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Abstract

Precision airdrop is a technology whose required capabilities have become more exact-
ing as combat situations necessitate greater degrees of accuracy. Ballistic and parafoil
type delivery vehicles do not have the capacity to consistently deliver a payload on,
for example, a particular rooftop in an urban combat situation.

A gliding autogyro delivery platform has been investigated as a means of achieving
greater airdrop performance. The autogyro has similar gliding characteristics to the
parafoil, but has improved wind resilience and control authority. An initial simulation,
based on momentum and blade element helicopter theory, has been constructed. A
classical controller using a multiple loop closure strategy has been developed that uses
a new nonlinear guidance law to follow paths generated by an algorithm considering
initial conditions. An extended Kalman filter is used for state estimation. Results
from simulations show consistent accuracy of about 5 feet, with the final position
error rarely exceeding 10 feet.
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Chapter 1

Introduction

There is a significant need for precision airdrop capability, especially in the case of
military operations. Precision airdrop is currently used for missions such as human-
itarian aid, combat resupply, and even reentry with the X-38 Crew Return Vehicle
parafoil system. The overall strategy is to use a parent vehicle to transport a payload
contained in a drop vehicle and deploy it near the desired target. The drop vehicle
safcly guides the payload to the target and lands. The advent of close quarter ur-
ban combat scenarios has increased required capabilities to include higher precision
deliveries of small and large payloads. Applicable missions include urban combat
resupply, surveillance/reconnasaince, and sensor network delivery. The constrained
urban terrain requires enough precision to deploy on top of particular buildings, with
the possibility of collision avoidance of rooftop obstacles. Thus, target landing areas
on the order of feet are required.

Previous research has investigated two delivery strategies: ballistic and parafoil.
The ballistic type was a free-fall, fin stabilized projectile, with a round parachute
deployed just above ground level to arrest descent speed [1]. A problem with this
strategy was that the limited glide slope of the projectile required an overly precise
deployment from the parent vehicle. Additionally, the large shock of the parachute
opening at the end of the mission was potentially harmful to payloads. The second
parafoil type immediately deployed its parafoil upon release from the parent vehicle

[18]. This strategy was deterred by limited controllability and a strong susceptibility
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to wind disturbances.

A third strategy was proposed and is the subject of this thesis. The drop vehicle
in this case is a gliding autogyro. An autogyro is very similar to an airplane with a
tractor type propeller, but replaces the wing with an unpowered rotor. The aircraft
used as an example is the GyroBee remote controlled model aircraft produced by the

Autogyro Company of Arizona (Figure 1-1).

Figure 1-1: GyroBee model aircraft and coordinate system (reprinted with permission
from the Autogyro Company of Arizona)

In the precision airdrop scenario, the propeller would be removed, and the vehicle
would glide in a controlled descent. The mission scenario for the gliding autogyro
resembles that of helicopters performing an unpowered emergency autorotation land-
ing. The air flowing up through the rotor causes it to rotate, and in turn the rotating
blades push air down to create lift. The process is similar to a maple seed spiraling
its way to the ground. The descent speed performance of a rotor in autorotation has
been shown to be similar to that of a parachute of the same diameter.

The advantage of the autogyro strategy is increased glide slope over the ballistic
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type, and improved control authority and wind resistance compared to the parafoil
type. These factors combine to create a drop vechicle with the precision required
for modern missions. Although possibly more bulky than a projectile vehicle, fold-
ing rotors could reduce packing size and enable deployment from standard airdrop
platforms.

This thesis will consider the gliding autogyro vehicle following release from the
parent vehicle and in full autorotative forward glide. The task is for the autogyro to
autonomously reach a target on the ground. Available control inputs include forward
and side tilt of the rotor hub. Some consideration must be made when deciding
if the additional complexity and weight justifies an additional third input of rotor
collective. For the purposes of the task outlined above, collective will be assumed
fixed to reduce controller complexity. The final landing phase, however, may require
some combination of backward rotor tilt and collective in order to induce a flare to
reduce descent speeds sufficiently for a safe landing. Additionally, collective control
may be required to start the rotor in autorotation upon initial deployment from the
parent vehicle.

In Chapter 2, a simulation for a gliding autogyro will be developed. Houston (7]
has developed a high fidelity simulation for helicopters in autorotation based on dy-
namic inflow and a blade eclement method. It was decided, however, that a simplified
simulation based upon classical helicopter theory would allow rapid development for
proof of concept. Chapter 3 includes a control algorithm and path planning strategy
to guide the vehicle to the target area. Chapter 4 develops an estimator to derive state
information from sensor measurcments, including inertial, magnetic, range finder, and
a unique visual measurement that rclates the pixel offset of the target from the center
of an onboard camera to attitude and position. Finally, Chapter 5 includes the results

of running a variety of simulations and shows the accuracy achieved.
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Chapter 2

Simulation Development

In this chapter, the dynamics of the autogyro vehicle are defined, and the resulting
simulation is compared with the theoretical results from the literature. The simulation
is based upon the Draper Small Autonomous Aerial Vehicle (DSAAV) Dynamics
Model [8]. The rigid body equations of motion are presented, followed by force and
moment equations created from the aerodynamics of both the rotor and the vehicle
body. The software simulation was developed in MATLAB’s Simulink environment.

This allowed great flexibility and ease of use along with control analysis tools.

2.1 Equations of Motion

First, the six degree of freedom rigid body dynamics equations must be devecloped.
The fundamental relations are between forces and linear momentum rates and torques

and angular momentum rates
F = mvt T = H: (2.1)

with the derivatives taken with respect to the local (inertial) frame, denoted by the
superscript L. In these equations the force and torque vectors are composed as F =

XY 2", and T = [L M N]". To take the derivatives with respect to the body
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(vehicle) frame, the transport theorem must be used
F=m({V+wxv) T=H+wxH (2.2)

where the body relative velocities are v = [/ V W], and the body relative rotation
rates are w = [P Q R]".

The rigid body angular momentum can be found by the product of inertia and
rotation rate. It is assumed that the body coordinate frame is aligned with the
principle axes. Therefore the cross coupled inertia terms are set to zero. Then, using

the matrix product definition of the cross product,

0 —-R Q U
wxv=§kv=]| B 0 -—P 1% (2.3)
—Q P 0 174

the force and moment equations can be rewritten as

1
_F:V+de
m

to yield the individual state derivatives

. B T

U X4 X, 0 RV — QW

. 1 .

Vo= Yo |+ VY | +C 0 + | PW — RU 2.4)
W | Za Z, mg QU — PV

. 7] T —1 [~

Ql=1]0 1, 0 My |+ | M |+ RP( " [m) (2.5)
R 0 0 I, Ny N, PQ (L, — 1y,)

In these equations the forces and moments have been decomposed into the components
contributed by aerodynamic effects, the rotor, and the weight. Note the weight vector

g=1[00 mg]T must be included with the direction cosine matrix C, which rotates
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vectors from the body to the inertial frame, and will be defined next. These arc the
standard equations of motion, with simplified inertia terms, as can be seen in, for

example, Stevens and Lewis [17].

Fuler angles describe the rotation of the aircraft with respect to the local frame.
Refer to Figure 1-1 for a description of the vehicle coordinate system. First a rotation
¥ about the local z axis describes the heading angle of the vehicle. Second, a rotation
6 about this new frame’s y axis describes the pitch angle. Last, a rotation ¢ about

the new frame’s x axis produces the roll angle.

The matrix that transforms vectors from the body frame to the local frame, the
direction cosine matrix, can be found by multiplying the transformation matrices of

each successive rotation. The result is defined as C and is found by

C =Ts(v) 1o (0)T1 ()

cosy —siny 0 cosf 0 siné 1 0 0
= | sinyY cosy O 0 10 0 cos¢p —sing
0 0 1 —sinf® 0 cosf 0 sing coso

cospcosf costpsinfsing —sini cosg costpsinfcos @+ sinsin @
= | sinycos® sinysinfsing + cosycosgd sinysinfcosd — cosmsing

—sinf cos fsin ¢ cos  cos ¢

C];m: Cry Ozz
= Cy:zc ny C:z
Co Ciy C,

(2.6)

The Euler angle state derivatives can be found by relating them to body angular
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velocities through rotation matrices.

P 0 0 é

Q| =THOTLO) | 0 | +T ()| 6|+ | 0
| I o 0 0
[P ] $—psind

Q| =1 fcosd+ycoshsind
] R | —0sin ¢ + 1 cos B cos ¢

Solving these equations for the Euler angle derivatives yields the state derivative

equations
¢ P+ (Qsin¢ + Rcos¢) tand
0| =] Quoso-Rsing o
v (Qsing + Rcos ¢) sech

The final state equations are those of position. These are defined in the local

coordinate frame for ease of interpretation.

N U
L | =Cl Vv (2.8)
oD W

2.1.1 Quaternions

While the Euler angles are useful for visualizing the rotations, there is a possible
singularity in ¢ at 6 = 90°, and they are computationally expensive to work with
when compared to quaternions. Quaternions are sets of four parameters that define
a magnitude of rotation about a single axis not aligned with the coordinate frame.
In this research, Euler angles were used for lincarization and modal analysis, where
visualization is important, and quaternions were used for simulations, where compu-
tational integrity and complexity is important. The quaternion relations are shown

here, and the reader is referred to [17] for a more detailed trcatment.
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The relation between quaternions and Euler angles is

do
q1
qz

L a3

—_

o8 "3 CcOS g COS ’ + sin ‘é’ sin g sin =
sin % coS g cos = — COS % sin g sin
Cos % sin g COS 5 + sin % Cos —g— sin
cos % CcOos g sin 2 — sin % sin % Ccos

The direction cosine matrix with respect to quaternions is

Q

Il

o 0
&
gQ
$

Red
&
o
<
o
ks

Q
8
Q
<
3
[

1-2(g5+4q3) 2(q122 — 9093)
2(q1g2 + qogs) 1 —2(qf +q3)
2(q1q3 — 9092)  2(q2q3 + Jo41)

Finally, the quaternion state equations are

do
G
%2
qs

[0 —P —Q -R
1P 0 R —Q
2o -R 0 P

'R Q -P 0

Note that this can also be written as

2.1.2 Wind

0 P Q
11 -P 0 —-R
2l - R 0
| -R —Q P

qo
q1
q2

| q3

R

©
o

/s

Y
2
¥
2
KA
2
¥
2

-~

o
1
a2
43

2 (q1q93 + q243)
2(q2gs — qot1)
1-2(q + @)

(2.9)

(2.10)

(2.11)

(2.12)

The final considerations are cffects of wind. Wind is introduced in the local frame,

so the body velocities [U V W]"

must be converted to local velocities through the

direction cosine matrix C. Then the wind velocities can be subtracted and the result
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converted back to the body frame to achieve the air-relative velocity

U, U Uy,
v, | =CT|lCl Vv |-1| Vv, (2.13)
W W Wy

During full simulation tests in Chapter 5, the wind is generated by the cquation
Vi = (1 + Vwind,)vwiGuw (214)

The goal was to create a noisy disturbance about the constant wind intensity v, . A
Ws

zero mean Gaussian noise “turbulence” term v,y with standard deviation oipg 1S

added to 1 to perturb v,,,. This signal is then shaped by G, to smooth the turbulence,

where GG, is a first order low pass filter with a time constant of two seconds.

2.2 Forces and Moments

Rotor and aerodynamic forces and moments are calculated using a standard treatment

for rotorcraft [10]. The primary source of external force is the rotor thrust.

2.2.1 Rotor Forces and Moments

The forces produced by the rotor are governed principally by the rotor rotation rate
and the local flow velocity. The primary equations will be presented followed by a
brief discussion of their origin.

The main relations driving the rotor forces are for thrust and induced velocity [10]
1 2
T = 1 (W — Vi) Qr pabe. (2.15)

nesT
Vi = leE (2.16)

20mr\JU2 + V2 + (W, = V7).

where {2 is the rotor rotation rate, p is the air density, r is the rotor blade radius, a is
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the blade lift curve slope, b is the number of blades, and ¢ is the blade chord. Other
parameters will defined next. Note that in the above equations, T and V; are functions
of each other, and therefore special consideration is required for a solution. Iterative

and direct methods have been considered, and are discussed in Appendix A.2.

Local blade velocities must be computed for use in the above equations. W, is the

flow velocity normal to the rotor plane, and W, is the velocity normal to the blades.

W, =W, +aU, — bV, (2.17)

2
Wb = W/T —+ 597’500[ (218)

Here a; and b; are the forward and side flapping angles of the rotor disk, d.4 is the
(constant) collective angle of the blades, and % is used to find the average velocity

along the span of the blade.

The thrust cquation is based on blade element momentum theory, where the

coefficient of thrust is related to the blade tip angle of attack

o T ara
= — (¥4
ToprrtVE, 4T
o WimVi_ WV
p = V'“‘p - Qr
where the blade tip speed is Vi, = Qr, and the rotor solidity is o, = %‘1% Solving for

T gives Equation (2.15).
The equation for induced velocity is based upon momentum theory, which states

that thrust is twice the induced velocity times the mass flow rate through the rotor

T = WiprrtyJU2 + V2 + (W, - V)2,

The square root term is the resultant velocity at the rotor assuming a small angle of

attack of the rotor disk. Solving for V; gives Equation (2.16).

Note the factor ngg, which has been added to take into account ground effects

when the vehicle is flying close to the ground. The height of the rotor above the
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ground is the vehicle altitude plus the height of the rotor above the center of gravity

rotated into the inertial frame.
hy = —pD = C,.2, (2.19)

The ground effect factor, negligible for h, > r, is dependent upon an empirical term

Kgr = 0.03794 [9].
1

1+ [(GE (21-)

by

(2.20)

Noe =

In addition to the thrust and induced velocity equations, the equations governing
the rotor dynamics must be developed. First, induced and profile power will be
calculated. The induced power drives the rotor, and is found from the product of

thrust and velocity flow through the rotor.
B=T(Vi-W,) (221)

Profile power is the loss associated with the rotor traveling through the air, and is
found from integrating the drag at each clement along the blades times the element

location and multiplying by the rotation rate.

r 1 )
P, = QbL SPC (Velocltyz) Cp,ydy (2.22)

_ pEQr
8

b, (%% + 4.6 (U2 + V)] (2.23)

The equivalent flat plate area of the blades is defined as F,. = Cp,rbc, where Cp, is
the zcro lift drag coefficient of the blades. The velocity used in the equation above

takes into account rotor rotation rate and body velocities [5].

The power can be used to calculate the torque on the rotor, which then propagates

30



the rotor rotation rate state Q.

P+ P,
= 2.24
T Q (2.24)
. =T
Q= — 2.2
T (2.25)

Some additional parameters must be calculated to find the flapping dynamics of

the rotor. The Lock number, coning angle [16], and advance ratio are.

4
acr
S ; (2.26)
b
27vC
g = =T (2.27)
3ac,
Us
L= 2.28
v (2.28)

Using these parameters, the first order flapping sensitivities can be found from

the following equations [§].

% _ _% (2.30)
% = —% (2.31)
%(‘l/—l = % (2.32)
which define the steady-state flapping angles
ay,, = %Ua + %V}l - 71—%@ — 0 (2.33)
bi,, = gb—Uan, + % 0 A/IL(;P — d5 (2.34)

where d; and §, are the rotor tilt inputs, forward and side respectively. Actuator

dynamics are also included here. A simple lag with input of desired rotor tilt and
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output of actual tilt
1

Hi(s) = ——
o8) = S a1

(2.35)

was used to model the servos driving the rotor tilt inputs, where the break frequency
was selected to represent actual radio controlled servos used for hobby aircraft. Addi-

tionally, each input was limited to £15° to account for servo and physical limitations.

The flapping state derivatives are

: 7151
a = — /f()_ (ag —ay,,) (2.36)
. v 82
b= == (b = 1) (2.37)

Finally the forces and moments produced by the rotor are collected. The moments
arc generated by considering the distance of the rotor hub from the vehicle center of
gravity. If the flapping angles are assumed small, the equations can be simplified with

sine and cosine approximations.

X, ] [ —Ta;

v, | =| 1 (2.38)
z | | -

L. | [ -Tha

M, | = | Tz, —Tayz, (2.39)
A

2.2.2 Induced Velocity Near Vertical Descent

A helicopter in autorotation is typically in the vortex ring state, which means the
descent rate is close to the downwash velocity. Momentum theory breaks down in
the vortex ring state for small advance ratios (below about 0.1). A different process
must be used for conditions near vertical descent. Due to the lack of theory, a best fit

approximation for induced velocity in vertical descent based on experimental results
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was used [10]

Vi W, AN w,\° W, \*
vertical __ 115 1125 — 1‘372 1.718 — 0655 _— 240
Vi T <vh> " (w) (Vh> (2:40)

myg

where the induced velocity in hover is Vi, = 575

Bridging theory states there should be a combination of vertical descent induced
velocity and momentum theory induced velocity for low values of pi. A linear combi-
nation was chosen, based upon where the vehicle’s advance ratio was in the interval

between the critical advance ratios, 0.1 and 0

d—ptl
_Olzpl (2.41)
0.1 4
‘/i = (10 - A) ‘/imomentum + A‘/;:vertical (2'42>

L was chosen to match simulation trim outputs with ex-

where the weighting term ;

perimental results.

2.2.3 Aerodynamic Forces and Moments

Airflow over the fuselage and tail section of the vehicle produce forces and moments.
Drag on the fuselage is calculated from the fuselage drag coeflicients, used here in a

dimensional form.

1

Xfus = §pqu,fus |Ua| Ua (243>
1

qus = §f)vav,fus |‘/a| ‘/a (244)
1

qus = §prw,fus ‘Wa| Wa (245)

The forces from the vertical tail or fin are calculated by using a lift coefficient.
First, the local velocity at the fin (from the spinning vehicle) is found by adding the
spin rate times the displacement of the tail from the center of gravity.

V:z.vt = Va + T'vtR (24())
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Assuming a constant lift coefficient from the fin, the side force is found from
1
th = ‘2‘/0 (Yuu,vt ‘Ua[ Ua + Yuv,vt ’Ua’ ‘/a,vt + Y;w.vt H/;I,,Utl ‘/(L,Ut) - (247)

This equation does not consider stall effects. To account for this, the maximal side

force is calculated using the maximum lift coefficient

1 A .
§pyvv,'vt<,7naw (Uaz + ‘/afvt) . (248)

Y;)t,max -

The fin force is limited in magnitude to this maximum value.

The forces from the horizontal tail are calculated in much the same manner as
the fin, but must take into account the downwash from the rotor. The approach
is to assume a uniform downwash velocity profile, and to check whether or not the
horizontal tail is in the downwash stream. Note that downwash effects only need to be
considered if the rotor is pushing air downwards (V; > W,,), which is almost never the
case for a gliding autogyro. However, the extra downwash term will be included for
completeness and to allow for the possibility of an aggressive flare mancuver during
the landing phase of the mission. The term dg, depicts the relative location of the

horizontal tail to the downwash.

Ua Znt T Zmr
e (2.49)

The first term describes how far the downwash stream “travels” from the rotor to the
tail. The last three terms account for the relative location of the tail with respect to

the edge of the rotor disk. The local velocity at the tail is then
I/Va,ht = Wa - V; - xh‘tQ (250)

where the term V] is included only if 0 < dg, < 7 (the horizontal tail is in the

downwash stream).
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The lift force from the horizontal tail is then calculated from
1
Zh = 5P (Zuut \Ua| Us + Zuw pe \Ual Wapt + Zww it |[Wantl Wane) - (2.51)

Once again, the maximum lift gencrated by the tail is limited to

1

5PV Vihtmas (U24+V}). (2.52)

th,max =

The total aerodynamic forces and moments are collected for use in the equations

of motion

Xa | [ X

Ya | = | Yius+ Yo (2.53)
Za | i Zpus + Ly

Ly —YiusZfus — Yoot

Ma | = | Xfus?fus — ZnThe (2.54)
Ny ] i Yoot

2.3 Implementation

The equations of motion and the force and moment equations were implemented
in Matlab’s Simulink environment in an s-function. This approach allows for casy
implementation and modification of both simulation and controller. The specific
vehicle parameters used in the simulation are given in Appendix B.1. The values were
selected to model a small remote-controlled type helicopter similar to the GyroBee
aircraft shown in Figure 1-1. This type of vehicle is consistent with the mission of
precise delivery of small payloads.

During the simulation, the state derivatives for body velocities (2.4), body angular
rates (2.5), Euler angles (2.7) or quaternions (2.11), local position (2.8), rotor rotation
rate (2.25), and rotor flapping angles (2.36), (2.37) are integrated using a fourth order
Runge-Kutta numerical method. These derivatives are calculated from the body force

and moment equations for the rotor (2.38), (2.39) and vehicle (2.53), (2.54). Given
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an initial state condition, the integration continues until the autogyro reaches the

ground.

2.4 Validation

In order to have some type of validation of the simulation described above, the trim
conditions of the simulation were compared with other studies from the literature.
The paper by Bailey [2] describes a method for calculating the performance of heli-
copters. It uses a different set of assumptions and keeps higher order terms than the
simulation defined in this paper. A parameterized code was developed by Oliver [13],
based upon the work of Bailey, and was found to be experimentally accurate. The

parameters of this vehicle model were modified to correspond with Appendix B.1.

Theory and Simulation Comparison
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Figure 2-1: Comparison of theory and simulation trim response

A comparison of the output of the code based on the Bailey theory and the

simulation is shown in Figure 2-1. The dashed line shows the Bailey theory, and the
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star shows the vertical descent speed, found from equilibrium arguments. The Bailey
theory overestimates the vertical descent speed, highlighting the need for bridging
theory, which is represented by the dotted line. Bridging theory dictates a smooth
transition between vertical descent and and the Bailey theory for values of advance
ratio, y, larger than 0.1. The simulation trim points, shown as circles, match up well

with the theory, promoting validity.

Simulation trim conditions
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Figure 2-2: Trim forward rotor tilt input and glide slope

Figure 2-2 éhows the glide slope ratio, v, and forward rotor tilt input, d;, for each
of the trim points in Figure 2-1. The glide slope ratio is defined as the forward speed
divided by the descent speed, and is a measure of gliding performance, denoting the
achievable range for a given altitude. Note the wide range of achievable glide slopes,
providing increased longitudinal control authority compared to parafoil systems which
have nearly static glide slopes. Most of the autogyro flight will take place close to
the maximum v of about 2, to yield the maximum range. Although this glide slope

ratio is relatively small when compared to gliders or even airplanes, it is good enough,
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considering the parent vehicle will drop the autogyro either close to the target, or at

high enough altitudes to reach the target.
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Chapter 3

Guidance Control Design

With the simulation realized, analysis can be performed, and a controller can be
designed. In the following section, the nonlinear model is linearized and analyzed.
Then the control structure is presented, and the specific controller is designed for the

gliding autogyro vehicle. A guidance path planning method is also developed.

3.1 Linearization

In order to use classical control design techniques, a linear model of the autogyro
must be obtained. A trim point was selected from Figures 2-1 and 2-2 such that
good performance was maintained, and also to be on the rising side of the glide slope
curve. This allows the controller to operate more logically so that moving faster
yields a larger glide slope. The trim point selected was at a forward rotor tilt of 3.5°,
corresponding to a glide slope of v, = 1.65 and a forward speed of 34ft/s. The entire
trim state is given in Section B.2, and is denoted by subscript t.

To perform the linearization, the MATLAB command linmod was used. This
command uses a Simulink diagram and a trim point as an input and calculates a
linear system from small perturbation analysis. The result was a state space model

of order 15 for the state vector x and with inputs u.

x = Ax + Bu (3.1)
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4 (deg)

x=[¢p0UVWPQR,N,E,DQa b]"

The specific A and B matrices are given in Section B.3.

This linear modal can be compared with the nonlinear by considering the outputs
of each to an impulse in the separate inputs. Figure 3.1 shows both longitudinal and
lateral representative responses. The plots show that the comparison is good and
thus the linear model is a good approximation, suitable for linear control design for

flight conditions close to a steady glide.

Longitudinal impulse response from ﬁl Lateral impulse response from SS
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Figure 3-1: Comparison of linear and nonlinear impulse responses

3.2 Modal Analysis

Before proceeding, it is useful to look at the modal decomposition of the linear system
to gain insight into the behavior of the vehicle. Figure 3.2 shows the eigenvalues of A
on the imaginary plane. In this plot, the oblong oval grid lines are points equidistant
from the origin (constant natural frequency), and are labeled on the right. The ray
grid lines (constant damping) are labeled on the the other sides of the plot.

The first observation to make is that the system is completely separable into lateral

and longitudinal modes. This will be important later when setting up the structure
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Eigenvalues of linear system
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Figure 3-2: Eigenvalues of the linear system on the imaginary plane

of the controller.

By using the real part of the eigenvalues as the initial condition for the linear
model, the modes of the system can be visualized. The responses are shown in
Figure 3-3.

From the responses, it is clear that the autogyro vehicle has modes similar to
those common to normal airplanes. This provides additional confirmation of the
system model dynamics, as autogyros have been shown to exhibit modes similar to
aircraft [6], [11]. The short period, phugoid, and rotor speed modes are longitudinal,
and the flapping, dutch roll, and spiral modes are lateral. Note that there are two
additional modes not associated with aircraft (rotor speed and flapping) due to the
unique addition of €2, a,, and b, as states of the system. The eigenvalues and their

interpretations are summarized in Table 3.1.

All of the modes have fairly light damping. Additionally, the spiral and phugoid
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Figure 3-3: Modal response of linear system
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Eigenvalue Interpretation
—1.73 £10.155 | Short Period
—1.67 +8.425 Flapping
—0.71 + 3.64j Dutch Roll
—0.65+0.115 | Rotor Speed
—0.14 £ 0.375 Phugoid
—0.12 Spiral

Table 3.1: Eigenvalues of the linear system with their interpretations

modes are very slow in comparison to the short period and dutch roll modes. However,
because the spiral mode has little excitation, it is of less importance. Thus the aim
of the controller should be to add damping to the modes and decrease response time.
Note that it will be difficult to speed up the longitudinal responses because of the

slow dynamics.

3.3 Control Structure

Separate lateral and longitudinal controllers can be constructed because of the decou-
pled modes, and the two can be integrated with minimal risk of interference. Both
controllers were designed using classical, multiple loop closure techniques.

The longitudinal controller was based upon getting a good response to a com-
manded glide slope ratio, 7., and then modifying 7, based upon altitude error. The
outer-loop altitude controller was chosen to be proportional integral to eliminate
steady-state errors. This is the procedure outlined by Etkin and Reid [3].

The outer-loop lateral controller is based upon the algorithm developed by Park
[14]. This nonlinear control law guides a vehicle along a path, and has shown partic-
ularly good performance with aircraft flying along both straight and circular paths.
First, a reference aim point is sclected based on the commanded path. This point is
selected to be a distance L; away from the vehicle. The angle between the vehicle’s
horizontal velocity vector and the vector joining the vehicle and the reference point
is defined as 7. The geometry of this setup is shown in Figure 3-4. The output of the

algorithm, which is the lateral acceleration needed to reach the aim point in a circle,

43



is the acceleration command

j\"r&] +p E"Q

as,,., =25 I sin 7). (3.2)

If a coordinated turn is assumed, this acceleration command can be related to a bank
angle command. Thus Lcos¢ = mg and Lsin¢ = ma,. Dividing these formulas

yields

¢, = tan™! (a—-qg;ﬁ‘-‘i> (3-3)

NIRCE
. aim point
L/
N
!
desired path

Figure 3-4: Nonlinear guidance diagram

The overall control strategy is shown in the block diagram of Figure 3-5. The

control design remaining is to make good roll and glide slope controllers.

3.4 Longitudinal Control Design

The longitudinal controller is based upon a glide slope controller as an inner loop
with an outer altitude control loop. The inner loop is shown in Figure 3-6. The
controller for ~ is designed with a multiple loop closure strategy. In each successive
loop, the outer controller must be slower than the inner. This allows outer loops to
assume stability of inner loops. Therefore care must be taken to ensure that inner

loops perform very well.
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First, pitch rate, ), and pitch attitude, 6, are fed back in successive loops through
simple gains. More aggressive controllers were considered, but the required control
authority was unreasonable. The corresponding bode plots of each successive system
are shown in Figure 3-7. The figure shows the systems both compensated and uncom-
pensated. The dotted line represents just the plant, and the solid line represents the
forward transfer function with the controller in place. In both cases the gain selected

increased the time response of the system while maintaining large phase margins.

Q feedback Q and 6 feedback Q, 8, and coty feedback
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Figure 3-7: Bode plots of successive longitudinal inner loop transfer functions, from d; to the
controlled variable

In order to gain access to the glide slope as an output from the linear model, it
must be created as a state in the system. This can be done by observing that the
glide angle is 6 — «r, where « is the angle of attack of the autogyro. Note that the glide
angle is the angle between the horizontal and the velocity vector, which is equivalent
to cotangent of the glide slope. For relatively constant forward speeds with small

W

angles of attack, o can be approximated as tan~! () ~ ;*—. Thus the new state
u Ui.rnn
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is added cotv = 2~ — ¢

T
U trim

To eliminate steady state errors in the glide angle, a PI controller was used,

2
=y, (3.4

S

The last bode plot of Figure 3-7 is a comparison of the forward transfer function
from d; to cot vy, with and without compensation. The integral feedback trades some
phase margin and speed for eliminating steady state error. A plot of the poles of
the compensated system is shown in Figure 3-8. The original, open-loop poles are
also shown for comparison. Note that our objective of increasing speed and damping,

especially of the dominant phugoid mode, has been achieved.
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Figure 3-8: Eigenvalues of inner-loop controlled longitudinal system

The entire inner-loop glide angle controller was implemented with the linear sys-
tem as in Figure 3-6, except the more accurate definition of the glide slope being the

forward speed divided by the descent speed was used. The response of this augmented
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system to a step in cot 7, is shown in Figure 3-9. Although the response is not partic-
ularly fast (with a rise time of about five seconds), it will be adequate for the needs
of the autogyro following a benign ramp altitude profile. Also note the undershoot
caused by the initial increase in descent speed from the loss of lift associated with

tilting the rotor forward.
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Figure 3-9: Response of linear model to step in 7,

The final step of the longitudinal controller design is the altitude controller. The
altitude of the autogyro is compared to the commanded altitude to form an error.
This error is used to adjust the commanded glide angle to achieve the desired altitude.
A proportional-integral controller was used

s+1/30

S

Gy =k (3.5)

The output of the controller is limited to the maximum trim glide slope achievable by

the vehicle so that unreasonable commands are not issued. Since this is the second
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integrator in the loop, there will be zero steady-state error to a ramp command (the
nominal altitude profile).

The altitude controller was implemented on the linear model. Saturations of
inputs and commanded glide slopes were also included. A response was generated
for a commanded altitude profile along the nominal glide slope. To illustrate the
response dynamics, the initial altitude of the vehicle was offset by 200 feet from the
commanded profile. The response is shown in Figure 3-10. Initially, the vehicle is
below the commanded path, so the glide slope is commanded at maximum until the

vehicle approaches the commanded altitude.
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Figure 3-10: Response of linear model to initial altitude offset

3.5 Lateral Control Design

The lateral controller is similar to the longitudinal, except in this case the inner loop

is a bank angle controller, and the outer loop is the nonlinear guidance law. An
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overview of the inner ¢ controller is in Figure 3-11.

Lateral

H’ll}

Dynamics

Figure 3-11: Lateral bank controller

A similar approach to that from above is used to get a good ¢ response. First,
R is fed back using proportional control. Observe, however, that sustained turns
are required for path following, implying that these steady turn rates should not be
driven to zero. Therefore a washout high-pass filter is used in the R feedback loop,

so that the controller does not act upon the low frequency steady turn rates.

(3.6)

The bode plot of the forward transfer function from d, to R, with and without the
controller with washout, is shown in the first plot of Figure 3-12.

Second, P is fed back through a pure gain as the next loop. The corresponding
bode plots are shown in the second graph of Figure 3-12. Here the gain was selected
to increase system response speed.

Finally ¢ was fed back through a PI controller

s+ 1

S

Gols) = ks (3.7)

so that a bank angle can be tracked without error. The gain ks was selected to main-
tain ample gain and phase margins on the third plot of Figure 3-12. The eigenvalues

of the completed inner-loop control can be seen in Figure 3-13 (note the extra state
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due to the washout filter). The spiral mode has been sped up, along with adding

damping to the dutch roll mode.
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Figure 3-12: Bode plots of successively closed lateral inner loop transfer functions, from 4, to
the controlled variable

The response of the linear system to a step input in ¢, is shown in Figure 3-14.
The relatively fast response of this controlled system will help the outer loop path
tracking algorithm.

The commanded bank angles are generated from the nonlinear guidance logic
described by Equations (3.2) and (3.3) in Section 3.3. In this algorithm, the reference
point distance L; acts like an inverse gain: a low value represents an aggressive
controller that could go unstable, and a high value represents a sluggish controller
that will cut corners of the path. The value of L, for the lateral controller was
selected to provide good tracking of circular paths with radii larger than about 200
feet. Additionally, the output of the guidance algorithm was limited to bank angle

commands of £15 degrees, both to eliminate infeasible commands for large heading
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Figure 3-13: Eigenvalues of inner-loop controlled lateral system
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deviations and to maintain close proximity to the trim point.

The full lateral controller was implemented on the linear model, and responses
were found to various commanded paths, which can be seen in Figure 3-15. The
more interesting case is the first, with a circle following task, here with radius 200ft.
This is important because the path planning algorithm developed in the next section
will use a combination of straight lines and circles to guide the autogyro to the
target. The second path is a sine wave steadily increasing in amplitude. The tracking
performance degrades when the radius of the turn becomes too small (below about

200 feet).
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Figure 3-15: Respounse of linear model to various commanded paths

The parameters of both the longitudinal and lateral controllers are summarized

in Table 3.2.

ko | ke | ky kn
Longitudinal | -5 [ -20 | -1 | 0.0026
kr | kp | ks Ly
Lateral -1 8 |3 100

Table 3.2: Controller parameter summary
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3.6 Path Planning

An algorithm must be developed to create a path from a somewhat arbitrary initial
starting location to the desired target location. The approach is geometrical assuming
a constant glide slope. The path will be comprised of straight segments and circular
turns, thereby taking advantage of the lateral control structure. The first segment
is straight, permitting control and estimation initialization and allowing the vehicle
to settle into its trim condition. Next comes a circular turn, followed by a second
straight gliding segment. Then there is a final circular turn, and the final approach

leads the vehicle to the target.

NP (it)

c
NG
- 0

EP

Figure 3-16: Trajectory Setup

Figure 3-16 shows the details of the flight path. Without loss of generality, a new
axis can be defined (with superscript p) such that the final approach leg is along the
x axis and the target is at the origin, requiring only a translation and rotation of
coordinate frames.

The figure shows the key variables used in the algorithm. Each transition point is
depicted by the subscript corresponding to the appropriate label on the figure. The
known parameters are first defined. The starting point is the 0 location: ,N{, ,Ef,
»Db. The initial heading is an angle 1)y. The (assumed constant) glide slope is taken

to be the trim glide slope v;, defined as the trim forward velocity divided by the trim

o4



descent velocity. Finally, the initial settling leg length ¢, is also known.

Because of the cumbersome notation, assume that the path and local frames are
aligned so the superscript p can be dropped. It is easy to generalize to the path frame

case by transformation of the transition points.

Using these known parameters, a scries of equations will be defined to solve for
a series of unknowns. The first turning angle, v, turns the vehicle to a new heading
tp1. The vehicle will stay on this heading throughout the gliding segment’s length [,.
The vehicle makes the final turn through an angle v, to reach the final approach leg,
which begins at location ,N; and altitude —, Dy, and ends at the target location (the
origin).

So the objective of the algorithm is given parameters {c,, ¥o, pNo, pEo, pDo, Vet
find the quantities {1y, ¥y, lp, yNs, pDys, ¥1}. Thus six equations are needed for the

six unknowns.

First, consider the altitude at each of the transition points. The altitude after
completing the second turn must be constrained to be the final approach transition
point altitude, ,Df. The altitude lost in a given distance can be found by realizing
that the glide slope ratio, 7, is the distance traveled divided by altitude lost when in
a trim condition.

—yDy— 2 2e PP _ (3.8)

A simple angle observation produces another two equations and simplifies the

following analysis.

bo=ti+ g (3.9)
Ve = Y1+ Yo (3.10)

Lateral constraints similar to the altitude equation yield two additional equations
(for ,N and ,FE). First, however, the turn geometry must be investigated in more
detail (see Figure 3-17). Considering the first turn, a rotation of axes by i, such

that the initial heading of the turn in the new frame is vertical, is shown in the
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figure. The change in ,N along the turn in this frame is r, —r, cos¢,, and the change
in ,F is rpsin,. After rotating back into the path frame, we have the change in
position , N after the turn is (1, — 7 cos9,) cos ¥y — 1 sin ¢y, and the change in ,F
is 7, sin 9, cos Yo + (1, — rpcos 1, ) sin ¢y. Thus the equations defining the constraints

between the initial and final North/East positions are

North :, Ny — ¢psintfp + (1 — 1p €08 1,) cOS Py — T sinpsia + lpsinyyy — v, cosyp =, Ny
(3.11)

East :, Ey + ¢, cosg + (rp — rpc081,) sin g + rpsin ), cos ¢g + I, cos 1y + 7, sinehy + rp = 0.
(3.12)

NP

[
rpsln(wa)

Figure 3-17: Detailed geometry of the first turn in the commanded path

The last equation comes from the constraint on the glide slope during the final

approach leg.
« Ny

=, (3.13)
pr '

In general, the approach glide slope could be set to a different value than the glide
slope of the rest of the path, but here it is kept constant for simplicity.

These equations can be solved iteratively, or a numerical solver can be used. In
the latter case, equations (3.8) through (3.13) can be combined into one equation of

91 only. This can be solved, and the other parameters easily follow.
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3.6.1 Steady Wind

An additional challenge arises when wind is introduced into the simulation. When
flying into the wind, the ground relative glide slope is decreased, causing a drop in
the range of the vehicle. It can be be assumed that the wind speed is known by
the autogyro either by uploaded information from the parent vehicle or an onboard
estimation scheme. This motivates creating an altered path planner based upon
known wind speeds: using this extra piece of information to create a path that is

followable by the autogyro.

The strategy is to create a wind-frame coordinate system. These axes are trans-
lated from the path axes according to the wind speed and the trim rate of descent of
the vehicle. Each point in the wind frame takes into account the extra wind relative
distance that must be traveled to reach the corresponding point in the path frame.

The transformation to the wind frame is given by

D

pr =p N - LU’U} (314)
p Dt
D

pEY =, B — =W, (3.15)
pD

where th is the trim rate of descent. Thus the wind frame is shifted in the direction

of the wind with increasing magnitude as altitude increases.

This transformation implies that a path created in the wind frame will have a
constant glide slope throughout the flight. Thus the path planning algorithm is
altered by using inputs of the initial vehicle position in the wind frame to create a
wind relative path. This path is then followed by the controller using wind relative
states.

An example result of the path generation algorithm is shown in Figure 3-18. The
solid and dashed lines are the results when a steady wind of U,, = —2ft/s (in the
o direction), W, = 10ft/s (in the ,E direction) is used. Notice how the wind
relative path is shifted in the direction of the wind according to altitude. The dotted

line shows the result with no wind. The outcome is exactly what is expected and
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required. With wind, the final approach point is shifted closer to the target, so less
ground distance must be traveled, and a constant wind relative glide slope can be
used. Additionally, the point is shifted up, so the final approach leg can be Hown,

and the wind will push the vehicle towards the target.

500 T T T T

-500

-1500 5
5
Path with wind (local frame) /
~2000 - o ) ! -
- — — - Path with wind (wind frame) f
|
Path without wind |
—2500 1 I} L 1
0 500 1000 1500 2000 2500
E (ft)

Figure 3-18: Path generation with and without wind U,, = —2ft/s, W,, = 10ft/s

3.7 Simulation Results

The lateral and longitudinal controllers were implemented on the full nonlinear sim-
ulation from Chapter 2 using the steady wind condition U,, = —2ft/s, W,, = 10ft/s.
The output of the autogyro following the commanded path toward the target at the
origin is shown in Figure 3-19.

The first graph of the figure shows good tracking of the commanded path, even
in the face of a wind disturbance which is a significant portion of the autogyro’s

trim forward speed (34ft/s). The next plot shows the tracking of glide slope and
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Figure 3-19: Controlled simulation result

bank angle. As the vehicle makes the long second turn (negative bank corresponding
to left side down) to reach the final approach leg, the maximum altitude error is
encountered. This is because during the turn there is a loss of lift associated with
the rotation of the lift vector, and it takes some time for the glide slope controller to
catch up with the altitude error. The last plot shows good tracking of altitude, with
never more than 10ft of error. The autogyro touches down on the target point with

a final position error of about a half a foot.
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Chapter 4

Estimation

The controller designed in Chapter 3 will not have direct access to the states it uses,
so an estimator will be developed which will be used to gather state information
from scnsors. The statistics of the estimator are propagated with inertial sensors.
Measurement updates are made by various sensors including GPS, magnetic, range
finder, and target pixel position. Images from an onboard camera are sent to the
ground station and the target is tracked by an operator. The target pixel offset from

the image center is sent back to the vehicle as an additional measurement.

4.1 Extended Kalman Filter

The extended Kalman filter is used for state estimation of nonlinear plants [4]. A
continuous-discrete filter was chosen such that there is a continuous time propagation
of statistics with discrete measurement updates. The nonlinear dynamics of the
system are used for statc estimate propagation, and linearized dynamics are used

for error covariance propagation and measurcment updates.

4.2 Filter Dynamics

First the dynamics that the filter is modeling must be defined. The dynamics will

take advantage of the inertial sensor’s measurements of acceleration and angular rates.
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These measurements are inherently noisy and have an unknown bias. The measure-

ments (denoted by subscript m) are related to the actual values by

a:avrz+>\a+ua
Q;g = ng + AQ:& -+ Vo, (41)

Qy = Qy, + Aa, + Vo,

where v is a zero mean Gaussian sequence with standard deviation o, A is the constant
bias of the sensor, and €23 and €, were defined in Equations (2.3) and (2.12) as
matrices of angular rates. Also, a, the accelerometer measurement, is the vector of
rotor and aerodynamic forces divided by mass. During simulations, the standard
deviation of the noises above were taken to be o,, = Oa, = 04, = 0.3 ft/ s> and op =
oo = opr = 0.0l rad/s. The biases were modeled as constants due to the short mission
time. The values used were \,, = Ag, = Aq, = 0.3 ft/s2 and Ap = Ag = Ap = 0.02
rad/s.

Using these measurement equations (4.1) in the state equations (2.8), (2.4), and

(2.11), the filter dynamics are obtained.

X =Cv
v={(amn+A)+Clg—(Q, +Aa,)V+w (4.2)
. 1
q= 3 (€, + A, )+ wy

In the above equations the noises have been collected as

Wi =V, — Vq,V, Wy = ——Vgq,. (4.3)

An additional step is to model the measurement biases. To make a robust estimate,

a small amount of process noise must be injected into the dynamics of the bias. This
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ensures that the estimator gain does not converge to zero as time increases.

APQ.R = W3

_ (4.4)
AaI,ay,a,Z =Wy
Thus the state of the estimator is
T . T T T T T
X = pX A% q AP,Q,R Aaz,ay,az] (4.5)

and the filter dynamics (4.2), (4.4) can be written in the standard nonlinear filter
dynamics model

x=f(x)+w (4.6)

T . . . .
where w = [01x3 W] wi wi wT]" is the vector of noise terms with spectral density

matrix

Q = E(ww’) (4.7)

which has been defined in the appendix in Equation (C.4).

4.3 Time Propagation

To propagate the statistics of the state estimate through time, the filter dynamics are

used. For the state estimate, the full nonlinear dynamics are integrated
x=f(%). (4.8)
The error covariance, P, is propagated by integration of
P =FP + PF" + Q (4.9)

where F represents linearized filter dynamics about the current state estimate

_of

(3x X=X

F . (4.10)
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Matrices F and Q are calculated in Appendix C.1. A fourth order Runge-Kutta
integration scheme was used for propagation of both the state estimate and error

covariance during simulations.

4.4 Measurement Updates

Measurement updates in the Extended Kalman Filter are handled the same way as in
the linear case, except that the updates use linearized measurement equations. Each

discrete measurement is modeled by
z=h(x)+v (4.11)

where h is the nonlinear measurement equation and the uncertaintics in the mea-
surement instrument are represented by zero mean normally distributed sequences,

v, with covariance matrix

R=FE(w'). (4.12)

It is assumed that the measurement are independent and thus R is a diagonal matrix

of the sensor noise variances.

The Kalman gain is found from

1

K =PH'" (HPH" +R) (4.13)

where H is the measurement equation linearized about the current state cstimate

__oh
COx|,_,

X

H ) (4.14)

This gain is used to updatc the state estimate by weighting the innovation, which is
the difference between the actual measurement and the expected measurement based

upon the filter model.

%t =% +K(z - h(z)) (4.15)
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Finally, the error covariance matrix is updated by

P*=(1-KH)P. (4.16)

The following are descriptions of the particular discrete sensors modeled, and how
their measurement equations are found. The linearized measurement equations for

each sensor are derived in Appendix C.2.

4.4.1 GPS

The GPS sensor gives independent measurements of both inertial position and inertial

velocity.

Isx3 Osx3 b
p
zops = haops(x) +veps = +vaps (4.17)
03><3 C A%
The measurement covariance matrix is
s 2 2 2 2 2 2
Reps = diag [ 9Grs,n 7GPs,r OGPs,n GPs . OGrsy 9GPS } (4.18)

For the purposes of simulation, the GPS was sampled every 0.2 s and the standard

deviations were assumed to be OGPS,y = OGPS,n = 50 ft, oGPs,, = 75 ft, and

OGPS = OGPS y = 0GPs 4, = 10 ft/s.

4.4.2 Magnetometer

The magnetometer takes measurements of Earth’s magnetic field in the vehicle frame.
These readings can be compared to the known local magnetic field to find the vehicle

attitude by the measurcment equation

by
Zinag = Nimag(X) + Vinag = C | bp | + Vinag (4.19)

bp
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where b = [by bp bp)” are the known local magnetic ficld intensities. The measure-

ment covariance matrix is

R, = diag [ oy op Ty ] (4.20)

During simulations, the magnetometer was sampled every 0.1 s, and the standard

deviations were assumed to be g,, = oy, = 0p, = 0.005 gauss.

4.4.3 Range Finder

The range finder is a sensor that returns the range from the vchicle to the first
object its beam intersccts with. Sonar or laser types could both be used. Due to its
limited range, it will only be activated when the vehicle is close to the ground (for
the purposes of simulation, the sensor was activated once the vehicle was under 150ft
of altitude). It is assumed that the sensor is attached rigidly to the vehicle pointing
down (along the body axis z-direction). Thus the measurement is of altitude rotated
into the body frame

D

N A . 4.21
cos 8 cos ¢ Yrr ( )

Zrf = hrf(X) ~+- V=

and the measurement covariance is just a single variance for this one-dimensional
input

Ry = | o2 | (4.22)

where o,y = 0.1 ft, and the sampling rate was 0.05 s.

4.4.4 Pixel Position

The final measurement is the target pixel position. The images captured by the
onboard camera are sent to the ground station. The measurement is the target offset
from the center of the viewing screen, in pixels, as the target is tracked by the ground

station personnel. Note that this measurement will only be available during the final
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approach phase of the flight, after the last turn has been completed and the target is
viewable. This pixel position is an indication of both vehicle position and attitude.
The technique of integrating this sensor into the estimator is similar to [1], except

that in this case the vehicle’s camera is mounted at location r2  with respect to the

camn
center of gravity of the vehicle in the body frame, and oriented such that it is aligned
with the trim glide angle, cot .. Thus when the vehicle is on the proper trajectory

the target will be aligned with the center of the camera’s view.

First, a vector must be constructed that defines the position of the target with
respect to the camera. Refer to Figure 4-1 for a description of the geometry. The
vector starts at the camera position, travels the opposite direction of rf, to reach
the center of gravity, and then travels the opposite direction of ,x rotated to the body

frame to reach the target
ngr = C(;/B (CT (—pX> — I'B ) (423)

where the superscript C denotes the camera frame and Cgp is the transformation

matrix from the body to camera frame

cosy, 0 —siny
Co/p = 0 1 0 (4.24)

sinyy 0 cosy

The camera has horizontal and vertical viewing angles of 3, and [3,. The image in
this field of view is broken up into a grid of pixels: N, horizontally and N, vertically

(N, and N, define the camera resolution). The tangent of the viewing half angle is

the ratio of half the horizontal image size, % to the perpendicular component of the

position vector. Then, considering Figure 4-2, the position of the pixel, as a fraction

of the total image size, is

1 C
7, = o Kiar)y (4.25)
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Figure 4-1: Geometry of camera showing vec-
tor relations

Figure 4-2: Camera image details

The actual pixel location is the product of this ratio and half the horizontal resolution

pixel, = 7, X 71’ (4.26)

A similar relation is found for the pixel location in the z direction. Thus the final

measurement equations are

pixel
Zimg = Y = himg(X) + ]/img
pixel,
. x$,), 1 N, .
pixel, = : Ny, |
’ (ngr)r tan %& 2 pixel,,
i (Xgr)z 1 ]VZ
ixel, = — Ne oo
DEE s (Xtc;"r-).r tan 3_22 2 pixel,
with
Rimg = diag |: o-j‘si:rei_, O‘Qixe[y :| (428)

where 0pize;, = Opizer, = 3 pixels, and the target pixel position was measured every

0.1 s.
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4.5 Estimator Performance

In order to find some indication of performance of the estimator, a baseline simulation
was run. The initial condition of the autogyro was 3000 ft away from the target and
pointed straight at it with 1875 ft of altitude, corresponding to the trim glide slope.
The controller developed in Chapter 3 was used with full state knowledge to maintain
the proper trajectory to hit the target, however essentially no inputs were required
due to the initial condition. The estimator was run during the simulation with an
initial condition offset of the true state by 16.5 feet for positions, 1 ft/s for velocities,
and 0.01 for quaternions. The estimator output is shown in Figure 4-3. In these plots,
the lighter lines are the errors: the difference between the true and estimated states.
The darker lines are an indication of the standard deviation of the error, and are plus
and minus the square root of the diagonal elements of the error covariance matrix P.

Consider the first two plots showing position and velocity estimation error. In
the position plot notice how the standard deviation lines for altitude and lateral
deviation decrease steadily. This is because as the vehicle approaches the target, the
camera information becomes more reliable. Furthermore, note the sharp decrease in
the standard deviation of altitude and vertical velocity error near the very end of
the simulation. This is due to the activation of the range finder sensor. From the
last two plots of the bias error, observe that injecting the process noise into the filter
dynamics ensures steady convergence to zero error, but keeps the standard deviations

relatively high.

N | ,E T ,D U V W
Full 4.1ft | 4.1m | 4.8ft | 0.6ft/s | 1.0ft/s | 1.0ft/s
Last 10s | 2.5ftm | 1.0ft | 2.5ft | 0.7ft/s | 0.7ft/s | 0.6ft/s

Table 4.1: Root mean square values of estimation error during the entire and last ten
seconds of the bascline estimator simulation

The root mean square values of the estimation error during this simulation are
shown in Table 4.1. Although the errors over the course of the entire simulation are

relatively high, the moments of the simulation closest to the landing phase are the
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Figure 4-3: Results of baseline estimator simulation
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most important. The errors during the last ten seconds are small enough to reach

the required accuracy.
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Chapter 5

Results

The complete model including controller and estimator was tested using random
parameters in a Monte-Carlo simulation. The achieved accuracy statistics are shown

here.

5.1 Parameter Setup

In order to test the simulation under a variety of conditions, different parameters were
given normal distributions, and then re-initialized with a different random variable
for each simulation run. The parameters considered included initial position and
heading, steady wind speed, and turbulence level. Additionally, the wind disturbance
was independently sampled from its distribution for different simulations. Table 5.1
shows the variances and means of each normally distributed parameter. The location

of the initial position means that the vehicle will generally be traveling from east to

west during its final approach phase, with a flight path similar to that of Figure 3-19.

Table 5.1: Variances of the normally distributed parameters for simulation trials

Uw,; vai Vwind pN pE pD 74/)
mean | -0.5 ft/s | 5 ft/s 0 | -2000 ft | 200 ft | -3000 ft | O
variance | 0.1 ft/s | 0.1 ft/s | 1% | 100 ft | 100 ft | 100 ft | 10°
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5.2 Accuracy

The resulting final position errors of several simulation runs are plotted in Figure 5-1.
The mean position error magnitude in the ,N direction, roughly corresponding to
cross-track error, was 2.1 ft. The mean in the ,E direction, or flight-track error, was

3.6 ft.

(fty

p

Final Position Error N

0
Final Position Error DE (ft)

Figure 5-1: Final absolute position error of several simulation runs

Notice that the distribution of landing errors has a slight skewing in the ,N and
—pE directions. The path planner and controller are slightly overcompensating for

the wind disturbance, leading to overshooting the target.
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Chapter 6

Conclusion

The use of a gliding autogyro as a delivery vehicle in precision airdrop missions has
been shown to be a good option in fulfilling modern accuracy requirements. Several

developments in this work have shown this feasibility.

e Simulation: A six degree of freedom simulation was derived based on rigid
body dynamics and rotor aerodynamics including blade element and momentum
theory. Although simulations with higher fidelity are possible, Sections 2.4 and
3.2 showed the validity of the simulation in both a trim and dynamic sensc by

comparison with other work.

e Controller: A controller was designed to guide the autogyro to the target loca-
tion. This controller utilized a classical, multiple loop closure technique, with
a new nonlinear guidance law for path following. A path generating algorithm
was also created that utilizes known constant wind speed to maintain a constant

nominal glide slope throughout the mission.

e Estimation: The extended Kalman filter with continuous propagation and dis-
crete measurement updates was used to estimate the state information needed

by the controller.

Simulation results show an impressive accuracy of about 5 ft, even in the face of

large wind disturbances.
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This project is still in development, and several steps must be taken to cnsure

success of the final design of the autogyro system.

e Path Generation: The assumption of a constant wind profile with altitude is not
very realistic. Assuming a constant rate of descent, the path planning algorithm
can be modified to use the average wind speed as an input. However, a wind
estimation and path regeneration scheme must be created to include the effects

of time-varying wind.

e Sensor Suite Selection: The particular sensors to be used must be sclected to
tune the parameters of the estimator. Additionally, the relative importance of

each sensor must be determined.

e Landing: Even though final position accuracy is good, the rate of descent may
be too high for different payloads and applications. This could be achieved
by an appropriate flaring strategy, either by backwards tilting of the rotor and
trading forward energy for vertical energy, or by adding a variable collective
control that would allow trading rotor rotation rate for thrust increase. In each
case, an energy necessary for flight is used to provide a momentary decrease in
descent speed. A challenge would be to time the landing for a minimum descent

speed while maintaining position accuracy.

e Startup and Transition: An autorotating rotor in equilibrium will maintain its
rotation rate, but starting the rotor can be an issue. The problem is essentially
breaking a stall barrier on the rotor blades. Also, the transition from verti-
cal descent to forward glide will pose additional challenges due to the vehicle

nonlinearities between these two trim conditions.
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Appendix A

Solutions for Thrust and Induced

Velocity

The equations for the thrust and induced velocity produced by the rotor are

1

T
4

(W — V;) Qr?pabe (A.1)

‘/i _ 7IGET (AQ)

20mr2\JU2 + V2 + (W, — Vi)

Note that the above quantities are defined in terms of each other and require
special attention. An iterative scheme was suggested in [8], but it was found that for

autorotation in close to vertical descent that the scheme was not appropriate.

A.1 Iterative Solution

In order to investigate the fallacies of the iterative scheme, the above equations can

be rewritten by substituting 7" from cquation (A.1) into V; from equation (A.2). By

defining A; = oy sgabc, the resulting equation reduces to
1% SV (U2 4VE LW A V242l e g A3
S 2V (U VAW - AT VP 25V -V = (A:3)
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which is a quartic in Vj.

In forward flight, the four roots of the equation are arranged such that one is neg-
ative, two are imaginary, and the fourth is the only positive answer. In this case an
iterative scheme converges quickly and there are no problems. When approaching ver-
tical descent, however, the two imaginary roots become real and positive, so that the
iterative scheme has multiple possible convergence points. This ambiguous solution
results in large jumps in induced velocity during a simulation as the scheme switches
between the solutions it is tracking. This behavior can be seen in figure A-1, where
the roots of equation (A.3) are plotted for varying trim conditions with increasing
forward speed. The roots start at the x locations, which correspond to a high forward
speed. The imaginary roots converge onto the real line and split at sufficiently low

forward speeds (close to vertical descent).
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Figure A-1: Locus of roots of the induced velocity equation ((A.3)) with varying
forward flight speeds

Another method of solution for the induced velocity and thrust is to solve equa-
tion (A.3) directly. An analytical solution of the quartic polynomial problem was
utilized to solve this problem, which unlike the iterative scheme, finds all roots of
the polynomial. Since we know that the vehicle’s performance in vertical descent
is being underestimated (namely the descent speed is too great), the smallest value
of induced velocity can be chosen so that thrust is the greatest, which most closely

matches experimental data (see Figure 2-1). A description of this method follows.
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A.2 Quartic Solution

In order to solve equation (A.3) for induced velocity, the quartic equation will be

solved analytically.

The general equation
Zf aszd v a2l +ayz+ag=0 (A.4)
has a resolvent cubic
x3 — asx; + (aras — 4ag) y; + (4a2a0 — a3 — a%ao) =0 (A.5)

which must first be solved using the cubic formula as follows.

The general form of the cubic equation,

can be written as

z} + Px; = Q;

with
bg - 3[)1
Q=25
R - 203 — 9b1by + 27hy
v 54

With these definitions the roots of the equations based upon the relative sizes of

R; and Q; can be found [15]. A more thorough derivation can be found in [12].
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If R? < 7, then define If R? > @?, then define

6; = arccos (%) A= —sign(Ri)</|Ri| + /2 - Q}

i

B; = Q1/A1

g, bo by
cos| — | — = = (A, + B;,) — =
Qicos ( 3) 3 Y1 ( i T ) 3

This root can be used to find the solution of the original quartic equation (A.4)

[19]. First define
/1.
Si = Z(lé — a3+ Y

Then define two other parameters based upon the value of S.

If S; =0, Otherwise,

Sy e 303 — 5% — 2ay + 1 (dazas — 8a; — al)
Pi= \/%aé 20, + 2[4} — dao Di = \/: 3
Y R \/ fa3 — 5% — 20y —  (dagaz — 80, — a)
i 4 1 Si

Finally, the roots of the original quartic polynomial, (A.4), are

1 1. 1 T 1.1
o= 1 s, 2y = ——as + =S5, — =D,
1=yt gt gl 2= Tt R Ty

1 1. 1 1 1 ]
2= ——ay — =S, + —E, n = — s — =8 — ~E,
3T T Ty Ty 1T T T YT,
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Appendix B

Simulation Details

This appendix shows the details of the simulation not covered in the main text.

Included are simulation parameters, trim point, and the linear system.

B.1

Parameters

Table B.1 details the specific parameters used when constructing the simulation de-

veloped in Chapter 2 in Matlab’s Simulink environment.

Parameter Symbol | Value | Unit Parameter Symbol | Value | Unit
mass m 10 Ib blade chord c 1.73 in
roll inertia Lo 0.1 | slug-ft? || rotor radius r 21.25 | in
pitch inertia Iy, 0.2 | slug-ft? Cy, slope a 5.79 -
yaw inertia I, 0.2 | slug-ft? || zero-lift Cp Ch, 0.01 -
flapping inertia I 0.04 | slug-ft* || hub location Ty 0 ft
# of blades b 3 - hub location 2y -1 ft
axial fus Cp KXo, fus | 0.5 ft? vt location Lot -3.23 ft
lateral fus Cp You, fus -1.3 ft2 vt location Zot 0.04 It
vertical fus Cp Ly fus | -1.9 ft2 ht location Thi -2 ft
fus cp dist Zfus 0 ft ht location Zht -0.12 ft
vt C'p from sideslip Yt | -0.66 ft? vt trim C}, Yiuvt 0 ft>
vt ('f, from sidewash Yot -0.17 ft2 ht trim Cp, L ht 0 ft?
ht €7, due to « Zwwpe | -0.48 | ft? Vvt Cromee | Yovotmae | 017 | ft?
ht C}, from downwash | Zywne | -0.12 ft? ht Cr e Zyvhtmazr | 0.12 ft?

Table B.1: Simulation parameters
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B.2 Trim Point

Table B.2 shows the trim point used to lincarize the simulation and create a linear

model.

5ft 53[ oy 0y Yy Uy Vi Wi Q, ai, blt
351009 0 |[-575| 0 [325| 0 |155 1080 |0.77| O
deg | deg |deg | deg | deg| ft/s | ft/s | ft/s | rpm | deg | deg

Table B.2: Simulation trim point

B.3 Linear Model

The nonlinear model defined in Chapter 2 was linearized by the Matlab tool 1inmod.
The tool uses small perturbation analysis to gencrate a linear model of the system,

based upon a trim point, of the form
x = AX + Bu (B.1)
where the state x and input u are defined as

X=[p0p UV WPQR,N ,E,DQa b]" (B.2)
u=[5 4, . (B.3)

The matrices that define the system using the trim point shown in Table B.2 were

found to be
T
JqsewUVWPQRpN,,EpDQ a by
B=/s/000 00 0 00O 0 0 0 0 —006 0
/000 00O OO0 0 0 0 0 0 -—006
(B.4)
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€8

0] o Y U V w P Q R N ,E ,D Q a by
) 0 0 0 0 0 0 1 0 -0.1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 O 0 0 0
Y 0 0 0 0 0 0 0 0 1.01 0 0 0 0 0 0
U 0 -3201 0 -0.14 0 —-0.03 0 —15.47 0 0 0 0 —-001 —6806 4.82
V| 32.01 0 0 0 —0.08 0 0.47 0 —-3230 0 0 O 0 0 29.67
w 0 3.22 0 -0.26 0 157 0 32.53 0 0 0 0 -027 —44.65 0.07
P 0 0 0 0 0.01 0 0 0 —003 0 0 0 0 0 92.21
Q 0 0 0 -0.07 0 0.01 0 —0.09 0 0O 0 0 002 10576 —7.50
R 0 0 0 0 0.41 0 0 0 -133 0 0 0 0 0 0
»N 0 18.65 0 1 0 -0.1 0 0 0 0 0 0 0 0 0
o | —15.47 0 30.85 0 1 0 0 0 0 0 0 O 0 0 0
oD 0 —-30.85 0 0.1 0 1 0 0 0 0 0 O 0 0 0
Q 0 0 0 0.1 0 0.84 0 0 0 0O 0 0 -014 2720 0
ay 0 0 0 0.01 0 0.01 0 -1 0 0 0 0 0 -3.1 0
b 0 0 0 0 —0.01 0 -1 0 0 0 0 O 0 —0.01 -=3.46
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Appendix C

Estimator Definition

The specifics of the extended Kalman filter are derived here, including the linearized

dynamics and measurement equations.

C.1 Error Covariance Propagation

irs ' ions with st T _ T o1 o' \T T
First, recall the dynamics equations with state x' = [px Vi qQ Apor )\am‘ay'a:]

from Equations (4.2) and (4.4) and repeated here.

p)'( =Cv= fl(X)
V= (an + ) + CTg — (D, + Aa,) v+ w1 = () +w,

) 1
4= =5 (R, + Aa,) g+ w2 = f5(x) + Wy (C.1)

)\P\Q,R = W3

/\a.,,ay,a: =Wy

Partial derivatives must be taken to construct the linearized dynamics equations,
F=2 o This dynamics matrix is used to propagate the error covariance matrix

Ix lx=

through time. The derivatives are taken such that each state occupies a row, and the
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partial derivative with respect to a state occupies a column.

O3x3 C %C;—v
O35 ~€3,, — A, %
F =1 043 O4x3 —3(Q4,, + Aa,)
O3x3 O3x3 034
| 053 O3x3 O34

The transformation matrix partial derivatives are

QU — @3V + W qU + gV + ¢sW
=2 @aU+@V-aW @U-qV —qgW
—@U + @V +qW @U+ gV —qW

—q2
oCTg 5
aq =<8 q1
do
The bias partial derivatives are
0o W -V
éiXQ3V
—~ = | W 0o U
aAP’Q,R
vV -U 0
( —q1
¢9AQ4 B qo
OArq.R 43
| 42

03x3

BAQ: v

T Opor

1 8A524

T2 OApP,Q.R

03x3

0353

U +qV + gW

d1
q2
q3

—41
90
a3

—q

|

03x3
I3X3
04x3
03x3

O3x3

QU + @V + W
— U + @3V — W

—2
=43
9o
01

—q@3U — QoV + W

goU — q3V + @ W

qU + @V + W
(C.3)

—43
42
—q1
d0

The second matrix needed for error covariance propagation is the process noise

matrix Q = E(ww’) where w is the concatenation of the process noises from the
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dynamics equations (C.1).

03x3 03x3

O3x4

033 E[W1WT] E[Wlwg]

Q= 04x3 Elwow]| E[wowl]
033 O3x3 0354
i 033 0343 O34

0343

033

O4x3

E [W3 Wg]

03 X3

O3x3
O3x3
O4x3
O3x3

Elw,wy]

(C.4)

The internal expectations can be calculated assuming no correlation between vg,, Vg,

Vg, Vp, Vg, and vg.

Wi =V, — VQ,V =

oL+ oRV?+ O'ZQWZ
Elwywi] = —o2VU
—U%WU

Elwowy] = ~

02 + ot U? + o3 W?
—atWV

Qy

€11
€19

€13

€14

87

Vo, + VRV — oW

Vay — VRU + I/PLV

Vo, + QU +vpV

—axVU

vpg1 + Vg + VRqs

€12

€22

€923

€24

€23

€33

€34

—Vpgo — VRG2 + VQQs3
—Vofo + VrRq1 — VP43

—VpGo — V41 + VpPq2 |

€14

€94

€34

€44

—ouWU
—otWV

02 +oZU* + 0BV

az

-




e = 0pq; + 045g + 0rd; €2 = Opgs + Ords + 0043
€33 = oéqé + ohgi + 0pa; €a = Opqs + OéQf +0pg
_ 2 2 2 _ 2 2 2
€12 = —0pg1qo + 04243 — TRY3q2 €13 = —0pd1q3 — 0gqoq2 + ORq1G3
o 2 2 _ 2 2 2
€14 = 0pq192 — 044291 — OR439o €23 = Opgods — 0gQq3qo — Tpdath
€94 = —0%(10(12 — 0Qq3q1 + (T?;e(]z(lo €34 = —U%%QQ + UéQo% - U?{{QIQO

[ —00@W + 0@V —0jsU + opi W —0pq1V + 042U ]
Efwyw] = 1 —U%(]:;W — 0%,V 0hpU — ohqW  ohgV + Uéqu
050W + 05V —opqU —opgsW  0pgsV — 0dq0U
aéqlﬂf ~ o3V okqU + 0%gW  —o%hgaV — (Téqu |
0?\}, 0 0 qu‘.r 0 0
E [W:;Wg] = 0 0/2\ o 0 E[W4WZ‘] = 0 ()';Z\ay 0
0 0 o3, 0 0 Uial

In the above equations, o), = oy, = g, = 0.001 rad/s, and Oray = Oryy = Ohpy =

0.02 m/s”.

C.2 Linearized Measurement Equations

The measurement equations must be linearized to use the discrete measurement up-

dates in Equations (4.13) and (4.16).

_

H
ox

(C.5)

X=X
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C.2.1 GPS

Recall the GPS measurement cquation
h = [x" cv']’
GPS(X) = [pX ] .

The linearized measurement equation is

I 0 0 03x3 O3y
H(;PS _ 3x3 3%x3 3x4 3x3 3x3 (C6)

9C
O03x3 C G5 Osxz Osxs

where 83% was defined in (C.3).

C.2.2 DMagnetometer

Recall the magnetometer measurement equation
ypag = Clow be bp]” = Cb.
Solving for the linearized equation yields

Hinag = [03><3 O3x3 % 0553 03x3] (C.7)

where Qz,gq—b is found from (C.3), replacing v with b.

C.2.3 Range Finder

The range finder measurement equation is

D
hyy = —r
cos 8 cos ¢
The linearized form is
Hy,= [ %’;ﬁ 01x3 a—};i O1x3 le:'s] (C.8)



where the internal partial derivatives follow. The partial with respect to position is

simply )
hiy
i),,—X = [ 00 ,D } .

Using the chain rule for the partial derivative with respect to the quaternions gives

four other partial derivatives which are easier to solve.

Ohyy _ Ohyy 00 Ohys 04
dq 08 0q 0¢ Oq

Oh.y  ,Dsinf Ohyy  pDsing
o8 cos¢cos?f dp  cosbcos? @
a0 d—% %~d—§§£ Y33~C732'6%f‘

5(_1 - V 1 - C;?l dq - C§3 + C:%z

OCs ICs 0C’33
oq :2[—(]2 qs —4qo QI] WZQ g1 4o g3 %} aq :2[% —q1 —q2 (13]

C.2.4 Camera Image

The camera pixel location measurement equation is

ol
(xm )y 1Ny x¢
(xcr)m By 2 ( o] )yl hi7n
h. . tar/@ tan — . (x5, Y o g1
mg T c - o] -
O 1N, Xz h.
(x[,(/],'p)»[ tan ﬁ—;“ 2 (xfa,h z myz

which has the linear form

j— ahier Jh;
Himg - { _ép_xa 06><3 _511&2 06><3 06><3 ] '
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The partial derivatives with respect to position are

— OpXfar)y (3 C c Y pxE,)e
I P tar/y . _ P ta
Ohimg, Tpx (Xlar)z — (pXtar)y By l
- C \2 v
(?pX (thar)z
IpX5n)z (O Ccy Opxf.)e
Z P tar/® _ P k2
ahz‘mgz . OpX (pxtar)l‘ (thar) Bpx I
= Y .
()pX (thar)r

9,xC, 0 , T
ot =[x (x60 (%6 | = 55 (FCemCix) = = (CersC)

xC
ptar ta
OpX X
O” CO87Yp — 031 sin ~o 012 COS Yo — 032 sin Yo 6113 CcOS 7o — 033 sin ~o
J— t
- (’21 022 023

Chrisinyy + C31cosve  Chrasinyg + Csacosyy  Crzsinyg + Csz €08 Yo

The partial derivatives with respect to attitude are

. MpXiar) o Yy OpXG s
dhimgl _ %ﬁ(pxtm-)z — <pX§:")y p)gq I
8q (pxgzr)% !
. 2 (Zu*)z J ~ 8( CI;T)I
@himgz _ (p)(;—tq(pxgar)x o (ng;’r)z 2D}é;q I
dq (ng;rygzc ’
where
OpX$, 0 d
ptar _ _ — (CepClx) = —Cr/p—Clx
g dq( C/BYp ) C/qu P
5 pJ](Cl] COS Vg — 013 sin "/0) +P y(Cgl COS Yo — 023 sin "/0) +p Z(Cgl COS 7Yy — 03;3 sin "/0)
= _a_q pTC1a 45 yCos +p 2030
pCE(CU sin Yo -+ Clg Cos "/0) +p y(CZl sin Yo -+ 023 CcOSs "/0) +p Z(Cg] sin Yo + 033 (€0 5] "‘/O)
and
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] 8013:2[@ o QI}
,, ] 0Ch> :2[ B @ G b | o . ]
0’80(;1 :2[(10 no—e —g 86(‘;; =2[q0 Y _qg} 586;23 =2| —q a0 q
802122[% g2 q1 QO} a_q—
dq

92



Bibliography

[1]

Hyungil Ahn. Vision-based estimation and control of airdrop vehicles for acr-
ial deployment of sensor networks. Master’s thesis, Massachusetts Institute of

Technology, June 2004.

F.J. Bailey. A simplified theoretical method of determining the characteristics
of a lifting rotor in forward flight. National Advisory Committe for Aeronautics

Report, (716), 1941.

Bernard Etkin and Lloyd Duff Reid. Dynamics of Flight, Stability and Control.
John Wiley and Sons, Inc., third edition, 1996.

Arthur Gelb. Applied optimal estimation. MIT Press, 1974.

Robert K. Hefley and Marc A. Mnich. Minimum-complexity helicopter simula-
tion math model. NASA Contractor Report 177476, NASA, April 1988.

S. S. Houston. Identification of autogyro longitudinal stability and control char-

acteristics. Journal of Guidance, Control, and Dynamics, 21(3):391-399, 1998.

S. S. Houston. Rotor-wake modeling for simulation of helicopter flight mechanics

in autorotation. Journal of Aircraft, 40(5):938-945, 2003.

Eric N. Johnson and Paul A. DeBitetto. Modeling and simulation for small au-
tonomous helicopter development. ATAA Modeling and Simulation Technologies
Conference, New Orleans, LA, Aug. 11-13, 1997, Collection of Technical Papers
(A97-37186 10-01).

93



[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

Wayne Johnson. Helicopter Theory. Princeton University Press, 1980.

J. Gordon Leishman. Principles of Helicopter Aerodynamics. Cambridge Uni-

versity Press, 2000.

C. A. Lopez and V. L. Wells. Dynamics and stability of an autorotating ro-
tor/wing unmanned aircraft. Journal of Guidance, Control, and Dynamics,

27(2):258-270, 2004.
S. Neumark. Solution of Cubic and Quartic Equations. Pergamon Press, 1965.

Michael Oliver. A parametric analysis of the start-up procedure and flight char-
acteristics of a gliding autogyro. Master’s thesis, Massachusetts Institute of

Technology, January 2005.

Sanghyuk Park, John Deyst, and Jonathan P. How. A new nonlinear guidance
logic for trajectory tracking. AIAA Guidance, Navigation, and Control Confer-
ence and Fxhibit, Providence, Rhode Island, Aug. 16-19, 2004.

William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brain P. Flan-
nery. Numerical Recipes in C, The Art of Scientific Computing. Cambridge

University Press, second edition, 2002.

Raymond W. Prouty. Helicopter Performance, Stability, and Control. Robert E.
Krieger Publishing Company, 1990.

Brian L. Stevens and Frank L. Lewis. Auwcraft Control and Simulation. John

Wiley and Sons, Inc., second edition, 2003.

Damian Toohey. Development of a small parafoil vehicle for precision delivery.

Master’s thesis, Massachusetts Institute of Technology, December 2003.

Eric W. Weisstein. Quartic equation. Mathworld, 1999.

94



