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Reductive Coupling and Related Reactions with Mo and Ti tris-Anilides

by

Arjun Mendiratta

Submitted to the Department of Chemistry
May, 2005 in Partial Fulfillment of the

Requirements for the Degree of Doctor of Philosophy in
Chemistry

ABSTRACT

Chapter 1: The capability of Mo(N[t-BulAr) 3 to act as a powerful one, two, and
three electron reductant have been previously demonstrated. In this work, we show that
Mo(NIt-BulAr) 3 forms a metastable adduct with the moderate r acid PhCN; coordination
of PhCN activates the nitrile carbon towards reaction with a variety of one-electron
reagents such as dichalcogenides, nitric oxide, hydrogen atom donors, cobaltocene, and
elemental phosphorus. Evidence is presented for the existence of an inner-sphere electron
transfer mechanism for these reactions.

Chapter 2: With the facile cleavage of N2 by Mo(Njt-Bu]Ar) 3 already established, a
Mo(NIt-Bu]Ar) 3-mediated process for the incorporation of N2 into organic molecules is
an exciting prospect; its realization depends critically on the development of methods for
cleavage of the Mo-N bond formed in the early stages of the process. In this chapter, we
demonstrate that appropriately-substituted Mo(IV) ketiminates (synthesized using the
methods of Chapter 1) undergo -elimination to cleave the Mo-N bond and liberate
PhCN. We present the kinetics of the reaction, substituent effects, and-in three
cases - activation parameters.

Chapter 3: Deprotonation of the titanium formate complex (ArIt-BuJN)3TiOC(O)H
with LiN(i-Pr)2 resulted in the release of free CO and the formation of a titanium(IV)
oxoanion complex, isolated as its lithium salt.

Chapter 4: Previous work from these labs has shown that the unique combination of
well-defined composition, steric bulk, and strong reducing ability embodied in Ti(N[t-
Bu]Ar) 3 lends itself particularly well to mechanistic studies of the classical Pinacol
coupling. As shown in Chapter 1, a similar relationship can be drawn between Mo(NIt-
BulAr) 3 and reductive nitrile coupling. In this chapter we draw on this mechanistic
understanding to develop three new classes of reductive cross-couplings: nitrile is
coupled with pyridine to form dihydropyridines, with benzophenone to form substituted
1,4-cyclohexadienes, and with carbon dioxide to form a-iminocarboxylates.

6



Abbreviations Used

Anal Calcd.

A

Ar

br

CCD

Cp

Cp*

d

Et 2O

Fc

fc

h

AH

Hz

IR

i-Pr

M

Me

min

NMR

OTf

Ph

in the Text

Calculated elemental analysis values

angstrom (10 -1 ° m)

3,5-dimethylphenyl

broad

charge coupled device

cyclopentadienyl

pentamethylcyclopentadienyl

doublet

diethyl ether

ferrocene

ferrocenium

hours

enthalpy of activation

hertz (s')

infrared

isopropyl

molarity, moloL'

methyl

minute

nuclear magnetic resonance

trifluoromethanesulfonate

phenyl
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ppm parts per million

AS* entropy of activation

THF tetrahydrofuran

x



Introduction

In 1859, Fittig observed that treatment of acetone with sodium metal resulted in its

reductive, C-C coupling to pinacol.' This reaction became known as the Pinacol

coupling, and was observed to be general with respect to both the reducing metal and the

carbonyl-containing substrate.2 The reaction has since been embraced by the synthetic

organic community, and several stereoselective variants have been developed.34

Over one: hundred years later, pioneering work by McCarley s5 and Cotton6

demonstrated that this reaction could be generalized further: the use of reduced group V

metals allowed for the reductive, C-C coupling of organic nitriles. Subsequent work

demonstrated that a variety of other low-valent transition metals were capable of

mediating this transformation. 7

Reductive coupling methodology has since been extended to include imines,8 CS2,9

and- in one case - CO 2. ° All of these reactions are presumed to proceed by a similar

mechanism. In the first step, the reducing metal attacks the substrate at the heteroatom,

resulting in formation of an adduct postulated to have considerable radical character at

carbon. The radical coupling of two such molecules, followed by hydrolysis, generates

the observed product. There has been considerable mechanistic investigation carried out

on the Pinacol reaction," whereas-for reductive coupling of non-carbonyl

substrates-the mechanism is generally assumed by analogy. Of particular note is the

elegant work of Ephritikhine.' 2 As shown in Scheme 1, use of the UCl4/Li/Me2CO system

allows not only for isolation of the metallopinacolate 1, but also for trapping of the

putative kety] radical with excess Ph3SnH to form the uranium alkoxide 2.

Such a trapping reaction is naturally related to the ligand-centered reactivity often

encountered in the study of 19-electron metal complexes.' 3 In 1986, Kochi and Naryanan

showed that electrochemically generated [Cr(CO)61-, normally subject to rapid ligand loss

followed by metal-metal bond formation, could be trapped as the formyl complex,

I(OC)5CrC(O)HJ], when generated in the presence of excess "Bu3SnH.'4 Further parallels

are found in the reduction of Cp2Rhl' to yield CpRh(:r 4, 4 -C,0H 0)RhCp, in which two

Cp rings have been "reductively coupled."' 5
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[Li][U'

er--C4 u (-C

0o- ,H 10
co I
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CO

]20I'e

0o

Ephritikhine, 1998
UCI4

Scheme 1

In this work, we explore the twin themes of reductive coupling and ligand-centered

radical reactivity through the use of the well-defined metal complexes (Ar[t- Bu]N)3M

(M = Ti,'6 Mol 7). These odd-electron compounds are both strongly reducing and sterically

encumbered, which allows access to relatively well-defined species displaying a strong

propensity for ligand-centered radical reactivity. In the following chapters, we will

exploit this preference in order to elucidate the mechanism of reductive nitrile coupling,

carry out unusual small-molecule activations, synthesize model compounds for nitrogen

fixation, and synthesize an anionic oxo of Ti(IV).

Fittig, R. Liebigs Ann. Chem. 1859, 110, 23.
2 (a) Gomberg, M.; Bachmann, W. E. J. Am. Chem. Soc. 1927, 49, 236. (b) Schreibmann,
A. P. Tetrahedron Lett. 1970, 4271. (c) Corey, E. J.; Danheiser, R. L.; Chandrasekaran,
S. J. Org. Chem. 1976, 41, 260.
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Radical reactions at a Mo-coordinated nitrile

Portions of the following have appeared in Inorganic Chemistry 42, 8621
(2003). Reproduced with permission



1.1 Introduction

In 1975, McCarley and co-workers observed that treatment of MeCN solutions of Nb

and Ta halides with Zn resulted in activation of the MeCN solvent and resultant

formation of dinuclear complexes in which the bridging ligand had been formed by C-C

coupling of two MeCN molecules.' As shown in Equation 1, the use of NbCI4 resulted in

the isolation of {lpI2-NC(Me)C(Me)N]jNbC 4(MeCN)1 2} 2 -. Since that time, it has been

demonstrated that the reductive coupling of nitriles is a general feature of the reactivity of

low-valent, early transition metals, having been observed for Ti(II)2 and Ti(III)3 , Ta(III),4

and W(IV). 5 In this regard, it is rather reminiscent of the Pinacol coupling of carbonyl

compounds, which is also mediated by a wide variety of reducing metal centers. The

reductive coupling of nitriles, however, differs in that it can be carried out in either one-

electron or two-electron (per metal) fashion. Thus while the Nb compound discussed

above is best described as containing an ene-diimido bridiging ligand (in which each

nitrile has been reduced by two electrons), examples are also known in which the

bridging ligand is better described as a diiminato ligand.

2E
Me

Zn/MeCN (MeCN)CI 4 Nb N 
NbCI4 \

4-7 days N NbCI4 (NCMe)

Me

Equation 1

To date, mechanistic information on nitrile reductive coupling remains rather scarce.

While the reaction is postulated to occur through reactive, mononuclear, nitrile adducts,

the rapidity of the reaction has, in general, precluded the observation of such compounds.

In 2003, we reported that three-coordinate Mo(NIt-BulAr) 3 (1) reacted with PhCN to

form an observable 1:1 adduct (1-PhCN) which dimerized sluggishly.6 In the first section

of this chapter we present detailed characterization data on 1IPhCN, including a

reassignment of its structure, along with crystallographic characterization of its C-C

coupled dimer 2.

Subsequent sections focus on the extension of the reactivity of 1-PhCN beyond

simple dimerization. We show that 1-PhCN engages in atom abstraction, E-E bond
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cleavage (E = S, Se, Te, P), radical combination, and cross-coupling with other

organometallic radicals; in all cases, reaction occurs at the nitrile carbon of coordinated

PhCN. Ligand-centered reactivity in organometallic radicals is an active area of

research.7 Such reactivity is typically observed in cases in which delocalization of the

unpaired electron into a ligand orbital allows the metal center to maintain an 18-electron

configuration. The reactions presented here constitute unique examples of reaction at

coordinated nitrile,8 which occur despite the presence of an electronically unsaturated

metal center. In addition, they constitute a new synthesis of metal ketimide compounds,

which have recently come under increasing scrutiny.9

1.2 Complexation of PhCN by 1

As first reported by Tsai, treatment of 1 with PhCN results in a rapid color change to

deep purple and formation of a new, paramagnetic product. 6 While this product persists

for several hours at concentrations of ca. O. 1M, concentration leads to irreversible

formation of a C-C bonded dimer (see Equation 2). The dimer is also formed when

solutions are allowed to stand for 2-3 days.

Ph Ar
IArN B

N t-Bu M / t-Bu

Ph. C t-Bu NI r 1B >|ArAr Mo Ar-NN
< 1 second M N- - .N.tBu 2-3 days \ -,N-t-Bu

I \ t'" /-BU

Ar t-Bu N

t-Bu

2

Equation 2

The solid--state structure of the dimer (2), shown in Figure 2, illustrates clearly that 2

is the product of symmetrical coupling of two 1PhCN units through the nitrile carbon.

The central C-C distance of 1.503(3) A is flanked by C-N distances of 1.313(2) A and

1.314(3) A, wholly consistent with a di-iminato formulation featuring two Mo(IV)

centers. The angle at the ketimide nitrogens is approximately 167°. As shown in Table 1,

these structural parameters are relatively similar to those observed in the analogous

acetonitrile dimer.

14



Previous work has established that an analogous synthetic route allows preparation of

the variant of 2 in which the t-butyl groups have been replaced by isopropyl groups. 6

Compound 2 i-Pr was shown to be readily oxidized using excess I2, thereby generating the

triiodide salt 2iPr1 1 31. The solid-state structure of this compound contains a

crystallographic inversion center relating one Mo center to the other, indicating a Class

III mixed valent compound.1 0 Relative to 2, 12 -Prj11 3 1 features a contracted Mo-N bond,

an elongated N-C bond, a contracted C-C bond and a more linear Mo-N-C angle. These

structural changes can be rationalized by viewing the monocation as occupying an

intermediate position between the neutral compound and the dication depicted in Table 1.

Supporting this supposition is the existence, in the cyclic voltammogram of 2i-P' , of two

oxidation waves, suggesting that the dication is a viable species.

Figure 1 Solid-state structure of 2 (30% ellipsoids).
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Mo

Mo~~~~~~~~~~~~~~~~~l
js~~~~~~~~~~r,

N

N

1A210 iN

Mo

Parameter

1I

2

3

4

5

Mo-N-C

2 (1-MeCN) 2 [2-Pr][I31]

1.811(2) 1.814(8) 1.740(5)

1.313(3) 1.325(12) 1.393(8)

1.503(3) 1.43(2) 1.368(12)

1.314(3) 1.325(12) 1.393(8)

1.820(2) 1.814(8) 1.740(5)

166.74 (avg.) 161.7(8) 175.6(5)

Table 1 Comparison of structural parameters for nitrile dimers (A/deg)

Whereas 1-PhCN was originally postulated to contain an r2 coordinated nitrile,6

subsequent physical characterization suggests that the nitrile is likely rl' coordinated.

Complexation of PhCN to 1, a ground-state quartet, along its three-fold axis should

destabilize the d(z2 ) orbital, resulting in electron-pairing to give a doublet ground state.

This supposition is borne out by the observed solution magnetic moment of 2.00(5) B.M.

(293 K, Evans' method). Diagnostic evidence as to the coordination mode of PhCN is

found from IR spectroscopy. While r' nitrile adducts typically exhibit C-N stretches in

2000-2400 cm -' range, rj2 coordination results in a large shift to lower energy. In

collaboration with Prof. Carl Hoff, we have observed a band at 2030 cm -', which we

assign to the (I-N stretch of l' coordinated PhCN.

The binding of PhCN to 1 is readily followed by UV-vis spectroscopy in combination

with stopped-flow techniques. In collaboration with Prof. Rybak-Akimova and her group

at Tufts University, it has been found that although PhCN binding appears to be

stochiometric when probed by 'H NMR, the interaction between 1 and PhCN is actually

one of equilibrium binding. At room temperature, Keq is approximately 45 M-' and it

16



increases steadily with decreasing temperature; at -40 °C, Keq = 3120 M' 1. As will be

shown below, the presence, in solutions of 1lPhCN, of small but non-negligible

concentrations of 1 can have significant effects on reaction outcomes.

1.3 Reaction of 1PhCN with hydrogen atom donors

The observation that 1PhCN undergoes facile dimerization suggested that it may

exhibit radical reactivity at the nitrile carbon. As hydrogen atom abstraction is a typical

reaction of carbon-based radicals, it was decided to examine the reactivity of 1-PhCN

with a variety of H-dot donors.

Ph

[H] N

Et 2 O t-Bu I Ar

\N/M0tN.-_tBu
[HI = CpMo(CO) 3 H, Bu2 SnH2 I
no reaction with nBu3SnH Ar t-Bu

3

Equation 3

When a freshly-prepared, purple, pentane solution of 1IPhCN is treated with one

equivalent of crystalline CpMo(CO) 3H,'2 '13 a color change to deep blue along with

precipitation of a red solid is observed over 5 minutes. Removal of the red solid

(presumed to be [CpMo(CO) 3 12) followed by crystallization from Et20O resulted in the

isolation of (ArIt-BujN) 3 Mo-N=C(Ph)H (3) as large blue blocks in 53% yield.

Compound 3 is diamagnetic and exhibits a resonance at 7.41 ppm attributed to the

aldimine proton.

The solid-state structure of 3 is shown in Figure 2. Of note is the short Mo-N(4)

distance of 1.7896(12) A as compared to the average Mo-amide distance of 1.9725 A.

This contraction is likely a consequence of the hybridization change upon going from an

amide to a ketimide nitrogen, as well as the r-acceptor character of the ketimide ligand.

The ability of the N-C Trc orbital to act as a in-acceptor is facilitated by the nearly linear

(166.84(11)°) Mo-N-C angle. A relevant structural comparison is to the parent ketimide

complex (ArlI-BulN) 3Mo-N=CH 2 (4) prepared by deprotonation of the cationic

17



methylimido complex.4 Compared to 3, 4 features similar Mo-N and N-C distances

(1.777(4) and 1.300(7) respectively) although the Mo-N-C unit is considerably closer to

linearity (LMo-N-C = 178.04(4)°). As will be seen, this feature appears to be unique to

parent ketimide 4.

parameter

Mo-Namide

Mo-N(4)

N(4)-C(4)

Mo(4)-N(4)-C(4)

A/o

1.973 (avg.)

1.7896(12)

1.3055(17)

166.84(11)

Figure 2 Solid-state structure of 3 (30% ellipsoids).

Compound 3 can also be prepared by reaction of 1PhCN with 0.5 eq. Bu2SnH2.

While the reaction appears to be quantitative by 'H NMR, the presence of the Sn

byproduct hinders isolation, rendering the former method more attractive for synthetic

purposes. Interestingly, 1-PhCN shows no reaction with nBu3SnH. nBu3SnH is known to

be a less active H dot donor than 'Bu2SnH2, for both steric and electronic reasons.5

1.4 Reaction with diphenyldichalcogenides

Sequential room-temperature treatment of 1 (0.05 M in Et2O solvent) with 1.0 equiv

of PhCN and 0.5 equiv of PhEEPh (E = S or Se) furnishes cleanly the

18



Ph

0.5 Ph2 E2 N
IPhCN ~" - --> 

Et20 t-Bu ArAr

I \
Ar t-Bu

5-E

Equation 4

corresponding chalcogenobenzimidates (Ph[PhE]C=N)Mo(N[t-BuJAr)3 (see Equation 4).

These dark blue compounds, 5-S and 5-Se, were isolated in yields of 64% and 70%,

respectively, and were characterized structurally by single-crystal X-ray diffraction

methods. The molecular structure of 5-S is shown in Figure 3; 5-Se is isomorphic. As in

3, the Mo-ketimide distance in 5-S is short, at 1.794(5) A, and the angle at the ketimide

nitrogen is 164.3(4) °. The possibility that 5-E (E = S, Se) formation is a consequence of

the direct reaction of 1 with PhEEPh to produce thiolate or selenolate complexes 6-E

followed by PhCN insertion is ruled out by control experiments in which 6-S and 6-Se

(synthesized independently from 1 and Ph2S2 or Ph2Se2) were treated

parameter

MO-Namide

Mo-N(4)

N(4)-C(4)

C(4)-S(1)

Mo-N(4)-C(4)

A/o

1.972 (avg.)

1.794(5)

1.317(6)

1.771(6)

164.3(4)

Figure 3 Solid-state structure of 5-S (50% ellipsoids, one out of two molecules in the

asymmetric unit).
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with 10 equiv of PhCN under the synthesis reaction conditions and found to undergo no

reaction.

Interestingly, use of PhTeTePh in the above synthesis did not result in

tellurobenzimidate 5-Te formation. Specifically, sequential room-temperature treatment

of 1 (0.05 M in Et2 0) with 1.0 equiv of PhCN and 0.5 equiv of PhTeTePh led exclusively

to phenyltellurolate PhTe-Mo(Njt-BulAr) 3 (6-Te) formation. Nitrile was not

incorporated. The solid-state structure of 6-Te is shown in Figure 4.

parameter

Mo-Namide

Mo-Te

Te-C(41)

Mo-Te-C(41)

A/o

1.964 (avg.)

2.6080(8)

2.147(8)

109.6(2)

Figure 4 Solid-state structure of 6-Te (50% ellipsoids).

Two possible mechanisms can be envisioned for the formation of 6-Te in the above

reaction. As illustrated in Scheme 1, one pathway involves prior dissocation of PhCN

from 1lPhCN (vida supra) followed by direct reaction of 1 with PhTeTePh. Consistent

with this proposal is the observation that 6-Te is readily synthesized from the direct

reaction of 1 with PhTeTePh. An alternate pathway begins with formation of 5-Te, in

analogy to the results for S and Se. Postulated to occur next is a facile 3-TePh elimination

to generate the observed 5-Te along with release of PhCN.

20



1.4

1.2

a, 1

s 0.8

° 0.6

< 0.4

0.2

n
400 450 500 550 600

Wavelength (nm)

Figure 5 Spectral changes accompanying the reaction of 1-PhCN and Ph2Te2 at -40 °C.

To probe this issue, we once again turned to stopped-flow spectroscopy. First, the

binary reaction between 1 and PhTeTePh was probed, in the absence of added PhCN.

Kinetic measurements (carried out by the group of Prof. Rybak-Akimova at Tufts

University) indicated this reaction to be first order in each reactant with the following

activation parameters: AH: = 11.6 kJ mol', ASt = -141 J K' mol-'. Shown in Figure 5 are

kinetic data for this reaction obtained at -40 °C. When the reaction was conducted in the

presence of 1 equivalent of PhCN, a very similar kinetic profile was observed, with no

evidence for an intermediate corresponding to 5-Te. Thus, under these conditions, the

reaction proceeds via initial dissociation of PhCN. However, as the concentration of

PhCN was increased, small amounts of a new compound were observed. This compound

had a UV-vis spectrum very similar to that of 5-S and 5-Se, and its formation was

promoted both by high PhCN concentrations and by low temperature. When the reaction

was carried out in the presence of a 40-fold excess of PhCN, clean formation of the new

product was observed in the temperature range -50 °C to +5 °C. This new reaction was

first-order in 1 and PhTeTePh, with activation parameters (AHt = 15.8 kJ mol'l, AS' =

-121 J K-' mol') that differed significantly from those for the formation of 6-Te. The data

suggest that the combination of high PhCN concentration and low temperature shifts the

PhCN binding equilibrium to the right, thereby allowing for the formation of 5-Te.

Further evidence for the formation of 5-Te came from the adaptation of the above

procedure to the glovebox. THF solutions of PhTeTePh and of 1 with ca. 40 equivalents

of PhCN were prepared and pre-cooled to -35 °C. Upon mixing, the solution rapidly took

21



Ph

N

t-Bu I ArA,

N--M[N- N -- t-Bu
I \

Ar t-Bu

0.5 PhTeTePh

- PhCN

+ PhCN

t-Bu Ar

\/N

M_..N -Bu

// Ar
Ar-N

/ + PhCN
t-Bu

0.5 PhTeTePh

Ph
Ph Te/

N

Ph

TE

I
I-Bu - PhCN I

t-Bu AI~l^N > t-BuAr A t-Bu t-B t-Bu

~ ,.'.--'~, SN -t-Bu "' '"

Ar t-Bu Ar

Scheme 2 Possible pathways for the formation of 6-Te from 1-PhCN.

on a characteristic blue color, as opposed to the green color of 5-Te. UV-vis spectra of

solutions prepared in this manner reproduced those obtained in the stopped-flow

apparatus. In addition, interrogation of this solution by 125Te NMR yielded a singlet at

+699 ppm, which compares favorably to the value of +617 ppm obtained computationally

for (HIPhTe]jC=N)Mo(NH 2)3. Computations on (PhTe)Mo(NH2) 3 predict a shift of +1572

ppm, although our attempts to observe such a signal for 6-Te have thus far been

unsuccessful.

1.5 Reaction with P4

Similar to what was observed in the case of PhTeTePh, treatment of 1IPhCN with 0.5

equivalents of P4 results in exclusive formation of the previously synthesized terminal
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phosphide (Arlt-BuIN) 3MoP (7) when carried out in the presence of 1-5 equivalents of

PhCN in rapidly thawing toluene. 6 However, when the reaction mixture is held at -35 °C

for 2 hours in the presence of ca. 40 equivalents of PhCN, a blue solution results. A

work-up involving removal of excess PhCN by short-path distillation (40 °C, full

vacuum), precipitation with MeCN, and subsequent crystallization from Et20O results in

the isolation of I(Ar[t-Bu]N) 3Mo-N=C(Ph)l 2(P 4) (8) in moderate yield. The structural

assignment of 8 is based primarily on its 31P NMR spectrum (shown in Figure 6), which

consists of a triplet at -147 ppm and a triplet at -339 ppm, with Jp-p = 175 Hz.

Additionally, the 13C NMR exhibits a doublet at 151 ppm (Jc-P = 11 Hz), assigned to the

former nitrile carbon of PhCN. These parameters are similar to those observed for other

compounds featuring the bicyclic R2P4 unit.17-20

0.5 P4 t-
1 .PhCN Toluene/PhCN

-35 °C. 2 hours

-120 -140 -160 -180 -200 -220 -240 -260 -280 -300 -320 -340 -360 ppm

Figure 6 Synthesis and 31p NMR spectrum of 8.

The formation of 8 illustrates the ability of PhCN to attenuate the reactivity of 1.

Thus, while 1 is capable of the complete destruction of the P4 tetrahedron to generate

terminal phosphide 7, prior coordination of PhCN results in a gentle element activation,

in which only one bond of the P4 tetrahedron has been cleaved. In addition, the formation

of a C-P bond is of interest with respect to organophosphorus chemistry. Compounds

23



similar to 8 have been previously synthesized (generally in low yield) by akali metal

reduction of RPX2 compounds (X = Cl, Br),'7 treatment of P4 with aryllithium reagents,' 8

and irradiation' 9 or thermolysis 20 of compounds containing P-P bonds. A computational

study on the parent tetraphosphabicyclobutane, H2P4, has also been carried out.2 1

1.6 Reaction with NO

The small, gaseous molecule NO represents a unique example of an easily accesible,

sterically unhindered free radical. As such, its reaction with 1-PhCN was of considerable

interest. If the reaction were to proceed as envisioned, the product would be a Mo(IV)

ketimide bearing phenyl and nitroso substituents. Such a moiety would perhaps be most

closely related to acylnitroso compounds of the form RC(O)NO. Such compounds are

commonly generated in situ, and undergo rapid cycloadditions with unsaturated

substrates.22

When an Et2 0 solution of freshly prepared 1PhCN was treated with I equivalent of

NO at -78 °C and allowed to warm to room temperature, it took on a pale brown color.

Rather surprisingly, 'H NMR analysis indicated that the major product was the

molybdenum terminal nitride (Arlt-Bu N) 3MoN (9). 23 Also observed, as perhaps 10% of

the total isolated material, was a new product 10 that exhibited, in addition to the usual

anilide resonances, a set of resonances corresponding to a phenyl group.
Ph

O N

1*PhCN 1.0 .t- Bu \ t-B\ Mo t-Bu t-Bu
Et2 O 0_,M,. Bt-Bu .Nl-u .NBu

Ar Ar\ A ArAr
Ar

10 9

Equation 5

Fortunately, 10 was readily separated from 9 due to its low solubility in pentane.

Crystals grown from a THF/Et 20 mixture were subjected to an X-ray diffraction study.

While the data were of low quality and the crystal was plagued by extensive disorder, it
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was unambiguously determined that the connectivity was as drawn in equation 5.

Compound 10 is the first structurally verified example of bonafide 5-coordination in the

(ArIt-BuJN)3Mo system. Previously characterized in this group is the fi2 nitrile complex

(q2-Me2NCN)Mo(N[t-BulAr)3.6 Taken together, these results suggest that

pentacoordination can be achieved through the use of a relatively small, chelating ligand.

While the formation of 10 is readily rationalized, the formation of 9 is rather more

difficult to understand, and we have yet to conceive of a compelling mechanism. The

following observations rule out various mechanistic scenarios. Compound 10 is stable for

at least 2 days at 800 C; thus 10 cannot be an intermediate in the formation of 9. One

might envision that the equilibrium nature of PhCN binding to 1 could be responsible for

the observed complexity; moreover, free 1 is known to bind NO irreversibly. However,

varying the reaction temperature and the initial nitrile concentration (both of which affect

Keq of binding) has no observable effect on the product distribution. More tellingly,

isolated ZlNO shows no reaction with PhCN, even when an excess is used.

1.7 Reaction with Cobaltocene

Cobaltocene has enjoyed wide use as an outer-sphere reductant since its synthesis in

1953.2425 Cobaltocene differs from ferrocene, whose synthesis preceded it by only two

years, by the presence of one additional electron, thus neatly explaining its competence as

a reductant. 26,27

1.0 Cp2 Co
1 PhCN >.

Et20O

t-Bu

11

Equation 6
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When freshly-prepared, ethereal 1-PhCN is treated with one equivalent of solid

cobaltocene, a rapid color change to deep blue is observed (see Equation 6). This new

compound is freely soluble in pentane, an observation inconsistent with salt formation.

'H NMR analysis indicates the quantitative formation of a new, diamagnetic product (11)

with one intact Cp ring and one split into three resonances at 2.75, 3.68 and 4.81 ppm,

characteristic of an exo-substituted cyclopentadiene ring.28 On the basis of these data, the

product is formulated as (Arlt-Bu]N) 3Mo-N=C(Ph)(i 4-C 5sH)Co( 5lS-Cp) in which a new

C-C bond has been formed at the nitrile carbon, and one Cp ring has been converted into

an r 4 diene ligand. This formulation is confirmed by an X-ray diffraction study, as shown

in Figure 7. The pyramidal geometry at C56 is the most striking structural manifestation

of the electronic rearrangement of the lower Cp ring. A comparison of C-C distances

within the ring is also instructive. The unperturbed Cp ring has C-C distances ranging

from 1.386-1.414 A; in the lower ring, the C56-C510 and C56-C57 distances are both

1.515(4) A, consistent with single bonds, whereas the other three bonds in the ring are

between 1.410-1.411 A, consistent with a conjugated diene moiety. The newly-formed

C4-C56 bond has a length of 1.535(4) A.

parameter

Mo-Namide

Mo-N(4)

N4-C4

C4-C56

Mo-N(4)-C(4)

A/o

1.965 (avg.)

1.801 (2)

1.281(4)

1.535(4)

171.2(2)

Figure 7 Solid state structure of 11 (35% ellipsoids).
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Ph,. Ni .Ph
_,

Ph -Ph

While alkyl halides have been shown to undergo ring addition to cobaltocene,28

more direct precedent for the above reaction comes from a 1992 report by Herberich and

coworkers. As shown in Figure 8, reduction of [CpNi(C 4Ph4)]Br to the neutral species is

smoothly accomplished with one equivalent of cobaltocene; however, when two

equivalents of cobaltocene are employed, the bimetallic compound CpNibI,13 :r4-

(C4Ph4-C5H])]CoCp is isolated, along with Cp2Co]Br. 29 Intriguingly, this compound is

reported to undergo reversible dissociation to CpNi(C4Ph4) and cobaltocene at

temperatures above -10 °C. We have seen no evidence for such a process in the case of

11.

[Br]

. ~~~~~~~\
Ph

Co

.0 Cp2Co

Ph,,. Ni .,,,Ph
· Ph Herberich, 1992

Ph Ph

Figure 8

In an aesthetically appealing turn of events, the reductive coupling of PhCN and

cobaltocene can be reversed by treatment with ferrocenium triflate. As shown in equation

7, purified 11 reacts with ferrocenium triflate over 90 minutes to regenerate 1oPhCN

along with ICp2Col[IOTf]. The formation of 1-PhCN was verified by color and by its

reaction with PhSSPh to generate 2-S.
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1.0 fcOTf
11 - - FcH 1 *PhCN + [Cp2Co][OTf]

NO 
11 10

Equations 7 and 8

The reactivity profile of 11 is not limited to oxidative bond cleavage. Treatment of

ethereal 11 with NO at 0 °C results in a color change to brown over 30 minutes. 'H NMR

analysis indicates that the major product is 10, previously synthesized in low yield from

1PhCN and NO. The fact that nitride 9 is not observed in the reaction mixture suggests

that 1PhCN is not an intermediate in this reaction. A plausible mechanistic scheme is as

follows. In the first step, NO attacks at the ketimide carbon, resulting in a neutral imido

of Mo(V). This intermediate can then undergo a radical fragmentation to lose cobaltocene

and generate the observed product. Previous work in these labs has shown that

compounds featuring the Mo(N[t-BulAr) 3 fragment in the +5 oxidation state are often

thermally unstable towards Mo(VI) products.30

1.8 A brief mechanistic excursion

The preceding results provide clear demonstration of the ability of 1PhCN to serve

as a source of carbon-based radical. An interesting question is whether these reactions

proceed through direct attack of 1°PhCN on the incoming reagent (an SH2 process)3' or

through a mechanism involving outer-sphere electron transfer. In the case of the reaction

of 1PhCN with diphenyldichalcogenides, the latter mechanism would be followed by

decomposition of the resulting dichalcogenide radical anion to chalcogenyl radical and

chalcogenate.

The former should be quite sensitive to steric effects, whereas the latter should be

relatively insensitive. Thus, we should be able to distinguish between the two

mechanisms if we are able to find a pair of electronically similar but sterically dissimilar

reaction partners for 1IPhCN.
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Ph s

0.5 R2 S2 N

1PhCN - I |
Et20 t-Bu Ar

~N/MNN._._ N tBuBu

I \Ar t-Bu

R=Me,lAd

Equation 9

Accordingly, we chose to investigate the reaction of 1-PhCN with Me2S2 and 'Ad2 S2

(see Equation 9). The former is commercially available, while the latter is readily

obtained from the corresponding thiol.32 In the presence of only one equivalent of PhCN,

the reaction of 1PhCN with 0.5 equivalents of Me2 S2 produces large amounts of (Arlt-

Bu]N) 3Mo-SMe (12). However, increasing the nitrile concentration and lowering the

temperature allows for the synthesis of (Ar[t-BuIN) 3 Mo-N=C(Ph)SMe (13) as the major

product. The reaction is initiated at -35 °C and is allowed to warm to room temperature,

whereupon it is observed to be complete. In contrasting fashion, 'Ad2S 2 shows no reaction

with 1IPhCN; after 3 days, dimer 2 is the only observable product. This pair of

observations suggests that, at least in the case of disulfides, 1.PhCN reacts via an SH2

mechanism.3

1.9 Reactions of 1 with other nitriles

As mentioned above, 1 forms an isolable, structurally characterized adduct with

Me2NCN.6 We have found that this adduct reacts with PhSSPh in an analogous fashion to

1-PhCN, albeit at an attenuated rate. The solid-state structure of (Ar[t-BulN) 3Mo-

N=C(NMe 2)SPh (14) is shown in Figure 9. It is intriguing to speculate that protonation or

alkylation at the dimethylamino substituent may significantly perturb the electronic

structure at the metal.
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parameter

MO-Namide

Mo-N(4)

N(4)-C(4)

C(4)-S(1)

C(4)-N(5)

Mo-N(4)-C(4)

1.960 (avg.)

1.8325(15)

1.281(2)

1.775(2)

1.410(3)

161.30(15)

Figure 9 Solid-state structure of 14 (35% ellipsoids).

In contrast to Me2NCN, the sterically similar reagents pivalonitrile, isovaleronitrile,

and isobutyronitrile exhibit no detectable reaction with 1. At present, we do not have a

satisfactory explanation for this observation.

1.10 Conclusions

We have expanded the characterization of 1-PhCN, a rare example of an intermediate

in nitrile reductive coupling. PhCN interacts with 1 reversibly and in an r' fashion.

Coordination of PhCN activates the nitrile carbon towards reaction with a variety of one-

electron reagents such as tin hydrides, dichalcogenides, elemental phosphorus, NO, and

cobaltocene. Comparison of reaction rates between Me2S2 and 'Ad 2S 2 suggests an SH2

mechanism for these reactions.

1.11 Experimental

General Considerations: Unless stated otherwise, all operations were performed in a

Vacuum Atmospheres drybox under an atmosphere of purified nitrogen. Anhydrous

diethyl ether was purchased from Mallinckrodt; pentane, n-hexane, and

tetrahydrofuran (THF) were purchased from EM Science. Diethyl ether, toluene,

benzene, pentane, and n-hexane were dried and deoxygenated by the method of Grubbs.34
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THF was distilled under nitrogen from purple sodium benzophenone ketyl. Distilled

solvents were transferred under vacuum into vacuum-tight glass vessels before being

pumped into a Vacuum Atmospheres drybox. C6D6 was purchased from Cambridge

Isotopes and were degassed and dried over 4 A sieves. THF-d 8 was passed through a

column of activated alumina and stored over 4 A sieves. The 4 A sieves, alumina, and

Celite were dried in vacuo overnight at a temperature just above 200 °C. Compounds

1,35 6-Se,30 CpMo(CO)3H,36 were prepared by literature methods. PhCN was distilled

under vacuo before use and stored in a nitrogen-filled drybox. CpMo(CO) 3H was

sublimed before use. Elemental phophorus was recrystallized from dry toluene and stored

at -35 °C in the dark. All other compounds were used as received. 'H and 3C NMR

spectra were recorded on Unity 300, Mercury 300 or Varian INOVA-501 spectrometers

at room temperature, unless indicated otherwise. 3C NMR spectra are proton decoupled.

Chemical shifts are reported with respect to internal solvent: 7.16 ppm and 128.38 (t)

ppm (C6D6). '25Te NMR spectra were recorded on a Varian INOVA-501 spectrometer and

referenced to external Ph2Te2 in CDC13 (420 ppm with respect to Me2Te). UV-vis

absorption spectra were collected on a HP 8452A diode array spectrometer fitted with an

HP 89090A 1P eltier temperature controller. CHN analyses were performed by H. Kolbe

Mikroanalytisches Laboratorium (Miilheim, Germany). A summary of the compound

numbering scheme is given in Table 2.

Evans' Method determination on 1PhCN: A solution of hexamethyldisiloxane (85

mg) and benzonitrile (47 mg, 0.46 mmol) in C6D6 (880 mg) was prepared. A small

quantity of this solution was transferred to a small capillary which was then flame-sealed.

1 (28.9 mg, 0.046 mmol) was dissolved in 666 mg of the previously prepared solution

and transferred to an NMR tube, into which was placed the previously mentioned

capillary. Two peaks corresponding to hexamethyldisiloxane were observed in the 'H

NMR, separated by 98 Hz (vo = 299.856 MHz), corresponding to an effective magnetic

moment of 2.00 B. M. This procedure was repeated two times, yielding values of 2.04

and 1.95 B. IM.
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Compound

1 Mo(N t-Bu Ar)3

2 (Ar[ t-Bu JN)3Mo-N=C(Ph)C(Ph)=N-Mo(NI t-Bu lAr)3

3 (Arlt-Bu]N)3Mo-N=C(Ph)H

4 (Ar[t-Bu IN)3Mo-N=CH2

5-E (Ar[t-Bu]N) 3Mo-N=C(Ph)EPh (E = S, Se, Te)

6-E (Ar[t-BulN) 3Mo-EPh (E = S, Se, Te)

7 (Arlt-Bu]N) 3MoP

8 L(Art-Bu ]N)3Mo-N=C(Ph)]2(P 4)

9 (Ar[t-Bu]N) 3MoN

10 (Art-Bu]N) 3Mo(cyclo-ONC(Ph)N)

11 (Arlt-BuIN) 3Mo-N=C(Ph)(rl4-C 5H 5)Co(I 5-Cp)

12 (Ar[t-BulN) 3Mo-SMe

13 (Arlt-Bu N)3Mo-N=C(Ph)SMe

14 (Arjt-Bu jN)3Mo-N=C(NMe 2)SMe

Table 2

Synthesis of 3: A scintillation vial was charged with 1 (200 mg, 0.32 mmol) and 5 mL of

pentane. PhCN (33 mg, 0.32 mmol) was added resulting in a rapid color change to

purple. To this solution was added solid CpMo(CO) 3H (79 mg, 0.32 mmol) and the

solution was allowed to stir for 40 minutes. After this time, the solution was dark blue

and copious red precipitate had formed. The reaction mixture was filtered through Celite

and the filtrate concentrated to dryness. Recrystallization from Et2O (-35 °C) furnished 3

as large blue blocks (2 crops, 123 mg, 53%). 'H NMR (500 MHz, C6D6): 1.30 (s, 27H,

CMe 3); 2.18 (s, 18H, C6H 3Me2); 6.55 (d, 2H, Ph ortho); 6.67 (s, 6H, Ar ortho); 6.67 (t,

IH, Ph para); 6.69 (s, 3H, Arpara); 7.17 (t, 2H, Ph meta), 7.44 (s, 1H, N=CH) ppm. 13C

NMR (75 Hz, C6D6): 21.31 (C6H3Me2); 31.27 (CMe3); 62.28 (N-CMe 3); 122.28; 124.42;

127.04; 127.30; 129.03; 135.77; 137.23; 150.27; 156.49 ppm. Anal. Calcd. for

C43H60N4Mo: C, 70.86; H, 8.30; N, 7.69. Found: C, 70.66; H, 8.23; N, 7.31.

Synthesis of 5-S: To an Et 2O solution of 1 (197 mg, 315 mmol) was added 32.5mg

PhCN (315 mmol, I equiv). The solution took on an intense purple color. An Et2O
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solution (1 mL) of PhSSPh (34.4 mg, 158 mmol, 0.5 equiv) was then added dropwise

over a few seconds. At the conclusion of the addition, the solution was blue. An aliquot

taken at this time showed complete conversion to the desired product by 'H NMR

spectroscopy. Volatiles were removed in vacuo, and the resulting residue was dissolved

in the minimal amount of ether, filtered through Celite, and stored at -35 °C. Dark blue

crystals grew over three days (169 mg, 64%). H NMR (300 MHz, C6D6): = 7.336 (d,

2H, S-Ph ortho); 7.066 (t, S-Ph and t, PhCN); 6.944 (br s, 6H, C6H3Me2 ortho), 6.858 (t,

1H, S-Ph par-a); 6.831 (br, PhCN ortho); 6.688 (s, 3H CH3Me2para); 2.193 (s, 18H,

C6H3Me2); 1.296 (br s, 27H, C(CH3)3 ) ppm. 13C NMR (125 MHz, C6D6): = 160.87 (Mo-

N=C); 144.03; 138.02; 137.00; 129.486; 128.66; 127.95; 127.53; 126.44; 125.38; 124.81;

124.6; 63.87 (br, N-C(CH3 )3; 31.64 (br, N-C(CH3 )3; 21.75 (C6H3Me2 ) ppm; 1 aryl peak

missing. UV (25 °, Et2O): hkax = 251 ( = 41000); 331 ( = 19500); 384 (sh, £ = 10000);

576 ( = 5900) nm. Anal. Calcd. For C49H64N4SMo: C, 70.31; H, 7.71; N, 6.69. Found: C,

70.95; H, 7.34; N, 6.70.

Synthesis of 5-Se: This compound was synthesized in an identical fashion to 5-S

substituting PhSeSePh for PhSSPh. Yield: 497 mg, 70%, 2 crops. 'H NMR (300 MHz,

C6D6): = 7.437 (d, 2H, ortho Se-Ph); 7.1-6.8 (multiple overlapping peaks, 14H); 6.950

(br s, 6H, C6 H 3Me2 ortho); 6.693 (s, 3H C6H3Me 2para); 2.187 (s, 18H, C6H3Me2 ); 1.278

(s, 27H, CMe3 ) ppm. 13C NMR (125 MHz, benzene): 6 = 163.81 (Mo-N=C); 151.51 (br);

138.78; 138.08; 138.05; 129.70; 129.48; 128.25; 127.92; 127.59; 125.81; 125.61; 125.51;

64.01 (br, N-C(CH 3)3; 31.54 (br, N-C(CH3 )3; 21.77 (C6H3Me2) ppm. 77Se NMR (92 MHz,

benzene): 6 = 424 ppm. UV (25 °, THF): Xmax = 344 ( = 14000); 578 ( = 5600) nm.

Anal. Calcd. For C49H64N4SeMo: C, 66.56; H, 7.30; N, 6.34. Found: C, 66.68; H, 7.39; N,

6.26.

Attempted Synthesis of 5-Te: To a stirring solution of 1 (76 mg, 122 mmol) in Et2O (2

mL) was added a solution of PhCN (12.5 mg, 1 equiv) in Et2O (lmL) via pipet. The

resulting purple solution was chilled to -100 °C in a liquid nitrogen filled coldwell. To

the thawing solution was added solid Ph2Te2 (24.8 mg, 0.5 equiv). After a few seconds,

the solution turned green. The mixture was allowed to warm to room temperature and the
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solvent removed in vacuo. 'H NMR analysis of the resulting residue indicated the

exclusive presence of 6-Te and PhCN. Isolation of pure 6-Te was accomplished by

recrystallization from Et20 (47 mg, 2 crops, 47%).

Glovebox Synthesis of 5-Te: In a typical preparation, a scintillation vial was charged

with 1 (30 mg, 0.05 mmol), PhCN (300 mg, ca. 60 equiv.), and 1 mL of THF. In a

separate vial, PhTeTePh (10 mg, ca. 0.5 equiv.) was dissolved in 1 mL THF. Both vials

were cooled to -35 °C in the glovebox freezer. The vials were then removed from the

freezer and immediately combined, resulting in a rapid color change to dark greenish-

blue. A UV-vis spectrum taken at this point was identical to that obtained in the

corresponding stopped-flow experiments. Removal of THF in vacuo yielded a mixture of

PhCN and the desired compound. UV (25 °, THF): kmax = 584 nm. 125Te NMR (158 MHz,

benzene): 6 = 699 ppm.

Synthesis of 6-S: To a stirring solution of 1 (150mg, 240mmol) in Et20 (2mL) was

added Ph2S2 (26.4 mg, 0.5 equiv) as a solution in Et20 (1 mL). The solution was allowed

to stir for one hour, at which point it was a dark greenish-blue. Volatiles were removed in

vacuo, and the resulting residue was extracted with pentane (5 mL) and filtered through

Celite. Recrystallization from Et20 (-35 °C) furnished the desired compound (80 mg, 3

crops, 45%). 'H NMR (300 MHz, benzene): 6 = 8.72 (d, 2H, ortho S-Ph); 7.388 (t, 2H,

meta S-Ph); 7.15 (t, H, para S-Ph, partially obscured by C6D5H peak); 6.397 (br s, 3H,

para C6 H3 Me2); ca. 6.2 (br sh, 6H ortho C6H3Me2); 2.098 (s, 18H, C6H3Me2); 1.385 (s,

27H, C(CH3):) ppm. 13C NMR (125 MHz, benzene): 6 = 155.51; 152.70 (br s, S-C);

136.64; 131.86; 129.56; 128.74; 127.21; 125.76; 63.20 (br, N-C(CH 3)3; 31.88 (N-

C(CH3 )3; 22.06 (C6H3Me2) ppm. Anal. Calcd. for C42H59N3S: C, 68.73; H, 8.10; N, 5.73.

Found: C, 68.56; H, 8.04; N, 5.64.

Synthesis of 6-Te: To a stirring solution of 4 (100 mg, 160 mmol) in Et20 (3 mL) was

added a solution of PhTeTePh (33 mg, 1 equiv) in Et20O (lmL) via pipet. The solution

turned green. Volatiles were removed in vacuo, and the resulting residue was extracted

with Et20. The extract was then filtered through Celite, concentrated, and cooled to -35
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°C to afford 6-Te as large green plates (88.3mg, 2 crops, 66%). UV (25 °, Et20): La =

270 (=41000); 463 (E=8000); 608 (E=2000) nm. 'H NMR (300 MHz, benzene): =

8.507 (d, 2H, ortho Te-Ph); 7.262 (t, 2H, meta Te-Ph); 7.204 (t, 1H, para Te-Ph); 6.402

(br s, 3H, para C6H3Me2); 6.309 (v br, 6H ortho C6H3Me 2); 2.052 (s, 18H , C6H3Me2);

1.429 (s, 27:i, C(CH3)3) ppm. 3C NMR (125 MHz, benzene):6 = 152.84 (br s, Te-C);

139.72; 136.61; 129.98; 129.94; 128.66; 127.45; 126.64; 63.19 (br, N-C(CH3)3; 31.86 (N-

C(CH3)3; 21.96 (C6H3Me2) ppm. A 125Te NMR signal could not be obtained. Anal. Calcd.

for C42Hs5 N3Te: C, 60.82; H, 7.17; N, 5.10. Found: C, 61.54; H, 6.74; N, 5.03.

Synthesis of 8: A scintillation vial was charged with 1 (404 mg, 0.65 mmol) and toluene

(2 mL). Benzonitrile (2.2 g, 21 mmol, ca. 33 equiv.) was added and the vial was cooled

to -35 °C in the glovebox freezer. In a separate vial was dissolved P4 (65 mg, 0.52 mmol,

0.8 equiv.) in 5 mL of toluene. This vial was also cooled to -35 C. The chilled solutions

were briefly removed from the freezer, rapidly combined, and then restored the freezer.

After 2 h, the reaction mixture had turned blue. The toluene was removed in vacuo, and

the remainder was transferred to a bulb-to-bulb distillation apparatus with the aid of a

little THF. The excess PhCN was then distilled off over 4 hours at ca. 40 °C under full

vacuum. The resulting residue was slurried in 5 mL MeCN, filtered, washed with

additional MeCN (5 mL), and dried in vacuo to yield a dark blue solid. 'H NMR analysis

indicated that 8 was the major component of this solid, along with small amounts of 2, 7,

and HN(t-Bu)Ar. Purification was accomplished through recrystallization from Et2O over

several weeks. Yield: 256 mg, 50%. 'H NMR (500 MHz, C6D 6 ): 1.27 (s, 27H, CMe3);

2.33 (s, 18H, C6H3Me 2); 6.71 (s, 6H, Ar ortho); 6.82 (s, 3H, Ar para); 7.05-7.10 (multiple

overlapping peaks, 5H, Ph) ppm. 13C NMR (125 Hz, C6D6 ): 22.04 (C6H3Me2); 31.65

(CMe 3); 63.32 (N-CMe 3); 126.65; 127.66; 127.89; 128.66; 129.05; 131.21; 137.70;

137.90; 150.55 (d, Jcp = 11 Hz) ppm. 31P NMR (C6D6, 121.5 MHz): -339 (t, Jpp = 75 Hz);

-147 (t, Jpp = 75 Hz). Anal. Calcd. for C86H,, 8N8MoP4: C, 69.62; H, 8.02; N, 7.55. Found:

C. 69.59; H, 7.82; N, 7.43.

Reaction of 1PhCN with NO: A 100 mL round-bottom flask with sidearm was charged

with 1 (200 mg, 0.32 mmol) and 10 mL Et2O. To the red-orange solution was added
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benzonitrile (33 mg, 0.32 mmol) in 2 mL Et2O. The flask was briefly evacuated, sealed,

and transferred to a dry ice/acetone bath. To the cold solution was added NO (7.2 mL,

0.32 mmol) via syringe. The dry ice/acetone bath was removed and the reaction mixture

was allowed to warm to room temperature. Volatiles were removed in vacuo. 'H NMR

analysis revealed a 9:1 mixture of 9 and 10. Isolation of 10 could be accomplished

through washing with copious Et2O. Yield: 18 mg (7.4 %). 'H NMR (300 MHz, C6D 6):

6 1.38 (s, 27H, CMe 3); 2.13 (s, 18H, C6H3Me2); 4.9 (v br, 6H, Ar ortho); 6.65 (s, 3H, Ar

para); 7.16 (t, IH, Ph para); 7.39 (t, 2H, Ph meta); 8.56 (d, 2H, Ph ortho) ppm. 3C NMR

(75 MHz, C6D6): d 23.08 (C6H3Me2); 35.67 (CMe3) ppm. IR (C6D6 ): 1600 cm -' (C=N).

Synthesis of 11: A solution of 1 (150 mg, 0.24 mmol) and PhCN (25 mg, 0.24 mmol) in

Et2O (5 mL) was frozen in the glovebox coldwell. To the thawing solution was added

cobaltocene (45 mg, 0.24 mmol) in Et2O (1 mL). The solution was allowed to warm to

room temperature, at which point it was deep bluish-green in color. The reaction mixture

was filtered through Celite, and the filtrate concentrated to dryness. 'H NMR analysis

indicates that 11 is the exclusive product. The product is readily purified through

recrystallization from pentane (-35 °C). Yield: 154 mg, 70% (3 crops). 'H NMR (300

MHz, C6D6): b 1.212 (br s, 27H, CMe3); 2.32 (s, 18H, C6H3Me2); 2.75 (s, 2H); 3.68 (s,

1H); 4.69 (s, 5H, Cp); 4.81 (s, 2H); 6.77 (s, 3H, Arpara); 6.79 (s, 6H, Ar ortho); 7.01 (t,

1H, Ph para); 7.08 (d, 2H, Ph ortho); 7.24 (t, 2H, Ph meta) ppm. 3C NMR (125 Hz,

C6 D6 ): 22.06 (C6H3Me2); 31.79 (CMe3); 48.03; 52.12; 63.35 (N-CMe3 ); 76.01; 79.47

(Cp); 116.30; 120.98; 126.48; 126.92; 127.64; 132.69; 137.24; 151.5 (br); 174.26 (N=C)

ppm. Anal Calcd. for C53H6 9N4MoCo: C, 69.42; H, 7.58; N, 6.11. Found: C, 69.28; H,

7.65; N, 5.98.

Reaction of 11 with ferrocenium triflate: Compound 11 (50 mg, 0.054 mmol) was

dissolved in ether and cooled to near freezing. Solid ferrocenium triflate was added and

the mixture was allowed to warm to room temperature. After stirring for 90 minutes, the

reaction mixture had turned purple, indicating the formation of 1lPhCN, and a precipitate

had formed, presumably [Cp2ColIOTfl. The mixture was then treated with excess Ph2S2,

causing a rapid color change to the distinctive blue color of 5-S. The reaction mixture
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was filtered through Celite and the filtrate concentrated to dryness. 'H NMR analysis

indicated 5-Se, PhCN, and ferrocene as the major products. A small amount of HN(t-

Bu)Ar was present.

Reaction of 11 with NO: A 100 mL round-bottom flask with sidearm was charged with

11 (50 mg, 0.054 mmol) and 10 mL ether. The flask was removed from the glovebox,

cooled to 0 °C, and treated with NO (2.5 mL, 0.11 mmol). After stirring for 45 minutes at

0 °C, the reaction mixture had taken on a brown color and some orange brown precipitate

was visible. The flask was warmed to room temperature and volatiles were removed in

vacuo. Analysis of the resulting residue by H NMR indicated 10 as the major (> 70%)

anilide-containing product.

Independent synthesis of 12: A vial containing 1 (100 mg, 0.16 mmol) dissolved in 3

mL Et2O was frozen in the glovebox coldwell. To the thawing solution was added Me2S2

(ca. 10 mg, 1.3 equivalents) as a solution in Et 2O. The reaction turned blue upon mixing.

The mixture was filtered through Celite and the filtrate concentrated to dryness.

Recrystallization from Et2O (-35 °C) furnished the product as large blue needles (82 mg,

76%). 'H NNIR (300 MHz, C6D6): 1.37 (s, 27H, CMe 3); 2.06 (s, 18H, C6H3Me 2); 3.34

(s, S-CH 3); 6.23 (br s, 6H, Ar ortho); 6.38 (s, 3H, Arpara) ppm. '3C NMR (75 Hz, C6D6):

21.58 (C6H 3 A/1e2); 31.15 (CMe 3); 34.38 (S-Me); 62.25 (N-CMe 3); 126.43; 136.10; 152.65

ppm (one aryl peak missing).

Attempted synthesis of 13: In a scintillation vial was prepared a solution of 1 (200 mg,

0.32 mmol) in 5 mL Et20 to which was added PhCN (40 mg, 0.39 mmol). The resulting

purple solution was cooled to near freezing in the glovebox coldwell. To the thawing

solution was added a solution of Me2S2 (15 mg, 0.16 mmol) and the mixture was allowed

to warm to room temperature, whereupon it became bright blue in color. Volatiles were

removed in vacuo. 'H NMR analysis indicated the presence of 12 and a new product,

formulated as 13, in a 1:1 ratio.
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Synthesis of 13: Vial A was charged with 1 (100 mg, 0.16 mmol), PhCN (150 mg, 1.45

mmol), and 3 mL Et2O. Vial B was charged with a solution of Me2S2 (10 mg, 0.10 mmol)

in 2 mL Et20). Both vials were cooled to -35 °C, at which point the contents of vial B

were added to vial A, and the reaction mixture returned to the glovebox freezer. Over the

course of 1 h, the reaction mixture turned deep blue. Volatiles were removed in vacuo. 'H

NMR analysis showed that 13 was the dominant product, with a small amount of 12

present. 'H NMR (300 MHz, C6D 6): 1.30 (br s, 27H, CMe 3); 2.21 (s, 18H, C6H3Me2); 2.24

(s, 3H, S-Me); 6.69 (s, 3H, Ar para); 6.75 (t, 1H, phenyl para); 6.90 (br s, Ar ortho);

7.16 (t, 2H, phenyl meta) ppm (phenyl ortho resonance obscured by excess PhCN).

Synthesis of 14: To a scintillation vial containing 1 (100 mg, 0.16 mmol) in 5 mL Et2O

was added Me2NCN (12 mg, 0.21 mmol). Upon observation of the expected color change

to green, PhSSPh (17.5 mg, 0.08 mmol) was added. The solution turned blue over 15

minutes. The solution was filtered through Celite, the filtrate concentrated to dryness, and

the residue recrystallized from Et2O (-35 °C). Yield: 53 mg, 42%. 'H NMR (300 MHz,

C6D6): 6 1.33 (s, 27H, CMe 3 ); 2.21 (s, 6H, NMe 2); 2.24 (s, 18H, C 6H3Me 2); 6.66 (s, 3H,

Ar para); 6.94 (tr, 1H, phenyl para); 6.96 (s, 6H, Ar ortho); 7.17 (tr, 2H, phenyl meta);

7.52 (d, 2H, phenyl ortho) ppm.

Crystallographic structure determinations: The X-ray crystallographic data collections

were carried out on a Siemens Platform three circle diffractometer mounted with a CCD

or APEX-CCD detector and outfitted with a low temperature, nitrogen-stream aperture.

The structures were solved using direct methods, in conjunction with standard difference

Fourier techniques and refined by full-matrix least-squares procedures. Compound 10

was plagued by extensive disorder and was not fully refined. Only the connectivity was

determined. A summary of the crystallographic data for complexes 2, 3, 5-S, 5-Se, 6-Te,

10, 11, and 14 is given in Tables 3 and 4. An empirical absorption correction (either psi-

scans or SADABS) was applied to the diffraction data for all structures. All non-

hydrogen atoms were refined anisotropically. Unless otherwise specified, all hydrogen

atoms were treated as idealized contributions and refined isotropically. All software used

for diffraction data processing and crystal-structure solution and refinement are contained
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in the SAINT+ (v6.45) and SHELXTL (v6. 14) program suites, respectively (G.

Sheldrick, Bruker AXS, Madison, WI).

formula

fw

space group

a, A

b, A

c. A

a, deg

13, deg

y, deg

V, A3

z

D, g/cm3

i (Mo K(,), mm-'

temp, K

F(000)

GoF(F2 )

R(F), %

wR(F), %

2 3 5-S 5-Se

C9 2.5H 118Mo2N 8 O

1549.83

PT

11.3936(6)

19.3306(13)

21.5731(13)

102.913(2)

102.449(2)

102.387(2)

4346.7(5)

2

1.184

0.337

100

1642

1.057

0.0378

0.1012

C4 3H,MoN 4

728.89

C21c

37.8513(15)

11.7506(5)

20.8316(9)

119.5570(10)

8059.6(6)

8

1.201

0.358

100

3104

1.065

0.0312

0.0786

C,,H, 14Mo 2N 8O2S 2

1822.32

P2, 1/n

20.534(2)

24.450(2)

21.635(2)

111.261(2)

10122.5(18)

4

1.196

0.340

193

3888

1.078

0.0621

0.1505

C, 6H,,Mo, N 8,O, Se,

1912.1

P2,1/n

20.534(2)

24.450(2)

21.635(2)

111.261(2)

10122.5(18)

4

1.255

1.018

193

4016

1.100

0.0799

0.1592

Table 3 Crystallographic parameters for 2, 3, 5-S, and 5-Se.
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6-Te 10 11 14

formula C 3 Hl lMoN 6Te 2 C43 H 59N 6Mo C 53H 6 9CoMoN 4 C45 Hs6 MoN 5S

fw 1658.92 755.91 916.99 804.02

space group PT P2,/n Pca2, P2,l/c

a, A 11.1740(12) 12.3206(12) 16.2038(12) 13.8313(7)

b, 18.1215(19) 19.9849(18) 19.2460(19) 14.4109(7)

c, A 20.134(2) 16.4804(16) 15.3320(15) 22.1159(10)

a, deg 91.445(2)

, deg 90.692(2) 90.049(2) 90.00 91.6090(10)

y. deg 90.663(2)

V/, 3A3 4075.0(7) 4057.90 4781.4(8) 4406.4(4)

Z 2 4 4 4

D, g/cm 3 1.352 1.226 1.274 1.212

[t (Mo K,), mm' 1.054 0.36 0.648 0.380

temp, K 193 193 193 100

F(000) 1704 1600 1936 1712

GoF(F 2) 1.185 n/a 1.091 1.044

R(F), % 0.0566 n/a 0.0390 0.0356

wR(F), % 0.1521 n/a 0.0821 0.0878

Table 4 Crystallographic parameters for 6-Te, 10, 11, and 14.
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2

Beta-elimination from Mo(IV) ketiminates:
A new strategy for Mo-N cleavage

Portions of the following have appeared in Inorganic Chemistry 42, 8621
(2003). Reproduced with permission
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2.1 Introduction

Since the isolation of the first transition metal complex of N2,' research into the

coordination chemistry of N2 has grown into an exceedingly active field.2 The simplicity

and ubiquity of N2 endows its chemistry with inherent interest; this interest is

compounded by the immense practical importance of the biological3 and industrial4

conversions of N2 to ammonia, neither of which are-as yet-fully understood. The 1995

N

111

N

2
N2

Bu)Ar

N""Mo N 1

N "

R
X

N

I

N N
N

4

X

N"M° N
N

Scheme 1 Proposed N2 functionalization cycle.

report from these labs describing the room temperature cleavage of N2 by Mo(Nit-

Bu Ar)3 (1) was a watershed event in dinitrogen chemistry, expanding significantly on

our understanding of N2 reactivity and pointing to new prospects for the metal-mediated

incorporation of N2 into organic molecules. 5 The realization of a such a process, however,

has been hindered by the high thermodynamic stability of the Mo-N triple bond in

NMo(NIt-Bu IAr)3 (2, BDE = 155 kcal/mol). 6 As such, the development of new methods

for the cleavage of Mo-N bonds is of critical importance.
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In this chapter we demonstrate that appropriately-substituted Mo(IV) benzimidates

are subject to 3-X elimination, resulting in cleavage of the Mo-N bond with release of

benzonitrile. The potential of such a reaction is illustrated by its inclusion in the proposed

N 2 functionalization cycle shown in Scheme 1. In such a cycle, Mo(IV) ketimidates are

synthesized from terminal nitride 2 and an approriate carbene; 3-X elimination then

provides an N2 -derived nitrile along with a Mo-X species which can be reduced back to

1. The nitrile functionality is an attractive synthetic target due to its ready conversion to a

variety of nitrogen-containing molecules, including imines, carboxamides, amines, and

heterocycles. 7 The development of a concise route to such molecules starting from N2

would have the additional benefit of allowing for the economical synthesis of 15N-

labelled variants.

Beta-X elimination from metal benzimidates is conceptually related to 13-X

elimination from metal alkyls, which has been most heavily studied in group ten

systems.8 Prominent among early metal examples is Buchwald's observation that

Cp2Zr(H)CI (Schwartz's reagent) reacts with ethyl vinyl ether to form Cp2Zr(CI)OEt and

ethylene, presumably via 1,2 insertion of the olefinic unit followed by 13-OEt

elimination. 9 While no intermediates could be observed in this system, Wolczanski has

succeeded in measuring 13-OR elimination kinetics in the more hindered

(silox) 3Ta(H)CH 2CH 2OR.` ° This reaction has also been the subject of a computational

study in which the C-X bond strength was determined to be the dominant factor

controlling the activation barrier." Our experimental results support a similar effect in 3-

X eliminations from Mo(IV) benzimidates.

2.2 Attempted synthesis of haloketimides

Based on the results presented in Chapter 1, we theorized that treatment of the

benzonitrile adduct 1-PhCN with halogen atom sources should result in haloketimides of

the form X(Ph)C=N-Mo(N[t-BulAr) 3 (3-X, X = Cl, Br, I). As shown in Figure 1, the use

of CICH 2CH2CI, BrCH 2CH2Br, and I, as halogen atom sources resulted instead in the

isolation of the corresponding Mo(IV) halides 4-X (X = Cl, Br, i).12
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CICH2 CH2 CI

BrCH2CH2Br
1 PhCN 

U

JhCN

Figure 1. Treatment of 1oPhCN with halogen atom sources.

The reaction of 1-PhCN with CICH2CH2CI was investigated in more detail, in order

to ascertain whether 4-Cl was being formed via the intermediacy of 3-Cl. When the

reaction is carried out in the presence of only one equivalent of PhCN, the formation of

4-Cl is complete within 2 hours. As the concentration of PhCN is increased, the rate of 4-

Cl formation is attenuated, and the nitrile dimer 2 begins to form in increasing amounts.

In the presence of 20 equivalents of PhCN, 2 is the major product, and the formation of

4-Cl has been almost completely suppressed. These observations suggest that 4-C is

being formed through reaction of CICH2CH2CI with free 1 present in equilibrium, similiar

to what was established for the reaction of 1oPhCN with PhTeTePh.

2.3 Nitrile release from (Ar[t-Bu]N) 3Mo-N=C(Ph)EPh (E = S, Se, Te)

The results of the previous section suggested the pursuit of compounds of the form 3-

X featuring X groups other than halide. We thus embarked on an investigation of the

susceptibility of the compounds (Ar[t-Bu]N) 3Mo-N=C(Ph)EPh (3-EPh, E = S, Se, Te)

synthesized in the previous chapter to P3-EPh elimination.

Heating a C6D6 solution of 3-SPh to 80 °C for 2 days elicited no change in its H

NMR spectrum. On the other hand, 3-SePh decomposed to several products at

temperatures greater than or equal to 37 °C; somewhat encouragingly, (Ar[t-BujN) 3Mo-

SePh (4-SePh) could be identified in this mixture at early reaction times, despite itself

eventually succumbing to decomposition under the thermolysis conditions.
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Figure 2. Thermal decomposition of 3-TePh (35 °C, THF).

Gratifyingly, 3-TePh was found to cleanly undergo -elimination to form 4-TePh and

PhCN. Shown in Figure 2 is a stack plot depicting the spectral changes observed upon

heating a freshly-prepared THF solution of 3-TePh to 35 °C. The final spectrum

corresponds to the spectrum of independently prepared 4-TePh; in addition, the reaction

exhibits first--order kinetics (kobs = 1.2(1) x 10-4 s-') and isosbestic points can be observed

at 448 and 495 nm.

2.4 Nitrile release from fluorinated ketimides

As shown in Equation 1, the fluorinated analogs 3-EArF (E = S, Se) can be

synthesized analogously to their unfluorinated counterparts through the use of the

fluorinated dichalcogenides ArFEEArF (E = S, Se). Compound 3-SArF was characterized

by UV-vis spectroscopy, H NMR, and X-ray crystallography, while the characterization

of 3-SeArF was limited by its thermal instability (vida infra) to UV-vis spectroscopy and

'H NMR.
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0.5 (C6 Fs) 2E2

Et20

,C 6 F5
Ph C F

N

I
Ar

3-EArF

Equation 1

The solid-state structure of 3-SAr F is shown in Figure 3. For the most part, metrical

parameters and gross structural features are very similar to those observed for the

unfluorinated analog. The C(41)-S(4) distance is only very slightly elongated from

1.771(6) to 1.790(2) A. Of additional note is the fact that there appear to be no inter- or

intramolecular aryl-perfluoroaryl stacking interactions.13

parameter

Mo-Namide

MO-Nketimide

N=C

C-S

Mo-N-C

A/o

1.966 (avg.)

1.8082(16)

1.303(2)

1.790(2)

162.03(14)

Figure 3. Solid-state structure of 3-SArF (35% ellipsoids, one of two molecules in the

asymmetric unit).

Compounds 3-EArF (E = S, Se) undergo clean P-EArF elimination at rates that are

significantly enhanced relative to their unfluorinated analogs; their half-lives at 25 °C arezn in"l '~""~ ~""~""~ """"" "'~U " " 'V L' '
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6.5 hours (E = S) and ca. 6 minutes (E = Se) respectively. Spectroscopic portraits of these

processes are depicted in Figure 4. The identities of the final products of both reactions

were confirmed by independent syntheses of 4-EArF from 1 and ArFEEArF (E = S, Se).

The solid-state structure of 4-SArF is shown in Figure 5. Its structural parameters are

unremarkable.
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Figure 4. Spectral changes accompanying the 3-EArF to 4-EArF conversion.

parameter

MO-Namide

Mo-S

S-C

Mo-S-C

1.952 (avg.)

2.3091(11)

1.783(4)

115.01(14)

Figure 5. Solid-state structure of 4-SArF (35% ellipsoids).

Further information on 3-elimination in these systems was obtained through the

determination of activation parameters; for E = S, kinetic data were collected every 10 °C
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from 25-65 ''C, whereas for the faster E = Se process, data were collected from 15--55

°C. The data are summarized in Scheme 2.
IF __

Ph E 5' s

N -PhCN

t-Bu M Ar

I \
Ar o.,..

abs. . "EC6Fs
Nsu /I

t-Bu X /ArA

iN-' '-CO N-t-BU
Ar \

-IDU

I
.1

half-life (25 °C)

AH*

AS*

E=S

6.5 hours

94 kJ/mol

-18 J/molK

E=Se

6 minutes

69 kJ/mol

-66 J/molIK

Scheme 2

A plausible mechanism for the conversion of 3-EArF to 4-EArF involves initial

coordination of the E atom to the Mo center (with concomitant weakening of the E-C

bond) resulting in a congested four-membered transition state, from which productive

metathesis would yield PhCN and 4-EArF. Such a hypothesis would predict that AHl

would be lower for Se than for S, due to the decrease in E-C bond strength.' 4 In addition,

the larger Se atom would increase crowding in the transition state, resulting in a more

negative ASt. Further, the unimolecular nature of the mechanism predicts first-order

kinetics. The observed data, then, provide no reason to discard this mechanistic proposal.

2.5 Reaction of l-PhCN with benzoyl peroxide
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When thawing (ca. -100 °C) Et2O solutions of 1PhCN and benzoyl peroxide (0.5

equivalents) are combined and allowed to warm to room temperature, a sequence of color

changes from purple to blue and then back to purple is observed. 'H NMR analysis of the

final reaction mixture indicates the presence of a new, paramagnetic product and PhCN.

The paramagnetic product was definitively identified as the Mo(IV) benzoate (Ar[t-

BulN)3Mo-OC(O)Ph (4-OC(O)Ph) on the basis of X-ray crystallography. An ORTEP

diagram of this compound is shown in Figure 6. The benzoate ligand adopts an l

conformation with a Mo-O distance of 2.0011(17) A and a Mo-O-C angle of 124.86(17) ° .

The amide ligands are arranged in a distinctive C, conformation, suggesting that the

compound may be diamagnetic in the solid state. To the best of our knowledge, this is the

first structurally verified example of an r' benzoate of Mo(IV).'5

parameter

Mo-Namide

Mo-O

O-C

C=O

Mo-O-C

A/°

1.946 (avg.)

2.0011(17)

1.325(3)

1.215(3)

124.86(17)

Figure 6 Solid state structure of 4-OC(O)Ph (35% ellipsoids, one out of two molecules in

the asymmetric unit).

In order to gain insight into the observed blue intermediate, the reaction was initiated

at thawing toluene temperatures and then rapidly transferred to an NMR probe pre-cooled

to -15 ° C. The spectra obtained in this fashion show a product containing three distinct

anilide environments, along with two phenyl environments. As the temperature in the

probe is raised, two simultaneous processes can be observed. One is the coalescence of
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the resonances for the three distinct ligand environments; the other is the conversion of

this product to 4-OC(O)Ph with concomitant release of benzonitrile. As before, the final

spectrum corresponds to a 1:1 mixture of 4-OC(O)Ph and PhCN. On the basis of these

data, the intermediate blue product is assigned as the benzoyl ketimide (Art-

Bu]N)3 Mo-N=C(Ph)OC(O)Ph, 3-OC(O)Ph.

Further information on this system comes from low-temperature kinetic

measurements carried out in collaboration with the groups of Rybak-Akimova and Hoff.

The initial reaction between 1oPhCN and benzoyl peroxide can be followed by stopped-

flow visible spectroscopy. 16 Between -80 and -40 °C, the reaction follows clean second-

order kinetics (first-order in each reagent), and activation parameters of Av/ = 8.4 + 1.7

kJ/mol, AS* = -130 + 17 J/mol K can be calculated (see Figure 7). Recall from Chapter 1

that the activation parameters for the formation of the telluroketimide were 11.6 kJ/mol

and -141 J/mol K respectively. In addition, the final product displays an absorption at

585 nm, as is typical of Mo(IV) ketimide complexes.

lgl

1.:

0.(

3.8

3.4

3 I I

0.004 0.0045 0.005 0.0055

Wavelength, nm/T, K

Figure 7 Left: reaction of 1PhCN with (PhCOO) 2 at -80 C; right: Eyring plot.

The elimination step has been followed using low-temperature FTIR spectroscopy.

The ketimide intermediate is observed to exhibit a strong absorption at 1730 cm -',

assigned as the C=O stretching band. This band decays concomitant with the appearance

of a new band at 1660 cm -', assigned to the C=O stretching vibration in the benzoate 4-

OC(O)Ph. Analysis of the intensity of these bands versus time indicates that the

elimination reaction obeys clean, first-order kinetics. In addition, activation parameters

were determined to be AH- = 77.8 kJ/mol and AST= 0 J/mol K. The vanishing entropy of

4.Z 



activation contrasts sharply with the behavior of the fluorinated chalcogenide-containing

systems (see above). One explanation for this is that the -OC(O)Ph substituent is more

readily accommodated by the bulky tris-anilide ligand set than is EC6F5 (E = S, Se), thus

resulting in a less rigid transition state. An alternative hypothesis is that, due to the

presence of an additional heteroatom, 3-OC(O)Ph eliminates PhCN through a six-

membered (rather than 4-membered) cyclic intermediate. At present we are unable to

distinguish between these two possibilites.

2.6 Conclusions

A series of heteroatom-substituted Mo(IV) benzimidates have been synthesized by

the radical addition method outlined in Chapter 1, and their ability to undergo f3-X

elimination has been studied. In the case in which the X group is an arylchalcogen, it is

found that the rate of P-elimination increases with the molecular weight of the chalcogen.

In addition, fluorination of the aryl ring facilitates the reaction. Activation parameters

have been determined and support a concerted mechanism involving a unimolecular,

four-membered transition state. The benzoyl-substituted ketimide, prepared from benzoyl

peroxide, is also observed to undergo clean 3-X elimination.

2.7 Experimental

General Considerations: Unless stated otherwise, all operations were performed in a

Vacuum Atmospheres drybox under an atmosphere of purified nitrogen. Anhydrous

diethyl ether was purchased from Mallinckrodt; pentane, n-hexane, and

tetrahydrofuran (THF) were purchased from EM Science. Diethyl ether, toluene,

benzene, pentane, and n-hexane were dried and deoxygenated by the method of Grubbs.'7

THF was distilled under nitrogen from purple sodium benzophenone ketyl. Distilled

solvents were transferred under vacuum into vacuum-tight glass vessels before being

pumped into a Vacuum Atmospheres drybox. C6D6 was purchased from Cambridge

Isotopes and were degassed and dried over 4 A sieves. THF-d8 was passed through a

column of activated alumina and stored over 4 A sieves. The 4 A sieves, alumina, and

Celite were dried in vacuo overnight at a temperature just above 200 °C. Compounds
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1,18 6-Se,3 ° CpMo(CO) 3 H,' 9 were prepared by literature methods. PhCN was distilled

under vacuum before use and stored in a nitrogen-filled drybox. CpMo(CO) 3H was

sublimed before use. All other compounds were used as received. 'H and 13C NMR

spectra were recorded on Unity 300, Mercury 300 or Varian INOVA-501 spectrometers

at room temperature, unless indicated otherwise. '3C NMR spectra are proton decoupled.

Chemical shifts are reported with respect to internal solvent: 7.16 ppm and 128.38 (t)

ppm (C6D6). 77Se NMR spectra were recorded on a Varian INOVA-501 spectrometer and

are referenced to Me 2Se (0 ppm) by comparison to external Se2Ph2 (CDCI3 460 ppm).

UV-vis absorption spectra were collected on a HP 8452A diode array spectrometer fitted

with an HP 89090A Peltier temperature controller. CHN analyses were performed by H.

Kolbe Mikroanalytisches Laboratorium (Miilheim, Germany).

Reaction of 1PhCN with CICH2CH2CI: In a scintillation vial was prepared a solution

of 1 (145 mg, 0.23 mmol) in 5 mL Et 2O to which was added PhCN (24.0 mg, 0.23 mmol)

followed by CICH 2CH2CI (13 mg, 0.13 mmol). The mixture was allowed to stir for 1

hour, during which point it turned brown. 'H NMR indicated that 4-Cl was the exclusive

product.

Reaction of 1PhCN with BrCH2CH2Br: Carried out analogously to the above

experiment. 'H NMR indicated that 4-Br was the exclusive product. 'H NMR (300 MHz,

C6D6): d -7.61 (s, 3H, Arpara); -1.66 (s, 6H, Ar ortho); -0.49 (s, 18H, C6H3Me2); 17.30

(br s, 27H, CMe 3) ppm.

Reaction of 1-PhCN with 12: A solution of 1 (104 mg, 0.17 mmol) and PhCN (18 mg,

0.17 mmol) in 5 mL Et2O was cooled to near freezing. Solid 12 (21 mg, 0.08 mmol) was

added to the thawing solution which turned green within a few seconds. 'H NMR

indicated that 4-I was the exclusive product.

Thermolysis of 3-S: A J. Young NMR tube was charged with 19 mg (0.023 mmol) of 3-

S in 0.7 mL C6D6. The tube was sealed and placed in an oil bath preheated to 80 °C.

Periodic monitoring by 'H NMR revealed no observable decomposition over 2 days.
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Thermolysis of 3-Se: A J. Young NMR tube was charged with 15 mg (0.017 mmol) of

3-Se in 0.7 mL C6D6. The tube was sealed and placed in an oil bath at 37 °C and

periodically removed for monitoring by 'H NMR. The degree of conversion to 4-Se was

most readily assessed by the relative integrations of the ortho Se-Ph doublets of the

starting material and product, at 7.437 ppm and 8.378 ppm respectively. Over the course

of one day, 3-Se was observed to convert to 4-Se which itself decomposed to several

unidentified products.

Thermolysis of 3-Te: A solution of 3-Te in THF was prepared as described previously.

Two drops of this solution was added to a quartz UV cuvette fitted with teflon stopcock

filled with THF. The cuvette was sealed, shaken to ensure homogeneity, and removed

from the glovebox. The cuvette was heated to 35 °C and spectra were taken every 400 s

for a total of 25000 s. The data traces at various wavelengths could were satisfactorily

fitted to an exponential decay, and the resulting rate constants were within +10% of each

other.

Thermal Decomposition of 3-Se: A J. Young NMR tube was charged with 22 mg of 3-

Se (26 mmol), 11 mg of dioxane (as an internal standard), and 0.7 mL of C6D6. The tube

was sealed and placed in an oilbath at 37 °C and periodically removed for monitoring by

'H NMR. The extent of decomposition was assessed by the relative integrations of the

Se-Ph ortho protons (d 8.378 ppm) and dioxane.

Synthesis of 3-SArF: In a 50 mL roundbottom flask was prepared a solution of 1PhCN

(600 mg 1, 100 mg PhCN, 0.96 mmol) in 20 mL of Et2O. To the purple solution was

added solid ArFSSArF (192 mg, 0.48 mmol) resulting in a rapid darkening to deep blue.

The reaction mixture was allowed to stir for 5 minutes, whereupon it was filtered and

concentrated to dryness. Recrystallization from Et2O furnished the product as a dark,

microcrystalline solid. Yield: 503 mg, 3 crops (56%). 'H NMR (300 MHz, C6D 6): 5 1.32

(br s, 27H, CMe 3); 2.25 (s, 18H, C6H3Me2); 6.57 (s, 2H, phenyl ortho); 6.63 (t, IH, phenyl

para); 6.69 (s.. 3H, Arpara); 6.91 (s, 6H, Ar ortho); 7.01 (t, 2H, phenyl meta) ppm. '9F
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NMR (282 MHz, C6D6): 6-135.43 (dd); -156.71 (t); -163.02 (m) ppm. UV-vis (Et2O, 25

°C): max 318 (sh, E = 19000 M-'); 577 ( = 7800 M-') nm. (The thermal instability of this

compound hindered acquisition of 13C NMR spectra and elemental analysis.)

Spectroscopic Observation of 3-SeArF: A solution of 1 (17 mg, 0.027 mmol) and PhCN

(ca. 5 mg, 0.49 mmol) was prepared in 0.5 mL C6D6. To this was added a solution of

ArFSeSeArF (7 mg, 0.014 mmol) in 0.5 mL C6D6 resulting in an immediate color change

to deep blue. The mixture was rapidly transferred to a J. Young NMR tube which was

then removed from the box and frozen in an ice bath while being transported to the NMR

spectrometer. The very first 'H NMR spectrum that is obtained shows a 10:1 mixture of

3-SeArF and 4-SeArF. Over the course of 30 minutes, the signals corresponding to 3-

SeArF can be observed to decay and those corresponding to 4-SeAr' grow in. 'H NMR

(300 MHz, C6D 6): 1.29 (br s, 27H, CMe3 ); 2.27 (s, 18H, C6 H3Me2); 6.73 (3H, Ar para);

6.85 (6H, Ar ortho); 7.03 (t, 2H, phenyl meta) ppm (other resonances obscured). UV-vis

(Et20, 25 °C): Xmax 579 ( = 5500 M-') nm.

Synthesis of 4-SArF: To an Et2O solution of 1 (200 mg, 0.32 mmol) was added an Et2O

solution of ArFSSArF (64 mg, 0.16 mmol) resulting in a color change to purple-brown

upon mixing. The solution was filtered through Celite and the filtrate concentrated to

dryness. Recrystallization from Et2O (-35 C) furnished 150 mg (57%) of dark crystalline

material. 'H NMR (300 MHz, C6D 6 ): 1.39 (s, 27H, CMe3 ); 2.05 (s, 18H, C6H3Me2); 6.25

(br s, 6H, Ar ortho); 6.39 (s, 3H, Arpara) ppm. 19F NMR (282 MHz, C6D6 ): -131.33

(dd); -159.66 (t); -163.78 (m) ppm. 13C NMR: 21.61 (C6H3Me2); 31.73 (CMe3 ); 63.31

(N-CMe 3); 127.09; 129.03; 132.41 (m, C-F); 136.15; 136.68 (m, C-F); 140.19 (m, C-F);

143.63 (m, C---F); 146.81 (m, C-F); 151.58 ppm. UV-vis (Et20, 25 °C): max 389 (sh, £ =

4500 M-'); 563 ( = 1900) nm. Anal Calcd. for C42H54N3MoSF5: C, 61.23; H, 6.61; N,

5.10. Found: C, 60.95; H, 6.68; N, 5.04.

Synthesis of 4-SeArF: Synthesized analogously to 4-SArF. Yield: 150 mg, 54%. 'H NMR

(300 MHz, CD 6): 1.40 (s, 27H, CMe 3); 2.04 (s, 18H, C6H 3Me2); 6.21 (br s, 6H, Ar ortho);

6.38 (s, 3H. Ar para) ppm. UV-vis (Et2O, 25 °C): n,,ax 387 (sh, = 5500 M-'); 555 (E =
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1900) nm. Anal Calcd. for C42Hs4N3MoSeF5: C, 57.93; H, 6.25; N, 4.83. Found: C, 57.79;

H, 6.08; N, 4.78.

Kinetics: Kinetics of 3-EC6F 5 elimination from 3-EArF were measured using UV-Vis

spectroscopy over a 40 °C range (E=S: 25-65 C; E=Se: 15-55 °C). For the S-containing

system, ca. 0.1 mM solutions were prepared from purified ketiminate and then

transferred to a quartz UV cell containing a micro stirbar. For the Se-containing system,

an identical protocol was followed, except that the more rapid kinetics in this system

required that the starting ketiminate be generated in situ. In all cases, very good fits to

first-order kinetics were observed. In addition, rate constants obtained from traces at three

different wavelengths (400, 475, 585 nm) were within 10% of each other. The kinetic

data are summarized in

T (K)

298

308

318

328

338

Tables 1 and 2.

k4 0 0 (-1)

2.91 x 10-5

9.14x 10-5

3.38 x 10 -4

9.49 x 10 -4

2.71 x 10 -3

Table 1 Kinetics of 13-elimination from 3-SAr.

T (K) k400 (S- ' ) k 475 (s'-1) k 580 (s '1)

288 7.36 x 10-4 7.04 x 10-4 7.56 x 10-4

298 2.04 x 10- 3 1.88 x 10-3 2.15 x 10-3

308 5.33 x 10 -3 5.42 x 10 - 3 5.56 x 10 -3

318 1.21 x 10-2 1.24 x 10-2 1.23 x 10-2

328 2.50 x 10 O 2.80 x 10-2 2.90 x 10-2

Table 2 Kinetics of 3-elimination from 3-SeArF.

Crystallographic structure determinations: The X-ray crystallographic data collections

were carried out on a Siemens Platform three circle diffractometer mounted with a CCD

or APEX-CCD detector and outfitted with a low temperature, nitrogen-stream aperture.

k4 7 5 (s '1)

3.00 x 10-5

1.07 x 10 - 4

3.22 x 10 -4

9.47 x 10 - 4

2.77 x 10 -3

k580 (S ' )

2.85 x 10-5

1.04 x 10 -4

3.31 x 10 -3

1.01 X 10 -3

2.85 x 10 -3

-
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The structures were solved using direct methods, in conjunction with standard difference

Fourier techniques and refined by full-matrix least-squares procedures. A summary of the

crystallographic data for complexes 3-SArF, 4-SArF, and 4-OC(O)Ph is given in Table 3.

An empirical absorption correction (either psi-scans or SADABS) was applied to the

diffraction data for all structures. All non-hydrogen atoms were refined anisotropically.

Unless otherwise specified, all hydrogen atoms were treated as idealized contributions

and refined isotropically. All software used for diffraction data processing and crystal-

structure solution and refinement are contained in the SAINT+ (v6.45) and SHELXTL

(v6. 14) program suites, respectively (G. Sheldrick, Bruker AXS, Madison, WI).

3-SArF 4-SArF 4-OC(O)Ph

formula C49H 59F 5MoN 4S C42H4F 5MoN 3S C43H5,MoN302

fwv 927.00 823.88 736.80

space group PT P2,/c PT

a, A 10.6395(10) 11.0092(6) 10.8341(11)

b, A 12.8842(14) 18.7121(11) 19.982(2)

c, A 18.843(2) 20.1675(11) 20.568(2)

cr, deg 70.329(4) 89.669(2)

I, deg 74.155(3) 110.5280(10) 81.701(2)

y, deg 76.599(3) 75.221(2)

V, A3 2311.8(4) 4003.0(4) 4258.2(7)

Z 4 4 4

D, g/cm 3 1.332 1.367 1.149

[t (Mo K,), mm -' 0.387 0.436 0.343

temp, K 100 173 193

F(000) 968 1720 1548

GoF(F2 ) 1.057 1.204 1.051

R(F), % 0.0371 0.0827 0.0322

wR(F), % 0.0865 0.1386 0.0864

Table 3 Crystallographic parameters for 3-SArF, 4-SArF, and 4-OC(O)Ph.

'Allen, A. D.; Senoff, C. V. Chem. Comm., 621 (1965).
2 Recent reviews: (a) MacKay, B. A.; Fryzuk, M. D. Chem. Rev. 104, 385 (2004). (b)
Fryzuk, M. D.; Johnson, S. A. Coord. Chem. Rev. 200-202, 379 (2000). (c) Hidai, M. M.



Y. Chem. Rev. 95, 1115 (1995). (d) Gambarotta, S. J. Organomet. Chem. 500, 117

(1995).
3 (a) Rees, D. C. Annu. Rev. Biochem. 71, 221 (2002). (b) Rees, D. C.; Howard, J. B.
Curr. Opin. Chem. Biol. 4, 559 (2000).
4 Appl, M. Ammonia; Wiley-WCH: Weinheim, 1999.
5 (a) Laplaza, C. E.; Cummins, C. C. Science 268, 861 (1995). (b) Laplaza, C. E.;
Johnson, M. J. A.; Peters, J.; Odom, A. L.; Kim, E.; Cummins, C. C.; George, G. N.;
Pickering, I. J. J. Am. Chem. Soc. 118, 8623 (1996).
6 Cherry, J. FP. F.; Johnson, A. R.; Baraldo, L. M.; Tsai, Y.-C.; Cummins, C. C.; Kryatova,
S. V.; Rybak-Akimova, E. V.; Capps, K. B.; Hoff, C. D.; Haar, C. M.; Nolan, S. P. J. Am.
Chem. Soc. 123, 7271 (2001).
7 Larock, R. C. Comprehensive Organic Transformations, 2nd Ed.; Wiley-VCH: New
York, 1999.
8 (a) Albeniz, A. C.; Espinet, P.; Lin, Y.-S. Organometallics 16, 5964 (1997). (b) Wiger,
G.; Albelo, G.; Rettig, M. F.; J. Chem. Soc., Dalton Trans. 2242 (1974). (c) Zhu, G.; Lu.
X. Organometallics 14, 4899 (1995). (d) Kaneda, K.; Uchiyama, T.; Fujiwara, Y.;
Imanaka, T.; Teranishi, S. J. Org. Chem. 44, 55 (1979). (e) Nguefack, J.-F.; Bolitt, V.;
Sinou, D. J. Chem. Soc., Chem. Commun. 1893 (1995). (f) Duan J.-P.; Cheng, C.-H.
Tetrahedron Lett. 34, 4019 (1993).
9 Buchwald, S. L.; Nielsen, R. B.; Dewan, J. C. Organometallics 7, 2324 (1988).
10 Strazisar, S. A.; Wolczanski, P. T. J. Am. Chem. Soc. 123, 4728 (2001).
" Cundari, T. R.; Taylor, C. D. Organometallics 22, 4047 (2003).
12 (a) Fiirstner, A.; Mathes, C.; Lehmann, C. W. J. Am. Chem. Soc. 121, 9453 (1999). (b)
Peters, J. C.; Baraldo, L. M.; Baker, T. A.; Johnson, A. R.; Cummins, C. C. J.
Organomet. C(hem. 591, 24 (1999).
13 Coates, G.W.; Dunn, A. R.; Henling, L. M.; Dougherty, D. A.; Grubbs, R. H. Angew.
Chem. Int. Ed. Eng. 36, 248 (1997).
14 (a) Pauling, L. The Nature of the Chemical Bond, 3 rd ed.; Cornell University Press:
Ithaca, New York, 1960. (b) McMillen, D. F.; Golden, D. M. Annu. Rev. Phys. Chem. 33,
493 (1982). (c) Leeck, D. T.; Li, R.; Chyall, L. J.; Kenttamaa, H. I. J. Phys. Chem. 100,
6608 (1996).
15 For other Mo benzoates and acetates: Wlodarcyzk, A.; Edwards, A. J.; McCleverty, J.
A. Polyhedron 7, 103 (1988).
16 Due to the known UV-induced decomposition of benzoyl peroxide, the use of a UV
lamp was avoided during spectroscopic measurements.
17 Pangborn, A.B.; Giardello, M.A.; Grubbs, R.H.; Rosen, R.K.; Timmers, F.J.
Organometallics 1996, 15, 1518.
'8 Laplaza, C. E.; Johnson, M. J. A.; Peters, J. A.; Odom, A. L.; Kim, E.; Cummins, C. C.;
George, G. N..; Pickering, I. J. J. Am. Chem. Soc. 1996, 118, 8623.
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3

Synthesis of an oxotitanium(IV) anion



3.1 Introduction

In recent years, both transition metal formates and oxos have been studied

intensively; the former as model compounds in the rich and varied chemistry of syngas

on metal surfaces,'' 2 and the latter due to their importance in biological3 and industrial

oxidations. 4 Historically, the oxo ligand has been encountered primarily in conjuction

with the middle metals of the transition series;5 this observation has motivated a number

of recent syntheses of both early-&8 and late-metal9 '0O oxos. We report here on an

unprecedented, base-triggered formate decarbonylation, resulting in the synthesis of the

first anionic oxo of titanium(IV). DFT calculations have been carried out in order to

elucidate the electronic structure of the new compounds.

3.2 Synthesis of a titanium formate

Treatment of an emerald green ethereal solution of Ti[N(t-Bu)Ar] 3 (Ar = 3,5-

Me2C6 H3, 1)" with 1 equiv. of t-butyl formate at 25° C results in an immediate color

change to red-brown, followed by precipitation of a yellow solid over the course of a few

minutes. On the basis of 'H and 1 3 C NMR spectroscopy, X-ray crystallography, and

elemental analysis, this solid is identified as Ar(t-Bu)N]3TiOC(O)H, 2. The key formate

resonance is observed at 8.36 ppm.

The formation of formate 2 can be accounted for via initial generation of a titanium-

stabilized ketyl radical, followed by t-Bu radical ejection to generate the observed

product (see Scheme 1). As shown in Figure X, a similar sequence of events has been

observed upon treatment of 1 with O2Mo(O-t-Bu) 2.'2 In both cases, the final product is the

result of formal displacement of CMe3 radical by 1.

The solid-state structure of formate 2 is shown in Figure 1. The molecule crystallizes

on a crystallographic 3-fold axis, with the result that the formate moiety is disordered

over three positions. The geometry at titanium is approximately tetrahedral with an O(1)-

Ti(1)-N(l) angle of 110.8 °. The observed Ti-O distance of 1.868(4) A is similar to that

observed in other compounds containing the tris-t-butylanilide ligand set.'12 ' 3 The three-

fold disorder, which we have not been able satisfactorily resolve, prevents discussion of

additional metrical parameters.
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Scheme 1 Synthesis of 2 and 3.

3.3 Deprotonation of 2

The successful deprotonation of 2 would provide a compound in which the CO2 anion

is stabilized by coordination to a Ti center. Such a compound would be of considerable

interest in that the reduction potential of free CO2 is -1.90 V vs. NHE.14' 5 In the event,

treatment of 2 with a slight excess of LiN(i-Pr) 2 in Et20 resulted in the formation of a
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new crystalline product whose H NMR spectrum displayed a single N(t-Bu)Ar

environment. An X-ray diffraction study revealed the product to be titanium(IV)

oxoanion 3, likely formed by facile CO ejection subsequent to deprotonation. We have

previously observed decarbonylation of isoelectronic [(ArIt-BulN)3Nb=N=C=O- to form

an anionic nitridoniobium complex. 6 Detection of liberated CO in the present system was

carried out by vacuum transfer of the volatiles onto (Ph3P)3RhCI (Wilkinson's catalyst),

resulting in formation of (Ph3P)2Rh(CO)CI as documented in the literature. 17 The

generation of HN(i-Pr) 2 was confirmed in a separate experiment.

Figure 1 Solid--state structures of 2 and 3 (35% ellipsoids). Selected bond distances () and bond angles (0)
for 2: Ti(l)-O( 1) 1.868(4), Ti(l)-N( ) 1.929(3), O(1)-C(21) 1.299(10), C(21)-0(2) 1.291(15), O(l)-Ti(l)-

N(1) 110.70(8), C(21)-O(1)-0(2) 113.7(8). 3: Ti(l)-O(1) 1.717(2), Ti(1l)-N(1) 1.986(3), Ti(l)-N(2)
1.989(2), Ti(l)-N(3) 1.990(3), O(l)-Li(l) 1.801(6), Ti(l)-O(1)-Li(l) 167.8(2).

The solid--state structure of 3 (see Figure 1), reveals the expected coordination of the

titanoxide anion to the Li cation, with a Li-O distance of 1.801(6) A. The Li atom is

coordinated additionally by two molecules of Et2O, adopting an overall trigonal planar

geometry. The Ti-O distance, at 1.717(2) A, is significantly contracted relative to 2.

While anionic titanium(IV) oxos have not been previously structurally characterized,

typical Ti-O distances in neutral titanyls range from 1.61 to 1.68 A.5 Andersen has

prepared the anionic oxotitanium(III) compound [Cp*2TiOLi(THF)12, which features an
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average Ti-O distance of 1.787 A,'8 while Stephan's oxozirconium(IV) anion,

lCp*2Zr(H)OLi(THF)]2, exhibits a Zr-O distance of 1.847 A.'9 These comparisons

suggest that the Ti-O interaction in 3 is best viewed as a multiple bond.

Figure 2 Ti-O -bonding orbitals in 3-m.

To further address this issue, we have carried out DFT calculations on the model

compounds (NH 2)3TiOC(O)H (2-m) and Li(OMe 2)2]l(NH 2) 3TiOl (3-m). The key

features of the experimental structures are satisfactorily reproduced at the BP86 level of

density functional theory.20 Inspection of the Laplacian of the electron density2 l indicates

that, in both cases, the Ti-O bond is characterized by considerable ionic character, as

anticipated based on the large difference in electronegativities between Ti and O. On

moving from 2-m to 3-m, however, the value of the electron density at the bond critical

point increases from 0.1 134 to 0.1815 a.u., consistent with a substantial increase in bond

order and, thus, covalency. Additionally, a pair of degenerate orbitals corresponding to

orthogonal Ti-O tr bonds is observed in the DFT analysis (see Figure 2). Since the

electron localization function (ELF) has been particularly valuable for illuminating

complex issues of chemical bond multiplicity,22 we have also examined the ELF

isosurface plot for 3-m.2 3 In the ELF, triple bonds give rise to a toroidal basin

surrounding the bond axis. For 3-m, it is seen that such a toroidal basin is present and is

shifted close to the O atom, nearly merging with the oxygen lone pair basin. By all

accounts, the titanoxide anion of interest herein manifests a quite polar triple bond.

The chemistry presented herein provides precedent for bound formate

decarbonylation as triggered by deprotonation. The existence of such a transformation

may be significant with regard to the reactions of CO and CO2 on metal surfaces. 2

Furthermore, oxoanion 3 is likely to be a potent nucleophile as well as useful metallo-

ligand, prospects currently under investigation. Finally, the valence-isoelectronic
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relationship of OTi(Nlt-Bu]Ar) 31'- to the previously described neutral [OV(NIt-BuAr) 31

and cationic IOMo(N[t-Bu]Ar)31' + complexes reveals 3 to be the newest member of an

intriguing series of four-coordinate oxometal entities.24' 25

3.4 Experimental

General Considerations: Unless stated otherwise, all operations were performed in a

Vacuum Atmospheres drybox under an atmosphere of purified nitrogen. Anhydrous

diethyl ether was purchased from Mallinckrodt; pentane, n-hexane, and

tetrahydrofuran (THF) were purchased from EM Science. Diethyl ether, toluene,

benzene, pentane, and n-hexane were dried and deoxygenated by the method of Grubbs.26

THF was distilled under nitrogen from purple sodium benzophenone ketyl. Distilled

solvents were transferred under vacuum into vacuum-tight glass vessels before being

pumped into a Vacuum Atmospheres drybox. C6D6 was purchased from Cambridge

Isotopes and were degassed and dried over 4 A sieves. The 4 A sieves, alumina, and

Celite were dried in vacuo overnight at a temperature just above 200 ° C. Compound 1

was prepared as reported in reference 12 in the main text. t-Butyl formate was passed

through alumina and stored over molecular sieves. All other compounds were used as

received. '1-l and '3C NMR spectra were recorded on Unity 300, Mercury 300 or Varian

INOVA501 spectrometers at room temperature, unless indicated otherwise. Chemical

shifts are reported with respect to internal solvent: 7.15 ppm and 128.38 (t) ppm (C6D6).

CHN analyses were performed by H. Kolbe Mikroanalytisches Laboratorium (Miilheim,

Germany).

Synthesis of (Ar[t-Bu]N) 3TiOC(O)H (2): Ti(N[t-Bu]Ar) 3 (700 mg, 1.21 mmol) was

dissolved in 50 mL of pentane. To the green solution was added t-butyl formate (124 mg,

1.21 mmol) in 5 mL of pentane resulting in an immediate darkening. The solution was

allowed to stir for 30 m, and then volatiles were removed in vacuo. The resulting bright

yellow solid was transferred to a fine frit and washed with pentane until the washings

were clear. Yield: 614 mg, 81%. 'H NMR, 500 MHz (C6D6): 1.26 (s, 27H, t-Bu); 2.16 (s,

18H, Ar-CH-3); 6.22 (br s, 6H, o-ArH); 6.69 (s, 3H, p-ArH); 8.36 (br s, H, OC(O)-H)

ppm. '3C NMR, 125 MHz (C6D6): 21.95 (C(CH3)3); 30.94 (Ar-CH3); 62.69 (C(CH 3)3);
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127.36; 128.10; 137.14; 151.75; 162.05 (OC(O)H) ppm. Anal Calcd. for C37 H55N3 0 2Ti:

C, 71.48; H, 8.92; N, 6.76. Found: C, 71.28; H, 8.96; N, 6.68.

Synthesis of (Ar[t-Bu]N) 3TiOLi(Et 2O) 2 (3): Titanium formate 2 (420 mg, 0.68 mmol)

was slurried in 20 mL of Et20 in a 100 mL round-bottom flask and frozen in the

glovebox coldwell. In a 20 mL scintillation vial, LiN(i-Pr)2 was dissolved in 5 mL Et 2O

and similarly frozen. The thawing solutions were combined and allowed to warm to room

temperature. After 1 h, the reaction mixture was orange and nearly homogenous. The

solution was filtered through Celite, concentrated to a volume of 10 mL, and stored at

-35 C. Large block-shaped crystals grew within hours and could be isolated simply by

decanting off the mother liquor. Yield: 302 mg, 60% (three crops). 'H NMR, 300 MHz

(C6 D6 ): 1.39 (s, 27H, t-Bu); 2.32 (s, 18H, Ar-CH3); 6.70 (s, 6H, o-ArH); 6.76 (s, 3H, p-

ArH) ppm. '3C NMR, 125 MHz (C6D6 ): 22.19 (C(CH3)3); 32.78 (Ar-CH 3); 58.28

(C(CH3 )3 ); 126.01; 129.28; 137.41; 153.68 ppm. Anal Calcd. for C44H74N30 3TiLi: C,

70.66; H, 9.97; N, 5.62. Found: C, 70.23; H, 9.89; N, 5.72.

Quantification of CO evolution in the synthesis of 3: In the glovebox, a 25 mL Schlenk

tube (A) fitted with Teflon stopcock was charged with 2 and LiN(i-Pr)2 and sealed. A 50

mL round-bottom flask (B) was charged with (PPh3)3RhCI and 10 mL of toluene, fitted

with a 180° degree adapter, and sealed. Both flasks were removed from the glovebox,

attached to a high vacuum manifold, and thoroughly evacuated. The Et2O from flask B

was condensed into flask A at -196 ° C. Flask A was sealed and allowed to warm to room

temperature. After lh, flask B was cooled to -196 ° C and the volatiles from flask A were

allowed to condense into flask B. Flask B was sealed and allowed to warm to room

temperature, whereupon it turned purple. 31P NMR analysis of the contents of flask B

revealed the formation of (PPh3)2Rh(CO)CI.

Crystallographic structure determinations: The X-ray crystallographic data collections

were carried out on a Siemens Platform three circle diffractometer mounted with a CCD

or APEX-CCD detector and outfitted with a low temperature, nitrogen-stream aperture.

The structures were solved using direct methods, in conjunction with standard difference



Fourier techniques and refined by full-matrix least-squares procedures. A summary of the

crystallographic data for complexes 2 and 3 is shown in Table 1. An empirical absorption

correction (either psi-scans or SADABS) was applied to the diffraction data for all

structures. All non-hydrogen atoms were refined anisotropically. Unless otherwise

specified, all hydrogen atoms were treated as idealized contributions and refined

isotropically. All software used for diffraction data processing and crystal-structure

solution and refinement are contained in the SAINT+ (v6.45) and SHELXTL (v6. 14)

program suites, respectively (G. Sheldrick, Bruker AXS, Madison, WI).

2 3

formula C37H 4TiN3 0 2 CHLiN 30 3Ti

fw 620.73 741.85

space group R3 P2,2,2,

a, A 15.7365(7) 13.3353(10)

b, A 15.7365(7) 13.3843(9)

c. A 24.686(2) 25.8835(18)

c, deg

3, deg

Y, deg

V, A3 5294.1 (6) 4626.7

Z 6 4

D, g/cm 3 1.168 1.065

[t (Mo K), mm'1 0.277 0.222

temp, K 193 193

F(000) 2010 1608

GoF(F2 ) 1.091 1.036

R(F), % 0.0542 0.0587

wR(F), % 0.1316 0.1493

Table 1 Crystallographic parameters for 2 and 3.

Computations: Calculations were carried out using the ADF2004.01 27 software package.

Visualization of the Laplacian and determination of bond critical points were performed

using the Xaim software package.28 The ELF isosurface was generated using the DGRID

software package.29
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4

Four-component couplings with Mo and Ti:
the one-electron activation of CO2
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4.1 Introduction

As discussed in the introduction to this work, a recurring motif in reductive coupling

chemistry has been the expansion of the reaction scope to include a wide variety of

"carbonyl-like"substrates (e.g. imines, nitriles, and cumulenes). A parallel theme has

been the development of methods for reductive cross-couplings, i.e. reactions in which

two dissimilar carbonyl (or equivalent) compounds are coupled. Provided that the

formation of homocoupling products can be suppressed, reductive cross-coupling can

provide efficient access to highly desirable organic products such as unsymmetrical

1,2-diols and amino alcohols.

The first approach to this problem came in 1976, when Corey and coworkers reported

that the Mg(Hg)/TiCI 4 system was capable of the reductive cross-coupling of a variety of

cyclic ketones with acetone when acetone was present in excess.' Some years later came

several reports in which the use of better-defined reductants allowed for the preparation

of preformed, r 2 metal-substrate adducts. Treatment of these adducts with one equivalent

of second substrate resulted in clean formation of heterocoupled products.2

Representative is Buchwald's synthesis of the 12-imine complex Cp2Zr(THF)(rl2-

Me 3SiN=C(I-I)Ph), which undergoes C-C reductive coupling not only with other imines,

but also with nitriles, acetylenes, ketones, and terminal olefins. 4 In such an approach, an

overall two-electron transformation is carried out at a single metal center; as a

consequence. these reactions typically employ d2 metal centers or synthons thereof.

LnlI IA Y' . R1

R 1 LnM - X

+

L'nM' Y _ \_ R2

R2

Scheme 1 Bimetallic reductive cross-coupling.
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One can also envision a bimetallic version of the strategy described above. As shown

in Scheme 1, each coupling partner can be activated by a different (likely one-electron)

metal center.. Appropriate tuning of the steric and electronic properties of each

metal/substrate pair can result in a situation in which homocoupling is slow relative to

heterocoupling. In this chapter we report on the realization of this strategy using the

compounds (Ar[t-BulN) 3M (M = Mo, 1; M = Ti, 2). Specifically, we describe the

reductive cross-coupling of PhCN with benzophenone, pyridine, and-most

notably-CO 2, a substrate typically reluctant to undergo one-electron chemistry.5 The

former two couplings are of added interest as they involve concomitant dearomatization,

thereby forming products of high molecular complexity from simple starting materials.

While dearornatization is not typically a feature of reductive couplings, it is well-

established in reductive alkylations employing alkali metals.6

4.2 Reductive coupling of PhCN and benzophenone

Previous work from these labs has shown that treatment of 2 with Ph 2CO results in

the establishment of the monomer/dimer equilibrium shown in Scheme 2.7 Similar

t-Bu

PPh Ph N
Ar(tBu)NTi-N(t-Bu)Ar 

Xl_ Ph

Ph ' N(t-Bu)Ar

ArN/T %N(t-Bu)Ar
Ar-

t-Bu

H
Ph Ph

t-Bu- i Nt- Bu
/ \ I

Ar Ar Ar

Scheme 2. (Adapted from ref. 7)
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equilibria exist for other systems in which a ketyl radical is bound to a metal center

stabilized by sterically bulky ligands. 8 As in the case of trityl radical, the formation of a

head-to-head (Pinacolic) dimer is obviated on steric grounds. 9 Nonetheless, 2oPh2CO can

serve as a source of ketyl radical, as shown by its reaction with nBu3SnH to form the

corresponding diphenylmethoxide complex.

In contrast, treatment of 2oPh2CO with 1IPhCN results in bond formation at the para

carbon of 2-Ph2CO (see Equation 1). Green, diamagnetic 3a displays distinctive vinyl

resonances between 5 and 6 ppm in its 'H NMR spectrum, similar to those observed for

(2-Ph2CO)2.7 Although 3a gave clean 'H and 3C NMR spectra, its high lipophilicity

hindered the preparation of analytically pure samples. Fortunately, the use of 2,6-

Me2C6H3CN in place of PhCN allowed for the synthesis of compound 3b, which proved

significantly easier to isolate in analytically pure form. In addition, we obtained a crystal

structure of 3b, albeit of low quality, which confirmed the connectivity of this molecule,

and-by extension-of 3a.

'h

I) -..

2-Ph 2 CO
1 oPhCN

Et20O
TANII<-DU)Mr

Ar_N,-" N(t-Bu)Ar

t-Bu

Equation 1

Itoh and coworkers have reported that Cp2TiPh mediates the reductive cyclization of

y- and b-cyanoketones to furnish, upon hydrolysis, 5- and 6-membered cx-

hydroxycycloalkanones.'O The reaction requires >2 equivalents of Cp2TiPh, supporting

the author's contention that activation of both carbonyl and cyano moieties is necessary.

In addition, it was shown that alkenyl ketones are inert to the reaction conditions.

Contrary to what is observed in the present case, Cp2TiPh displayed no detectable

reaction with monofunctional ketone or nitrile substrates. Similar transformations have

also been effected using SmI2 under conditions involving photolysis and excess t-BuOH;

the authors propose that only the ketone functionality interacts with Sml2." Finally,

electrochemical protocols have also been reported.' 2 '3
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4.3 Reductive coupling of PhCN and pyridine

Addition of ca. 1 equivalent of pyridine to solutions of 2 triggers a subtle, but

noticeable, change in hue. This color change can be magnified through cooling or

increasing the concentration of pyridine. Removal of all solvent under vacuum followed

by redissolution results in the regeneration of the original color of 2. These results

suggest that pyridine binds to 2 in an equilibrium fashion.

In accord with these observations, when a solution containing 2 and one equivalent of

pyridine is treated with loPhCN, a new diamagnetic compound results (see Equation 2).

Recrystallization from Et20 furnishes 4 in good yield (63%) as green microcrystals. The

'H NMR spectrum exhibits, in addition to signals corresponding to two anilide

environments in a 1:1 ratio, two peaks in the vinyl region of the spectrum which integrate

to two protons each. In addition, downshifted aryl peaks attributable to a pyridyl moiety

are noticeably absent. These data indicate that 2opy, present in equilibrium, has been

trapped by 1PhCN with bond formation occuring at the para (4) position of the ring, so

as to result in a dihydropyridine moiety. The preference for 1,4-rather than

1,2-coupling is reminiscent of the system presented in the previous section; in both

cases, it is presumed that steric factors are responsible.

t-Bu

N-Ar

Mo-N(t-Bu)Ar N(t-Bu)Ar
2/pyridine Ar(t-Bu)N N \ \ N(t-Bu)Ar

1 PhCN -_ >..B-m i
Et2O Ph N-t-Bu

Ar

Equation 2

Dihydropyridines are typically synthesized by a two-step protocol involving

alkylation at nitrogen followed by reaction of the resulting cation with a nucleophile. 14

Depending on the nucleophile, this procedure can produce significant amounts of the 1,2-

substituted compound, thus limiting its general utility. The above process thus constitutes

a useful, complementary process for the tandem dearomatization and

1,4-bifunctionalization of pyridine.
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4.4 Reductive Coupling of PhCN and CO2

Treatment of a purple, ethereal solution of 1PhCN at -100 °C with 2, followed

rapidly by CO2 (1.1 equiv, introduced via syringe), was found to elicit upon mixing a

color change to cherry red. After workup, the new, diamagnetic compound (Arlt-

BuIN) 3Mo-N=C(Ph)C(O)O-Ti(Nlt-BulAr) 3 (5) was isolated as dark red crystals in 59%

Ar

Ph ut-Bu N

\N /t-Bu \ N(t-Bu)Ar1.lequiv.C0 2 I Mo
1-PhCN + 2 > |

Et20, -100C p TiPh(t-Bu)N-T
I

Ph(t-Bu)N

\N(t-Bu)Ar

Equation 3

yield (see Equation 3). The 1
3C labeled variant, 5-13C, is conveniently prepared from

13 CO2 and exhibits a signature 13C NMR signal at 170.7 ppm for the labeled carbon.

Also, a weak absorption in the IR at 1635 cm-' is assigned to vco. In 5-13C, this

absorption shifts to 1564 cm -' (the harmonic oscillator approximation predicts 1563 cm-').

While an X-ray diffraction study of 5 confirmed the proposed connectivity, extensive

disorder prevented the determination of reliable metrical parameters. Fortunately,

substitution of Ti(Nlt-BulPh)3 (6) for 2 permitted the synthesis of (Ar[t-BulN)3Mo-

N=C(Ph)C(O))-Ti(NIt-BuJPh) 3 (7), a single-crystal X-ray diffraction study of which was

consummated with ease.

The molecular structure of 7, shown in Figure 1, clearly displays the freshly created,

C02-derived, carboxyiminato unit that spans the Mo/Ti centers. The carboxyiminato

moiety is both orthogonal to its phenyl substituent and essentially planar. Accordingly,

the newly-formed C41-C42 bond distance is 1.487(5) A, while the N4-C41 distance is

1.350(5) A. Both the latter value and the short Mol-N4 distance of 1.759(3) A are

similar to corresponding parameters observed previously for Mo(IV) ketiminato

complexes. NMultiple Mol-N4 bonding is facilitated by the nearly linear (169.9(3)°) Mol-

N4-C41 linkage. The Ti 1-01 distance (1.855(3) A) is quite similar to that reported for

titanium trisanilide enolate 2-OC(=CH2)NPhMe (1.847(3) A),7 and while the carboxylate
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residue interacts with Ti in a monodentate fashion, still the Ti 1-O1-C42 angle is an acute

136.8(3) °. Both Ti and Mo experience a pseudotetrahedral coordination environment.

Figure 1 Solid-state structure of 7 (35% ellipsoids, see text for structural parameters).

While the reductive, head-to-head coupling of CO2 (to oxalate) has been a goal of the

chemical community for some time,15 the one-electron cross-coupling of CO2 is without

precedent. Success in the former endeavor has been most notably obtained with

(Cp*)2Sm, which cleanly reacts with CO2 (1 atm.) to form oxalate-bridged

(Cp*2)Sm(t,l] 2:2-C 20 4 )Sm(Cp*) 2 in greater than 90% yield.5 In a related reaction, a

Ti(III) alkyl species has been reported to react with CO2 to yield predominantly (80%)

the product of CO2 insertion into the Ti-alkyl bond; the de-alkylated oxalate-bridged

compound was observed as a byproduct, with the fate of the alkyl moiety unknown. 6

Intriguingly, the formation of oxalate from CO2 has also been reported for a Cu(I)

system; the yield could be increased from 21% to 53% through the use of CsHCO3 in

place of CO2. 17 Finally, it should be mentioned that the conversion of CO2 to oxalate is

readily accomplished electrochemically.'8
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4.5 Attempted trapping of 2oCO2

The formation of 5 is presumed to occur through radical combination of the known

1-PhCN and putative 2-CO 2. The observed reactivity along with electronegativity

considerations suggest that 2oCO2 should have an O-bound structure. Such an

intermediate was also invoked in the (Cp*)2Sm-mediated coupling of CO2,5 and has

recently been observed and structurally characterized for U(III).'9 DFT calculations on

2-CO 2 indicate that both r1 and 12 structures are energy minima, and that the CO2 carbon

is endowed with considerable radical character.20

In order to shed further light on this issue, we desired to trap 2-CO 2 with compounds

other than 1PhCN. To our surprise, treatment of 2 with the potent H atom donor

nBu2SnH 2 in the presence of CO2 did not result in formation of the known titanium

formate.2 ' We thus turned our attention to traps that, like 1PhCN, possessed significant

radical character.

In control experiments, the stable free radicals trityl and 2,2,6,6-

tetramethylpiperidine-1-oxyl (TEMPO) were found to undergo no reaction with 2 over a

period of 1 hour at 25 °C. Accordingly 2 was treated with CO2 in the presence of either

trityl or TEMPO in the hopes of observing the reactions depicted in equation 4. However,

no reaction was detected in either case. The lack of reaction with trityl is likely due in

part to the fact that at low temperature-when the concentration of 2oCO2 is likely to be

highest-trityl is present in solution primarily as its head-to-tail dimer.9O o
2 + R C 2

t-Bu'B.uTi jt-Bu

Ar Ar Ar

R· = CPh3,TEMPO

Equation 4

Theorizing that more reactive radicals were necessary for the trapping of 2oCO2, we

turned our attention to radicals that could be generated in situ. To our surprise, the

2-Ph 2CO and 2opyridine adducts described above proved incapable of trapping 2.CO 2

under a variety of experimental conditions.
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We next carried out the experiment depicted in Figure 2. We envisioned that 2 would

be capable ofl halogen abstraction from CIPPh2 to generate transient Ph2P radical.22 It was

hoped that this radical would be reactive enough to react with 2-CO 2 to form the

indicated product. In a control experiment, 2 was treated 0.5 equivalents of CIPPh 2 at

-100 ° C and the mixture allowed to warm to room temperature. The only diamagnetic

products observed were Cl-Ti(N[t-Bu]Ar)3 and Ph2P-PPh.2 3 This experiment suggested

that 2 is not only capable of halogen atom abstraction from CIPPh2, but it attacks PPh 2

radical at a rate that is slow relative to its dimerization.

t-Bu Ar
N', CI PPh a 0

A/\ 2_ I
Ar-N 1 Ar CO 2 Ar Ar Ar Ar Ar Ar

t-Bu

JC-P 6 Hz

180.5 180.0 179.5 179.0 178.5 178.0 177.5 177.0 176.5 ppm

K

-O -2 -4 -6 -8 -10 -12 -14 ppm

Figure 2

Encouraged by this result, we cooled an Et2O solution containing two equivalents of 2

to -100 °C and treated it with one equivalent each of CIPPh 2 and CO2. The reaction

mixture was then allowed to stir for hour at -40 °C during which time it turned yellow-

brown. 'H NNIR Analysis of the reaction mixture indicated that the predominant products

were Cl-Ti(NI t-Bu]Ar) 3 and Ph2P-PPh 2. In addition, however, a new product containing

one anilide environment was observed. A corresponding peak in the 3 P NMR was""~ """'"~ ~"''""^""" ''"" """"''"' '''"''"~""""'b r'"" "' tn

77



observed at ca. 0 ppm. When the reaction was carried out using 3CO2, this peak split into

a doublet with JcP = 6 Hz. The '3C NMR for this compound exhibited a doublet at 179.4

ppm with the same coupling constant. On the basis of this spectroscopic data, we

conclude that the desired product has indeed formed, albeit in low yield. Unfortunately,

we were unable to separate this product from its byproducts.

In Chapter 3, we described the transformation of formate (ArJt-BuJN)3Ti-OC(O)H to

titanoxide (ArJt-BuJN) 3Ti-OLi(OEt 2) 2 upon treatment with LiN(i-Pr) 2. The simplest

mechanism for such a transformation involves the inital formation of anionic (Ar[t-

Bu]N) 3Ti-OCO - (8). Theorizing that such an intermediate might also be synthesized by

the one-electron reduction of 2-CO 2, we explored treating 2 with CO2 in the presence of

various reductants. The use of Cp2 Co and Na/Hg amalgam resulted in no reaction. The

stronger reductant sodium naphthalenide reacted rapidly with 2 to form a mixture of

unknown products, precluding its use in experiments involving CO2.

4.5 Conclusions

The three reactions presented here constitute rather unusual extensions of the classical

Pinacol coupling and testify to the unique electronic and steric properties of the metal

tris-anilides 1 and 2. In addition, these reactions contribute to our understanding of the

reactivity of (02, a subject of considerable practical importance. Finally, these reactions

constitute relatively rare examples of four-component coupings that proceed selectively

to one product.2 4-26 Efforts at elucidating the nature of the reactive 2/CO2 system have

been only partially successful. Nonetheless, the principles outlined here bode well for the

development of new methods for the incorporation of CO2 into organic molecules.

4.6 Experimental

General Considerations: Unless stated otherwise, all operations were performed in a

Vacuum Atmospheres drybox under an atmosphere of purified nitrogen. Anhydrous

diethyl ether was purchased from Mallinckrodt; pentane, n-hexane, and

tetrahydrofuran (THF) were purchased from EM Science. Diethyl ether, toluene,

benzene, pentane, and n-hexane were dried and deoxygenated by the method of Grubbs.27

THF was distilled under nitrogen from purple sodium benzophenone ketyl. Distilled
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solvents were transferred under vacuum into vacuum-tight glass vessels before being

pumped into a Vacuum Atmospheres drybox. C6D6 was purchased from Cambridge

Isotopes and were degassed and dried over 4 A sieves. THF-d8 was passed through a

column of activated alumina and stored over 4 A sieves. The 4 A sieves, alumina, and

Celite were dried in vacuo overnight at a temperature just above 200 °C. Compounds

1,28 2,23 and 626 were prepared by literature methods. PhCN was distilled under vacuum

before use and stored in a nitrogen-filled drybox. Ph2CO was recrystallized from dry

THF. Pyridine was distilled, stored over 4 A sieves, and passed through activated alumina

immediately before use. All other compounds were used as received. 'H and 3C NMR

spectra were recorded on Unity 300, Mercury 300 or Varian INOVA-501 spectrometers

at room temperature, unless indicated otherwise. 13C NMR spectra are proton decoupled.

Chemical shifts are reported with respect to internal solvent: 7.16 ppm and 128.38 (t)

ppm (C6 D 6). CHN analyses were performed by H. Kolbe Mikroanalytisches

Laboratorium (Millheim, Germany). A summary of the compound numbering scheme is

given in Table 1.

Compound

1 Mo(N[t-Bu]Ar) 3

2 Ti(N[t-BulAr) 3

3a Coupling product of 1PhCN and 2oPh2CO

3b Coupling product of 1*2,6-Me2 C6H3CN and 2Ph 2CO

4 Coupling product of 1PhCN and 2opyridine

5 Coupling product of 1-PhCN and 2'CO2

6 Ti(Nlt-BulPh) 3

7 Coupling product of 1IPhCN and 6-CO2

Table 1

Synthesis of 3a: In a scintillation vial was prepared a solution of 1 (140 mg, 0.22 mmol)

and PhCN (23 mg, 0.22 mmol) in 4 mL of Et2O. This vial was cooled to -35 °C in the

glovebox freezer during which time a solution of 2 (130 mg, 0.23 mmol) and Ph2CO (41

mg, 0.23 mmol) in 5 mL of Et2O was prepared in a separate vial. The two solutions were

combined and allowed to warm to room temperature, at which point the reaction mixture

was a bright green. Filtration and solvent removal yielded a crude product which was
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revealed by 'H NMR to be 95% pure, with HN(t-Bu)Ar as the primary impurity. If

necessary, further purification can be accomplished through washing with small

quantities of cold hexamethyldisiloxane. Due to its exceedingly high lipophilicity, we

have been unable to obtain this compound in analytically pure form. 'H NMR (300 MHz,

C6 D 6): 61.21 (s, 27H, Ti CMe 3); 1.27 (br s, 27H, Mo CMe 3); 1.32 (sh, H, allyl C-H);

2.23 (br s, 18H, Mo C6H3Me2); 2.32 (s, 18H, Ti C6H3 Me2); 5.29 (2 overlapping peaks, 2H,

vinyl C-H); 6.01 (s, 1H, vinyl C-H); 6.04 (s, 1H, vinyl C-H); 6.35 (d, 2H, phenyl ortho);

6.66 (s, 3H, Ar para); 6.70 (s, 6H, Ar ortho); 6.77 (partially obscured t, 1H, phenyl

para); 6.81 (s, 3H, Arpara); 7.00 (s, 6H Ar, ortho); 7.28 (t, 2H, phenyl meta); 7.59 (d,

2H, phenyl ortho) ppm; two additional aryl resonances obscured. ' 3C NMR (125 MHz,

C6 D6 ): 22.00 (CH 3Me2); 22.11 (C6H3Me2); 30.85 (Ti CMe3); 31.75 (Mo CMe3); 62.15 (Ti

N-CMe 3); 47.38 (allyl); 63.2 (br, Mo N-CMe 3 ); 115.76; 124.91; 125.53; 126.36; 126.77;

126.98; 127.41; 128.65, 128.23; 130.35; 130.49; 131.24; 135.94; 136.87; 137.89; 139.79;

152.23; 161.45; 168.2 (br, Mo-N=C) ppm.

Synthesis of 3b: In a scintillation vial was prepared a solution of 1 (162 mg, 0.26 mmol)

and 2,6-Me 2C6 H3CN (34 mg, 0.26 mmol) in 5 mL of Et2O. This vial was cooled to -35

°C in the glovebox freezer. In a separate vial was prepared a solution of 2 (150 mg, 0.26

mmol) and Ph2CO (48 mg, 0.26 mmol) in 5 mL of Et2 O, which was also cooled to -35

°C. The chilled solutions were combined and allowed to warm to room temperature.

Stirring for an additional 90 minutes was necessary for completion of the reaction as

judged by the development of a green hue. The reaction mixture was then gently

concentrated to incipient crystallization, at which point the vial was transferred to the

glove box freezer. Crystals grew overnight and were collected by decanting off of the

mother liquor. Yield: 250 mg (2 crops, 63%). 'H NMR (500 MHz, C6 D6 ): 61.15 (s, 27H,

Ti CMe 3); 1.21 (br s, 27H, Mo CMe3); 2.26 (s, 36H, overlapping Ti and Mo C6H3Me2);

2.62 (s, 3H, nitrile C6H3Me2); 2.73 (s, 3H, nitrile C6H3Me2); 4.4 (br s, 1H, vinyl C-H); 4.5

(br s, H, vinyl C-H); 5.29 (s, 1H, vinyl C-H); 5.78 (s, 1H, vinyl C-H); 6.44 (br s, 6H,

Ar ortho); 6.70 (s, 3H, Arpara); 6.73 (s, 3H, Arpara); 6.79 (br s, 6H, Ar ortho); 6.99 (t,

1H, nitrile C6 -I 3Me 2para); 7.07 (d, 1H, nitrile C6H3Me2 meta); 7.10 (d, IH, nitrile

C,H 3Me2 meta); 7.20 (t, 1H, phenyl para); 7.31 (t, 2H, phenyl meta); 7.51 (d, 2H, phenyl
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ortho) ppm. '3C NMR (125 MHz, C6D6): 21.89 (C6H3Me2); 22.11 (C6H3Me2 ); 30.97 (Ti

CMe3); 31.77 (Mo CMe 3); 45 (br, allyl); 62.02 (Ti N-CMe 3); 62.0 (br, Mo N-CMe 3);

115.58; 116.28; 123.5; 124.46; 126.73; 126.89; 127.63; 127.96; 128.03; 129.00; 130.72;

136.70; 137.21; 139.00; 139.27; 139.71; 139.93, 152.67; 160.17; 168.7 (br, Mo-N=C)

ppm. Anal Calcd. for C94H,27N7OMoTi: C, 74.53; H, 8.45; N, 6.47. Found: C, 74.40; H,

8.38; N, 6.41.

Synthesis of 4: 1 (300 mg, 0.48 mmol) and PhCN (50 mg, 0.48 mmol) were combined in

6 mL of Et2O. The resulting purple solution was frozen in the glovebox coldwell. In a

separate vial, 2 (277 mg, 0.48 mmol) and pyridine (74 mg, 2 equivalents) were combined

in 3 mL Et2O. This solution was also cooled to freezing in the glovebox coldwell. The

solutions were removed from the coldwell and the thawing solution of 2-py was added to

thawing 1-PhCN dropwise over 1 min. Upon warming to room temperature, the reaction

mixture had acquired a dark green hue. Volatiles were removed in vacuo.

Recrystallization from Et2O (- 35°C) furnished 4 as dark green microcrystals (422 mg, 2

crops, 63%). 'H NMR (500 MHz, C6D6 ): 1.30 (br s, 27H, Mo CMe3); 1.34 (s, 27H, Ti

CMe3); 2.26 s, 18H, C6H3Me2); 2.32 (s, 18H, C6H3Me2); 4.55 (d, 2H, vinyl C-H); 5.14

(br s, 2H, vinyl C-H); 6.72 (s, 3H, Arpara); 6.76 (s, 3H, Arpara); 6.81 (t, 1H, phenyl

para); 6.95 (br s, 6H Ar ortho); 6.99 (s, 6H, Ar ortho); 7.25 (t, 2H, phenyl meta) ppm. 13C

NMR (125 MHz, C6D6): 21.84 (C6H3Me2); 21.98 (C6H3Me2); 31.08 (CMe3); 31.83 (br,

CMe3); 41.80 (allyl); 63.21 (NCMe 3); 66.24 (NCMe 3); 103.29; 124.58; 126.58; 126.73;

127.23; 127.58; 128.17; 129.65; 136.13; 137.39; 137.78; 137.92; 150.06, 170.68

(Mo-N=C) ppm (one aryl peak missing). Anal Calcd. for C4H,,,8NMoTi: C, 75.53; H,

8.90; N, 8.39. Found: C, 75.17; H, 8.98; N, 8.05.

Synthesis of 5: In a typical preparation, a 100 mL round bottom flask with sidearm was

charged with 1 (400 mg, 0.64 mmol), PhCN (66 mg, 0.64 mmol) and 10 mL of Et20. The

flask was loosely stoppered with a rubber septum and frozen in the coldwell.

Concurrently, a scintillation vial was charged with 2 (370 mg, 0.64 mmol) in 10 mL of

Et2O and cooled to -35 °C. When the 1°PhCN was completely frozen, it was removed

from the coldwell and the chilled solution was added rapidly. Working quickly, the flask
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was resealed with a rubber septum (the original septum will be brittle at this point, so it is

useful to have a fresh septum around) and removed from the glovebox, whereupon CO2

(16 mL, ca. 1.1 equiv.) was added at once via syringe. A subtle change in hue from dark

purple to wine red takes place at this point, although it is often obscured by the frost that

collects on the flask. The reaction mixture is allowed to warm to room temperature at

which point all volatiles are removed in vacuo. The resulting residue was recrystallized

from Et2O (--35 °C). Yield: 257 mg, 5 crops (60%). 'H NMR (300 MHz, C6D6): 1.40 (s,

27H, Ti CMe3); 1.47 (s, 27H, Mo CMe 3); 2.13 (18H, Mo C6H3Me2); 2.26 (18H, Ti

C6H3 Me 2); 6.30 (br s, 6H, Ar ortho); 6.43 (br s, 6H, Ar ortho); 6.68 (s, 3H, Arpara); 6.73

(s, 3H, Ar para); 7.16 (t, 1H, phenyl para); 7.43 (t, 2H, phenyl meta); 7.77 (br s, 2H

phenyl ortho) ppm. 3 C NMR (75 MHz, C6 D6 ): 21.39 (C6 H3Me 2 ); 21.64 (C6 H3Me 2 ); 30.80

(CMe3); 31.72 (br, CMe3); 61.85 (NCMe 3); 64.43 (NCMe3); 125.54; 125.96; 126.55;

128.41; 129.01; 129.17; 133.25; 136.09; 137.03; 137.73; 138.30; 150.0 (v br); 152.90;

170.21 ppm. IR (C6D6): 1635 (C=O) cm-'. Anal Calcd. for C80Hl13N702MoTi: C, 71.25;

H, 8.45; N, 7.27. Found: C, 71.36; H, 8.55; N, 7.25.

Synthesis of 5-13C: Synthesized as in the previous substituting 1
3C02 for CO2. 13C NMR

(125 MHz, C6D6): 170.1 ppm. IR (C6D6): 1564 (C=O) cm -'.

Synthesis of 7: Synthesized analogously to 5, employing 252 mg (0.40 mmol) of 1, 200

mg (0.40 mmol) of 6 (in place of 2), 41 mg (0.40 mmol) of PhCN, and ca. 9 mL (0.40

mmol) of CO2. Recrystallized from pentane (-35 °C). Yield: 202 mg, 2 crops (40%). 'H

NMR (300 MHz, CD): 1.35 (s, 27H, Ti CMe3); 1.47 (s, 27H, Mo CMe 3); 2.14 (18H, Mo

C6H3Me 2 ); 6.26 (br s, 6H, Ar ortho); 6.43; 6.68 (s, 3H, Arpara); 6.72 (s, 6H, Ti phenyl

ortho); 7.00 (t, 3H, Ti phenyl para); 7.15 (t, 6H, Ti phenyl meta); 7.17 (partially obscured

t, 1H, phenyl para); 7.42 (t, 2H, phenyl meta); 7.74 (br s, 2H phenyl ortho) ppm. 13C

NMR (75 MHz, C6D6): 21.39 (C6H3Me2); 30.77 (CMe3); 31.69 (CMe3); 62.10 (NCMe 3);

64.47 (NCMe 3); 124.49; 126.63; 127.36; 128.49; 129.08;129.77; 133.27; 137.06; 138.35;

149.91; 152.83; 170.07 ppm (two aryl peaks missing).
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Attempted trapping of 2-CO2 with nBu2SnH2: A 100 mL round bottom flask with

sidearm was charged with 2 (200 mg, 0.35 mmol), nBu2SnH2 (70 mg, 0.30 mmol), and 17

mL of EtO. The flask was sealed, removed from the glovebox, and cooled to -78 °C in a

dry ice/acetone bath, at which point CO2 (8 mL, 0.36 mmol) was added via syringe. No

immediate color change was observed. The mixture was allowed to stir at -78 °C for 15

minutes, at which point the dry ice/acetone bath was removed. After an additional 15

minutes, the reaction mixture maintained the characteristic green color of 2. Thus, it was

decided to re-cool the flask to -78 C and add additional CO2 (10 mL, 0.45 mmol). The

mixture was then allowed to warm to room temperature over 25 minutes, at which point

volatiles were removed in vacuo. H NMR analysis showed the presence of both starting

materials, along with HN(t-Bu)Ar and small amounts of other anilide-containing

products. Titanium formate H(O)CO-Ti(N[t-BulAr) 3 was not observed.

Attempted trapping of 2.CO2 with trityl radical: A 100 mL round bottom flask with

sidearm was charged with 2 (100 mg, 0.17 mmol), trityl radical (50 mg, 1.2 equiv.), and

15 mL of Et2O. The resulting green solution was cooled to freezing in the glovebox

coldwell. The flask was then rapidly removed from the box and CO2 was added (4 mL,

0.18 mmol). The mixture was allowed to warm to room temperature with stirring. The

green color of 2 persisted. 'H NMR analysis showed HN(t-Bu)Ar as the only diamagnetic

product.

Attempted trapping of 2*CO2 with TEMPO: A 100 mL round bottom flask with

sidearm was charged with 2 (100 mg, 0.17 mmol), TEMPO (50 mg, 1.2 equiv.), and 15

mL of Et2O. The resulting green solution was cooled to freezing in the glovebox

coldwell. The flask was then rapidly removed from the box and CO2 was added (4 mL,

0.18 mmol). The mixture was allowed to warm to room temperature with stirring. The

green color of 2 persisted. 'H NMR analysis indicated that no reaction had occured.

Attempted trapping of 2*CO2 with 2-py: A solution of 2 (200 mg, 0.35 mmol) in 15

mL THF was transferred to a 100 mL round bottom flask with sidearm. To this solution

was added pyridine (ca. 25 mg, 0.33 mmol) resulting in a subtle color change to bluish-`~-- ~~u ~l^'" ~ '~ - b'"~ ""/ ~"""~"'Z n tnV"'V"^
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green. The flask was then sealed, removed from the box, and cooled to liquid nitrogen

temperatures. Carbon dioxide (10 mL, 0.45 mmol) was added via syringe and the mixture

was allowed to warm to room temperature. After 45 minutes, the solution had taken on a

green-brown color. Volatiles were removed in vacuo. 'H NMR analysis of the resulting

residue showed several dimagnetic products including HN(t-Bu)Ar along with unreacted

2.

Attempted trapping of 2*CO2 with 2-Ph 2CO: A solution of 2 (200 mg, 0.35 mmol) in

10 mL Et2O was prepared in a 100 mL round bottom flask with sidearm. This solution

was cooled to freezing in the glovebox cold well. Concurrently, a scintillation vial was

charged with Ph2CO (32 mg, 0.18 mmol) in 8 mL Et2O and cooled to -35 °C. The

contents of this vial were rapidly added to the frozen solution of 2. The flask was

removed from the box and treated with CO2 (4 mL, 0.18 mmol) via syringe. No

immediate color change was observed. The solution was allowed to warm to room

temperature at which point all volatiles were removed in vacuo. H NMR analysis of the

green residue indicated that no reaction had occured.

Reaction of 2 with CIPPh2: A scintillation vial was charged with 2 (100 mg, 0.17 mmol)

in 3 mL of Et2O. A second vial was charged with ClPPh2 (100 mg, 0.09 mmol) in 2 mL

of Et20. Both solutions were cooled to near freezing and then combined. The reaction

mixture was allowed to warm to room temperature. After approximately 40 seconds, the

mixture began to turn brown. Upon reaching room temperature, the reaction mixture was

orange. Volatiles were removed in vacuo. 'H NMR and 31p NMR analysis indicated Cl-

Ti(N[t-Bu]Ar) 3 and Ph2P-PPh 2 were the only products.

Attempted trapping of 2CO 2 with *PPh2: A 100 mL round bottom flask with sidearm

was charged with 2 (200 mg, 0.35 mmol) and 15 mL of Et2O. A scintillation vial was

charged with ClPPh2 (38 mg, 0.17 mmol) and 4 mL Et2O. Both solutions were cooled to

freezing in the glovebox coldwell. The CIPPh2 was briefly thawed and added to still-solid

2. The flask was sealed, removed from the glovebox, and transferred to a -40 °C bath

(MeCN/N 2 ). Carbon dioxide (13C labeled, 4 mL, 0.17 mmol) was added via syringe. The
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mixture was allowed to stir for 30 minutes, whereupon it turned orange. The cooling bath

was removed, and volatiles were removed in vacuo. 'H, 1
3C, and 31P NMR spectra

indicated Cl-Ti(NIt-BulAr) 3 and Ph2P-PPh 2 as major products along with a new product

whose spectral data is given here. 'H NMR (500 MHz, C6D 6): 5 1.28 (s, 27H, CMe3); 2.22

(s, 18H, C6H3Me2); 7.13 (d, 2H, phenyl ortho); 7.23 (t, 1H, phenylpara), 7.83 (t, 2H,

phenyl meta) ppm. '3C NMR (125 MHz, C6D6 ): 179.41 (d, Jcp = 6 Hz). 31p NMR (121

MHz): -0. I (d, JP = 6 Hz) ppm.

Attempted trapping of 2-CO2 with Na/Hg: A 100 mL round bottom flask with sidearm

was charged with 2 (100 mg, 0.17 mmol), Na/Hg amalgam (8.5 mg Na, 0.38 mmol), and

15 mL of Et2O. The resulting green solution was cooled to freezing in the glovebox

coldwell. The flask was then rapidly removed from the box and CO2 was added (4 mL,

0.18 mmol). The mixture was allowed to warm to room temperature with stirring. The

green color of 2 persisted. 'H NMR analysis indicated that no reaction had occured.

Attempted trapping of 2.CO2 with Cp2Co: A 100 mL round bottom flask with sidearm

was charged with 2 (100 mg, 0.17 mmol), Cp2Co (33 mg, 0.17 mmol), and 15 mL of

THF. The resulting greenish-brown solution was cooled to freezing in the glovebox

coldwell. The flask was then rapidly removed from the box and CO2 was added (4 mL,

0.18 mmol). The mixture was allowed to warm to room temperature with stirring. The

green color of 2 persisted. H NMR analysis indicated that no reaction had occured.

X-ray structure determination of 7: The X-ray crystallographic data collection was

carried out on a Siemens Platform three circle diffractometer mounted with a CCD

detector and outfitted with a low temperature, nitrogen-stream aperture. The structure

was solved using direct methods, in conjunction with standard difference Fourier

techniques and refined by full-matrix least-squares procedures. A summary of the

crystallographic data is shown in Table 1. An empirical absorption correction (SADABS)

was applied to the diffraction data. All non-hydrogen atoms were refined anisotropically.

Unless otherwise specified, all hydrogen atoms were treated as idealized contributions

and refined isotropically. All software used for diffraction data processing and crystal-
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structure solution and refinement are contained in the SAINT+ (v6.45) and SHELXTL

(v6.14) program suites, respectively (G. Sheldrick, Bruker AXS, Madison, WI).

formula

fw

space group

a, A

b, A

c, A

cc, deg

1, deg

y, deg

V, A3

z
D, g/cm3

[t (Mo K,), mm -'

temp, K

F(000)

GoF(F 2)

R(F), %

wR(F), %

7

C,9H101MoN70Ti

1324.51

PT

11.4158(5)

18.4340(8)

20.0106(9)

112.2270(10)

94.7310(10)

100.7660(10)

3774.8(3)

2

1.165

0.320

193

1408

1.040

0.0492

0.1258

Table 2 Crystallographic parameters for 7.
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Appendix

Synthesis of a Ti(III) paddlewheel
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A.1 Insertion of CO2 into the Ti-N(t-Bu)Ar bond

Chapter 4 describes our efforts to coax one-electron reactivity from CO2 using Ti(Njt-

Bu]Ar)3 (1). In the course of conducting those experiments, we observed the following

example of Ti(Nit-BulAr) 3-promoted two-electron reactivity. While this reaction

pathway is considerably more common, it provided a product of some interest.

parameter

Ti-N(3)

Ti-0(2)

Ti'-O(1 )

C(1)-0(1)

C(1)-0(2)

Ti-Ti'

A

1.920(3)

2.022(3)

2.041(2)

1.274(4)

1.275(4)

3.5154(10)

Figure 1 Solid-state structure of 4 (30% ellipsoids).

When a solution of 1 in Et2O is cooled to -40 °C (MeCN/N 2), treated with 4 eq. of

CO2, and allowed to stir for 2.5 hours, a lime green precipitate (2) develops. This

material, 2, can be collected by filtration in ca. 80% yield. The 'H NMR spectrum of this

material suggests that it is diamagnetic and contains two different anilide environments.

Unfortunately, we were unable to grow crystals of this compound of suitable quality for

an X-ray diffraction study. Substitution of Ti(NIt-BulPh)3 (3) for 1 allowed for the

synthesis of the analogous compound (4), however, which proved to be more amenable to

crystallization.

The structure of 4 is shown in Figure 1. As can be clearly seen, 4 is formed through

CO2 insertion into two out of the three Ti amide bonds followed by dimerization,
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resulting in a paddlewheel structure. While CO2 insertion into early metal-amide bonds is

a relatively common process,' it has not been thus far encountered with the sterically

encumbering t-butyl anilide ligands.2 The long Ti-Ti distance of 3.5154(10) A appears to

preclude a metal-metal bond,3 rendering the observed diamagnetism somewhat puzzling.

A.2 Experimental

General Considerations: Unless stated otherwise, all operations were performed in a

Vacuum Atmospheres drybox under an atmosphere of purified nitrogen. Anhydrous

diethyl ether was purchased from Mallinckrodt; pentane and tetrahydrofuran (THF)

were purchased from EM Science. Diethyl ether and pentane were dried and

deoxygenatedl by the method of Grubbs.4 THF was distilled under nitrogen from purple

sodium benzophenone ketyl. Distilled solvents were transferred under vacuum into

vacuum-tight glass vessels before being pumped into a Vacuum Atmospheres drybox.

C6D6 was purchased from Cambridge Isotopes and were degassed and dried over 4 A

sieves. The 4 A sieves, alumina, and Celite were dried in vacuo overnight at a

temperature just above 200 °C. Compounds 1 and 3 were synthesized by the literature

method.5 All other compounds were used as received. 'H NMR spectra were recorded on

a Varian INCIVA-501 spectrometer at room temperature, unless indicated otherwise.

Chemical shifts are reported with respect to internal solvent: 7.16 ppm. CHN analyses

were performed by H. Kolbe Mikroanalytisches Laboratorium (Miilheim, Germany).

Synthesis of 2: In the glovebox, a 250 mL round-bottom flask with sidearm was charged

with 1 (696 mg, 1.21 mmol) and 30 mL Et20. The flask was briefly evacuated through

the sidearm, and then sealed and removed from the glovebox. Upon cooling to -40 °C

(N2/MeCN), CO2 (100 mL, 4.46 mmol, 3.7 eq) was added via syringe. The emerald green

solution was a;-llowed to stir for 2.5 h, during which time the temperature of the cooling

bath had risen to 0 "C, and a lime green precipitate had formed. The flask was warmed to

ambient temperature and the volatiles removed in vacuo. The resulting lime green

powder was slurried in 10 mL of pentane and filtered, and the solid was further washed

with 5 mL pentane and 5 mL Et20. The solid was dried to yield 640 mg (80%) of the

desired product. 'H NMR (500 MHz, C6D6): 1.48 (s, 9H, amide CMe 3); ca. 1.6 (br sh,
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18H, carboxamide CMe3 ); ca. 2.3 (br s, 12H, carboxamide C6H3Me2); 2.46 (s, 6H, amide

C6H3Me2 ); cat;. 6.4 (v br, 4H, carboxamide ortho); 6.75 (s, 2H, amide ortho); 6.79 (s, 1H,

amide para):; ca. 7.6 (v br, 2H, carboxamide para) ppm (assignments are tentative). Anal.

Calcd. for C,6 H10 8N6 0 8 Ti2: C, 68.66; H, 8.19; N, 6.32. Found: C, 68.19; H, 7.93; N, 6.29.

Synthesis of 4: Compound 4 was synthesized analogously to 2, using 3 in place of 1.

Crystals were grown from a THF/Et20O mixture.

X-ray structure determination of 4: The X-ray crystallographic data collection was

carried out on a Siemens Platform three circle diffractometer mounted with a CCD

detector and outfitted with a low temperature, nitrogen-stream aperture. The structure

was solved using direct methods, in conjunction with standard difference Fourier

techniques and refined by full-matrix least-squares procedures. A summary of the

crystallographic data is shown in Table 1. An empirical absorption correction (SADABS)

was applied to the diffraction data. All non-hydrogen atoms were refined anisotropically.

Unless otherwise specified, all hydrogen atoms were treated as idealized contributions

and refined isotropically. All software used for diffraction data processing and crystal-

structure solution and refinement are contained in the SAINT+ (v6.45) and SHELXTL

(v6. 14) program suites, respectively (G. Sheldrick, Bruker AXS, Madison, WI).
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formula

fw

space group

a, A

b, A

c, A

c, deg

1, deg

y, deg

V, A 3

z
D, g/cm 3

[t (Mo K,), mm -'

temp, K

F(000)

GoF(F 2)

R(F), %

wR(F), %

4

C 68H 93N 6O 9Ti 2

1234.43

P1

11.6091(16)

12.8853(18)

24.358(3)

104.5094)

92.288(4)

101.522(5)

3432.8(8)

2

1.194

0.290

193

1318

1.002

0.0574

0.1306

Table 1 Crystallographic parameters for 4.

'Chisholm, M. H.; Extine, M. W. J. Am. Chem. Soc. 99, 792 (1977).
2 For an example of CO2 insertion into a less hindered amide in the presence of t-butyl
anilide, see: Cherry, J. P. F., Ph. D. Thesis; Massachusetts Institute of Technology:
Cambridge, Massachusetts, 26 (1997).
3 Cotton, F. A.; Walton, R.A. Multiple bonds between metal atoms; Oxford University
Press: New York, 1993.
4 Pangborn, A.B.; Giardello, M.A.; Grubbs, R.H.; Rosen, R.K.; Timmers, F.J.
Organometallics 1996, 15, 1518.
5 Peters, J. C.; Johnson, A. R.; Odom, A. L.; Wanandi, P. W.; Davis, W. M.; Cummins,
C. C. J. Am. Chem. Soc. 1996, 118, 10175.
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