
Mitigation of Human Supervisory Control Wait

Times through Automation Strategies

by

Paul Jeffrey Mitchell

B.S., Queen's University, Kingston, Ontario, Canada, 2002

Submitted to the Department of Aeronautics and Astronautics
in partial fulfillment of the requirements for the degree of

Master of Science in Aeronautics and Astronautics MASSACUSINS
OF TECHNOLOGY

at the at theJUN 2 3 205
MASSACHUSETTS INSTITUTE OF TECHNOLOG

May 2005 [Ju LIBRARIES

@ Massachusetts Institute of Technology 2005. All rights reserved.

Author ........... . ...........
Department of Aeronautics and Astronautics

May 20, 2005

AAlA

Certified by ...... .. ...
Mary ssy) L. Cummings

Boeing Assistant Professor of Aeronautics and Astronautics
Thesis Supervisor

Accepted by ............ .............
Jaime Peraire

Professor of Aeronautics and Astronautics
Chair, Committee on Graduate Students

AERO



2



Mitigation of Human Supervisory Control Wait Times

through Automation Strategies

by

Paul Jeffrey Mitchell

Submitted to the Department of Aeronautics and Astronautics
on May 20, 2005, in partial fulfillment of the

requirements for the degree of
Master of Science in Aeronautics and Astronautics

Abstract

The application of network centric operations principles to human supervisory control
(HSC) domains means that humans are increasingly being asked to manage multiple
simultaneous HSC processes. However, increases in the number of available infor-
mation sources, volume of information and operational tempo, all which place higher
cognitive demands on operators, could become constraints limiting the success of net-
work centric processes. In time-pressured scenarios typical of networked command
and control scenarios, efficiently allocating attention between a set of dynamic tasks
is crucial for mission success. Inefficient attention allocation leads to system wait
times, which could eventually lead to critical events such as missed times on targets
and degraded overall mission success. One potential solution to mitigating wait times
is the introduction of automated decision support in order to relieve operator work-
load. However, it is not obvious what automated decision support is appropriate, as
higher levels of automation may result in a situation awareness decrement and other

problems typically associated with excessive automation such as automation bias.
To assess the impact of increasing levels of automation on human and system

performance in a time-critical HSC multiple task management context, an experi-
ment was run in which an operator simultaneously managed four highly autonomous
unmanned aerial vehicles executing an air tasking order, with the overall goal of
destroying a pre-determined set of targets within a limited time period. A 4x2(3)
repeated measures design was utilized in which the level of decision support provided
to operators was a between-subjects factor and level of re-planning, which represents
operational tempo, a within-subjects factor. The automated decision support, which
took the basic form of a timeline display to aid with scheduling, had four increas-
ing levels: manual, passive, collaborative, and management-by-exception. Level of
re-planning refers to how much operators were required to adjust the initial plan in
flight, based on unexpected occurrences such as changing deadlines or target sets,
and included low and high levels.

The passive level of decision support, which provided assistance to the user through
color coding and re-organization of scheduling information, was the best overall per-
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former as it had no major drawbacks. Management-by-exception had the best perfor-
mance across several metrics but had a greater number of catastrophic events occur
where a UAV erroneously destroyed a friendly target. The manual level performed
better than expected, but had a similarly high critical event rate. Contrary to ex-
pectations, the collaborative level of decision support, which provided predictions for
possible periods of task overload as well as possible courses of action to relieve the
high workload, had the worst performance. This is attributable to an unintended
consequence of the automation where the graphical visualization of the computer's
predictions caused users to try to globally optimize the schedules for all UAVs instead
of locally optimizing schedules in the immediate future, resulting in them being over-
whelmed. Total system wait time across both experimental factors was dominated
by wait time caused by lack of situation awareness, which is difficult to eliminate,
implying that there will be a clear upper limit on the number of vehicles that any
one person can supervise because of the need to stay cognitively aware of unfolding
events.

Thesis Supervisor: Mary (Missy) L. Cummings
Title: Boeing Assistant Professor of Aeronautics and Astronautics
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Chapter 1

Introduction

1.1 Motivation

As modern technology continues to evolve, the role of humans in many systems is

shifting from manually controlling a system to that of supervising the system, oth-

erwise known as human supervisory control (HSC). HSC is the process by which a

human operator intermittently interacts with a computer, receiving feedback from and

providing commands to a controlled process or task environment which is connected

to that computer. Figure 1-1, adapted from Sheridan [38], illustrates this concept.

Human supervisory control is comprised of five generic functions, usually accom-

plished in the following cyclical order: planning a computer-based task, teaching the

computer what was planned through various inputs, monitoring the computer's ac-

tions for errors and/or failures, intervening when the plan has been completed or the

computer requires assistance, and then the human learns from the experience [38].

Human Operator Controls .....Z Z Actuators Task
(Supervisor) ------ Task

-- Displays Sens rs "

Figure 1-1: Human Supervisory Control [38]
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As HSC tasks are primarily cognitive in nature and generally do not require con-

stant attention and/or control, it is possible for humans to effectively supervise tmiH

tiple simultaneous HSC processes. For example, a single air traffic controller can

handle multiple aircraft because the onboard pilots handle the flying task, while the

controller is primarily concerned with navigation and deconfliction tasks that do not

require constant attention. In order to maximize human performance for the purposes

of cost reduction, efficiency, and safety, there is considerable interest in increasing the

number and type of HSC processes a single human can handle. Therefore, it is ever

more common for humans to be engaged in multiple HSC task management.

1.1.1 Network Centric Operations

Network Centric Warfare (NCW) is a concept of operations envisioned to increase

combat power by effectively linking or networking knowledgeable entities in a bat-

tlespace. Greater combat power is generated through the creation of shared sit-

uational awareness, increased speed of command, self-synchronization, and higher

operational tempo, lethality and survivability [1]. NCW's basic tenets (Figure 1-2)

are as follows [11]:

1. A robustly networked force improves information sharing.

2. Information sharing and collaboration enhance the quality of information and

shared situational awareness.

3. Shared situational awareness enables self-synchronization.

4. These, in turn, dramatically increase mission effectiveness.

A force with these capabilities is therefore able to increase combat power by lever-

aging information superiority. This is a substantial change from the past when tra-

ditional methods for boosting combat power were driven by numerical superiority.

NCW is a broad concept that is applicable to many different HSC domains other

than the military, such as commercial aviation, business ventures, and emergency

20



990,

Figure 1-2: Tenets of NCW [23]

response agencies who are also attempting to leverage intelligent information networks

to produce superior performance in time critical settings. However, the primary

advantage of operations based upon the tenets of NCW (network centric operations

or NCO), that of rapid access to information across the network, will likely be a

major bottleneck and possible point of failure for those humans who must synthesize

voluminous data from the network and execute decisions in real-time, often with

high-risk consequences under significant uncertainty. Network-centric operations will

bring increases in the number of available information sources, volume of information

and operational tempo, all which place higher cognitive demands on operators.

In time-pressured scenarios like those typical of command and control, efficiently

allocating attention between sets of dynamic tasks becomes critical to both human

and system performance. Inefficient attention allocation could lead to system wait

times, which might eventually lead to degraded overall mission success. For example,

consider the role of an Air Warfare Coordinator (AWC) on a naval ship engaged in an

air defense. The AWC's responsibilities include identifying unknown air tracks, mon-

itoring previously identified tracks, issuing warnings to enemy or unknown aircraft

aiching minimum distances from the ship, and providing launch orders for defensive

counter measures, if required. This is a HSC system, as the operator is exerting indi-

21



rect control over friendly forces, commercial aircraft and maybe even enemy aircraft in

the immediate area of the ship. It is likely that this operator will have many sinu I'

neous tasks to supervise, and if saturated, system wait times could be incurred due to

the high workload of the human operator. Inefficient attention allocation could lead

to an increase in wait times such that, for example, friendly aircraft receive orders too

late to prevent enemy aircraft from attacking, resulting in a damaged or sunk ship. It

is also possible that if the human in the decision loop is saturated, disengagement of

aircraft or weapons systems prosecuting an inappropriate target such as a commercial

aircraft could also be missed.

1.1.2 Unmanned Aerial Vehicles

An unmanned aerial vehicle (UAV) is a powered, aerial vehicle that does not carry

a human operator, can fly autonomously or be piloted remotely, is expendable or

recoverable, and can carry a lethal or non-lethal payload [10]. They are remotely

controlled or autonomous aircraft used primarily in military applications for surveil-

lance or strike missions, and can range in size from handheld miniature vehicles such

as the Desert Fox (Figure 1-3) to more long range vehicles such as the Predator (Fig-

ure 1-4). The range of commercial applications for UAVs is growing very quickly, as

they have found use in border patrol, law enforcement, fire fighting, agriculture, and

weather monitoring applications, amongst others. The Aerosonde (Figure 1-5) is an

example of a UAV with established uses in weather and atmospheric monitoring.

Unmanned aerial vehicles have been increasingly utilized by militarized forces

around the world in recent years to take advantages of their reduced radar signature,

increased endurance and decrease in both capital costs and potential loss of human life

during operations in hostile territory. The growing importance of UAVs is reflected

in the amount of funding allocated to them in the US Department of Defense's (DoD)

budget: approximately $1 billion USD in 2004, up from $760 million USD in 2002

and $360 million USD in 2003 [30].

To take full advantage of UAVs in network centric operations, it is desired to have

larger "swarm" of vehicles operating in concert. An integral part of this vision involves
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Figure 1-3: The Desert Hawk Miniature Unmanned Aerial Vehicle

dramatically changing the number of operators it takes to effectively supervise these

vehicles. Multiple operators are currently required to supervise and control the largest

and most complex unmanned combat aerial vehicles (UCAVs) such as the Predator,

which has a crew of three directly controlling it and a support staff many times

this number. In the future, the goal is to invert this ratio so that a single operator

supervises the operations of multiple UAVs, and thus this becomes a multiple HSC

attention allocation problem. To do so will not only require significant advances in

onboard vehicle control and autonomy, but also in the interfaces used for human-

computer interaction. Cummings and Guerlain [9] found that Navy personnel were

able to effectively manage up to 12 simulated re-targetable Tomahawk missiles, which

are highly autonomous and do not require any intervention for in-flight stability

control and landing. However, the number of UAVs that can be effectively supervised

by operators is likely much less, as they can perform a far wider variety of tasks and

uually require some level of flight and navigational control from the human. Ruff et

al. [35] studied operators controlling up to 4 autonomous UAVs, and Wickens et al.
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Figure 1-4: The Predator MQ-1 Unmanned Combat Aerial Vehicle

[44] designed a similar simulator where operators supervised 2 vehicles. Both found

that operators could adequately manage these numbers of UAVs so long as they had

a basic level of decision support. Significant performance decrements were seen under

more manual forms of decision support, which indicates that a major limiting factor

on how many vehicles can be effectively supervised is operator workload. As operator

workload increases to saturation, the amount of time vehicles have to wait to receive

attention when they need it, either for goal state changes or emergency operations,

will steadily increase, potentially degrading mission effectiveness.

1.1.3 Automated Decision Support

One potential solution to mitigating system wait times in human supervisory control

of UAVs is the introduction of automated decision support in order to relieve operator

workload. For example, an accident with a Predator occurred in Bosnia in 1999 simply

because the operators experienced an unusual flight condition, aircraft icing, and the

added workload associated with this unusual state dramatically increased the system
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Figure 1-5: The Aerosonde Unmanned Aerial Vehicle

wait time beyond critical levels. Introduction of automated decision support through

automatic flight control would have decreased wait times sufficiently such that the

accident could have been avoided. However, it is not obvious what automated decision

support is appropriate in general for multiple UAV supervision, as higher levels of

automation (LOA) may result in a situation awareness decrement and automation

bias. This problem has been studied to some degree by Ruff et al. [35] and Wickens

et al. [44], but they focused solely on human performance metrics, and did not

consider the overall system in their evaluations. In the future vision of allowing a

single operator to control multiple unmanned vehicles, it is not well understood how

operators will manage multiple vehicles, what kind of decision support will aid or

hinder the operator, and how human cognitive limitations will impact overall system

effectiveness.
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1.2 Problem Statement

The primary questions for this research effort are:

* How do how unmanned vehicle operators cope with managing multiple simul-

taneous human supervisory control processes, particularly under high workload

conditions?

* What amount and types of decision support can best aid operators in these

situations?

" What effects do human performance limitations have on system performance?

1.3 Research Objectives

The research objectives of this thesis, in the context of multi-vehicle, time-critical

human supervisory control are:

* to develop and validate a model of system wait times,

* to present conclusions on how system wait times and human performance in-

fluence each other, and consequently what the implications of this are on the

ability of humans to effectively supervise multiple autonomous vehicles,

* to determine what levels of automation are best for supporting operators in

terms of both human and system performance characteristics, and

* to study the general cognitive strategies employed by overloaded operators.

1.4 Thesis Organization

This thesis is organized into the following seven chapters:

e Chapter 1, Introduction, introduced and described the motivation and objectives

for this study.
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" Chapter 2, Background, provides an introduction to past human factors work

in multiple UAV control and supervision, and frames the research objectives

outlined above in the context of this prior work. A wait time model is introduced

as a metric of system performance and the effect of levels of automation on this

wait time model is discussed.

" Chapter 3, Simulation and Interface Design, presents the details of an interface

and simulation developed to study human and system performance issues in-

volved with the human supervisory control of multiple vehicles in time-critical

applications.

" Chapter 4, Hypotheses and Methods, discusses predicted system performance

trends with increasing levels of automation, and presents the details of an ex-

periment conducted with the program described in the Simulation and Interface

Design chapter.

" Chapter 5, Results, presents the statistical results of the experiment described

in the Methods chapter.

" Chapter 6, Discussion, compares the results with the hypotheses outlined in the

Hypotheses and Methods chapter and discusses how they answer the primary

research questions of this study.

* Chapter 7, Conclusion, summarizes the key findings of this study and presents

concluding remarks. Recommendations for future work are also suggested.
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Chapter 2

Background

This chapter provides a summary of relevant prior human factors work in multiple

vehicle control and supervision from both the human and system perspectives. It

then shows how the goals of this research attempt to address the gap between these

two approaches to system design.

2.1 Overview

The application of network centric warfare principles to human supervisory control

domains means that humans are increasingly being asked to manage multiple simul-

taneous HSC processes. At the same time, NCO brings greater amounts and variety

of information to the operator, placing potentially overwhelming cognitive demands

on them. One information overload strategy is to introduce automated systems of

varying degrees to relieve operator workload so that overall mission performance is

improved. Previous work has been conducted to study human performance and UAV

control with varying levels of automation, but these studies did not fully explore the

impacts on overall system performance [34, 45]. At the same time, the problem of

workload and control of multiple vehicles has been studied from the system perspec-

tive without regard for cognitive human-system interaction issues [27]. This chapter

discusses these separate approaches and then relates them to each other to identify

the gap that this research attempts to address.
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2.2 Human Performance

Gawron [16] and Mouloua et al. [25] provide informative summaries of the many

human factors issues associated with UAVs. Significant effort has been expended on

developing better visualization techniques and interfaces to improve UAV operators'

performance and situation awareness (for example, Draper and Ruff [12], Wickens

et al. [44]), but very few detailed efforts have investigated how to properly allocate

tasks between UAVs and operators, and in particular between multiple UAVs and

operators. Current operations of large scale UAVs require many operators per vehicle

because of the need for humans to perform low level tasks such as flight control and

image processing. However, in the future it is likely the level of autonomy built into

such vehicles will increase to the point that the human's role becomes supervisory in

nature. As it is desired to eventually invert the ratio of many operators controlling

one vehicle to one operator supervising many vehicles, there is a need for greater

vehicle autonomy and higher levels of decision support for operators. However, it is

not clear what degree of autonomy and/or decision support is optimal to support this

goal.

2.2.1 Appropriate Levels of Automation

Automation allocation for decision support can range from fully automatic where

the operator is completely left out of the decision process to minimal levels where

the automation offers basic data filtering or recommendations for the human to con-

sider. Table 2.1, originally proposed by Sheridan and Verplank [39], outlines a scale

commonly used to characterize the allocation of function between man and machine.

Human interaction with automation represents a range of intermediate levels from

1-6 on this scale.

For routine operations, higher levels of automation in general result in lower work-

load, while the opposite is true for low levels of automation [20]. The relationship

between workload and performance is illustrated in Figure 2-1, which is adapted to

the Yerkes-Dodson Law [46]. This illustration shows that optimal human perfor-
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Automation Automation

Level Description

1 The computer offers no assistance: human must take all decision and actions.

2 The computer offers a complete set of decision/action alternatives, or

3 narrows the selection down to a few, or

4 suggests one alternative, and

5 executes that suggestion if the human approves, or

6 allows the human a restricted time to veto before automatic execution, or

7 executes automatically, then necessarily informs humans, and

8 informs the human only if asked, or

9 informs the human only if it, the computer, decides to.

10 The computer decides everything and acts autonomously, ignoring the human.

Table 2.1: Levels of Automation [39]

mance occurs at moderate levels of workload. As a consequence, there is an optimal

level of workload, and thus an optimal level of automation whereby performance is

maximized for a particular task. Therefore, performance degradation can occur if a

LOA for a task is selected that is too high or too low. If the LOA is too high, HSC

problems can include: 1) manual or mental skill degradation, 2) loss of situational

awareness, 3) automation brittleness and literalism, and 4) increased time and diffi-

culty to diagnose failures and manually take over when required [3, 29]. If the LOA

is too low, potential HSC problems can include: 1) cognitive and working memory

overload in routine tasks under time pressure, 2) human decision biases and heuris-

tics, 3) lack of repeatability and consistency, 4) complacency and boredom, and 5)

greater human interdependency and chaos under failure [3, 29]. As a consequence,

care must be taken to consider each of the roles human and machine should perform

in a given task, and automation only introduced when there is a specific need to do

so.

2.2.2 The Impact of Automation on Human Performance

Several previous studies have investigated levels of automation in the context of mul-

tiple UAV supervisory performance. Ruff et al. [35] conducted a study that looked at

the effects of level of automation and decision-aid fidelity in human interaction with 1,
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Figure 2-1: The Yerkes-Dodson Law [46]

2 and 4 UAVs. They found that a medium level of automation called management-by-

consent, which corresponds to an automation level of 5 on the scale of Table 2.1, had

significant advantages over manual control (Level 1, Table 2.1) and management-by-

exception (Level 6, Table 2.1) supervisory control schemes. This level of automation

had the highest levels of operator situation awareness (SA) and performance, though

subjective workload ratings were not always better. Performance declined sharply as

the number of supervised UAVs increased in the manual control condition, suggesting

significant levels of automation are required for acceptable performance in supervising

multiple vehicles.

Ruff et al. [34] later examined the effects of automation on task completion

time and subjective workload levels in the control of 2 or 4 UAVs. A management-

by-consent level of automation (Level 5, Table 2.1) was compared to management-

by-exception (Level 6, Table 2.1), and no significant differences in performance or

workload were initially found between the levels. It was hypothesized this result was

due to a common behavior exhibited by subjects where they were likely to act on the

automation's recommendation before the automation carried out the action under

LOA 6. Subjective workload ratings were higher and performance lower for 4 UAVs
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than with 2. A follow-up experiment then kept the number of UAVs constant at 4

and the time limit to over-ride the management-by-exception automation was made

an independent variable. It was found that there still was no performance difference

between automation conditions, but shorter time limits to over-ride the computer

in management-by-exception caused higher workload and poorer performance. An

important finding from this study was that subjects using management-by-exception

(Level 6, Table 2.1) did not use the automation as intended. Upon receiving a notifi-

cation of what the automation was planning to execute, users consistently executed

it themselves manually instead of letting the computer take over. This suggests that

subjects may not have been properly evaluating or did not trust the computer's rec-

ommendations.

Under the Defense Advanced Research Projects Agency (DARPA) Mixed-Initiative

Control of Automata (MICA) program, some research has been conducted into the

development of unmanned combat aerial vehicle controllers that enable small teams

of operators to effectively task large teams of aircraft. Linegang et al. [22] set out

to determine what information requirements human operators needed to effectively

use and interact with such systems. They found that it was particularly difficult to

convey to the user a dynamic understanding of a mission in both space and time,

which is critical for high levels of operator SA. Timeline and map-based components

of an interface were recommended to overcome this. Under the same research pro-

gram, Roth et al. [32] evaluated a prototype mixed-initiative interface intended for

the supervisory control of multiple vehicles, with the intent of investigating to what

extent human operators were able to understand mission plans for the UAVs that

were generated by automated controllers. They found that while humans could un-

derstand the plans created, they could not understand the rationale behind them.

Therefore, operators had low SA as they were not able to evaluate the effectiveness

of the automatically generated plans and could not predict the effects of changing

them. The conclusion that can be drawn is that in multiple UAV control, operators

using high levels of automation may perform very well under nominal conditions but

likely will not be able to cope as well with uncertainty in the mission plan.
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Wilson and Russell [45] investigated whether adaptive automation based on psy-

chophysiologic cueing could be used to relieve operator taskload during periods of

high workload, and in so doing improve task performance. Subjects performing a

UCAV target identification task showed improved hit rates on targets and less missed

weapons release points under adaptive aiding, thus showing the benefits of mitigat-

ing operator workload in potential overload situations. However, the adaptive aiding

used in the study decreased the velocity of the UAV and did not actually change the

level of automation for the human controller. Modifying mission parameters to relieve

operator workload is often not a viable option in time-critical applications, as UAVs

generally must operate within strict windows of time. This is an example of what

can occur when system designers only incorporate human performance considerations

into their designs and ignore hard environmental (system) constraints.

2.3 System Performance

2.3.1 Wait Times

In previous work modeling human-robot (ground-based) interaction and operator

capacity for supervisory control, it has been proposed that the number of robots or

vehicles a single individual can control is given by Equation 2.1 [17, 26, 27]. In this

equation, FO (Fan Out) equals the number of robots a human can effectively control,

NT (Neglect Time) is the expected amount of time that a robot can be ignored before

its performance drops below some acceptable threshold, and IT (Interaction Time) is

the time it takes for a human to interact with the robot to ensure it is still working

towards mission accomplishment. The addition of one in Equation 2.1 represents the

baseline condition in that an operator can control a single robot. While originally

intended for ground-based robots, this work has direct relevance to more general

human supervisory control tasks where operators are attempting to simultaneously

manage multiple entities, such as in the case of UAVs. Fan out is a measure of

workload, as the smaller the ratio of NT to IT gets, the greater the proportion of
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time that the operator has to spend attending to a single vehicle.

NT
FO = + 1 (2.1)

IT

Modeling interaction and neglect times are critical for understanding human work-

load in terms of overall management capacity, but there remains an additional critical

variable that must be considered when modeling human control of multiple robots,

regardless of whether they are on the ground or in the air, and that is the concept of

Wait Time (WT). In HSC tasks, humans are serial processors in that they can only

solve a single problem or task at a time [4], and while they can rapidly switch between

cognitive tasks, any sequence of tasks requiring complex cognition will form a queue

and consequently wait times will build. In the context of a system of multiple vehicles

or robots in which two or more vehicles will likely require attention simultaneously

from a human operator, wait times are significant in that as they increase, the actual

number of vehicles that can be effectively controlled decreases, with potential nega-

tive consequences on overall mission success. Figure 2-2 illustrates how wait times

could impact an overall system.

In multiple vehicle supervisory control, operators interact with a robot or vehicle

to bring its performance to some acceptable performance threshold and then neglect

it until such time that it requires assistance. Performance may degrade gradually

over time (NT2 in Figure 2-2), or very suddenly with a discrete event (NT in Figure

2-2). For example, if a robot has a directional gyro that is slightly miscalibrated

and it is instructed to autonomously reach a certain navigational point, its position

error increases gradually over time until the human chooses to interact with it again.

A discrete event causing a sudden drop in performance such that a robot requires

immediate operator assistance is a system failure or the need for clarification of a

goal state. Sliding degradation is much harder for operators to correct, because

the rate of change of a system state may be so gradual that the operator does not

detect it immediately. In this case, performance is significantly degraded without the

operator realizing that they need to intervene. In either case, as soon as the robot's
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performance level decreases below a specified level or threshold, wait time begins.

This is shown as a static, constant line on Figure 2-2, but this performance threshold

may change depending on the task at hand.

While interaction and neglect times are important in predicting human capabilities

for handling multiple robots, for those domains that are time-critical and high risk

like UAVs, WT becomes a critical point for possible system failure. In many ground-

based robot applications such as mine-sweeping, waiting for human interaction may

not be critical, but certainly for UAVs and UUVs (unmanned underwater vehicles)

with expected time on targets and dynamic threat areas, waiting is not only sub-

optimal, it can be extremely hazardous. While most robots and vehicles can be

programmed to follow some predetermined contingency plan if they do not receive

required attention, mission success will likely be significantly degraded if wait times

grow unexpectedly.

IT, NT1  VT IT2  NT2

Performance
Threshold

Figure 2-2: The Relationship Between IT, NT, and WT

From the robot or vehicle perspective, WT imposed by human interaction (or lack

thereof) can be decomposed into three basic components: 1) wait time in the human

decision-making queue (WTQ), 2) interaction wait time (WTI), and 3) wait time due

to loss of situation awareness (WTSA). For example, suppose an operator is control-
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ling two robots on a semi-autonomous navigation task (much like the Mars Rovers).

While typical operations involve human interaction with a single vehicle, there will

be times when both vehicles require attention simultaneously or near-simultaneously.

When this occurs, if the human operator begins assisting the first robot immediately,

the first robot must wait while the operator solves the problem and then issues com-

mands to it (WTI1). For the second robot, the time it waits in the queue (WTQ2) is

effectively WTI 1 . If an operator does not realize a robot or vehicle needs attention,

the time from the initial onset of the event to actual operator intervention could range

from seconds to minutes. This wait time induced by lack of recognition for required

intervention is an example of WTSA.

IT, which was previously defined as the time it takes for a human to interact

with a robot, can be further decomposed. IT is the time during which a human's

attention is focused on a single robot in order to solve a problem or induce some

change to improve performance above a specified threshold. From the human per-

spective, IT includes the time required to determine the nature of the problem, solve

the problem, and communicate that solution to the robot, with some type of feed-

back. Thus the robot must wait some period of time during the "interaction" due

to the human decision-making process. In teleoperation where the human is directly

controlling a robot's movements and positions, interaction wait times might be very

small, and occur in rapid succession as the controller adjusts commands according to

sensor feedback. However, in other scenarios that require minimal manual control but

significant cognitive input such as the need to provide a new mission to a UAV, WTI

can be quite large depending on the complexity of the problem. Previous research

has indicated that system interaction times of operators should not exceed 0.7 of the

total system operating time due to cognitive and physical limitations [33, 36].

X Y Z
WT = WTIi+(WTQj + (WTSAk (2.2)

i=1 j=1 k=1

FO = NT+1 (2.3)
IT +WT - WTI+
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Equation 2.2 defines the definition of wait time to be used for the remainder of

this thesis. It categorizes total system wait time as the sum of the interaction wait

times, which are the portions of IT that occur while the vehicle is in a degraded

state (WTI), wait times that result from queues due to near-simultaneous arrival of

problems (WTQ), plus wait times due to operator loss of SA (WTSA). In Equation

2.2, X indicates the number of times an operator interacted with a vehicle while the

vehicle was in a degraded state, Y indicates the number of interaction queues that

build, and Z indicates the number of time periods in which a loss of SA causes a wait

time. Equation 2.3 demonstrates how the Fan Out equation (Equation 2.1) would

change as a result of the inclusion of wait times. WTI must be subtracted from the

denominator of Equation 2.3 because WTI is a subset of IT, and WTI's inclusion

in the wait time formula means it would otherwise be replicated. The addition of

wait time to the denominator of this equation is likely to significantly decrease the

predicted number of vehicles one person can control, as aggregate wait time can be

many times the size of IT.

2.3.2 The Impact of Automation on System Performance

It is not clear what effect the level of automation of a human supervisory control

task has on the various types of wait times, and what the overall system effectiveness

will be as these wait time components change in magnitude and proportion to one

another. The following section will make predictions of trends across different levels

of automation which will be compared to results later on in this thesis.

Interaction Wait Time (WTI)

Olsen and Goodrich [26] described four components of IT as 1) vehicle monitoring and

selection (VMS), 2) context switching and acquisition (CSA), 3) planning or problem

solving (PPS), and 4) command expression (CE). As outlined above, interaction wait

time is a subset of IT that occurs when any or all parts of these stages take place while

the vehicle requires human input. In general, increasing levels of decision support
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should decrease vehicle selection time, as a primary goal of automation in this context

would be to more quickly identify problem states. Context switching and acquisition,

the next step in the interaction process, occurs when operators attempt to update

their knowledge of the new vehicle's current goals and problems. The process of CSA

in conjunction with VMS can incur a "switching cost" in which switching between

tasks incurs added cost in terms of wait time because of the cognitive need to orient

to the new problem. Switching costs are not incurred simply as a function of change

detection, but occur as an operator regains the correct mental model and situation

awareness needed to solve the new problem.

Switching costs in terms of added wait times will occur because in the control of

multiple UAVs, operators spend time monitoring unfolding events, but periodically

engage in interactive UAV control tasks. This need to concentrate on a task, yet

maintain a level of attention for alerts causes operators to have a conflict in mental

information processing. Interrupt-driven processing, needed for monitoring alerts,

occurs when people are sensitized to possible problems and expect distraction. This

is the mode operators supervising multiple UAVs will nominally find themselves in

when missions are executed according to plan. Concentration on a task, like that

needed for UAV intervention, requires task-driven processing which is likely to cause

decreased sensitivity or attention to external events. While interrupt and task driven

processing can both be present in a person, attention must be shared between the

two and switching can incur cognitive costs that can potentially result in errors [24].

Therefore, switching costs are expected to be higher for very low levels of automation

as there is a greater demand for task-driven processing at low automation levels.

The planning/problem solving stage of interaction time occurs when the operator

plans a course of action for the selected vehicle. In general, increasing levels of

automation should lower planning times because the computer takes progressively

more decision options away from the human and/or aids the human by executing

some of the planning steps. As the human is presented with fewer or no alternatives,

they have a smaller problem space to explore, though this limitation may result in

less than ideal solutions.
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The last stage of interaction wait time is the execution or command expression

stage. In this stage, users must express their intent to the vehicle by mapping it onto

a series of actions that the vehicle can understand. Increasing levels of automation

are likely to decrease this time as well because higher levels of automated decision

support may not require human command intent to execute some or all functions, or

it may offer the human a single or limited options to choose from in terms that the

vehicle already understands.

With the exception of CSA, all the components of WTI follow the same trend of

decreasing with increasing levels of automation. Therefore, unless CSA dominates all

other components of WTI at very high or very low levels of automation, WTI should

decrease with increasing levels of automation.

Wait Time in the Queue (WTQ)

In the context of human supervisory control and multi-UAV management, the ele-

ments of an operator's queue are tasks that the operator must perform, such as firing

on a target, re-planning a route, or assigning an emergent target to a particular UAV's

mission plan. In the context of queuing theory, the operator's tasking can be thought

of as a preemptive priority queue with a single server. The time of the service rate,

the average time an operator takes to attend to a vehicle, is essentially the average

WTI. As previously mentioned, WTI for the vehicle in service corresponds to addi-

tional queuing wait time for all the vehicles in line. From the above discussion, WTI

is predicted to decrease with increasing levels of automation, so the same trend can

be expected with service rate. The arrival rate is the average time between tasks that

the operator must perform, and is dependent upon the scenario complexity and the

number of UAVs to be controlled, amongst other things. Within this framework, it

can then be seen that utilization of the operator will decrease with increasing level

of automation, and therefore the average wait time in the queue will decrease, po-

tentially in a non-linear way. A small increase/decrease in individual vehicle WTI

can have a much larger impact on WTQ, particularly as the number of tasks in the

queue becomes large. The implications of this are that there could be a much steeper
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increase in WTQ at the lowest levels of automation.

Situation Awareness Wait Time (WTSA)

WTSA is perhaps the most difficult wait time component to model because it rep-

resents how cognitively engaged and aware an operator is in the task. Situation

awareness is generally defined as having three levels, which are: 1) the perception

of the elements in the environment, 2) the comprehension of the current situation,

and 3) the projection of future status [13, 14]. An example of a WTSA would be the

failure of an operator to notice a message from a UAV that notified her of a failure

which rendered it useless for the remainder of a mission, such as an inability to re-

lease weapons. The time it takes for the operator to process the message and task the

appropriate UAV to return to base would be a WTSA. While notifications and cri-

tiquing devices included in decision support systems can help to alleviate added wait

time due to loss of SA, it is still an event that at the very least, should be included

as a probabilistic variable in a larger model of wait time for human interaction with

multiple vehicles.

As an operator's level of SA can decrease under high workload due to competition

for attentional resources [43], but also decrease under low workload due to boredom

and complacency [31], it can be concluded that optimum level of operator SA occur

under moderate levels of workload. It is predicted that WTSA will follow the opposite

trend. Therefore, medium levels of automation should have the lowest accumulated

WTSA, while very low or very high LOAs should have higher WTSA.

Very high levels of automation should eliminate any wait time due to the loss of

SA, but only for planned events. A primary concern with highly automated systems is

that when an unanticipated event occurs, automated systems often arrive at erroneous

solutions and humans do not have enough SA to recognize the failure mode. Because

of the propensity of human towards automation bias in command and control settings

[5] which can be exacerbated by the loss of SA, it is possible that an operator will

not veto erroneous automated actions, thus causing some potentially catastrophic

event. Indeed, this problem was seen recently in the 2004 war with Iraq when the
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U.S. Army's Patriot missile system engaged in fratricide, shooting down a British

Tornado and an American F/A-18, killing three. This avoidable loss of life occurred

because human operators did not recognize the guidance system had erroneously

locked onto aircraft instead of enemy missiles. It is exactly in this kind of instance

where highly automating the system to reduce wait times caused by humans should

be very carefully considered.

2.3.3 Wait Time Costs

The preceding discussion on wait times has not mentioned their cost. A wait time cost

measure is needed because wait times alone don't quantify how much impact they

have on a particular mission. It can be inferred that higher wait times are related to

higher costs in performance, but the threshold at which they incur a cost needs to

be identified. In addition, the context in which wait times occur may have an even

greater influence on overall system performance. For example, a typical mission for

a UCAV such as a Predator involves striking targets at precise times. If the mission

planner has built in additional "slack" time into a route so that the UAV may incur

wait times without missing its deadline, then the cost of wait time is relatively low

until all of the slack time is used, whereas any additional wait time will cause the

UAV to fail to destroy a target on time. This could have a very high potential cost if

the target was of strategic importance. Freed et al. [15] has quantified wait time cost

with respect to UAV surveillance for the purpose of evaluating computer algorithms,

but more research is needed in this area.

2.4 Conclusion

Several studies, particularly those conducted by Ruff et al. [34, 35], have investigated

what levels of automated decision support are appropriate for multiple UAV supervi-

sory tasks. The general conclusions are that manual levels of decision support might

perform adequately when controlling smaller numbers of UAVs, but larger numbers

of UAVs quickly overwhelm operators. Higher levels of decision support, LOA 6 and
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higher from Table 2.1, appear to have performance advantages over lower levels of

decision support under nominal conditions, but operators are likely to have degraded

SA and therefore cannot adapt to abnormal, unexpected conditions. Review of cur-

rent literature suggests that to strike the best balance between performance and SA,

moderate levels of automation, LOAs 4 or 5 (Table 2.1) should be used.

However, all of these studies focused solely on human performance metrics and did

not consider the overall system in their evaluations. From the system performance

perspective, it is important to model the sources of wait times, especially since these

times could potentially lead to system failure. The impact of increasing levels of

automation on overall wait times is unclear, but some trends can be predicted for

individual wait time components. In particular, wait times due to interaction and

queuing should decrease with level of automation, while those due to situation aware-

ness should increase only at very low or high levels of automation.

The remainder of this thesis will seek to extend previous work on appropriate

levels of automation for time-critical multiple HSC tasks, specifically for UAV super-

vision, but from a mission-centered as opposed to a human-centered perspective. In

addition to the previous studies that examined automation strategies, in this research,

human and system performance will be measured simultaneously and evaluated both

individually and against each other.
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Chapter 3

Simulation and Interface Design

This chapter presents the details of a multiple vehicle supervisory control simulation

and interface developed to study the effects of automation levels on human and system

performance in time critical applications. Explanations of this program's function-

ality, appearance, and usage are outlined, and the rationale behind the program's

design is offered.

3.1 Overview

In order to study how levels of automation affect temporal constraints in human su-

pervisory control multiple task management, a dual screen simulation test bed named

the Multi-Aerial Unmanned Vehicle Experiment (MAUVE) interface was developed

(Figure 3-1) that allows an operator to effectively supervise four UAVs simultaneously,

and intervene as the situation requires it. Using this interface for subsequent exper-

iments, subjects took on the role of an operator responsible for supervising 4 UAVs

collectively tasked with destroying a set of time-sensitive targets in a suppression of

enemy air defenses (SEAD) mission. The simulated UAVs were highly autonomous,

and therefore only required operators to provide high level mission planning and

input execution actions to the UAVs. The UAVs launched with a pre-determined

mission plan that came from an air tasking order (ATO), so initial mission planning

to include target assignments and routes was already completed prior to launch. The
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Figure 3-1: The MAUVE Dual Screen Interface

operator's specific tasking in the MAUVE simulation was to monitor each UAV's

progress, re-plan aspects of the mission in reaction to unexpected events, and in some

cases manually execute mission critical actions such as arming and firing of payloads.

3.2 Navigation Display

The UAVs supervised by subjects in MAUVE were capable of 6 high-level types of

actions in the simulation: 1) traveling enroute to targets, 2) loitering at specific loca-

tions, 3) arming payloads, 4) firing payloads, 5) performing battle damage assessment,

and 6) returning to base. Battle damage assessment (otherwise known as battle dam-

age imagery or BDI) is the post-firing phase of weapons release where it is determined

whether the weapon(s) hit the target, and if the desired effect was achieved. Table

UAV Action Color
Enroute Blue

Loitering Orange
Arming Payload Yellow
Firing Payload Red

Battle Damage Assessment Brown
Return to Base Green

Table 3.1: Color Coding of UAV Actions in MAUVE
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Figure 3-2: The MAUVE Navigation, Mission Planning and Execution Display

3.1 outlines the color coding assigned to each of these actions in the simulation.

The left-hand side of the MAUVE interface is known as the navigation display,

and it consists of a mission time window, map display, and a mission planning and

execution bar (Figure 3-2).

3.2.1 Mission Time Window

At the top right of the map display is a mission time box showing both time elapsed

and time remaining in absolute and relative terms. Due to the time critical nature

of the set of targets to be destroyed and the large number of tasks to be performed

while supervising four UAVs, time management and scheduling is the fundamental

problem faced by operators in MAUVE. Operators are supported in meeting the
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global deadline for the mission by the time remaining and end of strike timers, while

the time elapsed and current time displays aid operators in meeting local, individual

target deadlines.

3.2.2 Map Display

The map display (Figure 3-3) represents a two-dimensional spatial layout of the bat-

tlespace, updated in real-time. The icons used in the map display (Figure 3-3) fol-

low the MIL-STD-2525B'standard whenever possible, which is the US DoD interface

standard for common warfighting symbology. A legend very similar to Figure 3-3 was

available for users to toggle on or off as desired.

The UAVs on the display are numbered 1 through 4, and they independently

change colors according to the action being performed by them at that instant (Table

3.1). Latitude and longitude markers on the left and top sides of the window give

the operators absolute location references. The current mission plan for each UAV is

indicated by thin black lines, with arrows at the bisector of each segment indicating

the direction of traversal. The thick light green line around one of the mission plans

indicated that plan was the one currently selected by the user. For instance, in Figure

3-3, UAV4's route has been selected by the user.

Targets are designated by a diamond-shaped icon, and are assigned a relative

importance to the mission plan (priority) of high (H), medium (M), or low (L). All

target names follow a naming convention of T-XXP, where "T" indicates it is a

target, "XX" is a unique identifying number, and "P" is its priority. All target

names are super-imposed on the relevant icon (Figure 3-4) and active targets are

differentiated from inactive targets by their color, which is either red or gray on the

display, respectively. An inactive target is any target that had either was destroyed

or its TOT deadline passed.

Waypoints, which are shown on the map display with black triangle icons, rep-

resent UAV turn points while enroute. Naming of waypoints follows the convention

1A military standard (MIL-STD) is a specification which lists and explains a compilation of

prerequisites that an item must meet for US DoD acceptance

48



LEGEND

UAV

*Active Target

Inactive Target

Base

A Waypoint

Loiter Point

Threat Area

(a) Legend (b) Map Display

Figure 3-3: The Map Display with Legend

WP-XY, where "WP" indicates the object is a waypoint, "X" is the UAV number that

the waypoint is associated with, and "Y" is a unique identifying letter for the specific

route. Loiter points are represented in a similar fashion. The naming conventions are

identical, except loiter point names begin with the letters "LP" and their icons have

an additional circle around the black triangle graphic. Functionally, a loiter point

is the same as a waypoint except that when a UAV reaches a loiter point, the UAV

loiters for a user-specified amount of time before moving on. Minor adjustment to

UAV routes on the map display can be made by selecting a particular waypoint or

loiter point (indicated by a dark green highlighting as seen at the top of Figure 3-3)

and dragging it across the display to the desired location. More significant routing

changes such as the addition or removal of waypoints, loiter points, or targets (to-

gether known as navigation points) is accomplished using the mission planning and

execution bar which is described in Section 3.2.3.

Threat or hazard areas are always circular in shape with a striped yellow coloring
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Figure 3-4: An Active Target with Mouse-Over Pop Up Window

pattern, and use the naming convention H-XX where "H" indicates the object is

a threat/hazard and "XX" is a unique identifying number. Threat areas can be

dynamic throughout scenarios through either changing size, locations, disappearing

entirely, or periodically emerging. Users can obtain more detailed information about

particular screen elements on the map display by briefly hovering the mouse cursor

over them. While doing so, a small orange pop-up window appears next to the screen

element (Figure 3-4) showing that screen element's name, position in degrees latitude

and longitude, and if a target, the beginning and end of its TOT window. The TOT

window start and end were designated by the ToT and To headings, respectively

(Figure 3-4).

3.2.3 Mission Planning and Execution Bar

Located on the far left of the navigation display, the mission planning and execution

bar (Figure 3-5), supported the majority of human interaction with the UAVs. Each

UAV has its own mission planning and execution bar that is selected by either clicking

on the desired UAV's status window on the decision support display (Figure 3-7),

or on the UAV icon in the map display. As described in section 3.2.2, light green

highlighting around the UAV's status bar and its current mission plan in the map

display told subjects which UAV and route was currently selected.

Mission Planning

Through the mission planning interface, users are able to manipulate the set of targets

each UAV visits (including order of visitation), their deadlines, and the path the UAV
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travels between them. A key element in mission planning is the target assignment

queue window (Figure 3-5). The target assignment queue lists all targets currently

assigned to a UAV in the order they were to or did visit, so it serves as a time history

and future prediction of all targets currently assigned to that UAV. Just like the map

display (Section 3.2.2), inactive targets are grayed out in the list to differentiate them

from active targets. Battle damage assessment is toggled to the opposite setting of

"con") or "off" for a particular target by selecting it in the target assignment queue and

clicking the "Target BDA" button to the immediate bottom right of the window. A

check mark beside a target indicates that battle damage assessment is currently "on",

or scheduled for that target. BDA is semi-automated in the sense that the operator

is responsible for scheduling BDA in advance, but the UAV performs it automatically

after firing, if scheduled. Due to the planned approach to this function, the user

chooses whether BDA is performed on a target before the arming window occurs.

Subjects can also change the order that targets are visited by hitting the "Move up"

or "Move down" buttons beside the top right of the target assignment queue. In doing

so, the mission paths on the map display are automatically re-planned with straight

line paths between the new set (or ordering) of targets. All existing waypoints and

loiter points on the affected paths are deleted.

The "Request TOT Delay" button allows users to have a limited opportunities

to manipulate the set of TOTs they are attempting to meet in any given scenario.

Subjects can request a time-on-target (TOT) delay for a given target for two reasons:

1) According to the current mission plan, a UAV is predicted to arrive late to that

target and therefore miss its deadline, or 2) for workload purposes, i.e., if a subject

feels they need to spread out workload to manage the UAVs more effectively. However,

this function must be used with care because moving back one target's deadline affects

a UAV's arrival time at all subsequent targets. Users have to be careful that they

are not causing additional missed targets farther in the future in return for near

term gains. This change of TOT is a request, not a command, and the request can be

approved or denied. The probability of approval is a function of how far in advance of

the deadline the request is sent, as would likely be the case in true military situations.
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The probability distribution for chance of approval is given by Equation 3.1. Subjects

do not know the actual probability function but are aware that if they want to move

a deadline, they have a greater chance of doing so farther in advance.

P(Approval) = 1.0 - e-t/450 (3.1)

where t = time in seconds before deadline request was sent

When a TOT deadline is immediately approaching, the chance of approval is near

zero, but nearly 1.0 when requested 15 minutes in advance, which is as far ahead as

the decision support shows for higher levels of automation. A request always takes

5 seconds to come back, and during this intervening time no other TOT requests for

any other targets can be made. Users can request as many TOT delays as they wish

for a given target, but there is no guarantee of ever having one approved. Requesting

TOT delays requires focused operator attention for extended periods of time, which

can be problematic because it may be more appropriate to focus on another more

time-critical task, such as re-planning a route due to an emergent threat.

Targets can be added and removed from specific UAV's routes by hitting the "Add

Target" and "Remove Target" buttons. To add a target, subjects first select from the

list of eligible targets in the pull-down box immediately below the button. In order for

a target to be eligible to be added to a route, it cannot be a part of any other route.

If a user wishes to switch a target to a different route, they must first remove it from

one route before adding it to another. This was done deliberately to ensure a target

could only be assigned to a single UAV. Frequently there are no unassigned targets

in the battlespace, so in this case the option to add a target was disabled entirely, as

seen in Figure 3-5. The "Remove Target" button works similarly, the only difference

is that the target to be removed can additionally be selected by clicking on it in the

target assignment window. The "Remove Target" button is primarily used to remove

particular targets from the mission plan after a re-planning message gives orders to

do so, but it is also used to re-assign targets between different UAVs. The "Add

Target" function is required when an emergent target appears, when a missed target
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Figure 3-5: The Mission Planning and Execution Bar

is added back to the schedule, or when an operator wants to assign a target to a

different route.

The final mission planning functions available to users of the MAUVE interface

are the ability to add and remove waypoints and loiter points. Removing waypoints

and loiter points is a simple 2 step process. First, users click on the waypoint or

loiter point on the map display that they want to remove, and then they hit the

"Remove Waypoint" or "Remove LoiterPoint" button. To add a waypoint, users hit

the "Add Waypoint" button and click on the map display where they want to place

it. Based on the currently selected route, the simulation attempts to add it to the

nearest route segment. From there, users drag the waypoint to any desired location

on the map display. Adding a loiter point through the "Add LoiterPoint" button
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worked similarly, except upon placement, a dialog box appears on the map display

that asks users how long they wish to have the UAV loiter at that specific point.

Users could add waypoints to avoid threat areas, while loiter points could be used if a

user wanted a UAV to remain in a certain area for a specific reason. One such reason

would be that the operator suspects a high priority emergent target might appear at

a later time.

Mission Execution

The mission execution functions available in MAUVE are arming, firing, performing

BDA (described in Section 3.2.3), returning to base, and moving to another target.

Figure 3-6 shows a nominal sequence of mission execution events that a UAV performs

at an active target. The sequence occurs as follows: UAV 4 arrives at active target T-

1L before the start of that target's firing window (1), loiters until the beginning of the

arming window (2), arms during the arming window (3), fires during the TOT window

(4), performs BDA immediately after firing (5) and after finishing BDA, moves onto

the next target automatically (6). Step 2 might be skipped if the UAV arrived late

to a target, i.e., in that target's arming or firing windows. Step 6 (performing BDA)

was not required at every target.

The "Arm Payload" and "Fire Payload" buttons on the Mission Planning and

Execution Bar (Figure 3-5) are only enabled if the rules of engagement (RoE) (Ap-

pendix A) of the simulation are met. For arming, this means that the UAV is directly

on top of a target and the mission time is within the arming or firing windows, and

for firing it means that the UAV is at the relevant target, within the arming window,

and already armed. In either case, the arming or firing buttons are not enabled unless

the relevant action is predicted to finish by the end of the firing window.

The "Move to Next Target" button causes the selected UAV to start moving

enroute to the next scheduled target, and can only be used in off-nominal situations.

It is required because the automation rules governing UAV behavior cause every UAV

arriving at an active target to loiter indefinitely unless the user intervenes, such as

arming and firing on that target. However, if arming and firing does not occur within
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(1) (2) (3)

(4) (5) (6)

Figure 3-6: A Series of Typical UAV Actions at an Active Target

the appropriate windows, then that target is missed and the user needs a way to get

the UAV moving again. There could be situations in the simulation where the RoE

changes such that a previously designated target should not be destroyed, thus in this

case arming and firing on certain targets is not desired. In terms of Figure 3-6, the

"Move to Next Target" button is a way to go from Step 2 to Step 6 directly.

The "Return to Base" function causes all future targets, waypoints and loiter

points to be deleted from the individual UAV's mission plan, and a straight line path

for that UAV is planned directly back to base. It is used whenever subjects want to

get a UAV back to base as soon as possible.

3.3 Decision Support Display

The right-hand side of the MAUVE simulation is termed the decision support in-

terface, and it consists of a UAV status window, chat box, UAV health and status

updates, and the decision support window (Figure 3-7).
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Figure 3-7: The MAUVE Decision Support Display

3.3.1 UAV Status

The top left of the decision support display contains a status window (Figure 3-8) that

gives the operator low level, detailed information for each UAV. This window shows

each UAV's current target, current status, position in latitude and longitude, course,

and weapons information. The current target field indicates which target the UAV

is currently scheduled to reach or the target it was currently loitering at, depending

on whether the UAV was enroute or loitering. The UAV's current action field has a

description consistent with the color of the UAV on the map display (Figure 3-3) as

well as the icon on the right of the panel. The payload ready indicator always reads

either "1" or "0". If it shows "1" instead of "0", this means that the UAV has armed

for its current target, and is available to fire.
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Stau: Enroute AMlude 10000 MSL
Current Target T-3H Course: 45'
LaWiude: 27:38:25.5 N Speed: 2500 kts
Longitude: 042:09:52.4 E PA*ad ReW.: 0

Statu: Enroute ANiud. 10000 MSL
Curest Targ: T-1 1 M CoursE 239'
Lentude: 22:27:21.2 N Speed: 2500 kts
LengitudE: 049:24:44.4 E PqAead Rea*ts 0

Saus: Arming Atitude 10000 MSL
Cureut Target T-4H Course 187'
Lamman- 22:22:04.8 N Speed: 2500 kts
Longitude: 041:07:01 .9 E Pagind Redi: 0

Status: Firing Akiude: 10000 MSL
Currat Target T-1L Cours: 5*
Ladude 27:26:08.2 N Speed: 2500 k s
LongitudE 049:44:25.2 E Pylead Rea 1

Figure 3-8: The UAV Status Displays

Speed and altitude are also shown in the status display, although they are not

directly controllable by operators. Each simulation is run approximately 4 times

faster than real time so an entire strike can take place over 30 minutes (instead of

several hours as is commonplace in real life strikes), thus the speeds shown are not

representative of true UAV simulated velocities.

3.3.2 Chat Box

The bottom left of the decision support display holds a text-based communication

tool known as a chat box (Figure 3-9) that contains a time history of all human

interaction. The chat box is an established method of communications in current day

military command and control scenarios [6}. The use of a chat tool in the MAUVE

simulation adds ecologic and external validity as a secondary workload and situation

awareness tool [8].

The chat box window displays various notification messages that appear in re-
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Message History
Base (12:07:13) -> New TOT for T-5H is 12:17:1OZ - 12:17:30Z
Base (12:07:40) -> Which future high priority target would provide the greatest decrease in a single
UANs travel time, if removed from the ATO?
Base (12:07:47) -> Request to move the TOT for T-9L was approved
Base (12:07:47)-> New TOT for T-9L is 12:21:06Z - 12:21:26Z
Operator (12:08:30): 10
Intelligence (12:08:45) -> Reporting the following emerging threats: H-4
Base (12:08:55) -> How many active medium priority targets remain to be destroyed?
Intelligence (12:09:30) => Reporting the following emerging targets: T- 18M
Intelligence (12:09:40) -> The following targets have been re-assigned to another strike mission: T -14L

SEND

CLEAR

Figure 3-9: The Chat Box Window

sponse to scenario events or actions taken by users, as well as periodic task-relevant

questions for operators to answer. A scroll bar on the right side of the chat box

ensures that subjects can scroll up to see a complete time history of all messages for

the current session. The accuracy and time delay in responses to the online queries

are measured to obtain an objective measurement of situation awareness as well as

secondary workload, or spare capacity. Messages in red are from intelligence com-

manders and always require an immediate re-planning response by the operator. An

arrival of one of these high priority messages is signaled by an audio alert to ensure

operators were aware of these events as they occurred. Messages in bold black are

questions about the current situation from a remotely located commander or supe-

rior officer. A response is required, but is a lower priority task than supervising the

UAVs. Messages in plain black are purely informational messages that do not require

a response. One informational message that is particularly important to operators

are notifications that TOT requests had been accepted or denied. If a TOT request

is denied, a pop-up box appears on top of the map display, an audio alert sounds, and

a message stating the denial appears in the chat box. If it is approved, the requested

target's TOT is moved and a message stating the approval and new deadline for that

target appears in the chat box.
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Health & Status Updates
UAV 2 (12:15:19)-> Arming for T-11M
UAV 2 (12:15:25) -> Arming completed for target T- 1 IM
UAV 2 (2:15:26) -> Available to fire for target T-1M
UAV 2 (12:15:27) -> Firing on T-1 IM
UAV 2 (12:15:33) -> Firing completed for target T-1 IM
UAV 1 (12:21:26)-> Available to arm for target T-13L
UAV 1 (12:21:26) -> Arming for T-13L
UAV 1 (12:21:31) -> Arming completed for target T-13L
UAV 3 (12:21:31) => Under Fire from threat H-2
UAV 1 (12:21:36) -> Available to fire for target T-13L
UAV1 (12:21:39) -> Firing on T-13L
UAV 3 (12:21:42) => Under Fire from threat H-2
UAV 1 (12:21:45) -> Firing completed for target T- 13L
UAV 3 (12:21:52) => Under Fire from threat H-2
UAV 3 (12:22:02) => Under Fire from threat H-2

Figure 3-10: The UAV Health and Status Updates Window

3.3.3 UAV Health and Status Updates

The bottom right of the decision support display contains a notification window

similar in appearance to the chat box (Figure 3-10). The health and status updates

window separates human from system communications, and therefore only contains

messages from individual UAVs. This reduces clutter and confusion about the source

of incoming messages in the chat box window while still allowing the system to notify

the operator of important changes.

The system generates three types of messages in MAUVE: 1) emergency health

messages in red, which are accompanied by an auditory alert, 2) important status

messages in bold black, and 3) lower priority informational status messages in stan-

dard black. The emergency health messages are generated when a UAV is under fire

from a threat area. Higher priority status messages are automatically sent by UAVs

when they are ready to arm and fire, and the UAVs also send lower priority messages

informing the operator of their status during all stages of arming and firing.

59



3.3.4 Decision Support

The decision support, represented by timelines, always appears in the top right of

the decision support display (Figure 3-7). The manipulation of the appearance and

functionality of this window is the primary independent variable of the experiment

that will be discussed in Chapter 4. There are four possible forms of decision support

in MAUVE that represent levels 1, 2, 4, and 6 on Sheridan and Verplank's levels

of automation scale (Table 2.1), termed manual, passive, active, and super active

respectively. This section will discuss the functionality and rationale behind the

design of each of these levels, but leave the experimental design details for Section

4.5.

The basic premise of the decision support is to simplify standard air tasking order

(ATO) data and combine it in a single interface with up-to-date mission planning

information. An ATO provides a schedule of events and required resources needed

over a period of hours and/or days for an offensive attack. Examples of information

contained in an ATO are which aircraft/UAVs are assigned to certain strikes, times

on targets, waypoints that must be flown on those strikes, and call signs to be used on

those missions. As air tasking orders often involve a large number of aircraft with mul-

tiple missions, they are complex and often hard to interpret, particularly under time

pressure. Despite this, operators are still expected to extract the information they

need in a timely manner. Figure 3-11 shows part of a typical paper-based ATO from

Operation Desert Storm that illustrates how difficult it is to extract relevant informa-

tion from these tasking documents. Once operators have obtained this information

and the mission commences, they must constantly compare the current and projected

mission status to the ATO and make adjustments to ensure compliance with mission

requirements. Combining these sources of information, which often include external

sources as well, is a cognitively demanding task that can easily overwhelm operators

under time pressure, particularly when supervising multiple vehicles at once. It is

for these reasons that the decision support in MAUVE is directed at simplifying this

process. While it is known that some level of decision support is required to more
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Figure 3-11: Example High-Level ATO Document

effectively manage ATO information and scheduling, it is not clear what level of au-

tomation will provide the most improvement in overall schedule maintenance while

avoiding negative side-effects, such as a loss of situation awareness. Therefore, four

versions of the decision support were created and structured so that higher levels of

decision support expanded upon the features found in lower levels while still retaining

all of the functionality and basic information content from previous levels.

The fusion of basic ATO information with current mission planning information

resulted in a decision support structure with both hard and soft constraints. As a

mission plan is continually modified by operators in response to events unfolding in the

battlespace, it does not necessarily have to satisfy the ATO, so the decision support

was designed to compare the ATO to the current mission plan. Hard constraints

built into the decision support come from the ATO and include such information as

the set of targets for the current mission, the TOT windows or deadlines for each

of those targets and whether or not the target requires BDA. ATO elements can

change occasionally during discrete re-planning events, but as far as the operators

are concerned, these are static elements not under their control. Soft constraints on

the mission can be directly manipulated by operators and includ elements such as
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the set of targets each UAV is due to visit, estimated time of arrival (ETA) at all

navigation points, and whether BDA would be performed at each individual target.

This information is shown separately for each UAV.

Manual

The manual level of decision support (Figure 3-12, LOA 1) presents all required ATO

and mission planning information in a text-based table format. Under the "Current

Target" and "Upcoming Active Targets" headings, current TOT windows and ETAs

for up to the next 4 targets in queue are presented next to each other for easy

comparison. ETAs for arrival back at base in the "Mission Finish" column are listed

as well as the next waypoint or navigation point on the current route segment (if

applicable) under "Next Waypoint or Loiterpoint". Further assistance is provided to

the operator through the "Next Expected Action" column, which tells the user what

they should be doing next and at what time, according to the ATO and mission plan

depicted on the map display. All of this information is updated dynamically to reflect

changing ATO requirements and mission planning changes initiated by the operator.

With some effort, all of this information could be mentally constructed to create

an accurate future schedule for each UAV. For example, in Figure 3-12 the decision

support for UAV 3 tells the following story: UAV 3 will arrive at waypoint WP-

3A at 12:05:48, before moving onto target T-12L and arriving at 12:07:41, almost

1.5 minutes before the start of that target's firing window at 12:09:15. The next

two targets in the queue are T-4H and T-10H, and the UAV's current ETAs at

those targets are both before the start of the applicable firing windows, so this UAV

currently is ahead of schedule. Assuming everything goes according to plan, the UAV

will arrive back at base at 12:26:10. This level of decision support is termed manual

because the automation does not take any decisions or actions for the human. The

ATO is simply organized in a digital format for easer reading as compared to a paper

version (Figure 3-11).
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Figure 3-12: Example Manual Decision Support Window

Passive

The passive LOA (Figure 3-13, LOA 2) takes all of the ATO and current mission

information contained in the manual level and transforms it into a horizontal timeline

format color coded by action (Table 3.1). The major difference between this and the

manual level is that the entire schedule is visually integrated with both color and

iconic representation. These are display design interventions that reduce cognitive

load by allowing operators to directly perceive relationships instead of deriving them

through calculation, inference, and data transformation. Spatial relationships and

actions are understood better with visual representations as opposed to linguistic

[37], thus this passive display should improve performance over that of the manual

display.

The visual timelines are relative and represent time up to 15 minutes into the fu-

ture. Figure 3-14 illustrates the standard elements of a representative visual timeline.

As can be seen from the diagram, target ETAs are represented by black rectangles

on the bottom of each timeline, and waypoint, loiter point and base arrival times are
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Figure 3-13: Example Passive Decision Support Window

marked by black triangles on the top of each timeline. ATO elements such as target

TOT windows, arming windows, and times when BDA is required are represented by

red, yellow and brown blocks of time at the appropriate times.

With this visual representation, recognizing problems with the current mission

plan becomes a process of comparing the relative location of display elements instead

of specific times to one another. The visual task is much easier and faster to perform

because it only involves perception, as opposed to the cognition required to compare

the ETA and TOT numbers to each other. An example of how users recognized

problems with the mission plan using this visual timeline is as follows: in Figure

3-13, the ETA marker for target T-5H (assigned to UAV 4) is entirely to the right of

that target's firing window. This means that UAV 4's arrival time to T-5H is after the

deadline for that target, and a upon seeing this, users knew right away that they were

going to miss that target and that they had to act to change this. Another emergent

feature of this display is that if the color of the UAV icon to the immediate left of the

timeline is not the same color as the current timeline block, the operator immediately

knows that the UAV needs attention, as this means that the UAV is missing a target
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Figure 3-14: Representative Decision Support Visual Timeline

deadline specified by the ATO. This level of decision support is termed passive because

the automation is not performing any tasks except transforming the basic ATO and

mission planning information into a graphical format.

Active

The active LOA (Figure 3-15, LOA 4) uses the same horizontal timeline format

as the passive automation level, but provides additional computer aid to the user.

In this version of the decision support, an algorithm searches for periods of time

in the schedule that it predicts will cause high workload for the operator, and it

directs the operator's attention towards them. The computer identifies high workload

areas, or "bottlenecks" as periods of time during which multiple UAVs are scheduled

to be simultaneously executing mission critical actions, defined as arming, firing,

or performing BDA. The automation draws attention to these areas of concern by

a reverse shading technique, in which the "bottlenecks" are highlighted while the

rest of the timeline's colors are muted into the background, but still visible. As no

information is hidden, only made less salient, the operator's attention is directed to

the appropriate areas of the schedule while allowing them to maintain SA for the

rest of the mission. This technique also does not require any drilldown to subsequent
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Figure 3-15: Example Active Decision Support Window

screens to solve the problem, so it permits operators to make local changes to alleviate

workload and immediately see their effect on the global mission plans of all UAVs.

In addition to identifying areas of high workload, the computer also recommends

a course of action to spread out the operator's workload, such as the delay of a

particular TOT. Computer recommendations appear in gray boxes to the right of

each UAV's timeline that they pertain to (Figure 3-16). It should be noted that

while the automation makes locally optimal recommendations, the algorithm is not

globally optimal. In other words, following the computer's recommendation to relieve

a high workload area always removes that particular schedule conflict, but sometimes

it creates another in the process.

Schedule changes to relieve areas of high workload are requested by the operator

if they so desire (Section 3.2.3). The active level of decision support gives subjects

several options: 1) they could acknowledge a high workload area but take no action,

2) they could follow the recommendation to relieve the projected high workload area

by shifting a TOT, or 3) they could make other mission planning changes to ensure

the high workload area does not occur in the first place, such as removing a target
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NEI
Figure 3-16: Automation Recommendation for a TOT Delay Request

from a UAV's mission plan. If all high workload areas are taken care of by the

operator, full color is restored to the timeline and the automation looks and acts like

the passive level of automation until such time that a schedule change creates a new

high workload area.

An approved TOT delay request causes the deadline for the relevant target to

automatically be moved back in one of the following ways: 1) 30 seconds, or 2) far

enough back to prevent that target's arming, firing or BDA windows from occurring

in the same time period as any other overlapping targets. For example, if a target has

a firing window that overlaps with two other high priority targets assigned to other

UAVs, an approved TOT request for that target would move it back 45 seconds or

more to avoid the start of that target's arming window overlapping with the other

targets' BDA windows. In this way, TOT requests occasionally move a target's TOT

window back a minute or more. The algorithm also ensures that deadline moves do

not create conflicts with other targets assigned to the same UAV.

The purpose of this level of automation is to help operators to identify time

periods of potential concern where they could be overwhelmed farther in advance,

so that they can better plan to avoid them, or at least be better prepared to handle

them. This level of decision support is termed active because the automation narrows

down a set of possible solution alternatives for high workload problems to a single

recommendation, consistent with Sheridan's level 4 of automation.

Super Active

The super active LOA (Figure 3-17, LOA 6) also builds upon the passive level vi-

sual timeline, but instead of making recommendations to the operator as in the active

LOA, a management-by-exception approach is taken whereby the computer automat-
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Figure 3-17: Example Super Active Decision Support Window

ically executes the arming and firing actions for all UAVs at each target, when the

rules of engagement for such actions are met (Appendix A). For example, in order

to fire, a UAV has to be located at the particular target it is due to fire on, already

armed, and the scenario time within the TOT window for that target. It should

be noted that there are no special rules of engagement for the super active level of

automation; the computer follows the same rules for humans in other LOAs. In this

way, responsibility for executing routine arming and firing actions is removed from the

operator, rendering the computer recommendations of the active level unnecessary.

However, the operator is still responsible for determining if the arming and firing

actions are appropriate, and for re-planning actions and manipulating routes to ensure

the UAVs arrive at the correct targets on time. Up to 30 seconds in advance before

every arming and firing action, exception boxes (Figure 3-18) appear to the right of

the timeline that allow the operator to veto these actions. These exception boxes

show which target the UAV is due to fire on, which action the UAV is preparing

to take, when it will take it, and it contains a countdown timer that indicates how

many seconds from current time that the action will be executed. The color of the
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Figure 3-18: An Arming Exception Box Under Super Active Automation

box redundantly indicates which action the UAV is preparing to perform: red for

firing and yellow for arming. This color also matches the next timeline block in the

relevant timeline. This level of decision support is termed super active because the

automation is performing all of the mission critical execution actions for the user.

Summary

Figure 3-19 shows the progression of the decision support window as the level of

automation selected in the MAUVE program moves from manual to super active.
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(a) Manua

(c) Active

(b) Passive

(d) Super Active

Figure 3-19: The 4 Possible Levels of Decision Support in MAUVE
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Chapter 4

Hypotheses and Methods

The first part of this chapter presents hypotheses where predictions are made for

trends in system performance for each of the four levels of decision support in the

MAUVE simulation program and interface described in Chapter 3. The last half of

the chapter provides the details of an experiment conducted with MAUVE evaluating

different levels of automation in the context of both human and system performance.

Major areas of the experiment that are outlined in this chapter are the experimental

objectives, apparatus, participants, and the experimental design.

4.1 System Performance Hypotheses

The discussion regarding the effects of automation on wait times in Chapter 2 can

now be extended to make predictions about the specific levels of decision support in

the MAUVE interface. This section describes the features of the MAUVE simulation

and interface that have an impact on wait times, and makes wait time predictions

based on these features and the theory introduced in Chapter 2.

4.1.1 Interaction Wait Time (WTI)

Interaction time in MAUVE is likely to be significantly influenced by the timeline

introduced for higher levels of decision support, as it provides a visual, color-coded
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representation of critical temporal information needed to properly task the UAVs.

Vertical stacking of the timelines and status display make it possible to observe all

vehicle actions simultaneously. As the operator re-plans, the timeline automatically

updates thus allowing problem spaces to be more easily explored. All of this in-

formation is available under manual automation, but it cannot be obtained without

substantial cross-checking of table entries, and the table format does not facilitate

schedule comparisons across different vehicles. Therefore, due to the increased visi-

bility and ease of determining temporal relationships between different ATO elements

on the visual timeline, WTI should be lower for the passive, active and super active

levels of automation in comparison to the manual level.

As the active level of automation further guides vehicle selection and planning

(components of WTI, see Section 2.3.2) by drawing attention to predicted high work-

load blocks of time and making recommendations for specific UAVs to alleviate work-

load bottlenecks, the total WTI for active automation should be less than the passive

level. Under super active automation, planning times for expected events such as

arming and firing will be decreased to near zero, as the UAVs autonomously perform

all major tasks but re-planning for the human. As a consequence of the high level of

automation, the vehicle selection decision is also taken away from the human, thus

decreasing subtask selection to nearly zero as well. Therefore, in combination with

the benefits of the visual timeline, super active should have the lowest total WTI

of any of the levels of automation. Combining all of these predictions together, this

means that there should be a decreasing trend of WTI with increasing level of au-

tomation. Total WTI should increase with higher levels of re-planning, as a higher

number of events occurring in a scenario of similar difficulty means that there will be

more opportunities for WTI to accumulate.

4.1.2 Wait Time in the Queue (WTQ)

As outlined in chapter 2, WTQ depends heavily on WTI, which is expected to decrease

with increasing levels of automation in MAUVE. Therefore, WTQ should follow the

same decreasing trend as level of automation increases. WTQ should also increase
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with greater levels of workload and uncertainty because again, WTQ follows the

same trends as WTI, but also because at higher levels of re-planning, events occur

at a faster pace. Therefore, there should be a greater number of opportunities for

queues of tasks to occur.

4.1.3 Situation Awareness Wait Time (WTSA)

As stated in Section 2.3.2, the super active level of automation should eliminate any

wait time due to the loss of SA for planned events. This is because under this level the

system autonomously carries out the mission plan, so long as the mission plan guides

the UAVs to the correct targets at the right times. When unexpected events occur,

operators may have low levels of SA due to boredom or complacency, and therefore

they may incur WTSA by not noticing that the mission plan needs adjustment or

that a UAV has stopped progressing along the mission plan and needs attention. In

contrast, under the manual level of automation in MAUVE, the operator is responsible

for both execution and re-planning. With very little automation assistance, these

dual responsibilities increase workload, which could induce low levels of operator SA.

As SA decreases, there is no guarantee that wait times will occur, only that the

probability of WTSA occurrence is more likely. However, given the greater number

of opportunities for this human error to occur under manual decision support, it

should have the largest total amount situation awareness wait times amongst all

LOAs, while the super active level should have comparable WTSA. The active and

passive levels should have the lowest accumulated WTSAs, as the moderate levels of

workload (as compared to manual and super active) provided by these LOAs should

cause operators to have an optimum level of SA. WTSA should increase with higher

levels of re-planning, as the additional workload placed on operators due to these

events will induce lower SA.
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4.1.4 Summary

In general, increasing levels of decision support in MAUVE should result in lower

aggregate levels of WTI and WTQ, while WTSA will be lower in the passive and active

modes (Figure fig:WTTrends). It is not clear which of these components dominates

total wait time, or even if a single component will dominate across all factor levels.

Increasing workload and uncertainty introduced through higher levels of re-planning

will likely increase WTI and WTQ, while WTSA may be contextually dependent.

xx'

----- WTI
WTQ

- - WTSA

Lowest I-

I I I I
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Active

Level of Automation

Figure 4-1: Predicted Trends for Wait Time Components Across MAUVE LOAs

4.2 Experiment Overview

In order to address the hypotheses from Section 4.1, an experiment with the MAUVE

simulation interface (Chapter 3) was conducted. The goal of the experiment was to
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explore how human decision making in a time-critical, HSC multiple task management

context affected both human and system performance, and how different levels of

automation interacted with these measures. Through this experiment, the wait time

predictions as a function of level of automation in Chapter 2 could be validated and

the impact of system performance on human performance and vice versa quantified.

4.3 Apparatus

Training and testing was conducted on a four screen system called the multi-modal

workstation (MMWS) [28], originally designed by the Space and Naval Warfare

(SPAWAR) Systems Center as a test prototype to aid the development of human-

computer interface recommendations for future Navy C2 systems (Figure 4-2). The

top three screens used were 21" and were run at 1280 x 1024 pixels, 16-bit color reso-

lution, while the bottom screen was 15" and was run at 1024 x 768 pixels, 32-bit color

resolution. The workstation was a Dell Optiplex GX280 with a Pentium 4 processor

and an Appian Jeronimo Pro 4-Port graphics card. Subjects interacted with the sim-

ulation via a Logitech MX500 cordless mouse and a generic numeric key pad. This is

a typical set-up for the MMWS as described by Osga et al [28]. During testing, all

mouse clicks and both message box histories, including incoming and outgoing mes-

sages, were recorded by software. In addition, screenshots of both simulation screens

were taken approximately every two minutes, all four UAV locations were recorded

every 10 seconds, and a whenever a UAV's status changed, the time and change made

were noted in the data file.

The center top and top right screens contained the simulation navigation and

decision support windows, respectively (Figures 3-2 and 3-7). The top left screen

contained subjects' objectives in rank priority order for the scenarios (Section 4.5.3,

also seen in Appendix B), and was static throughout the experiment, while the bottom

screen contained the color coding for UAV actions in the simulation as a reference

(Table 3.1, also seen in Appendix B). This information was provided during testing

because pre-test feedback indicated it was a useful reminder, and to ensure that
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Figure 4-2: The Experimental Set-Up on the MMWS

participants were not required to memorize large amounts of information.

4.4 Participants

A total of 12 subjects took part in this experiment, 10 men and 2 women. Subjects

were recruited based on whether they had UAV, military and/or pilot experience.

The subject population consisted of a combination of students, both undergraduates

and graduates, as well as those from the local reserve officer training corps (ROTC)

and active duty military personnel. All were paid $10 an hour for their participation.

In addition, a $50 incentive prize was offered for the best performer in the experiment.

The age range of participants was 20 - 42 years with an average age of 26.3 years. 9

participants were members of the ROTC or active duty USAF officers, and included

seven 2nd Lieutenants, a Major and a Lieutenant Colonel. Correspondingly, the

number of years of military service ranged from 1-20 years, with 3 being the median.
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While none had large-scale UAV experience, 9 participants had piloting experience.

The average number of flight hours among this group was 120. See Appendix C for

a summary of the study demographics.

4.5 Experimental Design

4.5.1 Independent Variables

Two independent variables were of interest in this experiment: level of decision sup-

port, and level of re-planning. The level of decision support was a between-subjects

variable and the level of re-planning was a within-subjects repeated variable, so sub-

jects were randomly assigned to a LOA factor level but experienced all re-planning

conditions.

Level of Decision Support

As discussed previously in Chapter 3, to assess the impact of increasing levels of

automation on human and system performance, various forms of decision support

were provided to subjects that represented levels 1, 2, 4, and 6 on Sheridan and

Verplank's levels of automation scale (Table 2.1), termed manual, passive, active,

and super active respectively. The main differentiating features between the different

levels were:

* Manual - The ATO and mission planning information was presented in an

organized, digital table format for each UAV.

o Passive - The ATO and mission planning information was transformed into a

visual timeline format for each UAV.

o Active - The passive visual timeline was used to convey ATO and mission

planning information. Additionally, the computer identified areas of potential

high workload on the timeline for subjects and made recommendations to relieve

them.
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* Super Active - The passive visual timeline was used to convey ATO and

mission planning information. The computer took over automatic execution of

all arming and firing actions, and provided operators with the ability to stop

an automated action within 30 seconds of notification.

This was the primary independent variable for this experiment. For more discus-

sion and details on the various interface layouts and functionality, see Section 3.3.4.

Level of Re-planning

The secondary independent variable was the level of re-planning, either low or high,

which represents operational tempo. It has been demonstrated that in supervisory

control of multiple autonomous vehicles, increased operational tempo can be a sig-

nificant contributor to degraded human performance [7]. Schedule re-planning was

required if any of the following events occurred:

e An emergent target appeared in the battlespace

" A target was assigned to a different UAV strike mission

" An emergent threat area appeared in the battlespace

* A threat area became inactive

" A battle damage assessment requirement was added to an existing target

* A battle damage assessment requirement was removed from an existing target

* A system failure occurred, requiring a UAV to return to base unexpectedly

Low and high levels of schedule re-planning were investigated. The low re-planning

condition contained 7 re-planning events, while the high re-planning condition con-

tained 13. Groups of re-planning events were interspersed at approximately 3 minute

intervals, but under the low re-planning level these groups only ever consisted of a

single event. Under high re-planning, some groups were composed of 2 or 3 re-plans

occurring within 60 seconds of each other.
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4.5.2 Dependent Variables

Several dependent variables were used in this experiment: a performance score, wait

times as discussed in section 2.3.1, situation awareness, critical events, and sec-

ondary/subjective workload measures.

Performance Score

In order to adequately measure an overall level of performance for a given test session,

a performance score was created that incorporated how well subjects met the numer-

ous objectives for that session. The performance score was a product of the targets

correctly destroyed, including their priority and difficulty level, and number of times

BDA was correctly performed. The ATO specified that some targets in the scenarios

should not be destroyed, and so operators were significantly penalized for erroneously

firing on these targets. Penalties were also assessed for hits taken by UAVs in threat

areas and for having UAVs return to base beyond the mission time limit. A score of

zero on this rating scale indicated no objectives had been met in the session, while a

perfect score of 1000 meant that all mission objectives were met. For complete details

on the scoring formula and rationale behind its development, see Appendix D.

Wait Times

As outlined in Section 2.3.1, overall system wait time is composed of interaction

wait time (WTI), wait time in the queue (WTQ), and situation awareness wait time

(WTSA). In the context of the MAUVE simulation, system wait times were accumu-

lated whenever one or more vehicles were in a degraded state such that their activities

were counter to or not advancing the mission plan. This degraded performance could

have taken the following forms in the simulation:

* Unnecessary loiter time at a target, such as if a UAV was loitering at an active

target, but failed to fire before the end of the firing window, or if a target was

removed from the mission plan while the UAV was loitering at that target, and

any time spent loitering at a target while available to fire without actually doing
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so. In all cases, the UAV continued to loiter at the target indefinitely until the

operator issued it a subsequent command.

9 Any time from the beginning of any arming window until the UAV began the

actual process of arming. For missed targets, a full 30 seconds (10 second

arming window plus 20 second firing window) of wait time was assessed, as

during this time, people on the ground expected a weapon on target and it did

not happen. In this case, the wait times incurred can be thought of as times the

broader system was affected by the UAVs degraded performance. Additionally,

if a UAV missed performing BDA on a target it was supposed to, a 45 second

wait time was added to that UAV's total.

e Any time the UAV was performing incorrect actions, such as arming and firing

on a target removed from the mission plan by the ATO or performing BDA on

unnecessary targets. This also included time when UAVs were flying without

a specific purpose or goal in mind, such as when subjects were confused about

which target to fly to next and had the UAV moving in circles, back on itself,

etc.

e Time spent in threat areas, until the operator paid attention to the UAV and

planned a (reasonably) optimal path out of the threat area.

* The time period from when a return to base command was issued for a UAV

until the order was followed. This was a wait time because a RTB command

represented a system failure and the UAV could no longer perform its required

tasks for the mission.

From the recording of control activations, UAV locations, screenshots, and ob-

server notes taken during trials, an accurate "story" of the test sessions could be

re-constructed in later data analysis. From this, each of the wait times incurred was

classified into WTI, WTQ or WTSA. In general, a wait time was classified as WTI

if the UAV was receiving operator attention, WTQ if the operator was busy with
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another UAV and transitioned to the relevant UAV quickly after finishing that task

and WTSA otherwise.

Situation Awareness

As discussed in Chapter 2, situation awareness (SA) is generally defined as the per-

ception of the elements in the environment within a volume of time and space, and

the comprehension of their meaning and the projection of their status in the near

future. SA has three distinct levels, which are: 1) the perception of the elements in

the environment, 2) the comprehension of the current situation, and 3) the projection

of future status [13, 14].

Situation awareness in MAUVE was captured both objectively and subjectively.

The objective measure was obtained by how accurately subjects answered 12 online

questions asked at approximately 2 minute intervals in the chat box window. In order

to avoid confounding the responses with typing ability, all questions were designed to

have very short numerical answers a maximum of 4 keystrokes in length. Examples of

the types of information that were required by these communications are as follows:

* Which UAVs will arrive at their next navigation point by 12:05:00?

" If UAV 1 was issued a RTB command, which of its currently assigned active

targets could be most easily re-assigned and destroyed by UAV 4?

* How many targets have TOTs starting in the next 5 minutes?

* According to the current mission plan, how many UAVs will arrive at Base

within 2 minutes of UAV 4's arrival?

" Which future high priority target would provide the greatest decrease in a single

UAV's travel time, if removed from the ATO?

Six questions per session were designed to assess level 2 SA and the remaining six

level 3 SA. A question was considered a level 2 SA type of question if the answer could

be directly perceived from the decision support or map display, either right away or
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with a minor amount of data synthesis, while level 3 SA types of questions required

greater amounts of data synthesis and projection of current system states to future

states.

The answers to each question were graded on a 0-5 scale for correctness, with zero

points received if no response was received and 5 if the correct answer was given.

Intermediate scores of 1-4 were assigned based on the degree of correctness of the

answer given, and each question was also weighted on a scale of 1-5 to take into

account difficulty. The question weighting was based upon how many steps were

required to solve the problem, mediated by the context in which the question was

asked. Questions asked during periods of high workload were more difficult, and

sometimes question difficulty was influenced by scenario events. For example, the

question "How many targets have TOTs starting in the next 5 minutes?" became

harder to answer if scenario events were manipulated by a subject so that a target's

TOT deadline expired soon after the question was asked. Typically this was an easy

question because it could be directly perceived from the decision support, but the

decision support did not show deadlines in the past. In this case, subjects coming

back to answer the question at a later time had to read the decision support as well as

remember they destroyed or missed a target in the time since the question was asked.

Each response to a question was multiplied by the weighting for that question and

an aggregate score obtained before being divided by the total possible score. In this

way, an average SA score on a scale of 0-5 was obtained. The questions asked were

equally divided between those testing level 2 SA (data comprehension/synthesis) and

level 3 SA (projection) and SA scores for these categories were separately examined.

A subjective SA scale constructed from expert observer ratings was also con-

structed to test the validity of the objective SA measure, as subjective SA scales

based upon expert observer ratings have been found to be a reliable and valid mea-

sure way to measure SA [2]. This scale was based upon expert opinion on what were

judged to be the four most salient indicators of SA in the test sessions:

1. The number of entries into threat areas where the UAV received 3 or more hits

and the operator did not intervene to minimize further damage to that UAV.

82



2. The amount of system wait time at targets due to loss of situation awareness.

3. The number of targets missed due to lack of situation awareness.

4. The percentage of re-planning events successfully completed.

The first two indicators measured level 2 SA (comprehension), as a UAV loitering

unnecessarily at a target or a UAV traveling through a threat area could be perceived

directly from the map display. The second two indicators measured level 3 SA (future

projection), as a failure to successfully complete a re-plan or a missing a target due

to a lack of SA meant that the operator had not properly executed, modified and

projected the mission plan in response to scenario events. Each test session was

assigned four individual scores, one for each indicator, and the average of these ratings

was the subjective SA score for that test session. A score for Level 2 SA was obtained

by averaging the ratings for indicators 1 and 2, while a score for Level 3 SA was

obtained similarly with indicators 3 and 4. For more details on the development of

the subjective SA scale used in this study, see Appendix E.

Critical Events

An error of commission occurs because a wrong action is taken, in contrast to an error

of omission which occurs as a result of not performing an action. Operators could

commit errors of commission in the test sessions by erroneously firing upon targets

that the ATO had previously specified should not be destroyed. These were considered

important and critical events because errors of commission in military applications

often have potentially serious consequences, such as firing on civilians or friendly

forces. As an example, the US Army's Patriot missile system, often run in highly

automated modes corresponding to LOA 6 (Table 2.1), is particularly susceptible to

operators committing errors of commission. In the most recent accident with this

system, during the 2004 war with Iraq, a Patriot missile system engaged in fratricide,

shooting down a British Tornado and an American F/A-18, killing three. The number

of times that critical firing events occurred during test sessions was recorded for

subsequent data analysis.
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Workload Measures

The use of response times to the online chat questions as a measure of secondary work-

load has been shown to be an effective technique [7], and was incorporated into this

research. To measure subjective workload, after the completion of each test session,

subjects filled out a modified NASA Task Load Index (TLX) subjective workload

rating survey. The NASA TLX rating scale has been tested in numerous experimen-

tal conditions and has been found to be a reliable indicator of subjective workload

[19]. The standard NASA TLX procedure computes a single workload score from

subjects' weighted ratings on a 1-20 scale along 6 dimensions, which are mental de-

mand, physical demand, temporal demand, effort, performance, and frustration. As

the experimental task required no physical demand, subjects were told to ignore parts

of the survey asking about that dimension and the subsequently modified subjective

workload scores were based upon the 5 remaining dimensions.

4.5.3 Test Scenario Design

Objectives

Subjects had two main objectives in this experiment: 1) To guide each UAV's actions

so that together, all UAVs under their supervision properly executed the required mis-

sions of the ATO, which could change over time, and 2) To answer periodic questions

about the situation from commanders through the instant messaging tool. Super-

vision of the UAVs was broken down into the following prioritized sub-tasks, from

highest priority to lowest:

1. Return to base (RTB) within the time limit for the mission.

2. Comply with changing mission requirements, which will be relayed by periodic

intelligence messages, such as a RTB order earlier than the time limit.

3. Destroy all targets before their time on target (TOT) window ends.
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4. Perform battle damage assessment (BDA) on specified targets after destroying

them.

5. Avoid taking damage from enemies by navigating around and out of threat

areas.

6. Answer communications.

These sets of objectives often conflicted with one another. In these cases, subjects

were required to perform the actions that had the highest priority at the expense of

lower priority objectives.

Test Scenarios

Two test scenarios were designed for this experiment. The only significant differ-

ence between them was the number of re-planning events that occurred, as described

in Section 4.5.1. Base difficulty before taking into account re-planning events was

approximately the same, and was controlled by having the same number (19) and

priority of targets (6 low, 7 medium, 6 high) to be destroyed by the UAVs in the

same amount of time (30 minutes). In both sessions, UAVs initially launched with a

pre-planned validated mission plan in which no deadlines would be missed, so long

as no unexpected events occurred and the operator executed the required actions at

the appropriate times. With this initial mission plan, operators had a specified slack

time of 30 seconds before every target, which was kept constant across scenarios and

used to control difficulty. Thus, if operators followed the mission plan exactly and

no unexpected events occurred, all the UAVs would always arrive 30 seconds before

the beginning of the arming window at each target. Initial routings for the UAVs

were mirrored and rotated but otherwise kept the same between sessions. Target

names were changed and initial target deadlines varied slightly to give subjects the

perception that they were seeing different situations. Some changes to routings were

necessary to maintain the 30 second slack time rule in order to accommodate different

re-planning events across sessions. Figure 4-3 shows how the map display looked to

subjects at the beginning of the high and low re-planning scenarios, respectively.
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(a) Low (b) High

Figure 4-3: Test Session Maps

4.5.4 Testing Procedure

Before arriving at their test session, subjects were sent a pre-experiment tutorial in

order to familiarize them with the functionality and usage of the MAUVE interface.

Individual customized tutorials for each level of automation were created so that

subjects were exposed only to the particular version of the decision support they

would experience. Upon arrival, subjects filled out a consent form (Appendix F) and

a demographic survey (Appendix G) before reading a short instruction sheet that

detailed their objectives in the scenarios, example chat box questions, and specific

rules of engagement (Appendix H).

All subjects then received between 90 and 120 minutes of training until they

achieved a basic level of proficiency in monitoring the UAVs, redirecting them as

necessary, executing commands such as firing and arming of payload at appropriate

times, and responding to online instant messages. A written testing script was fol-

lowed and the same experimenter trained all subjects to ensure there was consistency

in this training, which was carefully structured into three practice scenarios. The first

scenario served to familiarize participants with the basic display elements, rules of

engagement, and taught subjects basic mission execution actions. The second prac-

tice scenario focused on teaching subjects how to perform mission planning actions,
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particularly in response to re-planning events. During this scenario, subjects solved

every possible type of re-planning event. The third practice scenario was a hands-

off 15-minute test during which subjects were able to get a feel for the pacing and

timing of the test scenarios. This was also the first session during which subjects

were required to answer questions through the chat box while supervising the UAVs.

The only differences between the final standard training session and the test sessions

were its shorter length and marginally easier difficulty level. After scenario comple-

tion, subjects were fully debriefed on their mistakes, and any remaining questions

they had were answered. Based upon pre-testing, subjects were required to achieve a

minimum pre-determined level of performance to move onto the actual test sessions.

In only 2 cases of 12, an additional practice scenario was required, which was similar

in content to the previous practice session. Both subjects that received extended

training improved enough to meet the established minimum level of proficiency.

Following training, participants tested on two consecutive 30 minute sessions, one

with a higher number of re-planning events than the other. The order in which

the conditions were presented to subjects was randomized and counter-balanced to

prevent a possible order effect. The experimenter observed and took notes on how

subjects responded to re-planning events answered questions. Overall behaviors or

comments were also recorded, particularly in instances where an unusual situation

arose that would have been difficult to interpret from the raw objective data by

itself. For an example of typical trial progression, see Appendix I. This Appendix

shows both MAUVE displays at approximately 2 minute intervals over the course of

an entire test session. At the conclusion of each test session, subjects filled out an

electronic NASA TLX survey, and after the both sessions were concluded, feedback

on the study experience and interface was solicited.
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Chapter 5

Results

This chapter presents statistical findings from the experiment described in Chapter 4,

which had 2 independent variables: level of automation and level of re-planning. The

dependent variables examined include the performance score, number of TOT delay

requests made, proportion of TOT delay requests approved, wait times, situation

awareness, critical events, and workload metrics.

5.1 Overview

As this experiment examined two independent factors, 4 levels of automation (between-

subjects) and 2 levels of re-planning (within-subjects), the general linear statistical

model used for the majority of the analysis in this chapter is a 2x4(3) repeated mea-

sures linear mixed model. Three subjects were nested within each automation level,

and both independent factors were considered to be fixed while subjects were a ran-

dom factor. Age was used as a covariate in all analyses, and for all reported results

a = 0.05 unless stated otherwise. Post-hoc comparisons of were done using equal or

unequal variance (depending on the significance of the Levene/Brown Forsythe tests),

small population mean t-tests with Bonferroni correction.
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5.2 Overall Performance Measures

5.2.1 Performance Score

As outlined in section 4.5.2 and Appendix D, the performance score was an aggregate

measure of overall human performance that incorporated the number and priority of

targets correctly destroyed, number of times BDA was correctly performed, and any

penalties from threat hits, late arrivals to base, or targets erroneously destroyed. Fig-

ure 5-1 shows the average performance scores for each experimental condition. Level

of re-planning was significant (F(1,9.9) = 19.40, p = 0.001) while level of automation

was marginally significant (F(3,10.8) = 3.04, p = 0.076). There was no significant

interaction between the factors.

Further testing revealed that the super active level of automation had significantly

higher performance than the active level under the high re-planning condition (p

= 0.032), while the manual and passive levels did not. However, the manual and

passive levels also did not perform significantly worse than the super active level under

the same conditions, thus of the four LOAs, active automation caused significantly

degraded performance under high re-planning. There was no significant difference

between the automation levels under low re-planning.

5.2.2 Time on Target Delays

Based upon observed behaviors in test sessions as well as the statistical results from

the performance score analysis, a significant driver of human performance was found

to be operators' use of the "TOT Delay" function. Through requesting TOT delays,

operators could manipulate target deadlines to spread out their workload and/or

make deadlines they otherwise would have missed due to inadequate planning and

execution at some earlier time in the scenario (Section 3.2.3).

Counts of TOT delays requested and granted were both examined in non-parametric

analyses. A Wilcoxon Signed Rank Test between levels of re-planning found that the

number of TOT requests made was significantly lower in the low re-planning condi-
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Figure 5-1: Performance Scores Across Levels of Automation and Re-planning

tion (p = 0.059) and not significant for number of requests granted (p = 0.167). A

Kruskal-Wallis test showed that the number of TOT delays requested was marginally

significant between automation levels (p = 0.096). Inspection of the ranked data

and Figure 5-2 reveals that the difference between automation levels in this case was

driven by a lower number of TOT delay requests in the manual level of automation

(under low levels of re-planning), and a higher number of TOT requests in the active

level. Wilcoxon Rank Sum Tests comparing the manual and active levels of automa-

tion to the other levels were performed to investigate these hypotheses. This analysis

revealed the manual level had significantly lower numbers of TOT requests than the

passive level (p = 0.015), with marginal significance in comparison to the active level

(p = 0.06). Comparison to the super active level revealed no significant difference in

number of TOT requests made. A median chi-square test showed that the number of
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TOT requests made under the active level was significantly higher than other levels

of automation (p = 0.065).
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Figure 5-2: TOT Delays Requested Across Levels of Automation and Re-planning

In addition to examining TOT requests, proportion of requested TOT delays that

were approved were also looked at since a higher proportion of approved TOT delays

meant that an operator tended to request their TOT delays farther in advance. To

investigate if the proportion of approved TOT requests varied across experimental

conditions, a linear mixed model analysis was conducted, again with age as a covari-

ant. Neither experimental factor was found to be significant (level of automation,

F(3, 14.8) = 0.60, p = 0.623; level of re-planning, F(1,14.7) = 0.204, p = 0.658),

but Figure 5-3 shows that there was a trend of increasing proportion of TOT delays

approved as the automation level increased.
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In summary, the main results from this section are the following:

" The number of TOT requests made were significantly higher for the high re-

planning condition than for the low, and significantly higher for the active level

than for all other automation levels.

" The proportion of TOT delay requests approved did not show significance but

there is a non-significant trend of increasing proportion of TOT delays approved

with automation level.

0.70-

0
1' 0.60

4t.
in

I-
0

0.50-

0.4

0

0

L
0

0.40-

I I I

Manual Passive Active Super Active

Level of Automation

Figure 5-3: Proportion of Approved TOT Delay Requests Per Level of Automation

5.3 Wait Times

As discussed in Chapter 2, increases in system wait times are hypothesized to be a

major source of performance decrements in time critical situations such as multiple
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UAV supervisory control. System wait time occurred whenever any of the UAVs

was in a degraded state (as defined in section 4.5.2) and needed attention from the

operator. Overall system wait time (WTT) consists of interaction wait time (WTI),

wait time in the queue (WTQ), and situation awareness wait time (WTSA). It should

be noted that the sum of WTI, WTQ, and WTSA does not equal WTT if there is ever

a period of time when two different types of wait times are occurring simultaneously

(on a minimum of 2 vehicles), as the total system wait time metric does not double

count these overlapping times. Wait times are a measure of system performance.

5.3.1 Total System Wait Time (WTT)

Total system wait time was computed as the aggregate time any part of the system was

incurring wait time due to human-vehicle interaction. With this measure, it did not

matter if a single UAV was waiting or all four, or the type of accumulating wait time,

just that some part of the system required attention from the operator to improve its

performance to an acceptable level. Total system wait time was significant for level

of re-planning (F(1,14.9) = 27.63, p < 0.001) and level of automation (F(3,14.9) =

4.631, p = 0.018). As the factor level variances were not homoscedastic and there were

normality violations, a logarithmic transformation of the data was required. There

were no significant interactions.

Post-hoc comparison between automation levels revealed that total system wait

time was significantly less under the super active level of automation as compared to

every other level (SA vs. M, p = 0.022; SA vs. A, p = 0.053; SA vs. P, p = 0.078).

From Figure 5.4, it can be seen that total system wait time for the active level under

high re-planning conditions had the highest overall wait times. This data point was

found to be significantly higher than under super active (p = 0.027) but no different

from the passive or manual levels.
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Figure 5-4: WTT Across Levels of Automation and Re-planning

5.3.2 Interaction Wait Time (WTI)

In the context of this experiment, interaction wait time was the subset of total human

interaction time with the UAVs that took place while the vehicle under study was

in a degraded state. WTI includes both the time operators spent actually entering

commands to UAVs as well as the actual time spent planning the process. Examples

of this are the time an operator spent planning a UAV's path out of a threat area,

or the time a UAV spent loitering at a target, ready to fire before the operator

communicated a firing command to it.

Figure 5-5 shows the marginal means for each of the experimental conditions.

Interaction wait time was significant for level of automation (F(3,13) = 8.08, p =

0.003) and not significant for level of re-planning (F(1,12.1) = 2.13, p = 0.170).

A logarithmic transformation of the data was required to meet equal variance and
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normality assumptions, and there were no significant interactions between the factor

levels. Post-hoc comparisons between automation levels showed that interaction wait

time was significantly less for the super active and active levels than the manual and

passive levels (SA vs. M, p = 0.001; SA vs. P, p = 0.004; A vs. M, p = 0.002; A

vs. P, p = 0.006). From these results, two homogeneous subsets of automation levels

were found: super active/active and passive/manual, meaning that super active and

active LOAs produced statistically the same wait times, as did passive and manual.
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Figure 5-5: WTI Across Levels of Automation and Re-planning

5.3.3 Wait Time in the Queue (WTQ)

Wait time spent in the queue occurred in this experiment whenever two or more

vehicles required operator attention simultaneously, and the operator moved immedi-

ately to the vehicle(s) waiting in the queue after finishing a task with another vehicle.
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The amount of wait time spent in the queue was significant for level of re-planning

(F(1,12.3) = 18.08, p = 0.001) and marginally significant for level of automation

(F(3,13.2) = 3.10, p = 0.063) at the a = 0.05 level. A square root transformation of

the data with a 0.5 correction due to zero values was required to meet homogeneity

and normality assumptions, and there were no significant interactions. The unusual

spike in WTQ for the active level of automation under high re-planning in Figure 5-6

warranted further investigation. Post-hoc analysis showed that the difference between

super active and both the active and manual automation levels' aggregate WTQ was

significant (SA vs. M, p = 0.041; SA vs. A, p = 0.034). Further investigation showed

that for the high re-planning condition, the active level had significantly more WTQ

than both the super active and passive levels (A vs. SA, p = 0.009; A vs. P, p =

0.074), but the same as the manual level.
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Figure 5-6: WTQ Across Levels of Automation and Re-planning
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5.3.4 Situation Awareness Wait Time (WTSA)

Situation awareness wait time in the experiment was accumulated when at least one

vehicle required attention but the operator didn't realize it. Common situations where

WTSA was incurred included when subjects forgot to arm and fire on a target and

left a UAV loitering unnecessarily at a target, or when a subject flew a UAV into

a threat area. Situation awareness wait time was significant for level of re-planning

(F(1,12.3) = 18.70, p = 0.001) but not for level of automation (F(3,13.2) = 2.14, p =

0.144). A square root transformation of the data was required to meet equal variance

and normality assumptions, and there were no significant interactions. Despite the

non-significant result for level of automation, exploration of individual cell means

was performed to investigate the high WTSA levels of the passive and active levels

under high re-planning, as can be seen in Figure 5-7. Post-hoc analysis showed that

the difference in WTSA between the super active and both the active and manual

automation levels was significant (SA vs. M, p = 0.055; SA vs. A, p = 0.063). For

only the high re-planning condition, the active level was found to have significantly

higher WTSA than the super active level (p = 0.046), and marginal significance was

achieved between the active and manual levels (p = 0.091). This means that subjects

in the active, high re-planning condition had significantly higher WTSA than the

manual and super active levels for that particular test session. Interestingly, under

manual automation there was no significant difference in WTSA between the high

and low re-planning conditions.

5.3.5 Wait Time Proportions

As can be seen from Figure 5-8, total system wait time was dominated by WTSA

regardless of scenario difficulty. The proportion of WTSA was not significantly dif-

ferent between re-planning conditions (F(1,14.5) = 2.79, p = 0.116), but it made up

63% of all wait time in the low re-planning condition and 72% in the high re-planning

condition, showing a trend of increasing proportion of WTSA with difficulty. The per-

centage of WTQ more than doubled from 5 to 11% from the low to high re-planning
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Figure 5-7: WTSA Across Levels of Automation and Re-planning

conditions, which was found to be a statistically significant difference (F(1,12.6) =

4.85, p = 0.047). This was expected, as the high re-planning scenario contained a

greater number of events, including instances of simultaneous re-planning events. The

proportion of WTI followed the opposite trend, as it was significantly lower in the

high re-planning condition (F(1,10.2) = 9.3, p = 0.012). The proportion of WTI was

significantly lower in the high re-planning condition because it was not significantly

different across re-planning conditions (Section 5.3.2), while total WTQ and WTSA

(time, not proportion) were significantly larger in the high re-planning scenario (Sec-

tions 5.3.3, 5.3.4). Since WTI stayed approximately the same and the other types

of wait times increased in the high re-planning scenario, the proportion of WTI de-

creased. There was no significant difference in the relative proportions of WTI, WTQ,

WTSA or WTT across the different levels of automation
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Figure 5-8: Proportions of WTI, WTQ, and WTSA Per Level of Re-planning

5.3.6 Correlation of Wait Times to Performance

Table 5.1 summarizes the correlation coefficients of the various wait times with the

performance score results from Section 5.2.1. As can be seen, situation awareness wait

time was highly negatively correlated with performance, while wait time in the queue

had a moderately high negative correlation. While this does not necessarily prove

high wait times caused lower performance, there is definitely a strong relationship

between the two measures.

Wait Time Correlation Coefficent, r p-value
WTI -0.255 0.230

WTQ -0.593 0.002
WTSA -0.894 <0.001

Table 5.1: Correlation Coefficients between Wait Times and Performance Score

5.4 Situation Awareness

In addition to human and system performance, a third major consideration in the

evaluation of all HSC systems is situation awareness, which may not always correlate

with other performance metrics. The objective SA data taken from online questions

asked during test sessions for this experiment were not found to be consistent with
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the subjective SA scale outlined in section 4.5.2. Therefore, as the objective SA

measure's validity in the context of this study was questionable and since subjective

SA scales based upon expert observer ratings have been found to be a reliable and

valid measure way to measure SA [2], the objective SA scale was dropped in favor of

the subjective one. Using this scale, differences in overall situation awareness were

found to be significant for the two levels of re-planning (F(1,11.7) = 15.75, p = 0.002)

and not significant for level of automation (F(1,11.7) = 2.44, p = 0.112). There was

no significant interaction between factors.
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Figure 5-9: Overall SA Scores Across Levels of Automation and Re-planning

From the marginal means plot (Figure 5-9), it can be seen that subjects using

active automation had an unusually low subjective SA score in the high re-planning

condition, so further investigation of this level of automation was conducted. The

difference in SA between the active and super active automation levels under high
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re-planning was significant (p = 0.034), but not significant between the passive and

super active levels.

The overall subjective SA scores were then separated into level 2 SA and level

3 SA ratings and a non-parametric analysis was conducted on both datasets. Level

2 SA measures how well subjects comprehended the current situation. A Wilcoxon

Signed Rank Test on the level 2 SA scores showed there to be a marginally significant

difference between levels of re-planning (p = 0.065) and a Kruskal-Wallis test showed

there to be a marginally significant difference between automation levels (p = 0.084).

Figure 5-10 shows the means across each of the automation levels, which suggests

that operators using the super active level had higher level 2 SA. Wilcoxon Rank

Sum tests showed these differences to be significant (SA vs. M, p = 0.036; SA vs. P,

p = 0.074; SA vs. A, p = 0.020).

Level 3 SA measures subjects' ability to project the current situation into the

future. A Wilcoxon Signed Rank test on the level 3 SA scores showed that subjects'

level 3 SA for the high re-planning scenario was significantly lower (p = 0.004) than

for the low workload condition, but there was no effect of level of automation. This

implies that the differences in overall SA were primarily driven by the significantly

higher level 2 SA scores for the super active level.

5.5 Critical Events

As outlined in section 4.5.2, a critical event in the context of this experiment occurred

whenever an operator committed an error of commission by erroneously firing upon

a target that had already been removed from the ATO. The operator was notified of

the ATO change through a high priority (red) message from intelligence in the chat

box, which was additionally accompanied by an audio alert. There were nominally 3

opportunities for errors of commission in the high re-planning scenario and 2 in the

low re-planning scenario. However, the number of potential opportunities for error

varied by participant, as it was contingent on each operator's performance.

A non-parametric analysis was conducted to examine the effects of re-planning and
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Figure 5-10: Average Level 2 SA Scores Per Level of Automation

level of automation on the number of critical events that occurred in the test sessions.

A Kruskal-Wallis test showed that there was no significant difference in errors of

commission between levels of automation, while a Wilcoxon Signed Rank test showed

there to be a significantly higher number of targets erroneously destroyed under the

high re-planning condition (p = 0.034). In fact, there was only one error of commission

under the low re-planning condition and 7 in the high re-planning scenario. Further of

investigation of this revealed that under high re-planning, subjects in the manual and

super active levels of automation committed more errors of commission than those

in the passive and active levels (Figure 5-11). Due to the low numbers of counts, a

Kruskal-Wallis statistical test comparing these experimental conditions to one another

did not prove significant, but the trend in Figure 5-11 is suggestive that operators

made more critical events errors in manual and super active levels of control.
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5.6 Workload Measures

Subjective workload measurements are thought to be useful measures of human per-

formance, but they are prone to problems such as individual interpretations of rating

scales. Tsang and Wilson [40] claim that subjective measures are reliable when used

in conjunction with other objective measures. Thus, in this experiment workload

was measured both objectively through response times to online questions, and sub-

jectively through a modified NASA TLX survey administered after each of the test

sessions.
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5.6.1 Subjective Workload

Subjective workload was significantly different across re-planning conditions (F(1,

14.9) = 24.16, p < 0.001) but not across automation levels. From Figure 5-12, the

unusually high subjective workload score of manual under low re-planning and active

under high re-planning were identified as points requiring further investigation. Com-

parisons within automation levels across re-planning conditions found that subjective

workload was significantly greater in the high re-planning scenario for every level of

automation except for manual, where no significant difference was found. Compar-

ison of the manual level to all other LOAs in the low re-planning scenario was not

significant (p = 0.093) and the active level to all other LOAs in the high re-planning

scenario was not significant either (p = 0.126), though the trend from Figure 5.12 is

clear and significance was nearly achieved.
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Figure 5-12: Subjective Workload Across Levels of Automation and Re-planning
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5.6.2 Secondary Workload

As can be seen from Figure 5-13, secondary workload was significantly higher (and

thus spare mental capacity significantly less) for the high level of re-planning (F(1,11.5)

= 14.69, p = 0.003), and significant differences across the levels of automation were

found as well (F(3,12.6) = 9.22, p = 0.002). There were no significant interactions.

Cell comparisons showed that the manual level had significantly less spare capacity

than the passive or active levels (M vs. P, p = 0.001; M vs. A, p = 0.017), but there

was no difference between the manual and super active levels. However, under the

low re-planning condition, the manual level had significantly higher secondary work-

load than all other LOAs including super active (p = 0.061). Comparisons across

re-planning conditions within the passive and manual levels also showed no signifi-

cant difference for both levels (p = 0.299, passive; p = 0.089, manual), meaning the

spare capacity of the manual and passive levels did not change with re-planning level.
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Figure 5-13: Average Response Times Across Levels of Automation and Re-planning
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5.7 Summary

Table 5.2 (next page) summarizes the main effects results for all dependent variables

presented in this chapter. In general, the level of re-planning was significant across all

dependent variables (WTI excluded), while the p-values of many of the tests involving

the level of automation factor were only marginally significant. However, individual

cell-to-cell contrasts in such cases often revealed interesting relationships between the

different levels of automation. Table 5.3 (next page) summarizes these contrasts in

terms of which levels of automation were the best and worst performers for each

dependent measure. In cases where levels of automation could not be differentiated

from another, both levels are listed as having equally poor or good performance. For

a summary of the descriptive statistics for all dependent measures, see Appendix C.
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Dependent
Variable
Performance Score
Number TOT Delay Requests
Proportion of TOT Requests Approved
Interaction Wait Time (WTI)
Wait Time in the Queue (WTQ)
Situation Awareness Wait Time (WTSA)
Situation Awareness
Erroneous Target Critical Events
Subjective Workload
Secondary Workload

Level of
Automation

0.076
0.096
0.623
0.003
0.063
0.144
0.112
0.878
0.779
0.002

Level of
Re-planning

0.001
0.059
0.658
0.170
0.001
0.001
0.002
0.034

<0.001
0.003

Table 5.2: Summary of Main Effects (p-values)

Dependent Worst Best
Variable Performer Performer

Performance Score A SA
Number TOT Delay Requests A M
Proportion of TOT Requests Approved M SA/A
Interaction Wait Time (WTI) M/P SA/A
Wait Time in the Queue (WTQ) A/M SA/P
Situation Awareness Wait Time (WTSA) A SA
Total System Wait Time (WTT) A SA
Situation Awareness A SA
Erroneous Target Critical Events SA/M A/P
Subjective Workload A/M SA/P
Secondary Workload M P

Table 5.3: Best and Worst Levels of Automation for Dependent Measures
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Chapter 6

Discussion

This chapter discusses the results presented in Chapter 5, how they relate to previous

work, and comparisons are made to the hypotheses proposed in Chapter 4. Four main

areas are addressed: workload, human and system performance, situation awareness,

and cognitive strategies.

6.1 Workload

In general, all dependent variables of this experiment changed in predictable ways

across the two levels of re-planning, which represent high and low levels of work-

load. As workload increased, performance and situation awareness decreased, and all

types of wait times, occurrences of critical events and subjective measures of workload

increased. As expected, spare mental capacity measured through secondary tasking

decreased with increasing workload. These results demonstrate that task performance

can vary dramatically under different workload conditions, and one design condition

that may effectively support a task under a low workload situation may be counter-

productive in a high workload setting.

Two specific trends in the workload score were noted that deserve further discus-

sion: 1) the manual level showed no increase in perceived workload or decrease in

spare capacity across re-planning conditions, and 2) the super active had the same

spare capacity as the manual level, which was higher than the active or passive lev-
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els. The first result implies that operators under the manual level perceived they

were under high workload irregardless of session difficulty, and that this was in fact

true because there was no change in spare capacity either. Without access to a vi-

sual representation of the future mission plan (the timeline), operators in the manual

level were not able to easily perceive changes to the mission plan, so even under low

re-planning they were constantly scanning the ATO table for changes.

The response times to online questions, which were a measure of secondary work-

load, showed that the manual and super active levels of automation had the same

average response times, which were greater than the passive and active levels. There-

fore, subjects in the manual and super active levels had less spare mental capacity.

This is an interesting result for the super active level of automation, because this

level was supposed to have the lowest level of workload, which is related to spare

capacity. However, it is likely that that even though super active operators had good

SA, they were not directly involved with mission execution actions so they had to

work mentally harder to stay "in the loop" and maintain those high levels of SA.

6.2 Performance

6.2.1 Human Performance

The significant difference in performance scores across re-planning levels in this ex-

periment indicates that the number of re-planning events is an important influence

on command and control mission difficulty, as expected. Under low levels of re-

planning, subjects using all levels of automation performed equally well, but under

high re-planning subjects using active automation had lower performance than all

other automation levels. The poor performance of the active level is surprising, as

Ruff et al. [35] found that a medium level of automation called management-by-

consent corresponding approximately to the active level in this study had performance

advantages over manual and management-by-exception (super active) conditions for

multiple UAV supervision. Many previous studies from other domains have also found
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collaborative types of automation to have superior performance to highly automated

or manual systems [18, 21, 42]. However, a primary limitation in such systems as

demonstrated in this study is that users can often be overwhelmed by the large array

of possible actions they can take. This can be particularly problematic for command

and control systems under temporal constraints and with significant uncertainty, as

was the case in this study.

The performance decrement under the active level of automation can be attributed

to subjects' inappropriate use of the "Request TOT" function in the MAUVE sim-

ulation. Subjects often did not generate appropriate stopping rules when trying to

achieve a particular schedule move. At the detriment of other tasks and vehicles

requiring their attention, subjects often focused on obtaining a particular delay they

wanted until they obtained it. Operators' behavior also suggested they believed they

could always make up for lost time through this function, when in reality the proba-

bility of approval became unreasonably low unless subjects were able to plan at least

several minutes in advance. Rather than cutting their losses and choosing to give

up on a target to improve a UAV's arrival time at subsequent targets, subjects often

tried until the very last possible instant to obtain the TOT delay they needed. This

was likely due to misjudgment of the probability of obtaining a last minute approval,

as humans are not good estimators of chance and typically overestimate very small

probabilities [41].

Subjects' second misuse of the TOT delay function was failing to consider the

impact of using it on the arrival times to subsequent targets in the queue, as movement

in one part of the schedule almost always affected ETAs to other targets. The ability

to move a target's TOT was an intervention meant to be used sparingly, and the

consequences of doing so were rarely considered by operators. TOT requests were

primarily driven by immediate, short-term needs and they tended to cause problems

for subjects later in the schedule, especially if they were not noticed until much later.

Given the time-critical, demanding task, it was too difficult for operators to execute

and re-plan according to the ATO as well as consider schedule optimizations far into

the future.
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The reverse shading technique used to highlight areas of potential high workload

for the active automation was likely was the cause of the overuse of the TOT delay

request, as it drew operator attention to specific areas of the timeline farther into the

future. Giving operators information about potential problem areas far in advance

seemed to change their strategy from locally optimizing to that of globally optimizing.

Given that at any time there could be many different areas of high workload on the

timeline at once, and the tight constraints on the deadlines operators were under, this

was a very difficult task to achieve, often overwhelming operators and resulting in

them creating a schedule worse than before. Due to its complex nature, this process

also took a long time to perform and often caused other performance problems by

taking the operator's focus off of the immediate, near term needs of the UAVs (local

optimization). However, significant performance and situation awareness decreases

due to these attempts at global optimization really only showed up in the high re-

planning scenario when there was much less room for operator error and inappropriate

attention allocation.

In contrast to the active level, it was observed that users in the manual level never

used the TOT delay button to relieve high workload; they only used it for short-term

movement of deadlines they were going to miss. This was because identifying areas of

high workload involved comparisons between multiple vehicles, which were facilitated

by the vertically stacked timelines, while simple schedule changes for a single UAV

did not require as much data fusion. Users of the manual level of automation were

pure local optimizers, and it served them well as they had an average level of human

performance as compared to the other automation levels, which was higher than

expected.

In general, the visual timeline format seemed to enable users to more successfully

identify problematic, high workload sections of the schedule more easily and farther in

advance, as there was an increasing trend (non-significant) of proportion of approved

TOT delays with automation level. While highlighting these potential problem areas

turned out to be detrimental to performance for the active level, this knowledge was

beneficial to schedule planning so long as operators did not feel compelled to globally
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optimize like they did in the active level. The lower number of TOT delays requested

for the passive and super active levels as well as observed behavior in the test sessions

confirms that this was the case.

6.2.2 System Performance

Interaction Wait Time (WTI)

Figure 6-1 illustrates how the predictions for the trends of WTI with levels of au-

tomation outlined in Section 4.1 compared to the results obtained in the experiment.

In general, a decreasing trend of WTI with increasing levels of automation was found,

with the super active and active levels of automation having significantly less WTI

than the passive and manual levels, which was generally consistent with expectations.

Highest -
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Figure 6-1: Comparison of Predicted and Actual WTI Trends
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Wait Time in the Queue (WTQ)

The manual level of automation had statistically the same level of WTQ as the

active level, while the super active had significantly lower WTQ than both of these

levels. The passive level fell somewhere in between these sets of automation levels,

not significantly different from either one. These results approximately followed the

predicted trend of decreasing WTQ with automation level made in Chapter 4, except

for the relatively high average WTQ for active automation (Figure 6-2). Quantitative

analysis of WTQ accumulation in the active, high re-planning test sessions showed

that the majority was accumulated in several large queues that formed late in the

scenarios when multiple, difficult re-plans were required of the operator. While the

accumulation of WTQ in this way was not unique among automation levels, the

queues did build higher in the active level, which is why WTQ is significantly larger

in this condition. This is not surprising given the extra time operators were spending

attempting to adjust TOTs.

Situation Awareness Wait Time (WTSA)

Average system WTSA did not closely follow the predicted trend across the levels

of automation, as can be seen from Figure 6-3. Users of the super active level of

automation had the best WTSA times, while active had the worst and manual/passive

were in between. As WTSA is dependent on situation awareness levels and followed

the same trend, detailed discussion on why these trends were observed is left until

section 6.3.

WTSA increased with along with level of re-planning, as was expected. Higher

WTSA was expected with greater workload because subjects were already under high

workload even in the low re-planning condition, so adding more workload on top of

that was expected to just decrease their performance and lower their SA even more.

As already discussed, lower SA means, in general, higher WTSA.
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Figure 6-2: Comparison of Predicted and Actual WTQ Trends

6.2.3 Performance Metrics Conclusion

One of the most important findings from this study was that total system wait time

was dominated by wait times caused by loss of situation awareness, rather than inter-

action or queuing times. It is likely that several factors including additional training,

a more refined interface, and additional subject motivation would decrease the pro-

portion of total wait time from WTSA, but even a significant decrease would still

leave WTSA as the largest contributor to system wait times. Despite the fact that

WTQ and WTI occurred more often, WTSA was the largest contributor to WTT

because the average delay due to WTSA was many times that of WTI, and to a

lesser extent, WTQ.

Even though subjects performed a relatively complex task in the MAUVE simula-

tion, compared to an actual command and control situation, the task was simplified.
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Figure 6-3: Comparison of Predicted and Actual WTSA Trends

However, it is likely all wait times will increasingly scale proportionally. The effect

of re-planning on wait time proportions in this experiment shows that at the very

least, the proportion of WTSA will not decrease as task complexity and difficulty

increase. As has been shown in this experiment, increasing vehicle autonomy gener-

ally decreases WTI and WTQ, but not necessarily WTSA. This is because WTSA is

never certain to occur and can only be probabilistically modeled based upon a sub-

ject's level of SA, number of vehicles to be controlled, etc. As system and situation

awareness wait times were shown to be highly negatively correlated with performance

in Section 5.3.6, this implies that there is an inherent limit to the number of vehicles

any human can effectively supervise, no matter the degree of autonomy provided to

them.
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6.3 Situation Awareness

The subjective SA ratings and WTSA measure were consistent with each other in

that under high workload, operators had better SA in the super active automation

level and a degraded level of SA in the active automation level. This was contrary to

expectations, as the manual and super active levels of automation were expected to

have lower SA levels than medium levels of automation. This was predicted because

an operator's level of SA can decrease under high workload due to competition for

attentional resources, but also decrease under low workload due to boredom and

complacency.

The active level of automation had the worst level of SA because of operators'

need to globally optimize their schedules as detailed in Section 6.1. This decreased

their level of SA for several reasons: 1) In seeking to globally optimize, subjects were

actually narrowly focused on the timeline display and not the map display, and 2)

the optimization itself was a very high workload process, causing operators to become

overloaded.

The compelling nature of the timeline decision support likely induced lower SA

for the active level, and possibly for the passive level as well. It was observed in

test sessions that many subjects in the active and passive levels exclusively looked at

the timeline decision support to schedule their time, and rarely looked at the map

display. Across all levels of automation, subjects' general strategy was to decompose

the complex time management task into more manageable chunks. Under the active

and passive levels, a visual cue subjects used extensively to allocate their attention was

to look for yellow or red areas on the timeline (the arming and firing windows) near the

thick black line on the left side of the decision support, which told subjects an arming

and/or firing window would occur in the near future. It was observed that subjects'

performance in these levels was comparable to the manual or super active levels in

manipulating the schedule such that the UAVs arrived on time to each of their targets.

However, operators with passive and active tended to ignore the threats on the map

display and in many cases ran their UAVs straight through them, thus exhibiting
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attentional blindness and cognitive tunneling. Another common instantiation of poor

relational SA under the passive and active levels occurred when subjects tried to fire

on an expired target because the timeline told them a target TOT was occurring,

only to find the relevant UAV loitering at the entirely wrong target. This generally

happened because subjects hadn't bothered to verify the UAV's location on the map

display in quite some time because they were overly focused on the timeline.

In contrast, subjects under the manual level frequently switched their attention

between the two displays, as their version of the decision support showed absolute

time, requiring them to constantly compare times on the decision support to the

mission time clock on the map display. It was noted during the test sessions that

manual level subjects made frequent, visible head movements that indicated attention

was being shared between the screens on a consistent basis.

Subjects in the super active level also generally did not have an attention allocation

problem caused by the decision support. As the automation took care of arming

and firing, subjects in this experimental condition did not rely on the timeline for

scheduling these actions. Further evidence of subjects' lack of reliance on the decision

support in the super active level was the low usage of the exception boxes that were

used to cancel arming and firing when necessary. These were located to the right

of the timeline decision support window (Figure 3-7). Of the 13 possible instances

across all super active test sessions when arming or firing was correctly cancelled as

part of a re-planning effort, the exception boxes were only used 5 times. This means

that subjects were not just blindly clicking on the exception boxes whenever they saw

message that a target had been removed from the ATO. Successful re-plans in these

instances could be accomplished by either using the exception box or removing the

target itself from a UAV's mission plan, which involved selecting that target and using

the "Remove Target" function. Instead of relying on perception and overly trusting

the automation, they commonly removed the relevant target from the mission plan,

despite it taking more steps to achieve the same result. This indicates that subjects in

the super active condition understood the problem at a deeper level, which required

a high level of SA.

118



A break-down of the SA scores into level 2 and level 3 SA showed that there was

no difference in level 3 SA across automation levels, but that super active automa-

tion had significantly higher level 2 SA scores. This is further evidence that super

active operators were not overly focused on their decision support, as level 2 SA was

highly dependent on how aware the operator was of relational information on the map

display. This occurred because subjects in the super active level had fewer actions

to perform, and as a consequence had more time to observe events on the screens.

However, as a result being "out-of-the-loop", i.e. not always cognitively engaged with

the vehicles, they gained no benefit for level 3 SA with this extra time.

Despite having the highest level of SA, driven by level 2 SA, subjects in the super

active automation condition erroneously destroyed more targets than those under

passive and active automation. This indicates that subjects in super active suffered

from complacency, as they were content to let the computer take care of the arming

and firing actions without closely monitoring them. This is interesting because it

seems to indicate that users in super active trusted the computer for weapons release

but not target removal. This may be a case of automation bias, as the subjects

were reluctant to intervene in what they deemed was the automation's responsibility,

arming and firing, while they had no problem re-planning routes because they thought

that was the task that had been assigned specifically to them.

The manual level of automation had SA scores that were relatively higher than

expected in this experiment, as they were predicted to be among the lowest of all

automation levels. Considering both the subjective and secondary workload (spare

capacity) scores, it can be concluded that as expected, the manual level of automation

had the highest workload of all automation levels. However, SA was expected to

be significantly lowered due to this high level of workload, which did not happen.

Based on post-test feedback and observations in test sessions, it was observed that

with experience, subjects established a coping strategy where they developed scan

patterns much like that taught to pilots that enabled them to quickly detect when

an off-nominal situation existed in the mission plan. Operators in higher levels of

automation that had lower workload had less of a need to develop coping strategies,
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so as a consequence, the operators in the manual condition likely were the most

engaged in the scenario events. However, operators using the manual automation

had a moderate level of SA, but actually had the worst critical event performance.

Even though the scan pattern helped manual operators reduce their workload to

manageable levels, the pattern itself was quite automatic and made operators more

prone to making errors of commission as they focused on maintaining it. This result

also could be a direct consequence of operators' high workload, as there was usually

only a short time between the abort firing command being issued and the TOT for

the affected target.

6.4 Cognitive Saturation and Coping Strategies

During testing, a measurable point of cognitive saturation was observed when subjects

were overwhelmed, either from workload generated by frequent re-planning events, or

a loss of SA. This saturation point was only seen in the high re-planning test sessions,

as the low re-planning scenario had enough rest periods to allow operators to recover

without serious loss of system performance. Once overloaded, operators' behavior

followed two distinct patterns: 1) they either began to supervise fewer vehicles, ig-

noring one or more entirely, or 2) they attempted to supervise all of them, missing a

majority of their deadlines while they tried to do so. Figures 6-4 and 6-5, which plot

actual UAV paths against the optimal paths over the course of two high re-planning

trials, illustrate both strategies.

In Figure 6-4, after target A emerged, the operator became confused as to the

appropriate routing for UAV 2. The path of UAV 2 reflects the operator's loss of

SA as he tried various different but incorrect routings over the next few minutes,

before giving up on those vehicle's targets entirely. While doing this, the operator

successfully followed the mission plan for UAVs 1 and 4, as can be seen by the close

match between the optimal and actual paths for those vehicles. However, UAV 2

was left loitering at target B for over 7 minutes, causing it to miss all 3 remaining

targets on its route. In this case, the operator employed a cognitive shedding strategy
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whereby interaction effort was focused on a smaller subset of vehicles than originally

tasked to the operator. This was able to reduce the operator's mental workload to

manageable levels and so performance on the remaining vehicles was not significantly

degraded.
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Figure 6-4: Coping Strategy 1 - Cognitive Shedding

In Figure 6-5, the operator's saturation point occurred when he left UAV 2 loi-

tering at target A for nearly 5 minutes before realizing it had stopped executing the

mission plan. The operator then tried to salvage some later targets on the route by

heading to target B, but gave up half-way there before sending the UAV to base. In

the intervening time, the operator also tried to control the other 3 UAVs, but left

UAV 3 loitering at target C for several minutes, then routed it through the nearest

threat area, missed target D with UAV 4, and also missed target E with UAV 1,
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though this is not visible from Figure 6-5 because the UAV was guided to the target

but did not fire on time. After giving up trying to hit any more targets with UAV

2, the subject's performance on the remaining 3 vehicles improved dramatically. In

this case, the operator tried to cope with all 4 vehicles at once while in an overloaded

state and ended up performing very poorly with all of them.
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Figure 6-5: Coping Strategy 2 - Degraded Level of Management
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Chapter 7

Conclusion

This chapter briefly summarizes the motivation for this research, presents the key

findings of this study and makes recommendations for future work.

7.1 Overview of Study Motivation

There is increasing interest in the military to develop fleets or "swarms" of highly

autonomous vehicles, but in order to make this possible, significant advances in ve-

hicle control and other areas such as human-system interfaces will be required. As

unmanned vehicles become more autonomous, the role of the human will shift from

manual control to supervisory control. HSC tasks are primarily cognitive in nature

and do not require constant attention, so this will allow operators to effectively su-

pervise more than vehicle. In the future vision of an operator supervising multiple

unmanned vehicles such as UAVs, it is desired to maximize the number that a sin-

gle human can effectively supervise. The major limiting factor on this number is

operator workload, which has clear upper limits. One way of mitigating operator

workload and improving overall system performance is through automated decision

support. However, it is not clear what type or level of decision support is appropriate

for supervision of multiple vehicles, as very highly automated systems can induce

low operator SA. This study sought to explore this problem further by investigating

which level(s) of decision support could be appropriate for multiple vehicle supervision
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in a time critical setting, both from a human performance and system performance

standpoint.

7.2 Significant Findings

To this end, this study explored the human and system performance characteristics

of four different types of decision support, termed manual (LOA 1), passive (LOA 2),

active (LOA 4), and super active (LOA 6) for human supervision of 4 UAVs perform-

ing a suppression of enemy air defenses mission. The super active level was found to

have the best performance characteristics in terms of human and system performance

as defined by the performance score (Section 4.5.2) and wait times (Section 4.5.2).

In addition, operators using the super active level exhibited high situation awareness

for level 2 SA but not level 3 SA. This occurred because operators in this level of

automation had more time to observe events on the map display, but they were not

as cognitively engaged in the task as they had to perform less data processing. Thus,

they were very effective at perceiving changes in the current state but no better at pre-

dicting future situations. However, operators under super active automation became

complacent, allowing the automation to execute firing actions with too little supervi-

sion. As a result, operators failed to veto the arming/firing process several times and

had a higher number of erroneously destroyed targets than the more moderate levels

of automation, passive and active.

On the other end of the automation spectrum studies in this experiment, subjects

using the manual level of automation performed better than expected. While subjects

felt that they were always under high workloads despite the level of re-planning,

they still managed to perform overall as well as subjects with the passive level of

automation. However, the manual control strategy had several drawbacks, such as

higher system wait times than all but the active level under high re-planning, and

lower spare capacity so it is likely operators could not handle a much greater pace

of operations or an increase in the number of vehicles supervised as easily as other

automation levels. Moreover, most significantly the manual level had the worst critical
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event performance, inadvertently firing on the highest number of unapproved targets.

The level of automation that produced the most surprising results was the active

level of decision support, which involved a simple form of collaborative automation

that provided predictions for possible periods of task overload as well as possible

courses of action to relieve the high workload. It is important to note that subjects

were aware that the predictions were not always accurate and that the further into

the future, the less reliable the predictions. Collaborative automation is generally

thought to be beneficial for performance as it allows humans both a better under-

standing of the system's operation as well as provides them with avenues to explore

the possible solution space and generate satisficing and creative solutions [18, 21, 42].

However, this was not the case in this study, as users of the active level of automation

had the worst performance of any automation level and the lowest situation awareness

levels as well. This statistically significant performance degradation is attributable

to an unintended consequence of the automation where the graphical visualization of

the computer's predictions caused users to try to globally optimize the schedules for

all UAVs instead of locally optimizing schedules in the immediate future. Attempt-

ing to globally optimize their schedules was a difficult task for operators because

the time-critical nature of their mission meant that there was little room for error.

Under the higher workload condition there were large decreases in performance and

situation awareness as operators in the active condition quickly became overwhelmed

and confused by their failed attempts at global optimization. This is an example of a

hidden problem with collaborative human-computer decision making - the human can

be overwhelmed by the choices they have, and therefore there are benefits to limiting

the solution space.

This study found that the passive level likely has the greatest cost/performance

benefits, as both the human and system performance was always at least at a moderate

level, its users were under some of the lowest workloads of all the levels, and it tied

for the lowest number of targets that were erroneously destroyed with the active level.

Essentially, it was the only reliable performer as all other levels of automation had

major drawbacks associated with them.
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The wait time model proposed in this study to predict the relative sizes of wait

time components across levels of automation was a good predictor of WTI and WTQ,

but not WTSA. The reason for this is because when the model was formulated, it was

assumed that the passive and active levels would have moderate levels of workload

while the super active would have very low and manual very high workload. As

an operator's level of SA can decrease under high workload due to competition for

attentional resources [43], but also decrease under low workload due to boredom and

complacency [31], moderate levels of workload result in optimum performance. In

reality, all operators were under significant workload and any amount of workload

relief provided performance benefits as well as improved SA. As a consequence, the

super active level had the lowest total of WTSA in this study. Active level's very

high WTSA times also were not predicted by the proposed model, and deserves more

investigation.

A significant finding from this study was that total system wait time was dom-

inated by wait time caused by a lack of situation awareness. This was consistent

across all levels of automation as well as levels of re-planning, so it is likely to be

generalizable to a larger set of unmanned vehicle missions and applications. This has

implications for multiple vehicle control, as wait time in the queue and interaction

wait time can be decreased with greater levels of autonomy, but wait time due to lack

of situation awareness cannot be entirely eliminated. This shows that no matter how

much autonomy is built into unmanned vehicles, there will be a clear upper limit on

the number of vehicles that any one person can supervise because of the need to stay

cognitively aware of unfolding events.

7.3 Recommendations and Future Work

The following are recommendations for future follow-on work based on this thesis:

* This work did not attempt to quantify the cost of wait times, as described by

Freed et al. [15]. However, this is an important area of research to pursue

because wait times in themselves do not cause performance problems; it is the
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context in which they occur. For example, it is often the case that there is no

measurable cost to wait time until a discrete failure occurs, at which time a

large, fixed cost is incurred such as in the case of dropping a bomb on a wrong

target. This event likely has a much higher cost than missing targets or battle

damage assessment assignments.

" The results from this experiment could be extended to fan out and predictions

made as to the theoretical number of "maximum" vehicles an operator could

handle in the MAUVE simulation with the different levels of automation. It

would be of particular interest to compare the results using the original equation

for fan out (Equation 2.1) proposed by Goodrich et al. [17] and the fan out

equation presented in this thesis incorporating wait times (Equation 2.3).

" A focus on the active, or collaborative level of automation in this study should be

undertaken to better understand several issues with its use, such as investigating

the human understanding of global versus local optimization predictions, limit-

ing the scope of collaboration to avoid overwhelming operators in time critical

situations, and implementing different predictive elements that would prevent

or at least mitigate the fixation problems seen in this study.

" The super active level clearly had performance advantages over other levels of

automation in this experiment. Therefore, it is desirable to try and leverage

this high level of performance for routine tasks while employing a different level

of decision support or some sort of active mitigation strategy to reduce the

subject's errors of commision for critical events. Some type of adaptive au-

tomation could be employed that automatically reduces the level of re-planning

when unexpected events occur.

" More investigation into should be undertaken into operator coping strategies.

An interesting observation was that operators followed several well defined cop-

ing strategies to deal with cognitive overload, such as cognitive shedding. Re-

search focused on understanding these failure modes is needed to determine if
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any particular interface elements influence the coping strategy chosen by op-

erators and how these could be used in a positive vein. This type of research

could guide future design of interfaces to support operators even while in highly

off-nominal conditions.
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Appendix A

MAUVE Rules of Engagement

(RoE)

The following are specific rules that governed how scenarios and UAV actions in

MAUVE operated.

A.1 Naming Conventions

" UAVs

- Numbered 1-4

" Targets

- T-XXP where XX = target number and P = priority

- Priority may be High (H), Medium (M), or Low (L)

- Examples: T-1H, T-12M, T-23L

* Waypoints (WP)

- WP-XY where X = UAV# the waypoint is associated with and Y = way-

point letter

- Examples: WP-1A, WP-2C
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. Loiterpoints (LP)

- LP-XY where X = UAV# the loiterpoint is associated with and Y =

loiterpoint letter

- Examples: LP-4E, LP-3H

* Threats/Hazards

- H-XX where XX = threat number

- Example: H-1, H-12

A.2 Arm Payload (Arming)

" Arming must be initiated within an arming or firing window, and only when

the UAV is at the desired target. The system also will not allow arming to be

started if it will not finish by the end of the firing window.

* All arming windows are 10 seconds long and always immediately precede the

beginning of a firing window.

" Arming takes 5 seconds +/- 2 seconds to complete (range 3-7 seconds). The

value was chosen at random from this range.

A.3 Fire Payload (Firing)

" Firing must occur within a firing window (TOT window), the UAV must have

previously been armed, and it only can happen when the UAV is located at the

desired target. The system also will not allow firing if it will not finish by the

end of the firing window.

* Arming may occur in the firing window, though this indicates that UAV is late

and in danger of missing its deadline, but firing may not occur in the arming

window.
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" All firing windows are 20 seconds long and always immediately follow the cor-

responding arming window.

" Firing takes 5 seconds +/- 2 seconds to complete (range 3-7 seconds). The value

was chosen at random from this range.

A.4 Battle Damage Assessment (BDA)

" BDA must be scheduled prior to destroying a target, and thus cannot be added

or removed after the arming window for that particular target has started.

" If BDA is scheduled to occur, it will occur automatically after firing (no user

interaction required). However, if firing does not occur, neither will BDA, re-

gardless of whether is it scheduled or not.

" By default, all high priority targets require BDA and all medium/low priority

targets do not, unless re-planning during the scenario causes changes to this

convention.

" BDA takes 45 seconds to complete, and once started must be finished.

A.5 Miscellaneous

" If a UAV reaches an active target (where active is defined as not destroyed and

TOT not passed), it will automatically loiter at the target. Otherwise, the UAV

will continue to the next target without stopping.

" In general, when time is short, destroy higher priority targets instead of lower

priority targets.
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Appendix B

Supplemental Experiment Screens

The screens on the following page were seen by participants throughout the test

scenarios on the two MMWS monitors not being used by the MAUVE simulation

interface.
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OBJECTIVES
1 Return to base (RTB) within the time limit for the mission.

2 Comply with changing mission requirements, which will be relayed
to you by periodic intelligence messages, such as a RTB order
earlier than the time limit.

3 Destroy all targets before their time on target (TOT) window ends.

4 Perform battle damage assessment (BDA) on specified targets
after destroying them.

5 Avoid taking damage from enemies by navigating around and out
of threat areas.

6 Answer communications.

Figure B-1: The Objectives Screen, Far Left MMWS Monitor

COLOR CODING

UAV Action

Enroute

Color

Loitering

Arming Payload Yellow

Firing Payload

Battle Damage Assessment

Return to Base

Figure B-2: The Color Coding Table, Bottom Center MMWS Monitor
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Appendix C

Descriptive Statistics
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C.1 Demographics

Category N Min. Max. Mean Std. Dev.
Age (years) 12 20 42 26.33 6.97

Military Experience (years) 9 1 20 5.67 6.38
UAV Experience (hours) 2 1 20 12.50 10.61

Pilot/Flight Experience (hours) 9 5 400 119.44 140.86
Student (Y/N) 10 - - - -

Gender (M/F) 10M, 2F - - -

Table C.1: Descriptive Statistics for Study Demographics

C.2 Dependent Measures

Dependent Measure Min. Max. Mean Std. Dev.
Performance Score 122 1000 734.053 234.275

Number of TOT Delay Requests 1 41 11.542 11.575
Prop. TOT Delay Requests Approved 0 1 0.541 0.354

Interaction Wait Time (WTI) 19 299 81.542 57.599
Wait Time in the Queue WTQ 0 182 35 43.364

Situation Awareness Wait Time (WTSA) 10 831 263.708 239.730
Total System Wait Time (WTT) 31 890 346.083 237.774

Situation Awareness 1 5 3.688 1.111
Erroneous Target Critical Events 0 2 0.333 0.565

Subjective Workload 38 84.667 62.625 12.897
Secondary Workload 21 58.67 36.740 10.368

Table C.2: Descriptive Statistics for all Dependent Measures
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Appendix D

Performance Score

D. 1 Overview

The performance score was designed to be an overall measure of session performance.

It is independent of re-planning level, or how many events were planned to occur in

a specific scenario. An individual's score was based upon the total number and type

of mission objectives they completed over the course of an entire session (Appendix

H), while penalties were assessed for actions that had negative consequences for the

mission plan, such as a UAV taking hits or incorrectly destroying a target. Each

completed mission objective or penalty event had a particular amount of points asso-

ciated with it, negative or positive, from which the performance score was calculated

as 1000 times the number of points accumulated, divided by the total number possible

in that test session.

D.2 Earned Points

Earned points in the performance score were accumulated when the operator success-

fully completed various mission objectives. The base number of points earned in the

performance score for achieving an objective (Table D.1) corresponded to how long
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Event Base Points
Target Correctly Destroyed 30
BDA Correctly Performed 45

Table D.1: Base Points Earned For Completion of Primary Mission Objectives

finishing that objective took, or was scheduled to take in the scenario. For example,

performing BDA took 45 seconds, so it was worth 45 base points, while destroying a

target was worth 30 base points because that was the length of the arming plus firing

windows for each target in the test sessions. This was then modified by the priority

of the target itself and the difficulty of that target (Table D.2). Before taking into

account target difficulty, medium priority targets were set to be worth 1.5 times a low

priority target (45 points) and high priority targets twice as much (60 points). These

ratios were consistent with the rules of engagement and prioritized objectives given

to subjects in the simulation. The specific numbers were chosen because the average

target priority throughout all of the test scenarios was medium, which corresponded

to an average of 45 points per target destroyed, the same as BDA. As completing

both types of actions awarded the same average number of points and targets took

a maximum of 30 seconds to destroy while BDA took 45 seconds to complete, this

meant that subjects' time was more valuable spent destroying targets.

Throughout the test scenarios. there was significant variability in how difficult

it was to destroy a target. Factors influencing how difficult a target was to destroy

included whether it was affected by re-planning, the number of simultaneous events

occurring near to the target's TOT, and whether it was at the start, middle or end

of a route. To account for this in the performance score, each target in the test

sessions was assigned a difficulty of low, medium, or high based upon a combination

of two independent, expert observer ratings and experiment data on how often each

target was missed by operators. This data is presented in Table D.3 for the low re-

planning scenario, and Table D.4 for the high re-planning scenario. To avoid biasing
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Priority Difficulty Modified Points
Hard 67.5

High Medium 60
Low 52.5
Hard 52.5

Medium Medium 45
Low 37.5
Hard 37.5

Low Medium 30
Low 22.5

Table D.2: Modified Points Earned for Target Destruction

the performance scores between different scenarios, 1/3 of the targets were assigned

each to each difficulty level, and if the targets could not be divided equally between

the difficulty ratings, an additional number of medium difficulty ratings for targets

were assigned.

The base point differential between targets of differing priorities was 15 per level of

difference (i.e. 15 unless the two targets being compared were low and high priorities,

in which case the difference was 2 levels, or 30 points). As it was determined that

priority was a more important indicator of a target's relative value to the mission

plan than difficulty, the number of points the difficulty adjustment could modify a

target's score up or down was half of this difference (7.5 points). Therefore, if a target

was assigned a difficulty rating of easy, it was worth 7.5 points less than normal, a

medium difficulty rating resulted in no change, and a hard rating increased its value

by 7.5 points. For a complete listing of target values based on priority and difficulty

rating, see Table D.2. This modification was small enough that a lower priority target

could never be worth more than a higher priority target, or vice versa. For example,

an easy difficulty high priority target was worth 52.5 points, while a hard difficulty

medium priority target was worth the same, as can be seen in Table D.2.

BDA points were also modified based upon difficulty, because even though BDA

took a long time to perform, in most cases it was already scheduled at mission launch
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Target Incompletion Observer 1 Observer 2 Combined
Name Rate Rating Rating Rating
T-1M 0 L H M
T-2H 0 L L L
T-3H 0 L M L
T-4L 0 M L M
T-5H 0 L L L
T-6H 0 L M M
T-7M 0 L L L
T-8L 0 M H H
T-9M 0.08 H M H

T-10M 0.08 H H H
T-11L 0.08 H M H
T-12L 0 M L L
T-13L 0 M M M
T-14H 0.08 H M M
T-15H 0.75 H H H
T-16M 0 L L L
T-17L 0.08 H M M
T-18M 0 L H M
T-19M 0 M H H

Table D.3: Target Difficulty Ratings for the Low Re-planning Scenario

and did not require any attention on the part of the operator. This made it a very

easy task for operators to perform. The only challenging part of BDA for operators

was accommodating changes in BDA into their schedule at the last minute, as was

the case for re-planning events. Therefore, BDA events were either classified as being

difficult or easy based upon whether the event was affected by re-planning or not.

If a difficult BDA event was completed, it was worth the full 45 base points, but

completion of easier, automated BDA events was modified to award only half points

(22.5).

D.3 Penalty Points

Penalty points were assessed when the operator performed actions or guided at least

one of the UAVs under their supervision into a state that ran counter to mission
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Target Incompletion Observer 1 Observer 2 Combined
Name Rate Rating Rating Rating
T-1L 0.25 H H H
T-2M 0 L L L
T-3H 0.17 L M L
T-4H 0.50 H M H
T-5H 0.33 M L M
T-6M 0.08 M L L
T-7H 0.25 M M M
T-8L 0.17 M M M
T-9L 0.58 H H H

T-10H 0.42 M H H
T-11M 0.25 L M M
T-12L 0.17 L L L
T-13L 0.17 L M M
T-14L 0.33 H L M
T-15M 0.17 M L L
T-16H 0 M L L
T-17M 0.25 H M H
T-18M 0.08 L H M
T-19M 0.83 H H H

Table D.4: Target Difficulty Ratings for the High Re-planning Scenario

objectives. The four types of possible events that incurred penalty points were 1)

destroying a target when there previously had been a command not to do so, 2)

incorrectly performing BDA, 3) having a UAV enter a threat area, or 4) arriving at

base beyond the mission time limit. The penalties assessed, just like for points earned,

were based upon the time it took to accomplish that particular event, and are listed

in Table D.5. As destroying a target due to missed or ignored orders is a critical event

in command and control situations, operators were doubly penalized for doing this in

the performance score. Subjects did not receive points for destroying inappropriate

targets, and were penalized 45 additional points each time this error occurred. This

number of penalty points was chosen because it was equal to what an average target

was worth in the scenario, and in these types of situations, the priority of the target

itself becomes the order not to fire the weapon. The same double penalty did not
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Table D.5

Event Penalty Points
Target Incorrectly Destroyed 45
BDA Incorrectly Performed 0

Threat Hit 10
Late Arrival to Base 1 per second

: Penalty Points for Actions Counter to Mission Objectives

apply when the operator incorrectly performed BDA on a target. In that case, the

operator did not receive points for taking the action, as it was of no use to the mission,

and the wasted time spent performing that BDA would translate into time penalties

in subsequent events. In following with the one second per point reasoning outlined

above, late arrivals to base were penalized at a rate of 1 point per second, per vehicle,

and hits on any UAV at 10 per hit, because threats fired on UAVs in threat areas

every 10 seconds.
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Appendix E

Subjective Situation Awareness

(SA) Score

E.1 Indicators of Situation Awareness

The subjective SA score was based upon what were judged to be the four most salient

indicators of situation awareness in the test sessions. These indicators were:

1. The number of entries into threat areas where the UAV received 3 or more hits

and the operator did not intervene to minimize further damage to that UAV.

2. The amount of system wait time at targets due to loss of situation awareness.

3. The number of targets missed due to lack of situation awareness.

4. The percentage of re-planning events successfully completed.

The first two indicators measured level 2 SA (comprehension), as a UAV loitering

unnecessarily at a target or a UAV traveling through a threat area could be perceived

directly from the map display. The second two indicators measured level 3 SA (future

projection), as a failure to successfully complete a re-plan or a missing a target due
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to a lack of SA meant that the operator had not properly executed, modified and

projected the mission plan in response to scenario events.

E.2 Rating Scales and Scoring

The range of possible values for each of the SA indicators listed above were grouped

and ranked on a 1-5 scale (Table E.1). The scale range was chosen so the subjec-

tive SA score could easily be compared to the objective SA score developed for this

study (responses to the online questions). The groupings were based on subjective

expert observations of all the experimental trials. Each test session was assigned four

individual scores, one for each indicator, and the average of these ratings was the

subjective SA score for that test session. A score for Level 2 SA was obtained by av-

eraging the ratings for indicators 1 and 2, while a score for Level 3 SA was obtained

similarly with indicators 3 and 4.

As an example of how to calculate the subjective SA scores for a trial, consider

the following data from one of the test sessions: 0 entries into threat areas, 95 seconds

of system wait time at targets due to loss of SA, 3 targets missed due to lack of SA,

and 86% of all re-plans completed successfully. From table E.1, this would result in

ratings of 5, 3, 4, and 4 for the SA indicators listed above, giving an overall subjective

SA score of (5+3+4+4)/4 = 4, a subjective level 2 SA score of (5+3)/2 = 4, and a

Subjective Number entries Amount of time Number of Percentage

Situation into threat areas, UAVs spent loitering targets missed of re-plans

Awareness no operator at missed or removed due to successfully

Score intervention targets (s) lack of SA completed

5 0 0 0-1 90 or more
4 - 0-30 2-3 80-90
3 1 30-120 4-5 70-80
2 - 120-300 6-7 60-70
1 2 or more 300 or more 8 or more 60 or less

Table E.1: Subjective SA Indicator Rating Scales
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subjective level 3 SA score of (4+4)/2 = 4 for this test session.
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Appendix F

COUHES Consent Form
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CONSENT TO PARTICIPATE IN

NON-BIOMEDICAL RESEARCH

Management of Multiple Dynamic Human Supervisory Control Tasks

You are asked to participate in a research study conducted by Professor Mary Cum-

mings Ph.D, from the Aeronautics and Astronautics Department at the Massachusetts

Institute of Technology (M.I.T.). You were selected as a possible participant in this

study because the expected population this research will influence is expected to

contain men and women between the ages of 18 and 50 with an interest in using com-

puters. You should read the information below, and ask questions about anything

you do not understand, before deciding whether or not to participate.

PARTICIPATION AND WITHDRAWAL

Your participation in this study is completely voluntary and you are free to choose

whether to be in it or not. If you choose to be in this study, you may subsequently

withdraw from it at any time without penalty or consequences of any kind. The in-

vestigator may withdraw you from this research if circumstances arise which warrant

doing so.

PURPOSE OF THE STUDY

The study is designed to evaluate how increasing levels of automated scheduling

support affect an operator's performance and situation awareness while supervising

multiple simultaneous dynamic tasks, and how this changes as workload increases.

Situation awareness is generally defined as the perception of the elements in the en-

vironment, the comprehension of the current situation, and the projection of future

status of the related system.
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PROCEDURES

If you volunteer to participate in this study, we would ask you to do the following

things:

" Attend a training and practice session to learn a video game-like software pro-

gram that will have you supervising and interacting with multiple unmanned

aerial vehicles.

" Practice on the program will be performed until an adequate level of perfor-

mance is achieved, which will be determined by your demonstrating basic pro-

ficiency in monitoring the vehicles, redirecting them as necessary, executing

commands such as firing and arming of payload at appropriate times, and re-

sponding to online instant messages (estimated time 1.5 hours).

" Execute two thirty minute trials consisting of the same tasks as above (1 hour)

" Attend a debriefing to determine your subjective responses and opinion of the

software (10 minutes).

" All testing will take place in MIT building 37, rooms 301 and 307.

" Total time: 2-3 hours, depending on skill level.

POTENTIAL RISKS AND DISCOMFORTS

There are no anticipated physical or psychological risks in this study.

PQTENTIAL BENEFITS

While there is no immediate foreseeable benefit to you as a participant in this study,

your efforts will provide critical insight into the human cognitive capabilities and lim-

itations for people who are expected to supervise multiple complex tasks at once, and

how system automation can help overcome these barriers.
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PAYMENT FOR PARTICIPATION

You will be paid $10/hr to participate in this study which will be paid upon comple-

tion of your debrief. Should you elect to withdraw in the middle of the study, you

will be compensated for the hours you spent in the study.

CONFIDENTIALITY

Any information that is obtained in connection with this study and that can be identi-

fied with you will remain confidential and will be disclosed only with your permission

or as required by law. You will be assigned a subject number which will be used on all

related documents to include databases, summaries of results, etc. Only one master

list of subject names and numbers will exist that will remain only in the custody of

Professor Cummings.

IDENTIFICATION OF INVESTIGATORS

If you have any questions or concerns about the research, please feel free to contact the

Principal Investigator, Mary L. Cummings, at (617)-252-1512, e-mail, missyc@mit.edu,

and her address is 77 Massachusetts Avenue, Room 33-305, Cambridge, MA 02139.

The student investigator is Paul J. Mitchell and he may be contacted by telephone

at (617)-452-3043 or via email at pmitchel@mit.edu.

EMERGENCY CARE AND COMPENSATION FOR INJURY

"In the unlikely event of physical injury resulting from participation in this research

you may receive medical treatment from the M.I.T. Medical Department, including

emergency treatment and follow-up care as needed. Your insurance carrier may be

billed for the cost of such treatment. M.I.T. does not provide any other form of

compensation for injury. Moreover, in either providing or making such medical care

available it does not imply the injury is the fault of the investigator. Further infor-
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mation may be obtained by calling the MIT Insurance and Legal Affairs Office at

1-617-253-2822."

RIGHTS OF RESEARCH SUBJECTS

You are not waiving any legal claims, rights or remedies because of your participa-

tion in this research study. If you feel you have been treated unfairly, or you have

questions regarding your rights as a research subject, you may contact the Chairman

of the Committee on the Use of Humans as Experimental Subjects, M.I.T., Room

E32-335, 77 Massachusetts Ave, Cambridge, MA 02139, phone 1-617-253-6787.

SIGNATURE OF RESEARCH SUBJECT OR LEGAL REPRESENTATIVE

I understand the procedures described above. My questions have been answered to
my satisfaction, and I agree to participate in this study. I have been given a copy of
this form.

Name of Subject

Signature of Subject

SIGNATURE OF INVESTIGATOR

In my judgment the subject is voluntarily and knowingly giving informed consent and
possesses the legal capacity to give informed consent to participate in this research
study.

Signature of Investigator Date
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Appendix G

Demographic Survey
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MAUVE Demographic Survey

1. Age:

2. Gender: El Male El Female

3. Occupation:

If student:

(a) Class Standing: Fl Undergraduate El Graduate

(h) Major:

If currently or formerly part of any country's armed forces:

(a) Country/State:

(b) Status: El Active Duty Fl Reserve E Retired

(c) Service: E Army El Navy R Air Force El Other:

(d) Rank:

(e) Years of Service:

4. Do you have experience with remotely piloted vehicles (land, sea, air)?

E- Yes
ElNo

If yes:

(a) Type/class:

(b) Number of hours:
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5. Do you have piloting experience other than with remotely piloted vehicles?

ElYes
l No

If yes:

(a) Type/class:

(b) Number of hours:

6. How often do you play video games?

F-1 Never
L Less than 1 hour per week
l Between 1 and 4 hours per week

F-1 Between 1 and 2 hours per day
l More than 2 hours per day

7. Are you color blind?

L Yes
l No
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Appendix H

MAUVE Instructions
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Introduction

Thank you in advance for your participation! Today you will participate in an experi-
ment designed to evaluate how effectively an operator can control multiple unmanned
aerial vehicles (UAVs), given increasing levels of automation assistance. This session
will be divided into 3 phases:

1. Training

You'll be put through 3-4 interactive training scenarios designed to illustrate
possible situations you may encounter during testing. At any time during train-
ing, please feel free to ask any and all questions you may have about the inter-
face and how to interact with it. This will last approximately 45-90 minutes,
depending upon how quickly you learn.

2. Testing

You will then participate in two 30-minute trials similar to those seen during
training. This will take approximately 70 minutes.

3. Post-Test Feedback

Your feedback on the interface will be solicited through a focused interview and
post-evaluation survey. This will take a maximum of 15 minutes.

Background

In this experiment, you are an unmanned aerial vehicle (UAV) operator that is re-
sponsible for supervising 4 UAVs that are collectively tasked with destroying a set
of time-sensitive targets in a suppression of enemy air defenses mission. The area
contains enemy threats capable of firing on your UAVs. The UAVs are highly au-
tonomous, and therefore only require high level mission planning and execution from
you. The UAVs launch with a pre-determined mission plan that comes from an air
tasking order (ATO), so initial target assignments and routes have already been com-
pleted for you. Your job will be to monitor their progress, re-plan aspects of the
mission in reaction to unexpected events, and in some cases manually execute mis-
sion critical actions such as arming and firing of payloads.

UAVs are capable of 6 high-level types of actions in the simulation: traveling enroute
to targets, loitering at specific locations, arming payloads, firing payloads, performing
battle damage assessment, and returning to base. Battle damage assessment (oth-
erwise known as battle damage imagery or BDI) is the post-firing phase of combat
where it is determined whether the weapon(s) hit the target, and if the desired effect
was achieved. Table 1 outlines the color coding assigned to each of these actions in
the simulation.
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UAV Action Color
Enroute Blue

Loitering Orange
Arming Payload Yellow
Firing Payload Red

Battle Damage Assessment Brown
Return to Base Green

Table 1: Color coding of UAV actions in MAUVE

You have two main objectives in this experiment: 1) To guide each UAV's actions so
that together, all UAVs under your supervision properly execute the required mis-
sions and engagements of the up-to-date ATO, which will change over time, and 2)
To answer periodic questions about the situation from commanders.

Supervising the UAVs to meet ATO specifications is your primary task and must be
handled first, so don't answer questions when any of the UAVs require your attention.
Supervision of the UAVs can be broken down into the following prioritized sub-tasks,
from highest priority to lowest:

1. Return to base (RTB) within the time limit for the mission (this limit will be
clearly marked).

2. Comply with changing mission requirements, which will be relayed to you by
periodic intelligence messages, such as a RTB order earlier than the time limit.

3. Destroy all targets before their time on target (TOT) window ends.

4. Perform battle damage assessment (BDA) on specified targets after destroying
them.

5. Avoid taking damage from enemies by navigating around and out of threat
areas.

6. Answer communications.

These sets of objectives will often conflict with one another. In these cases, you must
perform the actions that have the highest priority first.

Example Communications

Below are some sample questions that will give you an idea of the kind of knowledge
that will be required of you during scenarios.

* How many medium priority targets remain to be destroyed?
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" Which UAVs will arrive at their next checkpoint by 12:05:30?

" How many targets have TOTs ending in the next 7 minutes?

" Which threat area is adding the most time to a single UAV's mission plan?

" With the current mission plan, how many active targets will not be destroyed?

Rules of Engagement (RoE)

The following are specific rules that govern how scenarios and UAV actions in MAUVE
operate. You should keep this reference handy throughout your training until you are
familiar with everything in this section.

Naming Conventions

" UAVs

- Numbered 1-4

" Targets

- T-XXP where XX = target number and P = priority

Priority may be High (H), Medium (M), or Low (L)

- Examples: T-1H, T-12M, T-23L

" Waypoints (WP)

- WP-XY where X = the UAV the waypoint is associated with and Y =
waypoint letter

Examples: WP-1A, WP-2C

" Loiter Points (LP)

- LP-XY where X = the UAV the loiter point is associated with and Y =
loiter point letter

- Examples: LP-4E, LP-3H

" Threats/Hazards

- H-XX where XX = threat number

- Example: H-1, H-12
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Arm Payload (Arming)

" Arming must be initiated within an arming or firing window, and only when
the UAV is at the desired target. The system also will not allow you to arm if
it will not finish by the end of the firing window.

" All arming windows are 10 seconds long and always immediately precede the
beginning of a firing window.

" Arming takes 5 seconds +/- 2 seconds to complete (range 3-7 seconds).

Fire Payload (Firing)

" Firing must occur within a firing window (TOT window), the UAV must have
previously been armed, and it only can happen when the UAV is located at the
desired target. The system also will not allow you to fire if it will not finish by
the end of the firing window.

" Note that you may arm in the firing window (though this indicates you are late
and in danger of missing your deadline), but you may not fire in the arming
window.

" All firing windows are 20 seconds long and always immediately follow the cor-
responding arming window.

" Firing takes 5 seconds +/- 2 seconds to complete (range 3-7 seconds).

Battle Damage Assessment (BDA)

" BDA must be scheduled prior to destroying a target, and thus cannot be added
or removed after the arming window for that particular target has begun.

" If BDA is scheduled to occur, it will occur automatically after firing (no user
interaction required). However, if firing does not occur, neither will BDA, re-
gardless of whether is it scheduled or not.

" By default, all high priority targets require BDA and all medium/low priority
targets do not, unless re-planning during the scenario causes changes to this
convention.

" BDA takes 45 seconds to complete, and once started must be finished.

Miscellaneous

o If a UAV reaches an active target (where active is defined as not destroyed and
TOT not passed), it will automatically loiter at the target. Otherwise, the UAV
will continue to the next target without stopping.

167



* In general, if you find yourself out of time, destroy higher priority targets instead
of lower priority targets.
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Appendix I

Example Trial Time Series

The following series of screenshots are an example of what subjects saw on their
displays over the course of an entire test session, taken at approximately 2 minute
intervals. The trial shown is with the super active automation level and the high
re-planning scenario.
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Figure 1-4: Super Active and High Re-planning Example - 12:07:39
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Figure 1-6: Super Active and High R"e-planning Example - 12:10:29
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(b) Decision Support Window

Figure 1-8: Super Active and High Re-planning Example - 12:15:24
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(b) Decision Support Window

Figure I-9: Super Active and High Re-planning Example - 12:17:14
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(b) Decision Support Window

Figure I-10: Super Active and High Re-planning Example - 12:20:09
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(b) Decision Support Window

Figure 1-11: Super Active and High Re-planning Example - 12:21:49
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(b) Decision Support Window

Figure 1-12: Super Active and High Re-planning Example - 12:23:04
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