

of the fixed effects, that is

ii QYi; 0) = il -i )+ -i (2.D.27)

where 'yi = (i, )'. Let Ti(i; 0) denote a,(o). Define jio as the solution to ti(yi; 00) = O.

Then, for any yiO between Yio and -io, we have

vTi(yiO) = oup ( ) 

Ti(Vio) -Ti = op (1).

(2.D.28)

(2.D.29)

Proof. The results follow by inspection of the score and its derivative (see Appendix 2.M), Corollary

4, Lemma 11 applied to 0* = 00 and ca = ajio, Lemma 11 applied to 0* = 0 0 and ca* = &iO, and Lemmas

12 and 13. 

Lemma 27 Suppose that Conditions 1, 2, 3, 4, and 5 hold. We then have

/'T( -io- 'YiO) = oup (Tr/2s) (2.D.30)
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Proof. By a first order Taylor Expansion of the FOC for 'io, we have

0 = tiio) = ii = (io) + Ti(Vi § )(io - Yio),

where i is between Rio and ryio. Next

v/(iO- iO) -- -(?i)f_;Fti/(io) - (T)(Ti(;i) - Ti) vf(io - io)V,_~o- YiO) = - (Ti) ~~~) -I-T VVI'T 
=Ou()=op(T/2s) =U (L) =oup(1)

= OUp(Tr/2s) + up (r(io-Yio)),

(2.D.31)

(2.D.32)

by Conditions 3 and 4, and Lemma 26. Therefore

(1 + oup(1)) V'(fio - YiO) = oUp(Tr/2s) = V(io - Yio) = Op(Tr/2s). (2.D.33)

U

Lemma 28 Assume that Conditions 1, 2, 3, 4 and 5 hold. Let ti(-yi; 6) denote the second stage GMM

score for the fixed effects, that is

i (yi; 6) = t (bi; 0) + i(-Yi; 0), (2.D.34)

where yi = (ai, Ai)'. Let i i(0, ~i(O)) denote the second stage GMM plug-in score for the common param-

eter, that is

MO' (6)) = -G(6,~o &i(6))'Ai(6), (2.D.35)

where ~i(O) is such that ti(yi(6); 6) = O. Let ti,d(-yi; 0) denote d 9), for some 1 d < 4. Let Ni(Yi; )

denote a9"(-Y,;°). Let Mi,d(6, 'i) denote , for some 1 < d < 4. Let Si(6, i) denote o . Let

(0, {'~}i=l) be the GMM second stage estimators.

Then, for any 0 between and 00, and Vi between i and yio, we have

Ti,d(O, Vi) - Ti,d

Mi,d (, ) - Mi,d

'i(O, i) - Ni

Si(0, Vi) - Si

(2.D.36)

(2.D.37)

(2.D.38)

(2.D.39)

= up (1) ,

= up (1) ,

= Oup (1) ,

= op (1) -

Proof. The results follow by inspection of the scores and their derivatives (see Appendices 2.M and

2.N), Theorem 3, Theorem 4, Lemma 11 applied to 0* = 6 and c* = &i with a = 0, and Lemmas 12 and

13. 
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Lemma 29 Assume that Conditions 1, 2, 3 and 4 hold. Let i(-yi; 6) denote the second stage GMM score

for the fixed effects, that is

ti(-yi; ) = t (i; ) + i(yi; 09), (2.D.40)

where yi = (i, A')'. Let .i(O, ij(g)) denote the second stage GMM plug-in score for the common param-

eter, that is

'i(O, i(0)) = -G0i(0, 6i(O))Ai(0), (2.D.41)

°ah;°fooeI<d (7i; O0)where %j (0) is such that ti i (0); 9) = O. Let Ti,d (i; 0) denote orO, for some 1 < d < 4. Let Ni (-yi; )
denote oi,(Y,;o). Let A/i,d(O, i) denote o , for some 1 < d < 4. Let Si(O, i) denote (,o). Let

80' 0r''-- - - 0'

7io denote i(0o).

Then, for any Ti between 7io and yio, we have

/ (i d(7)-Tid)

/ (- ,d(h -Mi,d)

(2.D.42)

(2.D.43)

(2.D.44)

Proof. The results follow by inspection of the scores and their derivatives (see Appendices 2.M and

2.N), Lemma 27, Lemma 11 applied to 0* = 00 and ac = &io with a = T2(1 - r/s), and Lemmas 12 and

13. 

2.D.2 Proof of Theorem 6

Proof. From a Taylor Expansion of the FOC for 0, we have

0 = sn(0) = Sn(00) + dOl

where 0 lies between 0 and 00o.

Part I: Asymptotic limit of d-(,) Note that

= -dO ~.d~(,~~dsd(') _ n i _ dO' n dO'
i=1

dsi(0, (0)) Osi(O, Vi (0))+ a

dO' a0

From Lemma 28 and Appendix 2.N, we have

asi(O, i(a))
a0'

asi (, Vi (O))

O - ), (2.D.45)

(2.D.46)

(2.D.47)si(0, yi (0)) aft(0)
a~j' o,

(2.D.48)-= Si + oup(1) = oup(1),

= Ti + oup(1). (2.D.49)
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,\I-Tij (;�j = o.p (T II-),

oup (T II-),

oup (T ':-) ,

))
7



Then, differentiation of the FOC of i, ti(yi(6);0) = 0, with respect to 0 and ~i gives

Ti (i (0); ) F )+ (i(°); 0) = 0, (2.D.50)

By repeated application of Lemma 28, we can write

__(__) --(Ti) - ' N i -+ oup(1).
Of

(2.D.51)

Finally, replacing the expressions for the components in (2.D.47) and using the formulae for the derivatives

from Appendix 2.M, we have

dSn(, (0))
dOt

I n
= Jsn + op(1) =- X G', PiGai + op(1) = Js + op(1),

n=1i=1

J = lim J = 0(1).
n-oo

(2.D.52)

(2.D.53)

Part II: Asymptotic Expansion for - 00. For the case n = O(T), from (2.D.53) and Lemma

54 we have

(2.D.54)= .Sn (0) + _ v( - 0).
-Op(--) -- dO(l)

O~~(i) 0(1)

Therefore, nT( - o) = Op(1). Then the result follows by using again (2.D.53) and Lemma 54.

Similarly for the case T = o(n), from (2.D.53) and Lemma 54 we have

0o = TSn(0O) +

0(1)

dsn(,)T(j - 0o).

dO(1)
0(1)

Therefore, T(O - 00) = 0(1). Then the result also follows by (2.D.53) and Lemma 54. 

Corollary 5 Under Conditions 1, 2, 3, 4 and 5, we have

aT 1T~- o)= lO T(rl)/2 =0 -
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C,
aT =

o(I

Q10

if n = O(T a) for some a E ;

rV) for any e > 0, otherwise,

__ (j)_11 Qli 1,n= S-(Js) 1 Qi =Q1 pM
i=1

1 n
= -(Js 17 EO.si = Oup(1) 

i=1

R0= Oup ( vI).

(2.D.57)

(2.D.58)

(2.D.59)

(2.D.60)

Proof. The result follows by using the expansion of Tsn(0o) in the proof of Lemma 54. 

2.E Asymptotic Distribution of the bias-corrected Second Stage

GMM Estimator

2.E.1 Some Lemmas

Lemma 30 Assume that Conditions 1, 2, 3, 4, and 5 hold. We then have

V(i- Yi) = oup(Tr/ 2s) (2.E.1)

where 7i is the solution to tii(-yi; 0) = 0, i.e. the second stage estimator of the fixed effects.

Proof. We show that

(2.E.2)

and then the result follows by Lemma 27.

Note that

VI f(~ 'YiO) = a,'--~ -0)

where 0 lies between 0 and 00. Following an analogous argument as in the proof of Theorem 6, we have

V~(~i- iO) = -(Ti) 1 Nv'I(0 - o) + oup ((O -

=o0(1) =Op(T-1/2)

o00)) = Oup(T-1/ 2) -= oup(1).

Lemma 31 Assume that Conditions 1, 2, 3, 4 and 5 hold. Let ti(-yi; 0) denote the second stage GMM
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(2.E.3)
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score for the fixed effects, that is

ii(Yi; 0) = oi(yi; 0) + i (Yi; 0), (2.E.5)

where yi = (i, Ai)'. Let i(O, ~i(0)) denote the second stage GMM plug-in score for the common param-

eter, that is

i(O, yi(O)) = -doi(O, i(O))'i(O), (2.E.6)

where i(0) is such that ti (-i(0); 0) = 0. Let Ti,d(yi; 0) denote o, for some 1 < d < 4. Let Ni(yi; 0)

denote i( y;o). Let Mid(0,'i) denote ',o) for some 1 < d < 4. Let Si(0, yi) denote s( . Let

(6, {'}~ U) be the second stage GMM estimators.

Then, for any 0 between and 0o, and yi between i and Vo, we have

v'T (ti,d(,;) - Ti,d) = o,p (Tr/2s), (2.E.7)

'- ( ri,d(°,;Yj) - Mid) = oup (Tr/2s) (2.E.8)

-(]i(S Ni) = o p (Tr/2s) (2.E.9)

V;(IT S-i-i u T/s (2.E.10)

Proof. The results follow by inspection of the scores and their derivatives (see Appendices 2.M and

2.N), Theorem 6, Lemma 30, Lemma 11 applied to 0* = 6 and a i* = &i with a = T(1 - r/s), and Lemmas

12 and 13. 

Lemma 32 Assume that Conditions 1, 2, 3, , 5, and 6 hold. Let Qfi(0, i) denote the estimator of the

weighting functions
T

TyEg(zit;O, &i)g(zit;O, ji)' i= 1,...,n, (2.E.11)t=l

where (', i)' lies between (', &i)' and (, aio)'. Let f,,d d2i(O, Si) denote its derivatives

adl d2 i(H, i)
-adl a ad2 #9 '(2.E. 12)

for 0 < dl d 2 < 3. Then, we have

g/ (f odO2 i(O,*i) Q dOd2 i) = oup (T). (2.E.13)

Proof. Note that

Ig(zit; , i)g(zit; 0, 5i)' - E [g(zit; 0, ai)g(zit; , i)] I

< m2 max lgk(zit;O, i)gt(zit;, i)' -E[gk(Zit;O, oi)gl(Zit;O, i)]| (2.E.14)lk<l<m
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Then we can use Lemma 23 for f = 9k91-E [gkg] with a = o (T2(1r/s)). A similar argument applies

for the derivatives, since they are sums of products of elements that satisfy the assumption of the Lemma

23. 

Lemma 33 Assume that Conditions 1, 2, 3, 4, 5, and 6 hold. Let

tai

ftW

(~, a;i)

(~, zii

(O, zii)

(O, -&i)

(~, zyi

(2.E.15)

(2.E.16)

(2.E.17)

(2.E.18)

(2.E. 19)

I
= (d'i (-O' zTi), f2i (�' ai) -, d'i (�' ai) ) - ,

= t"'i (�' iTi) d"'i (�' -6i), fli (�' ai) - ' ,

= f2i (-0, -&i) -' - f2i (�' ai) -1 d'i (�' -6i) ft"'i p, ai) ,
I

= (d"i p, ai), wi- I d'i (�' ai) ) - ,

Cxi (�' zTi) d'i (-0, -&i), Wi- 1,

be estimators of

-i

EW
Hw

a1OiHW

Hai

Pai

= (G', i- 1 Gai,) ,

= (G' i-.Gci)yl
= EWGi W.-1

a i ai i 

= ia.G Q7-',

= Q--1 Q_'GaiHa,'

(2.E.20)

(2.E.21)

(2.E.22)

(2.E.23)

(2.E.24)

where (, ai) lies between (', &i)' and (O', ajo)'. Let Faodl aOd2 i(, Ti) and FadiOd 2 i,

denote their derivatives for 0 < d + d2 < 3. Then, we have

withF E {r,H,P, w, HW}

VI (Si (: ;5i) - "i )

V~ (Pa, (, i)- Pa)

vr(d (pi ( -Fi) adli)
V ( ( Ui) - Hr')

V/7 (adlOd2i (; -i) - FadIOd 2 i)

= op (Tr/28),

= 0 (Tr/2s),

= o'p (T r2s),

= op (T r/2s),

= ouP (Trn2s),

= Oup (Trl2s) 

Proof. The results follow by Lemmas 12, 13, 19, 31 and 32. 

Lemma 34 Assume that Conditions 1, 2, 3, 4, 5, and 6 hold. Let
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(2.E.25)

(2.E.26)

(2.E.27)

(2.E.28)

(2.E.29)

(2.E.30)

(2.E.31)
Yp

J"i p, iTi) = (�Oi p, ai ai (�' Zvi) 60i (9, Zvi) ,



J =St ' PG,

where (' ,i)' lies between (', &i)' and (, ceio)'. Let J, dlod 2 i(O, Si) and Jacdlod2 i denote their deriva-

tives for 0 < d + d2 < 3. Then, we have

v7 (Js ci ) -°t)Jsti )

\ (Ji
8

dl d 2 ( ,ai) -Jsadiad 2 i)

= Oup (Tr/2s)

= Op (Tr/2s) 

Proof. The results follow by Lemmas 12, 31 and 33. 

Lemma 35 Assume that Conditions 1, 2, 3, 5, and 4 hold. Let

,,i (. ai) = 2 di p0, di) P, , -di ) da ¢ , /) ta (¢, zi)2~~~~~~~~~~~~ 
- G0i (, i)' P, 1 T

(¢z/) 7 Zt
('i) t=1

i T

(O, di), yE [GOai(zit;,~i)'Pai (,'di) (zit;O, i)]
Tt----I

T

(Oi (0, i), fal (0, i) E9(Zit; O,~ i)9(Zit; O,~ Zi)tJa (, i) g(zit; , i)]
t=l

0 i ( i)t Pai (, i) fai (0, i) (f/W (0, i) - Hai (0, i))
T

+7 TS [oi (zit;0,Ji)tait=l

be an estimator of

B =PGai' G c, - G' Pai E [Ga (zit) H.,i (zit)]

- G Ho', E[G (zit)'Pxg(zit)]-GO. PajE[g(zit)g(zit)'Pag(zit)]

- G Pai Qai (H - H) E [Go, (zit)'PPa, g(zit)],

where (', Zi)' lies between (', &i)' and (O',aio)'. Let Bs]dlOd2i(O,i) and Bsadiod 2 i denote their deriva-
tives for 0 < d + d2 < 3. Then, we have

v( (fZoti , i) - Bsai)

(2sadld2i (, ai) - Bsadlod2i)

Proof. The results follow by Lemmas 12, 31 and 33. *
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be an estimator of

(2.E.32)

(2.E.33)

(2.E.34)

(2.E.35)

(2.E.36)

= Oup (Tr/2s)

= Op (Tr/2s) 

(2.E.37)

(2.E.38)

IQ"i (zit; �' -di)ftc�i (�' -'Ti) g(zit; �' zii)l

d0i (�' -di), fi"'i

(�' -'Ti) g (zi,; �' Tii I I



Lemma 36 Assume that Conditions 1, 2, 3, 4, 5, and 6 hold. We then have

1-~ 1 aT 1
Jsi(, &i) = Jsi + Jsi + QlJsi +- T(r)/2 QlrJsisi T 1R2Jsi (2.E.39)

VT T QiTs +T3/22J%

where

(2.E.41)
pQirJsi = ZTE i Jsei ) ,e = o (1), (2.E.42)

j=1

R2Jsi = Oup (T 3r/2s) = p (V) (2.E.43)

Also n~~~

Jsn () = n Jsi(xci) =Jsn +-Qlj + T3/2RljS1, (2.E.44)
i=1

where

Q1Js = E [QlrJsi + T(i)/ 2 QlrJsi] = 0(1), (2.E.45)
-=1

R1JS = #+Jsi + 7; - (Qljsi -nE [QlJsi]) + Tr/2 (Qrsi -E [Qrjsil)

+ -- E R2Jsi= op(1). (2.E.46)

p

J8i(O,&a~) = Jsi + J8sa - YjO) + Zse(vi)(0i - O,j) + -Jscct(, )( l- ajo)Ai~lso~j=

1
+ 2 Jsar@ji(01 (i)(bj-S0,j)(i-atio), (2.E.47)

j=l

where (6,Zej) lies between (6,5i) and (o,aoi). The expressions for Ji QWj and QWJ can be

obtained using the expansions for 'yio in Lemma 49 and for 0 in Corollary 5, after some algebra. The rest

of the properties for these terms follow by the properties of their components and Lemmas 12, 58, 59,
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60, and 61. For the remainder term, we have

p p
Js R2i + ; -Jsi)R i +ZJsojR2ej +Zv'7 (Js3 ~ (fl, - Jo3i) (lj - loj)

j=l j=l
+ Jc e1 e +R e;a- o)] + W'I s V/-W'Ji 1io)

+ - , [hk1~1, 1+~1,~e Rieo + R1 e eV'T Ozi (" (,) i- Jio)]2 L2

- o,j) V (i - aio). (2.E.48)
j=1

The uniform rate of convergence then follows by Lemmas 12, 15, 40, 41 and 34. 

Lemma 37 Assume that Conditions 1, 2, , 4, 5, and 6 hold. We then have

Bsi(O, &i) = Bsi +- Bsi
1 aT 1+ 7Q1Bsi - TQlrBsi + T-2 R2Bsi,

= V (bsi- Bsi) + Bai¢Iel = Oup (Tr/2s)

= BiQliel +
P 1B

T(iso- B, Zel + BsojiQ'oej +2 B,
j=l

(2.E.50)

(iel) = Oup (Tr/s),

(2.E.51)

QlrBsi = Z BsOjiOej = Oup( )
j=l

R2Bsi = Oup (T3r/2s) = Oup (

I n 

n=1 Z (O, &j) Bn + TQlBs
ni= 1

- n = ~E E [QlrBsi + T(r-l)/2 QlrBsi] = O(1),
i=1

= Jsi + -E (QlBsi
n v'nt/ l i=1i=1

+1 1 -E R2Bsi = p(1)
i=1

(2.E.55)

n
aT 1 - E [QBi]) + Tr/2- (QlrBsi -E [QlrBsi])

n i=l

(2.E.56)

Proof. Analogous to the proof of Lemma 36 replacing J, by Bs, and Lemma 34 by Lemma 35. *

Lemma 38 Suppose that ,j = ,j + anT4'ji + bnTRji, for j = 1, 2, aT = o(1), bnT = (anT), and ~2i
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where

'Bsi

QlBsi

(2.E.49)

Also

(2.E.52)

sn ( )

where

(2.E.53)

1 + TRlBs,

Q1BS

RlBs

(2.E.54)

'J"'Oj i (0, ZTOT (6j



and ~2i are non singular. Then, we have

^ili= - 121i + anT[2 i i-12 22il] + b2TR.~2il ~ 1i -2i ~li an 2 li 2i 22i E -bnTRi.an --

Proof. Note that

= (62i + anT 2i + bnTR2i) 1 (61i -

= 2i (i + anT/li + bnTRli) +
[1

+- anTli + bnTRli)

(2i + aT2 + b -TR2i) 1 - s '] ( ~ih+ anTli + bnTRli)

(2.E.58)

We can rewrite A as

A = (~2i + anT!2i + bnTR2i) [2i- ( 2i + anT/2i + bnTR2i)] 2i

-anT (62i + anT/2i + bnTR2i) 12i 2i - bnT (2i + anT/2i + bnTR2i) 2i2

-B
(2.E.59)

Similarly, we can write B

-1 - -1_(-- 1 ( ) - -1B = 2i 2i-2i -anT (2i + anT2i + bnTR2i (~2i + anTR2i) 2i l2i2i·

Finally, replacing back in (2.E.58) we get the result with

Ri= (~2i + anTj2i + bnTR2i) {Ri- + [(2i + anTR2i) -2i~-

Lemma 39 Assume that Conditions 1, 2, 3, , 5, and 6 hold. We then have

Lemma 39 Assume that Conditions 1, 2, 3, 4, 5, and 6 hold. We then have

B() = 1( = -J7 - j [Q 1 -Q1JB]
S~n(O) = -sn(O)-l3n(O = -Jsn ~s QB - Qsslsn]

n n 0) =- T J-nl Bsn + p(1).

Proof. The results follow from Lemmas 36, 37 and 38 *
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(2.E.57)

(2.E.60)

(2.E.61)

Also

1B-R lB.(2.E.62)

(2.E.63)

-- -~~~~~~~~~~~~

-1�iiR2iI�2i I -



2.E.2 Proof of Theorem 7

Proof. Case I: C = BC. First, note that for any 0 such that 0 - 00 = Op(T-1 ), by a first order Taylor

expansion

Jsn () = Jsn + Op (T- 1) . (2.E.64)

Next, by Theorem 6 and Lemma 56

V/f-(Y -O ) = -Jsn (')- -1n(0O) =-J-lsn(OO) + Op(T-')Op ( -Js n'(Oo) + op(1).

(2.E.65)

Finally, by Lemmas 38 and 56

[ n n
= -J2 Is ~ + Bsn -

i=1
4Bsn] + Op

+ r7f; Jfn Bsn + op(1)
T

(1) -f N(0, J-). (2.E.66)

Case II: C = SBC. First, note that since the correction of the score is of order Op(T- 1), we have that

~(SBC) _ o = O(T- 1 ). Then, by a Taylor expansion of the FOC

((SBC))- _ 10 = n _0 - B ( ( SB C )) = n(00) + Jsn (6) ((SBC) _ 00) -- -B + Op(T-2 ),
x' ~~~~~~~T ~T~(2.E.67)

(2.E.67)

where 0 lies between (SBC) and 00. Then by Lemma 56

-= -Jsn ()- [VnTn (00) -

= -Jsn ()-' E ~si +

nBsn] + op(1)

Case II: C = IBC. A similar argument applies to the estimating equation (2.5.6), since is in a

O(T- 1 ) neighborhood of 0 0. 

2.F Stochastic Expansion for i = 'i(0o)

Lemma 40 Suppose that Conditions 1, 2, 3, and 4 hold. We then have

1 =IOW
v/(S0--7i)----¢ .1_7~1 

(2.F.1)
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/nT ((BC) _ o0)

-T (t(SBC) - o00)

VB nn d) (.
Bsn] + (1) N (, J)

(2.E.68)

VnT - Oo) - v/-nT 1 An (�) = -J�,,,I�n(00)

' Bsn -TV;



where

T
v;~ 12sw4i v =i : - (Tr) - ' V~i (Fio) = Oup(Tr/)

t=1

RWi= --- O(Tr/s) = Op(V T ) .

(2.F.2)

(2.F.3)

Also
= n

I= E /W = Op(A).
i=1

(2.F.4)

Proof. The statements about ~/'w follow by Lemmas 14 and 58. From the proof of Lemma 15, we

have

RW -(TW) v/T(Tff () - T) /T(Cio - '-iO) = Oup(Tr/s) = up( )

=Ou (1) = (Tr/2s ) =o (Tr/2')

by Lemmas 12, 17 and 15, and Conditions 3 and 4. 

Lemma 41 Suppose that Conditions 1, 2, 3, and 4 hold. We then have

/(Yio --io) = W +[ RQ l 2ig

(2.F.5)

(2.F.6)

where

1 m+l

Q1W = -(Tr)i 2 + ;1 '
- ~j=l

Ai = V(f - TW) = Oup(Tr/2s)

RW = Oup(T3r/2s) = Op(VT).

= oup(Tr/S), (2.F.7)

(2.F.8)

(2.F.9)

Also,

1 n

n i=1

1 in

i=1

(QW - E [Ql])

(QW - E [QW ]) = Op(1).

Proof. By a second order Taylor expansion of the FOC for 'io, we have

1 m+l

0 = (io) = t i (Yo) ( + Ti (Cio)(5o -io) + E (io,j Yio,j)Ti,j(Vi)(5'io- -Yio),

j=1

where 7i is between 7io and -yio. The expression for QW can be obtained in a similar fashion as in Lemma

A4 in Newey and Smith (2004). The rest of the properties for Q1W follow by Lemmas 12, 17, 40 and 59.
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(2.F.10)

(2.F.11)

(2.F.12)

= op(),



For the remainder term, we have

R2W (TW) - 1 AWRW + E [RwiVjTr V (io - )Yio) + iji, Rli
2~~~~~i li 2 ij l

[ m+l+ - (Tr) -[ : (o,3 -) (2,()- - )v(o-Yio)j=l

= Op(T3r/ 2s) = Oup(V). (2.F.13)

The uniform rate of convergence follows by Lemmas 12, 17, 15 and 40, and Conditions 3 and 4. 

Lemma 42 Suppose that Conditions 1, 2, 3, and 4 hold. We then have

1 Qw 1QW I 
V(io -Tio) = i + Qi + Q2 i + T3RW (2.F.14)

where

Q-= - ) Wijij Qli - ( E [iWT + QWjwi + i3jB jPiw2i (Tr) 2 IJ iJ Ai Oi q
QW ~~~~~~~j=l

+l m+l

(+ -(§ ) 1 E Ei'iWk),jk i = O (T3r/2s), (2.F.15)
j=l k=l

bvi = VT~tr - Ti) = Op(Tr/2s), (2.F.16)
RW = Ou (T2 r/s) = o p(V/). (2.F.17)

Also,

ni
n1- - E Q2wi = op(1), (2.F.18)1= 1

- R 3 i = op(1). (2.F.19)
2=1 I

Proof. By a third order Taylor expansion of the FOC for 7io, we have

m+l
O = i^ (-iO) = iw + iT (-io(i)(iO--*YiO) - + 2 E ( iO,j - -ioj)(,io -io)

j=l
m+l m+l

+ E E (ioj - i,j)(iO,k - YiO,k)Tijk(yi)(TyiO - 'Yio), (2.F.20)
j=l k=l

where i lies between ~io and Yio The expression for Q2w can be obtained in a similar fashion as in

Lemma A4 in Newey and Smith (2004). The rest of the properties for Qw follow by Lemmas 12, 17, 40,
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41 and 60. For the remainder term, we have

W= - (T) -1 AW WR3i = - i) iR2i
m+1

+ E [Rjl Ttv;(-io- yio) + 7TrRW
j=1 +- -- (TW)-1[1 _1 [ + W ) +E [QlwjTjRl3i + RlwijBiyjv/T(yio -yio)+

j=l
_1im+l m+l

+ - (T -) 6 W Vj('Yi,k -YiO,k)Tk'/(1TiO -iO) + itW Rli kliWjk/(,~iO-_ i)__ k1li, _ w w -
j=l k=l
m+l m+l

+ _-(TWT-1I6 E :':' ~ W0 W

1 m+1 m+1I6 

+ -(T) Z V'ioj - YiOj)V 1fyiO,k - YiO,k)VT(Tijk(yi)
j=l k=l

= Oup (T 2r/s) = OuP(VV).

The uniform rate of convergence then follows by Lemmas 12, 17, 15, 40 and 41, and Conditions 3 and 4.

Lemma 43 Suppose that Conditions 1, 2, 3, and hold. We then have

Lemma 43 Suppose that Conditions 1, 2, 3, and 4 hold. We then have

d N(0, VW),

= lim 1 n-oo n i-1
PHWQi.HW'
POQiHC~i

Pm BE [Q = lim 1EB[QW]- - o lin- n- oo nt n-oo 

w = BW,I + BWG + BlsBN = BW -

BW, I

K 3W,G 
Ozi

Bw G( Br"G )Ai )

J Wl
W, ls
Ai

(

(

- lpWG HWQ.HW'2 ai a aiLai z Oi-2 i ) acki c i

t)] ',)])
' EWGft pWQ HW' + 1w Em .t HWQP W2 x a tt ° cxa1 a k 2 ai j=l aa~i e ai t a ,i

_ HW'G ' PWfi'HW' -HW' mG erf HW 2iPWj2l a Caa i i 2 CiL -j= aa a c,

(2.F.28)
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Yio)]

(2.F.21)

1 n

VW

1 n
n li

i=1

HwQi.pW '
P i iP 

(2.F.22)

BW,I

BW,G
')'i

BW,lS
Yi

(2.F.23)

(2.F.24)

(2.F.25)

(2.F.26)

(2.F.27)

)

)

_'PW - -ijk)'Imio -

=

HWE [G,,(zit)HZg(zit)]ai

PZE [G,,,(zit)HWg(zit)]ai

-EWE [Gcj(zit)'PZq(zitai

HW'E [Go,, zit)'PZg(zit:ai

��YbWRWij ij liI



where

W (G' Wi-Ga) 1 , (2.F.29)

HW = EWG' W. - 1 (2.F.30)

pw - W i 1GoH. (2.F.31)

Proof. The results follow by Lemmas 40 and 41, noting that

aW Ha,(TW)'= - H ' (2.F.32)

OW~~~~~~~~ t

it ( pW )g(zit), (2.F.33)

~~( 2.w' w'2PE [wi ]' =' 'pw) (2.F.34)
p"'f~iHZ' p'IoQpW

E [G,(zit)'pg(zt)]
E [AiWi4] = ( Gr(zt)PaWg(zit)] ) (2.F.35)

B [Ge, (zit)Hg(zit)]

( (G P2iHW' 
ac a, a

E 7 W ] = G'., HWQH' ' ; (2.F.36)i ~~- a, Q

GI ,iej- i HiPj, if j > 1.
U~~~~~~~~~~~~

2.G Stochastic Expansion for /1w(00, io)

Lemma 44 Suppose that Conditions 1, 2, 3, and hold. We then have

1 lw 1 w 1 w 1 W~W(0o, 'io) = I s + yQs + T2Q28i + ¥ (2.G.1)
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where

v = Mi iW = Oup(Tr/2 s), (2.G.2)
m+l

Q~w = ~rw -w I~ W M W+Q1W +-- Qi C3 -M O up(Trs), (2.G.3)
j=1

ff = V(Miw - Mr) = O(Tr/2) (2.G.4)
m+l

QWs = M Q2r) + otQrv+2',jMijQi + 2ij +iji j=1
I m+1 m+l

6 ( E E QMW i-EQ ) o)w = o(p(T2 (2.G.5)6i ~ "F~ - i,jk 
j=l k=l

D'W = v/r(Jl, - Mi.~ = 1~r2s),
1i.i = 4(Mi~j -Mi~j) = o (Tr/) (2.G.6)

RWi = oup(T2r/s) = Op(VT). (2.G.7)

Also,

n

. w E s = Op(1), (2.G.8)

- Qsi = op(1) (2.G.11)1n i=11 I (nsi 

± ZE=fR3wsi = op(1)- (2.G.12)V/~i= -- [Qs]n:O(i=11n- I w(..2

n i= 3sai =pl) %(21).

Proof. By a third order Taylor expansion of . W(0o, $io), we have

1 m+l

iW (00, ~io) = iW('(o, Yio) + Ili(Aio)(yio - YiO) + E ( iOj -ioj)Mirj(Yio -- io)
j=l

1 m+l m+l
+ - E >3 (7iOj - -iO,j) Q¾0,k - io,k)Mjk(7i)(iO i- Yo), (2.G.13)

j=l k=l

where ~i is between 'io and 7io. Noting that 9W(0o, -io) = 0 and using the expansion for jio in Lemma

42, we can obtain the expressions for ?/T, QW, and QW, after some algebra. The rest of the properties

for these terms follow by the properties of w Qw, and Qw, and Lemmas 58, 59 and 60. For the
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remainder term, we have

m+l

RWsi R iR+ ,Mi, (io -Yio) + M7 Rw 
j=l

m+1
+ 2 E [Qwi jMi jRw + RWjDiWV(.io-io) - w~WRW

j=1
1 n+l m+1

+ S [RziR i(io,k - -Yi,k)MjkVT(Yio -Yio) + ,iYjRl/kM kV7(Yo-Yi)]
j=l k=l
rn+1 m+l

6E E S ij i,kMjkRW
j=l k=l
m+l m+l

+ - /T(oj - 'YiO,j)VI(yiO,k -- iO,k)v(MJik(7i) - Mk)V(TiO - 'iO)
j=l k=l

(2.G.14)

Then, the results for RWi follow by the properties of the components in the expansion of ;yio, Lemmas

12, 17 and 59, and Conditions 3 and 4. 

Lemma 45 Suppose that Conditions 1, 2, 3, and 4 hold. We then have

n d

si N(0, VW), (2.G.15)

1 n
VW = lim - GP' pW QiPWG (2.G.16)n--oo Oi oti il-oti UJOi

1 n 1nB',(..7
i=1nW p BW = lim - E [Q1 ] = lim EBW (2.G.17)

BI W = BW + B' + B', (2.G.18)St nS o ~.nBi St

BswivB = G~iBWi =-Gi (BW' + BA ,G + Bw's) (2.G.19)

i=11 1 mBsWC = E sGi~zt q Bi -Zit) , (2.G.18)BW' = G', - Qi .P - EG'o ejH, QiP,,,j , (2.G.21)
j=1

where

-]W GG,,,= (G' ,Wi- ,) 1, (2.G.22)

HW = EWG' iWvi- 1, (2.G.23)
pw = Wi- 1GH (2.G.24)

Oti= Wi-1 W-lGo, HW~ (2.G.24)
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Proof. The results follow by Lemmas 44 and 43, noting that

M( HWQ.Hw'
E [,iWV)Wi = Mrw 04iPQHa 1Si~ ~ St . ,~ wH~'a1i r "i

PWQi.pW JaW W/i

if j = 1;

if j> 1.

Lemma 46 Suppose that Conditions 1, 2, 3, and hold. We then have
Lemma 46 Suppose that Conditions 1, 2, 3, and 4 hold. We then have

{

Vn¶iW(o) d+ N (jBW, vW),
T.W (o) --P BW

if n = pT;

otherwise;

nnW (00) = - S(O )i7
i=1

and B W and V W are defined in Lemma 45.

Proof. Case I: n = O(T) From Lemma 44, we have

;77' (0o)
- n [b~V E!QW #'ZQ--j#n ZRnI1 n r~w i 1 n-l W , w 1ln= ES~i 12-lsi T2- -EQ2wsiu3 R3si

i=1 V Tn i=1 ni=1 ni=1-~ -
=0&(1) =O() =ov(1 ) =or.(' )

1 i=n 1 Qlsi n+ ~- Q + P(1.
i=1

Then, the result follows by Lemma 45.

Case II: T = o(n) Similarly to the previous case, we have from Lemma 44

1T _n 1~ w
= V-6 E Xsz +- Qlsi

- T1§~ + -jEWi__ =1 _ _ i=1

=op(1) =OP()

V n- 1 1 1 1 w
T2V T - 2si 4n L 3sin R 3i=1 )

=a (1) - -op(1)
n

= QWi+op(l ) .
i=1

Then, the result follows by Lemma 45. 

E [wrw]

E [i,j MW w ], 2t'i

= E [Go, (zit)'PYi g(zit)],

_ -G' pwQ.Hw'= aoi -- 1 i ai ,
-G' OPj_9H ij

(2.G.25)

(2.G.26)

(2.G.27)

where

(2.G.28)

(2.G.29)

TW(0o)

(2.G.30)

(2.G.31)
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2.H Stochastic Expansion for 'io = i(Oo)

Lemma 47 Suppose that Conditions 1, 2, 3, 4, 5, and 6 hold. We then have

V~(io - YiO) = ¢i + Ri,

where

1 T
¢i = (it = - (Ti )-

t=l

R = -
V7T (o) = Op (T /2 ) 

Also
1 n

I E Zi = Op(1)
Vi=I

(2.H.4)

Proof. The statements about i follow by Lemmas 26 and 58. From the proof of Lemma 27, we

have

Rli = -(TrI)-1 v(i(i)-Ti ) = (oio- io)-
=0U(1) =ou(Tr/2) =ou(Tr/ 2

)

= Oup(Tr / s ) = Oup( V f r )

(T2) - 1 v/(TR(i) - TR) (~io - Yio)
=OU(1) -=o.(Tr/2 ) =o(Tr/2. )

(2.H.5)

by Lemmas 12, 29 and 27, and Conditions 3 and 4. 

Lemma 48 Suppose that Conditions 1, 2, 3, 5, and 4 hold. We then have

=I +I1
v/riO - "YiO) = '¢i +- Q(i + -R 2

i
VT T

-(T2) -1 diag[, ]Vli= Ou (Tr/s)(2.H-7)

Ai = _ /(Ti-- r ) = Oup (Tr/2s)

R2i = up (T3r/2s) = Oup (V)

n
n (Qji - E [Qli])

i=1

1 n
I E (Qi - E [Qjj])

i=-1
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(2.H.1)

(2.H.2)

(2.H.3)

where

(2.H.6)

Also,

(2.H.8)

(2.H.9)

= Op(1).

(2.H.10)

(2.H.11)

1 - - M+1Qjj(Oj,&j = -(Ti")- AnOi+i E
- j=1

� i, j Til"i 0 i

= op(1),



Proof. By a second order Taylor expansion of the FOC for 'i0, we have

m+l
0 = i(io) = +i io) + Ti o-i) + 2 E (ioj - ioj)Tij(-i)(io -io), (2.H.12)

2
j=1

where 7i is between 5io and 'Yio. The expression for Qi can be obtained in a similar fashion as in Lemma

A4 in Newey-Smith (2003). The rest of the properties for Qi follow by Lemmas 29,47 and 59. For the

remainder term, we have

Ri = -(Till)- ARj + - [Ri,jT[,xvfT(io - io) + ijTiRli
2i = _ (T2)- 1 m l 2 q- 2

j=l

+ - y \(iO,j -io, j)v (ti,(yi) -Tij)(io -Yio)
j=l

+ - (T) - 1[diag[O, Rw,]vT(~io - yio) + diag[O, fW]Ri]. (2.H.13)

The uniform rate of convergence then follows by Lemmas 12, 27, 29 and 47, and Conditions 3 and 4. 

Lemma 49 Suppose that Conditions 1, 2, 3, 4, 5, and 6 hold. We then have

1 1 aT 1

/V(NO - -Yio) = i + ~Qli + Q2Q2i + T3/2R3i (2.H.14)

where

aT = C, if n = O(Ta ) for some a E R; (2.H.15)
aT=

o(T') for any e > 0, otherwise,

Q2i = -(Tin) AiQli + E [ijTijQli + Qli,jTji + ij -j---- -Ai Ql q- ~j=l

m+1l m+l

+ -(Ti) E E ij i,kx jk~i
j=l k=1

+ _(T Q)- [diag[O, -JW]Qi + diag[O, QWi i] T3r/2s (2.H.16)

B. = 4( i , j) = °up (Tr/2s) (2.H.17)

Q2ri = (Ti) - 1 diag[O, QW J1i = oup (Tr/2) (2.H.18)

R3i= °up (T2r/s) = °p (V). (2.H.19)
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Also,

nln
- Q2i = Op(1), (2.H.20)

n

i=1

m+1 m+l

+ 6E E (iOj - YiO,j)('YiOk - 7iOk) Tjk(Yi)(YiO - YiO), (2.H.22)
j=l k=l

where Yi is between ~'io and 'YiO. The expressions for QW and QW can be obtained in a similar fashion as

in Lemma A4 in Newey and Smith (2004). The rest of the properties for Q2w and Q2w follow by Lemmas

29, 47, 48 and 60. For the remainder term, we have

R = -(rIn) [A"R2i + 2 R2i-jT v-j(o-Yio) + jijTI R 2i]][mml m+ 1l3 i )- 2i [Ri,jio x/- ~io_,Tio) +i, jliSR i]j--1

q--(T2)-l~l~ [QlijjTi, Rli-~ijg+Rjy/7(3io-?-io)q+-jjfflij

1 m+l m+l+- -(TP) - 6 E E [Rj/V(~iO,k -"iO,k)TijkVr(~iO -iO) iji,kTjkVr(~iO -YiO)j=l k=l1 m+l m+lq - (2") -I Y E ¢Pi'j~i,kTJk11~l[1 j=1 k=1

+ - (T/ig 6 : V'T('iO,j - YiO,j)V\(7 iO,k - YiO,k) /(Tij k (7i ) - Tijk)T (\iO - YiO)
j=1 k=l

+ -(TQ) -1[diag[O, Wi]R2i + diag[O, QWi]Rjj + diag[O, RWj]v'('io - Yio)] (2.H.23)

The uniform rate of convergence then follows by Lemmas 12, 29, 27, 47 and 48, and Conditions 3 and 4.

E
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Lemma 50 Suppose that Conditions 1, 2, 3, 4, 5, and 6 hold. We then have

n
1 d¢i ~ N(0, V),

n r 0 
n-oo n i=l 0 ° i

n 1-n nn

n Qi P B = lim n E[Qli] lim n Bw,Tt ~ ~ ~ ~ n T/n--*o /
i_ i=1 i=1

B 'i BI + B + B BW
'i 'i 'i --i

z.= ( B' / H, -HiG,,io,, + HaE [G(zit)H, g(zit)]
B'i -' BI = -,i+P. G

A Bi 2 4 -PaiGaai .. + PaE1a,,(zit)Ha,,g(zit)] 

~GBG = ( B ( - E [Ga (zit)'Pa.y(zit)]
'i BG J - HB, E[Ga,(zit)'Pa, g(zit)] 

Bn , Pa, E[g(zit)g(zit)' Pig(zit)] 

BW Hai Qa (HT -H.,)
=i- BW' J PaiQ (HZ-H) ')

E = (G' iq Ga.)-1

Hoi soy 7,tig t
Psti = Q-1 -Q-GtiH,,.

Proof. The results follow by Lemmas 47 and 48, noting that

() = -( H',pH), '

0 P,=,Oit --- H,,, g( it ),

E [jitV't] = (E', 0 )i 0 P,~,
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(2.H.24)

(2.H.25)

(2.H.26)

(2.H.27)

where

(2.H.28)

(2.H.29)

(2.H.30)

(2.H.31)

(2.H.32)

(2.H.33)

(2.H.34)

(2.H.35)

(2.H.36)

(2.H.37)



E [Ga (zit)'Pci, g(zit)] 
E [GCa (zit)Haig(zit)])

0

G'a, Eai

0,

)

ifj = 1;

if j> 1.

0

E [g(zit)g(zit)'Pg(zit)] + Qor (Ha - H.,)

Lemma 51 Suppose that Conditions 1, 2, 3, 4, 5 and 6 hold. We then have

1 1 aT 1=i+Qi+-Q2i + Q2i + QiT T~~)2 T 3 /2 aT7'
q- aT /--- Q3ri +

if n = O(Ta) for some a E R;

FE) for any > 0, otherwise,

[~3 i 1
= -( -l AQ2i -

m+l m+l

+ -(Ti) 1y E1 j=l k=l

m+l

2E [i'jTijQ2i + QlijTjQli + Q2ijTiji + fi~jbi"jQli + QlijB9iAPi]
j=l

ijfikT~jkQli + ijQlikTjkfi + Qijfik~ik i + fijfick_ ]]

m+l m+l m+l

+-[ i) 2 E E i, T,jkli
j=1 k=1 1=1

+ - (Ti) 1 [diag[O, ?PW]Q2i + diag[O, QWjI]Qji + diag[O, Q2i]i] =Oup ),
_~~~~_P'jk = V/~~~~~~~~~ ~T~ir2s/

/(ijk i T,jk) = P (Tr/2s)

Q3ri - (Ti) - 1 [diag[O, QlrQh]Qli + diag[O, Q2wri]i ] = up (Tr/s)

R4i = Oup (T Oup ()
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E [Ai f]

E [ijTi~jwi]

(2.H.38)

E [diag[O, 1W]k]i]

.

(2.H.39)

(2.H.40)

V(%io - io)

where

C,
aT = o

o(.

1

IHR4i,

(2.H.41)

(2.H.42)

(2.H.43)

(2.H.44)

(2.H.45)

(2.H.46)



Also,

T-_ Z n Q3ii_ 1

(2.H.47)

(2.H.48)E Q3i = Op(),
i= 1

V -E R4i op(1). (2.H.49)

Proof. By a fourth order Taylor expansion of the FOC for 5io, we have

m+l
0 = ii(io) = '('YiO) + i(Yio --YiO) + E (ioj - -iOj)t i( io --YiO)

j=1
1 m+l m+l

+ - j E ( -iOj -- iO,j)(iO,k - iOk) itjk(iO -'YiO)
j=l k=l

I m+l m+l m+l+ - (fE E E( - yio,,j)(iO,k iO,k)()(iOl - iOI)TijkI(Ti)( iO -iO),
j=1 k=l =1

(2.H.50)

where i is between 7io and 'Yio. The expressions for Q3i and Q3ri can be obtained in a similar fashion

as in Lemma A4 in Newey and Smith (2004), with an additional iteration of the procedure. The rest of

the properties for Qi and Q3ri follow by Lemmas 29, 47, 48, 49, 60 and 61. For the remainder term, we

have

Ri= -T(§) Ai+R3i+ l [R3i,jTijv( io) +iijiR 3i]R4i 2 -- Y2- I R'i q-T 7io , , ,p
j=l

[1 +1

+ -(Ti) E [Qli,,jT2,jR2i + Q2ijTiRli]j

j=+ - [ [R2,, io-i) ++QliB2Rl]

j=l

Im+i m+1

+ -(T ) - 1 E [R2i,j
j=l k=l

/((iOl,k - YiO,k)Ti,jkV/(TiO - yiO) + ¢ijR2i,krkTijk V(iO -

144

,Yio)]

= Op(l),



Lm+l mn+l+ (TiQ) 1[ 
j=l k=l
m+1 m+ 1

+ -(Ti) - 1 L
j=l k=l

[¢i,jVi,kTijkR2i + i,jQli,kTijkRli] ]

[Q1li,ji i,kTi,jkRi + Qi,jR ikTJkv('io - Yio)]]

1m+I m+l
+ -(Ti -) 6 6 [i,j ,kijkRi + - ),jRli,kjk(io- Yio)]

j=+ k-:---
m1 +lm+l [

+ -(T?) - R Z jRl,jV(8Y,k -- Yi,k)-jk (T o-,io)j=l k=l1]

+ (T)-1 [1

+ - (T)-1 [1

+ -(T)- [ 1+~~~2

m+1 m±1 m+1m+l m+l m+l

j=l k=l k=l

m+l m+l m+l

zzzj=l k=l k=1m+l m+l m+l
:ELE
j=l k=l k=l

1 m+l m+l m+1

+ -(TQ) -4 E E Ej=l k=l 1=1

X VT('O - io)

[i,jiiki,lT,jklR 1 + i,ji,kRi,Tjklv'(7iO - YiO)]

[¢i,jRlik / T(iO - io,l)Ti,jklv(io -io)]

[1Rji,j YI(iO,k - YiO,k)VT(iO,l - YiO,)TijklV/(Ti O - Yio)]

V,/T(ioj - iO,j) V (iO,k - YiO,k)V./(iO, / - 'iO,l)N1T(TijklI(Ti) - T.,jkl)

-(T) [diag[O, f]R 3 i + diag[O, QW]R 2i + diag[O, Q2Wi,]Rli + diag[O, R]VT(io - ~'io)](Ti" ) -1 1 nQm ] R i s3~ -
(2.H.51)+ -T(rl)/ 2 (Ti) [diag[O, Qw ]R2i + diag[O, Qr ]R].

The uniform rate of convergence then follows by Lemmas 12, 27, 29, 47, 48 and 49, and Conditions 3 and

4. The result for the average follows by the observation that the sample mean is dominated in probability

by the maximum. 

2.I Stochastic Expansion for Si(00, Yio)

Lemma 52 Suppose that Conditions 1, 2, 3, 4, 5, and 6 hold. We then have

i I 1 aT iR3si
Si(00, iO) = - i -Q -Qi T(r+2 )/2 Q2rsi + iIT T T3/2Q T~r2)+ (2.1.1)
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C, if n = O(Ta) for some a E R;
aT =--

o(Tf ) for any e > 0, otherwise,

{ Ei = M i = °up (Tr/2s) 

m+l

=Mi Qi Ci i + E ijMji = Oup 1,) I
j=1

C~i = VT (Mi - Mil) = °up (Tr/2S),

m+1

= MQ2i + C Qli + E
j=l

I m+l m+l1+ 6 ~ijikMijki
j=l k=l

pi'jMi'jQli Qliijm qj i + ijf)'ji]

= Oup (T3r/2s)

= Mi- Mj) = u (r/2 ) 

=-I M Q2ri,

= Oup(VI)

I n

-1 > (Q 5lsi-E [Qls5 ]) = Op(1)

T~11Q2si = Op(1),i=1
n=1

17~ -r Rasi OMn

E 2Rsi = p()
iK5 R3 s = pV)

i=1
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where

Qsii

(2.1.2)

(2.1.3)

(2.1.4)

(2.1.5)

Q2si

Q2rsi

Also,

(2.I.6)

(2.1.7)

(2.I.8)

(2.1.9)

n

V i=I

- E(Qjj E[Qlsj1)ni=1 - [Qi])

(2.1.10)

(2.I.11)

(2.1.12)

(2.I.13)

(2.I.14)

(2.I.15)

= OP(l),

= op (1),



Proof. By a third order Taylor expansion of Ai(00o, io), we have

m+1
si(0o, io) si(0o, io) + M](Iio - Yio) + Z (iOj - io0 ,j)Mi,j (io - i)

j=l
1 m+l m+l

+ 6 E (iO,J - YiO,j)(iO,k - io,k)Mjk(7i)(Nio - Yio), (2.I.16)
j=l k=l

where yi is between 7io and 'yo. Noting that i(OO, yio) = 0 and using the expansion for 7io in Lemma

49, we can obtain the expressions for Osi, Qsi, and Q2,i, after some algebra. The rest of the properties

for these terms follow by the properties of i, Qi, and Q2i, and Lemmas 12, 58, 59 and 60. For the

remainder term, we have

&~si =l MRi+ iRi+2 [ijtQ;(i-ti)+XijnjR2i]m+1M+ 2PR3 + CPjnR2 i + R ii M(Ti - yio) + 'DpjM9 R2ij=1

+ -5 [Qli,jM9 R1 j + Rij"VT~o- -yio) + '~PjbiD2RiiJ
5=1

m+l m+l
+ 6 [Rlijv(io,k - YiO,k)M7,jkV(YiO - iO) + i,jRli,kMjkv'(Tio -Yio)]

m+l m+l
+ 6 S S tIi,ji,kMi jkRli

j=1 k=l
1 m+l m+l

+ 5 5 2 v(o,) -oj*T o, k - - Yio,k)/(Mjk(Y) - M.sk)/T(o - YiO) (2 .1. 17)
j=l k=l

Then, the results for R3si follow by the properties

12, 27, 29, 47, 48, 49, and Conditions 3 and 4. 

of the components in the expansion of ijo, Lemmas

Lemma 53 Suppose that Conditions 1, 2, 3, , 5, and 6 hold. We then have

d
N(O, JS),

1 n

Js = nlim G P,i Gon--* n T, '
i---1

- B = lim E E [Qi] = lim -IBSi,
n--oc n/ n--oo n E

i=1 i =1

= B + BC + Bs

-G Bi =-G', (B, ,+ BG+ Bo+ BW) 

= E[Goi (zit)'Pa,g(zit)],

= 0,
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i n
n

7 E )sit
1=1

n E Qsi
i=1

(2.I.18)

(2.I.19)

(2.I.20)

(2.1.21)

(2.I.22)

(2.1.23)

(2.1.24)



Ecx = (G'aQ'G-l,) -1 ,

~w0WHi

HW
Oti

= (G', W-1G ) -

= WG'i W-1 ,
= Q i G' i Qi ,

(2.1.25)

(2.1.26)

(2.1.27)

(2.I.28)

(2.I.29)P,,i = SQ-'-Q-1G .jH,.cxi

Proof. The results follow by Lemmas 47, 48, 50 and 52, noting that

(2.I.30)

(2.I.31)

E [ijmiji]
0,

0,

if j = 1;

if j> 1.
(2.1.32)

Lemma 54 Suppose that Conditions 1, 2, 3, , 5, and 6 hold. We then have

Lemma 54 Suppose that Conditions 1, 2, 3, 4, 5, and 6 hold. We then have

{ Vng (O0 ) ) N (pBs, J,),
T§i(0o) Bs,

Sn (o)

if n = pT;
otherwise;

(2.1.33)

(2.1.34)1 n
= -E ii=1(0, io),n =1

and Bs and J, are defined in Lemma 53.

Proof. Case I: n = O(T) From Lemma 52, we have

nn 1 Qlsi
7/~ i=1 n .

=Op(1)

i=1

=Op(1)

1
7R3si

nl1 
+- _ - Z [Q2si + aTQ2rsi]

i=1

---o(1)

= 7 Zsi + n E Qlsi + op().
i=1 i=1

y

=o(1)

Then, the result follows by Lemma 53.
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where

where

(2.1.35)

= MP Ei
0

0 Mill"
P.1,

E [itOsit]

= E[Gq,(zjt)'Pcg(zjt)],

VnTn (0o)



Case II: T = o(n) Similarly to the previous case, we have from Lemma 52

=o'(1)

1 ~~aT /'n--ln+'ZE Qsi + - Tr-- n Q2si
i=1 i=1

·- 

=op(1) =op(1)

n naT n 1 1
- Tr1 Q2rsi + FR3si

1 ni=

= 1 Qlsi + op(1).n i=1

Then, the result follows by Lemma 53. 

Lemma 55 Suppose that Conditions 1, 2, 3, 4, 5 and 6 hold. We then have

1 1 aT 1 aT 
+ Qisi + T Q2si + T Q2rsi ± 1-Q3si T Q2rsi 1R4si, (2.I.37)T T 3/2 2)/2 T+3)2rs +T 5 /2 R 5 ,(..7

C, if n = O(Ta) for some a E R;
aT = for any e > , otherise,

o(T) for any > O. otherwnise,
m+l

= MP Q3i + COPQ2i + - E [ijMi,jQ2i + Qli,jM,jQli + Q2ijMa
1 m+1~~~~~~~~~~~~~~~~~~~j=lm+l

2 Z [ijitjQiQjl i+q j- i]
j=1
m+l m+l

+ SZ [iji,kMijkQ l i + Vi,jQl1i,kMi4,ji + QikMjki]
j=1l k=l

1 m+l m+l

6 E [ -ifi~kp~jki]
j=l k=l

= O, (T2r/s)

=- V( jk -2ijk) = O (

= MiQQ~ri + ciQQ~ri1 + '+
1

=MQ~+C;+ OQ~ri + - .~-

1 m+l m+l m+l

2 E E E [iji,kli,kM~,jki]24j=l k =1j=1 k=1 1=1

[ijM~ Q2ri + Q2ri,jM',j)i] 

= Op(T3r/2s) - O(-).

(2.I.36)

~i(00, ~io) = I;¢84i

where

Q3si

(2.I.38)

p9

Q3rsi

(Q3rsi

(2.1.39)

(2.1.40)

(2.1.41)

(2.I.42)
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Also,

nln
7_- Q3si = Opl )(2.I.43)

T 1 Q3rsi = Op(1), (2.1.44)
n=1

1n

i=l-ER~si = Op(VT). (2.I45)n

Proof. By a fourth order Taylor expansion of 9i(00, yio), we have

m+l

8i(00, io) = i(OO, Yio) + M (io -r-iio) + Z- Z ('io,j - Yioj)MiQyj(iO - Yio)
j=1

1m+l m+l

+ -E E (-Yfj -iOj)(fiO,k - iO,k)Mi,jk(iO - iO)
j=l k=l

1 m+l m+l m+l
+ 2 E E ( -IoO,j ) ,k -YiOkiO, -- 'YiO,l)Mjk(li)(QiO -YiO),

j=l k=l k=l
(2.I.46)

where 5i is between jio and yiO. Noting that i(0o, yio) = 0 and using the expansion for -io in Lemma

51, we can obtain the expressions for .si, Qlsi Q2si, Q2rsi, Q3si, and Q3rsi, after some algebra. The

rest of the properties for these terms follow by the properties of their components and Lemmas 12, 58,

59 and 60. For the remainder term, we have

R4 = MR4i + liR3i jM vT o - YiO) + i, + jMRjR3i]M2~~ ~ i'i - C,3i
j=1

+ [Qli,j M1 jR 2i + Q2i,jMijRii + T(rl)/ 2 Q2ri,jMfQjRlij
m+1

+ E [Q -j'(io yio) + QjDii,jR2i + Qli,jLbjRli]

1mlm+1
+ 6 > [R2i 4 v'7(Qiok - yiok)M2, k§('io - i) + f'ijR2ikMfjkv(iio --2 R j ij,9j=lm+l m+lS 6 [i,ijV(kiO,kR2i + Qi,kRi,kMhjk(ti io--) i,+2i,kMjkTi O ,kR O)i]6j=l k=l

1 m+l m+l
-6 E [Qi,jPi,kM2jkRi + QijRi,kSjkViO+ ---liO) , jQi, kMjkl jji

j=l k=l

- 6 1: 1 Qliji,kM;,jk li'+-~ij~i,kpiJkRli'- ~-j~ i,jtlk-ijkV1TiO --liO)
6j=l k=l

150



mlm+l1 m+1
+ 6 E i[ROjv(fi0,k -'Y/iO,k)'i,jk'T(iO -iO)]

j=l k=1
m+l m+l m+l

+24 3 ~ ~ [Rli,jVT('io,k -- iO,k)vT('iO,I - 'iO,l)MklV/T(iO - io)]
j=l k1=l 1=1

1 m+1 rn+l m+l

+ 24E E E [pijikjRiM l + ioj ?Aj ,kjli,-MIik - )24 j1 A- 1= Ii j li kyVTNO'I " ~iO,l)Mijk1Y~(TiO - /i)]j=l k=l 1=1
m+l rm+l m+l

+ 24 E E [pi,j i,ki,lMijklRli + ~i,j ikRjjMP'jkVMio- 7iO)
j-1 k--1 I=1

1m+l rr+l m+l
+ 24 [VX(iOJ - iO,j) V/T(iO,k- /iO,k)V/(iO,I - [iO,l)V/(MJ jkl(-i)- Mfjk)

j=l k=l 1=1

X (io -- io). (2.I.47)

Then, the results for R 4 si follow by the properties of the components in the expansion of :io, Lemmas
12, 27, 29, 47, 48, 49 and 59, and Conditions 3 and 4. 

Lemma 56 Suppose that Conditions 1, 2, 3, 5, and 4 hold. We then have

S(VOf ) ( = 5 + n + op(1). (2.I.48)

where

n

n (0o) = E i (00 io) (2.I.49)

n

Bsn =- E [Qlsi] (2.I.50)
i=1

Proof. We have from Lemma 55

n 1

=o (1)

+I1 n Q2si± + Y T Q2ri -E Q3si
_e~~~~~= ___________________NfnT-~~~~n=op0) =77l)=1 T n 71 n

+ T3/2 Ir 1 Q3rs± T 3-r4si
1 1 _ i 1_ __ _i

in o()=op() =op(1)
T = n+ EQs+l)2I1

7= ~~i=1 i ;'=1
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Then, the result follows by Lemma 53. 

2.J V- Statistics

2.J.1 Properties of Normalized V-Statistics

Definition 1 (HN) Consider a statistic of the form

TT
k 1

== Tv/2 kt=l
(2.J.1)

(zit E k2 (zit) = E k (zit)
t=1 t=1

We will call the average
n

i-1 E Wni=1

of such W(v) the normalized V-statistic of order v.
iTrder .

order 4.

(2.J.2)

We will focus on the normalized V-statistic up to

Condition 7 (i) E [kj (zit)] = 0, j = 1, ..., v; (ii) Ikj (zit)I < CM (zit) such that supi E [M (zit) ] < 0,

where C denotes a generic constant; (iii) n = o(Tr) with r < 3.

Lemma 57 Suppose that Conditions 1 and 7 hold. Then for any {rj,j = 1, ... , J < 4} such that 0 <

rj <2

< 00,E [k (zit) r' k2 (zt) r 2]

E [k1(Zit)r l k2(zit) r2 k3(zit) r3]

E [ki (Z~t)rl k2 (Zit)12 k3 (Zt)r3 k4 (Zit)r4]

< oo00,

< 00.

(2.J.3)

(2.J.4)

(2.J.5)

Proof. For the first statement, note that by H6lder's Inequality and Condition 7

E [k (z~t)rl k2 (zt)r 2 ] <_ E [kl(Zit)2=l rj - E k2(zit)E2=l rj-

< c ,j rjE M(z)zj=L rj] < CE [M(Zit)4 ] < .

The second statement follows similarly by repeated application of Holder's Inequality and Condition 7

E [k (Zit)r k (Zit)r2 k3 (Zit)] < E [kl(zt)Z~=1r3]?1 £ [k2(zit) r23= k 3(it) r3 2 r]

< E [k1(zit)=r3 ] E [k2(z t)Z=1r] rE [k3 (zIt)Z=r] i1
< C 3= [M(Zit) r] CE[M(z) 6] <00.___< j E M _zt =

-~}- - rj C[M(Zit) 6] < Co. (2.J.7)
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The third statement can be proven with an additional iteration of the previous argument. In particular,

we have

E [kl (zit)rl k2 (zit)r2 k3 (zit)r3k4 (zit)r4] < CE [M(zit) 8] < 0.

U

Lemma 58 (HN) Suppose that Condition 7 holds. We then have

In
7 W ) = Op (1).

i=1

Proof. By Chebyshev's inequality, for any 1 > 0 we have

(2.J.8)

(2.J.9)

[ = Pr 1 FE kl (zt) > J
i=1 t=l

-i= VT- t=lk

C2 supi E [M (it) 2 ]

It therefore follows that E W i= = Op (1), from which we obtain the desired conclusion. *

Lemma 59 Suppose that Conditions 1 and 7 hold. We then have

7n 1 n

1'W(, P- lim E [W( 2 )] = (1),= n--1 n
i=1 i--1

1 n
7 (2 )- [Wi( T] ) = Op (1) -

and

(2.J.10)

(2.J.11)

(2.J.12)
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K

1 En, FT ki (Zit)2
;iT i= -t=l E I I

1 n
Pr W'(1) �'T" E "'T

i=1



Proof. Note that for v = 2 Condition 1 implies

E [WI2] = E [k (it) k2 (Zit)] = 0(1), (2.J.13)

T~~~~V [Wi,2] = E [(W2) ] - 2 [W(T)]

= E |Zki (zit) k2 (Zit)21t=1 t=l

0(T 2)

+ 2TE k1 i k2 (zit) k2 (Zi)

t=1 t=l s>t

o()

+ 22E k (Zit)kl (is) Y k2 (it)2
t=l s>t t=1

,~~O
o(l)

+ 4-E E kl(Zit)kl(Zi) E E k2 (Zit)k 2 (zis) + 0(1)
t=l s>t t=1 s>t

0(T 2)

= O(1). (2.J.14)

where the rates of convergence of the sums are computed by counting the number of terms with non-zero

expectation. Note also that all the expectations are finite by Lemma 57. Then, the results follow by

WLLN and CLT. 

Lemma 60 Suppose that Conditions 1 and 7 hold. Then, for v = 3,4, we have

nl
Tl ~-W( - O p(1) (2.J.15)

7i=1

Proof. For v = 3 Condition 1 implies

E [Wi(3)] - T-1/ 2E[kl (zit)k 2 (zit)k3 (Zit)] = O(T-'/2 ), (2.J.16)

V [W(3] - E (WZ() | -E [W3)]
iT ~ ~~~ ~ T TT-

-- +E fki (zit) 2 k2 (Zit)2 k3 (Zit)2
t=l t=l t=1

O(T3 )
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[T T T T27 E /k / (zit)2 k2(zt) k2(zis)Zk3 (Zit)
t=1 t=l s>t t=l

O(T2 )

12 [ T T TT ]
2T3E kl (Zit) 2E k2 (zit) 2 E k3 ( it) k3 (Zis)

t=l t=l t=l s>t
O(T2 )

± 2~ T T T T 1
23 E kl (zit) k (zis) Z k2 (zit) 2E k3 (zit)

t=l s>t t=l t=l
O(T 2 )

T T T T T 

+ 43E E ki (zit)kl (zis) Z k2 (zit)k2 (is) k3(zit)2
t=l s>t t=l s>t t=l

O(T3 )

T T T T T 

4-E k (it) k (zis) ~ k2 (zit)2 ~ ~ k3 (zit) k3 (Zis)
t=l s>t t=l t=l s>t

0(T3)

1 [T T T T T 
4 E kl (Zt) 2 k2(zit) 2 (zis) k3 (zit) k3(zis)

t=l t=l s>t t=l s>t
0(T3 )

[T T T T T T

8E kl(zit) k (Zis)ZZk2(zit) k 2 (is)ZZ k3(zit) k3 (Zis)
t=l s>t t=1 s>t t=l s>t 

0(T 2 )

+ o(T1- ) = 0(1), (2.J.17)

where the rates of convergence of the sums are computed by counting the number of terms with non-zero

expectation. Note also that all the expectations are finite by Lemma 57. Therefore by Condition 7 (iii)

,n I W3
E T - W T1 = O( ) =o(1), (2.J.18)

E (T)- =/ Tr-l 0(1) = O(Tl-r). (2.J.19)[( n I=-~,W( T] n(1
Then, the results follows by Chebyshev LLN.

Similarly, for v = 4 Condition 1 implies

E [(4)] = T-lE [kl (Zit)k2 (zit)k 3 (zit)k 4 (zit)] = O(T-1 ), (2.J.20)

V [W(4)] - E(Wi) ] E 
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+ 2E[ki
t=l

T T T 

(zit) 2 E k2 (Zit)2 E k3 (Zit)2 E k4 (zit) 2

t=l1 t=l t=l J

0(T 4)

T T T T

(Zit)
2 > k 2 (Zit) 2 > k 3 (zit)

2 > k 4
t=l t=l t=l s>t

T
O(T3 )

T T

+ 2E kl (Zit)2 k2 (Zit)2E E >k 3
t=l t=l s>t

T ]
(Zit) k3 (Zis) E k4 (Zit) 2

t=l

T T

(Zit) 2 E E k2
t=l s>t

O(T3 )

T T 

(Zit) k2 (is) , k3 (Zit) 2 E k4 (Zit)2

t=l t=l 
O(T 3 )

T T T

(Zit) k (zis) E k2 (zit) 2 > k 3 (Zit) 2 k 4 (it) 2

t=l t=l t=l
O(T3)

T T T
(zis) E k 2 (it) k2 (is) > k3 (Zit) 2 E

t=l s>t t=l t=l
O(T 4 )

T T T

k (Zit) kl (Zis) E k2 (zit)2 E E k3
t=l t=l s>t

T

O(T 4 )

T T T+ 4 T T
+ 4 E

t=l >t
kl (it) kl (zis) E k 2 (zit) 2 E k 3 (zit)

2 E E k4 (Zit)

t=l t=l t=l s>t
O(T 4 )

T T T T

(Zit)
2 E E k 2 (Zit) k 2 (Zis) E k 3

t=l s>t t=l s>t

T 1
(Zit) k3 (Zis) E k4 (Zit)2

t=l

O(T
4

)

+ 4E[ kl
t=l

T T T T T
(zit) 2 E E k2 (zit) k2 (zis) > k3 (Zit) 2 E>E k4(Zit)

t=l >t t=l t=l >t
O(T 4 )

+ 4 E+4-
FT T T T T T

kl 2 k (zit)2 k2 (Zit)2 E k (it) k (Zis) E E k4 (zit) k4 (is)
t=l t=l t=l s>t t=l s>t

O(T 4 )

156

= T4E [kl
T Et=l

2+ 2E[T k
t=l

1 T T
+ 2T4E Ekkl

t=l >t

+ 4 E
FT T

E E k ( it ) k l
t=l s>t

14-E

T
k4 (Zit)2]

T 1
(zit) k3 (i,) E k4 (Zit)2

t=l

+ 4 E [t kE k
t=l

k4 (Zis)

k4 (is)]

(zit) k4 (Zis)



I T T T T T T T 
-- 8T4E [ kl (it) k (is,) k2 (zit) k2 (zis) E k3 (zit) k3 (is) k4 (Zit)2

t=l s>t t=l s>t t=l s>t t=l
O(T 3 )

T T T T T T T
+ 8TE S 7 ki (zit) k (zi,8 ) 5 3 k 2 (zit) 2 (Zi,) I k 3 (Zit) 2 E k 4 (zit) k4 (Zis)

t=l s>t t=1 s>t t=l t=l s>t

O(T3 )
1 FTT T T T T T 

+ 8 E Z k (it) k (Zis) E k 2 (Zit) 2
k3 (Zit) k3 (is) k4 (it) k4 (Zis)

t=l s>t t=1 t=1 s>t t=l s>t

O(T 3 )

1 F T T T T T T T 
+- 8T E kl (Zit)2 5 E k

2 (Zit) k2 (is) E E k
3 (Zit) k3 (Zis) k4 (Zi) k4 (Zis)

t=l t=l s>t t=l s>t t=l s>t

O(T3 )
T T T T T T T T

+ 16-4 E k (zit) k (zi,) E E k2 (it) k2 (zis) E k3 (Zit) k3 (zis) E k4 (Zit) k4 (Zis)]
t=l s>t t=l s>t t=l s>t t=l s>t·

O(T 4)
+ O(T- 2) = (1), (2.J.21)

where the rates of convergence of the sums are computed by counting the number of terms with non-zero
expectation. Note also that all the expectations are finite by Lemma 57. Therefore by Condition 7 (iii)

__ n
E[ Tn lSl W(4)1 )=o(1), (2.J.22)t il
V[ ---_) = Trl- -0(1) = O(T 2 ) = O(Tl-r). (2.J.23)

Then, the results follows by Chebyshev LLN. 

2.J.2 Properties of Modified Normalized V-Statistics

Definition 2 Consider now the following modified version of the V-statistics

it TV/2 (-l)/2 k (it) k2 (Zit)' 5 kv (it) (2.J.24)
,T Tv/2' n(v-1)/2 tTl

t= i= t=l t=l

We will call the average
in

T E - (t) (2.J.25)
ni=1

of such I(, the normalized V-statistic of order v. We will focus on the normalized V-statistic up to
order 3.
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Lemma 61 Suppose that Conditions 1 and 7 hold. We then have

(2.J.26)E 17V,) = op (1),n

for v = 2,3.

Proof. First, for v = 2 note that Condition 1 implies

E [Wi2,] = E kl (zit) k2 (it)] = (-/2),

v [i2)] E i E [(]
T - T2 E 1viTOT n T

= E , kl (Zit)2 y k2 (it) 2
nT 2

t=l i=1 t1
O(nT2 )

1+ 2-s E
n~T2 [T kEki

t=1

n T T

(Zit)2 E E E k2 (Zit)
i=l t=l >t

(2.J.27)

k 2 (Zis)1

o(1)

1+ 2 -- EnT 2

T T[Ekl
t=l s>t

n T1
(zit) k (zis) E E k2 (Zit)2

i~l t=l

o(1)

n T T

(zis)j
i=l t=l s>t

O(T 2 )

n T T

(zj,t)>(Zit) E E k2 (it) E k21j>i t=l t=l

O(1')

1 T T
+ 2 T2 E E E k (zit) ki

t=l >t

n T

(zji) E k2
j>i t=1

T

(zit) E k2
t=1

(zi,t) + 0(1)

o(i)

= 0(1),
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1+ 4 -EnT2

+ 2 EnT2

T T

kt=1S>tt=l s>t

T Tkk
t=l t=l

(2.J.28)

-

(zit) ki (zi,,) E E E k2 (zit) k2



= F [Wj@i/VT)wjc] -E [vvT] E W2T

T T n T TE [ T ,T ,2-E- 2T 2 --E kl (zit) T ki (zj,t) k2 (+it) t=l t=1 i=1 t=l 

o(1)

+ 2 T2 E ki (it) k (zj,,t) k (zi)k(i) +0( -1)

t=l t=l j>i t=l s>t

O(T 2 )

- O(n-1). (2.J.29)

where the rates of convergence of the sums are computed by counting the number of terms with non-zero

expectation. Note also that all the expectations are finite by Lemma 57. Then, for the average we have

the following

,i----

F[ T2 n 4 T J
E[ #0/; l ' IVX2T] =

[4 i=1j

O(T - 1) = o(l), (2.J.30)

T2 2 V [7VT] + _ EC [W(2), =(2) - O(T 2 ) o(l)2 n
i=1 2j>i

O(n) O(n)

(2.J.31)

Then, the result follows by Chebyshev's LLN.

For v 3 Condition 1 implies

E [W%7J-] = E [kl (Zit) k2 (Zit) k3 (Zit)] = O(n-IT-1/2),

V [V(T)] E [(i(3) ] 3 [ )]

T n T T
n2T-3 E Zkl (zit)2 k2(it) 2 k3(zit)2

t= i=1 (nT3= t=)
O(nT3 )
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C [W7 ,T j,T]

(2.J.32)



+2n2T 3E [kl
n T

(Zit) 2 ZE 
i=l t=l

T T

k 2 (zit) 2 E k 3 (Zit) k 3 (is)
t=l s>t

O(T2 )

+ 2 T3 E2-T3

T n T T T

ki (Zit)2 E E E k2 (it) k2 (Zis) E k3 (Zit)2
t=l i=l t=l >t t=l

O(T 2)[T n T T T T

Ekl (Zit)2 E k2 (zit) k2 (Zis) E E k3 (Zit)
t=l i=l t=l s>t t=l s>t

O(T2)

n T T
k (zis) E E k2 (Zit)2 k3

i=l t=l t=l
(zit)2]

O(T2)

n T T T

(Zit) kl (Zis) E E k2 (Zit)2 E E k3 (Zit)
i=l t=l t=l s>t

[t=l s>t

O(T 2 )

n T T

(zit)kl (zis)Z E k2
i=1 t=l s>t

0(T 2 )

: T T+ 8 2T3 sE t
t=l >t

n T T

(Zit) kl (zis) E > E k 2 (it)

i=1 t=l s>t

T T

k2 (is)E E k3
t=l s>t

O(T 2 )

+ 2 n2T3E E
t=l

+ 4 E
n2T 3

nn T T T T

kl (Zit) 2 E E k 2 (Zit) E k 3 (Zit) E k2 (j,t) E k3 (j,t )
i=l j>i t=l t=l t=l t=l

T T

kl
t=l s>t

O(n2 T3 )

n n T T T T

(z (it) k (zis) k2 (zit) E k3 (Zit) E k2 (Zj,t) E k3 (Zt)
i=l j>i t=l t=l t=l t=l

0(n
2

T
2

)

+ O(n-2T- ) = 0(1),
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+4 En2T 3 k 3 (zis)]

+ 4 E1T+
Ek[

t=l s>t
k 3 (Zi s)]

T

(zit) k (is) k (it)2
t=l

(Zit) k3 (Zis)]

(2.J.33)

1 T T
22 E E E ki (zit)

t=l s>t



C [3, W3T] = E [VVT)7] -E [WT I] E [ 73T

n2T-3 E 1(zit) k1a (zj,t) (Zi~t)) 2( k3 ( zit)) 2
t=l t=l i=l t=l t=l

o(1)

T T n T T T T
+2 n 2T3 E k (it) E k (j,t) E k2 (zit) E k3 (zit) E k 2 (zj,t) E k3 (Zj,t)

t= t=l j>i t=l t=l t=l t=l

O(T 2 )

+ O(n-2 T- ') = O(n-2T-'). (2.J.34)

where the rates of convergence of the sums are computed by counting the number of terms with non-zero

expectation. Note also that all the expectations are finite by Lemma 57. Then, for the average we have

the following

E[ 1 nl2(T
E n T

i=1

i=l

= (-1/ 2T -3 ) -= o(1),

T2 n2 V
i=1

O(n)

+ T2 ;2 EC [<), Vj(3)] = O(T 2) = o(1).
j>i

O(T'.)
(2.J.36)

Then, the result follows by Chebyshev's LLN.

2.K First Stage Score and Derivatives: Fixed Effects
2.K First Stage Score and Derivatives: Fixed Effects

2.K.1 Score

V('i°) :-g 1 G(Zit;, czi)+ WA _ (0 , a i)' + A
i T =l g(zit; 0, oi) + Wi Ai J i(O,ai) Wii

(2.K.1)
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2.K.2 Derivatives with respect to the fixed effects

First Derivatives

tWy; )T (; )

(TW) - 1

= aV(-yi; 0) _
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W '
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W'i Gd (, ai)

Wi

WiJ

(2.K.2)

(2.K.3)

(2.K.4)

Second Derivatives

.W
Ti ,;0
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Third Derivatives

,~l (. ali)'Ai

G a, (, i) 

Gaa..0i (6, aQ)'ej

0

=11

0 GC

Gaci. 0

G' e _ij-1

0

~')

\

0

0o

6..,t(X (0, ai) AG~.(o..j)' ).
0

0

0

0

0

if j = 1, k = 1;
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if j = 1,k = 1.
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> o a caaijl

0

0 0),
0 0

ctai

0

0
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Fourth Derivatives
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164

Tijkl( i; 0)

(2.K.10)

0

0

0

0

0

0

a, il, (-Yi; 0) - = ,
,9-yi,1,9-yik 19INJ 19-Yi

0

0

0

0

0

0

/



2.K.3 Derivatives with respect to the common parameter

First Derivatives

_ &i94 7(Y 9)
ao'7

(

oji (°, ai)t'Ai )
Go (0, ai)

0 

Goj i)

(2.K.11)
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2.L First Stage Score and Derivatives: Common Parameters

2.L.1 Score
T

(2.L.1)§iW (O, Vi (°)) - Z Go (zit; , i())'Ai(O) = -oi (, ai (0))Ai (0),
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2.L.2 Derivatives with respect to the fixed effects

First Derivatives
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Third Derivatives
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2.L.3 Derivatives with respect to the common parameters

First Derivatives

= a< (0, () 00= ao(- oo (o, i(0))j(o)30

$.W = E [S,~ (o, io)] =0

2.M Second Stage Score and Derivatives: Fixed Effects

2.M.1 Score

t=1 --

(

Gzi (z it; , (i )'Ai
^ d

g(Zit; O, oli) +- ~-i(0, (~i)~i )=-(

G, (0, aOi)'Ai

gi(O, Oai) + QiAi

Note that the formulae for the derivatives of Appendix 2.K apply for ti, replacing W by Q. Hence, we

only need to derive the derivatives for I.

2.M.2 Derivatives with respect to the fixed effects

First Derivatives

TiR(Vi; 0 )

0

0

TR = E [R(yio; o)

(2.M.2)

(2.M.3)

0 A

Qi(°, (i)- i

(0 0 E

Second and Higher Order Derivatives

Since t R(yi; 0) does not depend on yi, the derivatives (and its expectation) of order greater than one are

zero.

2.M.3 Derivatives with respect to the common parameters

First Derivatives
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2.N Second Stage Score and Derivatives: Common Parameters

2.N.1 Score
T

M=S Vi(0)) -=TEZG(zit,&i())Ai(O) =- i( i() ()(2.N.1)
t=1

Since this score does not depend explicitly on Qi (0, &i), the formulae for the derivatives in Appendix 2.L

carry through replacing ~i by 'i.
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Chapter 3

Quantile Regression under

Misspecification, with an Application

to the U.S. Wage Structure

(Joint with J. D. Angrist and V. Chernozhukov)

3.1 Introduction

The Quantile Regression (QR) estimator, introduced by Koenker and Bassett (1978), is an in-

creasingly important empirical tool, allowing researchers to fit parsimonious models to an entire

conditional distribution. Part of the appeal of quantile regression derives from a natural paral-

lel with conventional ordinary least squares (OLS) or mean regression. Just as OLS regression

coefficients offer convenient summary statistics for conditional expectation functions, quantile

regression coefficients can be used to make easily interpreted statements about conditional dis-

tributions. Moreover, unlike OLS coefficients, QR estimates capture changes in distribution

shape and spread, as well as changes in location.

An especially attractive feature of OLS regression estimates is their robustness and inter-

pretability under misspecification of the conditional expectation function (CEF). In addition

to consistently estimating a linear conditional expectation function, OLS estimates provide the

minimum mean square error linear approximation to a conditional expectation function of any

shape. The approximation properties of OLS have been emphasized by White (1980), Chamber-

lain (1984), Goldberger (1991), and Angrist and Krueger (1999). The fact that OLS provides a

177



meaningful and well-understood summary statistic for conditional expectations under almost all

circumstances undoubtedly contributes to the primacy of OLS regression as an empirical tool.

In view of the possibility of interpretation under misspecification, modern theoretical research

on regression inference also expressly allows for misspecification of the regression function when

deriving limiting distributions (White, 1980).

While QR estimates are as easy to compute as OLS regression coefficients, an important dif-

ference between OLS and QR is that most of the theoretical and applied work on QR postulates

a correctly specified linear model for conditional quantiles. This raises the question of whether

and how QR estimates can be interpreted when the linear model for conditional quantiles is

misspecified (for example, QR estimates at different quantiles may imply conditional quantile

functions that cross). One interpretation for QR under misspecification is that it provides the

best linear predictor for a response variable under asymmetric loss. This interpretation is not

very satisfying, however, since prediction under asymmetric loss is typically not the object of

interest in empirical work.' Empirical research on quantile regression with discrete covariates

suggests that QR may have an approximation property similar to that of OLS, but the exact na-

ture of the linear approximation has remained an important unresolved question (Chamberlain,

1994, p. 181).

The first contribution of this paper is to show that QR is the best linear approximation to the

conditional quantile function using a weighted mean-squared error loss function, much as OLS

regression provides a minimum mean-squared loss fit to the conditional expectation function.

The implied QR weighting function can be used to understand which, if any, parts of the

distribution of regressors contribute disproportionately to a particular set of QR estimates. We

also show how this approximation property can be used to interpret multivariate QR coefficients

as partial regression coefficients and to develop an omitted variables bias formula for QR. A

second contribution is to present a distribution theory for the QR process that accounts for

possible misspecification of the conditional quantile function. We present the main inference

results only, with proofs available in a supplementary appendix. The approximation theorems

and inference results in the paper are illustrated with an analysis of wage data from recent U.S.

censuses.2 The results show a sharp change in the quantile process of schooling coefficients

in the 2000 census, and an increase in conditional inequality in the upper half of the wage

distribution from 1990-2000.

1An exception is the forecasting literature; see, e.g., Giacomini and Komunjer (2003).
2Quantile regression has been widely used to model changes in the wage distribution; see, e.g., Buchinsky

(1994), Abadie (1997), Gosling, Machin, and Meghir (2000), Autor, Katz, and Kearney (2004).

178



The paper is organized as follows. Section 2 introduces assumptions and notation and

presents the main approximation theorems. Section 3 presents inference theory for QR processes

under misspecification. Section 4 illustrates QR approximation properties with U.S. census data.

Section 5 concludes.

3.2 Interpreting QR Under Misspecification

3.2.1 Notation and Framework

Given a continuous response variable Y and a d x 1 regressor vector X, we are interested in the

conditional quantile function (CQF) of Y given X. The conditional quantile function is defined

as:

QT(YIX) := inf {y: Fy(ylX) > -},

where Fy(ylX) is the distribution function for Y conditional on X, which is assumed to have

conditional density fy(ylX). The CQF is also known to be a solution to the following mini-

mization problem, assuming integrability:

Q-(YIX) E arg min E[p-(Y- q(X))], (3.2.1)
q(X)

where PT(U) ( - (u < ))u and the minimum is over the set of measurable functions of

X. This is a potentially infinite-dimensional problem if covariates are continuous, and can be

high-dimensional even with discrete X. It may nevertheless be possible to capture important

features of the CQF using a linear model. This motivates linear quantile regression.

The linear quantile regression (QR), introduced by Koenker and Bassett (1978), solves the

following minimization problem in the population, assuming integrability and uniqueness of the

solution:

/() := arg min E [p-(Y- X'3)] . (3.2.2)

if q(X) is in fact linear, the QR minimand will find it, just as if the conditional expectation

function is linear, OLS will find it. More generally, QR provides the best linear predictor for Y

under the asymmetric loss function, pa. As noted in the introduction, however, prediction under

asymmetric loss is rarely the object of empirical work. Rather, the conditional quantile function

is usually of intrinsic interest. For example, labor economists are often interested in comparisons

of conditional deciles as a measure of how the spread of a wage distribution changes conditional
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on covariates, as in Katz and Murphy (1992), Juhn, Murphy, and Pierce (1993), and Buchinsky

(1994). Thus, our first goal is to establish the nature of the approximation to conditional

quantiles that QR provides.

3.2.2 QR Approximation Properties

Our principal theoretical result is that the population QR vector minimizes a weighted sum

of squared specification errors. This is easiest to show using notation for a quantile-specific

specification error and for a quantile-specific residual. For any quantile index r C (0, 1), we

define the QR specification error as:

A (XI ) := X'3 - Q(YIX).

Similarly, let e be a quantile-specific residual, defined as the deviation of the response variable

from the conditional quantile of interest:

e := Y - Q,(YIX),

with conditional density f,. (e[X) at e, = e. The following theorem shows that QR is a weighted

least squares approximation to the unknown CQF.

Theorem 1 (Approximation Property) Suppose that (i) the conditional density fy(ylX)

exists a.s., (ii) E[Y], E[QT(YIX)], and EIIXI! are finite, and (iii) (r) uniquely solves (3.2.2).

Then

/(r) = arg min E [w(X,/). A2(X,3 )]
IOERd

where

w(X, 3) = (1 - ) f (uA,(X, /) X) du

= (1 - u) fy (u. X'/ + (1 - u) Q(YIX)IX) du > 0.

PROOF: We have that /3(r) = argmin 3 EdE[p,(e, - A,(X,/3))], or equivalently, since

E[pr(e,)] does not depend on /3 and is finite by condition (ii),

/3(r) = arg min {E [p, (e, - A,(X, /))] - E[p- (e,)]}. (3.2.3)
/3ERd
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By definition of P, and the law of iterated expectations, it follows further that

/3(r) = arg min {E[A(X, /3)]- E[B(X, 3)]},
/3CRd

where

A(X, /3) = E [(l{eT < AT(X, /3)} - T) A-(X, ,3) X],

B(X, ,3) = E [(l{c, < A,(X, 3)} l{c, < 0}) eIX].

The conclusion of the theorem can then be obtained by showing that

A(X, /3) =( fe(uAr(X,/)X)du) A(X,/3), (3.2.4)

B(X, /3) = ( Ufe (uA (X,/3) X)du A2(XX3), (3.2.5)

establishing that both components are density-weighted quadratic specification errors.

Consider A(X, 3) first. Observe that

A(X, /3) = [Fe, (A(X, /3)IX) - Fe, (OIX)] A,(X, /3)
=1 3d) 3)(3.2.6)

= A/; f:T (\uA,(X,3)IX)AT(X,)du AX,(X,/3),

where the first statement follows by the definition of conditional expectation and noting that

E[1{eT < 0}JX] = F(0OIX) = r and the second follows from the fundamental theorem of

calculus (for Lebesgue integrals). This verifies (3.2.4). Turning to B(X,/3), suppose first that

AT (X, ) > 0. Then, setting uT = e-/A (X,/3), we have

B(X, A) = E [lfc, [0, /(X, )]j} . | X]

=E [1 { E [0, 1]} . U- A (X,/3) X]

= ( j f (ulx)du) A(X,/3) (3.2.7)

= (jl uef (uAT(X, /3)IX)A(X, /3)du) A(X, 3),

which verifies (3.2.5). A similar argument shows that (3.2.5) also holds if AT(X, /3) < 0. Finally,

if AT(X,/3) = 0, then B(X,/3) = 0, so that (3.2.5) holds in this case too. Q.E.D.
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Theorem 1 states that the population QR coefficient vector /3(T) minimizes the expected

weighted mean squared approximation error, i.e., the square of the difference between the true

CQF and a linear approximation, with weighting function wT (X, 3).3 The weights are given by

the average density of the response variable over a line from the point of approximation, X'/3, to

the true conditional quantile, QT(YIX). Pre-multiplication by the term (1 - u) in the integral

results in more weight being applied at points on the line closer to the true CQF.

We refer to the function wT(X, /3) as defining importance weights, since this function de-

termines the importance the QR minimand gives to points in the support of X for a given

distribution of X. 4 In addition to the importance weights, the probability distribution of X

also determines the ultimate weight given to different values of X in the least squares problem.

To see this, note that we can also write the QR minimand as

/3(r) = arg min /A2(x,/3) w(x,/3) dI(x),
/5ERa

where I(x) is the distribution function of X with associated probability mass or density function

7r(x). Thus, the overall weight varies in the distribution of X according to

Wr(X, ) 7r(X).

A natural question is what determines the shape of the importance weights. This can be

understood using the following approximation. When Y has a smooth conditional density, we

have for /3 in the neighborhood of 3():

w,(X,/3 ) = 1/2. fy (Qr(YIX)IX) + QT(X), IpT(X)I < 1/6. IA(X,/3)l f'(x). (3.2.8)

Here, Qe(X) is a remainder term and the density fy (yIX) is assumed to have a first deriva-

tive in y bounded in absolute value by f'(X) a.s.5 Hence in many cases the density weights

1/2. fy (Q(YIX)IX) are the primary determinants of the importance weights, a point we il-

lustrate in Section 4. It is also of interest to note that fy (Q,(YIX)IX) is constant across X in

location models, and inversely proportional to the conditional standard deviation in location-
3Note that if we define /3 (r) via (3.2.3), then integrability of Y is not required in Theorem 1.
4This terminology should not to be confused with similar terminology from Bayesian statistics.
5The remainder term p,(X) = w(X,/3) - (1/2) f,(OIX) is bounded as [p,(X)l = If( - u)(f,(u

A,(X, 3)IX)- f (OIX))dul < I,(X, ) f'(X) f(1 - u) -u d du= (1/6)- A(X, 3)1 f'(X).
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scale models. 6

QR has a second approximation property closely related to the first. This second property

is particularly well-suited to the development of a partial regression decomposition and the

derivation of an omitted variables bias formula for QR.

Theorem 2 (Iterative Approximation Property) Suppose that (i) the conditional density

fy(ylX) exists and is bounded a.s., (ii) E[Y], E[Q,(YIX) 2 ], and EIIXI12 are finite, and (iii)

/3-(T) uniquely solves (3.2.2). Then /(T) = -/3(T) uniquely solves the equation

/3(T) arg min E [(X,$(T)) A2(X,/3)] (3.2.9)
=3Rd

where

QF,(X,3 (T)) = f (u. A (X, (T)) X) du

= 2 f, (u. X'/(-r) + (1 - u) Q(YIX)IX) du > O.

PROOF: We want show that

/3(T) = arg min E[p(Y - X'/3)], (3.2.10)
/3ERd

is equivalent to the fixed point (T) that uniquely solves

/3(T) = arg min E [7(X, (T)) A2(X/)], (3.2.11)
i3ERd N

where the former and the latter objective functions are finite by conditions (i) and (ii).

By convexity of (3.2.11) in /3, any fixed point /3 = (-) solves the first order condition:

F(/3) := 2 E [(X, /3) A,(X, 3) X] = 0.

By convexity of (3.2.10) in 3, the quantile regression vector /3 = /3(T) solves the first order

condition:

D(/3) := E [D(X, /3)] = 0,
6A location-scale model is any model of the form Y = (X) + o(X) e, where e is independent of X. The

location model results from setting a(X) = Or.
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where

D(X, ): E [(l{E < /(X, )} - r) XlX ] .

An argument similar to that used to establish equation (3.2.6) yields

D(X, ,3) = (F (AT (X,3)IX) -Fe (0OIX)) X

= (jo Hf (uAT(X, 3)IX)du) Ar(X, /3) X

_ 2 D(X,/ ) AI(X,/ ) XI

where we also use the definition of WT(X;/3). The functions F(3) and D(3) are therefore

identical. Since = 3(r) uniquely satisfies D(/) = 0, it also uniquely satisfies .F(/3) = 0. As a

result, 3 = 3(-(r) = 3(-(r) is the unique solution to both (3.2.10) and (3.2.11). Q.E.D.

Theorem 2 differs from Theorem 1 in that it characterizes the QR coefficient as a fixed

point to an iterated minimum distance approximation. Consequently, the importance weights

v(X,,3(r)) in this approximation are defined using the QR vector 3(r) itself. The weighting

function W(X, /3(T)) is also related to the conditional density of the dependent variable. In

particular, when the response variable has a smooth conditional density around the relevant

quantile, we have by a Taylor approximation

zTh(X, /3(r)) = 1/2. fy (QT(YIX)IX) + T(X), (X)I < 1/4-IA (X, 3(r))I f'(X)

where et(X) is a remainder term, and the density fy (yjX) is assumed to have a first derivative

in y bounded in absolute value by f'(X) a.s. When either A,(X,/(r)) or f'(X) is small, we

then have

W(X, (r)) w(X, ()) fy(Qr(YlX)lX).

The approximate weighting function is therefore the same as derived using Theorem 1.

3.2.3 Partial Quantile Regression and Omitted Variable Bias

Partial quantile regression is defined with regard to a partition of the regressor vector X into

a variable, X1, and the remaining variables X2, along with the corresponding partition of QR

coefficients /3(r) into /l(r) and 32(r)- We can now decompose Q,(YIX) and X1 using orthogonal
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projections onto X2 weighted by vT-(X) := rS(X; :i(T)) defined in Theorem 2:

Qr(Y[X)- X-Q + q,(YIX), where E[iT9(X) X2 q,(YIX)] = 0,

X1 = Xw7r + V1 , where E[ir(X) X2 V1] = O.

In this decomposition, q(YIX) and V1 are residuals created by a weighted linear projection

of QT(YIX) and X1 on X2, respectively, using vt,(X) as the weight.7 Standard least squares

algebra then gives

/l(r) = argminE [tr(X) (qr(YIX) - V1i) 2]

and also 31l(r) = argmino, E [(X) (QT(YIX) - V1 31)2 ]. This shows that 3 1(T) is a partial

quantile regression coefficient in the sense that it can be obtained from a weighted least squares

regression of Q-(YIX) on X1, once we have partialled out the effect of X2. Both the first-step

and second-step regressions are weighted by D,-(X).

We can similarly derive an omitted variables bias formula for QR. In particular, suppose we

are interested in a quantile regression with explanatory variables X = [Xl, X2', but X2 is not

available, e.g., a measure of ability or family background in a wage equation. We run QR on

X1 only, obtaining the coefficient vector y71 (T) arg min,, E[p (Y-X'y 1 )]. The long regression

coefficient vectors are given by ( ()',3 2(-T)')' = argmino,,32 E[pr,(Y-X l - - X/32)]. Then,

71(T) = 31(T) + (E[vT(X) X1X'])- 1 E[WTv(X) XR(X)],

where R,(X) := Q-(YIX) - X~/1(T), W7T(X) := f f,(u A,(X,'yil())JX)du/2, A(X, -y1):=

XIq - QT(YIX), and e¢ := Y - Q(YIX). 8 Here RT(X) is the part of the CQF not explained

by the linear function of X1 in the long QR. If the CQF is linear, then R,(X) = X2f32 (T). The

proof of this result is similar to the previous arguments and therefore omitted.

As with OLS short and long calculations, the omitted variables formula in this case shows the

short QR coefficients to be equal to the corresponding long QR coefficients plus the coefficients

in a weighted projection of omitted effects on included variables. While the parallel with OLS

seems clear, there are two complications in the QR case. First, the effect of omitted variables

appears through the remainder term, Rt,-(X). In practice, it seems reasonable to think of this

as being approximated by the omitted linear part, X23 2(T). Second, the regression of omitted

7Thus, 7rQ =E [,. (X)X 2 X']-'E [(X)X 2Q,-(YIX)] and 7r1 =E [(X)X 2X']-lE [,(X)X 2X1 ].

8Note that the weights in this case depend on how the regressor vector is partitioned.
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variables on included variables is weighted by fTv(X), while for OLS it is unweighted.9

3.3 Sampling Properties of QR Under Misspecification

Parallelling the interest in robust inference methods for OLS, it is also of interest to know how

specification error affects inference for QR. In this case, inference under misspecification means

distribution theory for quantile regressions in large samples without imposing the restriction

that the CQF is linear. While not consistent for the true nonlinear CQF, quantile regression

consistently estimates the approximations to the CQF given in Theorems 1 and 2. We would

therefore like to quantify the sampling uncertainty in estimates of these approximations. This

question can be compactly and exhaustively addressed by obtaining the large sample distribution

of the sample quantile regression process, which is defined by taking all or many sample quantile

regressions.

As in Koenker and Xiao (2001), the entire QR process is of interest here because we would

like to either test global hypotheses about (approximations to) conditional distributions or make

comparisons across different quantiles. Therefore our interest is in the QR process, and is not

confined to a specific quantile. The second motivation for studying the process comes from the

fact that formal statistical comparisons across quantiles, often of interest in empirical work,

require the construction of simultaneous (joint) confidence regions. Process methods provide a

natural and simple way of constructing these regions.

The QR process /3(.) is formally defined as

n

(T) arg min n -1 p(Yi - X'), r c T := a closed subset of [e, 1 - e] for e > 0. (3.3.1)
,3ERd 

Koenker and Machado (1999) and Koenker and Xiao (2001) previously focused on QR process

inference in correctly specified models, while earlier treatments of specification error discussed

only pointwise inference for a single quantile coefficient (Hahn, 1997). As it turns out, the

empirical results in the next section show misspecification has a larger effect on process inference

than on pointwise inference. Our main theoretical result on inference is as follows:

Theorem 3 Suppose that (i) (i, Xi, i < n) are iid on the probability space (Q , P) for each

n, (ii) the conditional density fy(ylX = x) exists, and is bounded and uniformly continuous in

9 The formula obtained above can be used to determine the bias from measurement error in regressors, by
setting the error to be the omitted variable. This suggests that classical measurement error is likely to generate
an attenuation bias in QR as well as OLS estimates. We thank Arthur Lewbel for pointing this out.
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y, uniJformly in x over the support of X, (iii) J(r) := E[fy(X'(T)IX)XX'] is positive definite

for all T T, and (iv) E [JX]f2+ c < for some E > O. Then, the quantile regression process

is uniformly consistent, SUPTET 0/3(T)- /(-T)j = op(1), and J()v/((.) -/3(.)) converges in

distribution to a zero mean Gaussian process z(.), where z(.) is defined by its covariance function

(T, T') := E [(T)z(r')'], with

E(7, T') = E [(T - 1 {Y < X'3(T)}) (T-' - 1 {Y < X'3(r')}) XX']. (3.3.2)

If the model is correctly specified, i.e. Q-(YIX) = X'3(-) a.s., then E(, r') simplifies to

Eo(, TV-') = [min(r, -r') - T-r'] E [XX']. (3.3.3)

Theorem 3 establishes joint asymptotic normality for the entire QR process.1 0 The proof

of this theorem appears in the supplementary appendix. Theorem 3 allows for misspecification

and imposes little structure on the underlying conditional quantile function (e.g., smoothness of

QT(YIX) in X, needed for a fully nonparametric approach, is not needed here). The result states

that the limiting distribution of the QR process (and of any single QR coefficient) will in general

be affected by misspecification. The covariance function that describes the limiting distribution

is generally different; from the covariance function that arises under correct specification.

Inference on the QR process is useful for testing basic hypotheses of the form:

R(vT)'/(7) = r(r) for all r C T. (3.3.4)

For example, we may be interested in whether a variable or a subset of variables j {k +

1, ..., d} enter the regression equations at all quantiles with zero coefficients, i.e. whether 3j (r) =

O for all r C T and j C {k + 1,...,d}. This corresponds to R(T) = [(d-k)xk Id-k] and r(T) =

0d-k. Similarly, we may want to construct simultaneous (uniform) confidence intervals for linear

functions of parameters

R(T)',3(T)-)- r(r) for all E T.

Theorem 3 has a direct consequence for these confidence intervals and hypothesis testing,

since it implies that (EXX')- 1 E(T, T') $4 [min(r, r')-T'r'].Id. That is, the covariance function un-

der misspecification is not proportional to the covariance function of the standard d-dimensional

1'0A simple corollary is that any finite collection of Vii(-(rk) - 3 (-k)), k = 1, 2,..., are asymptotically jointly
normal, with asymptotic covariance between the k-th and -th subsets equal to J(rk)- 1 E(Tk,r)J(r-) - 1. Hahn
(1997) previously derived this corollary for a single quantile.

187



Brownian bridge arising in the correctly specified case. Hence, unlike in the correctly specified

case, the critical values for confidence regions and tests are not distribution-free and can not

be obtained from standard tabulations based on the Brownian bridge. However, the following

corollaries facilitate both testing and the construction of confidence intervals under misspecifi-

cation:

Corollary 1 Define V(-) := R(r)'J(T-) - 1 E(-r,T-) J(T)- 1 R(T) and Ixl := maxj lxjl. Under the

conditions of Theorem 3, the Kolmogorov statistic

C := SUPTET IV(T)-1/2v/(R()'3(T) - r(-))l for testing (3.3.4) converges in distribution to

variable K := supTE IV()-1/ 2R(T)'J(T)- 1 z(T)I with an absolutely continuous distribution. The

result is not affected by replacing J(r) and E(r, r) with estimates that are consistent uniformly

in -r E T.

Thus, Kolmogorov-type statistics have a well-behaved limit distribution. 1 Unlike in the

correctly specified case, however, this distribution is non-standard. Nevertheless, critical values

and simultaneous confidence regions can be obtained as follows:

Corollary 2 For i(o) denoting the co-quantile of IC and k(a) any consistent estimate of it, for

instance the estimate defined below, limnc P{I(R(-)'3(T - ) -r(-r)) In(-), for all r c T} =

ca, where In(-) = [(T)) : V()-/ 2x /(R(r)' (T ) - r(r) - u(r)) I < k(ca)]. If R()'3(T) - r(T-) is

scalar, the simultaneous confidence interval is In(T) = [R(T)'/(-) - r(T) ± k(a) . V(T)1/ 2]. This

result is not affected by replacing V(r) with an estimate that is consistent uniformly in r C T.

A consistent estimate of the critical value, k(a), can be obtained by subsampling. Let

j = 1, ..., B index B randomly chosen subsamples of ((Y,Xi), i < n) of size b, where b -

oo, b/n -- 0, B - x oc as n - oo. Compute the test statistic for each subsample as Kj =

supTET lV(Tr)-/ 2vbR(T)'(j(T) - (-))I, where j(T-) is the QR estimate using j-th subsample.

Then, set (ac) to be the o-quantile of {K 1,..., KB}.

Finally, the inference procedure above requires estimators of E(T, T') and J(T) that are

uniformly consistent in (, T') T x T. These are given by:

In
72

(T, T') = n-i (- 1{Yi < Xi3(r)})(' - {Yi < Xi(T )}). XiXi,
i=1

n

i(w) = (2nhn) 1 Yi - b()l < h} XiXi,
i=1

"In practice, by stochastic equicontinuity of QR process, in the definition of KC-statistics we can replace any
continuum of quantile indices T by a finite-grid TKn, where the distance between adjacent grid points goes to
zero as n -- oo.
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where (r, -r') differs from its usual counterpart to(T, T') = [min(, T') - -TT'] n-1 '1 XiX

used in the correctly specified case; and J(-r) is Powell's (1986) estimator of the Jacobian, with

hn such that h - 0 and h2n - oc. Koenker (1994) suggests h = C n- 1/ 3 and provides

specific choices of C. The supplementary appendix shows that these estimates are consistent

uniformly in (, T').

3.4 Application to U.S. Wage Data

In this section we study the approximation properties of QR in widely used U.S. Census micro

data sets.12 The main purpose of this section is to show that linear QR indeed provides a useful

minimum distance approximation to the conditional distribution of wages, accurately capturing

changes in the wage distribution from 1980 to 2000. We also report new substantive empirical

findings arising from the juxtaposition of data from the 2000 census with earlier years. The

inference methods derived in the previous section facilitate this presentation. In our analysis,

Y is the real log weekly wage for U.S. born men aged 40-49, calculated as the log of reported

annual income from work divided by weeks worked in the previous year, and the regressor X

consists of a years-of-schooling variable and other basic controls.13

The nature of the QR approximation property is illustrated in Figure 1. Panels A-C plot

a nonparametric estimate of the conditional quantile function, QT(YIX), along with the linear

QR fit for the 0.10, 0.50, and 0.90 quantiles, where X includes only the schooling variable. Here

we take advantage of the discreteness of the schooling variable and the large census sample to

compare QR fits to the nonlinear CQFs computed at each point in the support of X. We focus

on the 1980 data for this figure because the 1980 Census has a true highest grade completed

variable, while for more recent years this must be imputed. It should be noted, however, that

the approximation results for the 1990 and 2000 censuses are similar.

Our theorems establish that QR implicitly provides a weighted minimum distance approx-

imation to the true nonlinear CQF. It is therefore useful to compare the QR fit to an explicit
12The data were drawn from the 1% self-weighted 1980 and 1990 samples, and the 1% weighted 2000 sample,

all from the IPUMS website (Ruggles e al., 2003). The sample consists of US-born black and white men of age
40-49 with 5 or more years of education, with positive annual earnings and hours worked in the year preceding
the census. Individuals with imputed values for age, education, earnings or weeks worked were also excluded from
the sample. The resulting sample sizes were 65,023, 86,785, and 97,397 for 1980, 1990, and 2000.

13Annual income is expressed in 1989 dollars using the Personal Consumption Expenditures Price Index. The
schooling variable for 1980 corresponds to the highest grade of school completed. The categorical schooling
variables in the 1990 and 2000 Census were converted to years of schooling using essentially the same coding
scheme as in Angrist and Krueger (1999). See Angrist, Chernozhukov, and Fernandez-Val (2004) for details.
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minimum distance (MD) fit similar to that discussed by Chamberlain (1994).14 The MD esti-

mator for QR is the sample analog of the vector /3(-(r) solving

3(T-) = arg min E [(Q(YIX) - X') 2 ] = arg in E [g2(X,3)].
I3ERd O~

In other words, (r) is the slope of the linear regression of QT(YIX) on X, weighted only by the

probability mass function of X, 7r(x). In contrast to QR, this MD estimator relies on the ability

to estimate Q,(YIX) in a nonparametric first step, which, as noted by Chamberlain (1994), may

be feasible only when X is low dimensional, the sample size is large, and sufficient smoothness

of Q,(YIX) is assumed.

Figure 1 plots this MD fit with a dashed line. The QR and MD regression lines are close,

as predicted by our approximation theorems, but they are not identical because the additional

weighting by WT (X, ) in the QR fit accentuates quality of the fit at values of X where Y is more

densely distributed near true quantiles. To further investigate the QR weighting function, panels

D-F in Figure 1 plot the overall QR weights, w,(X, /3(r)) . 7r(X), against the regressor X. The

panels also show estimates of the importance weights from Theorem 1, w,(X,3(T)), and their

density approximations, f(Qr(YIX)[X). 15 The importance weights and the actual density

weights are fairly close. The importance weights are stable across X and tend to accentuate the

middle of the distribution a bit more than other parts. The overall weighting function ends up

placing the highest weight on 12 years of schooling, implying that the linear QR fit should be

the best in the middle of the design.

Also of interest is the ability of QR to track changes in quantile-based measures of conditional

inequality. The column labeled CQ in panel A of Table 1 shows nonparametric estimates of the

average 90-10 quantile spread conditional on schooling, potential experience, and race. This

spread increased from 1.2 to about 1.35 from 1980 to 1990, and then to about 1.43 from 1990

to 2000. QR estimates match this almost perfectly, not surprisingly since an implication of our
14 See Ferguson (1958) and Rothenberg (1971) for general discussions of MD. Buchinsky (1994) and Bassett,

Knight, and Tam (2002) present other applications of MD to quantile problems.
15The importance weights defined in Theorem 1 are estimated at = (r) as follows:

U

w7 (X,B(T)) = (1/U). [(1 - u/U). fy((u/U) X'3(r) + (1 - u/U). Q7(YIX)lX)], (3.4.1)
u=1

where U is set to 100; fy(ylX) is a kernel density estimate of fy(ylX), which employs a Gaussian kernel and
Silverman's rule for bandwidth; Q,(YIX) is a non-parametric estimate of Q-(YfX), for each cell of the covariates
X; and X'3(r) is the QR estimate. Approximate weights are calculated similarly. Weights based on Theorem 2
are similar and therefore not shown.
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theorems is that QR should fit (weighted) average quantiles exactly. The fit is not as good,

however, when averages are calculated for specific schooling groups, as reported in panels B and

C of the table. These results highlight the fact that QR is only an approximation. Table 1

also documents two important substantive findings, apparent in both the CQ and QR estimates.

First, the table shows conditional inequality increasing in both the upper and lower halves of

the wage distribution from 1980 to 1990, but in the top half only from 1990 to 2000. Second,

the increase in conditional inequality since 1990 has been much larger for college graduates than

for high school graduates.

Figure 2 provides a useful complement to, and a partial explanation for, the patterns and

changes in Table 1. In particular, Panel A of the figure shows estimates of the schooling co-

efficient quantile process, along with robust simultaneous 95% confidence intervals. These

estimates are from quantile regressions of log-earnings on schooling, race and a quadratic func-

tion of experience, using data from the 1980, 1990 and 2000 censuses.1 6 The robust simultaneous

confidence intervals allow us to asses of the significance of changes in schooling coefficients across

quantiles and across years. The horizontal lines in the figure indicate the corresponding OLS

estimates.

The figure suggests the returns to schooling were low and essentially constant across quantiles

in 1980, a finding similar to Buchinsky's (1994) using Current Population Surveys for this period.

On the other hand, the returns increased sharply and became much more heterogeneous in 1990

and especially in 2000, a result we also confirmed in Current Population Survey data. Since

the simultaneous confidence bands do not contain a horizontal line, we reject the hypothesis

of constant returns to schooling for 1990 and 2000. The fact that there are quantile segments

where the simultaneous bands do not overlap indicates statistically significant differences across

years at those segments. For instance, the 1990 band does not overlap with the 1980 band,

suggesting a marked and statistically significant change in the relationship between schooling

and the conditional wage distribution in this period.17 The apparent twist in the schooling

coefficient process explains why inequality increased for college graduates from 1990 to 2000.

In the 2000 census, higher education was associated with increased wage dispersion to a much

greater extent than in earlier years.

16The simultaneous bands were obtained by subsampling using 500 repetitions with subsample size b -= 5n2 / 5

and a grid of quantiles En = {.10,.11,...,.90}.
17Due to independence of samples across Census years, the test that looks for overlapping in two 95% confidence

bands has a significance level of about 10%, namely 1 - .952. Alternately, an a-level test can be based on a
simultaneous ca-level confidence band for the difference in quantile coefficients across years, again constructed
using Theorem 3.
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Another view of the stylized facts laid out in Table 1 is given in Figure 2B. This figure plots

changes in the approximate conditional quantiles, based on a QR fit, with covariates evaluated at

their mean values for each year. The figure also shows simultaneous 95% confidence bands. This

figure provides a visual representation of the finding that between 1990 and 2000 conditional

wage inequality increased more in the upper half of the wage distribution than in the lower

half, while between 1980 and 1990 the increase in inequality occurred in both tails. Changes in

schooling coefficients across quantiles and years, sharper above the median than below, clearly

contributed to the fact that recent (conditional) inequality growth has been mostly confined to

the upper half of the wage distribution.

Finally, it is worth noting that the simultaneous bands differ from the corresponding point-

wise bands (the latter are not plotted). Moreover, the simultaneous bands allow multiple com-

parisons across quantiles without compromising confidence levels. Even more importantly in

our context, accounting for misspecification substantially affects the width of simultaneous con-

fidence intervals in this application. Uniform bands calculated assuming correct specification

can be constructed using the critical values for the Kolmogorov statistic C reported in Andrews

(1993). In this case, the resulting bands for the schooling coefficient quantile process are 26%,

23%, and 32% narrower than the robust intervals plotted in Figure 2A for 1980, 1990, and

2000.18

3.5 Summary and conclusions

We have shown how linear quantile regression provides a weighted least squares approximation

to an unknown and potentially nonlinear conditional quantile function, much as OLS provides

a least squares approximation to a nonlinear CEF. The QR approximation property leads to

partial quantile regression relationships and an omitted variables bias formula analogous to those

for OLS. While misspecification of the CQF functional form does not affect the usefulness of QR,

it does have implications for inference. We also present a misspecification-robust distribution

theory for the QR process. This provides a foundation for simultaneous confidence intervals and

a basis for global tests of hypotheses about distributions.

An illustration using US. census data shows the sense in which QR fits the CQF. The

l8The simultaneous bands take the form of fl(i-) ± k(a) robust std. error((,(r)). Using the procedure described
in Corollary 2, we obtain estimates for k(.05) of 3.78, 3.70, and 3.99 for 1980, 1990, and 2000. The simultaneous
bands that impose correct specification take the form 3(T) ± co(a) std. error((r)), where Ko(a) is the a-
quantile of the supremum of (the absolute value of) a standardized tied-down Bessel process of order 1. For
example, o(0.05) -= (9.31)1/2 = 3.05 from Table I in Andrews (1993).
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empirical example also shows that QR accurately captures changes in the wage distribution from

1980 to 2000. An important substantive finding is the sharp twist in schooling coefficients across

quantiles in the 2000 census. We use simultaneous confidence bands robust to misspecification,

to show that this pattern is highly significant. A related finding is that most inequality growth

after 1990 has been in the upper part of the wage distribution.
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Appendix
3.A Proof of Theorems 3 and its Corollaries

The proof has two steps.' 9 The first step establishes uniform consistency of the sample QR process.

The second step establishes asymptotic Gaussianity of the sample QR process.20 For W = (Y,X),

let En [f(W)] denote n- 1 Eni 1 f(Wi) and Gn [f(W)] denote n-1/2 in=1 (f(Wi) - E [f(Wi)]). If f is an

estimated function, Gn[f(W)] denotes n- / 2 in= (f(W) -E[(W))f=

3.A.1 Uniform consistency of (.)

For each r in T, (r) minimizes Qn(r,/,3) := En [p,-(Y - X') - p,(Y - X'(7))]. Define Q(..(r,/ ):

E [p(Y- X'3) - p,-(Y - X'3(r))]. It is easy to show that EjIXI < o implies that EIp(Y - X'/) -

p,-(Y - X'3(r)) < oc. Therefore, QO(r,,O) is finite, and by the stated assumptions, it is uniquely

minimized at /3(r) for each T in T.

We first show the uniform convergence, namely for any compact set B, Qn(T, /3) Q, 3) + op. (1),

uniformly in (, 3) E T x B. This statement holds pointwise by the Khinchine law of large numbers.

The uniform convergence follows because Q,(-r',/') - Qn(T",/3")l < Cln I' -T-"I + C2,- 11/' - "11,
where Clm = 2EnIIXl .supe l11/311= Op(1) and C2,- = 2.EnlIXII = Op(1). Hence the empirical process

(T, ) -* Qn(7, /3) is stochastically equicontinuous, which implies the uniform convergence.

Next, we show uniform consistency. Consider a collection of closed balls BM(/3(r)) of radius M and

center /3(r), and let /3M(T) = 3() + 5M(r) v(r), where v(r) is a direction vector with unity norm

IIv(r)l = 1 and M(T) is a positive scalar such that M(r) > M. Then uniformly inr E T, (M/SM(r)) 
(b)

(Qn(T,/3M(T))- Q.(T,/((r))) Q(T, 13*(T)) - Qn(T,/3(T)) > Q(7,/3*(T))-Q. (r,3(r)) + Op.(1)
(c)
> M + op.(1), for some eM > 0; where (a) follows by convexity in /3, for /3(r) the point of the

boundary of BM(/(T)) on the line connecting /3M(r) and 3(r); (b) follows by the uniform convergence

established above; and (c) follows since (r) is the unique minimizer of Q (3, r) uniformly inr E T, by

convexity and assumption (iii). Hence for any M > 0, the minimizer /3(T) must be within M from /3(r)

uniformly for all T E T, with probability approaching one.

3.A.2 Asymptotic Gaussianity of /n(/(-)-,(-))

First, by the computational properties of (T), for all 7 E T, cf. Theorem 3.3 in Koenker and Bassett

(1978), we have that IIEn[oV(Y- X'/(r))X]lI < const. supi<n IXill/n, where fp(u) = - 1{u < 0}.

Note that EliXil12+ e < oc implies supi< n Xil l = Op. (nl/ 2), since P (supi< n IXill > n'/ 2 ) < nP(]lXi11 >

n /2) < nElIXi|2+/n2 = o(1). Hence uniformly in E T,

x/nlE [(Y - X'3(T))X] = op(1). (3.A.1)
9Basic concepts used in the proof, including weak convergence in the space of bounded functions, stochastic

equicontinuity, Donsker and Vapnik-Cervonenkis (VC) classes, are defined as in van der Vaart and Wellner (1996).
2 0The step does not rely on Pollard's (1991) convexity argument, as it does not apply to the process case.
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Second, (, ) H- G, [2r (Y - X'/3) X] is stochastically equicontinuous over B x T, where B is any

compact set, with respect to the L 2(P) pseudometric

p((T',3'), (T", /3)) = maxE [(w' (Y - X'/3) Xj - pro (Y - X',3") Xj)2]
' ~ ~~j~l,...,d

for j E 1 ... , d indexing the components of X. Note that the functional class {92r (Y - X'/3) X,r E T, /3 E

B} is formed as (T-.F)X, where F = {1{Y < X'/3}, 3 E B} is a VC subgraph class and hence a bounded

Donsker class. Hence T - F is also bounded Donsker, and (T - F)X is therefore Donsker with a square

integrable envelope 2 maxjE1,..d IXIj, by Theorem 2.10.6 in Van der Vaart and Wellner (1996). The

stochastic equicontinuity then is a part of being Donsker.

Third, by stochastic equicontinuity of (, /3) - G [r (Y - X') X] we have that

Gn [ r(Y -X'/(T-))X] = Gn [-(Y-X'O(Tr))X] + op, (1), in f£(T), (3.A.2)

which follows from supCT 11/(T) -3(r)11 Op. (1), and resulting convergence with respect to the pseudo-

metric supCT p[(r, /3(T)), (, /3(r))] 2 = o(1). The latter is immediate from
suPre p[(Tb(T)), (T,/(T))] 2 < C3 supET Ilb(T) - /3()lI(2+), where C3 = (f. (ElIXII2) /2)22+)
(EIXIll2+) 2 < oo and f is the a.s. upper bound on fy(YIX). (This follows by the Hl61der's inequality

and Taylor expansion.)

Further, the following expansion is valid uniformly in T E T

E [(Y- X'3)X] = [J(T) + op(1)] (3(T) - /3(T)) (3.A.3)

Indeed, by Taylor expansion E[V,(Y- X'/)X]p() = E[fy(X'b(T)IX)XX'] Ib(.)=3*(,)((T) - (T)),

where 3*(T) is on the line connecting /3(T) and 3(T) for each T, and is different for each row of the

Jacobian matrix. Then, (3.A.3) follows by the uniform consistency of /3(T), and the assumed uniform

continuity and boundedness of the mapping y '- fy(ylx), uniformly in x over the support of X.

Fourth, since the left hand side (lhs) of (3.A.1) = lhs of n1/ 2 (3.A.3)+ lhs of (3.A.2), we have that

op(l) = [J(.) + o(1)]((-) - /3(.)) + Gn[p.(Y - X'f3(.))X]. (3.A.4)

Therefore, using that mineig [J(T)] > A > 0 uniformly in T E T,

sup Gn[Sr(Y - X'/3(T))X] + op(1) I > ( + (1)) · sup VII(T)-()II. (3.A.5)
7r-T rE Tc

Fifth, the mapping F- /(T) is continuous by the implicit function theorem and stated assump-

tions. In fact, since 3(T) solves E [( - 1{Y < X'})X] = 0, d/3(Tr)/d = J(T)- 1E[X]. Hence 

Gn [r (Y - X'/3(T)) X] is stochastically equicontinuous over T for the pseudo-metric given by p(r', T-") :=

p9((T', 3(T')), (", /3("))) Stochastic equicontinuity of 

195



G [(Y - X'f(i-))X] and a multivariate CLT imply that

G [.(Y - X'f3(.))X] => z(.) in £f(T), (3.A.6)

where z(.) is a Gaussian process with covariance function (-, ) specified in the statement of Theorem 3.

Therefore, the lhs of (3.A.5) is Op(n- 1 /2 ), implying SUPTeCT I/n(/3(T) - 13(T))11 = Op.(1).

Finally, the latter fact and (3.A.4)-(3.A.6) imply that in £t(T)

J()(/('- )-3(')) = -Gn [.(Y - X'13(.))] + op- (1) = z(.). (3.A.7)

Q.E.D.

3.A.3 Proof of Corollaries

Proof of Corollary 1. The result follows by the continuous mapping theorem in (T). Absolute

continuity of KC follows from Theorem 11.1 in Davydov, Lifshits, and Smorodina (1998). Q.E.D.

Proof of Corollary 2. The result follows by absolute continuity of C. The consistency of subsampling

estimator of k(ca) follows from Theorem 2.2.1 and Corollary 2.4.1 in Politis, Romano and Wolf (1999),

for the case when V(r) are known. When V(') is estimated consistently uniformly in r E T, the result

follows by an argument similar to the proof of Theorem 2.5.1 in Politis et. al. (1999). Q.E.D.

A A

3.A.4 Uniform Consistency of E(.,.) and J().

Here it is shown that under the conditions of Theorem 3 and the additional assumption that EIIXll4 < 00,

the estimates described in the main text are consistent uniformly in (, T') E T x ¶T.
21

First, recall that J(T) = [1/(2h.)]- E.[1{Y - X'(r)l < h} XiXi']. We will show that

J() - J(T) = Op, (1) uniformly in T E T. (3.A.8)

Note that 2hnJ(T) = En[fi(/!3(r),hn)], where fi(, h) = IIYi-Xi'31 < h} .XiX'. For any compact set B

and positive constant H, the functional class {fi(/3, h), /3 E B, h E (0, H]} is a Donsker class with a square-

integrable envelope by Theorem 2.10.6 in Van der Vaart and Wellner (1996), since this is a product of a

VC subgraph class {1{IY - Xi'/31 < h}, 3 E B, h E (0, H]} and a square integrable random matrix XiXf

(recall ElIX ll4 < oo by assumption). Therefore, (, h) -4 G,, [fi(/3, h)] converges to a Gaussian process in

£°(B x (0, H]), which implies that sup3BO<h<H IIEn [fi(/, h)] - E [fi(/3, h)] II = Op (n-l/ 2 ). Letting B

be any compact set that covers UreTI(r), this implies supETr lE[fi((T), ha)]- E[fi(, hn)IIo=, (i)ll =
Op.(n- 1

/
2 ). Hence (3.A.8) follows by using 2hnJ(r) = En[f(3(T),hn)], 1/(2hn)- E[fi(3, hn)]K=(T) =

J(T-) + op(1), and the assumption hnn - oo.

2 Note that the result for J(r) is not covered by Powell (1986) because his proof applies only pointwise in -r,
whereas we require a uniform result.
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Second, we can write (r, ') = En[gi(-(T),/3(T'),7-,T')XiX], where gi(O',",T', 7-") = ( 7- {Y/ <

X~'})(r - 1{Y/ < Xi'O"}). XiX'. We will show that

Z(T, T')- E(T, T')= Op. (1) uniformly in (r, T') E T x T. (3.A.9)

It is easy to verify that {gi(',/",T', "), (/3',/", -', -") B x B x x T} is Donsker and hence a
Glivenko-Cantelli class, for any compact set B, e.g., using Theorem 2.10.6 in Van der Vaart and Wellner

(1996). This implies that En [gi(3', /3", T/, 7-")XiX'] - E [gi(0', ", 7T', 7T")XiX] = o (1) uniformly in

(3',/3", 7', 7") E (B x B x T x E). The latter and continuity of E [gi(/3', 3", 7', T")XiXif] in (', /3", 7T', T/")

imply (3.A.9). Q.E.D.
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Figure 3-1: CQF and Weighting schemes in 1980 Census (US-born white and black men aged
40-49). Panels A - C plot the Conditional Quantile Function, Linear Quantile Regression fit,
and Chamberlain's Minimum Distance fit for log-earnings given years of schooling. Panels D - F
plot QR weighting function (histogram x importance weights), importance weights and density
weights.
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Figure 3-2: Schooling coefficients and conditional quantiles of log-earnings in 1980, 1990, and
2000 censuses (US-born white and black mean aged 40-49). Panel A plots the quantile pro-
cess for the coefficient of schooling in the QR of log-earnings on years of schooling, race, and a
quadratic function of experience; and robust simultaneous 95 % confidence bands. Panel B plots
simultaneous 95 % confidence bands for the QR approximation to the conditional quantile func-
tion given schooling, race, and a quadratic function of experience. Horizontal lines correspond
to OLS estimates of the schooling coefficients in Panel A. In Panel B, covariates are evaluated
at sample mean values for each year, and distributions are centered at median earnings for each
year (i.e., for each T and year, E[X]'(3(r) - 3(.5)) is plotted).
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Table 1: Comparison of CQF and QR-based
Interquantile Spreads

Interquantile Spread
90-10 90-50 50-10

Census Obs. CQ QR CQ QR CQ QR

A. Overall

1980 65,023 1.20 1.19 0.51

1990 86,785 1.35 1.35 0.60

2000 97,397 1.43 1.45 0.67

0.52 0.68 0.67

0.61 0.75 0.74

0.70 0.76 0.75

B. High School Graduates

1980 25,020 1.09 1.17 0.44 0.50

1990 22,837 1.26 1.31 0.52 0.55

2000 25,963 1.29 1.32 0.59 0.60

0.65 0.67

0.74 0.76

0.70 0.72

C. College Graduates

1980 7,158 1.26 1.19 0.61 0.54

1990 15,517 1.44 1.38 0.70 0.66

2000 19,388 1.55 1.57 0.75 0.80

0.65 0.64

0.74 0.72

0.80 0.78

Notes: US-born white and black men aged 40-49. Average
measures calculated using the distribution of the covariates
in each year. The covariates are schooling, race and a
quadratic function of experience. Sampling weights used
for 2000 Census.
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