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Abstract
We have studied the transport of magnetization and energy in systems of spins 1/2
on a lattice at high temperature. This work was motivated by recent experiments
which observed "spin diffusion" among the dipolar coupled nuclear spins of the in-
sulator calcium fluoride, under conditions where it was appropriate to neglect the
coupling to any heat reservoir. The dynamics under these conditions is coherent and
reversible, yet signatures of irreversibility (i.e. diffusion) are typically observed. This
state of affairs poses a formidable conceptual puzzle. In this thesis we present both
phenomenological and microscopic models of spin diffusion, retaining the important
aspects of statistical approaches to transport while incorporating relevant quantum
effects. These methods allow an efficient calculation of energy diffusion for a long-
range interaction, which has largely been an intractable problem. We study transport
in two different limits, that where the XY term of the spin Hamiltonian is dominant,
and that where it can be treated as a perturbation compared to the Ising term. In the
case of dipolar couping, both limits are found to show slightly more rapid diffusion
of inter spin energy than magnetization, in qualitative agreement with experiments.
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Chapter 1

Introduction

This thesis presents one aspect of recent theoretical work on the quantum dynamics

of solid state spin systems at high temperature. 1 We will be concerned primarily with

the spatial transport of magnetization and energy via mutual flips of spins that are

fixed on the sites of a regular lattice. This is also known by the collective term "spin

diffusion". In the systems where it has been observed, mainly the nuclear spins of

insulators, it typically occurs on timescales that are shorter than those of relaxation

mechanisms that decohere the wavefunction. In this regime, the dynamics cannot be

diffusive in the strict sense of an incoherent, random process. Rather, the appearance

of diffusion arises from a sort of quantum dephasing similar to that responsible for free

induction decay. The dynamics in this case is entirely coherent, because the system

is completely isolated and cannot at any time be considered to be in equilibrium

with a heat bath. The physics of transport in such a system is of interest both at a

fundamental and a practical level. Fundamentally, it is important to understand how

the appearance of irreversibility arises despite the experimental ability to "reverse"

the dynamics and produce an "echo" of the original state. (For dipolar coupled spins

in solids an experimental technique to produce such an echo was demonstrated by

Rhim, Pines and Waugh in 1971.[4]) On the practical side, one would like to add new

controllable methods of transporting and storing complicated quantum states to the

toolbox of quantum information processing.

'Parts of this thesis have been adapted from Refs. [1] and [3]
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Our applications will be primarily to nuclear spins, because of their long deco-

herence times and the associated availability of experimental data. In contrast to

electronic spins, whose magnetic moments are 103 times larger than those of nu-

clei, nuclear spin-lattice relaxation times in solids can be as long as hours or minutes,

allowing transport to take place. Because the transition rate due to spin-phonon

coupling is proportional to 76, (see Ref. [5], Chapter 9) where y is the gyromagnetic

ratio, electronic spins thermalize much too rapidly for transport to be possible. Spin

diffusion was originally found to occur in insulating salts such as calcium fluoride,

where the Fluorine atoms have nuclear spin 1/2 and therefore no quadrupole mo-

ment, so that dipolar coupling is the main interaction. However, it has also been

observed in other systems, most notably the exchange-coupled nuclear spins of solid

3He.[6, 7] Because of their accessibility to manipulation by NMR methods, and the

importance of their interactions with electrons in solid-state devices, nuclear spins

have also been at the center of attention in recent efforts to implement quantum com-

putation. (see, e.g. Refs. [8, 9, 10, 11]) Lately there has also been a flurry of studies

of spin diffusion in spin chains, but we will not discuss these here. See, e.g. [12], and

references therein.

We focus on high temperature systems both because we expect statistical methods

to work in this case, and because the relevant experiments have been carried out in

this regime. Because of the coherence of the transport process, the words "temper-

ature" and "equilibrium" should be used with caution. In practice, experiments are

typically carried out on systems that have been allowed to come to a genuine equilib-

rium at a very high temperature, so that the initial state is one of spins pointing in

nearly random directions. In NMR experiments, this means that the crystal is placed

in an external field for a time much longer than the spin-lattice relaxation time, T1,

so that a small equilibrium magnetization is produced. This magnetization can be

considered as a perturbation on the infinite temperature state of completely random

spin orientations (or equal occupation probabilities of the Zeeman levels). The resid-

ual equilibrium magnetization can be driven out of equilibrium in order to produce

transport. Because of the coherence of the process, the system retains memory of

14



its initial state, and the notion of equilibrium during transport is meaningless. It is

therefore proper to use the term "high temperature" only in connection with the en-

semble from which the initial state is taken. If the same experiment is repeated many

times, however, it then becomes possible to think of the average transport coefficients

over all realizations of the experiment. In this sense we expect a statistical theory to

be valid.

Our investigations are therefore geared towards learning whether there are any

uniquely quantum manifestations of the coherence that are universal in the sense of

being independent of the particular starting state. One can imagine, for example, the

interference of paths along which a spin can diffuse, that would affect the value of the

diffusion coefficient regardless of which state it started in. A hint to the existence of

such processes has recently been reported[1l] in connection with the measurement of

an anomalously large value for the energy diffusion coefficient in calcium fluoride. To

determine whether such phenomena really exist requires a fully quantum-mechanical

treatment of the problem. This is the goal of this thesis.

In this thesis we present calculations of correlation functions and diffusion coeffi-

cients in two different limits. The first limit is when the flip-flop (I+I-) interaction

is dominant over all other interactions. This is known as the XY model, and is the

simplest model exhibiting spin diffusion. It is an important starting point for deter-

mining the effect of other interactions. The second limit is that of a general bilinear

spin-conserving interaction for which the flip-flop can be treated in perturbation the-

ory. Each limit lends itself to analysis by a different technique in order for a solution

to be possible or for the calculations to be tractable. Our primary tools are Redfield's

moment method and linear response theory. Using the former, we obtain the diffu-

sion coefficients of both magnetization and energy for the XY model with arbitrary

coupling in Chapter 2. Next, in Chapter 3, we prove the equivalence of the diffusion

coefficients obtained from an equation of motion analysis of the correlation function

to those given by Kubo's formula. We use the latter as a basis for a perturbation

expansion in the flip-flop term.

In this chapter, we present a qualitative physical discussion of spin diffusion,
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including Bloembergen's original phenomenological theory. A discussion is given of

the reciprocal space NMR method that was recently used to measure magnetization

and energy autocorrelation functions for the nuclear spins in calcium fluoride. These

experiments provided the first direct measurements of these quantities in an isolated

dipolar coupled spin system, and showed that energy diffusion is several times faster

than expected from quasi-classical considerations, while magnetization diffusion is

well described classically. After establishing formulas for the measured quantities, we

give a simple argument for why a coherently evolving system may display significantly

different behavior than a dissipative one. Finally, a review is given of previous work

on this problem.

1.1 Lattice Spin Systems

The most general Hamiltonian for a set of spins on a rigid lattice with only pairwise

interactions, and conserving at least one component of spin, is

N
= E (A,3 IfIz + BjII), (1.1)

ij

where N is the total number of spins in the crystal. The latin indices run over all

lattice sites and the I are spin operators defined by their commutation relations

[Ii, I ] = 6ijI7, where a, , -y is any cyclic permutation of x, y, z. The + = I i Y

are raising and lowering operators. The important feature of Eq. (1.1) is the "flip-

flop" term, Ti,j BjI+II-, which is responsible for the transport of magnetization and

energy (or heat) by the mutual flips of pairs of spins. Eq. (1.1) includes the models

of interest for spin diffusion as special cases: (1) Heisenberg model, for which Aij, Bij

are non-zero for ri - rjI = I1 and are zero otherwise. This model is appropriate for

nuclear spin diffusion in 3He. Also, Aij = Bij for the isotropic Heisenberg model; (2)

XY-model, where Ai = 0 and Bij is arbitrary. We study this model in Chapter 2;

and (3) dipolar coupling in high external magnetic field, for which Bij = -Aij, and
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Aij = bij, where
b 2h 1 - 3 cos2 ij (1.2)

Here y is the nuclear gyromagnetic ratio, rij is the displacement between lattice sites

i and j, and 0ij is the angle between rij and the external magnetic field B0 , which

is taken to lie along the z-axis. Model (3) is directly applicable to nuclear spins in

insulating solids, and is important for any magnetic system in an external field, since

the dipolar coupling between spins is always present regardless of other interactions.

In all sums over several indices, it will be understood that no two indices are the

same, or equivalently, we set Aii = = Bii.

The case of dipolar coupling requires special consideration, since the dipolar in-

teraction without external field does not conserve any component of the total spin.

In an external magnetic field which produces a Zeeman splitting between neighboring

levels that is much larger than the interaction strength between any pair of spins,

transitions which change the total component of spin along the field are suppressed

compared to spin-conserving transitions, due to energy conservation. This results in

an effective truncation of the full dipolar-coupling. This fact is well known in the

NMR community,[13] but is not widely appreciated. For completeness, we present a

detailed discussion here.

1.1.1 Dipolar coupling in strong external field

A system of identical dipolar-coupled spins in a constant external magnetic field, B0 ,

has the Hamiltonian = z + ldip, where[5, 13]

,Hz = - mi Bo, (1.3)
i

Rdip = 1 E [mi.mj 3 (mi rij)(mj rij)] (1.4)
~-~ d i r-- [ i3 (1.4)

.j 'ij

The factor in Eq. (1.4) compensates for counting each term twice in the sum. The2

magnetic moment operator at site i is proportional to the spin operator at that site,

mi = 7 hI, and rij _ ri - rj is the displacement vector between sites i and j.

17



We may treat Ndip as a perturbation if the "local field", Bloc =--yh/a3 , satisfies

Bloc < Bo, where a is the lattice constant. This condition is typically satisfied for

nuclear spins in experimentally accessible external fields. For the Fluorines of calcium

fluoride at an external field of 1-10 T, we have Bloc/Bo 10- 4. The unperturbed

energy levels are simply the Zeeman levels of an assembly of spins in the field B0,

and the dipolar interaction causes transitions between them. These transitions are

most easily analysed by writing the dot products in Eq. (1.4) in component form, and

expressing Ix and Iy in terms of the raising and lowering operators, Iii = I ± iIy '.

Also, the displacement vectors between lattice sites are conveniently written in polar

coordinates, rij = rij x (sin Oij cos Oij, sin Oij sin Oij, cos 9ij), with the polar axis along

the external field. This gives

"/2h2 Aij + Bij + Cij + Dij + Eij + Fij _ .T
dip 2 HA + +HF, (1.5)

i,j ri

where

Aij = ZIj( 1-3 COS2 ij ) ,

Bij - -4 1I- COS2 ij),1W+
3

Ci =-2 (jI+I + II+) sin Oij os ije- i i° ,
3

Dij = -(Ii Ij + IiIf-)sinO ijcosOijei oii
2

ij =-4 Ii+I1 sin2 0.ij.e-2iii,
4 3

Fij = - I sin2 ij e2ii j . (1.6)

The terms Aij and Bij have their only matrix elements between unperturbed levels

of the same energy. In particular, Aij is diagonal in the product basis, {ImI, m2,. . , mN) =

Imi1 ) Im2) 0... 0 IMN)}, where mi is the spin quantum number along the external

field. Bij connects the pair of states I .... , mi,. . ., mj + 1, . .. ), ... , m. + 1,... m. . .)

as well as a similar pair with i and j interchanged. The remaining terms connect lev-

els of different energy. Therefore, in the absence of any other perturbing fields (such

18



as an rf excitation) only transitions caused by 'HA and KB conserve energy. The re-

maining terms in the dipolar Hamiltonian cannot cause any transitions if the spacing

between Zeeman levels is larger than the width of the density of states at each level.

The ratio of this width to the Zeeman energy spacing is of order Bloc/BO, which is

in practice much smaller than one. The rate of such transitions is therefore zero by

Fermi's golden rule.

Another way to see this is by time-independent perturbation theory. Let n(° ))}

denote the basis of unperturbed eigenfunctions in which the terms tA and KHB are

diagonal. The label n denotes a given Zeeman energy, and each level within the

degenerate subspace at a given energy is labelled by the subscript m. To first order,

the energy levels are therefore Enm = E( +El ), where E = (n(°)'-IA "B In( O))

7-yhBoc. Since the terms Cij through Fij have no diagonal elements in this basis, they

produce no change in the energy levels at first order. The second order energy shift

is
I+...)-H + 12(2) + Fn'm,()) (1.7)

nm -:
n',m'(n'$n;m'$m) E 

Since the matrix elements in Eq. (1.7) connect neighboring and next-neighboring

Zeeman levels, we have E(2) , 7hBjo,(Blo/Bo). Likewise, the correction to the

unperturbed eigenfunctions is solely due to Kc, ... , TF, and is also of order Bloc/Bo.

As mentioned above, we typically have Blo/B < 1 in experimental situations of

interest. Therefore the dependence of the energies and eigenfunctions on the terms

Kc,.. tF is unobservable in practice. This has been checked experimentally by

NMR spectroscopy for various systems, which has shown the near vanishing of the

intensities of resonances between non-neighboring Zeeman levels. [5, 13] (Since the

rf Hamiltonian connects only those Zeeman levels neighboring in energy, transitions

between other levels are higher-order effects due to the terms Tc,... , -F.)

The above arguments allow us to truncate the dipolar Hamiltonian of Eq. (1.4),

resulting in

bij + -I(1.8)
i~j
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with bij given by Eq. (1.2). We mention that, despite the coupling to the external

field, Eq. (1.3), we may neglect this field and consider Eq. (1.8) to be the full Hamil-

tonian for dipolar coupling, since a transformation to a rotating coordinate system is

sufficient to eliminate the Zeeman energy term.

1.2 Spin Diffusion Phenomenology

Spin diffusion was first suggested by Bloembergen to explain his experiments on spin-

lattice relaxation in various insulating salts, including calcium fluoride.[14] He found

that the relaxation times varied by orders of magnitude between samples. In his

theory, spin-lattice relaxation was caused by diffusion of nuclear magnetization to

rapidly relaxing paramagnetic impurities, whose concentration varied from sample to

sample. Bloembergen proposed a simple, phenomenological model which accounted

rather well for the order of magnitude of the relaxation rate, but was limited in some

important ways. His model is presented here, followed by a discussion in the next

section of later developments which stemmed from it.

Bloembergen assumed a system of spins on a lattice where nearest neighbor2

spins could flip with each other with probability W per unit time. It is easy to show

that the magnetization of this system obeys a diffusion equation.[5, 14] Consider a

chain of such spins, spaced by a distance a. The rate of change of the probability,

p+(x, t), that a spin is up at position x and time t, is

1 p+(x) -p_(x)[p+(x + a) + p+(x-a)]-p+(x)[p_(x + a) + p_(x-a)]. (1.9)
W at

A similar equation holds for p_ (x, t), the probability that a spin is down at x and t.

Writing p+ - = p, p+ + p_ = 1, and assuming p <K 1, so that terms quadratic in

p are negligible, we obtain

Opx) = W[p(x + a) + p(x - a) - 2p(x)]. (1.10)

This is the finite difference form of the diffusion equation. To see this, one can expand
This is the finite difference form of the diffusion equation. To see this, one can expand
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the right hand side in Taylor series and keep only the lowest order terms. This gives

,09P Wa2 p (1.11)-= Waat aX
2 '

The above argument is generalizable to three dimensions. If we neglect the anisotropy

of W, we obtain

aP = DV2p, (1.12)
at

where D = Wa 2. If W is anisotropic, the diffusion rate becomes dependent on

direction, and DV 2 is replaced by Zij Dijaij, where Dij is the diffusion tensor.

The magnitude of D can be estimated using Fermi's golden rule. From Eq. (1.1),

the matrix element between any two states differing only by a flipped pair of nearest

neighbor spins is (+ - j- +) =-b/2, where b = bij for i and j nearest neighbors.

Treating the dipolar interaction as a perturbation at zero frequency, one obtains

W = 2 2 lb126(wi - wf)f(w)f(wf), (1.13)

where the subscripts i and f denote initial and final states, and the density of states,

f(w), is given by the free induction decay lineshape. (The lineshape is simply the

distribution of precession frequencies caused by the dipolar interaction, which is the

same as the energy distribution of a single spin.) Assuming a gaussian lineshape with

width Aw and integrating over all initial and final states, we obtain

IT b 2

W = 2h2 2(Aw) . (1.14)

A formula for Aw in terms of the couplings, bij, has been obtained by Van Vleck[15]

by a moment method. For a simple cubic lattice, this formula is[5]

AW2 = 12.3' 4h2 I(I + 1) I -(A 4 + A4 + A4 -0.187), (1.15)

where I is the magnitude of the spin and A1 , A2, 3 are the direction cosines of the

applied field with respect to the crystal axes. For I = 1/2, and the crystal oriented

21



such that one of the crystal axes is along the external field (say, the [001] direction)

we obtain

W11(001) (0.229)7 2h (1.16)
a3,

WL(001) W11ii(001), (1.17)
4

where the subscript 1] means nearest neighbors on an axis parallel to B0 , and the

subscript denotes nearest neighbors perpendicular to B0. This shows that the

longitudinal diffusion coefficient, D, for transport along the direction of the ex-

ternal field is greater than the transverse diffusion coefficient, D, for transport

perpendicular to the field. In this thesis, we will only be concerned with calcu-

lating Dll. For the Fluorines in calcium fluoride, the values of the constants are

= 2.51 x 104 rad Hz/Oe, a = 2.73 x 10-8 cm. Putting these values in the above

equation, we obtain an estimate for Dii of 5.5 x 10 -12 cm2 s- 1 , which is remarkably

close to the experimentally measured value (see Table 1.1).

Experiments are typically done for two different orientations of the field with

respect to the crystal axes, the (001) and (111) directions. Two orientations are suf-

ficient to compare with theory. However, obtaining a good estimate from the above

theory of DI, for the (111) direction is difficult because nearest neighbors no longer

contribute to the transport (they have b = 0), and we must consider various ways of

producing longitudinal transport by flip-flops of next-nearest neighbors. The approx-

imation is then too qualitative and does not give reasonable results. Furthermore,

there is no clear way to estimate the rate of energy transport using this theory. How-

ever, the more detailed theories we describe later do predict an orientation dependence

of the diffusion coefficient that is close to what is measured experimentally, and also

provide a way to calculate energy transport.
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1.3 Reciprocal Space NMR Technique

The experiments of Zhang and Cory[2] and Boutis, et al.[1] provided a measurement

of the spin-spin and energy-energy correlation functions in Fourier space for the spin

1/2 Fluorine nuclei in calcium fluoride. They were carried out at room temperature,

using pulsed gradient NMR techniques. In these experiments, a single crystal of

calcium fluoride was first allowed to reach thermal equilibrium in a strong external

magnetic field, so that the initial population of spins pointed along the field was

different; than that of the ones pointed oppositely. The resulting polarization was

manipulated with radio frequency (rf) pulses and magnetic field gradients in order

to produce inhomogeneous magnetization and energy distributions whose coherent

evolution under the dipolar coupling was measured. The evolution times were short

compared to the spin-lattice relaxation time, T1, but long compared to the spin-spin

dephasing time, T2. The dynamics was therefore coherent in the sense that the spin

system was well isolated and was not relaxed by coupling to a thermal reservoir, while

the evolution time was still long enough to accommodate many spin flips. The same

experiment was carried out many times for single wavelength modulations between

1 -3 pin of the magnetization and energy densities. The results are reproduced in

Table 1.1.

Since this thesis is concerned with theory, we will here describe how the experiment

works in principle, and refer the reader to the original articles for details on the

apparatus and implementation. [2, 1] The discussion of this section will be used as a

framework for the theoretical developments presented later.

At thermal equilibrium in a strong external field, the density matrix of the spin

system is of the form Peq = + 6p, where Z is the partition function and

N
6p 0cE I = . . (1.18)

i=1

This state is known in the NMR community as "Zeeman order", and is created simply

by leaving the crystal in the external magnetic field for a time long compared to the

spin-lattice relaxation time. Indeed, in the high-field (Bo >> bij V i, j), high-
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Table 1.1: Summary of the experimental results of Refs. [1, 2] on the spin diffusion
rate of spin-spin energy, D-, and magnetization, DM for a single crystal of calcium
fluoride in two different orientations ([001] and [111]) with respect to the external
field.

Ref. [1fl] [ 0 01] [ 1 11] Doo/D

D (x10-1 2cm 2/s) 29 i 3 33 ± 4 0.88 ± 0.14
DM (x10- 12cm 2/s) 6.4 ± 0.9 4.4 4- 0.5 1.45 ± 0.26

Ref. [2l] [001] [111] Dool1/D 111

DR (x10- 12 cm2 /s) 7.1 ± 0.5 5.3 ± 0.3 1.34 ± 0.12
Ratio of De to DM [001] [111]

Ref. [1] 4.5 ± 0.8 7.5 ± 1.3 

temperature (hBo << kBT) limit, the equilibrium density matrix is[13]

Pe ie(kBT) 1 T1t = (l+hBTI) (1.19)peq=- (1 1 ,z -(I 4 - .) (I. I19)z ( kBT ZkBT

where 1 is the identity operator and Z = tr {1} = 2 N in this approximation. This

density matrix describes a system with uniform infinitesimal polarization in the z-

direction. Using the previously quoted value for y in calcium fluoride, as well as

typical values of Bo = 1 T, T = 300 K, we estimate yhBo/kBT 10- 5 - 10- 6.

1.3.1 Magnetization diffusion experiment

The experiment begins with a (r/2)y pulse2 applied to the state, Eq. (1.19), followed

by a magnetic field gradient pulse sequence. This sequence consists of strong magnetic

field gradient pulses along the z-axis, interleaved in the long delay times within a

magic-echo train. The magic-echo train is a pulse sequence, demonstrated by Rhim,

Pines, and Waugh,[4] which suspends evolution under the dipolar coupling. The

combination of the magic echo and magnetic field gradient produces an effective

2This is the customary notation used in the NMR literature. (7r/2)y stands for a 90 degree
rf pulse about the y-axis, whose effect can be expressed mathematically by the application of the
unitary operator U((7r/2)y) = exp(-iTIv) to the state.
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Hamiltonian consisting of just the gradient term,

ftv = -h z Ifzi, (1.20)
azi

where DBz/Oz is the gradient field strength and zi is the spatial location of spin i.

This creates a spatially modulated magnetization transverse to the external field. If

the gradient is applied for a total time 6, the wave number of the resulting spatial

modulation is k = -y6(Bz/&z). Following the application of the gradient,

P = kBTZ [Ii cos(kzi) + IiY sin(kzi)]. (1.21)

Next, a (r/2)v pulse flips one component of the transverse magnetization back along

the external field (z axis). The remaining transverse component decays rapidly be-

cause it is not a conserved quantity (unlike the z component of the magnetization,

which satisfies a local continuity equation as we will see in Chapter 3). This yields

p= kBTZ I cos(kzi) (1.22)

These steps are common to both the magnetization and energy diffusion experi-

ments. For the measurement of magnetization diffusion, the above state is allowed to

evolve under the Hamiltonian, Eq. (1.8), for a time t. Following this,

6pij kBTZ jz cos(kzi), (1.23)

where the coefficients cj (t) are infinite temperature spin-spin correlation functions,

cij(t) = (Iz(0)I(t)) (1.24)
((i?) 2)

and Ij(t) _= exp(i7t)Iz exp(-iHt) is the time-dependent spin operator in the Heisen-

berg picture. The angular brackets stand for the infinite temperature equilibrium

average, ( ... ) - tr {.. }/tr {1}. The cj's represent the relative amount of polar-

25



ization initially at site i that has been transported to site j after time t. Because

of translational invariance, they only depend on the vector difference ri -rj. We

have neglected higher order spin terms in Eq. (1.23), as these do not contribute to a

measurement of the magnetization.

Next, a (/2)y pulse is applied followed by a magnetic field gradient, equal in

amplitude but reversed in direction compared to the initial step. This gradient labels

the new location of the polarization, in analogy with a scattering experiment. After

a final (/2)- pulse, the state is

p(t + 0) = kTZ E cij(t)Ij, cos(kzi) cos(kzj). (1.25)

In the absence of spin diffusion, cij = ij, so that the phase terms would be identical

and the original state would be recovered (scaled by 1/2 due to the dephasing of

transverse spin components). In the presence of spin diffusion, the cosine terms

reflect the spatial transport of the magnetization.

Finally, the total z magnetization of the state in Eq. (1.25) is measured. The

signal, normalized to one when the evolution time is zero, will be denoted by CM (k, t).

It is equal to the expectation value of the magnetization in the final state, Eq. (1.25),

divided by that in the same state at t = 0, or tr {IZ6p(t + 0)}/ tr {IZ6p(O + )}. This

can be rewritten in terms of infinite temperature equilibrium averages as

CM (k, t) (_i Iiz(O) cos(kzi) Ej I(t) cos(kzj)) (1.26)
(Ei I (0) cos(kzi) Ej Ijz(0) cos(kzj))

The notation cm(k, t) is used because Eq. (1.26) is the Fourier transform of the cor-

relation function, cj(t), as can be seen by expanding the cosines in Eq. (1.26) with

the identity cos(a) cos(b) = [cos(a + b) + cos(a - b)]/2, and using translational in-

variance to eliminate the cos(a + b) term. The subscript M denotes magnetization,

to differentiate this quantity from the energy correlation function to be introduced

later. The magnetization operator is Mi =- hIiz. In terms its Fourier transform,

M(k,t) = EiA4 Mi(t)eikzl, we have E M i(t)cos(kzi) = [(k,t) + M(-k,t)]/2. In-
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serting this into Eq. (1.26), and using translational as well as time-reversal invariance,

we find

CM (kt) - (M(-k, 0)M(k, t)) (1.27)
(M(-k, 0)M (k, 0))'

It is observed experimentally that cm(k, t) = exp(-k 2 DMt), consistent with diffusive

dynamics. DM is the magnetization diffusion coefficient. In Refs. [2, 1], the results

of many measurements with 1 um < k - 1 < 3 im and diffusion times between 10

and 60 s were fit to an exponential function, from which a diffusion coefficient was

extracted. Their results are shown in Table 1.1.

1.3.2 Energy diffusion experiment

The measurement of energy diffusion requires two steps in addition to those discussed

above for magnetization diffusion. The modulated z magnetization of Eq. (1.22) is

first converted to a state with modulated energy density,

iz Cos(kzi) -- H ij cos(kzi) + cos(kzj) + higher order, (1.28)
2icokz)1ZH 2

'1 ~~~~~~~i,j

where Hij is the pairwise dipolar interaction in front of the summation sign in Eq.

(1.8) and < 1 is the efficiency of the conversion. This is done using either of two

NMR techniques. One is known as a Jeener-Broekaert (JB) pulse sequence,[16] and

the other is called adiabatic demagnetization in the rotating frame (ADRF).[13] We

do not discuss these techniques in detail, but refer the reader to the references already

cited. The higher-order spin terms in Eq. (1.28) are not observed, so we neglect them

from now on. The state, Eq. (1.28), evolves under the Hamiltonian, Eq. (1.8), for a

time t, after which it becomes

6p(t)- kBTZ E bijdijkl(t)Hkl cos(kzi). (1.29)
i<j;k<l

Next, this state is converted back to observable z magnetization by the appropriate

pulse sequence (a 7r/4 pulse if initialization was by JB, or an adiabatic remagnetization

in the rotating frame if it was by ADRF). The gradient modulation is subsequently
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unwound, yielding

1
p(t ) kBTZ S bijdijkl(t)Ckl[I cos(kZk) +- I cos(kzl)] cos(kzi) (1.30)

i<j;k<l

where kl is a dimensionless quantity proportional to bkl. In the limit of infinitesimal

polarization, the so-called dipolar ordered states of Eqs. (1.28) and (1.29) are local

two-spin correlations. The length scale of these correlations (A) is much smaller than

the length scale of the spatial modulation (hundreds of nm), yielding kzi 0 kzj. As a

consequence, the phase spread due to the creation and refocusing of dipolar order can

also be safely ignored in the interpretation of these experiments. In the absence of

transport, kzi 2 kzk, and the original state is recovered (scaled by 1/2, as before). As

in the magnetization case, the residual phase term, cos k(zi -Zk), encodes the spatial

transport in the presence of spin diffusion. The final z magnetization is measured, as

before, yielding
('H(-k, 0)7-((k, t))cH (k, t) -= ((1((-k'0 ) -(k,' ))' (1.31)

(-H k, ) R(k,0)>'

where we have defined N(k, t) - i,j [hj(t) + j i(t)]eikzi . Eq. (1.31) is the en-

ergy autocorrelation function in reciprocal space. It is found to be proportional

to exp(-k 2 D-t), where the energy diffusion coefficient, DH, is different from the

magnetization diffusion coefficient, DM. The results of many measurements with

1 tm < k- 1 < 3 m and diffusion times between 10 and 60 s are shown in Table 1.1.

1.4 Coherent vs incoherent transport

In the description above of the experiments on magnetization and energy diffusion in

calcium fluoride, the details of the dynamics are contained in the correlation functions

cij and dijkl. Evaluation of these terms for all t would entail solving a complicated

many body problem. However, in order to compare the two diffusion processes and

understand how the coherence of the dynamics may affect the results, it suffices to

evaluate these correlation functions in the short time limit. The persistence of the
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initial states is, to lowest order in t,

t 2

Cii(t) = 1 - - O+(t4). (1.32)
k

t 2
P 2 +~ik~k 0 (t 4).

dijij(t) = 1 -4 E (bi2k + b2k + bikbjk) + o(ta) (1.33)
k

If the dipolar ordered state had been proportional to I Iz only, then we would have

dijkl = CikCjIl. The coefficient d in Eq. (1.33) differs from a simple product of the

c's at this order by the cross terms bijbjk. These types of cross terms vanish if one

calculates the average diffusion coefficient for an equilibrium ensemble. (For example,

they do not contribute to the moments of Eq. (1.31).) Because we cannot actually

consider the system to be in equilibrium, in the sense of being coupled to a heat bath

at a fixed temperature, this type of approach is questionable. One can easily imagine

interference effects arising from a proliferation of cross terms such as the bikbjk of Eq.

(1.33), though in this particular case they happen to be very small. (The sum of cross

terms in Eq. (1.33) is an order of magnitude smaller than that of the other terms.)

At present, there is no theory of such interference effects, if they exist. Nevertheless,

both the smallness of the cross terms and the possibility to run the experiment several

times to eliminate the effects of initial conditions, motivates us to pursue a statistical

approachi. Such an approach should be capable of capturing interference effects that

are independent of the initial state, as discussed in the introductory paragraphs to

this chapter.

1.5 Previous work

After Bloembergen introduced his phenomenological theory of relaxation by diffusion

of nuclear spin magnetization to the sites of paramagnetic impurities, several authors

performed microscopic calculations of this effect. These calculations fall broadly into

two categories, the first being approaches based on quantum mechanics, the second

being classical simulations. The former have historically required the use of various,

sometimes crude, approximations. The latter, while being largely free of approx-
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imations, say nothing about the quantum correlations in which we are interested.

Nevertheless, some useful information has been obtained on the similarities between

quantum and classical versions of spin diffusion.[17]

The first calculations were limited to magnetization transport. They were based

on Bloembergen's diffusion equation, Eq. (1.12), which was extended to include the

effects of paramagnetic impurities. This was done by Khutsishvili,[18] and also by

DeGennes[19] and Redfield.[20] Building on these approaches Blumberg[21] showed

that different regimes of magnetization diffusion are possible based on the concen-

tration of impurites. For high impurity concentration the decay of non-equilibrium

nuclear magnetization is dominated by direct relaxation of nuclei by impurity spins,

while for low impurity concentration spin diffusion is important. The two cases have

different experimental signatures and so can be distinguished. These predictions were

verified experimentally by Blumberg and later by Goldman.[22] This convergence of

theory and experiment put the phenomenon of spin diffusion on a firm foundation.

More sophisticated approaches geared towards a full quantum mechanical solu-

tion followed. A hydrodynamic calculation was given by Buishvili and Zubarev,[23]

who studied the combined problem of nuclei coupled to rapidly relaxing impurities

using non-equilibrium statistical mechanics. Integrodifferential equations for the spin

autocorrelation functions of an isolated paramagnetic spin system were set up by

Bennett and Martin,[24] who used a moment method for their solution. Their ap-

proach necessitated the uncontrolled approximation of the kernals of certain integrals

by gaussians. An equation of motion approach was developed by Lowe and Gade,[25]

and Kaplan,[26] who derived a diffusion equation for the expectation value of the

magnetization in a state which was perturbed from equilibrium, and treated the flip-

flop (or XY) term to first order in perturbation theory. Borckmans and Walgraef[27]

used Prigogine's non-equilibrium statistical mechanics, and developed a diagrammatic

technique to treat the flip-flop term to all orders, yet their approach also necessitated

the replacement of certain integral kernels by gaussians in order to obtain a tractable

solution. All of these methods gave reasonable agreement with each other, as well as

with experiments measuring the diffusion coefficient of magnetization.
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Energy, or heat transport, was not discussed until the later work of Redfield and

Yu,[28] and Borckmans and Walgraef.[29] The relative neglect of this problem was

presumably due to lack of experimental motivation, coupled with the increased diffi-

culty of the calculations. The experimental motivation came with the measurements

of magnetization[6] and energy[7] diffusion coefficients for the exchange-coupled nuclei

of solid 3He. Redfield and Yu obtained values for these coefficients based on Redfield's

moment method. Although the 3He experiments measured the energy diffusion rate

to be roughly twice the spin diffusion rate, Redfield and Yu's calculation gave the

same value for both. Although their ratio disagreed, their magnetization diffusion co-

efficient was accurate. Borckmans and Walgraef used their previous non-equilibrium

approach to obtain energy diffusion coefficients for calcium fluoride that were slightly

smaller than measured, but whose ratio was almost a factor of two, showing a more

rapid diffusion of energy than magnetization. They also found the coefficients of both

magnetization and energy diffusion to be roughly the same for solid 3He, in agreement

with Redfield and Yu but disagreeing with experiments.

The next significant development was that of computer simulations of classical

spins. [30, 17] These simulations solved the Larmor precession equations of classical

magnetic moments precessing in the fields from the surrounding spins as well as the

external field. The simulations displayed diffusive behavior of both magnetization

and energy, with energy diffusion being a factor of two faster than magnetization

diffusion for dipolar coupled spins, but gave the same values for both coefficients in

the case of exchange coupling, a result similar to that found by Redfield and Yu, and

Borckmans and Walgraef. The diffusion coefficients for magnetization agreed with

experiments, however.

Following this, Sodickson and Waugh[17] presented a proof, using spin coherent

states, that a quantum mechanical analysis of magnetization diffusion reduces to the

classical one in the limit of long-wavelength, high-temperature perturbations to the

equilibrium state. This explained the agreement of quantum mechanical calculations

with the computer simulations discussed above.

More recently, there has been a great deal of work on quantum spin chains, where
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the question of the existence or absence of spin diffusion has been a controversy for

many years. In this connection there have been experiments by Sologubenko et al.[12]

that show diffusive behavior of both magnetization and energy in Haldane gapped,

insulating spin-1 chains at high temperature, which show a striking resemblance to

what is predicted by the theories described above. A theory of spin diffusion in

such systems was developed by Sachdev and Damle.[31, 32] The situation in spin-

1/2 chains is very different, where many authors have shown the ballistic, rather

than diffusive, nature of excitations at high temperature.[33, 34, 35] We will not be

concerned with the unique and sometimes surprising properties that are particular to

lower-dimensional systems, but instead present a general analysis of the physics that

is independent of dimension.
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Chapter 2

Limit of large flip-flop term - XY

model

In this chapter, we calculate the magnetization and energy (or thermal) diffusion

coefficients at infinite temperature for the Hamiltonian, Eq. (1.1), in the limit Ai -

0. This limit gives the XY model well-known in the study of magnetism. Since

the Bij term is responsible for the "flip-flop" process driving the dynamics of spin

diffusion, our analysis is important for determining whether the Ising (Aij) term can

be neglected for spin diffusion in systems where Aij O. To this end, we make a

comparison to experimental data on calcium fluoride by taking Bij =-bij, with bj

given by Eq. (1.2).

We use a moment method to obtain diffusion coefficients from the correlation

functions, Eq. (1.27) and Eq. (1.31). This is a very direct, albeit phenomenological

approach, and is well suited for the needs of this chapter. Unfortunately, this approach

becomes extremely cumbersome when Aij O. The calculation is simplified by

a diagrammatic technique that is elaborated in Appendix A. We find the energy

diffusion coefficient to be slightly larger than the magnetization diffusion coefficient

for dipolar coupling, with the [001] orientation of the external field with respect to

the crystal axes, giving qualitative agreement with experiments on calcium fluoride.

The anisotropy of the magnetization diffusion coefficient is also in agreement, though

its value is not. We attempt to obtain better agreement by taking the Ising (Aij)
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term fully into account in the next chapter.

2.1 Moment method

The moment method for spin diffusion was introduced by DeGennes[19] and Redfield,[20]

who in turn adapted it from Van Vleck's[15] method of determining the NMR line-

shape. It is properly considered a phenomenological method rather than a microscopic

one, since it introduces, by hand, an ad-hoc cutoff to frequency integrals in order to

make them converge. This cutoff is in principle dependent on the microscopic dynam-

ics of the model, but how to derive it from first principles is still an open problem.

The form of the cutoff function is important as it plays a role in the magnitude of the

diffusion coefficient calculated by the moment method. The situation is somewhat

remedied if we ask for the ratio of the magnetization and energy diffusion coefficients

(or, for a more general model with more conserved quantities, the ratio of any two

diffusion coefficients). Assuming the cutoff function is of the same form in the two

cases (with up to a single variable parameter), the ratio of diffusion coefficients is

independent of the cutoff function. A gaussian cutoff therefore gives the same answer

as a step function, for example.

In Chapter we discussed experiments that measure the correlation function

cs(k, t)= (S(-k, )S(k 0))' (2.1)(S (- k, 0) S(k, 0))'

where S stands for either magnetization, S = M, or energy, S = A, and the

angular brackets denote averaging over the infinite temperature ensemble, (-) =

tr { .}/tr {1}. Expanding (2.1) in Taylor series about t = 0, we obtain

00 1

cs(t) = E (2)!2n)t2n (2.2)
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The even moments M} 2n) are given by

M(2n) (1)n (1)2n (S(k, 0)[7-, S(-k,)]2n) (2.3)
< S (- k, 0) s¢(, 0)>

where [.4, B], = [A, [A, [...[A, B]...]]], with A appearing n times. The sum in Eq. (2.2)

involves only even powers of t because the odd moments are zero. These expressions

may be derived by expanding S(k, t) = etS(k, 0)e-iht by the well-known formula

eABe-A = oLO l [A, B]n and putting the result in Eq. (2.1).en~e-A n= n=o!.

On timescales long compared with spin-spin dephasing but short compared with

spin-lattice relaxation, Eq. (2.1) behaves as a solution to a diffusion equation. That

is, experiments measure

cs(t) = e-t/ s , (2.4)

where Tm = 1/(k 2Ds), with k the wavenumber of the applied spatial modulation and

Ds a constant diffusion rate that depends on the state S = M or H. This expression

has been shown to hold over a broad range of k and t. [2, ?] However, one immediately

notices that, while (2.1) must be an even function of t, (2.4) is not. To reconcile these

facts, we follow the argument of Redfield.[20]

First, let us write cs(t) in terms of its even Fourier transform.

Cs(t) = J cs() cos tdw. (2.5)

Then the moments M2n are given by expanding the cosine in Taylor series.

s ( )o s(w)dw (2.6)

Now, the Fourier transform of e-
t/rs is a Lorentzian,

e- t/ rs cos(wt) dt - 2 (27)
7r 1 + 2 ' (2.7)

This function, however, has infinite moments. Therefore we make the assumption

that c(t) = e-t/Ts for t >> Ts, where Ts << Ts is some timescale on the order of
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the spin-spin dephasing time, but that for t < Ts the behavior of cs(t) is unknown to

us, except that it must be an even function around t = 0. One of the results of this

chapter is a determination of this timescale in the case of dipolar-coupling.

An equivalent way to phrase the above condition is to say that the Fourier trans-

form, cS(w), is the same as the Fourier transform of e-t/ rTS for W << Ts-, but behaves

differently for w > T5 1. In order for the odd time derivatives of cs(t) near t = 0 to be

zero, and for the moments Ms2n) to converge, we must have c(w) - 0 for w > Tsx.

We accomplish this by assuming

2$ 1
cs() = 7 1 + 2T S2 s (W), (2.8)

where we have introduced a frequency space cutoff function, gs (w) = 1 for w << Ts

and gs(w) -- 0 for w > T-'. Then, by equation (2.6),

M(2n) 27 00 W ~ a 2n

M(2n) = (_-)n_ A + j2 29S()d:

-(-1) ~ _ A a)gs (w) dw, (2.9)

for n > 1, while M(s° ) = 1. Therefore,

M2n) = 2n (2.10)

with the coefficient of proportionality, a 2n, depending only on the shape of the cutoff

function. Since Ts = 1/(k 2 Ds), each moment calculated from Eq. (2.3) must have a

leading k-dependence of k2 in order for the theory to be self-consistent. In the next

section will show that this is in fact the case.

Two reasonably simple possibilities for the cutoff function are a gaussian and a

step function. These result in

1 )n(2n-2)! 2T
2

a2n V/ 22-2(n-l)!7 Mu) = e (2.11)

~(-_)-, gs(e) = (rs - )
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Whatever the shape of the cutoff function, the diffusion coefficient can be expressed

in terms of the second and fourth moments only, as

1 __1 C14 (M( 2)) 3
Ds= - 1 - l (2.12)

k 2Ts k 2 a3 M( 4) (2.12)

Since each moment is proportional to k2, this expression for Ds is independent of

k. If we further assume that the functional form of gs(w) is independent of S, that

is gs(w = g(w,Ts), then the ratio of the two diffusion coefficients contains no free

parameters, and we have

De MM) (M(H) ) (2.13)

This assumption cannot be justified rigorously within this phenomenological theory,

but it is believed to be reasonable.

2.2 Calculation of moments

In this section we calculate the second and fourth moments of magnetization and

energy for the XY model, which is obtained from Eq. (1.1) by setting Aij = 0,

7xy = >BijI+I-. (2.14)
i,j

Since we are interested in the long-wavelength behavior, we Taylor expand the

correlation function, Eq. (2.1), in k. This gives

cs(kt) Eij eik(zi-z) (S (0)Sj (t))
~cs~~k, t =Z (Si(O)2)

k2 ij z2(Si(O)Sj(t)) + O(k4 ), (2.15)
2 EiS() 2 )

where zj = z - z, and the terms odd in z 3ij are zero. The O(k4 ) term is safely

neglected as the correlation (Si(O)Sj(t)) is a rapidly decaying function of the distance

ri- rjl. It depends on products of the inter-spin couplings, Bij, which are either
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short-ranged or, in the case of dipolar coupling, decay algebraically on a length scale

of a few lattice spacings. We will demonstrate this explicitly for each moment. The

wavelength, A- 2r/k, is taken to be much longer than this decay scale. In the

calcium fluoride experiments[2] it is at least 104 lattice spacings. Expanding the

commutator in Eq. (2.3), we obtain

(_)n+lbk 2 2n
M(2n) 2Z(S(O) 2 ) E 2j S2,j m=

(n N~ 2n!

for n > 1. Here -= m!(2n-m)!
m

2n

[LH, Sj(O)] 2n= E
m=O

(2n
(_ 1)m (H m Sj (O)H 2nmSi(O)),

m

the binomial coefficient, and we have used

(2ri)(-_ )m msj(O)y,2n-m
m

Eq. (2.16) proves the k2 dependence mentioned in the last section.

To calculate the moments for the XY model from Eq. (2.16), one must evaluate

averages of the form (mSj(0)7t 2n-mS(O)) for -= Ntxy and S = M or 'H. This

is most efficiently and elegantly done with the help of the diagrammatic technique

introduced by Brout and co-workers.[36, 37, 38, 39] This technique eliminates the

need for keeping track of the Kronecker deltas that arise from the contractions of

spin operators, and allows the identification of the most important contributions to

Eq. (2.16) at each n. For the case of infinite temperature that we are interested in, a

tremendous simplification results because many of the ordered cumulants, which are

introduced in Appendix A, vanish, thereby reducing the number of diagrams we need

to consider. A detailed derivation of the technique is presented in Appendix A.
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2.2.1 Magnetization moments

Consider the expression,

T2n = (-1) n+l E ( ) (-1)m(h'mI' ? 2n- mg), (2.18)
i,j m=O m

in the numerator of Eq. (2.16). We begin by associating a diagram element with each

operator appearing in this expression, as follows.

-Iz ( O(2.19)
k

=E Bk IIkz (2.20)
kl

To the interaction is associated a directed line, with the arrow pointing away from

the end corresponding to the I operator and towards the end corresponding to the

I- operator. The indices k, are dummies that are summed over, and in practice

can be left off of diagrams.

Each diagram element receives a number based on the order in which it appears

in the trace. This order must be kept track of because of the non-trivial commutation

properties of spin operators. (This is in contrast to the diagrammatic technique for

bosons or fermions, where Wick's theorem allows a factorization of operator averages,

making the order unimportant. There is no analogue of Wick's theorem for averages

of spin operators.) For example, the term (IIZ`Ij HH) has the diagrams numbered

as follows.

ji 02 j3 j4 j5 Q6

Next, the diagram elements are joined end-to-end in all possible topologically distinct

ways, with the circle diagrams, o, inserted at vertices. To each vertex is assigned an

ordered cumulant, the order depending on the order of the diagram elements making
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Figure 2-1: Diagram contributing to second moment for magnetization

up the vertex. The value of the diagram is found by taking the product of the

ordered cumulants associated with it, multiplied by the factors associated with the

interaction lines, and summing over all vertices without restriction (not including

vertices with circles). The sum includes a factor of zij. One then sums the diagrams

multiplied by the appropriate binomial coefficients appearing in Eq. (2.18). We note

that the ordered cumulants are the analogues of the Green's functions appearing in

field theoretic approaches to interacting fermion and boson problems. In the present

approach, these quantities are associated with the vertices of the diagrams instead of

with the lines. This is more natural because there can be any (even) number of lines

connected to a vertex.

In constructing diagrams, the following rules hold. Not more than one circle dia-

gram can occupy a given vertex, since the z2 factor in Eq. (2.18) ensures that i $ j.
There can be no free ends and no free circle diagrams, as these represent uncontracted

spin operators which cause the trace to vanish. Each vertex must have the same num-

ber of lines leaving as entering, since the only non-zero ordered cumulants contain the

same number of raising and lowering operators. Finally, the disconnected diagrams

vanish, as shown in Appendix A.

We illustrate the above rules in the calculation of the second moment. The only

diagram contributing to the second moment is shown in Fig. 2-1. Its contribution to

Eq. (2.18) is

4

ij m=O m
2 / )
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I 2 3+3 02 - 2 ., 03+.3 ., +I x 20 ~+. 12

2
Z X

ij

- Zi2jBi2j[(((z-))K--+ Z)) +((Z +))( Z)))
ij

-2 (((+z-))((- + z)) + ((-z+))((+ - z))

+ ( +4Z)( ))+ + - Z)) ((- + ))]
1 = e Zi2jBiji. (2.21)

i 

The values of the ordered cumulants are ((+-z)) and ((-+ z)) -, and can

be found in Table A.1.

The denominator of Eq. (2.16) is even simpler to calculate. No diagrams are

necessary, and we obtain

((Iz)2 = N (2.22)
4

Inserting these results into Eq. (2.16), we obtain

M(2) = k 2 zkB.k, (2.23)

We note that, because of translational invariance, we can drop the summation over

the dummy index k, since the analytic expressions there are independent of this index.

The diagrams contributing to the fourth moment for magnetization are shown in

Fig. 2-2. They are calculated in a similar way to that just shown for the second

moment, so we omit the details. Table A.l shows that most of the fourth and fifth-

order cumulants are zero, which enables us to consider only a subset of the orderings

of the diagram elements. The non-zero cumulants at fourth and fifth order correspond

to vertices with two ingoing and two outgoing lines, with both ingoing lines next to

each other in the order (same for the outgoing lines). The calculation shows that only
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a) b) c) d)

e) I g)

Figure 2-2: All topologically distinct diagrams containing two circles and four inter-
action lines. The diagrams shown here arise in the calculation of the fourth moment
for magnetization as well as that of the second moment for energy. The analytic
expressions for the diagrams are different in the two cases, however.

the diagrams labelled a), b), and c) in Fig. 2-2 contribute. The fourth moment is

M _ -4k zkBzk- (zkzBik) ( B)] . (2.24)

2.2.2 Energy moments

The expression in the numerator of Eq. (2.16) for energy, corresponding to Eq. (2.18),

is
2n 2

T2n-- (_1)n+ l E z2 ) (Hm~HjI2n-ni) (2.25)
i,j,k,l m=O m

We must symmetrize 7-ik with respect to its indices. Lettingj+)k + i ) (2.26)

Iik - 2BkIk (2.27)
· ~i -- !BikI- I+, (2.2)2B Ik' (2.28)

we can rewrite Eq. (2.25) as

T2n = 2 (T(+) + T() (2.29)( ~~~~~~~~~~~~~~~~2 29

42



1)~+1 ~ 2 2n( E E)n+ Z ( )
i,j,k,l m=0 m

T2(+ ) E-l Zi ( - \,()m(m l , t)H2n-mH()), (2.31)
i,j,k,l m=0 m

where use has been made of the formula

((A + At)(B + Bt)) = 2Re ((A + At)B), (2.32)

for any operators A and B.

We associate the following diagram elements with the operators appearing in Eqs.

(2.30) and (2.31).

a -(+) k (2.33)ik

k

t~~~~~~i~z~ k ) d,(2.34)

The diagram element for the full interaction, Al, is the same as in the last section,

i.e. Eq. (2.20). Dummy indices such as k will be left off of the diagrams as before.

The calculation of Eq. (2.25) is similar to that of Eq. (2.18). All possible topologi-

cally distinct, connected diagrams are formed from the elements in Eqs. (2.20), (2.33),

and (2.34). The diagram corresponding to each term in Eq. (2.25) has its elements

numbered based on the order in which they appear in the trace. Each vertex without

a circle is assigned a dummy summation index, and each vertex with a circle receives

the index corresponding to that circle. The circles corresponding to i and j must

appear at different vertices. To each vertex is assigned an ordered cumulant accord-

ing to the rules in Appendix A. Each interaction line has an interaction coefficient

associated with it that has the appropriate indices. E.g. the line k ) i receives
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a factor of Bkl. The interaction lines due to 7k ) and 7(N) receive an additional

factor of because this factor appears in Eqs. (2.27) and (2.28). The analytical2'

expression corresponding to a given diagram is formed by taking the product of all

the ordered cumulants and interaction coefficients associated with it, and summing

over all dummy indices without restriction. The result is multiplied by the factor 2

appearing in Eq. (2.29).

The diagrams contributing to the second moment for energy are shown in Fig.

2-2. These diagrams are exactly the same as the ones arising in the calculation of

the fourth moment for magnetization. However, their meaning is different, as in this

case there are no Iz operators, and we deal with a different set of ordered cumulants.

We note that the diagrams at order (2n) for energy are always the same as those at

order (2n+2) for magnetization.

One can easily see that the diagrams labelled e), f), and g) in Fig. 2-2 are zero.

Associated with each of them is the product of ordered cumulants, ((+))4 __116

Because this cumulant factor is the same regardless of the order of diagram elements,

we can move all the diagrams to the left of the second summation sign in Eq. (2.25).

For example, diagram e) gives

4

T2(e) = 2Zz E (-1)m x 
ij m=0 m

4

3C
=2 x 2 zj (2.35)

i-ij m=0 m

Since the sum over binomial coefficients is zero, we have T2 (e) = 0.

By direct calculation, it is also easily found that the diagrams labelled a), b),

and c) are zero. The only diagram contributing to the second moment for energy

is therefore diagram d) of Fig. 2-2. To illustrate the calculation procedure, we now

evaluate this diagram.
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Eq. (2.25) reads

4

(8

4

+

)
(2.36)

According to Table A.1, ((+ - +-)) = 0. This restricts the possible orderings of the

diagram elements, since not all vertices with four lines are allowed. Therefore,

(e

T2= 2 z,2jx
ii

2 4

1 3

2 3+2

3 4
+ +

1 2

2(

2 4

3 1

4 2

1 3

)

)

4 2
3 

)

(2.37)

The product of ordered cumulants

is ((+_))2((+ + )) = (1)2( 1)I~ ~~ = 1 2~ (-)

is the same for each diagram in Eq. (2.37). It

=-8. Multiplying by 4 for the two circles, we
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Figure 2-3: Diagram contributing to the denominator of Eq. (2.16) for energy.

obtain

T2 2 z2~B~~-(.8
2 (-) () EZjBik2BJk X2 [1(3) -2(2) + 1(3)]= - ZzjBBk (2.38),,

ijk ijk

The denominator of Eq. (2.16) is given by the diagram in Fig. 2-3. The corre-

sponding analytic expression is ((+_))2 ij B 2 = ij B2j. Inserting these results

into Eq. (2.16), we obtain

-M(2) k Z Eij zijkBB2k
4 Z 1B3IV (2.39)k2 El3~

where we have used translational invariance to drop one of the summations.

The types of diagrams arising in the calculation of the fourth moment are shown

in Fig. 2-4. To save space, the distinct topologies are pictured without circles. The

entire set of diagrams at fourth order is obtained by placing two circles at the vertices

of the diagrams in Fig. 2-4 in all possible ways. This set, along with the analytical

expression associated with each diagram, is tabulated in Appendix B. Here we state

the result.

k2 Ez 2 kB2 B -2k 2 Zz(BkBjk + BkBjk) _ 2ZEi ZkBtkBjkBtj
jk ~2 2zik ik jk _ 2k2 4 ijBEi Bi2 4 EjB=~~~~~~~~~~~ k2

k2 Zij Zk (6BikBjkBklBijBil - 18BikBkBkiiBiBl + 11BjkBkBijBilB2l)

4 Ei B2k

(2.40)

The sums over the index k are left off, as usual. The first term in Eq. (2.40) comes

from diagrams a) and b). Diagram c) is of the same order of magnitude, and gives
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a) h)~- c) ci e I

V V V

g) h ) j) k) l )

Figure 2-4: All topologically distinct diagrams containing six interaction lines. Di-
agrams for the fourth energy moment are obtained by placing circles with indices i
and j at; vertices in all distinct ways.

the second term in this equation. Diagrams d) and e) give rise to the third term, and

are an order of magnitude smaller if the coupling is short-ranged, or even quasi-long

ranged as in the case of dipolar coupled spins. Diagrams g), h), and i) give the last

term in Eq. (2.40) and are another order of magnitude smaller. The general guidelines

are that those diagrams with either the highest power of the coupling constant or with

the most factorizable summations over powers of coupling constants are the largest.

The ones with several vertices joining only two lines, such as diagrams g), h), and i),

are the smallest. There are exceptions to these guidelines (For example, diagram f)

vanishes, for the same reason as does the corresponding diagram at second order.),

but they are useful for allowing one to neglect those diagrams that are obviously

small. As for the second moment, the diagrams 1) vanish, as do diagrams j) and k).

2.3 Numerical results for dipolar-coupled XY model

The results of numerical evaluation of the moments calculated in the last section for

Bi =- Ibij, with bij given by Eq. (1.2), are given in Table 2.1. This corresponds to

dipolar coupling. We have used values of the gyromagnetic ratio and lattice spacing
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for the fluorines in calcium fluoride of -y = 2.51 x 104 rad Hz/Oe and a = 2.73 x

10-8 cm. Because lattice sums can be evaluated numerically only for finite lattice

sizes, we used finite size scaling to extract the infinite lattice limit. The approach

to the infinite lattice value is expected to follow a power law. For example, if we

approximate the sums by integrals in Eq. (2.23),

MkM [4~ dar b(r)2z2 const x r2dr r
4 Ja<r<L J ()

- const x (--L ) . (2.41)

We performed a least squares fit to a power law of the quantities in Eqs. (2.23), (2.24),

(2.39), and (2.40) as a function of lattice size, for both the [001] and [111] orientations

of the crystal with respect to the external field. We found it sufficient to vary the

lattice size between 1 and 81 lattice sites on an edge, in increments of 2 lattice sites.

This gave agreement with Eq. (2.41) to better than one percent. The numbers in

Table 2.1 are the infinite lattice values extracted from the scaling analysis.

Besides the moments, Table 2.1 gives the values for the diffusion coefficients for

both gaussian and step-function cutoff, as well as the cutoff-independent ratio given

by Eq. (2.13). We find fair agreement with experiments on calcium fluoride for the

magnitudes of both diffusion coefficients. For magnetization, our value is slightly

high, while for energy it is slightly low. The ratio DH/DM that we calculate is about

1.6 for the [001] direction, while in these experiments it is between 4 and 5 (see Table

1.1). Given the phenomenological nature of the theory we feel this to be adequate

agreement. For the [111] direction, the results are quite different, giving a ratio of

diffusion coefficients that is less than one. We cannot account for this difference but

conjecture that it may be the result of neglecting the Ising term from the calculation.

As an additional check for consistency of this theory we have calculated the value

of the short time cutoff, Ts, from Eq. (2.10). As Table 2.1 shows, Ts was found to be

on the order of 10 - 100 ps for the different cutoff functions and crystal orientations

that we considered. This is consistent with our assumption of the relation of Ts to the

spin-spin dephasing time given by the free induction decay. The timescale associated
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Table 2.1: Summary of the results for the dipolar coupled XY model obtained from
the moment method.

Moments [001] [111]

M 2)7k2 (x10-7cm 2/s 2 ) -5.59 -2.21

M(4)/k2 (x O13 cm 2/s 4 ) 1.56 0.130

Ma)/k2 (x10 7cm2/s2 ) -2.80 -1.08
M(4)/k2 (cm 2 /s 4 ) 76.2 28.4

Results for gaussian cutoff [001] [111] Doo1 /D1 11

DM (X 10-1 2cm 2/s) 13.3 11.4 1.17
De ( x 10-12cm2/s) 21.2 8.4 2.5

TM (x10 - 6 s) 13.4 35.8
TH (x10 - 6 ) 42.8 43.8

Cutoff independent result
Du/DM 1.59 0.74

with this decay in calcium fluoride is approximately 20 ,us with the external field

in the [001] direction and approximately 50 Mts with the external field in the [111]

direction. [40]

2.4 Summary

The magnetization and energy diffusion coefficients for the XY model at infinite

temperature have been calculated using a moment method. In the case of dipolar

coupling, we found qualitative agreement with experiments on calcium fluoride for

both diffusion coefficients. The ratio of the diffusion coefficient for energy to that

for magnetization was found to be greater than one for the [001] orientation of the

external field with respect to the crystal axes. However, this is not large enough

to fully account for the observations. The orientation dependence of the diffusion

coefficients was also in qualitative agreement for magnetization, but not for energy.

The lack of any experimentally observed orientation dependence for energy diffusion

leads us to conjecture that some other k-dependent decay processes may have been

at play in the experiment, increasing the decay rate. To determine whether our

approximation of dropping the Ising (IZ) term was too drastic, we fully retain this
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term in the analysis of the next chapter.
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Chapter 3

Hydrodynamics and perturbative

treatment of flip-flop term

To obtain a theory for spin diffusion, one can try to proceed in either of two ways.

One is to derive from first principles an equation for the average magnetization or

energy density and to show that it is a diffusion equation, with a diffusion coefficient

expressed in terms of microscopic quantities (the dipolar coupling constants). This

type of approach is used in refs.[23, 41, 42, 25, 26]. Another approach is to assume

that small amplitude, long-wavelength perturbations of magnetization or interaction

energy relax to equilibrium through diffusion. This assumption is motivated by the

conservation of the total energy and magnetization, as we shall see below, as well as by

general physical principles, and by experiment. Given this assumption, a relationship

may be derived between the diffusion coefficient and microscopic quantities. This

relationship is then used to evaluate the diffusion coefficient.[43] We take the second

type of approach, although there is also a way to obtain the same results by the first

type of approach, as we discuss below.

This chapter is organized as follows. In sections 3.1 - 3.3 we outline the linear

response formalism for spin diffusion in a solid, including a new derivation of the

energy and magnetization current operators. This formalism applies to the high-

temperature, long-wavelength regime studied experimentally. It is equivalent to the

density matrix approach of Lowe and Gade,[25] and Kaplan[26] (LGK), as we prove
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in section 3.2. Our formulation has the advantages that the long-wavelength limit is

built-in and the application to inter-spin energy is straightforward. In section 3.4,

we derive the expansion of the Kubo formula in powers of the flip-flop term of the

Hamiltonian, which we use for numerical evaluation of the diffusion coefficients. The

diffusion coefficients of magnetization and inter-spin energy obtained from this ex-

pansion to two leading orders in the flip-flop are given in section 3.5. Their numerical

values are calculated in section 3.6, along with an estimate of the errors. Our main

finding is that, although the expansion for the magnetization diffusion coefficient

reproduces the experimental results quantitatively, the series for inter-spin energy

produces only qualitative agreement. This is nevertheless a vast improvement over

the results of Chapter 2. In section 3.7 we discuss this result and comment on how

the methods presented in this chapter complement other approaches to the problem.

3.1 Hydrodynamic approach

We are interested in studying the effects of long-wavelength, small amplitude pertur-

bations to the high-temperature equilibrium state, of globally conserved quantities.

In a system of spins with Hamiltonian, Eq. (1.1), the total energy and magnetization

along the external field are constant in time, and therefore local densities of these

quantities must change in time in such a way that this constraint is satisfied. This is

expressed mathematically as a continuity equation relating the density and current

operators of the conserved quantities, in the Heisenberg representation, as

c0S(r, t)S(r, t)+ V. j(S)(r, t) = , (3.1)
a9t

where S(r) is the operator representing the local density of a globally conserved

quantity. In our case this is either the energy (S = /) or the component of spin

magnetization along an external field (S = M), and j(r) is the corresponding cur-

rent density. We derive Eq. (3.1) below for both cases. The discrete version of this

formula is more directly applicable to our problem since the spins reside on a lattice,
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and is given by replacing r with a lattice site index. However, the continuum repre-

sentation is more useful for derivations, and is completely equivalent. A useful way

of going between these two representations is to write the densities of magnetization

and interaction energy in terms of the lattice variables as follows.[23, 42]

I(r,t) - 6(r-ri)It (t), a = z,+,- (3.2)
i

7-(r, t) -- (r-rr)7ij(t). (3.3)
i,j(i4j)

These densities are then given in terms of the spin densities as

M(r) = yhI(r), (3.4)

XK(r) = d3r' [A(r - r)Iz(r)Iz(r') + B(r- r')I+(r)I-(r')], (3.5)

where we have used Eq. (1.1) for the Hamiltonian, and assumed the interactions

depend only on the vector displacement between the spins. Explicitly, A(r- r') =

Eij 6(r - ri)6(r' - rj)Aij, with a similar equation for B(r- r').

Eq. (3.1) is as far as we can go on general grounds. In the first type of approach

to a theory of spin diffusion mentioned in the introduction, we would try to derive a

constitutive relation,

(js(r, t))non-eq =-DV(S(r, t))non-eq, (3.6)

where (.. )non-eq denotes a non-equilibrium average taken, for example, over one of

the spatially varying states discussed in Chapter 1. This constitutive relation, when

combined with Eq. (3.1), would give a diffusion equation for (S(r, t))non-eq,

(t - DV2) (S(r, t))non-eq = (3.7)

We do not use this approach, but instead assume Eq. (3.6) is true. This assump-

tion is physically motivated. If we suppose the average current to depend on the

magnetization and its gradients, and expand it in powers of these variables (since
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we are interested in very small magnetization, such an expansion is reasonable) the

lowest order term is that containing the gradient of magnetization. The coefficient

of the term linear in magnetization is zero because no current flows in a spatially

uniform state. But perhaps the best motivation is from experiment.

Having thus accepted Eq. (3.6), we will use some formal manipulations to obtain

an expression for the diffusion coefficient in terms of the Kubo formula that is well-

known from linear response theory. In the process, we will prove that using this

formula is equivalent to calculating the diffusion coefficient by an equation of motion

approach introduced by Lowe and Gade,[25] and Kaplan[26] (LGK).

3.2 Equation of motion method and the Kubo for-

mula

Experimentally, spin diffusion has been measured by observing the relaxation of initial

states varying sinusoidally in real space with a given wavevector k. [2, 1] Such spatially-

inhomogeneous states are represented mathematically as perturbations on the infinite

temperature equilibrium state, po = 1 /2 N, where N is the number of spins. We have

p(O) = o + Sp(O). (3.8)

Two possibilities exist for 6p(O), corresponding to long-wavelength fluctuations in

the two conserved quantities,

'pM(k,O0) eJ d3r cos(k r)M(r), (3.9)

6p-(k, 0) = e f d3r cos(k r)1-(r), (3.10)

where e is a small quantity of order yhBo/2NkBT. Here B0 is the external field, and y

is the gyromagnetic ratio of the nuclear species of interest (y = 2.51 x 104 rad Hz/Oe

for 19F). The important length scales are related by L >> k - 1 >> a, where L is

the sample size and a is the lattice spacing. Typical values for these quantities in
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the experiments were L 0.1cm and k-1 10- 4 cm. a = 2.73 x 10-8 cm for the

Fluorines in calcium fluoride. The experimental realization of such states has been

discussed in detail in Chapter 1, as well as by Boutis et al.[1] In practice, k is parallel

to the external magnetic field, and transport is measured in the same direction. As

we saw in Chapter 1, expectation values taken with respect to the states in Eqs. (3.9)

and (3.1.0) give rise to equilibrium-averaged correlation functions.

LGK compute the time evolution of the average density, (S(k, t)) = tr {Sp(-k, t)S(k)},

starting from one of the non-equilibrium states, Eq. (3.9) or Eq. (3.10). In general,

we write

6p(t = 0) =e d3rcos(k. r)S(r) = S(k) + 2S(-k). (3.11)
.1 2 2

The average of any Schrddinger operator A at time t is

(A(t))= tr{Sp(t)A}. (3.12)

If (S(r, t)) satisfies a diffusion equation,

9 (S(r,t)) = DV2(S(r,t)), (3.13)

then the time dependence of (S(k, t)) (the Fourier transform of (S(r, t)) at wavevector

k) is given by

--- (S(k, t)) = -Dk2(S(k, t))
at

(S(k, t)) = e-k Dt(S(k, 0)). (3.14)

Taking the time derivative of the last equation and rearranging terms, we obtain

LGK's expression for the diffusion coefficient,

D= lim (_ 1 ) (S(k, t)) (3.15)

The right hand side is in fact independent of time for t greater than the short timescale

defined by the inverse spin-spin coupling. LGK showed this explicitly for magnetiza-
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tion. We keep the explicit time dependence to remind us that t is long, but finite,

while k tends to zero. In other words, we take the t - oo limit after the k -- 0 limit.

In the Heisenberg representation, we have

(S(k, t)) = tr {e-iHt6p(O)eiH'S(k)}

= -tr {S(k,-t)S(k, O)}
2

+ tr {S(-k,-t)S(k, 0)}. (3.16)
2

Because of translational invariance, only the second term on the right side of Eq.

(3.16) contributes, and we have

(S(k, t)) = tr {S(-k, -t)S(k, 0)}. (3.17)
2

We take the time derivative of Eq. (3.17), and use OS(t)/at = i[t, S(t)], to find

E(S(k, t)) = - tr {e-ixt[H, S(-k, 0)]eHt S(k, 0)}2
= -2 tr {S(-k, 0)S(k, t)}

2

dt' tr{S(-k,O)S(k,t')}

- tr {S(-k, O)S(k, 0)}. (3.18)
2

The second term on the right-hand side of the last equation vanishes. Substituting

the continuity equation, S(k, t) + ik. j(k, t) = 0, and taking k = kz, we obtain

(S(k, t)) =-2k2 odt' tr {j(k,t')j (-k, )}, (3.19)

where jz is the current density in the transport direction. According to Eq. (3.16),

we further have

(S(k, 0)) = tr {S(k, 0)S(-k, 0)}. (3.20)
2
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Substituting Eqs. (3.19) - (3.20) into Eq. (3.15) gives

D = lim fo dt' tr {jz(k,t')jz(-k, 0)} (3.21)
k-0 tr { S(k, 0)S(-k, 0)}

Taking the limit t -* o, and replacing the traces with infinite temperature equi-

librium averages, tr {.} = tr {1}(. ), we obtain the standard form of the Kubo

formula, [43]

D = fo dt f d3r f d3r'( jz(r,t)jz(r', ))
f d3r f d3r'(S(r, 0)S(r', 0))

This proves the equivalence of LGK's approach and linear response theory.

Eq. (3.22) is the correct formula for the diffusion coefficient of the quantity S if

the following assumptions hold.

(1) The correlation function of S is known to have a diffusive form (i.e. a diffusive

pole).

(2) The system may at all times be described by a statistical ensemble that is suffi-

ciently close to equilibrium (linear response regime).

Assumption (1) may be checked experimentally, and has been verified for both

spin-spin and energy-energy correlators of dipolar-coupled spins in a solid.[2, 1] As-

sumption (2) is more subtle, as it rests on the validity of the ergodic hypothesis,

which has received much attention recently in the context of lattice spin systems in

dimensions I - 3.[44, 45, 46, 47, 48] This hypothesis states essentially what we dis-

cussed in Chapter 1, namely that we can consider the evolution of the system to be

independent of its initial state, which is true if the experiment is performed many

times and the results are averaged.

Regardless of the averaging obtained by many repetitions of the experiment, we

also find it plausible that assumption (2) is valid when the spatial profile of magne-

tization or energy in the initial state varies sufficiently slowly, and when this state

has no long range correlations. While this is possible for magnetization, the creation

of spatial inhomogeneities in the interaction energy requires NMR techniques that

introduce short - ranged correlations between the spins. Some of these correlations
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persist due to energy conservation, and these are the ones relevant to energy trans-

port. Other correlations are assumed to decay rapidly and to be unobservable. A

careful analysis of the initial state involved in the energy diffusion measurements is

needed to determine whether assumption (2) is satisfied.

3.3 Current Operators

In order to use Eq. (3.22) we need to obtain expressions for the current operators jz(r).

We start with the Hamiltonian, Eq. (3.5), which conserves the total z-component of

magnetization as well as the total energy. This suggests that the magnetization and

energy densities each satisfy a local continuity equation. 43] These may be derived

from the Heisenberg equation of motion,

0M (r, t) i
[M(r, t), 1/], (3.23)

0-H(r, t) i
A7t t) [H(r, t), H], (3.24)

which gives

O(r) = y2 d3r'b(r - r') (I+(r)I_(r') -I+(r')I_(r)),
at2

(3.25)

MT(r) i 
= j J d3r'd3r"b(r'- r)b(r"- r')

x{I.(r') (I+(r)I_(r") - I+(r")I_ (r))

+2Iz(r) (I+(r')I_(r") - I+(r")I_(r'))

+2Iz(r") (I+(r)I_(r') - I+(r')I_(r))}. (3.26)

In order to write Eqs. (3.25)-(3.26) as continuity equations in the usual form, they

may be integrated over an arbitrary volume and the result expressed in terms of a

surface integral, whose integrand is the current density. For example, integrating
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Eq.(3.25) over a spherical volume V gives

Jvd3ragsr)= 2 i fv d3r f d3r'b(r' - r)(I+(r)I_(r') - I+(r')I_(r)).

Changing variables to y = r - r', we obtain

d 3rM(r)
IV at

- 2 f d3yb(y) f dr[I+(r)I-(r- y) - +(r- y)I_(r)].

Changing now the limits of integration, this becomes

d3raM(r)
V at

- 2f Jd3yb(y) f d3r[I+(r + y)I(r) - I+(r)I_(r + y)].

Taylor expanding the second integral about the original limit, using fv-y d3r 

fv d3r - y v dS, gives

dd3OM (r)
at

- 4 j d3yb(y)y. fs dS[I+(r)I_(r + y) - I+(r + y)I_(r)]

= dS .-j()(r,t), (3.30)

A similar, but longer derivation gives the energy current. In this manner we obtain

the current density operators,

j(M)(r, t) =

j(Ht)(r,t) =

4 d3r'b(r - r')(r - r' )

x (I+(r)I_(r')- I+(r')I_(r)),

8 f d3r'dr"b(r'- r)b(r" - r')(r- r")

x {I (r') (I+(r)I (r") - 1I+(r")I_(r))

+2Iz(r) (+(r')I_(r") -I+(r")I(r'))

+2Iz(r") (I+(r)I(r') -I+(r')I_(r))}

(3.31)

(3.32)

The continuity equations then take the usual form of Eq. (3.1). Similar results have

been obtained by Furman and Goren by a different method.[42, 49]

59

(3.27)

(3.28)

(3.29)



3.4 Perturbation Theory

Using an interaction representation introduced by Lowe and Norberg,[40] we can

expand Eq. (3.22) in powers of the flip-flop term of the Hamiltonian. Following Ref.

[25] we define

'H = E Aij I1j
i,j(i4j)

H2 = E Bij ) i+Ij-.
iJ(ij)

(3.33)

(3.34)

Using the notation A(t) = e-i t/hA(O)ei1t/h, we may write any operator in the

Heisenberg representation as an infinite series in 7/2,

A(t) otdt [ 2(tl), A(0)]= ei-1t/h {A(0) + 

+ ()2 jt dtl j dt2 [ 2(t1), [H2 (t2), A(0)]] + .} e- i t/h (3.35)

Using this expansion for jz(t) in Eq. (3.22) gives a perturbation series for the diffusion

coefficient.

(S(0)2 ( dttr{jZ(O)(t)} + Jo dt

+ () j0 dt j dti A
h o o o dt2 tr {[H2(tl), [ 2(t2), jz(O)]] Xjz(t)} +. ),

(3.36)

where the spatial integrations have been suppressed. The operators 7l2(t) and jg(t)

can be evaluated using the identity,[40, 25]

exp (it mn(mn)
m,n(m54n)

AmnImzInz) Ii+Ij-

x exp(-t AmnImzInz) =m,n(m nn)
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t

10 dt, tr f ["'�2 (4), 1. (0)13. (t I

Ii+Ij-Lij(t),



where

Lij(t) 17 e2it(A,-ALj)ItIz (3.38)
(l#i,j)

It is advantageous to approximate the operator Lij(t) by a c-number, equal to its

infinite-temperature thermal average, Lij(t) Gij(t), where

Gij(t) = H cos(Aim- Ajm)t. (3.39)
m(mfij)

The neglected q-number terms are expected to be approximately 20 - 25% smaller,

as discussed at the end of section 3.5.

It turns out that Gij(t) depends very weakly on its indices. In order to make the

calculation of higher order terms in the perturbation series tractable, we therefore

replace Gj(t) by G(t). G is a suitably defined average over all the Gjj's, as discussed

in section 3.6. The overall error introduced by approximating the higher order terms

in this way is therefore small (we shall see in section 3.6 that it is less than 10%).

The resulting perturbation series contains only even-order terms,

o (1)2n F 2 n+l ([7-2,Jz(0)]2n)
D = 1:- F (H23 (3.40)

n= h (2n + 1)! (S(0) 2)

F -_ G(t)dt, (3.41)

where [A, Bn [A, [A, ..., [A, B]...]] is a commutator with A taken n times. It is

worth noting that this series may be written in a simple closed form,

D - f F dF (eiH2F'/jz(O)e-i2F'/hj(0)) (3.42)
(S(0) 2)

which shows that our system is approximately equivalent to one with purely flip-flop

interaction, evolving for a finite time, F.
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3.5 Analytic Results

In this section we give analytic expressions for the diffusion coefficients to the two

leading orders using Eq. (3.36) and Eq. (3.40). In order to make a comparison with

the experiments on calcium fluoride, we specialize to the case of dipolar coupling,

for which Aij = bij, Bij = -bij, with bij given by Eq. (1.2). To obtain these

analytic expressions we must evaluate infinite-temperature averages over products of

spin operators. The evaluation of such averages is discussed in Appendix A.

3.5.1 Magnetization Diffusion

The denominator of Eq. (3.22) for S = MA at T = oo is

3 ~~~~~N"/ 2h2J d3r J d3 r'(M4(r, 0)M4 (r', 0)) - (3.43)

The lowest order term is calculated exactly, by inserting the expressions for the

Hamiltonian, Eq. (3.33), and the magnetization current, Eq.(3.31), into the first line

of Eq. (3.36), and applying the identity, Eq. (3.38). We obtain

41 
2 2D() = Ez bkFik, (3.44)

zij - zi- Zj, (3.45)

where Fij is given by Eq. (3.41) with Gij(t) replacing G(t). This result is identical to

LGK's, as expected from the equivalence of the two methods.

The next term, obtained from Eq. (3.40) using all of the approximations discussed

in the last section, is
(2) 1 F Z,1 

3 2
- -F 3 Z~b23 3kk (3.46)

ij
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3.5.2 Energy Diffusion

For S =: t, the denominator is

J d3r f d3r'(t(r, O)Ht(r', 0)) = 16 bik. (3.47)

The lowest order term is

D(° (H1 O( (bi2lbikzkl + 8bilblzb k +8bilbikbk lZikZil ) Fkl
48 (bi,j(ij) bij) ijkl i

- E (8bikbjkb2Zilzjl - 8blbkblZikZjl + 8bjlbikbjkbklZilZkl + bilbjlbikbjkz2I) Rkl;ij)
~~~~~pi,j,k,l

(3.48)

where

Rkl;ij _ J" dt~kl;ij (t), (3.49)

Kkl;ij_ _ -4tr IizljzLkl (t)+ ioj:sklk

=sin(A~kl;it) in(A~kl;jt) II COS (Akl;pt), (3.50)
p(psi,kj,kl)

/\kl;p -bpk - bpl (3.51)

It is useful to have approximate analytic expressions for the integrals in Eq. (3.41)

and Eq. (3.49). It has been shown that the saddle point approximation to Fij is quite

accurate.[25, 26] It is equivalent to replacing Gi; in the integrand by a gaussian,cz~~ exp - I )2t2 ~~~~(3.52)

Gij(t) exp - (bki - bkjlt) (3.52)
k(kij~)

To evaluate Rkl;ij, we replace the product of cosines in Kkl;ij(t) by a gaussian, as

above. Since this gaussian cuts off the integral at times t < hb, where b is of the

order of the nearest neighbor coupling strength, we can expand the sine terms around
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t = 0, which yields

Kkl;ij(t) (bik -bil)(bjk -bjl)t 2

x exp -p 2 (bpk-bp )2t2) (3.53)
p(pgi,j,k,l)

These approximations give

i2 Ek(kij) (bki - bkj ) 2 (3.54)

R~;ij = (bik - bil)(bjk - bjl)Rkl~~~~~~ij 2 ~~~~~~(3.55)
(Zp(pi,jk,1) (bpk -bpl )2)3/2

Eq. (3.54) has been derived previously.[25, 26] Eqs. (3.54) and (3.55) allow a more

rapid numerical evaluation of the expressions for the diffusion coefficients than by

numerical integration of Eqs. (3.39) and (3.50). By numerical integration on cubic

lattices of between 53 and 113 spins, we have verified that Eq. (3.54) approximates

the exact value with an error that is less than 2% and Eq. (3.55) approximates the

exact value to within 10%.

We found numerically that the sum over R terms in Eq. (3.48) was about 20-25%

in magnitude of the sum over F terms, for both the (001) and (111) directions. The

R terms arise from the lowest order (in Iiz operators) q-number correction to the

approximation, Eq. (3.39), to Lij(t). We therefore expect this same number to also

be a good estimate of the error in this approximation.

Using Eq. (3.40) for the next order term, we obtain

D (3!)(192) Ek,k b l ( (8buqBuql + 4buqblqBqulBqlu)

+ E [-buq (4B~kl + 2Bkul) + 4 buqbkq (BuklBluk + 3 BulqBqlk +BuqlBlqk - BuqlBluk)
u,q,l,k

bqkbul (4 BulkBqkl + 6BuklBqlk)] ), (3.56)
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Buk - bukbklZ.l +- 2 bUkbulzkl + 2bulbklZuk

3.6 Numerical Results

Because Eqs. (3.44), (3.46), (3.48), and (3.56) can be evaluated numerically only for

finite lattice sizes, we use finite size scaling to extract the infinite lattice limit, as we

did in section 2.3. The approach to the infinite lattice value is expected to follow

a power law. A least squares fit to a power law was found to describe the scaling

very well. For diffusion of magnetization, we were able to vary the lattice size, in

increments of 2 lattice sites, between and 81 lattice sites on an edge. For energy

diffusion, we studied lattices with up to 27 sites on an edge.

The constant F in Eqs. (3.46), (3.56) was taken as the mean value of the Fij

over three layers of nearest neighbors. This averaging procedure works well since

contributions for far-apart indices are suppressed by the b factors in the summations.

In dimensionless units, this gave

2h x F 0.48 0.05, (001) direction, (3.58)

a3 1.17 ± 0.14, (111) direction.

The error, taken to be one standard deviation from the mean, is 10% for the (001)

direction and 12% for the (111) direction. Therefore, the error in F3 is about three

times as much, or between 30% and 40%. As the magnitude of the second order

terms is between 10% and 20% that of the zero order terms, the overall error in

approximating Fij F is less than 10%.

The results, including errors due to fitting and approximations, are summarized

in Table 3.1. Our magnetization diffusion coefficient agrees well with experimental

values. However, the energy diffusion coefficient that we obtain is several times smaller

than observed experimentally, and is nearly the same as the magnetization diffusion

coefficient. The relative orientation dependence is within the experimental range for

magnetization, but disagrees drastically for energy.
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Table 3.1: Summary of the theoretical results for the spin diffusion rate of energy,
D7-, and magnetization, DM for a single crystal of calcium fluoride, using the hy-
drodynamic approach. These values have been obtained by numerically evaluating
Eqs. (3.48) and (3.56), and Eqs. (3.44) and (3.46), using Eq. (3.54) for Fij and Eq.
(3.55) for Rikmj. We used finite size scaling to extrapolate to the infinite lattice limit.
Experimental results from Refs. [1, 2] are shown for comparison.

Theory [001] [111] Doo1 /D 11

D(°) (x10 1 2cm2/s) 8.4 0.2 7.9 0.2 -

D(2) (x10-1 2cm 2/s) -1.1 ± 0.6 -1.0 ± 0.5 -

D(0+2) (x10- 1 2cm 2 /s) 7.3 i 0.8 6.9 ± 0.7 1.1 - 0.2

D(°) (x 10- 1 2cm 2 /s) 16.0 0.6 11.9 0.3 -

D(2) (x10-1 2cm 2/s) -2.5 ± 1.2 -2.3 ± 1.3 -

D(0+2) (x 10-12cm 2/s) 13.5 i 1.8 9.6 ± 1.6 1.4 i 0.4
Experiment, DM [001] [111] Doo1D1

Ref. [2] (x10 - 1 2 cm 2 /s) 7.1 0.5 5.3 0.3 1.34 0.12
Ref. [1] (x10 - 1 2 cm 2 /s) 6.4 i 0.9 4.4 ± 0.5 1.45 ± 0.26

Experiment, D- [001] [111] Dool/Dlll
Ref. [1] (x10 -1 2 cm 2 /s) 29 ± 3 33 ± 4 0.88 i 0.14

3.7 Summary

We have presented a hydrodynamic approach to study the long-wavelength spin dy-

namics in a lattice of spins in high magnetic field and at high temperature. The

Kubo formula, Eq. (3.22), for the diffusion coefficients applies to the physical regime

probed experimentally and rests on the assumption that the time evolution of the

system is ergodic. We developed a perturbation theory for Eq. (3.22) that is equiva-

lent to the approach of LGK but simplifies the calculations enormously. This allowed

us to obtain the diffusion coefficients for magnetization as well as energy to leading

order in the flip-flop term of the Hamiltonian, and estimate the first perturbative

correction. The result for magnetization diffusion agrees with experiment to within

its degree of accuracy. The result for inter-spin energy diffusion is larger than that

for magnetization diffusion, in qualitative agreement with the experiment. It does

not, however, describe the experiment quantitatively.

One possible reason for the disparity is the ergodicity assumption, which is implicit
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in our choice of how to take the average in the correlation functions appearing in Eq.

(3.22). Our assumption of Eq. (3.8) leads to the equivalence of the non-equilibrium

average of the conserved density to its equilibrium correlation function, as is usual in

linear response theory. [43] For magnetization diffusion, the low polarization results in

a very low density of polarized spins in a completely randomly polarized background.

The sparsity of polarized spins means that their effect on each other is negligible, and

they can be treated as independent. This suggests that statistical averaging over a

complete infinite temperature ensemble is the correct procedure. For energy diffusion,

the correlations inherent to the initial states used in the experiments of Boutis et al.

may require the use of an ensemble that is a subset of the full Hilbert space. This

would imply a modification of Eq. (3.8) for the density matrix at finite time, and needs

to be investigated further.

The most evident source of inaccuracy in our calculation is our truncation of the

perturbation series. Our estimate of the next-to-leading order correction to energy

diffusion does not rule out the possibility that a resummation of our perturbation

series would explain the experiment quantitatively. However, currently available non-

perturbative (e.g. Bennet and Martin[24]) and resummation (e.g. Borckmans and

Walgraef[27, 29]) methods are much too cumbersome to treat the diffusion of inter-

spin energy. They are also plagued by their own uncontrolled approximations, such

as the ad-hoc replacement of certain correlation functions by gaussians in order to

simplify the calculations. This state of affairs, coupled with the great success of LGK

at predicting the magnetization diffusion coefficient based on an expansion in the flip-

flop term, and earlier that of Lowe and Norberg[40] at fitting the resonance lineshape

by a similar expansion, motivated us to systematize their approach and apply it to

inter-spin energy diffusion. For the final word on this problem, we await either a

new non-perturbative method or a tractable technique for summing our perturbation

series to all orders.
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Appendix A

Diagrammatic technique for

expectation values of spin

operators

The diagrammatic technique is a useful bookkeeping device for easing the labor in-

volved in evaluating equilibrium averages over products of spin operators. Its utility

lies in eliminating the need to keep track of the products of Kronecker deltas that

appear in a straightforward calculation of expectation values, as well as obviating

any restrictions on the associated summations over lattice indices. The technique

was introduced by Brout, Englert, Horwitz, and Stinchcombe[36, 37, 38, 39] (see also

Ref. [50] for a pedagogical introduction) for the calculation of finite-temperature,

static expectation values, such as equal-time correlation functions. They showed that

such expectation values can be represented in terms of cluster expansions of connected

diagrams. In this Appendix, we develop the technique for infinite-temperature expec-

tation values of dynamical quantities, such as correlation functions at different times,

and prove the cancellation of disconnected diagrams in this case. The combined case

of dynamics at finite temperature is a simple extension of these methods.

We will be interested in evaluating averages over the infinite temperature equilib-
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rium ensemble of products of spin operators of the type

T = (nAilt mA2), (A.1)

where the angular brackets represent the normalized trace, (...) tr {.}/tr {1}.

Here X is the Hamiltonian of the spin system and A1 and A2 consist of spin operators.

For instance, we could have A1 = I, A2 = I, for some indices i and j, as in Chapter

2, section 2.2.1. Expressions of this sort arise in the expansion of correlation functions

like

C(t)- (e tAle-HtA2) (A.2)
(AiA2)'

in powers of t or i. We note that, as in Eq. (3.42) of Chapter 3, the "time" t may

actually be a small parameter that has nothing to do with physical time.

For the remainder of this Appendix, we assume a Hamiltonian of the form of Eq.

(2.14), which we reproduce here for convenience.

= E BjIi+ I (A.3)
i,j

The more general Hamiltonian, Eq. (1.1), introduces nothing new. We can then write

Eq. (A.1) as

T = E B,4Bk1 ... BmI+If I+It AI+I-.. q A2), (A.4)
ijkl...pq

with 2n spin operators to the left of A 1 and 2m to the right. The order is important

because of the non-trivial commutation relations of the spin operators.

A.1 Ordered cumulants

We focus on averages of spin operators such as the term in brackets in Eq. (A.4).

Such expressions must contain the same number of raising and lowering operators to

be non-zero, which implies that we should only consider A1 and A2 with this property.
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The non-zero elements of a spin operator average contain, in general, several instances

of the same index on different operators. Operators with different indices commute,

so that we may rearrange them to have all operators with the same index next to each

other, and then factor the average into averages over operators at different lattice sites,

since traces at different lattice sites are independent. For example, an expression such

as (1- 6ik)(I+IrIk-I) can be written (1- 6dik)(Ik+IkIzI)- (1 - ik)(I+I-)k(IZZ)i.

We will not write the indices on the averages from now on because the trace does

not depend on them. Expressions such as Eq. (A.4) may be calculated by grouping

the operators by index in this fashion, in all possible ways, taking care to avoid

over-counting by not including identical groupings more than once.

We illustrate the statements in the preceding paragraph by considering a simple

example. Suppose we are interested in evaluating (Ik+Ii-). Ignoring for the moment

the fact that tr {I'} = 0O V i, a, we have

(IfIkIi) = 6ikl(-IzI+I- I) + 6ik(1 - ikl)(IzI+)(I- )

+il( - ikl)(II-)(I +) + k1(1 - 6ikl)(I+I-)(Iz)

+(1- ik)(1 - di)(1- 6k1)(Iz)(I+)(I-), (A.5)

where the symbols are zero unless all their indices are the same, and ensure that

each distinct term is counted only once. It simplifies matters to regroup the terms in

Eq. (A.5) according to the symbols, as follows.

(IfIkI) = 6ikl ((IzI+I- ) - (IZI+)(I-) - (ZI-)(I+)

-(I+I-)(IZ) + 2(I) (+) (I-))

+6ik ((IZI+) - (IZ)(I+)) (I-)

+il ((IZI)- (,-)(I-)) (+)

+6k1 ((+I-)- (I+)(-)) (Z).+(Io ) (+) (I-). (A.6)
To analyze this expression further, we introduce ordered cumulants of spin op-

71



erators, also known as semi-invariants,[36] which are related to the averages of spin

operators in a similar way to the relation between moments and cumulants of a sta-

tistical distribution in probability theory. (See, e.g. Ref. [51].) They may be defined

as the distinct elements of the factorization of a product of spin operators into all

possible partitions respecting the original order of the operators. Using a double

angular bracket to distinguish cumulants from averages, we define

(IzI+I-) ((Iz+I-)) + ((IZI+))((I-)) + ((IzI-))((I+))+ ((I+I-))((Iz))

+((IZ)) ((I+))((I-)),

(IzI+) ((IzI+)) + ((IZ))((I+)),

(II+) - ((IZI+)) + ((I))((I+)),

(Iq-) - ((IZ-)) + ((I))((I-)),

(I+I-) - ((I+I-)) + ((I+))((I-)),

(IZ) ((iz)),

(I+) _ ((I+))

(I-)- ((I-))

(A.7)

From this the method for defining ordered cumulants of any number of spin operators

should be clear. These equations may be inverted to obtain each ordered cumulant

of a given degree iteratively in terms of averages of equal or lower degree. This gives

((IZI+)) = (IZI+)- (IZ)(I+),

<<Iq-)) = (ZI-) -IWI-,

((I+I-)) = (I+I-) - I+)(I-,

((IZI+I-) = (jZI+I-) - (IZI+)(I-) - (IzI)I+) - (I+I-)(IZ)

+2(Iz) (I+) (I-). (A.8)

The expressions on the right hand side are the same as those in parentheses in Eq.
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Table A.1: Ordered Cumulants for spin 1/2. We use the shorthand notation + for I+,
- for I---, and z for I z . Cumulants that do not have the same number of raising and
lowering operators are zero, and are not included. We also include only one of each
set of cumulants that differ by a cyclic permutation of its operators. As discussed in
the text, these cumulants are the same.

((z))

((ZZ))

((+-))

((+- ))

((- + ))

((ZZ))

( (ZZZZ) )

((+- ZZ))

((+ - ))

((+ + --))

-))-))

+ Z))

Z))+ ))+ ))

1
4

_1
2

_ 1
4

1
4

= 0

_ 1
8

= 0

= 1
4

__1
2

-- _--
- 1

2

-1 2

=0

((+ + + ___)) =2
2

~1((+ +- +--)) = 1

=1
((+ +- - + -)) 2

((+- +- +-)) 2

1
2

(A.6). This is not an accident, since the cumulant of a given degree is found by

subtracting from the average its successive factorizations into cumulants of lower

degree, which is just what was done when we regrouped the terms in going from Eq.

(A.5) to Eq. (A.6).

A list of ordered cumulants up to degree 5 for spin is given in Table A.1. We

omit cumulants that differ only by a cyclic permutation of their operators, since these

are the same by the properties of the trace. Besides cyclic permutations, cumulants

differing by any other rearrangements in the order of the operators generally have

different values.
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We may now write Eq. (A.6) in the concise form,

(If Ik+ IF )= 6ik1((I'II-)) + 6ik((JZI+)) ((I-)) + ail((IzI-)) ((I+))

+6k1((I+I-))((IZ)) + ((I~))((I+))((I-)). (A.9)

If we are interested in a sum of the form Eikl Qik (I, Ik+IF ), we find that each term in

Eq. (A.9) gives rise to an unrestricted summation of the coefficient, Qikl, multiplied by

a product of cumulants, over the independent indices determined by these cumulants.

For example, the second term of Eq. (A.9) gives

((IZI+)) ((I-)) E Qii- (A.10)
it

A.2 Diagrammatic technique

Returning now to Eq. (A.4), we may evaluate it by partitioning the average into

cumulants in all possible ways, each cumulant receiving the index of the operators it

contains, and then summing over the distinct indices. With each summation index

we associate a point in space, called a vertex, and with each operator inside the

cumulant corresponding to a given vertex we associate a diagram element connected

to this vertex. A possible choice for the diagram elements for the different spin

operators is as follows

Iz > 0 (A.11)

I + (A.12)

I- (A.13)

Here I+ is represented by a directed line leaving a vertex, I- is represented by

a directed line entering a vertex, and is represented by a circle. The cumulant
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1

Figure A-1: Diagram representing the cumulant ((IZI+I-)) with index k.

((IZI+I-)) with index k is then represented by the diagram in Fig. A-1. We have

numbered the diagram elements in this figure to indicate the order in which the op-

erators appear in the cumulant. (Note, for instance, that ((I+IzI-)) ((IZI+I-)).)

Because of the presence of the coefficients Bij in Eq. (A.4), with the property

Bij = 0, we associate a special diagram with the Hamiltonian, namely

I
Al } (A. 14)

where lines corresponding to the raising and lowering operators are connected, but

the vertices cannot be joined.

We can now associate a set of diagrams to Eq. (A.1) according to the following

rules. To the n + m operators 7Y there correspond n + m interaction diagram elements

as in Eq. (A.14). To the operators A 1, A2 correspond diagram elements assembled

from the ones in Eqs. (A.11) - (A.13). The vertices belonging to spin operators in

A1, A2 must be distinguished in some way from those of the interaction lines, because

they have different coefficients associated with them. In Chapter 2 this is done by

using open circles, as for the I diagram. These diagram elements are then numbered

according to the order in which they appear in Eq. (A.1). Next, the diagram elements

are joined at vertices in all topologically distinct ways. To each vertex corresponds an

ordered cumulant, and to each interaction line corresponds a coupling constant, Bij.

To each line or circle belonging to A1 or A2 corresponds the appropriate coefficient,

if there is one. The analytic expression for a given diagram is found by taking the

product of the cumulants, coupling constants, and coefficients from A1 and A2 that are
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4 2 3~2 3 2 1 4

1 I !3

Figure A-2: Two diagrams contributing to Eq. (A.1) for n = 1, m = 1, A =
2 Ek BikhIk, A 2 1 BjiIjIl. a) is connected and b) is disconnected.

associated with that diagram. The entire average in Eq. (A.1) is found by summing

the analytic expressions from all the different diagrams corresponding to it.

We note that there can be both connected and disconnected diagrams. One exam-

ple of each is shown in Fig. A-2 for the case n = 1, m = 1, A = Ek BikIh+k, A 2 =

1 Et BjIj+I[. This particular choice occurs in the evaluation of the second moment2 

for the energy autocorrelation function in Chapter 2. The analytic values associated

with these diagrams are

~~2T(a) ((_))2(( + ) (1)2 1 E B,2 Bk, (A. 15)
k k

T(b) = ((-))4 ( B2B (A.16)
kl

where we have used the shorthand notation and values for the cumulants in Table

A.1. If we are interested in correlation functions of the form of Eq. (A.2), it turns out

that disconnected diagrams do not contribute, and we are left with a linked cluster

expansion. We show how this comes about in the next section.

76

a) b)



A.3 Cancellation of disconnected diagrams

Because the applications we are interested in are limited to the case where the in-

teraction Hamiltonian is time-independent, we present a proof of the cancellation of

disconnected diagrams for the correlation function, Eq. (A.2), based on a commutator

expansion in the Heisenberg picture. In the case of Hamiltonians more complicated

than Eq. (A.3), it is possible to proceed by the standard method via the interaction

picture and S-matrix expansion. 52] However, the lack of a Wick-type theorem for

spin operators prohibits the factorization of time-ordered products into contractions,

and we must eventually use the same type of counting argument presented here. (We

do use an interaction representation in Chapter 3. However, the time dependence of

the interaction Hamiltonian there is only a c-number factor, allowing us to proceed

in the fashion described here.)

By the same steps as as were used in going from Eq. (2.1) to Eq. (2.3) and then

to Eq. (2.16), we rewrite Eq. (A.2) as

0(t) (AA) (!) (m ) (-1)mn (-nA mA'Hm A2). (A.17)CM~~~~~ =--- m ' 

There are two types of disconnected diagrams, those in which both A1 and A2 appear

in the same cumulant, and those in which they belong to different cumulants. The

latter type of disconnected diagram is always zero, because the cyclic permutation

symmetry of the trace allows us to factor all the cumulants to the left of the summation

over m in Eq. (A.17).

The case where both A1 and A2 appear in the same cumulant is slightly more

involved. Consider the subset of diagrams for which < n interaction lines form the

part which is not connected to that containing A1 and A2. For example, = 2 in

diagram b) of Fig. A-2. The interaction lines can correspond to any of the n 7-'s

appearing in Eq. (A.17), whose average may be factored outside the summation over

m. Depending on which ones we choose to factor out, there will be a different number

of 7-'s to the right of the operator A1. If we choose to leave k < n 'H's to the right
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of A1 , we can do this in ( ) ( ) ways. The sum over m in Eq.
m-k f (m-k) 

(A.17) for set of diagrams with 1 ''s factored out is therefore equal to

m=n

m=O m

n-I I+k
(7 1) (f-n-l-kAl7 kA ) (

k=O m=k

i-)m() (
m m k)m--k 

n-m
1- (- k) 

(A.18)

The product of binomial coefficients in this equation is

m 

m-kJ 1-(m-k)
n!m!(n- m)!

(n - m)!m!(m - k)!k!(l + k - m)!(n - - k)!

(m-k)!k!(l + k-m)!(n - k)!' (A.19)

The only factors that depend on m are (m-k)!(l+k-m)! = -(~(m k) l k- -

m in Eq. (A.18) is therefore t+=k(l)m (

of disconnected diagrams.

1-k
rn-k)

The sum over

I
= O. This proves the vanishing

m-k
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Appendix B

Diagrams contributing to fourth

moment for energy

In the table beginning on the following page are listed all the diagrams and corre-

sponding analytic expressions contributing to the fourth moment for energy. This

moment is given by Eq. (2.16) with n = 2,

M(4) (-1) n+ lk 2

S 2 i tr Si(0)2}

4

EZzi 2j E
ij m=O

) (-1)m tr {7mSj(O) 4 mSi(O)}.
m

In this equation we take Si(O) = Ek Hik, with 7- ik given in Eqs. (2.26) -(2.28), which

we reproduce here for convenience.

(B.2)'Hik

_X(+)ik

X(-)ik

q4 (+) 7_/(~-)' Xik + ik 

1
= - BikIi+I; ,

2
1 _
2- Bik k',

(B.3)

(B.4)
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Table B.1: All topologically distinct diagrams with six interaction lines and two
circles, along with corresponding analytic expressions, for Eq. (B.1) with Si(0) 
Ek Hik. We note that the calculation in section 2.2.2 was set up in such a way that
i and j were not treated symmetrically in the intermediate steps (see Eqs. (2.29) -
(2.31)). Because the diagrams below were calculated from Eq. (2.29), some of them
do not have the same value when these indices are interchanged.

Diagram Analytic Expression
I.

0

.f II

0
.f t II

k2 2ijkl z 2 j B 2 2k B.i ik 3 k
.1 I Lklbkl I]

i
________________________________ f 0

.~~~~~

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
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Diagram Analytic Expression

j

k2 B 4 22 ij ikjk
Ekl Bkl

k2 Eijk Z2jBkB2k
Bik j-- k

Ekl Bkl

1 ~~~0

k2 k 2 2 2
Eijk ?ijiij ' ik jk

Ekl B'l
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Diagram Analytic Expression

k2 _ 4 -z 2B 2 B2
5k2J ikij ik jk

4k Zik~ B 2

ikBjk
2 Ekl B2k

1 k2 Eijkl zijijBk--Bl
2 Ekl B2

.2 ~2 2

1 k2 Zijkl zij~-'ikBjkL'jl
4 Ekl B2
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Analytic Expression

I

I

j

lk2 jzB2 2 LB21 k2 Eijkl ,j-,ik'.'k l
2 Ekl B,

k22ijkl zi.B?-B2 B2
ij k i1 k 2Zijkl ziBjBkB

2 Ekl B

_1 k2~ijkl ~.ij~ik,il-j~k
4 Ekl Bkl

1 k2 Eijkl zjB2 BkBkl

2 Ek Bl
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1 Diagram Analytic Expression

0 

1
2 2I k 2 ijkl ZijBijBikBiBjkBk

ft1 I > kl k

ft1 1 4 2kl k1,

1 k 2 ijkl ZijBijBi2kBiIBjkBkl-. -A I 9

1 k2 Eijkl zijBBikBi lB jkBjlZ .r.. 5 t)

Ijk 2 2 BjlBk2 Eijkl tjB ijBikBk IBkl
A T b9--" 1.

t~ 1 ~ 4 Lkl- i 1k

~2 E 2 B1 k2 z Eijkl zBijBikB kBjlBkla3 X ik o .- ' k
II I Z [~~~~~~- 9I
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Diagram Analytic Expression

7 k2 Zijkl zi~BikBilBjkBjlBkl
A I

4 Lkl 5ikl 
[I I -Ii

k2 Zijkl z2jB2jBikBilBjkBjl
I Lklfk 11

3 k2 ijkl zi'iB'BikBi BjkBjijk j ik zOilBujkB
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ k l h 9 1

k2 2 B B2 BijBjkBk 2 ZijklzijBij3ikBilkBkJj jk BkIftW~ _ Ikl l

,k 2 2ijkZBiiBikBk B3k2 jk z~jB jkBykjlk

11 Ikl Ž kli

I k2 Eijkl BijB2kBilBjkBkl[1 1 Z~~~~~~~~ i II j iJZkz k

85

.1
I z LkI -bkl 11
I 11

2 B.,I EN kI 11



Diagram Analytic Expression
.1I 

3 k2 Zijkl zi2Bij BikB2kBjlBki-kB7'kj1k
11 I L kl k l

k2 Eijkl zi BikBilBjkBjlBkl
zn z 

.1 I kl kl
11 I 11

0 for all diagrams of this tvype

or diagrams of this type

0 for all diagrams of this type

_ O foralldiagramsofthistype
[F I - -1

0 for all diagrams of this tvDpea1I ± - ,- -- - i- I- ii
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