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ABSTRACT 
 
We systematically investigated the magnetic properties of colloidal cobalt nanoparticles 
after three extents of oxidation:  The native sample has a thin (1.0 nm) CoO shell and 
exhibits no exchange biasing.  The purposefully partially oxidized sample has a thicker 
CoO shell (3.2 nm), and is exchange biased.  The sample fully oxidized to CoO looses 
exchange biasing.  Three distinct magnetic properties that result from the finite-thickness 
antiferromagnet shell exchange coupled to a finite-size ferromagnet core, and from 
crystal and stoichiometric defects, were observed: (1) an enhancement of the thermal 
stability of the orientation of the magnetic moment due to exchange biasing in the 
partially oxidized sample, (2) a low temperature paramagnetic response in the partially 
and fully oxidized samples due to crystallographic and stoichiometric defects in the CoO 
shell, and (3) an asymmetry in the field-dependent magnetization for the partially 
oxidized sample at low temperature due to small clusters of Co in a diffusion layer 
around the Co core.  We interpret these effects using a simple phenomenological model 
and propose a method for fabricating magnetic media using exchange biased 
nanoparticles. 
 
We further investigated the defect moments in the CoO shell and their role in exchange 
biasing.  The distribution of the defect moments’ melting temperatures was measured, 
and most melt below 50 K, which is well below the temperature at which the CoO lattice 
moments freeze.  Experiments in the partially oxidized sample, in which the polarity of 
the biasing field was switched during cooling, show that the defect moments pin the Co 
core more strongly than the CoO lattice and thereby dominate exchange biasing at low 
temperature.  At higher temperatures, the CoO defects are paramagnetic and cannot 
contribute to pinning, and the CoO lattice controls exchange biasing.  By switching the 
field polarity and switching to zero field during cooling, exchange shift and coercivity 
tunability was demonstrated.  We interpret these results using the domain state model of 
exchange biasing. 
 
We also present results for the preparation and characterization of γ-Fe2O3 and FePt 
nanoparticles. 
 
 
Thesis Supervisor: Moungi G. Bawendi 
Title: Professor of Chemistry 
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Four things on earth are small, 
yet they are exceedingly wise: 
 
the ants are a people without strength, 
yet they provide their food in the summer; 
 
the badgers are a people without power, 
yet they make their homes in the rocks; 
 
the locusts have no king, 
yet all of them march in rank; 
 
the lizard can be grasped in the hand, 
yet it is found in kings’ palaces.
 
(Proverbs 30:24-28, NRSV) 

 
 
 
 
 
 

Soli Deo Gloria 
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Chapter 1 

Introduction to nanomaterials 

 

1.1: Defining the nanoscale 

 Atoms and small molecules have been the subject of intense investigation by 

physical chemists, in particular in gas-phase laser spectroscopy1 and mass spectrometry2.  

Such investigations have been important for understanding phenomena in nature, such as 

atmospheric chemistry3. Atoms and small molecules have also found diverse applications 

in trace detection4, remote sensing5, and as lasing media in CO2 and Ar+ ion lasers6.  

Many applications exploit the fixed energy levels of small molecules, and the molecular 

homogeneity of a pure sample. 

 Macroscopic crystals are known as “bulk” materials.  By varying the composition, 

purity, and patterning of bulk materials, materials with novel mechanical, electrical, 

optical, and magnetic properties have been prepared.  These properties are often quite 

different from those of molecules with the same chemical composition. 

 Materials of intermediate size between small molecules and bulk materials, which 

we define as the “nanoscale” size regime (between about 1-100 nm), can exhibit novel 

properties that are different from materials of the same chemical composition in their 

molecular and bulk forms.  These novel properties often originate from the high surface 

area to volume ratio in structures of this size.  Surface effects, which are often negligible 

when studying bulk materials, are significant in nanostructures. 
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1.2: Methods of fabricating nanostructures and self-assembly 

In nanoscience, new methods for preparing nanostructured materials are 

developed, and their physical and chemical properties are investigated.  Knowledge of 

these novel properties enables new applications in nanotechnology, which may replace a 

competing technology, or may be entirely new applications.  There is great promise for 

nanomaterials to have many applications in biology and information storage and 

processing due to their size scale. 

 There are two primary methods for preparing nanomaterials.  Lithography has 

been highly developed as a method for etching and depositing nanoscale features in 

silicon and other semiconductors7.  Lithography is an “etching-down” approach because 

it etches nanoscale features in a bulk material.  Another approach is the “building-up” 

approach, in which molecular precursors, under the right conditions, are grown or 

assembled into nanoscale objects.  The building-up approach is used in biological 

systems; proteins, DNA, and RNA are polymeric materials that are built up from amino 

and nucleic acids, which are again assembled into organelles, cells, and organisms. 

  The assembly process in biological systems is known as self-assembly.  In self-

assembly, simple structures are spontaneously transformed into more complex ones, 

when provided with the proper chemical and physical environment (temperature, 

pressure, electromagnetic excitation, etc.).  The “chemical toolbox” of naturally occurring 

biological systems is highly refined and optimized for self-assembly.  A major challenge 

in nanoscience is to find the right conditions for controlled self-assembly of artificial 

nanostructures, both of molecular precursors into nanoscale objects8, and the secondary 

self-assembly of these nanoscale objects into more complicated composite structures9, 10. 
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Nanomaterials with novel optical, electronic, magnetic, biological, and 

mechanical properties are of great interest.  Nanoparticles (NPs), nanotubes, and 

nanowires are nanostructures that exhibit these novel properties.  In order to maximize 

the range of novel properties and applications, many nanomaterials are hybrids of organic 

and inorganic materials.  We briefly introduce each kind of nanomaterial.  

 

1.3: Nanoparticles 

 NPs are small particles which nanoscale dimensions in every direction.  There are 

a variety of methods used for preparing inorganic and organic NPs, including chemical 

vapor deposition11, sputtering12, 13, and microemulsion polymerization14.  For NPs which 

have size-dependent physical properties, a highly monodisperse sample is desirable. 

One method which has proven particularly useful for growing monodisperse NPs 

is the colloidal seeded-growth approach, which is often used to grow NPs with inorganic 

cores in solution from molecular precursors by first nucleating small seeds in solution 

and then growing additional precursors onto the nuclei.  Both nucleation and growth steps 

are usually mediated by organic ligands.  After the growth is finished, the NPs consist of 

inorganic cores with organic ligands bound to the surface, so that they may be 

individually dispersed in a variety of solvents and appropriately functionalized for 

different applications. 

We now consider different classes of NPs, which are arranged by their novel 

physical properties. 
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1.3.1: Metallic nanoparticles 

Au NPs have been used historically as a coloring agent in stained glass, before the 

phenomenon that gives rise to their coloration was understood15.  Metallic NPs exhibit 

plasmon resonances, which are coherent oscillations of their conduction electrons 

throughout each NP that are excited by the electrical field of light15, 16.  Au, Ag, and Cu 

NPs are well-known for having their plasmon frequencies in the visible spectrum16, 

which causes their coloration, because light at the plasmon frequency is scattered more 

intensely than other colors.  The plasmon resonance frequency depends on the NP 

volume and shape17, and when two metallic NPs are in close proximity to each other, the 

electric fields of their plasmon resonances may couple, which causes a red-shift in the 

plasmon frequency.  This phenomenon is applied in home pregnancy test kits18 and other 

biological applications19.  If many metallic NPs are patterned adjacent to one another, the 

excitation of the plasmon frequency may be wave-guided through the coupled particles, 

an effect which is studied and applied in the field of plasmonics20. 

 

1.3.2: Semiconductor nanoparticles 

Semiconductor NPs, such as CdSe, have bright luminescence, the color of which 

is size-dependent21.  For small semiconductor NPs, the valence and conduction band have 

not fully formed and consist instead of a series of discrete states.  As the NP size 

increases, the band gap energy decreases, and the absorbance and emission peaks shift to 

the red.  An exciton is similar to a hydrogen atom because it consists of an interacting 

positive and negative charge, and it also has a Bohr radius, which corresponds to the 

average electron-hole separation and is material-dependent.  When the Bohr radius of the 
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exciton is on the order of or smaller than the NP radius, then the particle is said to be 

“quantum confined,” and it has discrete states22.  A quantum confined NP is called a 

“quantum dot” (QD).  In the quantum confined regime, the band gap is size-dependent. 

QDs have applications in many areas in which dye molecules are currently used.  

QDs have large absorbance cross sections, which are proportional to their core volume23, 

and high quantum yields24.  Although individual NPs exhibit blinking phenomena25, they 

are more robust than dye molecules because they do not photobleach as rapidly26.  

Moreover, they do not need to be excited on-resonance as dye molecules do and can be 

multiplexed easily27.  QDs have already found many applications in medicine28 and 

biology29, and more are under development. 

 

1.3.3: Magnetic nanoparticles 

Magnetic NPs are the main focus of this thesis.  A more thorough introduction to 

magnetic NPs is given in Chapter 2.  Magnetic NPs have novel physical properties.  

Below a certain size limit (which is material-dependent), magnetic NPs are single-domain 

magnets.  Their coercivity30 and the thermal stability of the orientation of their magnetic 

moments are size-dependent.  The atomic magnetic moments in ferromagnets, 

antiferromagnets, and ferrimagnets usually point along a preferred (easy) axis direction 

when no field is applied.  The magnetocrystalline anisotropy energy (EA) must be 

overcome to flip the moment from one easy axis to another (or into the opposite direction 

along the same easy axis).  To first order, EA scales linearly with the volume.  For small 

NP sizes, EA may be on the order of kBT, and thermal energy causes the NP moments to 

fluctuate, which is known as superparamagnetism. 
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Magnetic recording is a key area for the application of magnetic NPs, if the 

problem of superparamagnetism can be overcome12.  Magnetic NPs are also currently 

employed in biological separations31 and magnetic resonance imaging32.  More 

applications are under development 33, and magnetic NPs also have promise for 

applications in spintronics34. 

 

1.4: Nanowires 

 Nanowires (which have nanoscale dimensions in two directions and are elongated 

the their third dimension) have been prepared of metals, semiconductors, and magnetic 

materials.  Nanowires have novel electron transport properties, but contacting them can 

be difficult.  Electrically-pumped lasing from single semiconductor nanowires has been 

deomonstrated35, and they have promise for application in nanophotonics36 and 

nanoelectronics37.  Nanowires also have been demonstrated to work as chemical38 and 

biological sensors39.  Magnetic nanowires40 have an anisotropic coercivity and may be 

useful in magnetoresistive devices. 

 

1.5: Fullerenes and nanotubes 

 The Nobel Prize in chemistry in 1996 was awarded to Robert Curl, Jr., Harold 

Kroto, and Richard Smalley for the discovery of fullerenes, which are ball-shaped 

molecules of carbon, such as C60.  Subsequently, carbon nanotubes (CNTs) were 

discovered.  Analytically, a CNT is obtained by rolling up a graphene sheet, and the 

electronic structure and electrical properties are determined by how it is rolled41.  CNTs 

have been used for many of the same applications as nanowires.  Field-effect transistors 
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have been fabricated from CNTs42, and their use in chemical sensing has also been 

demonstrated43. 

 

1.6: Composite nanomaterials 

 Each of the classes of nanomaterials discussed thus far is under intense 

investigation, but there is also great interest in developing biological applications for 

nanomaterials44 and in preparing composite nanomaterials that combine the properties of 

these classes.  Some examples of composite nanomaterials include Au-tipped CdSe 

nanorods45, binary superlattices of magnetic and semiconductor NPs9, heterodimers of 

metallic and magnetic NPs46, and heterodimers47 and small clusters of magnetic and 

semiconductor NPs48.  Unique magnetooptically active materials have also been 

fabricated by connecting magnetic NPs to exfoliated sheets of perovskites49. 

 

1.7: Toxicity concerns 

 Since nanomaterials are of interest precisely because their physical properties 

differ from those of bulk materials of the same composition, there is concern that some 

nanomaterials may behave differently in the environment from their bulk counterparts 

and will thereby have different environmental health and safety impacts.  Material Safety 

Data Sheets have not been generated for most nanomaterials, but they are needed for this 

reason50.  One nanomaterial which has been investigated is C60, which has been found to 

be significantly more toxic than graphite51. 
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Chapter 2 

Introduction to magnetic materials and measurements 

 

2.1: Introduction to magnetic materials 

2.1.1: Origin of magnetism 

 Spin angular momentum usually dominates orbital angular momentum in 

determining the magnetic properties of a material.  Materials in which all spins are paired 

are diamagnetic and generate a weak moment that opposes the direction of an applied 

field.  When there are unpaired spins present that do not interact with those on adjacent 

atoms, the sample is paramagnetic, and the unpaired spins give rise to a moment that 

aligns parallel to the direction of an applied field.  Paramagnetic effects dominate 

diamagnetic effects in magnitude. 

 When unpaired spins on adjacent atoms interact, they may have ferromagnetic, 

antiferromagnetic, or ferrimagnetic alignment.  In the ferromagnetic case, the spins align 

parallel to one another, and their moments add.  If the spins align antiparallel to each 

other, the moments cancel, and the material is antiferromagnetic.  If there are two 

different sublattices aligned antiparallel to each other, then the material is ferrimagnetic.  

Ferromagnets (FMs) have an ordering temperature called the Curie (TC) temperature, 

above which they are paramagnetic.  Antiferromagnets (AFMs) have an analogous 

temperature, the Néel temperature (TN), above which they are paramagnetic.  

Ferrimagnets have an analogous temperature, and some authors identify it as TN 1, and 

others, as TC 
2.  (We use the TN designation.) 
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 The type of ordering is determined by the exchange interaction, which depends on 

orbital overlap.  Neighbor-neighbor interactions are called direct exchange interactions, 

but longer-range, indirect exchange interactions mediated by the conduction electrons in 

metals, or by oxide ions between metal ions in a metal oxide, can also be important. 

 We consider the direct exchange between adjacent unpaired electrons on adjacent 

atoms.  The wavefunctions for singlet and triplet configurations are: 

( ) ( ) ( ) ( )[ ]

( ) ( ) ( ) ( )[ ] ↑↓↑↓
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−=Ψ

+=Ψ

χψψψψ
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  (Eq. 2.1) 

The corresponding energies are: 
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    (Eq. 2.2)   

In order to determine which state is lower in energy, we take the difference in energies, 

which is related to the exchange integral, J: 

( ) ( ) ( ) ( ) JHEE baba 2ddˆ2 211221 ==− ∫ ∗∗
↑↑↑↓ rrrrrr ψψψψ  (Eq. 2.3) 

Therefore, if J < 0, then parallel alignment is more energetically favorable, and the 

material is ferromagnetic.  If J > 0, then antiparallel alignment is preferred, and the 

material is antiferromagnetic or ferrimagnetic.  The sign of J depends on the interatomic 

spacing and orbital filling and is determined by the Pauli exclusion principle, as well as 

the anti-symmetric nature of electron wavefunctions1. 
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2.1.2: Domain formation 

 A region in a FM in which all of the atomic magnetic moments point in the same 

direction is called a magnetic domain.  (Ferrimagnets and antiferromagnets also have 

domains in which all of the moments on one sublattice point in the same direction, and 

the moments on the other sublattice point in the opposite direction.)  Although the 

exchange interaction favors the parallel configuration of adjacent moments in a FM, the 

size to which a single domain can grow in zero applied field is limited.  The moments in 

a domain generate a dipolar field, which will tend to align adjacent moments in the 

opposite direction.  Above a certain size (the single-domain limit), the sample is 

composed of multiple domains with their dipoles coupled because that configuration 

minimizes the total energy associated with the exchange and dipolar interactions better 

than a single domain would.  The single-domain limit is material-dependent, and it 

depends on the relative strengths of the exchange interaction and the dipolar field.  

Despite this material-dependence, the sizes of the NPs studied in this thesis are 

sufficiently small to assume that they are single-domain NPs. 

When a field is applied, the Zeeman energy of a moment in the applied field is: 

Bµ
rr
⋅−=ZE       (Eq. 2.4) 

Therefore, if a field is applied to a sample that is composed of multiple domains, the 

domains that are parallel to the field direction will grow in order to minimize the 

Zeeeman energy. 

  

 25



2.1.3: Magnetocrystalline anisotropy 

 In FMs, AFMs, and ferrimagnets, the moments also interact with the crystal 

lattice.  This interaction is called magnetocrystalline anisotropy.  There are particular 

lattice directions along which it is more and less favorable for the moment to point.  The 

more favorable directions are the “easy” axes, and less favorable directions are the “hard” 

axes.  We consider HCP cobalt as an example of a uniaxial material, which has one easy 

axis, and a hard plane perpendicular to the easy axis.  In order to rotate the moment from 

the easy axis to point in the opposite direction, it must be rotated through the hard plane.  

The energy required for this rotation is called the magnetocrystalline anisotropy energy 

(EA).  EA is most accurately expressed as series that consists of many terms, but all terms 

except for the first one are typically neglected for NPs.  EA is expressed,  

VKEA )sin( 2
1 θ= ,     (Eq. 2.5) 

where θ is the angle between the moment and the easy axis.  K1 is called the first 

magnetocrystalline anisotropy constant, and when the higher order terms are neglected, it 

is often called K, the magnetocrystalline anisotropy constant. 

 

2.1.4: Superparamagnetism 

EA can be on the order of kBT in magnetic NPs due to their small volumes, but for 

T < TC (TN ) (depending on the material) the atomic moments in each NP continue to 

align parallel (or antiparallel for an AFM or ferrimagnet) to one another while their 

orientations fluctuate due to the thermal energy.  This effect is called 

superparamagnetism because the moment of each NP behaves like a large paramagnetic 

moment. 
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The Brownian motion of a superparamagnetic NP moment as it fluctuates is 

modeled by the Néel-Brown model3, which is similar to an Arrhenius treatment: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

Tk
KVtt

B

exp0 ,     (Eq. 2.6) 

where t is the mean time between flips at temperature T, and t0 is a constant, which 

typically has a value of about 10-9s 1.  The energy barrier used in Eq. 2.6 is KV, which is 

the energy barrier obtained from Eq. 2.5 when the moment is rotated through the hard 

plane.  The magnetization process of a superparamagnet obeys a Langevin function, 

which is described in Appendix C. 

 

2.2: Magnetic measurements 

 Magnetic measurements may be performed in a variety of magnetometers.  In this 

thesis, we used a superconducting quantum interference device (SQUID) magnetometer, 

which measures sensitive changes in the magnetic flux in a pickup coil as the sample is 

moved through it.  The SQUID magnetometer is cooled with liquid He and can attain a 

minimum temperature of about 2 K. 

 

2.2.1: Temperature-dependent magnetization: blocking temperature 

Measurements of M vs. T in a small applied field are performed on magnetic NPs 

in order to observe the transition between ferromagnetism (ferrimagnetism) and 

superparamagnetism.  The sample is cooled in zero field to low temperature, and then a 

small measuring field (0.01 T in our case) is applied.  The sample is measured as it is 

heated in the small field.  (In a related measurement, the field cooled M vs. T, the sample 

is cooled in the same small measuring field, rather than in zero field.) 
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During the zero field cooled experiment, the sample is ferromagnetic at low 

temperatures, and the magnetocrystalline anisotropy energy is greater than the Zeeman 

energy that would favor orienting the NPs into the field.  Thus, there is little orientation 

into the field direction, and a low moment is measured.  As the sample is heated, the 

thermal energy helps the moments overcome the magnetocrystalline anisotropy energy, 

and they become superparamagnetic.  Although the NP moments fluctuate, there is a 

greater mean component of the fluctuations in the applied field direction, which causes 

the magnetization to increase when the NPs become superparamagnetic.  As the 

temperature is raised further, the component of the fluctuations in the applied field 

direction decreases (in accordance with the Langevin behavior of paramagnets), and the 

magnetization decreases.  Therefore, there is a peak in the magnetization at the 

temperature at which the NPs become superparamagnetic.  This temperature is called the 

blocking temperature (TB).  TB is measured experimentally as the peak in the real 

component of the magnetic susceptibility (χ’) vs. T for AC measurements, or in M vs. T 

at small applied field in DC measurements.  (Since the applied field is small, the DC M 

vs. T curve serves as a linear approximation of the DC susceptibility, if the values of M 

are divided by the applied field.)   

In order to compare the Néel-Brown model with SQUID measurements, we ask 

the question: Using a measurement frequency of ω, at what temperature will ω be the 

mean flip frequency?  That is, at what T is ω = 1/t, where t is obtained from (Eq. 2.6)?  

The blocking temperature from experiments can be compared with the Néel-Brown 

model by substituting it into Eq. 2.6 and solving for it: 

 ( ) B
B ktt

KVT
0ln

=      (Eq. 2.7) 
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For DC measurements, a value of t = 100 s is typically used.  If the NPs are to be applied 

in magnetic recording, then a more stringent requirement must be satisfied, which is KV ≥ 

50-70 kBT  4. 

 Antiferromagnets can also exhibit superparamagnetism if TB < TN.  However, this 

measurement technique does not apply to antiferromagnets because they have no net 

moment (or a very small net moment when there are an odd number of lattice planes), 

which makes observations of the magnetic behavior of anitferromagnets intrinsically 

more challenging than for FMs or ferrimagnets. 

 

2.2.2: Thermal remanent magnetization 

 Thermal remanent magnetization (TRM) is a similar measurement to the field-

dependent magnetization.  The sample is cooled in a field, which can be of small or large 

magnitude, and after the field is switched off at low temperature, M vs. T is measured 

during heating.  If the cooling field was sufficiently high, the NP moments are initially 

frozen at low temperature with their moments pointing along easy axes in orientations 

near to the direction of the cooling field because the magnetocrystalline anisotropy 

energy is greater than the thermal energy.  This value of the magnetization at zero field is 

called the remanence or remanent magnetization.  As the sample is heated, the thermal 

energy begins to exceed the magnetocrystalline anisotropy energy, and the magnetization 

decays to zero as the NPs become superparamagnetic, since there is no applied field. 
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2.2.3: Field-dependent magnetization: history is important 

 M vs. H measurements are useful for characterizing ferromagnetic (ferrimagnetic) 

samples.  A typical M vs. H curve is shown schematically in Fig. 2.1.  The field is usually 

scanned up to the highest available field in the magnetometer.  If the curve flattens at 

high field, the magnetization has reached a maximum value, called the saturation 

magnetization (MS).  As the field is decreased to zero, the magnetization decreases to the 

remanence (MR).  When the field is applied in the negative direction, the magnetization 

eventually decreases to zero.  The magnitude of the field at which this occurs is called the 

coercive field or coercivity (HC).  Eventually, the field is saturated in the negative 

direction, and the process that occurs as the field is increased is analogous to the case 

when the field is decreased. 

 

M
MS MR 

H

2HC  

Fig. 2.1: Schematic M vs. H curve of a FM 
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If we choose a field and wish to know the magnetization, we must also know the 

history of the sample, since each field value in the plot corresponds to two 

magnetizations.  This property is called hysteresis.  As the sample is heated, HC 

decreases, and the two curves collapse into one.  That happens when the sample becomes 

superparamagnetic because the thermal fluctuations erase each NP’s memory of its 

history. 

 Measurements of single-domain NPs and multiple-domain samples both look 

similar to the one depicted in Fig 2.1.  The field-dependent magnetization of single-

domain NPs has been modeled in greater detail using the Stoner-Wohlfarth model1.  HC 

depends on the NP size as well as the temperature.  When the moment of a small single-

domain NP switches (and fluctuates in the superparamagnetic regime), all of the atomic 

moments rotate coherently.  Larger single-domain NPs may switch through other 

mechanisms, such as the temporary introduction of a domain wall, even though the NPs 

are still single-domain in zero applied field.  HC reaches a maximum at the largest NP 

size that switches by coherent rotation1. 

 

2.3: Exchange bias 

 When a sample containing an interface between a FM (or ferrimagnet) and an 

AFM (or ferrimagnet) is cooled in a magnetic field, it may exhibit an additional 

unidirectional anisotropy due to magnetic coupling at the interface.  This effect, called 

exchange biasing (EB), was first discovered nearly 50 years ago in oxidized Co NPs 

(NPs)5.  EB has been observed in many other magnetic materials, and vigorous 

experimental and theoretical research on EB continues.  Although much progress has 
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been made, the microscopic mechanism of EB still is not completely understood.  

Exchange biased materials have important technological applications, such as in giant 

magnetoresistance based spin valves that are used in hard drive read heads; other 

spintronics applications, such as magnetic random access memory, are under 

development6.  For additional background on EB, we refer to recent reviews7-10. 

 Some general features of EB are an enhancement of HC over a sample that was 

cooled in zero field, and a shift of the M vs. H loop along the field axis in the direction 

opposite to that of the applied cooling field, which is called the exchange shift (HEB).  A 

schematic M vs. H curve for an exchange biased FM that was cooled in a positive field is 

shown in Fig. 2.2.  The sign convention usually used for HEB is that a shift along the 

negative field direction has a positive value, so that cooling in a positive field gives rise 

to a positive HEB. 

 

M

 

Fig. 2.2: Schematic M vs. H curve of an exchange biased FM 
 after cooling in a positive field 

 

2HC

HEB
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EB originates from the exchange coupling between the moments in the FM and 

AFM.  EB can only arise if the sample is cooled from above TB, AFM or TN of the AFM.  

As the sample is cooled through TN, the moments in the AFM couple to one another, but 

the AFM may still be superparamagnetic.  As the AFM cools below TB, AFM, the moments 

freeze in the lattice.  Since a field is applied during cooling, the FM is oriented in the 

field direction.  After cooling, the AFM tends to pin the FM in the same orientation in 

which it was cooled.  This pinning effect is the unidirectional anisotropy of EB, which 

causes the M vs. H curve in Fig. 2.2 to shift so that a positive magnetization is preferred. 

The energies associated with this unidirectional anisotropy are depicted 

schematically in Fig. 2.3 for a NP with a FM core and an AFM shell.  In this example, 

the FM core has a uniaxial magnetocrystalline anisotropy with an easy axis pointing 

along the page horizontally (θ = 0 and θ = π, along the easy axis).  The NP is cooled in a 

field pointing to the right (θ = 0).  In Fig. 2.3a, T > TN, and when the field is switched to 

rotate the moment to θ = π, the energy increases as the magnetization rotates through the 

hard plane, and then the energy minimum for θ = π is the same as for θ = 0.  These states 

are degenerate because the AFM is paramagnetic and is unable to pin the core and cause 

EB.  In Fig. 2.3b, T < TN and T < TB,AFM, and the AFM pins the core.  The orientation in 

the direction of the initial cooling field is energetically favored.  The arrows in the shell 

AFM in Fig. 2.3b indicate the direction in which the AFM pins the core FM; the arrows 

do not depict the microscopic structure of the atomic magnetic moments in the AFM.  In 

Fig. 2.3a, the arrows point in all directions to represent paramagnetism and no pinning 

interaction. 
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(a) T > TN              (b) T < TN and T < TB,AFM  

Fig. 2.3: Schematic energy diagram of a FM(core)/AFM(shell) NP showing 
 (a) no EB and (b) EB.  The FM core has a uniaxial magnetocrystalline 

 anisotropy with an easy axis pointing along θ = 0 and θ = π.  
 

 

2.4: Choice of materials 

The properties of many magnetic materials are listed in Table 2.1.  The table is 

incomplete because some of the data are difficult to find and are not needed for this 

thesis.  Ni has a lower saturation magnetization than Fe, but Fe oxidizes quickly in air.  

Co has high magnetocrystalline anisotropy and a hexagonal phase, which is what 

originally made it of interest in our research group11, 12.  However, cobalt oxidizes in air 

and is not water-stable.  Iron has a variety of oxides with interesting magnetic 

properties13.  Maghemite and magnetite are useful for biological applications like 

magnetic resonance imaging14 because of their biocompatibility and their stability in 

water and air.  The face-centered tetragonal phase (FCT) of FePt is also of great interest 

E Co Co 

θ

0    π/2    π  
θ

Co Co E 

0   π/2     π  
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because of its high magnetocrystalline anisotropy.  However, the FCT phase is usually 

obtained by annealing the FCC phase, which leads to sintering and agglomeration15-17.  

Both phases of FePt are air-stable.  Because of the high magnetocrystalline anisotropy 

and thereby high HC of the FCT phase of FePt, it is a candidate for high-density magnetic 

recording media. 

 

Material Magnetic 
Structure 

Structure MS 
(emu/g)

µΒ (per Fe, 
Co, Ni atom) 

TC/TN 
(K) 

K (J/m3) 

Fe ferromagnetic BCC 221 2.2 1043 4.8 x 104

Co ferromagnetic HCP 162 1.7 1388 4.1 x 105

Co ferromagnetic FCC 162 1.7 1388 -7 x 104 18 
CoO antiferromagnetic rocksalt 0 3.8 19 290 20 
Ni ferromagnetic FCC 57 0.6 627 -4.5 x 103

FeO 
(wustite) 

antiferromagnetic rocksalt 0 4  

γ-Fe2O3 
(maghemite) 

ferrimagnetic metastable 
defect spinel 

74 2.5 863-
945 

~(1-4) x 104 21

Fe3O4
(magnetite) 

ferrimagnetic spinel 84 1.4 850 

α-Fe2O3
(hematite) 

antiferromagnetic corundum 
(hexagonal) 

0 2.5  

FePt ferromagnetic FCC  ~ 1 x 105 22 
FePt ferromagnetic FCT 3.4 23  7 x 106 24

 
Table 2.1: Magnetic properties for a variety of transition metals and metal oxides.  

Except where otherwise noted, all data are from reference 1. 
 

2.5: Thesis overview 

 The main topic of this thesis is a study of the magnetic properties of Co NPs with 

different extents of oxidation, which begins in Chapter 3.  EB in partially oxidized Co 

NPs is also reported and discussed.  The magnetic properties of defect moments in the 

CoO shell of oxidized NPs and their effect on EB are reported in Chapter 4.  The 

remaining chapters cover preliminary work in a few different areas:  The preparation and 
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magnetic properties of γ-Fe2O3 NPs are reported in Chapter 5, along with a method for 

incorporating them into silica microspheres along with CdSe QDs.  Trapping of these 

magnetic and highly luminescent microspheres on a microelectromagnetic device is 

demonstrated and discussed.  The preparation and magnetic properties of FePt NPs are 

described in Chapter 6.  TEM results show that FePt NPs may fuse together in solution.  

Methods for functionalizing commercially available Co NPs and their magnetic 

properties are discussed in Chapter 7.  Appendix G is a guide for performing 

transmission electron microscopy on NPs using the microscopes in the CMSE at MIT. 
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Chapter 3 

Systematic study of exchange biasing in cobalt nanoparticles 

with different extents of oxidation 

 

3.1: Introduction 

 About 5 years ago, Co NPs were of interest for their potential application in 

magnetic recording1-3.  However, over the last 5 years, much attention has shifted away 

from Co NPs and to FePt NPs4-7 because FePt has a magnetocrystalline anisotropy that is 

much greater than Co and does not oxidize in air.  It is well-known that Co NPs oxidize 

in air, and Dinega showed an unusual M vs. T curve for partially oxidized Co NPs in his 

thesis8, but the effects of the surface oxide on the magnetic properties were not 

thoroughly investigated.  In this chapter, we report a systematic investigation of the 

magnetic properties of Co NPs with different extents of oxidation.  Shortly after we 

began this work about two years ago, the magnetic properties of Co NPs embedded in a 

bulk CoO matrix were reported9, and in this study, we report the effects of a finite-

thickness oxide that is prepared using a different method. 

The interface between Co (FM) and CoO (AFM) has been used as a prototype for 

studying EB because it has a large unidirectional anisotropy, and TN for bulk CoO is near 

room temperature at 293 K10.  Exchange biased Co/CoO interfaces have been 

investigated in thin films11 and NPs prepared using cluster-beam deposition12, chemical 

vapor deposition13, sputtering9, 14, and also colloidal methods15, 16.  Colloidal Co NPs can 

be economically prepared using wet chemical methods with a high level of control over 
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NP size and crystal structure1-3, 17-20.  NP surface functionalization can be well controlled 

and exploited to manipulate21 and assemble NPs1, 3, 22 in ways that are not possible for 

particles prepared using physical methods.  In particular, surface ligands control particle 

solubility, prevent agglomeration, and can provide functional groups for further 

chemistry on the NP surface. 

Colloidal Co NPs with three extents of oxidation were investigated: The native 

sample has a thin (1.0 nm) CoO shell and exhibits no exchange biasing.  The 

purposefully partially oxidized sample has a thicker CoO shell (3.2 nm), and is exchange 

biased.  The sample fully oxidized to CoO looses exchange biasing.  We observe three 

distinct magnetic properties that result from the finite-thickness antiferromagnet shell 

exchange coupled to a finite-size ferromagnet core, and from crystal and stoichiometric 

defects: (1) an enhancement of the thermal stability of the orientation of the magnetic 

moment due to exchange biasing in the partially oxidized sample, (2) a low temperature 

paramagnetic response in the partially and fully oxidized samples due to defects in the 

CoO shell, and (3) an asymmetry in the field-dependent magnetization for the partially 

oxidized sample at low temperature due to small clusters of Co in a diffusion layer 

around the Co core. 

 

3.2: Experimental 

3.2.1: Preparation of systematically oxidized cobalt nanoparticles 

 All of the NPs used in this study were prepared in the same batch in order to 

eliminate size variations among different batches.  Co NPs were prepared as follows: In 

an inert atmosphere, 0.55 g Co2(CO)8 (Strem) was dissolved in 16 mL dioctyl ether 
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(TCI).  This solution was injected into a solution of 0.10 mL trioctlyphosphine (Strem, 

97%) in 19 mL dioctyl ether at 235 ˚C.  Following injection, the solution was heated at 

180 ˚C for 10 minutes.  The NPs began to aggregate, and 0.14 g stearic acid (Aldrich, 

98%) was added.  The mixture was then heated for another 10 minutes at 180 ˚C, which 

dispersed the NPs.  A similar procedure for making smaller Co NPs (2-3 nm diameter) is 

described in Appendix A. 

Inside a glovebox, the NPs were precipitated by adding ethanol.  After 

centrifuging (3900 RPM for 2 minutes) and discarding the supernatant, they were 

redispersed in hexanes.  After centrifuging again (3900 RPM for 2 minutes), the solids 

were discarded.  Ethanol was added to the hexanes solution to precipitate the NPs, and 

after centrifuging, (3900 RPM for 2 minutes) and discarding the supernatant, the NPs 

were redispersed in tetrahydrofuran (THF).  They could be stored indefinitely in a 

nitrogen glovebox, but were found to have slightly oxidized.  We identify this as the 

“native” sample.  The “partial” sample was purposefully partially oxidized by bubbling 

air through a solution of the native sample for 5 minutes and then waiting 6 weeks.  To 

prepare the “full” sample, which was fully oxidized to CoO, the NPs were transferred 

back into dioctyl ether and heated while bubbling air through the solution at 100 ˚C for 

28 hours. 

 

3.2.2: Incorporation into polymer sticks 

After each extent of oxidation, some NPs were dispersed in poly(lauryl 

methacrylate) cross-linked with ethyleneglycol dimethacrylate23.  In order obtain polymer 

sticks that are solid yet not too brittle, we prepared a monomer solution that was 83% 
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lauryl methacrylate and 17% ethylene glycol by mass.  As an initiator, 0.40% (by mass) 

2,2’-azobisisobutyronitrile (AIBN) was added.  This amount of initiator was chosen in 

order to lead to complete polymerization without producing bubbles in the sample. 

Under vacuum, the solvent was removed from 0.5-1.0 mL of the concentrated NP 

solution in THF.  After adding 0.5-1.0 mL of the monomer solution, the sample was 

sonicated for a few minutes, until the NPs redispersed.  The solution was transferred to a 

new glass vial, and was then placed in an oven set at 120 °C for 5 minutes.  After 

cooling, the vial was broken open, and the polymer stick was retrieved.  Photographs of 

the polymer sticks with and without NPs are shown in Fig. 3.1. 

 

 

contains Co nanoparticles        empty polymer
 

Figure 3.1: Polymer sticks, empty (right) and containing oxidized Co NPs (left) 
 

 

The NP concentration was chosen to be dilute so that the average interparticle 

distance was greater than 70 nm, a distance at which dipolar coupling between NPs is 

negligible.  A microtomed slice of one of the polymer sticks is shown in Fig. 3.2.  The 

slice thickness was chosen to be 20-40 nm.  There appears to be some aggregation in the 
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polymer, but even at relatively close distances, the NPs are not significantly interacting.  

Justification that the NPs are not significantly interacting is given in Appendix B. 

The NP/polymer samples were stored in a nitrogen glovebox when they were not 

being measured in order to prevent further oxidation.  Elemental analysis was performed 

on each polymer sample by Galbraith Laboratories, Inc., using inductively coupled 

plasma – optical emission spectroscopy. 
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Figure 3.2: TEM of microtomed polymer stick containing oxidized Co NPs 
 

 

3.3: Transmission electron microscopy investigation 

Transmission electron microscopy (TEM) was performed on a JEOL 2000 FX 

microscope, and high resolution TEM (HRTEM) was performed on a JEOL 2010.  TEM 

images of the native NPs (Fig. 3.3a) show that they have a diameter of 7.8 nm with a 

standard deviation of 1.0 nm.  They are polycrystalline FCC with many defects, as seen 

in the “speckled” contrast in each NP.  Partially oxidized NPs (Figs. 3.3b and 3.4) are 

polycrystalline, but individual crystalline grains are resolvable.  HRTEM micrographs 

show that these partially oxidized NPs are composed of grains of about 3 nm in diameter.  

Typically, there are one or two central grains surrounded by 4-7 grains in each NP.  Many 

of the partially oxidized NPs show darkened cores, rather than the random distribution of 
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dark spots that was observed for the native sample.  These TEM images are similar to 

those in another study of partially oxidized NPs24. 

The fully oxidized NPs (Fig. 3.3c) are polycrystalline and hollow, which is 

consistent with a similar recent study performed on single-crystal ε-Co NPs25.  The outer 

diameter of the NPs has increased to accommodate the hollow cavity and the volume 

expansion as oxygen was incorporated into the NPs.  Using electron diffraction (Fig. 

3.5), the crystal structure of the oxide phase after heating in air was verified to be CoO.  

A more thermodynamically stable oxide phase is Co3O4, but a higher heating temperature 

is generally required to prepare it26.  CoO has a rock salt crystal structure, whereas Co3O4 

is spinel.  Each ring is assigned to CoO as follows: A ~ <111>; B ~ <200>; C ~ <220>; D 

~ <311> and <222>; E ~ <400>; F ~ <331> and <420>; G ~ <422>.  No additional rings 

were observed.  If the sample were Co3O4, no <200>, <331>, and <420> reflections 

would be observed, but these reflections were observed and are attributed to CoO.  

Furthermore, if a significant amount of Co3O4 were present, its <111> and <220> planes 

would give rise to rings inside of A, but because no rings were observed inside of A, the 

absence of the <111> and <220> reflections also shows that Co3O4 is not significantly 

present. 
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Figure 3.3: TEM and HRTEM (insets) of Co NPs with 
(a) native, (b) partial, and (c) full oxidation 
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Figure 3.4: HRTEM of partially oxidized Co NPs 
 
 
 

 

Figure 3.5: Electron diffraction micrograph of full sample 
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3.4: Magnetic data: results and discussion 

SQUID measurements were performed on a Quantum Design MPMS-5S.  In the 

field-dependent magnetization measurements, a correction was made to remove the 

diamagnetic background of the polymer.  Reference M vs. H curves for a piece of the 

empty polymer (m = 0.0429 g) are shown in Fig. 3.6.  As expected, the M vs. H curves 

are linear, and the susceptibility (χ) is the slope of each line.  The slope at 5 K gives χ5K = 

-1.430 x 10-4 emu/(g·T).  For T ≥ 50 K, χ = -1.704 x 10-4 emu/(g·T).  For 5 K > T  > 50 K, 

an interpolated value of χ was used for the polymer background correction. 
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Figure 3.6: M vs. H of an empty polymer sample of mass 
 0.0429 g at a variety of temperatures. 
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The magnetization units of emu/g reported in this chapter and the next are based 

on the mass of cobalt.  The mass of ligands and oxygen in the oxidized samples is 

excluded. 

 

3.4.1: Oxide thickness, magnetocrystalline anisotropy constants, and increased 

blocking temperature due to exchange biasing 

   The M vs. H curves for native NPs after cooling in a 5 T field (Fig. 3.7a) exhibit 

no exchange shift (HEB).  Although the Co cores are highly polycrystalline, they are too 

small to sustain domain walls and are single domain magnets.  We note that at high 

fields, the M vs. H curves for native NPs do not exactly overlap, and an additional 

component with positive slope that is greatest at low temperature is observed, which is 

caused by the susceptibility of the CoO shell (Fig. 3.7b).  We used the M vs. H curves for 

fully oxidized NPs to subtract the component of the temperature-dependent susceptibility 

of CoO, with which we calculated that MS in the native sample is 91 emu/g.  This value 

of MS is 56 % of the bulk magnetization for Co (162 emu/g) 27.  Although interactions 

with carboxylate ligands that are chemisorbed28 on the surface and residual CO from the 

NP preparation could reduce MS
18, 29-31 below the bulk value, these effects cannot explain 

such a large reduction, and we conclude that the reduction in MS must be primarily 

caused by the formation of a thin layer of CoO on the surface of our native NPs, the 

thickness of which we measure later in this chapter. 
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Figure 3.7: Co NPs with (a) native, (b) full and (c-d) partial oxidation: 
 M vs. H after cooling from 300 K in a 5 T field at different temperatures. 
  For clarity, data for (b-d) at 25 K, 100 K, and 180 K are in Appendix C. 
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From Eq. 2.7, we obtain that ( )ωω /ln 0BBTkKV = , where TB is the blocking 

temperature, ω is the measurement frequency, and we set Hz 9
0 10=ω 32.  In this study, 

we measured the blocking temperature of the Co moments and did not directly measure 

moments of CoO grains because they are antiferromagnetic, and their crystal axes are 

randomly oriented. 

The out-of-phase susceptibility (χ’’), which corresponds to dissipative processes 

in the sample, is plotted along with χ’ for the native sample in Fig 3.8.  As expected, TB 

increases with increasing frequency.  The magnitude of χ’’ at all temperatures increases 

with frequency, which is expected because the dissipation should be greater at higher 

frequencies.  (Data for χ’’ at 1kHz are omitted because they were excessively noisy and 

are not needed for the analysis.)  From χ’ at 1 kHz, we measured TB = 195 K and 

calculated the product KV = 3.7 x 10-20 J. 
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Figure 3.8: AC susceptibility for Co NPs with native oxidation: 
(a) χ’vs. H and (b) χ’’vs. H at a variety of frequencies. 
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 In DC measurements of the native sample (Fig. 3.9a), we found that TB of the Co 

is 120 K.  Since TB is linearly proportional to V, we can propagate the standard deviation 

of the diameter distribution as measured by TEM into a standard deviation of 43 K in TB.  

The effect of the size distribution is to make the peak in Fig. 3.9a broader than it would 

be if the particles were perfectly monodisperse.  After oxidizing the sample to form 

partially oxidized NPs (Fig. 3.9b), TB of the Co core increases to 170 K.  This peak has 

vanished in the fully oxidized sample (Fig. 3.9c), which indicates that it has no 

ferromagnetic component and that oxidation was complete.  The moments of the Co 

cores before and after partial oxidation were measured using the Curie-Weiss law by 

fitting a line to the ZFC 1/M vs. T curve for T > TB in Figs. 3.9a-b, which is a standard 

analysis procedure that is described in Appendix D.  The value of the slope extracted 

from 1/M vs. T was multiplied by a factor of 0.56 in order to account for the oxide shell 

on the native sample and to normalize the units of M to be emu per unoxidized Co atom.  

In order to relate the volume of the ferromagnetic core of the particles to its volume, we 

used the bulk MS (162 emu/g). 
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Figure 3.9: Co NPs with (a) native, (b) partial and (c) full oxidation: 
M vs. T: ZFC and field cooled (FC), measured in 0.01 T field. 
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The average moment per native NP (mnative) was 30,700 µB, which corresponds to 

a Co core diameter of 7.2 nm.  We can now estimate an upper limit of the CoO thickness.  

After correcting for density differences in the Co core and CoO shell, we find that if 56% 

of the Co atoms are in the core, then the oxide thickness is ~1.0 nm, which gives a total 

native NP diameter of ~ 9.2 nm.  Using this diameter, we find K = 9.1 x 104 J/m3 from the 

product KV, which is consistent with values from other measurements of polycrystalline 

FCC Co NPs33.  We note that the total diameter measured from these SQUID 

measurements is slightly larger than that measured from TEM.  TEM measurements may 

tend to slightly underestimate NP sizes, since it can be difficult to observe surface layers 

in TEM.  Since the particles were briefly heated in air when preparing polymer sticks, it 

is also possible that the particles that were measured in SQUID had slightly more oxide 

and a larger diameter than those from the same sample that were measured in TEM. 

  For the partially oxidized NPs, the moment of the core determined from Curie-

Weiss analysis (mpartial) was 2,900 µB.  If we assume, as expected, that the moment scales 

linearly with the volume of the Co domain, then the Co core diameter in the partially 

oxidized NPs is 3.3 nm, and the oxide thickness is 3.2 nm.  Even though the size of the 

Co core has decreased in the partially oxidized NPs, TB has increased due to EB on each 

NP, which increases the effective anisotropy.  Since TB scales linearly with volume, if K 

is assumed to be independent of size, then TB of the Co core of the partially oxidized NPs 

without any oxide would be 11 K, which strongly underscores the enhanced thermal 

stability provided by the CoO shell.  A similar increase in TB  due to EB has been 

observed previously for sputtered Co NPs in a bulk CoO matrix9. 
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Because EB occurs only for T < TN, the upper limit of the temperature at which 

EB may be observed is TN.  However, for finite-thickness antiferromagnets, the 

anisotropy enhancement of EB can vanish at temperatures significantly below TN
34, 35.  In 

order for EB to occur, the AFM must be able to pin the FM as it is reversed.  A couple 

mechanisms by which small AFM grains may fail to pin an adjacent FM as the 

temperature increases are (1) if the AFM becomes superparamagnetic above a blocking 

temperature TB,CoO< TN, or (2) if the magnetocrystalline anisotropy of CoO decreases so 

that moments throughout the AFM would all rotate as the FM moment rotates13.  

Although our experiments do not elucidate the mechanism, the oxide layer on the native 

NPs is too thin for the sample to exhibit EB at any temperature, which others have also 

reported9.  For partially oxidized NPs, however, EB causes TB of the Co core to increase 

to 170 K.  TB,CoO provides an upper bound of the temperature to which EB can be used to 

stabilize the orientation of the magnetic moment of Co NPs.  If the CoO grain size is 

increased, EB should stabilize the moments to a higher temperature, since both TB,CoO
36 

and the magnetocrystalline anisotropy energy increase as the grain size increases. 

We sought a value of TB,CoO for 3.2 nm CoO grains for comparison, but such a 

value is not consistently found in the thin film literature.  The values reported for thin 

films of CoO with 3.0 nm thicknesses range from 170 K37 to 250 K36 and ~275 K34, 38.  

These differences can most likely be attributed to differences among the microstructures 

of the films and different materials on which the CoO films are deposited.  In particular, 

if the film is deposited on a ferromagnet or on a ferrimagnet, the exchange coupling at the 

interface may also change have an effect in determining TB,CoO.  From our experiments, 

we know that TB,CoO ≥ 170 K for our 3.2 nm grains, since EB is observed up to this 
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temperature.  Reported values of the magnetocrystalline anisotropy constant of CoO also 

vary widely with reports including KCoO = 5  x 105 J/m3 39 and KCoO = 1.1  x 107 J/m3 34.  

These inconsistencies may also be due to microstructural differences and different 

measurement temperatures.  If we assume that the grains are spheres of diameter 3.2 nm, 

we calculate KCoO  ≥  3  x 106 J/m3 from the expression, ( ) VTkK CoOBBCoO ωω /ln 0,= , 

where we have used ω = 0.01 Hz, which is a value typically used for the time scale of DC 

SQUID measurements. 

 

3.4.2: Defects in the CoO shell 

We now turn to our observation of a low temperature paramagnetic response in 

the partially and fully oxidized samples which we attribute to defects in the CoO shell.  

Both samples exhibit a rise in the ZFC M vs. T curve as T approaches zero (Figs. 3.9b-c).  

This rise has previously been attributed to moments at defect sites in the CoO10, such as 

crystal defects at NP surfaces, grain boundaries and variations in the Co to O 

stoichiometry.  These moments associated with these crystal defects appear as 

paramagnetic impurities because they are prevented from strongly coupling into the AFM 

lattice.  In order to measure the moments associated with these defects, Curie-Weiss law 

analysis was performed by fitting a line to the ZFC 1/M vs. T data for T < 50 K in Figs. 

3.9b-c, which is the same procedure that we performed earlier for the Co cores.  The 

moment per NP of the paramagnetic impurities in the CoO shell is 420 µB in the partially 

oxidized sample and 330 µB in the fully oxidized sample.  If each defect were a Co2+ ion, 

which has a moment of 3.8 µB
40, then these measured moments would correspond to 

about 95 Co2+ ions in the CoO shell that are not exchange coupled to the CoO lattice. 
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The assignment of these paramagnetic impurities as defects in the CoO shell is 

confirmed since these impurities are not observed in pure Co and the moments were 

about the same in the partially and fully oxidized samples.  Such impurities have also 

been observed in CoO thin films10.  These defects may also have a significant effect on 

EB41.  These quantitative measurements may also be useful for comparison with 

theoretical simulations of the properties of antiferromagnetic NPs42. 

 

3.4.3: Phenomenological model: physical picture and temperature-dependence of 

exchange shift and coercivity 

The M vs. H curves for partially oxidized NPs (Figs. 3.7c-d) are rich with many 

phenomena, because this sample has a FM core and AFM shell and exhibits EB.  Before 

considering the asymmetries in the M vs. H measurements for partially oxidized NPs at 

low temperature, we first consider M vs. H measurements for fully oxidized NPs (Fig. 

3.7b), so that the component of the magnetization due to the CoO shell can be removed 

from the magnetization of the partially oxidized sample, which simplifies the analysis.  

Saturation is not achieved in either the partially or fully oxidized sample.  CoO has a 

large magnetocrystalline anisotropy, and the magnetization is due to canting the spins 

away from the easy axis of the AFM lattice.  If all the Co2+ moments could be aligned 

ferromagnetically, the resulting saturation magnetization for pure CoO would be 238 

emu/g37.  Even in a 5 T field, the magnetization does not approach saturation.  The 

magnetic susceptibility of fully oxidized NPs decreases with increasing T, as the grains 

become superparamagnetic and then paramagnetic for T > TN.   There have been a few 

studies of the magnetic properties of CoO NPs43-45, but the magnetic measurements were 
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performed only at room temperature, and the smallest particles studied had d = 15 nm, for 

which TB,CoO is not significantly reduced from the bulk value36. 

 An M vs. H curve for the partially oxidized NPs from which the susceptibility 

contribution from CoO has been removed is shown in Fig. 3.10a.  (Data at 25 K, 100 K, 

and 180 K are included in Appendix C.)  In order to remove the susceptibility 

contribution of the CoO shell and consider only the core magnetization, EB and other 

interface effects in the partially oxidized sample, we have subtracted Mfull (Fig. 3.7b) 

multiplied by 0.947 from the curve for Mpartial (Fig. 3.7c).  This factor of 0.947 is derived 

as ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

emu/g 162
emu/g 911 nativepartial mm , since the partially oxidized NPs are not completely 

oxidized.  The low temperature behavior of the partially oxidized NPs exhibits many 

unusual properties: 

 (1) MS of the Co core increases significantly as the temperature is lowered (Fig. 

3.9a).  This is contrary to the expectation that MS should be independent of temperature 

in this range. 

 (2) HEB and HC appear to be suppressed. 

 (3) The M vs. H curve splits into two highly asymmetric lobes. 
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Figure 3.10: M vs. H for the partial sample after subtracting 0.947 times Mfull: (a) from 
experimental data and (b) compared with modeled curves at 5 K; inset: HEB and HC vs. T. 

Additional data at 25 K, 100 K, and 180 K are in Appendix C. 
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 Each of these observations is explained using a simple model.  The curve in Fig. 

3.10a at 5 K is modeled as the sum of two curves (Fig. 3.10b).  The first curve simulates 

an exchange biased Co core that has nonzero HEB and HC and is generated by shifting two 

Langevin functions along the H axis.  The second curve is a Langevin function centered 

at the origin, which corresponds to a superparamagnet.  The parameters for these curves 

were determined by doing a fit to the experimental data.  This simple model fits the data 

quite well. 

The model reproduces property (1) well at a fixed temperature.  As the 

temperature is increased to 300 K, we expect HEB and HC in the curve corresponding to 

the Co core to become smaller but for MS to remain constant.  In order for the 

superparamagnetic curve to fit the data, MS decreases quickly with increasing 

temperature.  Therefore, at a given temperature, this model works quite well, but the 

temperature dependent MS of the superparamagnetic curve decreases much more quickly 

than the flattening that occurs in a Langevin function as T increases. 

 Properties (2) and (3) are also reproduced well.  The superparamagnetic curve that 

is only significant at low T splits the curve at 5 K into two lobes.  EB is not suppressed, 

but the measured HEB is reduced because the large lobe does not significantly intersect 

the field axis.  If the fitting procedure is used to remove the superparamagnetic 

component, then HEB as measured from the curve for the simulated exchange biased core 

is 0.70 T at 5 K.  We have repeated this fitting procedure at different temperatures, and 

have plotted HEB and HC from the curve for the simulated exchange biased core (Fig. 

3.10b, inset).  We find that HEB and HC decrease with increasing T and vanish when T > 

TB,Co, as is expected. 
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We propose that there are clusters of a few unoxidized Co atoms in a Co-rich, O-

deficient diffusion zone between the core and shell in the partially oxidized sample that 

are superparamagnetic at 5 K.  Measurements of paramagnetic defect moments in the 

CoO shell have already been discussed, and this is a separate effect.  For these clusters, 

MS may decrease with increasing temperature because they are very small, and their 

surfaces are exchange coupled to the surrounding CoO spins, which could cause them to 

violate the Langevin temperature dependence, thus explaining property (1).  As evidence 

for such Co clusters, we note that the height of the low temperature rise in the ZFC 

magnetization of partially oxidized sample (Fig. 3.9b) is 1.0 emu/g, but it is only 0.5 

emu/g for the fully oxidized sample (Fig. 3.9c).  This difference suggests that there are 

additional superparamagnetic spins at low temperature in the partially oxidized sample.  

A similar physical model of small ferromagnetic clusters at a metal/oxide interface was 

also recently proposed for the surfaces of FePt NPs46.  Our model may also be applicable 

to work on α-Fe(core)/γ-Fe2O3(shell) NPs, in which an M vs. H curve with a similar 

asymmetry to ours was observed at low temperature47. 

Most other physical explanations for the superparamagnetic curve that we 

considered are inconsistent with the model.  The superparamagnetic curve cannot be due 

to Co cores that are not significantly oxidized because MS quickly decays with increasing 

temperature, which is inconsistent with the Langevin behavior that unoxidized cores 

would exhibit.  One might attribute the superparamagnetic curve to an interaction 

between the Co core and CoO shell, such as canting of the CoO spins in the field of the 

core, or of defect moments orienting in the field generated by the core.  Such an 

explanation is not plausible because the superparamagnetic curve is symmetric about zero 
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field and does not follow the exchange biased curve, as one would expect for an 

interaction with the cores.  The superparamagnetic curve must be caused by an 

interaction with the applied field.  Moreover, the magnetization of the CoO shell has 

already been removed in Fig. 3.10a, so the superparamagnetic curve cannot be attributed 

to an interaction between the applied field and the defects that are present in the CoO 

shell for both the partially and fully oxidized samples. 

 

3.5: Proposal 

It has previously been suggested that the enhancement in the thermal stability of 

magnetic NPs caused by EB could be useful for developing high-density magnetic 

recording media9.  A challenge in developing high-density magnetic recording media is 

that as the ferromagnetic NP size decreases, TB also decreases, but useful media must be 

operable at room temperature.  In order to increase the thermal stability of magnetic NPs, 

their magnetic anisotropy must be increased.  Colloidally prepared FePt NPs are actively 

being pursued as a potential material for high density magnetic recording due to their 

high magnetocrystalline anisotropy4.  However, the desirable high-anisotropy, high-

coercivity phase of FePt is achieved only after annealing, which leads to sintering and 

agglomeration46, 48, 49, thereby causing a polydisperse size distribution and 

inhomogeneous magnetic properties. 

In order to use EB rather than intrinsically high magneocrystalline anisotropy, a 

pair of FM/AFM materials could be chosen that exhibit EB, and for which the AFM has 

TN  and TB,AFM sufficiently greater than room temperature.  Colloidal NPs of the FM could 

be patterned on a substrate.  These NPs would be superparamagnetic when not coupled to 
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the AFM.  After removing the ligands, a thin film of the AFM could then be deposited, 

which is depicted in Fig. 3.11. By cooling the substrate below TN in a field, the 

unidirectional anisotropy directions of all of the NPs would be oriented in the same 

direction.  This approach would circumvent the challenges associated with preparing the 

high-coercivity phase of FePt NPs and would also solve the problem of aligning the 

anisotropy axes of each NP into the same direction. 

  

 

 

Figure 3.11: Proposed substrate for using exchange biased NPs for magnetic recording. 

 

3.6: Conclusions 

In this chapter, we have comprehensively investigated the magnetic properties of 

colloidal Co NPs with native, partial, and full oxidation.  Beyond a minimum CoO shell 

thickness, EB greatly enhances the anisotropy of Co NPs and stabilizes their magnetic 

moments to higher temperatures.  A phenomenological model was developed to describe 

the unusual M vs. H curves for partially oxidized NPs at low T.  We attribute these 

unusual magnetic properties to clusters of Co atoms in a diffusion region at the interface 

in partially oxidized NPs.  Paramagnetic spins at defect sites in CoO were also 

quantitatively measured. 
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Appendix A for Chapter 3 

Method for preparing small (d = 2-3 nm) cobalt nanoparticles 

 

The method for preparing small (d = 2-3 nm) Co NPs is identical to the method 

described for preparing larger Co NPs in section 3.2.1 with the following exceptions:  

The amount of trioctylphosphine was increased to 1.0 mL.  The heating procedure was 

also prolonged: After heating at 180 ˚C for 10 minutes, the mixture was heated to 190 ˚C 

for 10 minutes, to 200 ˚C for 10 minutes, to 210 ˚C for 10 minutes, and then to 215 ˚C for 

15 minutes. 

After adding the stearic acid and cooling, a modified procedure was used to 

process the NPs because of their size-dependent solubility.  The contents of the reaction 

flask were split into four parts, and 20 mL of methanol and 10 mL of ethanol were added 

to each part.  After centrifuging, most of the NPs had precipitated, and the supernatant 

(which still had a brown color) was discarded.  The precipitate was redispersed into 10 

mL of hexanes and was centrifuged, after which the supernatant was retained, and 10 mL 

of ethanol and 20 mL of ethanol were added to it to precipitate the NPs.  After 

centrifuging, the precipitated NPs could be redispersed into hexanes or THF.  Fig. A.1 

shows a TEM image of Co NPs prepared in this manner.  A small portion of larger NPs 

are also present. 
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Figure A.1: TEM of small Co NPs 
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Appendix B for Chapter 3 

Justification that cobalt NPs are non-interacting in the 

polymer matrix 

 

 The magnetic field generated outside of a single-domain ferromagnetic sphere 

that is magnetized along the x-axis sphere of radius r0 is given as1: 
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where θ is the angle between the magnetization vector and the x-axis.  The maximum 

field is generated along the x-axis, and is of magnitude 1.2 T at the surface of the sphere, 

but this field decays quickly with increasing distance. 

 Since the maximum field is generated along the x-axis, Hx is an upper bound of 

the field generated by a NP in any direction.  In order to obtain the maximum field that 

another NP may experience due to this field, we calculate the minimum separation 

distance between the core of one NP and the interface between the core and shell of a 

neighboring NP.  That distance is the radius of one NP plus twice its oxide thickness plus 

the distance between particles due to their ligand shells, which we estimate to be 1.5 nm 

from TEM measurements.  For the native sample, the core diameter is 7.2 nm.  Therefore, 

the minimum core-to-interface separation is 7.1 nm, and the average core-to-core 

separation is 10.7 nm.  The minimum core-to-interface separation in the partial sample is 

9.6 nm, and the minimum core-to-core separation is 11.2 nm.  The maximum field, Hmax, 
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experienced by a second particle in the vicinity of the first which generates the field is 

plotted as a function of distance in Fig. B.1 (native sample) and Fig. B.2 (partial sample).  

For the native sample, Hmax at a distance of 7.1 nm is 0.16 T, and at 10.7 nm, it is 0.05 T.  

For the partial sample, Hmax at a distance of 9.6 nm is 0.006 T, and at 11.2 nm, it is 0.004 

T. 

The maximum field of 0.16 T for the native sample is significant.  However, that 

field quickly decays across the volume of the NP, and the effective field at the minimum 

separation is much lower.  Almost all of the NPs, even in the aggregated areas of Fig. 3.2 

have at least a small separation, which would reduce the maximum field to below 0.05 T.  

NPs in Fig. 3.2 which appear to overlap may an actually have some separation, since the 

microtome slice was 20-40 nm thick.  Most of the NPs have a larger separation and thus 

have even weaker interactions, which should not significantly effect the magnetic 

measurements.  The interactions at the same distances in the partial sample are much 

smaller than for the native sample, since the partial core is smaller, and the CoO is 

thicker.  Therefore, interparticle interactions in both samples should not significantly 

affect the magnetic measurements.  If the interparticle interactions were to have an effect, 

it would be greater for the native sample than for the partial sample. 
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Figure B.1: Maximum field experienced by one native NP 
 which is generated by another native NP, as a function of distance 
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Figure B.2: Maximum field experienced by one partial NP 
 which is generated by another partial NP, as a function of distance 
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Appendix C for Chapter 3 

Supplementary data 
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Figure C.1: (Additional data for Fig. 3.7) Co NPs with 
 (a) partial and (b) full oxidation: M vs. H after cooling 

 from 300 K in a 5 T field at different temperatures. 
   
 

 73



H (T)

-4 -2 0 2 4

M
 (e

m
u/

g)

-10

-5

0

5

10

25 K
100 K
180 K

 
Figure C.2: (Additional data for Fig. 3.10a) M vs. H for the partial 
 sample after subtracting 0.947 times Mfull at different temperatures. 

(The field for the curve at 180 K was swept to ±5 T, but the data at ±5 
are omitted because there was an instrumental error during those measurements.) 
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Appendix D for Chapter 3 

Curie-Weiss law analysis 

  

The field- and temperature-dependence of the magnetization of a paramagnet is 

described classically by a Langevin function.  Molecular paramagnets with small J (total 

angular momentum quantum number) are better described by a Brillouin function, which 

takes into account the quantized nature of spin.  However, all of the moments described 

in this thesis have large J, for which the Brillouin function reduces to a Langevin function 

in the classical limit: 
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In Eq. D.1, <m> is the average moment measured, µ is the saturation moment, H is the 

magnetic field, kB is the Boltzmann constant, and T is the temperature.  For small B, we 

take the Taylor expansion of <m> about B = 0 and retain the first term: 
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The magnetization M = NV <m>, where NV = 1/V is the number of moments per unit 

volume, and V is the volume of one moment.  Therefore, 
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where χ is the magnetic susceptibility, and 
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is the Curie constant.  A slightly modified form of Eq. D.3, which incorporates an 

additional parameter, TC, is known as the Curie-Weiss Law: 
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 Eq. C.5 can be applied to calculate the magnitude of a (super)paramagnetic 

moment from the decay of its magnetization with increasing temperature.  Using NV = 

1/V, we note that 
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has a linear dependence on T.  However, V = µ /MS.  Therefore, the slope of 1/M vs. T is 
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MS can be measured, and from the slope, the moment, µ may be calculated. 

 In our analysis, NV was calculated for the native sample using Eq. D.7.  We then 

solved for NV = MS/µ.  If we assume that the number of Co atoms per NP did not change 

during oxidation, then NV is the same for each sample because the magnetization was 

reported in units of moment per mass of unoxidized cobalt.  For the analysis of the partial 

and full samples, we derived 
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from Eq. D.6 and solved it for µ.  
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Chapter 4 

Defects in CoO dominate exchange biasing in partially oxidized 

cobalt nanoparticles 

 

4.1: Defects and the domain state model of exchange biasing 

In the previous chapter, we showed that the partially oxidized sample exhibits EB, 

which causes an increase in TB of the core.  We also observed paramagnetic impurities in 

the CoO shell, which we attributed to crystallographic defects at surfaces, grain 

boundaries, and variations in the Co to O stoichiometry, since oxidation to Co3O4 is also 

possible.  We now consider the role that these defects play in determining the EB 

behavior. 

Since the initial discovery of EB in oxidized Co NPs1, many models have been 

proposed, but a comprehensive microscopic understanding is still lacking.  It has been 

well-established that spins at the FM/AFM interfaces adopt an orthogonal arrangement 

which is called “spin-flop coupling,”2 but this configuration does not give rise to EB3.  

Recently, the role of the crystallographic and magnetic domain structure of the AFM has 

been investigated4-7.  FM/AFM layers can have uncompensated spins at the interface, 

which are tightly coupled to the AFM lattice but are not antiferromagnetically coupled 

with another spin in the interfacial plane.  These uncompensated spins can give rise to EB 

but are not required, since fully compensated interfaces can also exhibit EB8. 

Thin film experiments have shown that about 1% of the CoO surface spins are 

uncompensated9.  If we suppose that 1% of the Co/CoO interface in our partially oxidized 
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NPs has uncompensated CoO spins, a total of 5 uncompensated CoO spins would be 

found on the surface of the Co core.  In Chapter 3, we found that there is a moment 

equivalent to about 95 Co2+ moments per NP.  It is quite plausible that the EB generated 

by these defect moments could overwhelm that of 5 uncompensated moments at low 

temperature. 

A roughened FM/AFM interface can exhibit enhanced10 or reduced EB8 compared 

to a smooth one.  Recent experiments5 have shown that if defects are induced in the AFM 

but away from the interface with the FM, then the EB can also be enhanced.  This result 

is explained by the domain state (DS) model of EB4.  In the DS model, the domain 

structure throughout the AFM determines the spin arrangement and the exchange 

interaction at the interface4.  The DS model has been experimentally verified in thin films 

by inducing chemical defects such as Mg2+ substitution or overoxidation in a CoO film 

coupled to Co, but defects were intentionally induced 3 nm away from the interface with 

Co.  For small defect concentrations (such that the defects are a perturbation on the 

perfect lattice, rather than making it amorphous), HEB increases with increasing defect 

concentration5.  Nowak, et al4 interpreted their data by attributing the enhanced EB to a 

change in the domain structure of the AFM.  Domains in the AFM carry a small 

uncompensated moment at the FM/AFM interface.  Defects induced anywhere in the 

AFM can aid in the formation of domain walls, thereby modifying the AFM domain 

structure and the uncompensated moment.  Increased numbers of defects often lead to 

enhanced EB. 

The DS model explains many phenomena in exchange biased systems and the 

difficulty in quantitatively reproducing others’ measurements, because the DS of an AFM 
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is highly sensitive to the conditions under which the interface is prepared4.  

Unfortunately, the DS model is difficult to apply quantitatively in a predictive manner 

because it is difficult to experimentally characterize the DS of an AFM.   

 

4.2: First switching experiment: field-dependent magnetization 

4.2.1: Defects dominate exchange bias  

 EB may be observed in the partial sample below a maximum temperature at 

which the CoO shell fails to pin the core.  We have attributed the low temperature rise in 

Figs. 3.9b-c to crystallographic and stoichiometric defects.  Already at 50 K, this rise has 

significantly decayed.  We attribute the peak at 170 K in Fig 3.9b to pinning that is 

caused by the CoO lattice.  If the defect moments are not optimally exchange coupled 

into the antiferromagnetic lattice, we would expect each defect moment to have a lower 

“effective” TN, at which the defect moment becomes paramagnetic.  Our experiments 

show that this is the case, and we have studied the role of these defects in EB. 

 By cooling the sample in a biasing field from room temperature to below 170 K 

and then switching at an intermediate temperature before cooling to 5 K, we have frozen 

the CoO lattice to pin a particular orientation of the Co core.  If the defect moments are 

still paramagnetic at the switching temperature, they could be reoriented to pin the 

opposite orientation of the core, which could cause a change in the EB. 

The partial and full samples were cooled in a -5 T field from 300 K to a switching 

temperature of 25-100 K, at which the field was switched to at 5 T, and cooling was 

resumed to 5 K.  This cooling procedure is depicted in Fig. 4.1.  After cooling, M vs. H 

(Fig. 4.2) and remanent magnetization measurements (Fig 4.9) were performed.  In order 
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to remove the component of the CoO susceptibility from the M vs. H curve and consider 

only the effects of the ferromagnetic core and EB, the same procedure as described in 

section 3.4.3 was used, in which we carried out identical measurements on the partial and 

full samples and then plotted (Fig. 4.2) the difference, Mpartial – 0.947Mfull. (The M vs. H 

curves for the partial and full samples are included in Appendix E (Fig. E.1).)  Each M 

vs. H curve was fit in order to remove the superparamagnetic component, and the values 

for HEB and HC were taken from the fit using the procedure developed in section 3.4.3, 

and are presented in the inset in Fig 4.2. 
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Figure 4.1: Switching procedure for Fig. 4.2 and Fig 4.9 
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Figure 4.2: (Mpartial – 0.947 Mfull) vs. H after cooling from 300 K in a -5 T field, 

 followed by switching at 25 K, 50 K, or 100 K; inset: HEB and HC vs. T from the fit for 
each curve.  Curves for Mpartial and Mfull vs. H are in Appendix E, Fig. E.1.  
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   If the sample were cooled from 300 K to 5 K in a -5 T field, we would expect HEB, 

5 K  = -0.70 T < 0 (section 3.4.3).  We note that for a switching temperature (Tswitch) of 25 

K, HEB = -0.34 T > -0.70 T.  (Negative HEB is consistent with having the larger lobe in the 

M vs. H curve along the positive field-axis.)  Switching at 25 K reduces the magnitude of 

the EB compared to the field cooled case, but HEB is still negative.  As Tswitch is increased 

to 50 K, HEB, 5K = -0.10 T, and for Tswitch = 100 K, HEB, 5K = 0.36 T > 0. 

These results are consistent with a physical model in which the defect moments 

would freeze at a distribution of temperatures below 170 K.  For Tswitch = 25 K, some of 

the defect moments have reoriented at 25 K to pin the core in the positive field direction, 

and after cooling to 5 K, they have frozen and continue pinning the core in the positive 

field direction.  Their effect is to reduce the magnitude of HEB, but not enough defect 

moments are reoriented to reverse the sign of HEB.  For Tswitch = 50 K, the situation is the 

same, except more defect moments have reoriented to pin the core in the positive field 

direction, and the magnitude of HEB is further reduced.  For Tswitch = 100 K, enough defect 

moments have reoriented to give rise to positive HEB.  Therefore, those defect moments 

that froze below 100 K dominate the EB generated in the opposing field direction by 

defect moments that froze above 100 K and the CoO lattice.  Thus, we have shown that 

the defect moments dominate EB, and we have some evidence that they have a variety of 

freezing temperatures. 

 

4.2.2: Exchange field changes sign during heating 

After measuring at 5 K for Tswitch = 100 K, the sample was heated to 100 K in a 5 

T field and was measured again, which is also plotted in Fig. 4.2.  We found that 
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HEB, 100 K = -0.13 T.  Although HEB was positive at 5 K, at 100 K, it is negative.  

Therefore, HEB has switched signs during the heating process.  By heating the sample up 

to 100 K, the defect moments which were frozen below 100 K have “melted” (become 

paramagnetic), and they can no longer pin the core.  This M vs. H loop is the same as the 

one which we would observe after cooling the sample from 300 K to 100 K in a -5 T field 

and then immediately measuring at 100 K. 

 

4.3: Second switching experiment: causing the exchange field to change sign twice 

during heating 

This unusual result led us to ask us whether we could cause HEB to switch sign 

twice during heating, if we switched the biasing field twice during cooling.  We used the 

cooling procedure shown in Fig. 4.3.  Each sample was cooled from 300 K to 100 K in a 

5 T field.  At 100 K, the field was switched to -5 T, and cooling was resumed to 50 K, at 

which the field was switched to 5 T, and cooling was continued to 5 K. 

As in section 4.2.1, the partial and full samples were measured, and M vs. H 

curves were plotted using Mpartial – 0.947Mfull (Fig. 4.4).  Remanent magnetization 

measurements were also performed (Fig. 4.13) and are discussed in section 4.9.  The M 

vs. H curves for the partial and full samples are included in Appendix E (Fig. E.2).  The 

values for HEB and HC were taken from the fit using the procedure developed in section 

3.4.3, and are presented in the inset in Fig 4.4. 
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Figure 4.3: Switching procedure for Fig. 4.4 and Fig. 4.13 
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Figure 4.4: (Mpartial – 0.947 Mfull) vs. H after cooling from 300 K to 100 K in a -5 T field, 

from 100 K to 50 K in a 5 T field, and from 50 K to 5 K in a -5 T field, followed by 
measurement at 5 K, 50 K, and 100 K; inset HEB and HC vs. T from the fit for each curve. 

Mpartial and Mfull vs. H are in Appendix E, Fig. E.2.  
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 From the inset in Fig 4.4, we see that HEB changes twice sign during heating.  

This serves as further proof for the distribution of defect moment freezing temperatures.  

The defect moments which froze in the negative field direction between 50 K and 100 K 

dominate EB at 50 K because the defect moments which were frozen below 50 K have 

melted, thus causing HEB, 50 K < 0.  If the defect moments all had the same freezing 

temperature rather than a distribution of freezing temperatures, a maximum of one sign 

change of HEB would be possible, because the defects could dominate at low temperature 

and the lattice could dominate at high temperature, but it would be impossible to divide 

defect moments according to their freezing temperatures so that they would dominate EB 

in different directions at different temperatures. 

 

4.4: Third switching experiment: randomizing exchange biasing at low temperature 

The switching experiments in sections 4.2 and 4.3 demonstrate that switching 

may be used to “tune” the value HEB.  Other investigations in the literature have shown 

that EB tuning can be achieved by using different strengths of cooling fields11-15, and by 

preparing the sample with different remanent magnetizations at T > TN and then cooling 

in zero field16.  In this section, we demonstrate that switching can be used to “randomize” 

EB at low temperature.  In the M vs. H curve for a zero field cooled sample (Fig. 4.6), 

HEB = 0 is expected and observed.  We expect each NP to have non-zero HEB, since each 

NP has a non-zero moment about which the CoO lattice orients during cooling.  

However, in zero applied field, the distribution of the orientation of the moments above 

TB,Co is random, and this random distribution is frozen during zero field cooling, which 
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gives HEB = 0 for an ensemble of NPs.  We achieve a similar result through a switching 

procedure. 

We used the cooling procedure shown in Fig. 4.5.  The partial and full samples 

were cooled from 300 K to 100 K in a -5 T field.  At 100 K, the field was switched to +5 

T for one minute.  The field was then switched to zero, and cooling was resumed to 5 K.  

M vs. H was measured at 5 K, and then again after heating to 100 K.  For comparison, the 

samples were cooled from 300 K to 5 K in zero field and were measured at 5 K.  

Remanent magnetization measurements were also performed for the same cooling 

procedure (Fig. 4.14) in section 4.10.  As in section 4.2.1, M vs. H curves were plotted 

using Mpartial – 0.947Mfull (Fig. 4.6).  The M vs. H curves for the partial and full samples 

are included in Appendix E (Fig. E.3).  The values for HEB and HC were taken from the 

fit using the procedure developed in section 3.4.3, and are presented in the inset in Fig 

4.6. 
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Figure 4.5: Switching procedure for Fig. 4.6 and Fig 4.14 
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Figure 4.6: (Mpartial – 0.947 Mfull) vs. H after cooling from 300 K to 100 K in a -5 T field, 
then switching to 100 K for 1 minute and cooling to 5 K in zero field and measuring at 5 
K and 100 K; compared with zero field cooled curve measured at 5 K; inset: HEB and HC 

vs. T from the fit for each curve.  Mpartial and Mfull vs. H are in Appendix E, Fig. E.3. 
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 The overlap between the switched and the ZFC curves measured at 5 K is 

remarkable.  When the fitting procedure was applied to the switched curve, HEB,5K = 

-0.029 T and HC, 5K = 0.010 T were measured.  For the ZFC curve, HEB,5K = 0.0058 T and 

HC, 5K = 0.093 T were measured.  This value of HEB,5K serves as an estimate of the error in 

the fitting procedure.  At 5 K, HEB and HC for the switched and ZFC curves are quite 

similar.  The cooling procedure could be further optimized to achieve HEB even closer to 

zero; we expect that could be done by choosing a switching temperature slightly greater 

than 100 K, so that fewer defect moments would pin the core in the negative field 

direction. 

 After heating the switched sample to 100 K and measuring again, HEB,100K = -0.13 

T.  Therefore, at 100 K, the EB is no longer randomized.  A complete understanding of 

how the randomization occurs at 5 K but not at 100 K is lacking, but the following is a 

plausible explanation:  As the sample is cooled through 170 K, in each partial NP, the 

CoO lattice begins pinning the core in the negative field direction.  As each NP continues 

cooling to 100 K, some of the defect moments freeze and also pin the core into the 

negative field direction.  Upon switching at 100 K, the defect moments that are not frozen 

switch into the positive field direction.  After switching to zero field, some of these defect 

moments continue pinning in the positive direction, and they are frozen in that direction 

as they cool.  This process is not well understood because it requires the defect moments 

to have nonzero coercivity, and may be time-dependent.  After cooling to 5 K, the 

pinning effects of the lattice and defect moments in the negative field direction cancel out 

with the pinning effects of the defect moments in the positive field direction.  This 
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situation would be different from the ZFC case because in this explanation, each particle 

has HEB ≈ 0 T, but single NP measurements would be required to test this hypothesis. 

 When the sample is heated back up to 100 K, the defect moments that were 

pinned in the positive field direction have become paramagnetic, so but the lattice and 

defect moments that froze above 100 K continue pinning the core in the negative field 

direction.  We note that the same value of HEB,100K = -0.13 T was obtained using a similar 

switching procedure in section 4.2.2.  This agreement is expected, since both samples 

were cooled in a -5 T field from 300 K to 100 K.  When they are heated to 100 K and are 

measured, the memory of the different switching procedures below 100 K is erased. 

 

4.5: Fourth switching experiment: switching to or from zero field 

We observed in the first switching experiment (section 4.2.2) that HEB changes 

sign during heating if the cooling field is switched at 100 K.  In this section, we 

performed a similar experiment, in which the field was switched between 5 T and zero 

field, rather than between -5 T and 5 T. 

The partial and full samples were cooled in a 5 T field or zero field from 300 K to 

a 100 K, at which the field was switched to zero field or 5 T, and cooling was resumed to 

5 K.  This cooling procedure is depicted in Fig. 4.7.  After cooling, M vs. H (Fig. 4.8) 

and remanent magnetization measurements (Fig 4.15) were performed at 5 K.  As in 

section 4.2.1, M vs. H curves were plotted using Mpartial – 0.947Mfull (Fig. 4.8).  The M vs. 

H curves for the partial and full samples are included in Appendix E (Fig. E.4). 

  The values for HEB and HC were taken from the fit using the procedure 

developed in section 3.4.3.  For cooling to 100 K in a 5 T field and then cooling to 5 K in 
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zero field (black curve in Fig. 4.8), HEB,5T,ZFC = 0.41 T and HC,5T,ZFC = 0.16 T.  For zero 

field cooling to 100 K and then cooling in a 5 T field (red curve in Fig. 4.8), HEB,ZFC,5T = 

0.50 T and HC,ZFC,5T = 0.23 T.  These values are consistent with our expectation that the 

HEB and HC generated by freezing the defects below 100 K should be greater than those 

generated by freezing the lattice and the defect moments that freeze above 100 K. 

We compare the case of zero field cooling to 100 K and then cooling in a 5 T field 

with that of the first switching experiment, in which the sample was cooled in -5 T field 

to 100 K and was then cooled in a 5 T field and measured at 5 K.  In the first switching 

experiment, HEB,switch100K = 0.36 T < HEB,ZFC,5T.  This is expected because in the first 

switching experiment, the lattice and defect moments generate EB in the negative field 

direction, which must be overcome by the 5 T field applied below 100 K. 

The case of cooling in a 5 T field and then switching to zero field is similar to the 

third experiment (section 4.4), except the initial cooling fields are in opposite directions, 

and the in third experiment, the samples were switched to 5 T for 1 minute before 

switching to zero field.  The additional switch to 5 T for 1 minute is significant because 

that curve in (Fig. 4.6) closely resembles the zero field cooled curve and has HEB near to 

zero, but the curve corresponding to cooling in a 5 T field (black curve in Fig. 4.8) and 

then switching to zero field still has large HEB and little resemblance to the zero field 

cooled curve.
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Figure 4.7: Switching procedure for Fig. 4.8 
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Figure 4.8: (Mpartial – 0.947 Mfull) vs. H after cooling from 300 K to 100 K in a 5 T field 
(black) or zero field (red), then cooling from 100 K to 5 K in zero field (black) or a 5 T 

field (red).  Mpartial and Mfull vs. H are in Appendix E, Fig. E.4.  
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4.6: Discussion of coercivity 

 In the first and third switching experiments (sections 4.2 and 4.4, respectively) 

HEB can be tuned to values which are near to zero.  We compare the M vs. H 

measurements at 5 K of switching at 50 K in the first switching experiment with those in 

the third experiment.   In the first experiment, HC, switch 50K = 0.22 T > HC, third experiment = 

0.10 T.  Although HEB is reduced in both cases, the coercivities and the shapes of the 

curves differ substantially.  In the first experiment for switching at 50 K, two relatively 

symmetric lobes appear, and the curve in the third experiment has smaller, symmetric 

lobes. 

 In both examples, the effects of EB due to the lattice and defect moments that 

freeze above the switching temperature nearly cancel out with the EB generated by the 

defect moments that freeze below the switching temperature.  However, in the first 

experiment, switching occurs at a lower temperature (50 K, rather than 100 K).  

Therefore, the EB generated by the lattice and defect moments that freeze above the 

freezing temperature should be greater in the first experiment.  Here, “greater” means 

there are more uncompensated spins at the Co/CoO interface that give rise to EB in the 

negative field direction due to cooling above the switching temperature.  We similarly 

expect the EB generated by the defect moments below the switching temperature in the 

first experiment to be greater than in the third experiment, since those in the first 

experiment were cooled in a 5 T field rather than zero field.  Thus, the magnitudes of two 

uncompensated magnetizations at the Co/CoO interface that nearly cancel out in the first 

experiment are greater than those which nearly cancel out in the third experiment. 
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A reasonable explanation for the coercivity enhancement in the first experiment 

which is not present in the third experiment is that although HC usually scales with HEB, 

this is not required.  HC has a greater enhancement from two opposing effects of greater 

magnitude that give rise to EB than from two smaller opposing effects13.  This 

explanation also explains why HC for the ZFC sample is smaller than for a FC sample.  

The partial NPs in the first and third switching experiments exhibit EB.  However, we 

expect that the 5 T cooling field from 50 K to 5 K generates a greater uncompensated 

magnetization at the interface than that generated by the remanent magnetization in the 

third experiment.  Although the magnetic field on the surface of a Co NP is 1.2 T (see 

Appendix B), the shape of the magnetic dipole generated by a single NP might lead to 

less optimal coupling than cooling in a larger, uniform field. 

 

4.7: First switching experiment: thermal remanent magnetization 

We now consider the first switching experiment (section 4.2) from a different 

perspective.  The switching procedure in Fig 4.1 was used for cooling from 300 K to 5 K 

for a variety of switching temperatures.  After cooling, the field was switched off, and the 

remanent magnetization was measured during heating.  The results for this switching 

experiment are shown for each sample in Fig. 4.9.  In the thermal remanent 

magnetization (TRM) measurement, the sample was cooled from 300 K to 5 K in a 

constant 5 T field. 

The data for the native sample (Fig. 4.9a) show that switching has no effect on 

the magnetization curve.  The CoO shell on this sample is too thin to cause EB, and the 
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sample only “remembers” that it was switched to a 5 T field at some temperature before it 

was cooled to 5 K. 

The measurements of the full sample (Fig. 4.9c) have a rise at low temperature, 

which is similar to the rise in the temperature-dependent magnetization curve (Fig. 3.9c).  

These switching experiments show that the defect moments have a distribution of 

freezing and melting temperatures.  When the sample is heated, the magnetization 

decreases as defect moments which were frozen in the positive field direction melt.  At 5-

10 K above the switching temperature, the defect moments which were frozen in the 

negative field direction begin to melt, and the magnetization increases to zero. 

The measurements of the partial sample (Fig. 4.9b) are similar to those of the full 

sample, except the effects of EB on the magnetization of the core are also observed.  The 

total magnetization is higher because of the contribution of the Co core.  We note that 

MTRM,partial,5K = 5.6 emu/g, and MTRM,full,5K = 0.85 emu/g.  Therefore, about 5 emu/g of the 

magnetization in the partial sample is due to the cores.  We attribute the low temperature 

cusp in the TRM for the partial sample to the magnetization of the defect moments in the 

shell, since the cusp is about 1 emu/g high and is consistent with the steep rise observed 

at low temperature in Fig. 4.9c. 

The same qualitative trend is observed in the partial sample as in the full sample:  

As the sample is heated, the magnetization decreases to a minimum at a temperature 

which is greater than the switching temperature, and then the magnetization increases 

towards zero.  The physical explanation of the defect moments freezing and melting is 

the same, but in the partial sample, the defects interact with the core.  As the sample is 

heated from 5 K, the defect moments melt, which leads to a reduction in the EB, and the 
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core magnetization decreases too.  When a temperature 5-10 K above the switching 

temperature is reached, the defect moments that pinned the core in the positive field 

direction have melted, but defect moments with higher melting temperatures are still 

frozen and pin the core in the negative field direction.  However, the minimum in the 

magnetization occurs at a temperature which is 20-40 K higher than the switching 

temperature.  This additional temperature delay for reversing the orientation of the core 

moment may mean that slightly more thermal energy is necessary for it to change 

orientations as the pinning caused by the defects in the shell changes.  After the minimum 

magnetization has been reached, EB decreases with increasing temperature, and the 

magnetization increases to zero. 
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Figure 4.9: TRM and remanent magnetization after cooling from 300 K in a -5 T field, 
followed by switching to 5 T at a variety of temperatures for (a) native, (b) partial, and 

 (c) full oxidation.  The vertical black bars indicate the switching temperatures. 
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 The TRM curve for the full sample is a measure of the total number of frozen 

defect moments at a particular temperature.  The derivative, -dM/dT of the TRM curves 

therefore gives the distribution of defect moments’ melting temperatures.  This derivative 

plotted in Fig. 4.10 for each sample.  In each plot, the ZFC M vs. T curve measured in 

0.01 T field is also plotted (same as in Fig. 3.9), to which -dM/dT has been scaled by 

multiplying by scaling factors of 3.39 for the partial sample and 3.63 for the full sample.  

The scaling factor 21.0 was used for the native sample, but the maxima do not occur at 5 

K for both the ZFC M vs. T and the derivative of the TRM curves for the native sample, 

as they do for the partial and full samples. 

 The overlap between the two curves for the full sample in Fig. 4.10c is 

remarkable and unexpected.  (Additional measurements of the ZFC M vs. T were taken 

down to 2.5 K, and the overlap breaks down below 5 K.  These data are presented and 

discussed in section 4.16.)  The measurements are fundamentally different.  The TRM 

measurement involves cooling in a large field and measuring in zero field, and the ZFC 

M vs. T is cooled in zero field and measured in a small field.  The derivative of the TRM 

measurement could be reconciled with the ZFC M vs. T curve if, in that measurement, 

each defect moment were to orient in the field when it melted, but then became 

paramagnetic and quickly decayed to zero magnetization at a slightly higher temperature, 

thereby causing the ZFC M vs. T curve to give a distribution of the defect moments’ 

melting temperatures.  That physical description is incompatible with the Curie-Weiss 

Law (and the analysis performed in section 3.4.2), however, which assumes a constant 

melting temperature. 
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Figure 4.10: Scaled -dMTRM/dT and ZFC M vs. T, measured in 0.01 T field 

 for (a) native, (b) partial, and (c) full oxidation. 
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Even if the Curie-Weiss analysis is invalid, another way of calculating a lower 

bound on the moment of the defects is from the TRM data for pure CoO (Fig. 4.9c) at 5 

K.  Their total magnetization of 0.85 emu/g at 5 K corresponds to a moment of 290 µB 

per NP (calculation in Appendix F) – which is consistent with the value from the Curie-

Weiss analysis. 

The scaling factors used to scale -dM/dT of the TRM curve to the ZFC M vs. T 

curves for the partial and full samples are quite similar.  The overlap between those 

curves for the partial sample (Fig. 4.10b) is also good at low temperature, as would be 

expected, since that low temperature rise has the same physical origin as for the full 

sample.  However, at higher temperatures, the peaks in the ZFC M vs. T curves that 

correspond to the blocking behavior of the core in Figs. 4.10a-b have little, if any, 

overlap with derivative of the TRM curve.  The overlap of these curves that was due to 

the melting behavior of the defect moments at low temperature does not apply to the 

blocking behavior of the core, and there are differences in the physical mechanisms that 

give rise to that part of each curve. 

The remanent magnetization curve for the full sample with switching at 100 K 

nearly overlaps the TRM curve (Fig. 4.9c).  This (along with Fig. 4.10c) indicates that 

most of the defect moments have melting temperatures below 100 K.  However, the TRM 

curve and the curve for switching at 100 K for the partial sample (Fig. 4.9b) are rather 

different, and significant EB is observed in the M vs. H curves at 100 K.  Even though 

most of the defect moments have melted at 100 K, there is still significant EB due the 

remaining frozen defect moments and the CoO lattice. 
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4.8: Fifth switching experiment: memory effect of repeated switching during cooling 

In the switching experiment in the previous section, we showed that the switching 

during cooling causes a minimum in the remanent magnetization curve for the partial and 

full samples.  In order to test the precision with which the switching procedure could be 

“remembered” during heating, we switched the magnetization between ±5 T at regular 

temperature intervals of 10 K, 20 K, and 40 K during cooling, as shown schematically in 

Fig. 4.11.  The last switching event was chosen in each case so that the sample would be 

in a 5 T field at 5 K. 

The results of this switching experiment show that the full sample (Fig 4.12b) 

remembers the switching with a high precision, since individual peaks are observed even 

with a switching interval of 10 K.  The partial sample (Fig 4.12a) shows individual peaks 

when the switching interval is 20 K and some oscillations that are not as well resolved 

when the interval is 10 K.  This limitation is probably due to the interaction of the core 

and the shell and the increase in temperature above the switching temperature that is 

needed for the core to reorient into the new pinning environment created by the defects. 
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Figure 4.11: Switching procedure 
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Figure 4.12: TRM and remanent magnetization after cooling from 300 K in a ±5 T field, 
which was switched at intervals of 10 K, 20 K, or 40 K during cooling for (a) partial and 
 (b) full oxidation; inset is an expansion of the low temperature region for the full sample. 
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4.9: Second switching experiment: thermal remanent magnetization 

We now consider the remanent magnetization for the second switching 

experiment.  The partial and full samples were cooled from 300 K to 100 K in a 5 T field.  

At 100 K, the field was switched to -5 T, and cooling was resumed to 50 K, at which the 

field was switched to 5 T, and cooling was continued to 5 K, as depicted in Fig. 4.4.  The 

remanent magnetization, which was measured during heating in zero field, is plotted in 

Fig. 4.13. 

The curve for the full sample (Fig. 4.13b) has peaks near 50 K and 100 K, which 

are consistent with the observations for switching once in Fig. 4.9c.  Similarly, the curve 

for the partial sample (Fig. 4.13a) has peaks near 70 K and 120 K, since slightly greater 

temperature is needed in order to begin reorienting the cores, which we discussed in 

section 4.7.  Although the peak in Fig. 4.13b at 100 K is very small, the corresponding 

peak in Fig. 4.13a is much larger, which is likely due to EB generated by the CoO lattice, 

since most of the defect moments have melted at 100 K. 
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Figure 4.13: Remanent magnetization after cooling from 300 K to 100 K 
 in a -5 T field, from 100 K to 50 K in a 5 T field, and from 50 K to 5 K 

 in a -5 T field for (a) partial and (b) full oxidation 
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4.10: Third switching experiment: thermal remanent magnetization 

We now consider remanent magnetization measurements which use a cooling 

procedure similar to the one shown in Fig. 4.5.  Two new experiments were performed on 

the native, partial, and full samples using a variety of switching temperatures.  The 

experiments performed on the native sample (Fig. 4.14a) were slightly different from 

those performed on the partial (Fig. 4.14b) and full (Fig. 4.14c) samples.  In the first new 

experiment, the native sample was cooled from 300 K to a switching temperature in a 5 T 

field.  At the switching temperature, the field was switched to zero, and cooling was 

resumed to 5 K.  In the second new experiment, the native sample was cooled from 300 

K to a switching temperature in a -5 T field.  At the switching temperature, the field was 

switched to 5 T for 1 minute, and then to zero field before cooling to 5 K was resumed. 

For the partial and full samples, in both experiments, each sample was cooled 

from 300 K to a switching temperature in a 5 T field.  At the switching temperature, the 

field was switched to zero, and cooling was resumed to 5 K.  In the first new experiment, 

the field was switched directly from 5 T to zero field at the switching temperature.  In the 

second new experiment, the field was switched from 5 T to -5 T for one minute and then 

to zero field before resuming cooling. 

Curves that were cooled in a ±5 T field to the switching temperature and then in 

the opposite field are shown in Fig. 4.14 for comparison.  (These curves are the same 

curves as shown in Fig. 4.9, except those for the partial and full samples are inverted 

about the field-axis.)  TRM curves with constant 5 T field cooling are also shown in Fig. 

4.14. 

 

 104 



 

T (K)

0 50 100 150 200 250 300

M
 (e

m
u/

g)

0.0

0.2

0.4

0.6

0.8

TRM
5 T cool to 25 K, then ZFC
5 T cool to 25 K, switch to -5 T for 1 min., then ZFC
5 T cool to 25 K, then -5 T field cool
5 T cool to 50 K, then ZFC
5 T cool to 50 K, switch to -5 T for 1 min., then ZFC
5 T cool to 50 K, then -5 T field cool
5 T cool to 100 K, then ZFC
5 T cool to 100 K, switch to -5 T for 1 min., then ZFC
5 T cool to 100 K, then -5 T field cool

M
 (e

m
u/

g)

0

1

2

3

4

5
TRM
5 T cool to 25 K, then ZFC
5 T cool to 25 K, switch to -5 T for 1 min.,
then ZFC
5 T cool to 25 K, then -5 T field cool
5 T cool to 50 K, then ZFC
5 T cool to 75 K, then ZFC
5 T cool to 100 K, then ZFC
5 T cool to 100 K, switch to -5 T for 1 min.,
then ZFC
5 T cool to 100 K, then -5 T field cool

M
 (e

m
u/

g)

0

10

20

30

40

50

60

TRM
5 T cool to 25 K, then ZFC
-5 T cool to 25 K, switch to 5 T for 1 min.,
then ZFC
-5 T cool to 25 K, then 5 T field cool
5 T cool to 50 K, then ZFC
-5 T cool to 50 K, switch to 5 T for 1 min.,
then ZFC
-5 T cool to 50 K, then 5 T field cool
5 T cool to 100 K, then ZFC
-5 T cool to 100 K, switch to 5 T for 1 min.,
then ZFC
-5 T cool to 100 K, then 5 T field cool

(a) native

(b) partial

(c) full

 
 
 
 
 
 
 
 
 
 
 
Figure 4.14:  
TRM and 
remanent 
magnetization 
after cooling 
from 300 K in a 
±5 T field to a 
switching 
temperature, at 
which the field 
was switched 
either to zero 
field, to ±5 T 
for one minute 
and then to zero 
field, or to ±5 
T, and then 
cooling to 5 K 
for (a) native, 
(b) partial, and 
(c) full 
oxidation. 
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The results for the native sample (Fig. 4.14a) are generally consistent with 

expectations.  For the cooling procedures in which the field was switched to zero field, 

the magnetization remains nearly constant at the remanent magnetization from the last 

switching event to a 5 T field prior to switching to zero field and resuming cooling.  The 

data with switching at 50 K have been reproduced, and it is not clear why the two curves 

with zero field cooling below 50 K do not overlap more closely. 

The results for the full sample (Fig. 4.14c) for these experiments in which we 

switched to zero field (black and red curves) at the switching temperature are similar to 

the results for the native sample: below the switching temperature, the magnetization is 

roughly constant at the remanent magnetization of the switching temperature.  However, 

in the full sample, the remanent magnetization is determined primarily by the original 

cooling field of 5 T, rather than the field from the last switching event (which was 5 T for 

the native sample and -5 T for the partial and full samples).  The reason for this 

difference is because the magnetization in the full sample is from defect moments in the 

CoO which freeze in the initial cooling field and maintain their orientation even after a 

field in the opposite direction is applied at a lower temperature. 

In the full sample, there are differences between the curves with and without the 

switch to -5 T for 1 minute before switching to zero field and resuming cooling.  The 

remanent magnetization is lower in the experiment with the 1 minute switch to -5 T.  

That suggests that some of the defect moments are reoriented and frozen into the negative 

field direction.  There is a bifurcation in these two curves at about 10 K above the 

switching temperature for switching at 25 K and 50 K.  (The signal in the 100 K curves is 

too low to identify such a point.)  Based on this shift of 10 K above the switching 
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temperature, and a similar observation in section 4.7 of a 5-10 K delay in the minima in 

Fig. 4.9c, a plausible explanation is that the defect moments within 5-10 K of the 

switching temperature are not yet fully frozen and may be switched in an applied field.  If 

the defect moments are not quickly frozen after switching, there may be some time 

dependence in the decay of their magnetization after switching to zero field. 

 The partial sample (Fig. 4.14b) shows similar behavior to the full sample, except 

the magnetization of the Co core and its coupling to the CoO shell through EB are also 

observed.  The bifurcation between the (black and red) curves with switching to zero 

field at 25 K and 100 K occurs at approximately 70 K above the switching temperature.  

As was discussed in section 4.7, we attribute this temperature delay to the increased 

thermal energy which is needed to rotate the core orientation as the pinning caused by the 

defects in the shell changes.  This comparison between these two curves for the partial 

sample may also be thought of as an intermediate case between the native sample, in 

which the final field before switching to zero field primarily determines the remanent 

field, and the full sample, in which the initial field during cooling before switching 

primarily determines the remanent field. 

The curves for the partial sample with switching to zero field have cusps at 5-10 

K above the switching temperature.  Those that were not switched to -5 T for 1 minute 

merge into the TRM curve at this temperature.  Those which were switched to -5 T for 1 

minute before zero field cooling (red curves) merge in to the curves representing 

switching to and cooling in a -5 T field (green curves).  All other peaks observed in 

remanent magnetization data for the partial sample after switching during cooling are 

broader, such as those in Fig. 4.9b.  These cusps show that when the sample is heated 
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after switching to zero field, a smaller delay in the temperature is needed to rotate the 

core orientation as the pinning environment of the defects in the shell changes.  The 

larger temperature delay is caused only when an opposing field has been applied in the 

switching procedure during cooling. 

 This last observation makes sense as follows:  When the cores are heated after 

zero field cooling, they are in the remanent magnetization state of the switching 

temperature.  Once the temperature at which the sample was switched to zero field is 

reached, the defect moments should quickly start to melt, and the magnetization curve 

should merge into that of the sample which was cooled in a field.  The cores do not have 

to as significantly reorient with zero field cooling as they would if the sample was 

switched into the opposite field. 

 In summary, there are two causes for the temperature delay in cusps or minima 

after the switching temperature in remanent magnetization experiments for the partial 

sample:  (1) The cores will have to unfreeze and rotate to track a more abrupt change in 

the defects in the shell.  (2) If the defect moments with freezing temperatures within 5-10 

K of the switching temperature may still be rotated in a large applied field during the 

switching event, then the switching event causes some cancellation of orientation of the 

defect moments that was achieved by the initial cooling field.  The switching affects not 

only the orientation of the defect moments that freeze below the freezing temperature, but 

it also affects those with freezing temperatures within 5-10 K above it.  (1) Applies only 

to the partial sample and to switching into an opposite field.  (2) Applies to all switching 

events in the partial and full samples. 
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 The data in Fig 4.14 also provide a greater understanding of the M vs. H curves 

for the third switching experiment (section 4.4).  The remanent magnetizations for the 

partial and full samples which were switched from 5 T to -5 T for 1 minute and then to 

zero field are both nearly zero.  This is consistent with the observation that the sample 

switched according to the procedure shown in Fig. 4.5 and measured at 5 K (Fig 4.6) had 

low HEB and good overlap with the zero field cooled curve.  The fourth switching 

experiment (section 4.5) showed that the switching event to the opposite field for 1 

minute is required in order to bring HEB to near zero and to cause good overlap with the 

zero field cooled curve.  The data for the partial curve in Fig. 4.14b also show a large 

difference in the remanent magnetizations of the curves which were switched to zero 

field at 100 K with and without the switch to -5 T for 1 minute beforehand.  However, the 

same curves for the full sample in Fig. 4.14c have nearly the same remanent 

magnetization, which is near to zero.  One might look at those two curves in Fig. 4.14c 

and incorrectly assume that the M vs. H curves corresponding to those cooling procedures 

would be similar, but we know from the M vs. H curves of the third and fourth switching 

experiments (sections 4.4 and 4.5) that the M vs. H curves differ greatly. 

 This last observation underscores an important point.  Thermal remanent 

magnetization measurements provide a wealth of information, but they allow only limited 

predictions about the M vs. H curves for the same cooling procedures.  A defect moment 

which maintains its remanent magnetization to a particular temperature may remain 

frozen with respect to thermal fluctuations, but a 5 T field may be sufficient to reorient it.  

(This appears to be the case for many of our switching experiments in the 5-10 K 

windows after the switching temperature.)  If a defect moment can be reoriented in a 5 T 
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field, then it is unable to pin the Co core and will not cause EB in an M vs. H loop which 

is swept out between ±5 T.  Thermal remanent magnetization measurements may guide 

our expectations, but the only way to know HEB for a given cooling procedure is to 

measure it from an M vs. H measurement. 

 

4.11: Fourth switching experiment: thermal remanent magnetization 

 We now consider remanent magnetization measurements of the fourth switching 

experiment (section 4.5).  Switching from an initial cooling field of 5 T to zero field was 

already performed in the previous section.  Here, we cooled the partial and full samples 

from 300 K to a variety of switching temperatures in zero field, switched to 5 T field, and 

resumed cooling (Fig. 4.15).  The “TRM” curves were cooled in a constant 5 T field and 

are shown in Fig. 4.15 for comparison. 

 The data for the full sample show what we would expect based on the discussion 

in the previous section – a decay to zero magnetization within 5-10 K of the switching 

temperature.  The data for the partial sample likewise decay to zero magnetization, but it 

occurs 30-50 K above the switching temperature, for the same reasons given in the 

previous section.  The curves for both samples with switching at 100 K have reduced 

magnetizations compared with cooling the samples from 300 K in a 5 T field, but this 

reduction is relatively small and is consistent with the large value of HEB which was 

observed for this switching procedure in section 4.5. 
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Figure 4.15: Remanent magnetization after cooling in zero field 

 from 300 K to a switching temperature, and then cooling 
 to 5 K in a 5 T field for (a) partial and (b) full oxidation 

 111



 
4.12: Sixth switching experiment: switching during heating 

  In the thermal remanent magnetization measurements in the previous sections, we 

have investigated the effects of switching the cooling field before starting the 

measurement.  We now study the effects of pausing the measurement at a particular 

temperature and applying a large field, then switching back to zero field and resuming the 

measurement.  The large field perturbs the system so that defect moments which are 

reoriented in the large field will be observed.  Only the defect moments that cannot be 

reoriented are able to generate EB17. 

 In the remanent magnetization curves plotted in Fig. 4.16, the partial and full 

samples were cooled from 300 K to 5 K in a 5 T field, which was then switched to zero 

field, and measurement proceeded as the temperature was increased.  At 50 K and 100 K, 

the measurement was paused and the field was cycled to -5 T for 1 minute, to 5 T for 1 

minute, to -5 T for 1 minute, and then back to zero field.  For some of the measurements, 

after this switching procedure, the temperature was held at 50 K and 100 K, and the 

magnetization was measured for 1 or 4 hours before increasing the temperature.  The 

purpose of this waiting time was to observe whether moments which were reoriented 

when the field was cycled would relax, and to observe how quickly this relaxation would 

occur.  The curves identified as “TRM” are included for reference and did not undergo 

this field cycling as the samples were heated. 
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Figure 4.16: TRM and remanent magnetization after cooling in zero field and switching 
to -5 T (1 min.), then 5 T (1 min.), then -5 T (1 min.), and then to zero field before 

resuming measurement at 50 K and 100 K for (a) partial and (b) full oxidation. 
Insets show greater detail of the same measurements. 
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 In the full sample (Fig. 4.16b), the curves with waiting times of 1 and 4 hours 

overlap.  This suggests that most of the relaxation occurs during the first hour.  After the 

cycling at 50 K, the magnetization increases, but not entirely back to the TRM curve.  

During cycling at 100 K, the magnetization increases nearly to its original value before 

cycling, but that may be misleading because the original value is close to zero 

magnetization.  When there is no waiting time before resuming the remanent 

magnetization measurement as the sample is heated, the magnetization curve merges into 

the curves for which there were 1 or 4 hour waiting times within 5-10 K of the cycling 

temperature.  This shows that the moments which relax during the 1 or 4 hour waiting 

intervals would relax much more quickly if the temperature were increased by 5-10 K. 

 Observations of the partial sample (Fig. 4.16a) are similar to those of the full 

sample with a few exceptions:  (1) The curves with 1 and 4 hour waiting times do not 

overlap quite as well as for the full sample, which indicates that relaxation occurs more 

slowly.  This is expected because the cores must also reorient as the defect moments relax 

after the field is cycled.  Most of the relaxation still takes place in the first hour, however.  

(2) After the field cycling, the remanent magnetization increases to a maximum value at 

20-30 K above the switching temperature, even though the magnetization of the defect 

moments continues decreasing (Fig. 4.16b).  We attribute this temperature delay in 

reaching the maximum magnetization to the increased thermal energy which is required 

to reorient the Co cores as the defects relax after field cycling. 
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4.13: Seventh switching experiment: switching during cooling and heating 

 The experiment from the previous section with the field cycling at 50 K and 100 

K during heating was repeated with a few modifications:  Rather than cooling in a 

constant 5 T field, the sample was cooled from 300 K to 75 K in a -5 T field, and then 

from 75 K to 5 K in a 5 T field.  At 50 K, the field was cycled as before, but at 100 K, the 

field was cycled to 5 T for 1 minute, to -5 T for 1 minute, to 5 T for 1 minute, and then to 

zero field, so that its final direction would oppose that of the initial cooling field at 100 

K.  The curves that are identified as “TRM” were cooled using the same procedure 

described here with the field switch at 75 K, but during heating, the field was not cycled 

at 50 K or 100 K. 

 The features in the results for the full sample (Fig. 4.17b) are the same as they 

were in the previous section (Fig 4.16b), except the TRM curve has a different shape, and 

the magnetization relaxes into the negative field direction at 100 K.  The features in the 

results for the partial sample (Fig. 4.17a) also closely resemble those from the previous 

section (Fig 4.16b).  Following the cycling at 50 K and 100 K, the magnetization 

approaches an extremum 20-30 K after the switching temperature, which is not present in 

the curve for the full sample. 

Although the results in this experiment largely replicate those in the previous 

section, the switching during cooling is significant, because it enables us to probe the 

relaxation behavior of EB generated by the defect moments in the CoO shell (field 

cycling at 50 K) separately from the relaxation behavior of CoO lattice and defect 

moments with higher melting temperatures (field cycling at 100 K).  The relaxation 

behavior in both regions for both samples has the same qualitative features. 
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Figure 4.17: TRM and remanent magnetization after cooling in from 300 K to 75 K 
 in a -5 T field, and then switching to 5 T and cooling to 5 K.   During heating, at 50 K 
the field was switched to -5 T (1 min.), then 5 T (1 min.), then -5 T (1 min.), and then 

 to zero field before resuming measurements.  At 100 K, the field was switched to  
5 T (1 min.), then -5 T (1 min.), then 5 T (1 min.), and then to zero field before  

resuming measurement for (a) partial and (b) full oxidation. 
  Insets show greater detail of the same measurements. 
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4.14: Thermal remanent magnetization: cooling field dependence 

 For all of the experiments in this chapter, fields of ±5 T and zero field have been 

applied.  In this section, we investigate the cooling field dependence of the defect 

moments in the full sample by applying fields of 0.1 T, 1 T, and 5 T during cooling from 

300 K to 5 K, and by measuring the thermal remanent magnetization during heating (Fig. 

4.18). 
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Figure 4.18: TRM of full sample in different cooing fields: 0.1 T, 1 T, and 5 T 
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The results are unusual:  A large cooling field is required to orient most of the 

defects during cooling.  In the remanent magnetization measurements in the previous 

sections, we have investigated how the defects moments relax to zero magnetization 

within 5-10 K of their melting.  One might expect that such defect moments could be 

aligned in a small field, but this experiment shows that a large field is required to orient 

most of them.  Further investigation would be required to understand why such a large 

field is needed to orient most of the defect moments.  One possible explanation for this 

phenomenon is that if the full NPs have a large amount of lattice strain, the lattice strain 

could help the defect moments relax after melting via magnetoelastic coupling, but a 

large field would be required to overcome the lattice strain and to orient the defect 

moments.  A similar additional mechanism would be plausible in the partial sample, since 

the EB coupling between the Co core and the CoO shell lattice and defects probably 

produces a large amount of lattice strain. 

 

4.15: Magnetic training effect 

 EB requires the moments in the AFM which pin the FM to be stable during the 

switching of large fields when M vs. H curves are measured17.  If the M vs. H curve is 

measured repeatedly, it has been observed experimentally that HEB decreases during each 

successive measurement cycle.  The physical basis for this decrease is that some of the 

moments which pin the FM are not stable to multiple field inversion cycles8.  According 

to the DS model of EB, the domain structure in the AFM may adapt a more energetically 

favorable state, in which the pinning is reduced4, 5.  The field cycling of successive 

measurements can help the domain structure overcome kinetic barriers in this relaxation 
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process.  The magnetic training effect has been observed previously for other 

Co(core)/CoO(shell) NPs18, as well as for Fe(core)/γ-Fe2O3(shell) NPs19. 

 In Fig. 4.19, results for measurements of the magnetic training effect on the 

partial sample are presented.  The sample was cooled in a 5 T field from 300 K to 5 K, 

and then the first M vs. H curve was measured during the first cycle.  During the second 

cycle, the second M vs. H curve was measured.  In order to obtain data for many cycles 

with limited instrument time, additional cycles between those during which an M vs. H 

curve was measured were added by switching the field from 5 T to -5 T and then back to 

5 T for each additional cycle. 
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Figure 4.19: Repeated M vs. H curves of the partial sample after cooling 
in a 5 T field.  The first, second, 6th and 30th curve are shown. 

The inset shows the region of the curves near to zero field. 
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 The results show that most of the change in the M vs. H curve and thereby in the 

EB occurs during the first cycle.  There is a smaller amount of change between the 

second and 6th cycles, and an even smaller amount between the 6th and 30th cycles.  This 

appears to suggest that after infinite cycling, EB would still be present, and that the curve 

after infinite cycling may not look that different from after 30 cycles.  If, on the other 

hand, there is still a small reduction in the EB during each cycle, then the curve could 

potentially relax to a case with no EB after infinite cycling. 

 The magnetic training effect has important ramifications on the suitability of 

exchange biased NPs for use in magnetic recording.  Further investigation would be 

required in order to determine whether the magnetic training effect precludes the use of 

exchange biased NPs in magnetic recording, but this result is promising because of the 

small and decreasing amount of change in the M vs. H curve with each additional cycle, 

especially between the 6th and 30th cycles. 

 

 4.16: Conclusions and data to 2.5 K 

In this chapter, we performed experiments in which switching the cooling field 

enables tuning of HEB and HC.  These switching experiments have shown that EB 

generated by stoichiometric and crystallographic defect moments in CoO at low 

temperatures dominates the EB which is generated by the CoO lattice.  This is quite 

remarkable that such a small number of defect moments in each NP can control its 

magnetic properties.  Using switching experiments, we have studied the magnetic 

properties of these defect moments and the consequences that changes in the defect 

moments have on the EB of the Co core in the partially oxidized sample. 
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 However, a recent paper20 briefly report results of EB in ε-Co NPs which differ 

significantly from our data.  They observed a peak at 8 K in their ZFC M vs. T 

measurement of their fully oxidized sample, which corresponds to the rise in the same 

measurement of our fully oxidized sample.  The lowest temperature in our data thus far is 

5 K.  We hypothesized that the low temperature rise in our ZFC M vs. T measurement 

would continue increasing with decreasing temperature.  In order to test this hypothesis, 

we took some additional data down to 2.5 K. 

 FC and ZFC M vs. T data were measured while heating the samples in a 0.01 T 

field (Fig. 4.20).  The gap in the data between 4.1 K and 4.6 K is due to an instrumental 

limitation of the SQUID magnetometer.  When the magnetometer switches between 4.1 

K and 4.6 K, it turns a vacuum off once the temperature is above the boiling point of 

liquid He.  That process causes the temperature to destabilize.  When the temperature is 

raised across the gap, it jumps to about 10 K before cooling stabilizing at 4.6 K.  This 

temperature jump causes an artifact in the ZFC data, unless the measurement procedure is 

modified to avoid it.  In order to take data without the artifact, the field was switched to 

zero while the temperature was raised from 4.1 K to 4.6 K.  After the temperature had 

stabilized at 4.6 K, the measuring field was turned back on, and the measurement 

continued. 
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Figure 4.20: Co NPs with (a) partial and (b) full oxidation: 

M vs. T: FC and ZFC, cooled to 2.5 K, measured in 0.01 T field. 
Insets show greater detail of the same measurements. 
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 The results are unexpected:  In the partial and full samples, we observed a peak in 

the ZFC M vs. T data at about 5 K.  The FC magnetization does not continue to rise as 

sharply below 5 K as above it.  As we discussed in section 4.7, the ZFC M vs. T data 

directly correspond to the distribution of defect moment melting temperatures.  The peak 

in the data indicates that the distribution has as maximum at 5 K. 

This result remains consistent with the rest of our analysis, except for one point of 

disagreement:  At low temperature but above 5 K, the ZFC M vs. T curve for the partial 

and full samples overlaps with the scaled derivative of the TRM data.  Initial TRM data 

taken to 2.5 K (but which are not shown here because of the artifact caused when going 

from 4.1 to 4.6 K) indicate that this correspondence does not continue at temperatures 

below 5 K. 
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Appendix E for Chapter 4 
 
Supplementary data 
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Figure E.1: (Additional data for Fig. 4.2) M vs. H after cooling from 300 K 
 in a -5 T field, followed by switching at 25 K, 50 K, or 100 K for 

 (a) partial oxidation and (b) full oxidation 
   

 125



H (T)

-4 -2 0 2 4

M
 (e

m
u/

g)

-20

-10

0

10

20

M
 (e

m
u/

g)

-30

-20

-10

0

10

20

30

measured at 5 K
measured at 50 K
measured at 100 K

(a) partial

(b) full

measured at 5 K
measured at 50 K
measured at 100 K

 
 

Figure E.2: (Additional data for Fig. 4.4) M vs. H after cooling 
 from 300 K to 100 K in a -5 T field, from 100 K to 50 K in a 5 T field, 

 and from 50 K to 5 K in a -5 T field, followed by measurement 
 at 5 K, 50 K, and 100 K for (a) partial oxidation and (b) full oxidation 

 

 126 



H (T)

-4 -2 0 2 4

M
 (e

m
u/

g)

-20

-10

0

10

20

M
 (e

m
u/

g)

-30

-20

-10

0

10

20

30

zero field cooled,
measured at 5 K
switched,
measured at 5 K
switched,
measured at 100 K

(a) partial

(b) full

zero field cooled,
measured at 5 K
switched,
measured at 5 K
switched,
measured at 100 K

 
 

Figure E.3: (Additional data for Fig. 4.6) M vs. H after cooling from 300 K to 100 K in a 
-5 T field, then switching to 100 K for 1 minute and cooling to 5 K in zero field and 

measuring at 5 K and 100 K; compared with zero field cooled curve measured at 5 K for 
(a) partial oxidation and (b) full oxidation 
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 Figure E.4: (Additional data for Fig. 4.8) M vs. H after cooling from 300 K to 100 K in 
a 5 T field (black) or zero field (red), then cooling from 100 K to 5 K in zero field (black) 

or a 5 T field (red) for (a) partial oxidation and (b) full oxidation 
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Appendix F for Chapter 4 

Conversion of thermal remanent magnetization to moment per 

particle 

 

 The details of a calculation which is used in section 4.7 are shown here.  The 

densities of Co and CoO are δCo = 8.92 g/cm3 and δCoO = 6.44 g/cm3.  We convert the 

TRM magnetization of the full sample at 5 K to emu per unit volume of full NPs and then 

convert to SI units and to Bohr magnetons: 
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⎛   (Eq. F.1) 

 

For this calculation, we also need the full NP volume, Vfull, which is the volume of 

CoO material excluding the hollow core.  We calculate this volume from the native NP 

core and shell volumes (VCo,native and VCoO,native, respectively) using Eq. F.2, which 

assumes that the number of Co atoms per NP was preserved during oxidation: 

fullCoOnativeCoOCoOnativeCoCo VVV δδδ =+ ,,     (Eq. F.2) 

We obtain Vfull = 4.86 x 10-25 m3.  Therefore, the moment per fully oxidized NP is 285 µB. 
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Chapter 5 

Iron oxide nanoparticles and their incorporation into silica 

microspheres with quantum dots 

 

5.1: Introduction 

 The ferrimagnetic iron oxides, γ-Fe2O3 (maghemite) and Fe3O4 (magnetite), are 

attractive for use in biological applications because they are already oxidized and are 

stable in air and water, unlike Fe or Co.  Recently a number of procedures for preparing 

monodisperse iron oxide NPs with a variety of sizes have been reported 1-5.  In this 

chapter, we report our preparation and characterization of γ-Fe2O3 NPs by following one 

of these methods3.  After a discussion of the magnetic characterization, we report initial 

results for incorporating them into SiO2 microspheres along with 

CdSe(core)/CdZnS(shell) QDs.  Such composite materials have potential applications in 

separations, as beads for use in magnetic tweezers6, and as magnetic resonance imaging 

contrast enhancement agents.  We report preliminary results for manipulating these 

magnetic, highly luminescent microspheres on a microelectromagnetic device. 

 

5.2: Chemistry and characterization of γ-Fe2O3 nanoparticles 

5.2.1: Preparation 

 γ-Fe2O3 NPs of diameter 10 nm were prepared according to the method reported 

by Teng, et al3, with one exception: 300 µL of Fe(CO)5 was added to 2.2 mL of oleic acid 

in 15 mL of dioctyl ether at 100 °C.  The temperature was increased at a rate of 2 °C per 
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minute to a final temperature of 275 °C, at which it was held constant for 2.5 hours.  

After cooling to room temperature, 0.25g of (CH3)3NO was added as an oxidizing agent.  

We chose a shorter oxidation time than Teng, et al used before raising the temperature to 

275 °C: The mixture was heated from room temperature to 275 °C at a rate of 6.7°C per 

minute, and then the temperature was held at 275 °C for 15 minutes before cooling.  The 

NP size can be varied by changing the duration of heating at 275 °C prior to addition of 

(CH3)3NO. 

After cooling, the NPs were processed for storage by first adding ethanol as a 

non-solvent to precipitate them.  After centrifuging, the supernatant was discarded, and 

the NPs were redispersed in hexanes.  This solution was centrifuged, and any solids were 

discarded.  The NPs were precipitated again by addition of more ethanol.  After 

centrifuging and discarding the supernatant, the NPs were redispersed and stored in THF. 

 

5.2.2: Transmission electron microscopy 

 Low resolution (Fig. 5.1) and high resolution (Fig. 5.2) TEM images of the 

sample show that the sample is quite monodisperse.  We did not measure an average 

diameter from TEM, but we estimate that it is about 10 nm.  Both TEM images show that 

the NPs are faceted.  Fig. 5.2 shows that each NP is single-crystalline. 
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Fig. 5.1: TEM micrograph of γ-Fe2O3 NPs 
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Fig. 5.2: HRTEM micrograph of γ-Fe2O3 NPs 
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5.2.3: Magnetic properties 

 For the magnetic measurements, three samples were prepared from the same 

batch of NPs for which the TEM is shown in Figs. 5.1 and 5.2.  Polymer sticks of the γ-

Fe2O3 NPs were prepared using the same procedure that is described for Co NPs in 

section 3.2.2.  A “precipitated” sample was prepared by removing the THF under vacuum 

and measuring the resulting powder.  In order to prepare another sample with a higher 

packing density, ethanol was added to a concentrated solution of the NPs in THF, and 

they were sonicated and then centrifuged.  The ethanol caused the NPs to precipitate and 

also removed some of their ligands.  After centrifuging, the powder was dried.  We call 

this the “rinsed and precipitated” sample and expect it to have a higher packing 

concentration because fewer ligand molecules are present to dilute the γ-Fe2O3 cores. 

 SQUID measurements of the zero field cooled M vs. T curve measured with 0.01 

T applied field are shown in Fig. 5.3 for each sample.  The blocking temperatures are 80 

K, 130 K, and 155 K.  This trend of increasing TB as the packing density of magnetic NPs 

increases has been observed previously7, 8.  As the packing density increases, the dipolar 

coupling between NPs grows.  This interaction energy must be overcome by thermal 

energy in order for the NPs to become superparamagnetic.  Therefore, the denser the 

packing, the higher the thermal energy must be in order to overcome the dipolar coupling, 

which causes TB to increase. 
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Fig 5.3: Zero field cooled M vs. T measured in a 0.01 T 
 field for γ-Fe2O3 NPs of different packing densities 
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Fig 5.4: M vs. H at 5 K after cooling from 300 K in a 5 T field for 
 γ-Fe2O3 NPs of different packing densities.  The inset shows 

greater detail of the same measurements. 
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 Measurements of M vs. H at 5 K after cooling from 300 K in a 5 T field are 

shown for each sample in Fig. 5.4.  In order to calibrate the magnetization scale, a piece 

of the polymer was sent out for elemental analysis by Galbraith Laboratories, Inc., using 

inductively coupled plasma – optical emission spectroscopy.  The magnetizations of the 

precipitated samples were scaled to have the same saturation magnetization as the 

polymer sample of 67.5 emu/g, which is 91% of the bulk value of 74 emu/g9.  The slight 

reduction in the saturation magnetization could be attributed to many sources.  It is 

mostly likely caused by the NP surface, possibly by the quenching of the surface 

moments10, or by the existence of a different iron oxide phase on the NP surface. 

 Additional evidence for the presence of a small amount of another form of iron or 

iron oxide is that the samples exhibit a small HEB, which is shown in Table 5.1 along 

with HC.  Because iron has many oxides (see Table 2.1), it is rather plausible that an 

impurity of another oxide could generate the small EB observed here2. 

 

Sample HEB (T) HC (T) 
dilute in polymer 0.0075 0.0451 
precipitated 0.0080 0.0467 
rinsed and precipitated 0.0082 0.0478 

 

Table 5.1: HEB and HC for γ-Fe2O3 NPs of different packing densities 

 

5.2.4: Discussion of coercivity 

 Table 5.1 shows that HC is rather insensitive to the NP packing density, but it 

increases slightly as the packing density increases.  In work done by Gross, et al8, they 

report that HC for precipitated Co NPs is 30% of its value for dilute particles, which is a 
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rather different result.  The discrepancy between our data and theirs suggests that a 

complete understanding of the behavior of HC in highly concentrated NPs is lacking.  In 

our work, we cooled the sample in a 5 T field for the M vs. H measurements, which 

enabled us to observe EB.  However, EB also causes HC to increase.  The increase in our 

case is probably minimal, because the EB is quite weak, but it would be better to use NPs 

that exhibit no EB, so that EB would be eliminated as a variable in the experiment.  The 

Gross, et al work is subject the same difficulty, however, since their Co NPs may have a 

CoO shell, which could give rise to greater EB than is observed here. 

 In section 2.2.3, we discussed how HC depends on NP size and the domain 

structure.  In a powder of precipitated NPs, HC should also depend on the domain 

structure in the powder.  Although there have been some investigations into the domain 

structure of coupled NPs11, more experimental work and simulations are needed to fully 

understand how NPs form domains.  We expect the process of domain formation to be 

quite different in NP powders than in continuous crystals because the ligands quench the 

exchange interaction between NPs.  Therefore, dipolar interactions should dominate.  

Local variations in the relative crystallographic orientations of adjacent particles would 

also be important in determining the domain structure, since the NPs have 

magnetocrystalline anisotropy. 

 

5.3: Incorporation of γ-Fe2O3 nanoparticles into SiO2 microspheres with quantum 

dots  

(The work in this section was done in collaboration with Numpon Insin and John 

Zimmer.) 
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5.3.1: Background 

Composite nanomaterials containing optically and magnetically active 

components are desirable for many applications, particularly in biology and medicine.  

Chan and Zimmer, et al12 from our lab have developed expertise for incorporating CdSe 

QDs into SiO2 microspheres12.  We are in the process of extending their method to 

incorporate γ-Fe2O3 NPs into the same shell as CdSe QDs.  Such a composite material, 

especially with a total diameter of or below 100 nm, would be of interest for many 

applications. 

  

5.3.2: Preparing the nanoparticles for incorporation 

 High quality bare SiO2 microspheres are available commercially, or they may be 

prepared according to literature methods reported by Chan and Zimmer et al12.  Smaller 

bare SiO2 microspheres may be prepared according to other literature methods13.  The 

incorporation method of Chan and Zimmer et al12 requires that the NPs be made ethanol-

soluble through ligand exchange.  Since each type of NP has different surface chemistry, 

the ligands which bind to the NP surface and impart ethanol solubility may be different 

for each type of NP. 

 When an excess of 12-hydroxydodecanoic acid or 5-aminopentanol is added to a 

solution of the γ-Fe2O3 NPs in THF, and then the THF is removed by vacuum, the 

precipitate is dispersable in ethanol.  The quality of the dispersion depends on the 

concentrations of the ligand and NPs and whether the mixture was heated after adding 

ethanol to further promote the ligand exchange. 
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5.3.3: Incorporation 

 The method of incorporation is still under refinement for different sizes of NPs 

and SiO2 microspheres.  We describe a typical procedure here which consists of three 

steps: 

(1) Ligand exchange was performed to bring the γ-Fe2O3 NPs into ethanol: In a 

typical procedure, ethanol was added to the solution of γ-Fe2O3 NPs (of about 7.0 nm in 

diameter) in THF in order to precipitate them.  After centrifuging, the supernatant was 

discarded, and the NPs were dried under vacuum.  This powder, which had a mass of 6 

mg, was introduced into a nitrogen-atmosphere glovebox, in which 140 mg of a 50% (by 

mass) mixture of 5-aminopentanol (AP) and anhydrous ethanol and an additional 270 mg 

of anhydrous ethanol were added.  The mixture was heated at 40 0C until the NPs were 

well dispersed, after which 50 mg of 3-aminopropyltrimethoxysilane (APS) was added.  

The solution was then heated for another hour to ensure cap exchange with AP and APS.  

For larger sizes of γ-Fe2O3 NPs, more ethanol and AP were needed in order to redisperse 

the NPs in ethanol. 

 (2) The CdSe/CdZnS NPs were dispersed in ethanol using the technique of Chan 

and Zimmer, et al12:  In a typical procedure, 26 mg of CdSe/CdZnS NPs was mixed with 

195 mg of anhydrous ethanol, 29 mg of APS, and 54 mg of AP.  The mixture was then 

heated to 40 0C for about 1 hour, leading to the formation of a well-dispersed solution of 

CdSe/CdZnS NPs. 

 (3) The γ-Fe2O3 and CdSe/ZnS NPs were incorporated into the SiO2 shell 

simultaneously: In a typical procedure, 100 µL of γ-Fe2O3 NPs and 10 µL of 

CdSe/CdZnS NPs in ethanol (prepared as described above) were added to 30 mg bare 
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silica microspheres (of diameter 300 nm) and 16 mg of hydroxypropyl cellulose (average 

molecular weight Mw = 370,000) in 10 mL of ethanol while vigorously stirring, followed 

by the addition of 50 µL of H2O, 50 µL of NH4OH (28 wt.-% in H2O), and 0.15 mL 

tetraethoxysilane.  The mixture was stirred in an oil bath at 75 0C for 1 hour.  The 

SiO2(core)//SiO2,Fe2O3,CdSe/CdZnS(shell) microspheres were then purified by 

performing 3-5 cycles of centrifuging, discarding the supernatant, and redispersing the 

microspheres in 10 mL of ethanol. 

 

5.3.4: Characterization of the product 

 TEM images provide information about the SiO2 shell thickness, uniformity, and 

its roughness.  Fig. 5.5 is a typical TEM image of microspheres of 500 nm diameter 

containing γ-Fe2O3 (diameter of 15 nm) and CdSe/ZnS NPs in their shells.  Fig. 5.6 

shows an expanded region from near the middle of Fig. 5.5. 

 Figs. 5.5 and 5.6 show that most of the micrsospheres have smooth shells.  

Occasional unincorporated NPs and agglomerates of NPs are observable in the 

background on the substrate.  That suggests that the reaction conditions are not yet 

optimized, or that the NPs need to be better dispersed in ethanol before starting the 

reaction.  Moreover, the amount of NPs incorporated into each microsphere is not 

uniform.  The microsphere furthest to the right in Fig. 5.6 appears to have lower coverage 

of NPs than the one immediately to the left of it. 

 SQUID characterization is used to quantify the number of γ-Fe2O3 NPs per 

microsphere.  MS is measured for M vs. H curves of a dried microsphere powder of 

known mass.  The mass of each microsphere can be estimated based on the diameter in 
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TEM, and the moment of each γ-Fe2O3 NP can also be estimated from its diameter.  

However, the fraction of NPs which are unincorporated is unknown.  Therefore, the 

number of NPs per microsphere measured from MS is a high estimate and will not be 

meaningful until the portion of unincorporated NPs is reduced to a negligible level. 

 

 

 

Fig. 5.5: TEM micrograph of SiO2(core)//SiO2,Fe2O3,CdSe/CdZnS(shell) 
 microspheres of 500 nm diameter 
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Fig. 5.6: Expanded region of Fig. 5.5 

 
 
 
 

5.4: Trapping SiO2(core)//SiO2,Fe2O3,CdSe/CdZnS(shell) microspheres on a 

microelectromagnetic device  

(The work in this section was done in collaboration with Numpon Insin and with Hakho 

Lee in the Westervelt lab at Harvard.) 

Our collaborators at Harvard fabricate microelectromagnetic devices for the 

control and manipulation of magnetic NPs14.  The devices consist of arrays of Au wires 

which generate magnetic fields and field gradients when current runs through them.  

Micron-sized magnetic beads, tagged cells, and magnetotactic bacteria14-16 have been 

manipulated on these devices.  For biological tagging and micromaniupulation, much 

smaller magnetic tags are desirable.  However, particles smaller than the wavelength limit 
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for transmission mode optical microscopy also need to be functionalized with fluorescent 

tags for tracking their motion using fluorescence microscopy. 

Preliminary results show that our SiO2(core)//SiO2,Fe2O3,CdSe/CdZnS(shell) 

microspheres can be manipulated on a microelectromagnetic device.  Two samples of 

microspheres of diameter 300 nm were dispersed together in water, one with a 

SiO2(core)//SiO2,Fe2O3,CdSe/CdZnS(shell) composition with red emission, and a non-

magnetic sample, SiO2(core)//SiO2,CdSe/CdZnS(shell) with green emission.  A few 

drops of the solution were placed on the surface of the device, which consists of a set of 

parallel Au bars of width 2 µm with a center-to-center spacing of 8 µm with a thin 

insulating layer on the surface.  A fluorescence image of this solution over the device 

with no current running is shown in Fig. 5.7a. 
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Fig. 5.7: Fluorescence microscope images of red-emitting magnetic microspheres and 
green-emitting non-magnetic microspheres in water over an array of gold bars with 

 (a) all bars off, (b) the third bar from the top turned on, (c) the bottom bar on. 
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When current runs through the bar, a field of up to 0.007 T can be generated, and 

the corresponding field gradient is sufficient to trap the red-emitting microspheres.  When 

the current on the third bar from the top was turned on, the red microspheres migrated 

towards that bar (Fig. 5.7b).  The third bar was then turned off, and the bottom bar was 

turned on, and the red microspheres migrated towards it (Fig. 5.7c).  The cloud of 

microspheres in Fig. 5.7c between the third and sixth bars from the top had been trapped 

on the third bar (Fig. 5.7b), but the field from the bottom bar began pulling them towards 

it, and they were eventually trapped there.  This experiment demonstrates that the 

microspheres are responsive to small magnetic field gradients, since they can be moved 

over a the distance of 56 µm from the third bar from the top to the bottom bar, a distance 

at which the field gradient strength has significantly decayed.  (Few green microspheres 

were observed in Fig. 5.7 due to their low concentration and the green background 

emission coming from the insulating layer on the device surface.) 

 

5.5: Conclusions 

These preliminary results show that after certain problems are resolved, we will 

have prepared magnetic, highly luminescent microspheres than can be manipulated on a 

microelectromagnetic device.  High quality, monodisperse γ-Fe2O3 NPs have been 

prepared.  Methods of ligand exchange for dispersing them in ethanol have been 

developed but require further optimization.  The reaction for incorporating NPs into SiO2 

shells needs further optimization so that the incorporation will be more uniform, and 

there will be fewer unincorporated NPs and aggregates.  We would like to decrease the 

microsphere diameter from our current smallest size of 300 nm to 100 nm or below. 
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Chapter 6 

Iron platinum alloy nanoparticles 

 

6.1: Introduction 

Colloidal FePt NPs are actively being pursued as a potential material for high 

density magnetic recording due to their high magnetocrystalline anisotropy1.  Table 2.1 

shows two phases of FePt.  The FCC phase of FePt has K comparable to FCC Co, but the 

FCC phase can be converted to the FCT phase by annealing, for which K is more than 15 

times greater than for HCP Co1. 

However, all colloidal routes for preparing monodisperse FePt NPs produce the 

FCC phase, and the NPs sinter and agglomerate during anealing2-4, thereby causing a 

polydisperse size distribution and inhomogeneous magnetic properties.  If monodisperse 

FePt NPs in the FCT phase could be prepared for high density magnetic media, we 

calculate that a minimum NP diameter of 4.3 nm is needed using the formula, 

KV = 70kBT  5 at 300 K for a conservative estimate of the NP size that would be stable at 

room temperature.  That is the reason why many studies of FePt NPs use NP diameters of 

4 nm1, 3, 6-8.  There are other challenges for applying FePt NPs in magnetic recording, 

such as the large switching field that would be required because of the high HC of FePt5. 

Our initial interest in FePt NPs was primarily to incorporate the FCC phase into 

SiO2 microspheres, as we demonstrated for γ-Fe2O3 NPs in Chapter 5.  FePt NPs are 

metallic7 (in contrast to γ-Fe2O3, which is an insulator9) and may have interesting 

magnetotransport properties.  Thiols are also reported to bind well to FePt NPs10, which 
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may make much of the surface chemistry for Au NPs adaptable to FePt.  Initial TEM 

results suggest that FePt NPs may fuse in solution, which has been observed previously 

in other NP systems11. 

 

6.2: Preparation of FePt NPs 

We followed a literature method to prepare FCC FePt NPs12: 0.197 g of Pt(acac)2 

was added to 10 mL of benzyl ether and was heated to 100 °C.  (The solution changed 

from a yellow to brown color during heating.  The next step was done as soon as the 

temperature had stabilized at 100 °C.)  While stirring, 135 µL of Fe(CO)5 was added, 

followed by 1.32 mL of oleylamine (97%, Pfaltz & Bauer) and 1.27 mL of oleic acid 

(TCI).  The mixture was heated to 240 °C for one hour, and then to reflux for two hours 

before cooling. 

After cooling, the NPs were processed by first adding ethanol as a non-solvent to 

precipitate them.  After centrifuging, the supernatant was discarded, and the NPs were 

redispersed in hexanes.  However, they did not redisperse well, and 20 drops of a 50% 

(by volume) mixture of oleylamine and oleic acid were added, which caused the NPs to 

redisperse.  Precipitating FePt NPs once removes so many of the amine and carboxylic 

acid ligands that the NPs will not redisperse in solution without adding more ligands.  

This solution was centrifuged, and any solids were discarded.  The NPs were precipitated 

again by addition of ethanol.  The NPs were redispersed in hexanes or THF when 20 

drops of the oleylamine-oleic acid mixture were added. 

Polymer sticks of the FePt NPs were prepared using the same procedure that is 

described for Co NPs in section 3.2.2.  In order to measure the alloy composition and to 
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calibrate the magnetization scale for the SQUID measurements, a piece of the polymer 

was sent out for elemental analysis by Galbraith Laboratories, Inc., using inductively 

coupled plasma – optical emission spectroscopy.  The composition is Fe39Pt61.  In future 

work, the NPs could be enriched in Fe by adjusting the amounts of Pt(acac)2 and Fe(CO)5 

that are used in the reaction12. 

 

6.3: Surface chemistry 

6.3.1: Octadecanethiol 

 In order to determine the relative binding strengths of thiols to the amines and 

carboxylic acids already present, an excess of octadecanethiol was added to the THF 

solution, and the THF was removed under vacuum.  The NPs were redispersed in hexanes 

and were precipitated with ethanol.  After centrifuging and discarding the supernatant, the 

NPs redispersed well in hexanes without adding more octadecanethiol.  Therefore, thiols 

bind more tightly to the FePt NP surface than amines or carboxylic acids, because enough 

thiol ligands remained bound to the NPs after precipitation that the NPs could redisperse. 

 

6.3.2: Solubility in ethanol 

 For future incorporation into a SiO2 shell, ligand exchange must be performed to 

disperse the NPs in ethanol.  After adding an excess of 12-hydroxydodecanoic acid to a 

solution of the FePt NPs in THF and removing the THF by vacuum, the precipitate is 

dispersable in ethanol.  Attempts to repeat the same experiment using 6-mercaptohexanol 

or 11-mercaptoundecanol produced a non-dispersible cloudy aggregate. 
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 If the THF solution is dried under vacuum after the last step in which 20 drops of 

the oleylamine-oleic acid mixture were added during processing, then the product (which 

is a viscous liquid, due to the oleylamine and oleic acid) redisperses into a 50% (by mass) 

mixture of AP and ethanol. 

 

6.4: Transmission electron microscopy 

From the TEM image of FePt NPs in Fig. 6.1, we estimate a diameter of about 8 

nm.  HRTEM images in Figs. 6.2-6.5 show that the NPs are generally single-crystalline.  

However, Fig. 6.3 shows an FePt NP that has a grain boundary.  A few overlapping 

particles are observed in Fig 6.1, and HRTEM images of overlapping NPs are shown in 

Figs. 6.4 and 6.5.  The images in Fig. 6.4 show Moiré patterns due to the overlapping NP 

lattice planes.  The images in Fig. 6.5 suggest that the cores of the overlapping NPs have 

fused together, since the planes at the boundary seem to intersect in a more ordered 

manner than would be expected for two NPs which overlap without fusing. 

For such fusion to occur, the ligands in the boundary region would have to be 

displaced.  Such displacement may be easier in FePt NPs than for many other NPs 

because the amine and carboxylic acid ligands are weakly bound to the NP surface.  The 

NP lattices do not appear to orient in the same direction in every case of fusion, but there 

is a continuous set of lattice planes observable across the pair of NPs in the left side of 

the middle panel of Fig. 6.5, which suggests that oriented attachment may occur.  

Although these results suggest that the FePt NP cores fuse, a more thorough study would 

be necessary to state that conclusively.

 150 



 

Fig. 6.1: TEM of FePt NPs 

 

 

Fig. 6.2: HRTEM image of FePt NPs 
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Fig. 6.3: HRTEM image of an FePt NP (right) showing a grain boundary 

 

 

Fig. 6.4: HRTEM image showing Moiré patterns of overlapping FePt NPs 
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Fig. 6.5: HRTEM images which suggest crystalline attachment of two FePt NPs.  The 

bottom panel is an enlarged region of the interface from the middle panel. 
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6.5: Magnetic characterization 

 Measurements of the zero field cooled M vs. T curve measured with 0.01 T 

applied field for the FePt NPs diluted in the polymer matrix are shown in Fig. 6.6. 

The blocking temperature is 55 K. 

Measurements of M vs. H at 5 K after cooling from 300 K in a 5 T field are 

shown in Fig. 6.7.   The saturation magnetization is 26 emu/g.  We did not find a 

reference value for comparison, but this value is significantly smaller than for the Co and 

γ-Fe2O3 NPs reported in chapters 3 and 5, respectively.  One reason for the low saturation 

magnetization is because the alloy is richer in Pt than in Fe.  We measured HEB of -87 µT, 

which is caused by the alignment of the sample in the SQUID magnetometer and 

experimental uncertainty, and the value also depends on the spacing of the measurement 

points.  This sample exhibits no EB.  At 5 K, HC is 0.11 T. 

 154 



T (K)

0 50 100 150 200 250 300

M
 (e

m
u/

g)

0

1

2

3

4

5

 

Fig 6.6: Zero field cooled M vs. T measured in a 0.01 T field for FePt NPs 
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Fig 6.7: M vs. H at 5 K after cooling from 300 K in a 5 T field for FePt NPs. 
The inset shows greater detail of the same measurement. 
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Chapter 7 

Functionalization and magnetic properties of commercial 

cobalt nanoparticles 

 

7.1: Introduction 

 In this chapter, we report a method for functionalizing commercially available 

NPs to make them dispersible in organic solvents, and we characterized them using TEM 

and SQUID magnetometry.  Strem Chemicals, Inc. recently started selling Co NPs at an 

inexpensive price of $67/g.  They prepare the NPs in multiple gram quantities.  In the 

method which they report1, Co2(CO)8 and AlR3 (where R is an alkyl group) are dissolved 

in toluene and heated.  More AlR3 is added to the mixture, and after continued heating, 

the preparation is complete.  The only surface functionalization is the AlR3, which acts as 

a stabilizer during NP growth2, 3.  The AlR3 is believed to form a thin shell on the surface 

of the NPs, which is consistent with the slower oxidation rate of the Strem NPs as 

compared with our Co NPs (Chapter 3) that are prepared without AlR3 reagents. 

 

7.2: Surface chemistry 

 The bare NPs arrived precipitated in a small amount of toluene.  Some of the bare 

NPs were added to THF, along with an excess of stearic acid or hexadecylamine.  After 

stirring for a couple minutes, the THF was removed by vacuum.  Hexanes were added to 

the powder, and after sonicating, some of the NPs dispersed into the hexanes, but many 

remained aggregated.  After centrifuging, the supernatant was retained.  This process 
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worked using both stearic acid and hexadecylamine, but the hexadecylamine dispersed a 

greater portion of the NPs. 

A sample which was stabilized using hexadecylamine was dried under vacuum, 

and the NPs were diluted in a polymer stick using the same procedure described for our 

Co NPs in section 3.2.2.  In order to measure the Al content, pieces of the polymer and 

some of the bare NPs as-received from Strem were sent to Galbraith Laboratories, Inc. 

for elemental analysis using inductively coupled plasma – optical emission spectroscopy.  

The composition is Co95.9Al4.1.  Therefore, the Al shell is quite thin. 

 

7.3: Transmission electron microscopy 

 In ordr to remove excess ligands, a sample of NPs that was stabilized in hexanes 

using stearic acid was precipitated by adding ethanol.  After centrifuging, the precipitate 

was redispersed in hexanes, and a drop of this solution was placed on the TEM grid.  The 

TEM image in Fig. 7.1 shows that the NPs have a distribution of sizes and shapes, but 

most are spherical with diameters between 11 nm and 15 nm.  The variations in contrast 

across each particle show that they are polycrystalline, which is expected1.  The HRTEM 

image in Fig. 7.2 shows more details of the many small grains of which these NPs are 

composed.  
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Fig. 7.1: TEM image of Strem Co NPs 

 159



 

 

Fig. 7.2: HRTEM image of Strem Co NPs 
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7.4: Magnetic characterization 

 Measurements of the zero field cooled M vs. T curve measured with 0.01 T 

applied field for the Strem Co NPs diluted in the polymer matrix are shown in Fig. 7.3. 

The blocking temperature is 265 K.  Because of this high TB, the NPs may aggregate in 

solution at room temperature due to dipolar coupling.  This dipolar coupling may be 

responsible for causing many of the bare NPs to remain precipitated after adding stearic 

acid or hexadecylamine to disperse them. 

Measurements of M vs. H at 5 K after cooling from 300 K in a 5 T field are 

shown in Fig. 7.4.   The saturation magnetization is 116 emu/g, which is 72% of the bulk 

value of 162 emu/g.  This suggests that the NPs have a thin oxide shell.  We measured 

HEB of 0.023 T, which is small because the thin oxide shell is unable to significantly 

generate EB4.  At 5 K, HC is 0.18 T. 
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Fig 7.3: Zero field cooled M vs. T measured in a 0.01 T field for Strem Co NPs 
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Fig 7.4: M vs. H at 5 K after cooling from 300 K in a 5 T field for Strem Co NPs. 
The inset shows greater detail of the same measurement. 
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Appendix G 

Guide to transmission electron microscopy 

(Dirk Weiss, John Zimmer, Mike Frongillo, and Tony Garratt-Reed have contributed to 

the content of this chapter by sharing their TEM experiences and knowledge with me.) 

 

G.1: Motivation 

TEM is a powerful characterization technique which I have had to use extensively 

in my research, because the easiest way to measure the size and distribution of my NPs is 

to use TEM.  Others in the Bawendi lab who work with semiconductor NPs often have to 

do less TEM, because they can obtain the size and size distribution from absorbance and 

emission measurements.  I write this chapter primarily for my Bawendi lab colleagues.  

TEM can have a steep learning curve, and I share here some things that I have learned by 

trial and error.  Mike Frongillo in the CMSE microscopy lab at MIT gives a good 

training, and does an excellent job of keeping the microscopes running well using limited 

resources.  However, the microscopes have many different aperture settings, and there are 

some things from experience that I emphasize here about how to do TEM on NPs well. 

 

G.2: Sample preparation 

The key to getting good TEM images is a well-prepared sample – in particular to 

get the right concentration of unaggregated particles and to get rid of enough of excess 

organics so that they do not blur the image.  The procedure for preparing samples out of 

solutions of organics is well known in our lab, but the method for preparing samples from 
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aqueous solutions is not well known.  I recommend putting a drop of the aqueous solution 

on the TEM grid and drying it (and the tweezers holding it) after 1-3 seconds using filter 

paper (Whatman 50).  This technique gives much better results than drying the drop with 

a heat gun. 

 

G.3: Microscope setup 

 The MIT microscopy lab has three transmission electron microscopes in 

operation: JEOL 200CX, JEOL 2000 FX, and a JEOL 2010.  (A JEOL 2011 will soon be 

in operation too.)  In each microscope, use the middle condenser aperture and a spot-size 

of 2.  For the highest contrast imaging, use the smallest objective aperture.  If the 

illumination with the smallest objective aperture is inadequate, use the smallest objective 

aperture with which you can get sufficient illumination.  However, for high-resolution 

imaging, in order to see the lattice, use the largest objective aperture or none at all.  When 

you put the objective aperture into place, if your aperture eliminates rings from the 

diffraction pattern, you will not be able to see the corresponding lattice planes in 

magnification mode. 

 

G.4: Stigmation, focusing, and illumination 

 Stigmation is probably the most difficult part of using the TEM that requires the 

most practice, and no image that is poorly stigmated will be usable.   Begin stigmating at 

low magnification using the Fresnel fringes of NPs or of the carbon substrate.  Once you 

have stigmated at one magnification, increase the magnification and stigmate again.  As 

you go to higher magnifications (100 kX and above), use the pattern of the carbon 
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substrate to stigmate.  Use the stigmators to eliminate the parallel streaks that you 

observe if the image is slightly out of focus in either direction.  Once you have done that, 

go to the point of best focus, and turn each stigmator knob one at a time in and out of the 

best stigmated image.  Leave it at the setting that shows the clearest image without 

streaks in either direction during the focusing.  Poor stigmation will ruin an image.  

Focusing is also important, although a well-stigmated but slightly out-of-focus image 

may still be useful.  Stigmation and focusing need to be done together, and then once a 

well stigmated image has been achieved, the focus may be finely adjusted. 

In order to describe optimal focus, we first describe what happens as one turns the 

focus knob.  If we begin with the focus set above the grid, we can see the NPs below as 

dark spots with poorly defined edges.  As we turn the knob clockwise, those edges 

initially shrink but become better defined, and the contrast decreases as the NPs come 

into focus.  As we continue turning the knob clockwise, we also see the grains in the 

carbon substrate come into focus.  If we observe carefully, those grains come into focus, 

and as we keep turning, they become blurry, then they come back into focus again and 

become blurry again, and the Fresnel rings around the NPs become visible as we keep 

turning the knob out of focus. 

The important part of focusing is when we see the carbon grid for the first time as 

we move the focal plane downward (turning clockwise) from above the grid.  The best 

focus occurs when the grains of the carbon substrate are clearly resolved right before they 

blur as we keep turning the knob clockwise.  I have had the best results by looking for the 

blurry spot between the two focus settings in which the grains of the carbon substrate are 

in focus and then turning the knob slightly counter-clockwise until I get a good image of 
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the carbon substrate.  This technique is also quite useful for taking pictures of small NPs 

that may not appear well on the monitor.  One can focus on the substrate and take 

pictures, and small NPs may be visible in the films.  This is particularly useful for 

HRTEM on the 2010.   

 Having the condenser lens spread the beam is also important for taking good 

images.  If the beam is not spread, then the stigmation can vary across the area of the 

film.  This is particularly important for HRTEM on the 2010. 

 

G.5: Magnification 

 For most NPs that are smaller than 20 nm in diameter, I recommend using a 

magnification of 100 kX for publication-quality images.  These images can be blown-up 

if necessary.  The same image taken at 200 or 210 kX usually has less contrast than the 

same image which was taken at 100 kX.  In order to get a good image at 100 kX, I 

recommend stigmating at 200 kX (or higher, if possible).  When doing HRTEM on the 

2010, most of my useful images are taken at 600 kX and 800 kX.  Pictures taken at 1,000 

kX are desirable, but one has to wait even longer for the sample translators to stabilize.  

Images at 800 kX give a greater image area, and this magnification is usually sufficiently 

high.  Pictures taken at intermediate magnifications between 100 kX and 600 kX are not 

that useful. 

 

G.6: Taking pictures 

 If the beam is spread as suggested in section G.4, a longer exposure time will be 

needed than for a beam which is tightly focused.  I recommend using exposure times of 
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2-3 seconds, but you may need longer times for HRTEM on the 2010.  If you put down 

the smaller screen while setting up to take the picture, it will give you a better reading of 

the illumination intensity to use for the picture. 

 To get good images, take many pictures, and take the time to stigmate and focus 

them well.  This is especially true for HRTEM on the 2010. 

 

G.7: Electron diffraction 

 Electron diffraction is a powerful technique that provides much of the same 

information as X-Ray diffraction (XRD), and it does not require the large amount of 

sample that is needed for XRD.  Single-NP electron diffraction is challenging, but the 

electron diffraction ring pattern from a sample of many NPs is useful for identifying the 

stoichiometry of the material, or whether the sample is oxidized.  In order to measure 

lattice constants quantitatively, the camera constant needs to be measured using a 

calibration standard, but the crystal structure can often be identified from the ring pattern 

without calibration. 

 Electron diffraction is done as follows: 

1. Choose an area of the sample for which you want a diffractogram and bring it into 

focus.  Center the beam. 

2. Enter the selected-area magnification mode. 

3. Insert a selected-area diffraction (SAD) aperture.  Use the diffraction focus knob to 

get as sharp an image of the rim of the aperture as possible. 

4. Enter diffraction mode.  Use the diffraction focus knob to focus the center spot.  

Rotate the condenser knob to decrease the illumination while continuing to focus the 
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center spot.  As you decrease the illumination, the size of the center spot will 

decrease.  Continue to decrease the illumination until the spot is quite small.  Use the 

projection alignment to center the spot. 

5. Move the pointer so that it covers the center spot.  You will be able to do this best 

using the small screen and the binoculars. 

6. Take a series of pictures of different exposure times.  If the illumination is still bright, 

start with exposures with times of 4, 8, 16, 32, and 64 seconds.  If it is darker, start at 

8 or 16 seconds. 

Another way to select an area of the grid which will give a good diffraction pattern is to 

insert an SAD aperture, to enter diffraction mode, and then to translate the sample until a 

good diffraction pattern appears. 

 

G.8: Choosing the right microscope 

 The 200 CX is a great microscope, and it is quick to use!  With practice, taking 

pictures at 100 kX is pretty easy.  Reliable stigmation at 200 kX is more challenging, and 

I recommend using the 2000 FX for publication quality images.  For getting the highest 

contrast low-resolution images, I recommend using the 2000 FX rather than the 2010.  

The contrast is better, and microscopy is faster.  Use the 2010 for lattice imaging. 

 

G.9: Developing pictures 

 Developing the films is pretty straight-forward, except variations in the developer 

temperature can lead to overdeveloped (too dark) or underdeveloped (too transparent) 

films.  This is especially the case in the winter, when the lower temperature in the rinsing 
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bath can cool the developer.  The optimal developer temperature is 19 °C.  I carry a 

thermometer with me and check the developer temperature every time before developing 

my films.  If it is too cold, I add hot water to the rinsing bath to heat the rinsing bath to 19 

°C (and the thermal currents will then heat up the developer).  Be careful not overheat the 

rinsing bath, since that will lead to overdeveloping.  I have generally found slightly 

underdeveloped films easier to salvage than overdeveloped ones, so I aim to err towards 

slightly underdeveloping my films. 

 During the final washing step after fixing, I have always found 5 minutes to be a 

sufficient washing time. 

 

G.10: Scanning pictures and adding scale bars 

 I recommend scanning the whole negative in the scanner at the CMSE facility at 

1,600 dpi.  That generates large files (50-60 MB), but it maximizes one’s ability to select 

and magnify the best images afterwards.  Photoshop provides the best contrast 

adjustment. 

The scale bars printed on the negatives from the 2000 FX and 2010 are inaccurate 

and should not be used.  A simple way to calculate the scale bar length is to convert the 

1600 dpi (which is pixels per inch) to 629.92 pixels/cm.  Using a magnification of 100 

kX as an example, if we convert 629.92 pixels/cm to nm and multiply by 100,000, then 

we get 6.2992 pixels/nm.  To make a 10-nm scale bar in Photoshop for a picture taken at 

100 kX, we would draw a thick line 63 pixels long.  For a more accurate magnification 

measurement, the magnification would need to be calibrated to a standard. 
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