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Abstract
This thesis develops powerful new methods for shaping femtosecond laser pulses in
two dimensions and explores their application to coherent control of propagating lat-
tice excitations and degenerate four-wave mixing spectroscopy. Pulse shaping in two
dimensions is achieved by manipulating the spectral components of ultrashort laser
pulses within many horizontal slices of the pulse. Each horizontal slice is indepen-
dently shaped by means of a two-dimensional liquid crystal spatial light modulator,
and taken together the shaped regions form sophisticated optical waveforms with
time-dependent spatial profiles.

Automated optical control over coherent lattice responses that are both time-
and position-dependent across macroscopic length scales is demonstrated. Two-
dimensional (2D) femtosecond pulse shaping was used to generate excitation light
fields that were directed toward distinct regions of crystalline samples, producing
terahertz-frequency lattice vibrational waves that emanated outward from their mul-
tiple origins at lightlike speeds. Interferences among the waves resulted in fully speci-
fied far-field responses, including tilted, focusing, or amplified wavefronts. Generation
and coherent amplification of terahertz travelling waves and terahertz phased-array
generation are also demonstrated.

A novel approach to coherent nonlinear optical spectroscopy based on 2D fem-
tosecond pulse shaping is introduced. Multiple phase-stable output beams are cre-
ated and overlapped at the sample in a phase-matched boxcars geometry via 2D
femtoseconcl pulse shaping. The pulse timing, shape, phase, and spectral content
within all beams may be specified, yielding an unprecedented level of control over the
interacting fields in nonlinear spectroscopic experiments. Heterodyne detection and
phase cycling of the nonlinear signal is easily implemented due to the excellent phase
stability between each output beam. This approach combines the waveform genera-
tion capabilities of magnetic resonance spectroscopy with the wavevector specification
and phase-matching of nonlinear optical spectroscopy, yielding the signal selectivity
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and control capabilities of both. Results on three prototype systems will be used to
illustrate the exciting possibilities with this method.

Thesis Supervisor: Keith A. Nelson
Title: Professor
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Chapter 1

Introduction

Ultrashort laser pulses are coherent bursts of light with durations on the order of

femtoseconds (10-15 seconds), making them the fastest tool created by mankind for

monitoring and controlling matter. During the time it takes an ultrashort laser pulse

to pass a given point within a sample, the nuclei of the atoms within the sample are

virtually motionless. This extreme brevity allows for unique ability to both initiate

and observe fleeting chemical and physical events. Measurements performed with

ultrashort laser pulses are therefore analogous to the high-speed flash photographs of

Harold Edgerton [1] and others that seem to stop time. One well-known photograph

recorded a balloon caught in the act of exploding just after a bullet had passed

through it. A chemical experiment analogous to the exploding balloon would be the

measurement of a molecule as it is falling apart, such as the photodissociation of the

gas-phase molecule ICN by Dantus et al. [2]. In this experiment, an ultraviolet laser

pulse played the role of the bullet, and variably delayed probe pulses were used to

measure the buildup of the CN fragment as a function of time. These femtochemistry

experiments were recognized with a Nobel prize in chemistry in 1999 and continue to

provide microscopic detail to the mechanisms underlying reactive photochemistry.

Beyond measurements of chemical processes, in which variably delayed probe

pulses are used to quantify the amount of a given substance at different points in time

following an excitation pulse, a wide variety of powerful multiple-pulse spectroscopic

methods have emerged that can reveal detailed information about systems being stud-
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ied. This wealth of available information can help to elucidate static properties such

as molecular structure and bonding and it can help to study dynamic processes such

as solvation and energy transfer. An exciting recent development within this field is

two-dimensional ultrafast infrared (2D IR) spectroscopy [3], a technique that is the

vibrational analogue of two-dimensional nuclear magnetic resonance (2D NMR) spec-

troscopy [4]. The motivation behind 2D IR spectroscopy is in large part fuelled by

the phenomenal success of 2D NMR, which, among its many achievements, has revo-

lutionized the determination of the structures of complex biological molecules. Unlike

2D NMR, which in most cases has a time resolution on the order of milliseconds and

therefore probes a variety of nuclear configurations for a sample of interest, 2D ultra-

fast infrared spectroscopy can determine transient structural information with a time

resolution on the order of picoseconds, yielding insights into, for instance, the nature

of chemical solvation environments [3] and mechanisms underlying protein folding [5].

In parallel with ultrafast spectroscopic techniques aimed at studying systems and

how they interact with their surroundings, scientists have long sought to use laser

pulses to control rotational, vibrational, and electronic responses in matter. Unlike

the simple ultraviolet pulse used to initiate the dissociation of ICN, highly structured,

shaped laser pulses may be used to achieve various control objectives, including gen-

erating new states of matter and controlling chemical reactions. An early example

of such experiments used a series of approximately 20 evenly-spaced pulses to cre-

ate large vibrational amplitudes in the molecular crystal ac-perylene [6], much in the

way that a child is repetitively pushed on a swing. Each pulse exerted a sudden

"impulse" force on low-frequency Raman-active vibrational modes of the crystal [via

impulsive stimulated Raman scattering, (ISRS)], setting the crystal into oscillatory

motion. The delay between successive pulses was then varied to coincide with the

oscillation period of a particular vibrational mode of the crystal, such that a large

vibrational amplitude was generated. Unlike excitation with a single pulse, where

multiple vibrational modes are excited, use of a shaped excitation pulse allowed for

selective excitation of just one vibrational mode of the crystal. Furthermore, a single

intense excitation pulse could not be used to generate such large amplitudes since
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its peak intensity would be so large that the crystal would become damaged or even

permanently ablated.

More recently, many ground-breaking experiments have extended control schemes

based on shaped laser pulses to a wide variety of systems, including: preparation

of highly structured electron wavepackets in Rydberg states of atoms [7]; control of

resonant and nonresonant multiphoton excitation [8, 9]; ultrafast manipulation of

electron spin coherence [10]; selective dissociation and rearrangement of molecules

[11, 12, 13]; control over energy-transfer pathways in light harvesting bacteria [14];

and chemically-selective microscopy [15]. Additionally, a large body of theoretical

work over the past 20 years has focused on controlling chemical reactions with shaped

laser pulses, as reviewed recently by Rice et al. [16] and Shapiro et al. [17]. A number

of these theoretical schemes have shown exciting possibilities for moving beyond the

control of selective dissociation of a single molecule to more complicated tasks such as

control of bimolecular reactions, or for laser distillation in which chemical enantiomers

may be purified or interconverted using shaped laser pulses.

A long-standing control objective of the Nelson group has been to generate and

observe very large amplitude vibrational displacements in ferroelectric crystals in or-

der to characterize anharmonic (i.e. non-parabolic) contributions to their potential

energy surface. The "holy grail" of such experiments would be to initiate sufficiently

large ionic displacements that the crystals being studied would undergo collective

structural change. This structural rearrangement could then be observed using var-

ious time-resolved spectroscopic methods, yielding valuable information underlying

the mechanisms involved in the rearrangement. In ferroelectrics [18], which are ionic

crystals possessing a permanent electric dipole within the unit cell, the sought af-

ter anharmonic components of the potential energy surface are known to strongly

influence a number of properties of these materials that are of great technological

importance. For instance, ferroelectric materials are widely used as piezoelectric

transducers and actuators, insulators in high dielectric constant capacitors, ferroelec-

tric random access memory (FRAM) in computers, and they are promising candidates

for large-scale (many megabytes or larger) nonvolatile random access memory devices
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widely anticipated in the computer industry. Although anharmonic potential energy

contributions have been modelled theoretically [19], there has only been one report in

the literature which has measured properties related to the nonlinear lattice potential

in the frequency range of the vibrational modes of the crystal associated with its

phase transition.

Unfortunately, it is not a simple task to generate the sought after large amplitude

vibrational displacements in ferroelectric crystals. Since intense coherent sources of

radiation are not available at the vibrational frequencies of interest, which occur in

the 0.1-10 THz (1012 Hz) or far-infrared region of the spectrum, these vibrational

modes are instead excited via ISRS with short laser pulses, as in the case of the

vibrational modes of a-perylene. Unlike the case of the ac-perylene, the vibrational

modes of interest in ferroelectric crystals propagate, much like waves on a pond, such

that they rapidly depart from their origin. Therefore, in order for multiple-pulse

excitation schemes to be extended to generate large-amplitude ionic displacements

in ferroelectric crystals, the excitation pulses must be spatially distributed such that

they can "follow" the excitation they are trying to amplify.

With the motivation of creating large-amplitude ionic displacements in ferroelec-

tric crystals, we have extended the methodology of femtosecond pulse shaping in order

to produce highly structured optical waveforms with time-dependent spatial profiles.

We refer to these methods as two-dimensional femtosecond pulse shaping. The de-

velopment of these methods comprised a large amount of the work in this thesis and

will be described in chapter 2. We begin with a review of the relevant background in

one-dimensional pulse shaping, including a careful examination of commonly observed

distortions in shaped pulses that have not treated comprehensively in the literature

and that require detailed understanding in a number of applications. Next, we in-

troduce 2D pulse shaping methods and their relationship to well known methods for

shaping the transverse spatial profile of a laser beam. The final section of chapter 2

presents a powerful new diffraction-based approach to femtosecond pulse shaping that

we will return to in the final chapter on coherent nonlinear optical spectroscopy.

Chapter 3 describes experiments in which the pulse shaping and beam shaping
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methods of chapter 2 are applied to controlling propagating lattice excitations. These

propagating lattice excitations are admixtures of lattice-vibrational and electromag-

netic modes called phonon-polaritons. Simply put, they are part vibration and part

light. We describe experiments in which two-dimensional pulse shaping methods

are applied to the generation of large amplitude phonon-polaritons. Additional ex-

periments are reported which make use of the electromagnetic component of phonon-

polaritons to create a phased array source of THz radiation. Finally, a novel approach

is described for the generation of arbitrarily shaped THz waveforms based on manip-

ulation of the transverse spatial profile of a single excitation pulse, with possible

applications in far-infrared spectroscopy and THz signal processing.

Chapter 4 presents a new approach to 2D optical spectroscopy [20] based on the

pulse shaping methods described in chapter 2. Analogous to 2D IR spectroscopy,

described above, 2D optical spectroscopy probes electronic resonances and should

therefore reveal information regarding the coupling of chromophores, such as relative

dipole orientations and energy transfer processes, on a subpicosecond timescale. Due

in part to technical difficulties, however, coherent nonlinear optical spectroscopy has

found less success than its counterpart in the infrared region of the spectrum. The

experimental approach we present provides both a drastic simplification of the meth-

ods used for performing coherent nonlinear optical spectroscopy, overcoming many of

the technical challenges in conventional approaches, and a tremendous expansion of

the capabilities afforded by these methods. First, we will review the basic theoretical

background in coherent nonlinear optical spectroscopy, using the simple approach of

diagrammatic perturbation theory [21]. Next we will describe the experimental appa-

ratus and elaborate its capabilities. Finally, results on three prototype systems will

be used to illustrate the exciting possibilities with this powerful new method.
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Chapter 2

Two-Dimensional Femtosecond

Pulse Shaping

2.1 Introduction to Pulse Shaping

Efforts to control the temporal structure of individual laser pulses are almost as old

as the pulsed laser itself. Early "pulse shaping techniques" were directed primarily

towards generating shorter and shorter pulses rather than the production of sophisti-

cated waveforms. The sizable spectral bandwidth of picosecond lasers made possible

frequency domain pulse shaping techniques based on phase or amplitude modulation

of the spectral components of the laser pulse [22] as well as acousto-optical or electro-

optical time-domain methods [23]. With the advent of femtosecond lasers having

even larger bandwidths (typically 6-100 nm), pulse shaping rapidly developed into its

own field [24]. Led by the work of Weiner, Heritage, and co-workers [25], researchers

have used various devices to shape femtosecond pulses, such as liquid crystal spatial

light modulators [24], acousto-optic modulators [26], and deformable mirrors [27].

Other approaches employ space-to-time conversion [28], volume holography [29], or

acousto-optic programmable dispersive filtering [30].

Femtosecond pulse shaping methods have been applied to diverse problems in,

for example, spectroscopy [31], microscopy [15], laser control of matter [16, 17], laser

pulse compression [32], telecommunications [33], and optical metrology [34]. A typical
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experimental setup for pulse shaping apparatus is shown in fig. 2-1. A short (50 fs)

laser pulse incident from the right is spectrally dispersed by a grating-lens pair. At

the spectral plane, a computer-controlled liquid-crystal (LC) spatial light modulator

(SLM) modulates the phase and/or amplitude of the dispersed laser spectrum. The

modulated spectral components are then recombined by another grating-lens pair,

producing an output waveform. The output waveform in this case is a series of 10

unevenly spaced pulses spread out over 6 ps. Note that the waveform shown in

fig. 2-1 was created with a related diffraction-based apparatus, described in detail in

section 2.8.

f

grating

f

lens

f

mask

f

lens grating

Figure 2-1: Schematic illustration of experimental apparatus used for temporal-only
pulse shaping. The input and output pulses shown here are actual measurements
taken with a related diffraction-based pulse shaping apparatus described in section
2.8.

Most programmable femtosecond pulse shaping techniques reported to date only

allow for control of the temporal profile of the output waveform. This can be thought
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of as control over one dimension, the direction of propagation. We will refer to this

type of temporal-only pulse shaping as one-dimensional. Two and three-dimensional

pulse shaping techniques generate spatially and temporally shaped waveforms with

different temporal profiles along one or two spatial coordinates perpendicular to the

direction of propagation. Although some published experiments have demonstrated

multidimensional spatiotemporal pulse shaping [35], none until recently have been

able to generate high-fidelity multi-dimensionally shaped pulses in an automated

fashion. In particular Nuss et al. [36] and Hill et al. [29] generated high-fidelity

two and three-dimensional pulse shapes, respectively, using holographic techniques,

but the potential applications of these techniques are restricted by their dependence

on permanently recorded holograms. Koehl et al. [37] demonstrated programmable

two-dimensional pulse shaping with an electrically addressed two-dimensional LC

SLM. While the LC SLM was reconfigurable, the generation of arbitrary waveforms

was problematic due to large interpixel gaps and an incomplete range of phase mod-

ulation values.

Much of the work in this thesis was dedicated to the development of methods for

two-dimensional shaping of femtosecond laser pulses [38, 39, 40, 41], made possible

by a newly developed optically addressed LC SLM. This chapter will review these

two-dimensional femtosecond pulse shaping methods, including the necessary back-

ground on one-dimensional pulse shaping. Section 2.2 will describe the principles of

operation, the performance, and procedures for the calibration of the LC SLM -the

active element at the heart of the experiments described in this thesis. Section 2.3

will provide a brief description of methods used in this thesis to characterize two-

dimensionally shaped laser pulses. In section 2.4, one-dimensional pulse shaping is

analyzed, including a detailed study of the effects of nonlinear spectral dispersion and

imperfections of LC SLMs on shaped pulses. Many researchers have noted the pres-

ence of replica pulses and other pulse distortions resulting from pixelation (or smooth

pixel boundaries) of the LC SLM, but these effects have not yet been treated compre-

hensively. Coherent nonlinear optical spectroscopic experiments to be described in

chapter 4 depend crucially on a detailed understanding of these waveform distortions
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and methods for suppressing them.

Two-dimensional pulse shaping is introduced in section 2.5 with a technique we

term real-space shaping. Real-space shaping essentially uses a two-dimensional LC

SLM to independently shape many horizontal slices of the laser beam, which when

taken together, form a coherent two-dimensional waveform. Waveforms shaped in

this way were used to steer, focus, and amplify lattice excitations travelling at light-

like speeds in ionic crystals, the topic of chapter 3. Section 2.6 briefly describes

well-known methods for shaping the transverse spatial profile of a beam, often called

Fourier beam shaping. In section 2.7, we return to two-dimensional pulse shaping with

a technique we have termed wavevector shaping that is the combination of temporal-

only pulse shaping and Fourier beam shaping methods. Wavevector shaping greatly

expands the possibilities of two-dimensional pulse shaping, as it allows for the co-

herent redistribution of the laser pulse along the temporal and a single transverse

spatial dimension. Section 2.8 introduces a new diffraction-based phase and am-

plitude pulse shaping method based on wavevector shaping. This diffraction-based

pulse shaping approach has many beneficial characteristics, including the suppression

of certain types of replica pulses, and the capability of generating multiple phase- and

amplitude-shaped pulses outputs that may be used in applications such as coherent

four-wave mixing spectroscopy, the topic of chapter 4.

Mathematical conventions and commonly encountered relations for Fourier trans-

formation between frequency and time domains, and the less intuitive position and

wavevector domains, are described in the appendix 1 (section 2.9). A list of commonly-

used pulse shapes and how to make them is also included there.

2.2 Liquid Crystal Spatial Light Modulator

2.2.1 Jones-Matrix Analysis

Liquid-crystal (LC) spatial light modulators (SLMs) are the active elements used in

most pulse shaping apparatuses to control the phase, or when used in combination
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with a polarizer, the phase and amplitude of a light field. LC SLMs do this by

imparting a variable birefringence AO(V), which can be controlled for each pixel.

When a voltage V is applied to the LC SLM, the LC molecules align themselves with

the applied field to a degree that depends on the strength of the applied field. The

degree of alignment influences the index of refraction along the so-called c-axis but

does not influence the index of refraction along the orthogonal axis. Therefore, an

input light field polarized along the direction of the c-axis [see fig. 2-2(a)l is shifted

by A

(a)
Ein _ Eout

/L \

Figure 2-2: (a) Horizontally-polarized input light field incident upon a LC SLM with
c-axis in the horizontal plane. (b) Horizontally-polarized input light field incident
upon two LC SLMs in series followed by a polarizer.

All of the experiments reported here made use of the single-mask arrangement

shown in fig. 2-2 (a).The commonly used dual-mask LC SLM arrangement consists

of two (1D) LC SLMs in series followed by a polarizer, as illustrated in fig. 2-2(b).

The two LC layers have orthogonal c-axes and the input light field is polarized at

45-degrees relative to either c-axis. Since we will later refer to the ability of the dual-

mask LC SLM to independently control the phase and amplitude of the output light

field [42, 31], we will take a moment now to mathematically analyze this capability

using a simple Jones matrix formalism. The horizontally-polarized input light field

is given by the vector E:, and the modulator, polarizer, and rotation matrices are

given by A/(A), P,, and R(O), respectively.
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Ei,1 C) M(^) = O

1

I 0( cos6 sin 0
P: = R(6) = (2.1)

0k 0~ -sin 0 cos 0

The induced birefringence M(zA) in eq. 2.1 applied by the LC SLM is expressed

in its own coordinate system, using the c-axis and the perpendicular axis within

the plane of the LC SLM. In the x-y basis (laboratory horizontal and vertical), the

modulation applied by the LC SLM is R(-)M(O1)R(6), where 0 is the angle between

the laboratory x-axis (horizontal) and the LC c-axis. The output light field Eot

corresponding to the dual-mask arrangement shown in fig. 2-2(b) is therefore given

by

Eout = PxR(7r/4)M(A 2)R(-r/-74)R(-r/4)M(AO1I)R(r/4)E~i. (2.2)

This can be simplified to give the output field

Eut,, oc P exp[i(l + -2)/2] (cos[(Ol - 2)/2] (2.3)
i sin[(Ol- 2)/2]

In the case when the polarizer is used as shown in fig. 2-2(b), the horizontally-

polarized output field has an amplitude determined by the difference of the birefrin-

gences of the two masks AO1 - A¢ 2 while the phase is determined by the sum of the

birefringences AO1 + Aq 2. Thus, the dual-mask arrangement allows for independent

phase and amplitude control over the light field that is transmitted through the po-

larizer [42, 31]. In the case when the polarizer is removed from the apparatus, the

result is an arbitrary elliptical state of polarization. This arrangement was originally

proposed for polarization pulse shaping by Wefers in [42] in order to generate pulse

shapes whose polarization state is varied as a function of time. The method has
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been further developed, especially by Brixner and coworkers [43, 44, 45, 46, 47], and

applied to a number of coherent-control experiments in which vectorial properties of

light were exploited, for example [48, 49, 50, 51].

2.2.2 Hamamatsu 2D LC SLM

The 2D LC SLM used in these experiments, Hamamatsu model SLMM X7550-800,

is optically addressed from the back by light emitted from a 660 nm, 30 mW laser

diode (see fig. 2-3). A conventional transmission mode 2D LC mask is used to at-

tenuate the light from the laser diode in a specified, spatially varying manner. The

light transmitted by the LC mask is then incident upon a photoconductive semicon-

ductor layer that converts the incident light to a voltage such that a variable voltage

may be applied to different regions of the LC SLM. The LC SLM itself contains no

pixels but consists instead of a uniform nematic LC layer that is driven by a voltage

corresponding to the incident laser diode light intensity. Due to the pixelation of the

active LC matrix, there are effectively 480 x 480 regions (which we will still refer to

as pixels for the sake of convenience) on the nematic layer, each 40 x 40 microns in

size. A 1000 Hz, 2.5 or 3 VAC square wave (5 or 6 V peak-peak) voltage was applied

to the LC SLM in all the measurements described here. The response of the LC SLM

is strongly dependent on the biasing voltage and frequency.

imaging

Figure 2-3: The pulse shaping arrangement is similar to conventional 4f spectral
filtering arrangements, except that a two-dimensional LC SLM in a reflection geom-
etry is employed. The LC SLM is optically addressed by imaging a conventional
transmissive liquid crystal array onto a photoconductive layer.

The extent of pixelation and interpixel region size of an LC SLM are important
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characteristics influencing the quality and variety of pulse shapes obtainable with it.

Wefers [31] showed that a pixelated LC SLM creates unwanted spatial and temporal

replica pulses due to interpixel gaps. For one-dimensional LC SLMs, these effects

are usually tolerably small since the fill factor is typically over 95%. In the case

of electrically addressed two-dimensional SLMs, the fill factor is only on the order

of 60% due to conducting structures on the mask necessary to address the different

pixels. For example, Koehl et al. [37] found that the large interpixel gaps (as well as

a limited phase modulation range) in their electrically addressed transmission-mode

2D LC SLM not only reduced the overall transmission but also severely restricted

the quality of the waveforms produced. Recently, electrically-addressed pixelated

reflection-mode 2D LC SLMs have become available with a fill factor of 85% or better,

(for instance, HOLOEYE Photonics AG, model LC 2002). Although there have been

no reports using this new generation of pixelated reflection-mode 2D LC SLMs, they

are promising devices for pulse shaping applications.

One way to reduce the effects of pixel gaps is to use an optically addressed LC SLM

with an imaging arrangement designed to smooth out the interpixel regions. This

technique was demonstrated by Dorrer et al. in the case of a one-dimensional pulse

shaper used to correct for higher order phase distortions [52]. The cutoff frequency of

the modulation transfer function of their LC SLM was relatively low, allowing for very

smooth transitions between neighboring "regions" of the LC SLM (much smoother

than for the Hamamatsu LC SLM).

The present LC SLM is optically addressed in such a way as to reduce pixelation

effects while preserving the ability to produce highly sophisticated waveforms. To

measure the extent of pixelation of the current LC SLM the birefringence response of

the SLM was imaged to a CCD. The incident light was polarized at 45 degrees with

respect to the LC SLM edges and the CCD was equipped with a -45 deg polarizer.

By this means, the setup converted any change of the polarization into a modulation

of the intensity. The transmission liquid crystal array (see fig. 2-3) is controlled by

the VGA output of a computer, which operates in a grey mode with 8-bit resolution.

Each of the 256 greyscale values may then be addressed by creating the appropriate
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image with the computer to be sent to the LC SLM.

250 um
Figure 2-4: Intensity-modulation images of the Hamamatsu LC SLMI, indicating pix-
elation and pixel smoothing when a checkerboard phase pattern consisting of 3x3
pixel blocks was applied to the Hamamatsu LC SLM. Images are shown for greyscale
values of 50, 75, 100, 125, 150, 175, 200, 225, and 250, which covers a phase range

slightly in excess of 27r radians.

Figure 2-4 shows a series of 9 images illustrating the extent of pixelation and pixel

smoothing in the Hamamatsu LC SLM. The phase pattern applied was in the shape

of a checkerboard, where each square of the checkerboard consisted of a 3x3 block

of LC SLM pixels. Half of the blocks were scanned through a range of greyscale

values (0-255) while the other half of the blocks were set to a greyscale value of 0. All

pixel blocks begin at the same intensity, after which the pixel blocks that are scanned

first grow darker (100) then brighter (200) and then darker once more (250). This

behavior is expected as the polarization of the light reflected from the scanned pixel

blocks rotates to be first crossed relative to the polarizer (100), then aligned with the

polarizer (200) and then crossed again (250). [See fig. 2-7(a) for a plot illustrating
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the response of a single region of the LC SLM.] The 3x3 pixel blocks are clearly

visible in fig. 2-4, although the pixel blocks are not sharply defined. Instead, there

are continuous transitions between adjacent pixel blocks, which smooth out the gaps

that would otherwise occur between pixels. This compromise between the smoothing

of gaps and the preservation of pixel resolution results in a device that overcomes the

otherwise crippling limitations of transmission-based 2D LC SLMs.

Generally, the effect of pixel smoothing is that the phase at any given pixel is

dependent upon those surrounding it. As such, phase patterns that involve a single

pixel behaving differently from its neighbors deviates from the expected values. This

can be seen in fig. 2-5, where the phase response of the LC SLM was determined for

pixel blocks of different sizes against a zero background to illustrate the effect of pixel

smoothing on the phase response. The 1x pixel region (blue) has a much smaller

phase response than that of the 3 x 3 and 6 x 6 pixel blocks. This smoothing effect can

cause pulse distortions, as will be discussed further in section 2.4. Differences between

the phase responses of the 3x3 and 6x6 pixel blocks are within the uncertainty of

these measurements. More careful measurements are performed for calibration of the

SLM, as will be described in the next section.

(N

Cn

a)
Cn
co

a

80 160 240
grayscale

Figure 2-5: Phase response of the LC SLM as the applied greyscale value is scanned
from 80-240, for regions of 1xl pixel (blue curve), 3x3 pixels (green curve), and 6x6
pixels (red curve). The response of the 1 x 1 pixel region is smaller than that of the
3 x 3 and 6 x 6 pixel regions due to pixel smoothing.
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2.2.3 Calibration of the LC SLM

Up to 256 phase retardation levels, or greyscale values, are available at each pixel of

the liquid crystal mask, although only about 120 are used in practice as will be seen

below. The phase modulation of the LC SLM as a function of the greyscale value was

calibrated with intensity modulation via birefringence as well as interferometry using

pulsed 800 nm light. While early experiments made use of the birefringence data,

recent experiments have shown that the interferometric calibration is more accurate.

b.s.7
polarizer

(a) 2D SLM

detector

b.L?~~"

phase grating

c.l.

(b)
2D SLM

Figure 2-6: (a) Intensity calibration. The SLM rotated the polarization of the input
light such that the reflected light, after passing through the polarizer a second time,
is modulated in intensity. (b) Interferometric calibration. The light was split into
mainly two diffraction orders and reflected by the SLM. One half of the LC SLM was
scanned through the full range of phase modulation values possible while the other
half of the SLM applied no phase modulation. The detector measured the interference
of the two diffraction orders after they were recombined.

The setup for intensity modulation via birefringence is illustrated in fig. 2-6 (a).

Light polarized at 45 degrees with respect to the liquid crystals was incident upon

the LC SLM, reflected, and then separated out with a beam splitter. This converted

a rotation of the polarization to a modulation in the intensity of the beam. The
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intensity of the modulated light was recorded for the range of possible LC mask

greyscale values and related to the phase shift [fig. 2-7 (a) and (b)].

The setup for interferometric calibration of the LC SLM is depicted in fig. 2-

6 (b). Light with polarization parallel to the liquid crystals was split mainly into ±1

orders by a transmissive binary phase mask (transmissive diffraction grating) and then

focused onto the LC SLM. The reflected light retraced its path until it was picked off

by a beam splitter and measured by a photodiode. The phase of the light in one of the

arms of the interferometer was modulated by scanning one half of the SLM through

the full range of greyscale values while not adjusting the other half. The interference

of the combined beams was then recorded as a function of greyscale, generating a

plot of phase modulation vs. liquid crystal greyscale value [fig. 2-7 (c) and (d)]. The

phase-mask based interferometer has the benefit that it employs common-path optics

which greatly reduces phase noise due to vibrations in the optical mounts, etc.

Extracting the applied birefringence [in the case of 2-7(a)] or the applied phase

shift [in the case of 2-7(c)] is a simple task. Greyscale values corresponding to phase

shifts of 0, 7r, and 27 are identified in the raw data [the extrema in fig. 2-7(a) and

(c)], and then the phase shifts are calculated by inverting eq. 2.4 piecewise across the

ranges 0 - 7r and 7r - 27r to determine the dependence of AO on the applied greyscale

value g. In order to smooth out the noise apparent in the calibration curve, the raw

data [fig. 2-7(a) and (c)] were first fit to a high-order (14th) order polynomial. This

polynomial was then evaluated over the greyscale range of interest and finally inverted.

The intensity modulation and interferometric calibration differ by a constant phase

shift but are otherwise in good agreement and show that the device is able to modulate

the phase of 800 nm light between 0 and 27r radians. This phase offset is due to a

slight phase difference in one of the arms of the interferometer for the interferometric

measurement. Depending on this phase offset, it may be more appropriate to use a

sin function in eq. 2.4.

(g) (1 + cos[AO(g)]) (2.4)
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Note that equation 2.4 has been written explicitly for the case of the interferomet-

ric calibration. For the birefringence calibration it is only necessary to substitute sin

for cos. This substitution is required since the two measurements differ by a constant

phase that is the result of an offset within the interferometer. The relatively smooth

calibration curves [2-7(b) and (d)] could then be fit well by a 4th order polynomial

so that the greyscale value required for a desired phase shift could be easily calcu-

lated with our homemade driver software. Use of the polynomial fit to the calibration

curve obviated the need for a lookup table, streamlining the process of calculating

the greyscale mask pattern from the desired phase pattern.
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Figure 2-7: LC SLM calibration. Raw data (a) and (c) for birefringence and interfer-
ometric measurements, respectively. (b) and (d) corresponding calibration curves.

In experiments, the same phase calibration was used for all wavelengths, although

this is expected to introduce small phase errors, as pointed out in [53] and [54].

The above calibration measurements were performed with a femtosecond Ti:sapphire

oscillator of approximately 35 nm bandwidth. As such, the calibrations measured

something like the average phase shift, or the phase shift at the center wavelength,

A.. Therefore, assuming a constant index of refraction for a given pixel of the LC

SLM at a given applied voltage V, the applied phase modulation is a function of
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wavelength according to Aq(V, A) = Aq(V, A,)o,/A. Correction of this 1/A phase

error is then a simple matter of multiplying the desired phase at the calibrated center

wavelength by the factor A/Ao. Although simulations have shown that the effects of

these errors on output pulse shapes are relatively small, it should be straightforward

to remedy in future experiments. Alternately, the phase shift could be calibrated at

many different wavelengths.

,rPl. . 0% ,- -AA
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Figure 2-8: Frequency calibration data (points) and best fit to a line (a) and a second-
order polynomial (b). The nonlinear character of the spectral dispersion is clearly
visible and has to be incorporated when addressing the LC SLM.

An additional calibration step that is important for the pulse shaping appara-

tus is to accurately correlate the LC SLM pixels with the corresponding frequency

components dispersed by the grating-lens pair, as pointed out in [53, 54, 55, 56] and

elsewhere. The nonlinear spectral dispersion, to be expected from a grating-lens pair,

was measured as follows. The polarization of the input beam was rotated by 45 de-

grees with respect to the SLM and the reflected beam was sent back through the

polarizer and then to a spectrometer, in a setup nearly identical to the one shown in

fig. 2-6 (a). By setting the phase modulation of the SLM to r radians along a vertical

strip and zero everywhere else, all wavelengths but those impinging upon the vertical

strip are rejected by the polarizer, and the wavelength corresponding to the peak of

the transmitted output pulse can then be identified with a spectrometer. The center

frequency of the peak intensity was then recorded as a function of the pixel position

of the vertical strip on the LC SLM. An example of the measured spectral dispersion

at the LC SLM is shown in fig. 2-8 (circles), where careful examination of the data
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reveals that the dispersed frequency components do not fit well to a line (a) but do fit

well to a quadratic polynomial (b). If a linear spectral dispersion is simply assumed,

the output; waveforms are distorted as has been shown in references [57, 54]. Further-

more, nonlinear spectral dispersion plays an important role in suppressing unwanted

replica pulse features in the output waveforms. These points will be discussed further

in section 2.4.

2.3 Shaped-Pulse Characterization

Characterization of ultrashort pulses requires specialized methods since there do not

exist detectors with sufficiently fast response times to directly monitor ultrashort

pulses. There are almost as many pulse characterization methods as there ultrafast

research groups, each with its own approach and acronym: SPIDER [58]; FROG [59];

TADPOLE [60]; POLLIWOG [61]; GRENOUILLE [62]; PICASO[63]; STRUT [64];

etc. Many of these methods rely upon comparison of one pulse with another to extract

detailed information about both the phase and the amplitude of the ultrashort pulse

being measured. For most of the work in this thesis, however, we have used a relatively

straightforward scheme known as non-collinear (or background-free) second harmonic

generation (SHG) cross correlation, which we will simply refer to as cross-correlation.

E (t) i BBO L2 g( 1)T

E2(t T) ESHG(tT) CCD

f1 d d

Figure 2-9: Schematic of SHG cross-correlation apparatus. Shaped pulse El(t) and
reference pulse E2(t) are focused into a BBO crystal, creating a SHG correlation
signal (blue) whenever the pulses overlap in time.

For our SHG cross-correlation measurements we typically correlate a short laser

pulse with a shaped laser pulse at variable time delays, as shown schematically in
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fig. 2-9. An unknown pulse El (t) and a reference pulse E2(t - T) with a variable de-

lay T are focused by a lens L1 into a thin SHG crystal, typically beta barium borate

(BBO). Note that the intensities rather than amplitudes of the unknown and refer-

ence pulse are being used since background-free SHG cross-correlation measurements

are insensitive to temporal phase. The variable delay is controlled by changing

the optical path length that the reference pulse travels with a computer-controlled

motorized delay stage. When the two pulses are time-coincident in the SHG crystal,

a third beam with twice the frequency (shown in blue) is generated. This third beam

may be detected with an ordinary photodetector such as a photodiode, photomulti-

plier tube, or charge-coupled device (CCD) camera. The detector then records the

time-integrated intensity of the second-harmonic beam for different reference pulse

delays, building up a correlation trace. Simply put, the correlation trace is a slightly

temporally broadened measurement of the shaped pulse. Mathematically, the SHG

correlation trace 9(-) is given by

00

g9() = IJ1(t)I2(t -)dt, (2.5)
-oo

where I1 (t) and I2(t) are the intensities of pulses El(t) and E2 (t), respectively (I(t) oc

IE(t) 12).

In order to measure time-dependent spatial profiles, we use two variations on SHG

cross-correlation, which we call spatially-resolved cross-correlation and angle-resolved

cross-correlation. For both methods an approximately 1 cm tall reference pulse is used

in combination with a CCD camera for detection in order to simultaneously record

cross-correlation information at many different heights within the unknown pulse.

Spatially-resolved cross-correlation uses lens L2 to image (1: 1, where d = 2f2, with

d as defined in fig. 2-9) the correlation beam generated in the SHG crystal. Angle-

resolved cross-correlation uses lens L2 to Fourier-transform (d = f2) the correlation

signal (see section 2.6), producing the wavevector-distribution of the correlation beam

on the CCD camera. These two methods will be discussed further below in the

contexts of the measurements.
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A variation of the intensity cross-correlation that we also use is SHG frequency-

resolved optical gating (FROG). Trebino et al. have written an excellent, compre-

hensive review of FROG techniques [59]. The apparatus for SHG FROG is nearly

identical to the apparatus for SHG intensity cross correlation, with the exception

that a spectrometer is used for detection of the correlation signal. When a known

reference pulse and an unknown pulse are used, as in the cross-correlation measure-

ment, the method is termed XFROG (or cross-correlation FROG). In our case, we

typically use conventional SHG FROG, where both of the input beams are replicas of

the unknown pulse (created with a beamsplitter). Using an iterative phase-retrieval

method (commercial software to do this is available through Femtosoft Technologies),

the phase and intensity of the unknown pulse can be determined in both the time

and the frequency domains. Analytically, the FROG signal is given by

oo2

f(V, T) E= E(t)E2(t - ) exp(-i2rvt)dt 2 (2.6)

Figure 2-10 shows a FROG measurement and retrieval of a nominally 40 fs laser

pulse. The original measurement is shown in (a). Using the retrieval software, a

reconstructed FROG trace was generated (b) with an error of 0.002 on a grid of

1024 x 1024 points. The extracted spectral intensity and phase are shown in (c),

indicating the presence of a weak quadratic/cubic/quartic spectral phase. The tem-

poral field amplitude and phase are shown in (d). As with the spatially-resolved

SHG cross-correlation measurement technique, it is also possible to perform SHG

FROG measurements in a spatially resolved manner, as will be described further in

section 2.7.

Once a FROG measurement has been used to characterize the phase and ampli-

tude of a laser pulse, that pulse may then be used to characterize an unknown pulse

using a method called spectral interferometry [65, 66]. In spectral interferometry, an

unknown and a well-characterized reference laser pulse are combined and sent into a

spectrometer where they interfere with each other. The difference in phase between

the two pulses creates interference fringes which may then be detected and used to
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Figure 2-10: FROG measurement of an unshaped 40 fs laser pulse. (a) Original
FROG data. (b) Reconstructed FROG trace. (c) Retrieved spectral intensity and
phase. (d) Retrieved electric field amplitude and phase.

characterize the unknown pulse. Spectral interferometry has the advantages that the

unknown pulse may be characterized in a single shot, (without scanning a delay line

as with the FROG measurement), and that it is a linear measurement that can be

performed on very weak unknown pulses. In one paper by Fittinghoff et al. [60],

unknown pulses of energy 42 zeptoJoules (42 x 10-21 J) were characterized by this

method.

The reference pulse is delayed (or advanced) by T from the unknown pulse in order

to create spectral fringes that are then used in characterizing the phase difference

between the two pulses. Two identical pulses that are delayed by T- will have spectral

fringes with a period of v = l/T, where v is frequency (not to be confused with angular

frequency w, where w = 2rv). Deviations from the expected 1/T fringe pattern reveal

phase differences between the two pulses. A second measurement is then required

to determine the amplitude of the unknown pulse, although this measurement may

be done in parallel with the measurement of the fringes when using a dual-channel
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spectrometer. Mathematically, spectral interferometry is described as

Imeas (V) Erf(l/) + Enk (V) 1 2 (2.7)

I EEf (v) 12 + E..k(v) 2 + 2 Eref (v)lE,k(v)l cos(A (v)), (2.8)

where Imea,,,,(v) is the intensity of the measured spectral interferogram, Eref (v) and

ELLnk(v) are the fields of the reference and unknown pulses, and AqO(v) is the phase

difference between the reference and unknown pulses.

Figure 2-11 illustrates four measurements of an unknown pulse by spectral interfer-

ometry, where the reference pulse arrived 3.35 ps after the unknown pulse. Different

spectral phases were applied to the unknown pulse with a diffraction-based pulse

shaping apparatus (see section 2.8), spectral interferometry was used to reconstruct

the applied phase. In (a), the fringes are closer together than expected, indicating

a larger delay between the unknown and the reference pulses, whereas in (b), the

fringes are further apart than expected, indicating that the delay decreased between

the unknown and shaped pulses. The extracted linear spectral phase (blue lines)

is in excellent agreement with the desired linear spectral phase (red lines). In (c)

and (d), quadratic spectral phases (with opposite signs) have been used to "chirp"

the unknown pulse such that the pulse has a time-dependent frequency with either

the high frequency components arriving after the low frequency components (positive

chirp) or before the low frequency components (negative chirp). The applied spec-

tral phase was q(v) = ±0.56(v - vo)2, where v is in THz and the center frequency

Po = 378.2 THz. The fringes are closer together in (c) on the low frequency side of

the spectrum than they are on the high frequency side of the spectrum since the low

frequency components have been shifted to later times (closer to the reference pulse)

whereas the high frequency components have been shifted to earlier times (further

from the reference pulse). The opposite scenario is true in (d). As before, the ex-

tracted spectral phase is in excellent agreement with the applied spectral phase in (c)

and (d).
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Figure 2-11: Measured spectral interferograms (top subpanels) and ex-
tracted/measured spectral phase (bottom, blue/red) for 4 different unknown pulses.
Unknown pulse shifted to be 0.4 ps earlier (a) and 0.4 ps later (b) than expected
with application of a linear spectral phase. Negatively (c) and positively (d) chirped
pulses through application of a positive or negative quadratic spectral phase.

2.4 One-Dimensional Pulse Shaping

Most temporal pulse shaping schemes demonstrated to date manipulate the phase

and/or amplitude of a broad-bandwidth input laser pulse in order to create a desired

time-dependent optical waveform, as shown in fig. 2-1. Mathematically, the modu-

lated laser spectrum can be described as the product of the input laser pulse Ein(v)

and the spectral modulation M(v) applied by the pulse shaping apparatus, giving

Eo,t(v) = M(v)Eir(v), (2.9)
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or equivalently, via the convolution theorem,

eot(t) = m(t) 0( ein(t). (2.10)

In this section, we will evaluate different aspects of the above equations for temporal-

only pulse shaping with pixelated LC SLMs. After a simplified but illustrative analysis

of temporal-only pulse shaping with a hypothetical apparatus, we will proceed to the

analysis and demonstration of actual experimental implementations. Detailed atten-

tion will be paid to waveform distortions resulting from the pixelation of the LC SLM

as well as imperfections in the LC SLM. These waveform distortions have important

consequences for the application of two-dimensional pulse shaping to coherent nonlin-

ear optical spectroscopy, as will be discussed in chapter 4. Furthermore, the influence

of nonlinear dispersion of the spectrum on these waveform distortions (see fig. 2-8)

will be carefully considered.

2.4.1 General Analysis

An ideal LC SLM consists of N sharply defined pixels separated by a distance of

Ax, with no gaps present between the pixels. The LC SLM may then independently

modulate the phase (for a single mask LC SLM) or the amplitude and phase (for a

dual-mask LC SLM) of the spectrally dispersed laser pulse. The modulating function

M(x) is then simply the convolution of the spatial profile S(x) of a given spectral

component (determined by the input beam spatial profile and the lens focal length)

with the phase and amplitude modulation applied by the LC SLM,

N/2-1
M(x) =S(x)® E squ (X X ) Anexp(i), (2.11)

n=-N/2

where x, is the position of the nth pixel, A, and , are the amplitude and phase

modulation applied by the nth pixel, Ax is the separation of adjacent pixels, and

where the top-hat function squ(x) is defined as
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squ(x) = (2.12)

01x >1/2

Assuming a linear spectral dispersion given by Qn = nQ, where Q = n- v,

and AQ is the frequency separation of adjacent pixels corresponding to Ax, and

assuming that the spatial profile of a given spectral component is a Gaussian function

S(x) = exp(-x 2 /6x 2 ), the modulation function may be written as

N/2-1
M(Q) = exp(-Qt2/6Q 2) 0 N squ A A , exp (in). (2.13)

n=-N/2

Here, the width of the Gaussian function has been expressed in terms of 6Q, the

spectral resolution of the grating-lens pair, where 6Q = 6xAfQ/Ax. The spot size

6x (measured as full-width at /e of the intensity maximum, assuming a Gaussian

input beam) is dependent upon the input beam diameter and lens focal length as

6x = 4rF/AD. If we assume that the input laser pulse is bandwidth-limited (that

the spectral phase is flat), we can then approximate the input laser pulse as

N/2-1

Ein(Q) = E squ ( Q )B (2.14)
n=-N/2

where Bn is the spectral amplitude of the input laser pulse at the nth pixel. Substi-

tution of the above expressions for M(Q) and Ein(Q) into eq. 2.9 yieldsN/2-1 ( ) (

E,,t(Q) = exp(-_Q2/8Q 2) 0 squ A ABnexp (i) (2.15)
n=-N/2

Finally, Fourier transformation of Eout(Q) yields an expression for the output of the

pulse shaping apapratus,
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N/2-1
e,,,t(t) c exp(-ir2 6Q 2 t2)sinc(rAQt) E3 ABexp[i(2rv,it + ()]. (2.16)

n=-N/2

The term in the summation in eq. 2.16 describes the basic properties of the output

pulse, such as would be obtained by modulating the amplitude and/or phase of the

input pulse at the points Qn - nAQ with a grating-lens apparatus that has perfect

spectral resolution. The sinc term is the Fourier transformation of the top-hat pixel

shape, where the width of the sinc function is inversely proportional to the pixel

separation Ax, or equivalently, AQ. The Gaussian term results from the finite spectral

resolution grating-lens pair, where the width of the Gaussian function is inversely

proportional to the spectral resolution 6Q. Use of a LC SLM with a larger number of

pixels over the same distance decreases Ax and therefore increases the width of the

sinc function. As the pixel separation Ax decreases to be less than the spot size of a

frequency component at the spectral plane, 6x, the additional pixels do not result in a

larger temporal range over which pulses may be shaped due to the Gaussian function

that approaches zero at early and long times. Collectively, the Gaussian-sinc term is

known as the time window.

While eq. 2.16 provides a compact and useful analytical result, it neglects three

important limitations of LC SLMs. First, LC SLMs typically have a phase range

that is only slightly in excess of 2r. Fortunately, since phases that differ by 2r are

mathematically equivalent, the phase modulation may be applied modulo 2. Thus,

whenever the phase would otherwise exceed integer multiples of 2r, it is "wrapped"

back to be within the range of 0 - 2. Second, the pixels of the LC SLM are not

perfectly sharp, and there are gap regions between the pixels whose properties are

'usually somewhat intermediate between the adjacent pixels. Although smoothing

of the pixelated phase and/or amplitude pattern would in general sound desirable,

when it is combined with the phase-wraps, spectral phase or amplitude distortions

are introduced at phase-wrap points, as will be shown below. Third, while the pixels

are evenly distributed in space, the frequency components of the dispersed spectrum
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are not, creating a nonlinear pixel to frequency mapping such as was shown in fig. 2-8.

These three considerations make the determination of an exact analytical expression

for M(Q) difficult. Instead, we will formulate a general expression for M(x) and then

specify a procedure whereby a computer may be used to help evaluate the generated

output pulse.

The finite spatial response of the LC SLM may be accounted for by smoothing

the applied phase. Although the exact nature of the smooth pixel boundaries is not

known, it can be approximated by convolving a spatial response function L(x) with an

idealized phase modulation function that would result in the case of sharply defined

pixel and gap regions. For a phase-only LC SLM (section 2.2) with pixels separated

by Ax and gaps of width w, the applied phase modulation is given by

(x) = L(x) ® {mod[n, 27r]squ (A - w
n=-N/2

+mod[ 0, 27r]squ ( - + Ax/2)}, (2.17)
W

where q, is the phase applied in the gap region. Note that in eq. 2.17 the phase

values have been indicated modulo 27r, although 47r or 67r, etc., could be substituted

depending on the properties of the actual device being used.

The next task will be to convert the spatial phase modulation function to a spectral

phase modulation function in the case of nonlinear spectral dispersion. This can be

written generically as

00

M'(Q) ox exp[io(x)] exp[-(x- x(Q)) 2/6x]dx, (2.18)
-00

Since x(Q) represents the position of the frequency component Q, eq. 2.18 performs

a convolution of the phase applied by the mask as a function of position, (x), with

a Gaussian function representing the spot size of the spectral component Q. Unfor-

tunately, due to the nonlinear dependence of x(Q) on Q, as well as the convolution
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contained within (x), eq. 2.18 is not easily evaluated. Instead, M'(Q) may be cal-

culated with the aid of a computer. To do this, we first calculate O(x) with about 10

grid points per pixel. Then O(x) may be resampled on a grid of points evenly spaced

in frequency, before evaluating eq. 2.18. Finally, the output pulse is calculated by fast

Fourier transformation (FFT) of the product Ein(Q)M'(Q). It is important to use

the evenly-spaced frequency grid in order to make use of the computationally efficient

(Cooley-Tukey) FFT algorithm.

2.4.2 Sampling Replica Pulses

The expression for a shaped output pulse with an idealized pulse shaping apparatus,

(eq. 2.16), contains a summed term that is a complex Fourier series,

N/2-1

S ABn exp[i(27rvt + On)] (2.19)
n=-N/2

A property of Fourier series' (with evenly-spaced frequency samples) is that they

repeat themselves with a period given by the reciprocal of the frequency increment.

The present case is no exception, and the general waveform described by expression

2.19 is therefore repeated infinitely with a period of 1/AfQ, although the Gaussian-

sinc window (see eq. 2.16) suppresses repetitions that are at very long or very early

times. Nonetheless, these pulse repetitions are a cause for concern since they can

degrade the quality of a desired output waveform. Although these pulse repetitions

have received some attention in the literature [67, 31, 56], it is typically without

quantitative analysis, especially in the case of nonlinear spectral dispersion.

We refer to the undesired repetitions of the waveform mentioned above as sam-

pling replica pulses since they are a direct consequence of the discrete sampling of

the LC SLM. In a sense, the distinction between a "desired pulse" and a "sampling

replica pulse" is an arbitrary one since both are part of a coherent optical wave-

form. Nonetheless, the distinction is useful in that it exposes the limitations inherent

to pixelated modulators. One must also be careful when using the term "pulse."

Although the input to a pulse shaper is usually expected to be a single pulse, the
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desired output may consist of multiple pulses or some general output waveform. By

"sampling replicas" we actually mean copies of the desired output waveform, whether

the desired output waveform is simply a single delayed pulse, two oppositely chirped

double-pulses, or a train of pulses, etc. It should be noted that nonpixelated devices,

such as acousto-optic modulators (AOMs), allow for smoothly varying spectral phase

and/or amplitude modulations free of sampling replica pulses (and modulator replica

pulses, the subject of the next section) [26]. Despite these benefits, pulse shaping

with AOMs is not widely used due to a lower efficiency and a significantly higher

degree of complexity to operate especially for very short pulses. See reference [24] for

a detailed comparison of pulse shaping with AOMs versus LC SLMs.

As described above, the phase applied by LC SLMs is of the form applied,n =

mod [desired,n, 27r]. Due to the mathematical equivalence of phase values that differ by

integer multiples of 27r, there are an infinite number of ways to "unwrap" the applied

phase. Sampling replica pulses constitute an important class of these equivalent phase

functions, and their phase as a function of pixel is described by

4 replica,n = applied,n + 27Rn, (2.20)

where R is the sampling replica order and may be any nonzero integer (R = 0

corresponds to the desired pulse). Note that the analysis in this section will assume

that the LC SLM has well defined pixels [L(x) = 6(x)] without gaps. In the case

of linear spectral dispersion, replica,n differ by the linear spectral phase 2rRv/AQ,

which by virtue of the Fourier-shift theorem (see appendix 2.9) precisely corresponds

to a temporal separation of R/ZAQ. Therefore, many sampling replica pulses are

produced, where each is temporally separated from the next by 1/AfQ.

In the case of nonlinear spectral dispersion, the sampling replica pulses gain addi-

tional spectral phase. The nonlinear spectral dispersion is given below as a function

of pixel number n in a power-series expansion:

Qn = AQ + Kn 2 + Ln3 + Mn4 +... (2.21)
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'The variable AzQ is used here as the coefficient for the linear spectral dispersion to

remind of its physical meaning (it is approximately the average frequency span per

pixel), but should not be confused with the variable AQ that was used when the

spectral dispersion was explicitly assumed to be linear. The phase difference A,,

between the replica pulse phase ,,epica,,,, and the applied phase Oapplied,n can now be

expanded in a power series expression in terms of frequency,

AO, = 2-Rn

= C Q + 3OQ + Y 3 + . (2.22)

which can then be solved in powers of n by substitution of the expression for Qn given

in eq. 2.21. Exact expressions for the first four coefficients of the spectral phase can

thus be obtained:

a _ 1
27rR AQ

2rR Q Q3

?Y _ L 2K2

27rR ,4 95

6 M 5KL 5K3

27rR Q +Q + Q6- 7. (2.23)

The term a describes the expected linear delay of the sampling replica pulse of order

R and is not dependent upon the nonlinear dispersion coefficients K, L, M, etc. The

quadratic, cubic, and quartic spectral phases do, however, depend in varying degrees

on the higher order spectral dispersion terms. All coefficients of the spectral phase

are proportional to the replica order. Note that the above coefficients are completely

general for a pixelated modulator, and apply regardless of whether phase and/or

amplitude shaping of the pulse is used.

Figure 2-12 illustrates the principle of sampling replica pulses in the simple case
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Figure 2-12: Illustration of sampling replica pulses. Applied phase (boxes), desired
phase (R = 0), and sampling replica pulse phases (R = ±1) in the case of linear
(a) and nonlinear (b) spectral dispersion. The black vertical lines represent pixel
boundaries. Simulated XFROG and cross-correlation measurements (on a logarithmic
scale) of the corresponding output waveforms for linear (c) and nonlinear (d) spectral
dispersion. The extent of nonlinear spectral dispersion is exaggerated in (b) but not
in (d).

when the desired spectral phase is linear with respect to frequency, with a slope of

either 27rAQ/4 (for linear spectral dispersion) or 27rAQ/4 (for nonlinear spectral dis-

persion). The desired phase, applied phase, and R = ±1 sampling replica phases, are

shown in (a) for the case of linear spectral dispersion. A simulated XFROG mea-

surement and cross-correlation measurement of the output waveform (both plotted

on logarithmic scales) are shown in (c). The desired pulse occurs at about 2.6 ps.

Three weaker replica pulses, each separated by about 11 ps, are also observed. Note

in (c) that the relative intensities of the sampling replica pulses is determined by the

Gaussian-sinc time window.

When the spectral dispersion is nonlinear, however, the spectral phase of the
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sampling replica pulses is no longer linear as can be seen in fig. 2-12 (b). Although

the magnitude of nonlinear spectral dispersion has been greatly exaggerated in (b)

in order to make the nonlinear characteristics of the R = ±1 sampling replica pulse

phases more apparent, the actual nonlinear spectral dispersion for our pulse shaping

apparatus was used in the simulation in (d). There, simulated XFROG and cross-

correlation measurements show that nonlinear spectral dispersion causes the replica

pulses to become chirped. As expected from equations 2.23, the R = ±1 sampling

replica pulses have opposite chirps and the weak R = -2 sampling replica pulse near

T = 18 ps has a chirp twice that of the R = -1 sampling replica pulse near T = 9 ps.

The slight nonuniform tilt (or curvature) of the R = ±1 replica pulses in the XFROG

simulations is a result of non-negligible cubic and quartic spectral phase components.

The presence of higher order spectral phase (quadratic, cubic, etc.) on replica

pulses in addition to the desired spectral phase typically has the effect of reducing

their intensity by temporal spreading, as can be seen in the simulated cross-correlation

plot in fig. 2-12 (d). One obvious exception is when the desired pulse itself is chirped,

in which case one of the replica pulses may be partly (or even completely) com-

pressed. In general, however, the combination of the Gaussian-sinc time window and

the quadratic or higher-order spectral phase tends to suppress sampling replica pulses

in a majority of situations to a tolerably low level.

Before moving on to a discussion of modulator replica pulses, in which the effects

of pixel smoothing are discussed in detail, we will first examine the effects of LC

SLM pixel gaps. Equation 2.17 described the general phase pattern resulting from

an LC SLM with pixels separated by Ax and gaps of width w. If we assume linear

spectral dispersion, phase-only modulation, and sharply-defined pixels, the spectral

modulation applied by the LC SLM is given by

M(Q) = squ [ NQ comb [Q] ( squ sL -A /] exp[i0 ] +

(exp[ii/appl,, d(Q)]comb [-Q]) 0squ [A(1 w/a)] }. (2.24)
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The first term within the curly brackets describes the spectral phase applied by the

gap regions of the LC SLM, while the second term describes the spectral phase applied

by the pixel regions of the LC SLM. The function comb(Q) is defined as

n=oo

comb(Q) = E 6(Q - n), (2.25)
fn=--00

requiring the use of the aperture function squ(Q/NAQ) such that M(Q) is defined to

be zero outside the range of the LC SLM. The mask's temporal response may then

be computed by Fourier transformation to be

wAAQ [wZ 1o
m(t) c sinc[7NAQt] {comb[AfQt] A sinc r t] exp[iqo]+

comb[AfQt]ZAQ(1 - )sinc [7rAQ(1 -w/zAx)t] 0 exp[i(27rvnt + On)]

Tefrtemeedsietetm n=-N/2(2.26)

The first term here describes the temporal response due to gap regions within the LC

SLM and the second term describes the temporal response due to the pixel regions

within the LC SLM.

Equation 2.26 illustrates two effects resulting from the presence of the gap regions.

First, the gaps create "gap" replica pulses centered about time t = 0 with a period of

1/Ax. The amplitude of the gap replica pulses is governed by a sinc envelope with a

temporal width determined by the reciprocal of the spectral width of the gap. As the

gap width w goes to zero, the gap replica pulses decrease in intensity. In the case of

nonlinear spectral dispersion, the modulator replica pulses due to the gaps (except the

one at time t = 0) become chirped as they gain additional spectral phase according

to the arguments laid out above. The summation in the second term represents the

desired phase-modulated output pulse, where the convolution of the desired output

pulse with the function comb[AzQt] creates sampling replica pulses separated by 1/AzQ

as described above. As the pixel gap width increases from zero, the width of the term
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sinc[rAQ(1 - w/Ax)t] grows, with the result that the sampling replica pulses are

somewhat less suppressed than otherwise. In the case when no phase modulation is

applied, the gap replica pulses in the first term and the sampling replica pulses in

the second term cancel out such that the output pulse is a single unshaped pulse

as expected. In practice, however, it turns out that pixel-smoothing effects tend to

dominate the gap regions that would be expected for LC SLMs, as will be shown in

the next section.

2.4.3 Modulator Replica Pulses

As opposed to the sampling replica pulses discussed in the previous section, there

is an entirely different class of output waveform distortions that result from effects

such as pixel gaps and smoothed-out pixel regions [finite spatial response L(x)] in

combination with abrupt jumps or phase wraps. Somewhat loosely, we refer to these

these distortions as modulator replica pulses since discrete (and usually unwanted)

pulses are often produced [41]. In this section we will focus on the case in which

the objective is to delay a pulse in time. The implications for other types of shaped

pulses will also be addressed.
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Figure 2-13: (a) Spectral phases with slope 2rps: desired phase (gray); applied phase
(dashed); unwrapped applied phase (solid). (b) Corresponding simulated output pulse
shape with weak modulator replica pulses separated by 1 ps.

Delaying a pulse in time, although it is a relatively simple "pulse shape," is an

especially important capability for applications of two-dimensional femtosecond pulse

shaping, such as phase-stable degenerate four-wave mixing spectroscopy [68]. Addi-
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tionally, the output waveforms are sufficiently simple that they readily illustrate the

origins of the distortions. As mentioned above, all that is required to delay a pulse

by is to apply a spectral phase with the slope -27rTv. Since LC SLMs typically

have the ability to apply a maximum spectral phase of only slightly in excess of 27r,

the phase is applied modulo 2ir. The presence of these phase-wraps in combination

with a finite spatial response L(x) creates periodic distortions in the applied phase.

An example of these periodic distortions in the applied phase is shown in fig. 2-13(a).

In this case, the desired spectral phase is a line (gray line) with a slope that corre-

sponds to a delay of -1 ps, where only a small portion of the applied phase has been

shown. The applied spectral phase (dashed curve) appears as a smoothed-out saw-

tooth function, due to the convolution with the finite spatial response L(x) which is in

this case sufficiently broad that it blurs out the distinctions between separate pixels.

The periodic deviations in the applied phase become clear when it is "unwrapped"

(black curve). Figure 2-13(b) shows a simulation of the output pulse intensity result-

ing from the phase pattern of fig. 2-13(a). Note that the spacing of the modulator

replica pulses is inversely proportional to the spacing of the phase wraps. If the LC

SLM could apply phase shifts modulo 4r, then the modulator replica pulses would

be separated by only 0.5 ps. Furthermore, the lower number of phase wrap points

would also reduce the intensity of the modulator replica pulses. In the limit of no

phase wrap points, the modulator replica pulses disappear.

As the desired spectral phase becomes steeper and steeper, more and more phase

wrap points are introduced, causing the modulator replica pulses to grow in intensity

relative to the desired pulse [fig. 2-14]. Due to this, the peak intensity of the delayed

pulse is lower than that predicted by the Gaussian-sinc time window of the pulse shap-

ing apparatus (eq. 2.16). Figure 2-14 (c) plots measured (dots) and simulated peak

intensities (black curve) as a function of delay. For reference, the dashed line shows

the Gaussian-sinc time window. Note that the results of simulations that account for

modulator replica effects are in good agreement with experimental measurements of

variably delayed pulses, although there is a noticeable asymmetry in the measured

peak intensities at positive times compared to negative times. This asymmetry is
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Figure 2-14: (a) Experimental cross-correlation measurement of a pulse shifted to neg-
ative 3 ps with modulator replica pulses and (b) a simulation of the cross-correlation
measurement. (c) Delayed pulse peak intensity (dots) with the simulated time window
including the effects of modulator replica pulses (solid) compared to Gaussian-sinc
time window for the pulse shaping apparatus used in this thesis. (d) Similar results
observed by Wang et al. in [56], with a 512-element LC SLM, compared to the
Gaussian, sinc, and Gaussian-sinc time window of their apparatus.

due to space-time coupling effects [69] which have not been implemented in the sim-

ulations. Wang et al. [56] observed a similar delay-dependent intensity dependence

for variably-delayed pulses performed with a different LC SLM, [2-14 (d), figure by

permission of Prof. A.M. Weiner of Purdue University] although they did not identify

the origin of the unexpectedly fast rolloff as a function of delay.

Modulator replica pulses can also be strongly influenced by nonlinear spectral dis-

persion. As mentioned above, it is the periodicity of the phase wraps that determines

the temporal separation of modulator replica pulses. In the case of linear dispersion,

then, it follows that the phase wraps will only be evenly spaced when the slope of

the spectral phase is 27r/AAQ, where A may be any nonzero integer. For instance,

a linear spectral phase with slope of 27r/4AQ produces a phase wrap every 4 pixels
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with replica pulses separated by 1/4AQ. Correspondingly, a linear spectral phase

with a slope of 27r/4.5AZQ produces phase wraps in alternating 4- and 5-pixel groups

that repeats every 9 pixels. The resulting replica pulses therefore have a periodicity

of 1/9AQ.

Nonlinear spectral dispersion in general destroys the periodicity of the phase wraps

as they tend to be closer together on one side of the spectrum and further apart on

the other side of the spectrum. In this case, modulator replica pulses occur with a

temporal separation corresponding to the average phase wrap period 27r/T, where the

slope of the desired phase is 27rT, and where other possible modulator replica pulses are

chirped to a much lower intensity. The above effects are illustrated in the simulations

shown in fig. 2-15, where the slope of the desired spectral phase is 2r/4.5AzQ in

the case of linear spectral dispersion (a) and 2r/4.5A1Q ps in the case of nonlinear

spectral dispersion (b). In (b), only 4 modulator replica pulses are observed, while in

(a), additional modulator replica at intermediate times are observed. The modulator

at intermediate times in (a) have become chirped to a nearly negligible intensity in

(b), although careful examination of the baseline in (b) near 1.5 ps and 4 ps reveals

two "noisy" regions corresponding to the chirped modulator replica pulses.

t-

a)
e-. _

M
L_

Cn
C

4-a
C:

-6 0 6 -6 0 6
time [ps ] time [ps ]

Figure 2-15: Simulations illustrating the dependence of modulator replica on the
periodicity of pixel wraps in the cases of linear spectral dispersion (a) and nonlinear
dispersion (b).

So far, we have focused on the simple case of delayed pulses, which are accom-

panied by modulator replica pulses for LC SLMs that have smooth pixels. Not all

phase patterns of interest require the use of phase wraps in adjacent pixels. For
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example, a sinusoidal phase pattern with a peak-peak amplitude of less than 2 is

used in many coherent control experiments to produce a series of output pulses with

an even spacing (for instance, [8, 15]). Since no phase wraps are required for these

waveforms, there are no distortions introduced due to smooth pixel boundaries. In

fact, the smooth pixels now have the desirable effect of reducing the amplitude of

sampling replica pulses, as can be seen in fig. 2-16.
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Figure 2-16: Simulated XFROG and cross-correlation measurements (on a logarithmic
scale) of waveforms generated by application of a sinusoidal spectral phase that does
not exceed 2r with (a) a LC SLM that has sharp pixels and (b) the present device
that has smooth pixels.

To summarize the replica pulse effects discussed above, fig. 2-17 shows experi-

mental XFROG measurements (courtesy of the group of Prof. Roland Sauerbrey at

the Friedrich-Schiller University in Jena, Germany) and simulated XFROG measure-

ments that take into account nonlinear spectral dispersion and pixel smoothing for

the Jenoptik 640-pixel phase-only LC SLM. Each successive row of the measurements

and simulations displays an XFROG measurement of the waveform resulting from

the application of a linear spectral phase with a slope necessary to delay the pulse

tlo positive times, from 0 to 14 ps in increments of 2 ps. The average frequency span

per pixel is such that the sampling replica period is 14 ps, as can be seen at negative

times for the chirped sampling replica pulse that always leads the desired pulse by

14 ps. Multiple modulator replica pulses occur at integer multiples of the desired de-

lay, most notably for the 2 and 4 ps delayed pulses. Weak chirped modulator replica
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Figure 2-17: Experimental (a)-(i) and corresponding simulated (j)-(q) XFROG mea-
surements of waveforms resulting from the application of a linear spectral phase,
illustrating both sampling and modulator replica pulses. The y-axis of the plots is
wavelength, increasing upwards, and the colormap is logarithmic. The measurements
(courtesy of the group of Prof. Roland Sauerbrey of FSU in Jena, Germany) are
rescaled individually so the maximum intensity in each is the same color, while each
of the simulations uses the same scale and colormap such that the maximum intensity
decreases with increasing delay. The "desired" waveform in each case is a single pulse
with a temporal delay between 0 and 14 ps.

are observed at times not corresponding to integer multiples of the desired delay in

the simulations, for instance -2 ps in (m) or +2 ps in (n). These chirped modula-

tor replica pulses are due to the choice of delaying the pulses in time increments of

1/7AQ, which created larger repeat units in the wrapped phase such as was described

for the pulses shown in fig. 2-15. Careful study of the experimental measurements

(magnified 10x on a computer screen) revealed that these chirped modulator replica

were also present in the experiments at the same times and with approximately the

same chirp, although the colormap makes these features difficult to observe.

2.5 Real-Space Shaping

The simplest two-dimensional pulse shaping scheme is real-space shaping, in which

each row (or more typically, each group of rows) of the LC SLM is used to shape

different horizontal slices of the laser pulse, producing many independent outputs [38,

39]. No additional analysis is required to describe real-space shaping as it is equivalent
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to having many temporal-only pulse shapers, each at a different height within the

beam of a laser pulse. In real-space shaping, a lens is used to image the LC SLM to

the plane of the sample in order to avoid diffraction effects that would otherwise blur

the shaped outputs. Specifically, a horizontally-aligned 30 cm cylindrical lens was used

to image the face of the SLM onto a BBO crystal with approximately 1:1 imaging (see

fig. 2-18). The shaped pulse was measured by spatially resolved cross correlation with

an expanded unshaped reference pulse that was variably delayed along a motorized

delay line. The second harmonic radiation created by each incident beam alone was

blocked, and the intensity of the cross-correlation signal was recorded by imaging

(1:1) the BBO crystal onto a CCD camera for various delays of the reference pulse.

A blue colored-glass filter was used to eliminate scattered 785 nm light originating

from the incoming pulses. Note that this arrangement allows for a simultaneous

cross-correlation measurement of all of the shaped outputs which are separated in the

vertical direction.

3BO

La i.LIVI -

Figure 2-18: Setup for real-space shaping. The cylindrical lens imaged the face of the
LC SLM onto the BBO crystal. An unshaped reference pulse was used for spatially
resolved cross-correlation with the shaped pulses.

Cross-correlation signals for an unshaped pulse and two shaped outputs are shown

in fig. 2-19. The cross-correlation intensity is plotted as a function of the delay time

and the vertical spatial dimension. As expected, the unshaped pulse is located along
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a straight vertical line around zero delay. The vertical intensity distribution reflects

the Gaussian spatial intensity distribution of the incident laser beam. For a first

demonstration of real-space shaping, a linear spectral phase modulation was applied

to the different vertical regions of the SLM. The slope of the linear spectral phase

was varied from one region to the next by constant increments. The shaped output

consists of approximately 40 independently specified regions, each region being 3

pixels high. In figures 2-19 (b) and (c) the delay varies by ±0.022 ps/pixel along

the positive spatial dimension. The slope of the expected position/delay ratio in

the shaped pulses as indicated by the straight line is in good agreement with the

experimental results. The tilt of the individual regions apparent in fig. 2-19 (c) was

due to a slight misalignment in the cylindrical lens of the grating/lens pair.

ci,.0
E
C
· 250
x

o

0
o

0
-2 0 2 -2 0 2 -2 0 2

time [ps] time [ps] time [ps]

Figure 2-19: Spatially resolved cross-correlation data. (a) Unshaped pulse. (b) Pos-
itive and (c) negative delay sweeps in increments of ±0.022 ps/pixel. The straight
lines in (b) and (c) indicate the expected time delay.

The high spatial resolution obtainable via real-space shaping is shown in fig. 2-20.

Here, about 18 spatial regions of the LC SLM were used to create linear (a) and

parabolic (b) delay sweeps. Each region on the LC SLM was 3 pixels high, and the

temporal delay between successive regions was large enough that each region was

clearly visible. Since this LC SLM consists of 480 pixels, up to 160 independent

regions may be generated. Subsequent experiments have suggested that the factor

limiting the spatial resolution of a given region to about two or three rows of the LC

SLM is in fact the slightly blurry imaging used to address the LC SLM (see section

2.2.2). The absolute size of the actual output waveform may be easily manipulated

with imaging optics subsequent to the LC SLM designed to magnify or demagnify
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the spatial profile of the beam to a desired size at the sample plane.

50 50_,0 (a) _ (b)
1 1

(n C

-2 0 2 -2 0 2
time [ps] time [ps]

Figure 2-20: Linear (a) and parabolic (b) delay sweeps for LC SLM regions that are
only 3 pixels high. Weak modulator replica pulses are evident in both waveforms.

Two examples of sophisticated two-dimensional waveforms generated through real-

space shaping are illustrated in fig. 2-21. The pulse shapes are about 4 mm high and

1.5 ps in duration. An adaptation of the Gerchberg-Saxton algorithm was used to cal-

culate the phase mask patterns necessary to generate the user-defined two-dimensional

pulse shapes presented in fig. 2-21 (a) and (b) [70, 57]. The benefit of this algorithm

is especially significant for two-dimensional phase-only pulse shaping because the it-

erative Fourier transform technique calculates a complicated SLM pattern consisting

of many independently shaped outputs in just a few seconds while standard simulated

annealing or genetic algorithms would take many hours to perform the same task.

See section 2.7 for a description of the algorithm.

a- 400 -(a)I a
cX a) 400

o f U o
o I I I C)

o 10 0
00

I Inn
-1000 0 1000 -1000 0 1000

Figure 2-21: (a) Complex user-defined two-dimensionally-shaped laser pulse. (b)
Unexpected manifestation of Satan in output waveform during laser malfunction.
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2.6 Beam Shaping

Just as a LC SLM can modulate spectral phases and/or amplitudes to produce a

desired temporal waveform, it can also be used to manipulate the spatial profile of a

beam (Fourier beam-shaping). Before describing a method called wavevector shaping

that is a hybrid of Fourier beam-shaping and temporal pulse shaping in section 2.7,

we will present a brief analysis of Fourier beam-shaping.

Methods for beam shaping are well known (for example, [71, 72, 73, 74, 75])

and simple beam shaping devices, such as attachments for laser pointers and certain

types of holograms, are commonly encountered outside of the lab. A generic schematic

illustration for beam shaping is shown in fig. 2-22, where a single input beam Ei(x, y)

is redistributed to become two output spots at the plane e,,t(x, y). This redistribution

is accomplished by modulating the phase of the input beam Ein at the mask plane

M(x, y) prior to Fourier transformation by a lens L. The phase modulation element

M is positioned one focal length before the lens and the output beam Eot is generated

at the plane one focal length after the lens (dotted line).

Ein(x,y) M(x,y) L eout(x y )

f f

Figure 2-22: Schematic illustration of Fourier beam shaping. The input beam Ein
is modulated by the phase pattern M before Fourier-transformation by a lens with
focal length f, producing the output beam Eot at the plane given by the dotted line.

The analysis of beam shaping is quite similar to the analysis for ID pulse shaping in

section 2.4.1 with the exception that the input field is assumed to be monochromatic.

The output beam E,,t(x, y) directly after the LC SLM M(x, y) is given by
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Eout(x, y) = M(, y)Ei(zx, y),

where Ei,(x, y) is the input beam prior to the modulator. Assuming a phase-only LC

SLM with no gaps and square pixels of size Ax x Ay, the phase modulation applied

by the LC SLM is given by

M(x, y) = exp [io(x, y)], (2.28)

where the applied phase (x, y) is

N/2-1 N/2-1

5(x, ) = L (x, -N/2 m) -N/2
I=-N/2 m=-N/2

mod[l,m, 27r]squX -X1 squ Y - Ym)

Here xl represents the positions of the columns of the LC SLM and Ym represents

the positions of the rows of the LC SLM. As before, in order to produce an intuitive

(albeit approximate) analytical result, we will assume that the pixels are very sharply

defined [L(x, y) = 6(x)6(y)]. M(x, y) can then be simplified to yield

N/2-1 N/2-1

M(x,y) = E E exp[iOl,m]squ x squ y -m
l=-N/2 m=-N/2

(2.30)

Assuming that the input pulse with spatial amplitude Bx,y is a diffraction-limited

beam (i.e. that its phase is flat, such as for a plane wave), the output beam can now

be easily calculated

eout(vX, y) oc sinc(rAxzvx)sinc(7rAyy) x

N/2-1 N/2-1

5E 5 Bl,mexp[-i(2rvxxl + 2 7vyYm - (q,m)]. (2.31)
l=-N/2 m=-N/2

59

(2.29)

(2.27)



As described in section 2.9, wavevectors v. and vy are linearly proportional to position

in the spatial Fourier plane (x', y'), according to the relations v = x'/f A and vy =

y'/f A.

Analogous to the time window discussed in section 2.4, there is an equivalent posi-

tion window in Fourier beam shaping, given by sinc(7rwvx)sinc(7rwvy). This position

window places approximate limits on the size of the region in the spatial Fourier plane

for shaping the output beam e,,t(x', y'). Unlike temporal-only pulse shaping, there

is no Gaussian term in the position window. In Fourier beam shaping, phase modu-

lations may be directly imparted to different regions of the input beam, whereas in

pulse shaping, the phase modulations are applied to a convolved spectral and spatial

profile (see eq. 2.16). Since both temporal-shaping and Fourier beam-shaping share a

Fourier-transform relationship between their outputs and the phase and/or amplitude

modulations applied to the inputs, similar modulation functions produce analogous

results in each. A linear spatial phase (i.e. a prism) shifts a beam in space just as

a linear spectral phase shifts a pulse in time. A quadratic spatial phase (i.e. a lens)

spreads out a beam in space just as a quadratic spectral phase can chirp a pulse in

time. A periodic spatial phase (i.e. a diffraction grating) creates multiple output

spots just as a sinusoidal spectral phase creates multiple output pulses, and so forth.

These dualities will be exploited in the next section where beam shaping methods

and pulse shaping methods are combined.

Two simple examples of Fourier beam-shaping are shown in fig. 2-23. Beam (a)

was produced with a radially symmetric phase pattern, where an axial cross-section

through the phase pattern resembled the shape of the letter w. Beam (b) was pro-

duced with a phase pattern consisting of many horizontal regions, where a linear

spatial phase was applied along the length of each region, with increasing slopes in

consecutive regions.
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Figure 2-23: Output beams generated through Fourier beam-shaping. In (a), the
weak rings toward the upper right corner of the image due to stray reflections within
the imaging apparatus.

2.7 Wavevector Shaping

In a sense, the real-space pulse shaping method described in section 2.5 possesses

an asymmetry between pulse shape and beam shape. That is, real-space shaping

allows the pulse to be shifted in time or divided into several pulses, but it does not

allow the time-integrated energy of the beam to be similarly redistributed in space.

By combining temporal pulse shaping with Fourier beam-shaping, a scheme we refer

to as wavevector shaping, several new and interesting properties emerge [40, 41], as

described in the remainder of this chapter.

2.7.1 Wavevector Shaping, General Analysis

'The experimental apparatus for wavevector shaping is nearly identical to that of real-

space shaping, with the only difference being that the lens used in real-space shaping

to image the LC SLM regions to the sample plane is replaced with a lens of twice

the focal length so that the sample resides at the focal plane of the shaped pulse

(fig. 2-24). By this means, the vertical spatial profile and the temporal profile are

related to the modulated input field by Fourier (and inverse Fourier) transformation:

00 00

Cout(vy, t) = M(y, P)Ein(y, pi) exp [i27(vt - yy)] dv dy. (2.32)
-00 -00

For a phase-only LC SLM without gaps, the modulation applied by the LC SLM

is given by
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input

Figure 2-24: Setup for wavevector shaping. The cylindrical lens spatially Fourier
transforms the output field onto the plane of the BBO crystal. An unshaped reference
pulse is used for spatially-resolved cross-correlation with the shaped pulses.

M(x, y) = S(x) 0 exp [iq(x, y)], (2.33)

where the spatial profile S(x) of the input beam is assumed to have a constant width

for all values of y. The applied phase q(x, y) is given by

N/2-1 N/2-1

O(x, y) = L(x, y) ( E E mod [bm,,n 2 (r]squ (Xn- squ
m=-N/2 n=-N/2

(2.34)

where y, is the position of the mth row of the SLM and xn is the position of the

nth column of the SLM. As was the case for 1D pulse shaping, eqs.2.32-2.33 are not

easy to evaluate analytically, especially due to the nonlinear spectral dispersion. If

we assume for the purpose of obtaining a simple (but approximate) analytical result,

that the spectral dispersion is linear (Qn = AQn) and that the pixels are sharply

defined [L(x, y) = (x)6(y)], then the modulation applied by the LC SLM is given by
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N/2-1 N/2-1

M(y, Q) = S(Q) (0 : E exp[iomn]squ ( n) squ . (2.35)
m=-N/2 n=-N/2

As in section 2.4.1, S(Q) = exp(-_ 2/6Q), where S6 represents the spectral resolution

of the grating-lens pair. This time, the generic input spatial and spectral intensity

profile is approximated by

N/2-1 N2-1 YYm
Ein(Y , ) = £ Z squ ( Bm,nsqu Ay B)m,n, (2.36)

m=-N/2 n=-N/2

where the indices m and n represent the spatial and the spectral coordinates, respec-

tively. Substitution of equations 2.36 and 2.35 into equation 2.32 yields the following

expression for the output,

e,,t(vy, t) oc exp [-r 26Q2t2 ] sinc(7rAfQt)sinc(rAyvvy)

N/2-1 N/2-1

E E Bm,n exp [i(-27vyym + 27rQnt + Om,n)]. (2.37)
m=-N/2 n=-N/2

Somewhat intuitively, the output waveform contains a time-position window which

is governed along the temporal dimension by a Gaussian-sine time widow (as in

ID temporal shaping) and which is governed along the spatial dimension by a sine

position window (as in Fourier beam shaping).

2.7.2 Wavevector Shaping, Simple Demonstrations

Wavevector shaping is capable of producing a wide variety of output waveforms with

specified spatial, temporal, and spectral properties. Figure 2-25 illustrates the sim-

plest subset of these waveforms with a series of nine experiments. The unmodulated

pulse, originally centered in space and time, has been steered to different positions
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located on a circle in space-time. Application of a linear spectral phase gradient

shifts the pulse in time, while application of a (vertical) spatial phase gradient shifts

the beam upwards. A phase gradient along an intermediate direction shifts both the

beam and the spot.

I . I 1
-1

E
E
v 0

0 !I
1 - I 0U

-1 0 1
time (ps)

Figure 2-25: A single pulse, originally centered in space and time, has been steered
around to different positions all located on a circle in space-time.

A more complicated waveform is shown in Figure 2-26, where a ring-shaped wave-

form (a) was produced by the application of a conical phase pattern by the LC SLM

(b). The applied phase pattern has the appearance of concentric rings since the

desired conical phase pattern has been applied modulo 2r. Although the output

waveform was the expected shape, two features of (a) warrant discussion. First, there

is a bright spot in the center of the waveform. The bright spot is a modulator replica

pulse (or equivalently, the zeroth order diffraction spot) and is a feature observed

in most wavevector-shaped pulses generated with the present LC SLM. Additionally,

the ring has a slight fuzziness to it, especially at positive times due to neglecting

to incorporate the nonlinear spectral dispersion when calculating the desired phase

pattern.

Although cross-correlation measurements are often adequate to describe shaped

waveforms, in the case of the ring-shaped waveform shown in fig. 2-26, there is a

great deal of information about the pulse that is not revealed. By recording the

spectral intensity of the cross-correlation signal for all positions as a function of time,

a technique which we have dubbed spatially-resolved FROG (SR-FROG), additional

details about the shaped waveform are obtained. The setup for SR-FROG differs from

64



(a) (b)
C-

E2
Co

.i 

-

X

OCL._
_t
M
> 1

-1 0 1 1 480
e-1 0 1 1 horizontal pixeltime [ps]

Figure 2-26: A waveform in the shape of a ring (a) was generated by a phase pattern
in the form of a cone (b). The spot at time and position zero in (a) is a modulator
replica pulse.

the spatially-resolved cross-correlation apparatus (fig. 2-9) only in that an imaging

spectrometer has been used instead of a CCD, in order to produce a spectrally and

spatially resolved cross-correlation measurement. An isosurface of an SR-FROG trace

of a shaped waveform resulting from application of a phase cone is shown in fig. 2-

27 (a). The faces display the FROG intensity projected along the corresponding

perpendicular axes. For example, integrating the intensity along the frequency axis

recovers the spatially resolved cross-correlation. It is easy to understand how the

waveform is generated considering two limiting cases. First, a cross section through

the phase cone along the frequency axis shows that one half of the spectrum is shifted

toward negative and the other half toward positive times. Since the derivative of the

phase with respect to the spatial coordinate is zero, the beam is shifted neither up

nor down. On the other hand, a vertical cross section shows that the whole spectrum

in the upper half is spatially shifted upward and the opposite is true for the lower

half. In this case, the derivative with respect to the frequency axis is zero and no shift

along the time axis occurs. The whole cone rearranges the laser pulse intensity such

that it appears as a circle in a space-time plot. A simple simulation of the SR-FROG

measurement that assumes linear spectral dispersion and sharp pixel boundaries is

shown in fig. 2-27 (b).

The Fourier-transform relationship between real-space shaping and wavevector
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Figure 2-27: (a) Measured and (b) calculated SR-FROG trace. In both cases an
isosurface corresponding to half the maximum value is shown. The three faces show
the projections along the corresponding axis.

shaping is illustrated in fig. 2-28. Here, the waveforms resulting from an applied

phase pattern were recorded for both real-space shaping (b) and wavevector shaping

(c), with the only difference in the experimental apparatus being the choice of lens

CL to determine whether real-space shaping mode or wavevector shaping mode was

used. The real-space shaping output may be conceived as the waveform generated at

the plane of the LC SLM [fig. 2-28(a), left]. In this case, the phase pattern used to

generate the flying-V real-space shaping waveform consisted of about 30 horizontal

regions of the LC SLM, where linear spectral phases of different slopes were applied

within each region such that the temporal intensity was distributed along the shape

of the letter V. The cylindrical lens CL transformed the flying-V waveform into one

consisting of a series of fringe patterns with progressively smaller fringe spacings (c).

The fringe spacing is determined by the angle at which the pulse pairs in (b) cross

at any given time. Therefore, the smaller fringe patterns in (c) correspond to the
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larger spatial separation between pulse pairs in (b) at long times, and vice versa. As

before, the bright spot in (c) at time zero corresponds to the zeroth order diffraction

spot. Note that the same distance scale is used on the y-axes of (b) and (c), indicating

correctly that the overall size of the fringe patterns in (c) is larger than than the flying-

V waveform in (b). Although this may seem counterintuitive, it is a the consequence

of a small input beam size and a long focal length lens. For example, the spot size in

(c) at time t = -0.6 ps is approximately 2 mm. This output spot size is expected for

an input spot size in (b) of approximately 0.2 mm, considering that the focal length

of the lens CL was 50 cm, according to the relation

42W F
2W. (2.38)

7 D

Here, D is the input spot size (0.2 mm), F is the lens focal length (50 cm), and 2W,

is the output spot size (2.5 mm).
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Figure 2-28: (a) Schematic illustration of the Fourier relationship between real-space
shaping and wavevector shaping. The real-space shaping waveform in (b) and the
corresponding wavevector-shaping waveform in (c) were generated with the same
phase pattern.
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2.7.3 Wavevector Shaping, Arbitrary Intensity Profiles

The conceptually simple examples of wavevector shaping shown thus far only begin

to explore the range of waveforms obtainable through wavevector shaping. A more

powerful and general approach is to view wavevector shaping as a two-dimensional

diffractive technique, where the two dimensions available are the vertical spatial di-

mension and the horizontal spectral dimension. Based on this approach, we were

able to generalize the Gerchberg-Saxton algorithm [76] to generate two-dimensionally

shaped laser pulses. Prior to this, the algorithm had been applied to transverse beam

shaping [75] and to temporal-only pulse shaping [70, 57]. Using our implementation,

almost any gray scale image can be converted to a corresponding space-time image

and the phase pattern needed to generate the waveform is iteratively determined

by the algorithm. The outcome of such a procedure is shown in fig. 2-29. As in

the simpler waveforms illustrated in fig. 2-25, the spatial distribution of light has

been changed considerably from that of the incoming pulse. Note that the standard

simulated annealing or genetic algorithm approaches used in determining the phase

pattern necessary to create a user-defined waveform for one-dimensional pulse shap-

ing (for instance, [77, 78, 79]) would be prohibitively time consuming. For a LC

SLM with 7-bit resolution in each of 480 x 480 pixels, there is a staggering 21612800

(> 10485501) possible combinations of phase patterns, compared with the mere 2896

(> 10269) combinations possible with a conventional 7-bit, 128 pixel one-dimensional

LC SLM.

A schematic illustration of the Gerchberg-Saxton algorithm applied to wavevec-

tor shaping is illustrated in fig. 2-30. The algorithm uses two constraints, the spa-

tial/spectral amplitude profile of the input pulse at the plane of the SLM Ao(y, Q), and

the desired wavevector/temporal amplitude profile of the output waveform d(vy, t),

to determine the phase pattern 0(y, Q) required to generate the desired output wave-

form. The algorithm begins in the position/frequency domain with the input pulse

amplitude A(y, Q) and an input phase which is unimportant and can be set to

any value for the initialization step. Next, the input pulse is Fourier-transformed
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Figure 2-29: (a)-(d) Complex user-defined waveforms generated via wavevector shap-
ing.

(frequency to time) and inverse-Fourier-transformed (position to wavevector), after

which the wavevector/time amplitude profile ak(vy, t) labelled by iteration index k

is replaced by the desired amplitude d(vy, t). The new field d(vy, t) exp[iOk(vy, t)] is

then subjected to inverse Fourier-transformation (time to frequency) and Fourier-

transformation (wavevector to position), at which point one cycle of the algorithm

has been completed. The next cycle begins after the amplitude profile of the field

Ak(y, Q) exp[iOk(vy, t)] is replaced by the original input pulse amplitude Ao(y, Q) pro-

file. After many cycles, typically 5-30, the phase pattern (y, Q) is obtained. Taken

all together, the algorithm performs successive transformations between the posi-

tion/frequency and wavevector/time domains, imposing amplitude constraints in each

domain [Ao(y, Q) or d(vy, t), respectively] but retaining the phase terms in every step.

Reference [75] proves the convergence of the Gerchberg-Saxton algorithm for many

implementations in Fourier beam-shaping applications. Note that the graininess of

the images in fig. 2-29 is largely a result of the smoothness of the pixels in our
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replace Ak(y,2) replace ak(Oy,t)
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Figure 2-30: Schematic illustration of the Gerchberg-Algorithm applied to wavevector
shaping. See text for description.

optically-addressed 2D LC SLM. Simulations of the waveforms in fig. 2-29 (a) and

(b) that account for pixel smoothness in two dimensions reproduce the graininess

quite well (fig. 2-31) while simulations with perfectly sharp SLM pixels (not shown)

produce much smoother output waveforms.

Some fundamental differences between real-space and wavevector shaping warrant

discussion. First, in real-space shaping, the spatial distribution of energy in the

incident laser pulse is preserved in the final waveform (up to a constant magnification

factor depending on the choice of imaging optics), regardless of the temporal profile

of each horizontal slice. Furthermore, real-space shaped waveforms are inherently

pixelated along the vertical direction, although a large number of pixels in the vertical

dimension may at times give the impression of continuous patterns. On the other

hand, wavevector shaped pulses are not directly mapped from the LC SLM to the

sample, allowing the energy to be distributed across the sample nearly arbitrarily

and in smoother patterns. The locations of replica features in the two techniques

predisposes wavevector shaping to waveforms possessing inversion symmetry and real-
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Figure 2-31: (a)-(b) Simulation of complex user-defined waveforms created via
wavevector shaping, accounting for the smoothness of pixel boundaries in the 2D
LC SLM.

space shaping to waveforms with mirror symmetry about the time axis. Lastly, unlike

real-space shaping, wavevector shaping allows the spatial redistribution of the spectral

intensity and manipulation of spectral phase within a shaped laser pulse, important

capabilities that will be the subjects of the next two sections.

2.7.4 Wavevector Shaping, Modifying Spectral Content

Static optical elements such as prisms and diffraction gratings have traditionally been

used to spatially disperse the spectral components of a beam of light. While these

widely-used optical elements are simple and robust, they are also inflexible. First, a

given prism or grating only possesses a single degree of freedom influencing the spec-

tral dispersion, namely the angle of incidence, and adjusting this degree of freedom

is often cumbersome and time consuming. Frequently, gratings or prisms must be

exchanged in an optical apparatus when a different amount of dispersion is desired.

Furthermore, both prisms and gratings are limited to dispersing spectral components

in the "natural" order (forwards or backwards) of the colors of the rainbow. The

wavevector shaping apparatus provides the ability to control the spectral dispersion

in a nearly arbitrary manner and with excellent fidelity. Although a pixelated LC

SLM is used here, it should be possible to create a piezo-controlled, deformable mirror

membrane that would be able to apply a smoothly-varying spatial tilt to the input

spectral components such that the output spectrum would also be smoothly-varying.
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Figure 2-32: Reconfigurable spectral dispersion by the wavevector shaping apparatus.
(a) Unmodulated spectrum. Positive (b) and negative (c) dispersion of the spectrum.
(d) Sinusoidal dispersion of the spectrum, a simple example of a task not possible by
conventional dispersive elements.

Fig. 2-32(b) and (c) demonstrates the reconfigurable dispersion of our laser spec-

trum in the order of the colors of the rainbow to different vertical positions. An

"unnatural" dispersion configuration is shown in (d), in which frequency components

have been dispersed to different vertical positions in the shape of a sine wave. The

phase pattern applied by the LC SLM in figs. 2-32 and 2-33 consists of linear spa-

tial phases with different slopes applied to different vertical slices of the LC SLM in

order to shift the spot of a given spectral component to the desired height. Spectra

at different vertical spatial positions were measured by placing a homemade imaging

spectrometer at the focal plane of the output (see figs. 2-24 and 2-28).

One possible application of controllable spectral dispersion is in the area of optical

networking, particularly wavelength-division multiplexing. Similar ideas have been

explored in the literature. For instance, De Souza et al. [80] and Ford et al. [81] have

used tilting micromirror elements at the spectral plane of apparatuses similar to ours.

The micromirrors were capable of two-state operation, such that multiple spectral
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bands, or channels, were steered to one of two locations. Patel and Silberberg [82]

used a LC SLM to independently modulate the polarization of multiple channels of

an input pulse to be one of two polarization states, such that after the output passed

through a birefringent crystal, the different channels were spatially separated into two

polarization groups. Elsewhere, LC SLMs have been used to 'steer' an input beam

(that has not been spectrally dispersed) to multiple locations, for example Tan et al.

[83, 84].

To the best of our knowledge, however, there has not been a report demonstrating

the combination of beam steering with spectral selectivity, which may be generically

stated as routing a beam of light containing M frequency bands to any of N locations.

Such a device would have numerous possible applications in optical communications.

A demonstration of the wavelength-routing capabilities of the wavevector shaping

apparatus is shown in fig. 2-33, where the frequency components of an input beam

have been divided into 20 channels (vertical lines in fig. 2-33), and 20 positions, or

addresses (horizontal lines in fig. 2-33), have been identified. By varying the phase

pattern on the 2D SLM, any of the 20 channels may be directed to any of the 20

addresses. The method allows for further sophistication by using more general spatial

phase patterns within a given channel such that the channel may be split amongst

many locations as desired. Lastly, the same methods may be used to accomplish the

reverse tasks to those demonstrated above, namely, combining light from multiple

sources with different frequency bands into a single output beam.

2.8 Diffraction-Based Phase and Amplitude Pulse

Shaping

While the wavelength-routing capabilities briefly mentioned above are beyond our

present research interests, the ability to modify the spectral amplitude of the output

beam at a given location does have immediate application in a new and useful vari-

ation on phase and amplitude femtosecond pulse shaping. Namely, variable amounts
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Figure 2-33: Demonstration of spectral routing, in which different frequency compo-
nent, or channels, are routed to different vertical spatial locations.

of the input spectrum may be diffracted slightly upwards and with a controlled phase

such that the spectral phase and amplitude of the diffracted beam may be indepen-

dently determined, even though the 2D LC SLM itself only performs phase mod-

ulations on the input light. This scheme is extendable to several independent and

phase-stable outputs, a scheme that opens up exciting prospects for coherent nonlin-

ear spectroscopic experiments (see chapter 4). This diffractive mode of operation is

reminiscent of acousto-optic modulation, (a method also used for pulse shaping [26]),

although the 2D LC SLM allows for 480 independent channels (one for each spectral

component) and has a very high diffraction efficiency (>95%).

In our diffraction-based pulse shaping scheme [41], the laser spectrum is dispersed

horizontally, and a sawtooth phase function is applied along the vertical direction

by the 2D LC SLM to each frequency component (fig. 2-34[a]). Much like a blazed

diffraction grating, the direction of the first-order diffracted light for a given frequency

component is determined by the period of the sawtooth phase function, which is set

constant for all frequency components within the laser bandwidth. The spatial phase

(i.e. vertical position) and amplitude of the sawtooth pattern may be varied for each

spectral component in order to modulate the phase and amplitude, respectively, of

the light diffracted into the first order. Finally, a spatial aperture may be used to

mask out all but the first-order diffracted light before an additional lens collimates

the beam.
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(a) A FP

W

sawtooth amplitude, A

Figure 2-34: (a) Schematic illustration of diffraction-based pulse shaping. A sawtooth
phase modulation with period d, amplitude A(Q), and phase q(Q) is applied by the 2D
LC SLM to a given spectral component in order to control the phase and amplitude
of the light diffracted into first order. A lens with focal length f produces at the focal
plane FP a spatial Fourier transform of the light at the 2D LC SLM. (b) Measured
amplitude (dotted line) of diffracted light as a function of sawtooth amplitude A, in
good agreement with the expected sine behavior (solid curve).

The phase and amplitude dependence of the diffracted light may be easily under-

stood in terms of Fraunhofer diffraction (fig. 2-34[a]). The sawtooth phase modulation

A(y) applied by the 2D LC SLM to a given spectral component is of the form

A(y) = comb ( 0 (squ (d)

where y is the spatial coordinate, d is the period of the sawtooth function, and is

the spatial displacement of the sawtooth function. The amplitude of the sawtooth

function has been expressed as a product of the maximum phase shift attainable

by the SLM, /A, and a fractional amplitude parameter A. Similar to eq. 2.9, the

modulated input beam is given by

(2.40)

The resulting diffraction at the focal plane of the lens can be determined by inverse

Fourier-transformation to be

eout(vy) = A(vy) 0 ei,(v).
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The function A(vy) can be determined by use of the convolution and Fourier-shift

theorems to give

A(vy) oc comb(vyd) exp(-i2revy)sinc (rdvy + Alu/d). (2.42)

This result may be simplified by considering the phase and amplitude in the vicinity

of the first-order diffraction spot (where comb(vyd) = 6(vy + l/d)), yielding

eo,,tl(vl)) Cx ein(vy) exp(i27re/d)sinc[r - A/u/2], (2.43)

where the notation v,(1) indicates that only wavevectors in the vicinity of the first

order diffraction are being considered. It is assumed that the other diffraction orders

are sufficiently well separated in space to be unimportant (i.e. they may be blocked

with an aperture). From eq. 2.43 it is clear that the phase of the diffracted light may

be controlled by varying the spatial phase, i.e. the vertical position, of the sawtooth

function, while the amplitude of the diffracted light follows a sinc dependence on the

amplitude parameter A. Figure 2-34(b) shows that the measured amplitude of the

diffracted light agrees well with the expected sinc behavior. For the present 2D LC

SLM, = 2r.

An interesting aspect of eq. 2.43 is that the spectral phase of the diffracted light is

independent of /,t the maximum phase modulation achievable by the SLM. Therefore,

a 2D SLM with u < 27r still has the ability to shift the phase of the diffracted light by

up to 27r, although the maximum attainable amplitude is less than 1. For example,

a 2D SLM with a maximum phase shift of 7r in reflection mode would have a cor-

responding maximum achievable amplitude in diffraction mode of sinc(7r/2) = 0.64.

If the loss of efficiency can be tolerated in applications, then the diffraction-based

approach would allow, for example, direct phase and amplitude pulse shaping in the

near to mid infrared with 2D microelectromechanical (MEMS) SLMs that are cur-

rently available but can only provide a 2r phase shift for wavelengths up to 900 nm

[85]. In the present scheme, a SLM with A > 2ir would not benefit from the additional

phase modulation range.
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Finally, eq. 2.43 may be adapted to account for all spectral components by varying

the sawtooth phase and amplitude parameters and A for different frequencies. The

resulting first-order diffraction at the focal plane of the lens is

eotl(, iv) cx ei(, l1)) exp[i(Q)]sinc[(1 - A(Q))]. (2.44)

For experimental measurements in this section, nearly bandwidth-limited 805 nm,

1.5 mJ, 40 fs pulses from a 1 kHz repetition rate amplified Ti:Sapphire laser were used.

The focal length of the lens in fig. 2-34 was 40 cm. The period of the sawtooth pat-

tern on the 2D LC SLM was 0.67 mm for all spectral components. For the relatively

small fractional bandwidth laser pulses used here, the large sawtooth period produced

negligible spatial chirp. Laser pulses which are very short and therefore have a large

fractional bandwidth may require the use of a wavelength-dependent sawtooth period

in order to avoid spatial chirp. The wavelength-dependent sawtooth period necessary

to diffract all spectral components to exactly the same spatial location is easily de-

termined. Since the first-order diffraction occurs when , = -1/d, and since the

wavevector -1/d corresponds to the position y' = fA/d, it follows that d should be

chosen to be d = doA/Ao. Here, do is the period of the sawtooth at a given wavelength

A,.
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Figure 2-35: (a) Intensity cross correlations of two phase-related double-pulse wave-
forms. (b) Spectral intensity profiles of many double-pulse waveforms measured as
the phase difference between the two pulses was scanned.

The phase and amplitude shaping capability achievable with diffraction-based
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pulse shaping is illustrated in fig. 2-35. Intensity cross-correlations of two phase-

related double-pulse waveforms were performed with an unshaped reference pulse

(fig. 2-35[a]). To create the double-pulse, a 3.3 THz cosine-squared amplitude mod-

ulation was applied to the laser pulse in combination with a linear spectral phase

of slope 0.35 ps. The measured pulse positions are in agreement with the expected

positions at 0.2 ps and 0.5 ps. The relative phase of the pulses in a double pulse

waveform may be inferred by observing the spectral position of the cosine-squared

spectral amplitude modulation that produces the waveform. A measurement of the

spectral intensity of many double pulse waveforms is shown in fig. 2-35(b) as the

relative phase between the two pulses, Aq, is scanned. Comparison of vertical slices

through fig. 2-35(b) for Aq = 0 and A = 7r/2 reveals that the fringes in the spectral

intensity of the two waveforms in fig. 2-35(a) are shifted by 7r/2.

A notable property of diffraction-based pulse shaping is that it suppresses mod-

ulator replica pulses. To demonstrate this, first, an intensity cross-correlation was

performed on a shaped pulse resulting from the application of a linear spectral phase

with a slope of 2 ps (fig. 2-36[a]). In this case, there was no phase variation in the

vertical dimension of the 2D LC SLM and no vertical deflection of the shaped pulse,

although the apparatus itself was identical to the one used for real space shaping

described in section 2.5. Modulator replica pulses are visible at -4, 0, 2, and 4 ps

in addition to the intended pulse at -2 ps. The modulator replica pulses are larger

for the optically addressed, reflection mode 2D LC SLM used in the present experi-

ments than they would be with standard transmissive D LC SLMs since the 2D LC

SLM has rather smooth pixel boundaries [39]. Next, the same linear spectral phase

modulation was applied through diffraction-based pulse shaping, with the effect that

the modulator replica pulses are distributed both in time and space, as shown in the

spatially-resolved cross-correlation in fig. 2-36(b). To perform the spatially-resolved

cross-correlation, the background-free cross-correlation signal at the BBO crystal was

imaged on to a CCD camera. The relative intensities of the replica features in the

diffraction-based shaped waveform, when summed over all positions (fig. 2-36[c]), are

quite similar to those in obtained through reflection-mode pulse shaping (fig. 2-36[a]).
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Figure 2-36: (a) Intensity cross correlation of the waveform resulting from the appli-
cation of a linear spectral phase with slope 2 ps in a conventional (reflective) manner.
(b) Spatially-resolved intensity cross-correlation of a waveform with the same spectral
phase modulation as in (a) but generated using the diffraction-based pulse shaping
scheme. Many higher order diffracted pulses are displaced in both space and time.
(c) Integral of (b) over all positions, including many diffraction orders. (d) Integral of
(b) over position in the vicinity of the first order diffracted light (between the dashed
lines).

Lastly, the spatially resolved cross-correlation measurement (fig. 2-36[b]) shows that

the modulator replica pulses are eliminated in the vicinity of the first order diffracted

light, such as would be obtained if a spatial filter were used to block all but the

first-order diffracted light (fig. 2-36[d]).

Although modulator replica pulse distortions are often in the form of simple and

discrete pulses, as was shown above, they can also result in more complicated wave-

form distortions, especially when the modulator replica features overlap with the

desired waveform such as when the desired waveform is not simply a short pulse.

In these cases, the replica features and desired waveform interfere, resulting in dis-

torted pulse shapes. Figure 2-37 illustrates the complications arising when replica
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Figure 2-37: (a) Intensity cross correlation of the waveform resulting from the appli-
cation of a large quadratic spectral phase in a conventional (reflective) manner. (b)

Spectral interferogram of a chirped pulse generated with the reflective pulse shap-
ing arrangement and (c) the corresponding extracted phase (blue curve) and desired

phase (red curve). (d) Intensity cross-correlation of the same spectral phase modula-

tion as in (a) but generated using the diffraction-based pulse shaping scheme (green

curve). An unchirped pulse (blue curve), scaled so that its maximum is equal to

that of the chirped pulse, is shown for comparison. (e) Spectral interferogram of a

chirped pulse generated with the diffractive pulse shaping arrangement and (f) the

corresponding extracted (blue curve) and desired (red curve) phases.

features interfere with the desired waveform. In the conventional, reflective pulse

shaping mode, the waveform resulting from the application of a large quadratic spec-

tral phase (0.05 ps2) is greatly distorted by replica features overlapping in time and

space with the desired, chirped waveform [fig. 2-37(a)]. To give an idea for how

smoothing effects can distort the desired spectral phase, spectral interferometry was

used to characterize a pulse shaped with nearly the same amount of chirp (0.06 ps2 )

also using reflective pulse shaping arrangement. Examination of the spectral interfer-

ogram in (b) reveals periodic jumps in the spectral fringes. These jumps correspond
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to the phase wrap locations and can be seen more clearly in (c), where the extracted

phase (blue curve) has many noticeable deviations from the desired spectral phase

(red curve). In contrast, diffraction-based pulse shaping separates the replica pulses

from the desired waveform, resulting in a clean, chirped pulse whose structure is deter-

mined primarily by the spectrum of the laser pulses [fig. 2-37(b), green]. For reference,

an unshaped pulse is shown on the same scale as the diffraction-based chirped pulse

[fig. 2-37(d), blue]. The spectral interferogram (e) of a pulse with a chirp of 0.06 ps2

that was generated with the diffraction-based apparatus now oscillates smoothly, and

the extracted phase (blue curve) agrees nearly perfectly with the desired phase.

.~1 '":"

0Cro

oa 00.0-I." c
-2 0 2 -2 0 2

delay [ps] delay [ps]

Figure 2-38: Demonstration of multiplexed phase and amplitude pulse shaping. (a)
Angle-resolved intensity cross-correlation of four differently shaped waveforms. All
but the first order diffraction was blocked by a pair of razor blades. (b) Separate
cross-correlation traces through each of the four shaped waveforms.

The above results have demonstrated high quality phase and amplitude pulse

shaping of a single output with diffraction-based pulse shaping. A further capability

of the device is the generation of multiple phase and amplitude shaped outputs suit-

able for various applications, including phase-coherent nonlinear spectroscopy with

multiple beams whose wavevectors meet the appropriate phase-matching condition

[68]. To achieve this, four regions of the 2D LC SLM, each consisting of 60 rows

of pixels, were used to generate four independently shaped outputs. Since the four

regions of the 2D LC SLM used the same sawtooth period, all four shaped outputs

were incident upon the same first-order position at the focal plane (FP in fig. 2-34[a])

although with different angles of incidence. A pair of razor blades was used to mask
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all but the first order diffracted light at the focal plane. The four separate cross-

correlation signals were simultaneously recorded by using a lens at 1-f distance from

the focal plane to map the angular distribution of the cross correlation signal onto

a CCD. The angle-resolved cross correlation signal and slices from each region are

shown in figs. 2-38(a) and (b), respectively. The capabilities described here will be

demonstrated in coherent nonlinear optical spectroscopy experiments in chapter 4.

2.9 Appendix 1: Mathematical conventions and

important Fourier analysis relations

The conventions for Fourier transformation used in this thesis are listed below. Con-

jugate variables v and t are used instead of w and t, avoiding the awkward factor of

1/v27 used by many in Fourier transformation and inverse Fourier transformation.

Similarly, v and x are used instead of kx and x for the wavevector-position variables,

where kx = 2rvx. The conventions for transforming between the frequency-domain

and the time-domain are shown in eq. 2.45, and the conventions for transforming

between the position-domain and the wavevector-domain are shown in eq. 2.46. Note

that lower-case and upper-case functions are used in the corresponding domains, such

as F(v) and f(t). The convolution of two functions F (v) and F2 (v), symbolically rep-

resented by F1 (v) 0 F2(v), is defined in eq. 2.47. See references [71, 86, 87] for further

information on Fourier transformation and convolutions in the context of optics.

F(v) = f(t) exp(-i2irvt)dt f(t)= JF(v)exp(i2rvt)dv (2.45)
-00 -00

00 0O

G(y) = g(vy) exp(i2rvyy)dvy g(vy) = G(y)exp(-i27rvyy)dy (2.46)
-00 -00

00

C(v) = F (v) F2(v) = F(v')F 2(v - /v')dv' (2.47)
-00

82



1 exp[-Q2/AfA 2] :v A Q/exp[-r 2 AQ2 t2]

2 squ[Q/AQ] zQsinc(rAXQt)

3 comb[Q/afQ] X comb[AQt]

4 A(Q)B(Q) a(t) 9 b(t)

5 E(Q) exp[i27rTQ] X : e(t + )

6 e(y) exp[i27rcTy] X E(vy - a)

Table 2.1: Commonly encountered Fourier-transform relations. Note that Q is used
here (Q = v- vo) instead of v.

Frequently used Fourier-transformation pairs are listed in table 4.1, including the

convolution theorem (line 4), and the Fourier-shift theorem for both the frequency-

time and position-wavevector domains (lines 5 and 6, respectively). The function

comb(x) is defined as

m=oo00

comb(y) = 6(y- m), (2.48)
m=-oo

and the function squ(x) is defined as

squ(x) = { (2.49)

In the paraxial or small-angle limit, Fourier-transformation by a lens maps (via

Fraunhofer diffraction [71, 86, 87]) the modulated beam's wavevector distribution at

the plane 1-f prior to the lens to position at the focal plane 1-f after the lens (fig. 2-

:39). The plane of the modulator will use the position variable y while the focal plane

of the lens will use the position variable y'. The projection of the wavelength Ay onto

a line perpendicular to the optical axis is related to the angle of the diffracted ray

sin y = = Ay, (2.50)

where v = 1/Ay. For small Oy,, the position of the diffracted light at the focal plane

of the lens is given by
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tan Oy = f OY sin O = Avy, (2.51)

yielding

y' = f Av. (2.52)

Equation 2.52 provides the means by which to translate the calculated diffracted

waveforms in terms of the variable v, to position y' at the focal plane of the lens.

Ei, M X L Eout

a N. A
"\ -4 

I

VA I~~~ x

~~~~~

V

f f

Figure 2-39: Schematic illustration of Fourier-transformation by a lens. Within the
paraxial limit, the lens maps wavevector (immediately after the mask plane) to posi-
tion (at the focal plane).

Table 2.2 provides a short list of commonly used pulse shapes, and the phase

and/or amplitude patterns required to generate them assuming a perfect ability to

modulate the spectral phase and amplitude. Corrections for the Gaussian-sinc time

window or gaps are not included in table 2.2. See reference [31] for a description of

these procedures.

The entries in table 2.2 specify the phase/amplitude patterns required to generate

a desired waveform, assuming an input pulse with infinite spectral bandwidth (a

6-pulse). In practice, of course, pulses of limited spectral bandwidth are used, in

which case the output pulse is the convolution of the input pulse with the 3-pulse

response. The last entry specifies a general recipe for creating a desired series of

n pulses with relative amplitudes An at times Tn and with spectral phases O(Q), a

general case which includes several other shapes listed in table 2.2. There, the sum
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1 shift waveform center to time r exp[-i2-rTQ]

2 chirped pulse (quadratic, spectral phase) exp[i(ac22 + p/ 3)]

3 square pulse, squ[t/At] sinc(-rAtQ)

4 pulse train, separation r between pulses exp[ia sin(27r7Q)]

5 double-pulse, separated by r cos(27rTQ)

6 n-pulses with specified amplitudes, times, phases En An exp[-i27rTnQ + i(Q)]

Table 2.2: A list of commonly-used pulse or beam shapes and the idealized phase
and/or amplitude profiles required for their generation.

should be evaluated, and then expressed in amplitude/phase form (A(Q) exp[io(Q)])

to determine the desired amplitude/phase to be applied to the laser spectrum. In

some cases, the desired amplitude would be negative, such as when creating a square

pulse with spectral amplitude A(Q) = sinc(iArlt). Since a negative amplitude is

equivalent to a positive amplitude combined with a r phase shift (in the complex

representation) the absolute value of the desired amplitude modulation should be

applied, A(Q) = Isinc(rAtQ)j, and the spectral phase should be shifted by 7r in the

regions which require a negative amplitude, (Q) = rsign [sinc(7rAtQ)]/2. This

procedure should be used whenever a negative amplitude is required.

Note that the entries in table 2.2 may be used in combination with each other

by simply using the product of multiple phase/amplitude functions. For instance, a

chirped pulse train, where each pulse of the train has been chirped equally, requires

the combination of a quadratic spectral phase (line 2) and a sinusoidal spectral phase

(line 4). The overall phase modulation to apply in that case would then be exp[i(aGQ2 +

a sin(2r TQ))].
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Chapter 3

Coherent Control of Lattice

Excitations Travelling at

Light-Like Speeds

Based on the work by Auston [88] and others, femtosecond laser pulses with dura-

tions of 200 fs or less have been used to generate broadband pulses of THz radiation

as short as a single or even a half cycle [89]. This development opened the door

for femtosecond-based sources of coherent far-infrared radiation, for which there is

little practical alternative. The terahertz, or far-infrared spectral region, usually con-

sidered to be 0.1-10 THz ( = 3 - 0.03 mm X 3.3 - 330 cm-l), is intermediate

between electronic sources that can operate out into the many gigahertz regime and

optical sources that can operate out to approximately the mid-infrared region. To

date, terahertz sources based on femtosecond-laser excitation have been applied to

numerous problems of interest, including molecular spectroscopy within flames [90],

tomographic imaging [91], and sensing of biological agents [92].

Terahertz sources have also been proposed for applications in coherent control

[93], signal processing [94], nonlinear THz spectroscopy [95, 96, 97, 98], quantum

computation [99], etc., although many of these proposed applications require a de-

gree of control over the terahertz waveforms that until recently has not been possible

[100, 101]. Additionally, many scientists have interests in generating very large pulses
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of THz radiation for nonlinear spectroscopic studies in the THz region of the spec-

trum (for instance [102, 103, 104, 105]). The Nelson group in particular has had a

long-standing goal of initiating and studying large-amplitude displacements in ionic

crystals in order to determine non-parabolic contributions to their potential energy

surfaces that are known to exist but which have received almost no attention in

the literature due to technological difficulties in making large-amplitude THz fields

required for such experiments.

In this chapter we will describe a new approach to generating THz radiation

based on phonon-polaritons, which are coupled lattice-vibrational and electromag-

netic modes of ionic crystals that propagate at light-like speeds. Sections 3.1, 3.2,

and 3.3 provide a brief introduction to phonon-polaritons and discuss methods for

generating and detecting them. Sections 3.4 and 3.5 describe experiments in which

the two-dimensional pulse shaping method presented in chapter 2 are applied to the

control of phonon-polaritons and the generation of large-amplitude THz pulses. Sec-

tion 3.6 presents a new and simple method for THz waveform generation based on

shaping of the transverse spatial profile of a single, short excitation laser pulse.

3.1 Introduction to Phonon-Polaritons

Phonon-polaritons are coupled lattice-vibrational and electromagnetic modes of ionic

crystals that propagate at light-like speeds with frequencies typically in the range 0.1-

5 THz. Simply put, they are part vibration and part radiation. The coupled nature

of phonon-polaritons results in the ability to use them as both a probe of the host

material, for instance to study soft phonon modes in a ferroelectric crystal, and as

a source of coherent electromagnetic radiation, such as for dielectric spectroscopy in

the otherwise difficult to access THz frequency range. A brief theoretical description

of phonon-polaritons is included below. For a more detailed analysis, see references

[106, 18, 107, 108, 109, 110]

Phonon-polaritons in ionic crystals such as LiTaO 3 or LiNbO 3 are described by

the following set of coupled equations,
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Q(t) = - o Q(t) - rQ(t) + b12E(t) (3.1)

P(t) = b21Q(t) + b22E(t) (3.2)

where Q(t) is the normal mode coordinate of the transverse optical phonon with

frequency WT, F is a phenomenological damping constant, E(t) is electric field, P(t) is

polarization, and where 0Q(t) and Q(t) represent first and second temporal derivatives

of Q(t), respectively. A single oscillator model is assumed valid here. The constants

b12, b21, and b22 will be discussed below. P(t), E(t), Q(t), etc. have been expressed

as scalar quantities, which is sufficient for the present analysis. In physical terms,

equation 3.1 describes a damped harmonic oscillator with an additional term b12 E(t)

governing the coupling of the polar vibrational displacements to to an electric field.

Equation 3.2 describes the dielectric response of the coupled system in two terms,

where the first term describes the polarization response due to the phonon mode

(essentially dipole times ionic displacement) and where the second term describes

the polarization response of the crystal due to all other effects. Using equations 3.1

and 3.2 and the constitutive relation for the electric polarization P(t) we will next

determine the relative permittivity of the coupled system.

The constitutive relation for electric polarization is

P(w) = cX(w)E(w)

= Co (Er(W) - 1) E (w) (3.3)

where c, is the permittivity of free-space, X(w) is the dielectric susceptibility, and

Er(aW) is the relative permittivity. Inserting trial plane-wave solutions of the form

Q(t) = Q(t)l exp[i(kx - wt)] and E(t) = E(t)l exp[i(kx - wt)] into equation 3.1

yields an expression for Q in terms of frequency,
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Q(:) = b2 2 E() 2' (3.4)

Substitution of eq. 3.4 into eq. 3.2 yields an expression for the polarization in terms

of electric field which may then be equated to eq. 3.3, giving

(W = (wo -2r -b2 + b22) E(g) = -o(() 1)E(w). (3.5)

Eq. 3.5 may now be used to solve for E,(w):

() =(1+ b22 + b2b2l (3.6)
Co / o 2o -( iF - 2'

Equation 3.6 contains two terms, the first of which is nonresonant and describes the

system at frequencies above wTo, and the second of which describes the system near

resonance.

The constants b12, b21, and b22 will now be determined by considering limiting cases

for the relative permittivity. When - oc, the resonant term in eq. 3.6 disappears,

leaving

r(c) = 1 +- (3.7)

Similarly, when w - 0, we are left with

Er(0) = 'r(o) + 2 (3.8)
COWTO

From the above equations, the constants b12, b21, and b22 are determined to be

b22 = Eo(Er(O)- 1)

b2b2x = Weo(r (0) - er()). (3.9)

Rather than explicitly working with b12, b2l, and b22, we will use Co and co, where

these are defined as E, - ,(oc) and Eo - 6r(0), since these quantities have a clear
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physical meaning. Now, we may rewrite eq. 3.6 as:

- g")£ () = + W-O( -oo) (3.10)

An important and well-known property of LiTaO3 and LiNbO3 is that phonon-

polaritons exhibit a large dispersion resulting from a splitting between the relevant

transverse optic phonon mode and the longitudinal optic phonon mode. In the op-

tical regime, the dispersive properties of materials are often described in terms of

a wavelength (or frequency) dependent index of refraction. Here, instead, the dis-

persion is customarily presented in terms of the dispersion relation w(k). Using

Er(W) = n(W)2 = c2k2/w2, where n is refractive index, and assuming no damping, we

obtain

W 2 0 6 + 2 k2 1 | WToEo + C2k2 4)2 oC2k2
2£ 2 Vk ( (3.11)
2E, ° c2 E" E4c

wavevector/2n [mm' 1]

Figure 3-1: Simulated dispersion curve for LiTaO3.

Two branches of solutions are obtained in the dispersion relation, the upper branch

and the lower branch, as shown in fig. 3-1 (solid lines). For reference, fig. 3-1 also

shows the asymptotic dispersion relations for far-infrared radiation, at frequencies far

below the phonon resonance (dashed blue line), and for near-infrared radiation, at

frequencies far above the phonon resonance (dashed red line). For the experiments

presented here, only the lower branch of the dispersion curve is accessed, and only in

the range of approximately 0.2-1 THz, where the dispersion is approximately linear
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and the phonon-polaritons are considered to be primarily light-like.

3.2 Impulsive Stimulated Raman Scattering

For the experiments described in this thesis, phonon-polaritons are generated via

impulsive stimulated Raman scattering, or ISRS, by irradiating the host crystal,

either LiTaO3 or LiNbO 3 with a short (<100 fs) laser pulse. Before examining the

generation of phonon-polaritons, which are dispersive modes and behave differently

than ordinary vibrational modes, we will first examine ISRS in the general case.

The basic physical picture of ISRS is most conveniently understood in the time

domain in terms of a damped and driven harmonic oscillator, described by the differ-

ential equation

Q(t) + rQ(t) + o2Q(t) = F(t), (3.12)

where Q is the normal mode coordinate of a generic vibrational mode with resonant

frequency w, , a damping term governed by F, and a driving term F(t). Here, the

driving term is the laser excitation pulse. In the "impulsive" limit, where an excitation

laser pulse is much shorter than the period of the mode being excited, the force

exerted by the laser excitation pulse is proportional to the product of the differential

polarizability (cala/Q)o and the intensity of the excitation pulse Ic(t) [111, 112]

F(t) xc- ,Q cc (t) (3.13)

If we consider the solution of eq. 3.12, when the input laser pulse is considered to be

a delta-like pulse that arrives at time t = 0, the response function of the oscillator,

G(t), may be determined to be

G(t) oc E(t) exp (- ) sin( - /4t), (3.14)

where EO(t) is the Heaviside step-function given by
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0 t<0
H(t) = (3.15)

1 t > 

The Heaviside step-function is necessary such that G(t) is zero for negative times (i.e.

prior to the excitation pulse). When an input pulse I(t) of short but finite duration

is used, Q(t) may be determined by convolving the input pulse with G(t),

Q(t) I(t) G(t). (3.16)

From equations 3.16 and 3.14, the expected response for a single vibrational mode

is therefore a smoothed and damped sinusoid. Figure 3-2 shows ISRS measurements

(taken with a setup similar to that described in [113]) of quartz; the crystalline solid

bismuth germinate (Bi4 Ge301 2 ); and liquid tetrachloroethane. In the case of the

signal from quartz, the expected 128 cm - 1 mode is observed as a damped sinusoid.

For bismuth germinate and tetrachloroethane, many vibrational modes are observed,

giving rise to complex transient signals with many peaks in the frequency spectra.

e-

C,

0O
cc
cn

LL
LL

time [ps] time [ps] time [ps]

~~~J^+<~~~~~ h 
0 100 200 300 0 200 400 0 100 200 300 400 500

frequency [cm 1l] frequency [cm 1l] frequency [cm-1]

Figure 3-2: ISRS responses for (a) quartz, (c) tetrachloroethane, and (e) bismuth
germinate (c), and their Fourier-transforms (b), (d), and (f), respectively.

The range of vibrational frequencies accessible by the input laser pulse is a simple

function of the duration of I,,xc(t). In this case, we will use a Gaussian excitation

pulse Ixc(t) = I, exp(-AQ 2t 2/4), where AfQ is the full-width half maximum of the
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laser pulse spectral intensity (which is inversely proportional to the pulse duration).

The range of available frequencies can then be determined by substituting eq. 3.14

into eq. 3.12, to get

Q (, exp(-w 2 /Q 2 ) (317)
Q(c) o ( - ( iA) (3.17)

Of course, to excite a vibrational mode in an "impulsive" manner, the excitation

laser pulse duration must be shorter than half the oscillation period. This statement is

equivalent to the result shown in eq. 3.17, where it is clear that the spectral bandwidth

AQ of the laser pulse must span the resonance frequency of interest in order for w/AfQ

to be sufficiently small that Q(w) is nonzero. Such an interpretation connects with

the frequency-domain description of stimulated Raman scattering, since it says that

the pump and Stokes frequencies must be contained within the broad bandwidth of

the laser excitation pulse. Unlike conventional stimulated Raman scattering, where

the pump and Stokes beams each consist of a single frequency, for ISRS, there is a

continuum of pump and Stokes frequency pairs contained within the bandwidth of

the laser pulse, all of which contribute (to varying degrees) to the response of the

sample.

3.3 Generation and Detection of Phonon-Polaritons

In the case of phonon-polariton modes, eq. 3.1 can be modified to include the driving

term F(t), giving

Q(t) + wToQ(t) + FQ(t) - b12E(t) = F(t), (3.18)

which, together with eq. 3.2, describes the excitation of phonon-polariton modes.

Unlike the vibrational modes illustrated in figure 3-2, where the motion of a given

oscillator is essentially independent of the motion of other oscillators that are many

unit cells away, phonon-polaritons show strong dispersion at long wavelengths due

to long-range interactions among oscillators. This is caused by the coupling of os-
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cillators through the electric field term E(t). Because of this collective behavior,

the observed frequency of phonon-polaritons generated via ISRS is a function of the

phonon-polariton wavevector, as seen in fig. 3-1.

Another difference between phonon-polariton modes and ordinary vibrational modes

is that phonon-polaritons, which are light-like in the experiments reported here, prop-

agate rapidly across macroscopic distances in the host crystal. The group velocity,

given by O/O0k, is a significant fraction of the speed of light in vacuum, as is evident

in fig. 3-1. In lithium tantalate, it is approximately 1/6 the speed of light in vacuum

(n 6). The angle at which the phonon-polaritons propagate relative to the input

pulse, Of is a simple geometric function of the group velocity of the excitation pulse,

Vexc and the phase velocity of the phonon-polariton, vpo1,

Of =sin (veZ0 1 (3.19)
Vexc /

The end result is that phonon-polaritons resemble the wave left behind a boat that

travels quickly across a pond, as can be seen in the illustration in fig. 3-3. For LiTaO3,

O(w) 70° .

pump probe

Figure 3-3: Phonon-polariton generation and detection with a short excitation pulse.

Phonon-polaritons may be detected in a variety of ways, but most of them rely

upon the Pockel's effect [114, 115] in which an electric field modulates the index of

refraction of a material. For the experiments reported here in the uniaxial crystals

LiTaO3 and LiNbO3, the phonon-polaritons and laser excitation pulse are polarized

parallel to the optic axis of the crystal, which in fig. 3-3 points out of the page.

Analysis of the electro-optic tensor for LiTaO 3 and LiNbO 3 [114, 115] yields the

following equations for the ordinary (no(Epp)) and extraordinary (ne(Epp)) indices

of refraction at optical wavelengths in the presence of an applied electric field Epp
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polarized along the extraordinary crystal axis,

ne(Epp) = ne(1 -r 33n Ep) (3.20)

no(Epp) = n(1 - r13n2eEpp), (3.21)

where Epp is the phonon-polariton electric field, r13 and r 33 are the relevant electro-

optic tensor elements, and ne and no are the extraordinary and ordinary refractive

indices in the absence of an applied field (see table 3.1). Through a variation in the

index of refraction, then, the phonon-polariton amplitude may be determined. Many

schemes can be used to detect these refractive index variations, but we make use of

only two of these schemes, birefringence and shadowgraph imaging. Birefringence

detection is illustrated in fig. 3-12, and shadowgraph imaging is illustrated in fig. 3-

5. The former provides the time-dependent phonon-polariton response at a specified

region of the crystal where the probe beam passes, while the latter provides the

complete temporal and spatial evolution.

material no n2 e r 13 r 33

LiNbO 3 2.257 2.176 9.6 30.9

LiTaO 3 2.176 2.180 8.4 30.5

Table 3.1: Constants for modulation of the index of refraction due to phonon-
polaritons from reference [115]. Units for r13 and r 33 are pm/V.

For birefringence detection, a small, point-like probe beam polarized at 45° with

respect to the optic axis is sent into the crystal (fig. 3-3) and then through a po-

larizer before its intensity is recorded by a photodetector. The electric field of the

phonon-polaritons modulate the crystal's indices of refraction along the ordinary and

extraordinary axes, influencing the polarization state of the transmitted probe beam.

The variation in the polarization state influences the intensity of the probe beam

upon passing through the polarizer, and this intensity is recorded as a function of

probe delay in order to map out the time-dependent phonon-polariton waveform as

it passes by a single point.
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For shadowgraph imaging, a large probe beam is used to illuminate an extended

region of the crystal in which the phonon-polariton is propagating. This large probe

beam is then imaged to a CCD camera with a lens (typically 10 cm) which is situated

two focal lengths after the crystal and approximately two focal lengths before the

camera. Finally, the CCD camera is slightly displaced toward or away from the

probe beam, yielding slightly out of focus images of the phonon-polaritons. The

probe and excitation pulses are both polarized parallel to the crystal's extraordinary

axis. The shadowgraph effect is similar in origin to the bright and dark patterns at

the bottom of a swimming pool due to waves on the water's surface. Shadowgraphy

converts phase shifts due to refractive index variations to amplitude modulations.

More precisely, the amplitude of the recorded image is proportional to the second

spatial derivative of the phase variations, by d02/0 x2 [116].

A distinction should be drawn at this point between shadowgraph imaging and

Talbot self-imaging, since the terms are often not correctly used. In Talbot self-

imaging, there exist multiple planes before and after the actual image plane at which

an amplitude-image of a periodic phase-object is produced. As pointed out by Koehl

1117], the distance between these multiple amplitude-image planes is a function of the

period of the phase-object being imaged, and thus the Talbot self-imaging plane is

only well defined when the object being imaged is actually periodic. For that matter,

the position of a self-imaging plane relative to the proper image plane is a function of

the period of the phase-object being imaged, and therefore only the subset of phase-

objects with the correct period are formed into a true amplitude-image at a given

observation plane. The Talbot self-imaging phenomenon is merely a very special case

of shadowgraph imaging, and one that is in fact seldom achieved.

Regardless of the detection method (birefringence detection or shadowgraph imag-

ing), it is important that the group velocity of the probe be matched to the projection

of the phonon-polariton phase velocity along the direction of the probe. In the analogy

of a phonon-polariton wave resembling the wake left behind a boat travelling across

a, lake, the above condition is equivalent to requiring that the probe pulse act like a

second boat that "surfs" along the first boat's wake always at a fixed point of the os-
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cillation cycle. Since the measured phase shift (or birefringence) is an integral over the

phase shifts (or birefringences) encountered by the probe pulse as it passes through

the crystal, any difference between probe group velocity and the phonon-polariton

phase velocity will cause a distortion in the measured phase shift (or birefringence).

When the excitation pulse and the probe pulse are parallel and have the same group

velocities, such as in fig. 3-3 (assuming that the excitation and probe pulses have the

same polarization), the velocity matching conditions are automatically fulfilled.

For birefringence detection, a static birefringence in the generation crystal will

cause the ordinary and extraordinary polarization components of the probe pulse to

travel at different speeds and can introduce small distortions. As a benchmark, the

static birefringence of a 1 mm crystal of LiTaO3 for 800 nm light causes the extraor-

dinary polarization component to lag behind the ordinary polarization component by

only 5 optical cycles, or about 14 fs, which is less than the pulse width. In LiNbO 3,

however, the static birefringence is roughly 20 times larger, causing the ordinary po-

larization component to lag the extraordinary polarization component by 100 optical

cycles, or 270 fs, leading to weakly observable distortions. Although the lag substan-

tially exceeds the pulse duration, it does not exceed most phonon-polariton features

reported in this thesis. We generally work with phonon-polariton frequency compo-

nents less than 2 THz, so the lag, which is less than 1/4 cycle, leads only to some

blurring of the sharpest features.

For the shadowgraph imaging measurements shown here, we used a probe pulse

with a different center wavelength from the excitation pulse so that scattered light

from the relatively intense excitation pulse can be spectrally filtered from the weak

probe pulse which is recorded by a CCD camera. This is usually done by frequency-

doubling of a portion of the laser output to create a probe pulse at half the center

wavelength of the excitation laser pulse. Due to wavelength-dependent group veloci-

ties in LiNbO3 and LiNbO3, however, the frequency-doubled probe pulse propagates

much more slowly than the excitation pulse, creating a "smearing" effect that seriously

degrades the measurements. This problem is alleviated by steering the frequency-

doubled probe pulse such that the projection of the polariton phase velocity in the
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direction of the probe is equal to the group velocity of the probe pulse itself. This can

only be done to velocity-match the probe with either the left-going or the right-going

phonon-polariton response. The condition for velocity matching is

cos ( -- Of + t = , (3.22)
2 VP0'

where Ot is the angle between the probe pulse and the excitation pulse inside the

crystal, and Vpro is the group velocity of the probe pulse. For an 800 nm excitation

pulse and a 400 nm probe pulse in LiTaO 3, velocity matching is achieved for Ot ~ 3.5 °,

which corresponds to an angle of about 8 between the two beams in air (assuming

the laser excitation pulse enters the crystal with normal incidence). A schematic

illustration of this smearing effect is shown in fig. 3-4. When the slower probe pulse

propagates parallel to the faster pump pulse (black spot), the intersection between

the probe beam (blue line) and the phonon-polariton response (red lines) shifts as

a function of time, as can be seen in frames (a)-(c). If the probe pulse is tilted

slightly to one side, however, one of the phonon-polariton responses always intersects

at the same point within the probe beam, as can be seen in frames (d)-(f), where the

right-travelling phonon-polariton has been velocity matched.

3.4 Control of Phonon-Polaritons via Two-Dimensional

Femtosecond Pulse Shaping

IJltrafast optical control over electronic and/or vibrational responses of atoms, mole-

cules, and crystals has advanced dramatically in recent years [6, 118, 119, 79, 7, 120,

11, 12, 14, 13]. Experiments in this field have typically been conducted using fem-

tosecond pulse shaping techniques [24] for generation of complex excitation light fields

that yield specified coherent responses or that manipulate complex phenomena such

as photochemical reactions. Typically, these light fields, and the material responses

generated by them, are specified as a function of time but not macroscopic spatial

location. For ultrafast responses that move coherently across macroscopic distances,
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(a)
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Figure 3-4: (a)-(c) Illustration of smearing effect when imaging phonon-polaritons.
Here, an 800 nm pump pulse (black spot) propagating normal to the front face of the
crystal generates phonon-polaritons (red lines) that travel in the direction of Vpol. The
400 nm probe pulse (thick blue line) travels more slowly along the thin blue line than
the phonon-polariton, resulting in serious distortions of the signal. (d)-(f) Geometry
for avoiding smearing distortions by tilting probe beam, such that the right-travelling
phonon-polariton response always intersects the probe pulse at the same point within
its beam along the thin blue line.

more complete optical control over both spatial and temporal evolution requires the

use of time- and position-dependent excitation fields. Here we demonstrate versatile,

programmable spatiotemporal coherent control over phonon-polaritons, with possible

applications in multiplexed generation of tailored terahertz signals that could be prop-

agated and used inside or outside the crystalline sample in which they are generated

[100].

Recently developed methods in spatiotemporal femtosecond pulse shaping (de-

scribed in chapter 2) were used to transform a single 800-nm pulse of 50-fs duration

into an array of such pulses, arriving at different times and different locations in a

lithium tantalate (LiTaO3) single crystal. Vibrational waves were thereby created

at multiple, programmably-specified times and points of origin such that after some

propagation, the waves began to overlap and undergo constructive or destructive in-
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terference to produce spatiotemporally controlled responses. The initial lattice vibra-

tional amplitudes and phases at each point of origin were fully specified through spa-

tiotemporal shaping of the optical intensity profile since the ISRS excitation process

is governed by the optical intensity and not the optical phase.

Images of the propagating waves were recorded at different times by probe pulses

that were variably delayed with respect to the excitation pulses. Spatiotemporal

imaging [117] of phonon-polaritons in this manner is possible because of the substan-

tial refractive index changes induced by the lattice vibrational displacements. The

excitation pulses, probe pulses, and the phonon-polariton electric fields were all po-

larized along the optic axis of a 2-mm-thick LiTaO 3 crystal at 295 K. An amplified,

1-kilohertz repetition rate Ti:sapphire laser system was used, and after pulse shaping,

a total of 10 to 50 uJ of energy was typically distributed among all of the excitation

pulses. For all experiments, the crystals were kept at 295 K. The phonon-polaritons

have frequencies in the 0.2 to 2 terahertz range, and their phase and group velocities

are approximately constant at c/6.4 [121]. Thus, the lattice waves we generate propa-

gate coherently at about one-sixth the speed of light in vacuum, and even single-cycle

waves with THz bandwidths show negligible spreading or loss of bandwidth as they

move across millimeter distances over durations of tens of picoseconds. The excitation

and detection processes are illustrated schematically in fig. 3-5.

Phonon-polariton responses to excitation light fields consisting of 1, 2, 4, and 9

spots oriented along a line parallel to the LiTaO 3 optic axis are illustrated in fig. 3-6.

Each spot received just one excitation pulse, and all of the excitation pulses arrived

at the same time (t = 0). Near to the optical excitation sources, i.e., in the near

field, the separate wavelets can be independently observed and monitored. After

some propagation, which occurs preferentially in the direction perpendicular to the

polarization, constructive and destructive interferences begin to occur among wavelets

that originated from different sources. Finally, in the far field, the superposition is

complete and results in a phonon-polariton wavefront whose properties are dictated

by both the spatial and temporal features of the shaped optical excitation waveform.

In the case of 9-pulse excitation, the near-field response is too short-lived to view
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Figure 3-5: Schematic illustration of the spatiotemporal coherent control experiment.
A single beam with a single femtosecond pulse is transformed by the pulse shaper into
many excitation beams and pulses that reach specified sample locations at specified
times. These launch lattice phonon-polariton waves that move through the sample at
light-like speeds, superposing coherently to form a far-field response that is dictated
by the excitation spatial and temporal profiles. Variably delayed probe pulses are
passed through the sample and projected onto a CCD camera to monitor the phonon-
polariton spatial and temporal evolution.

here. Experiments were conducted with up to 50 distinct excitation spots. Note that

the figures consist of excerpts from far more complete sets of images which, when

viewed in rapid succession, appear as "movies" of phonon-polariton propagation.

Programmable manipulation of the far-field wavefront is illustrated in fig. 3-7. By

varying the times at which excitation pulses arrive at distinct spots [fig. 3-7, left],

different control objectives, including wavefront tilting, focusing, and the direction of

responses toward specified sample regions or "addresses," were achieved. For example,

a linear delay sweep in the excitation waveform generated a phonon-polariton plane

wavefront with a downward tilt [fig. 3-7 (A)], while the superposition of a linear and

a parabolic delay sweep produced phonon-polaritons that focus about a millimeter

away from the excitation region with either an upward or a downward tilt [fig. 3-7, (B)
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Figure 3-7: Phonon-polariton phased-array generation. Responses to excitation
pulses with specified arrival times and sample locations are shown. The upper half
of each row shows experimental results and the lower half shows the corresponding
simulations. The inset to the left of each row illustrates the type of excitation wave-
form used in each case. (A) Tilted phonon-polariton wavefronts resulting from four
pulses arriving at the sample at progressively later times, with a linear relation be-
tween temporal delay and spatial location of the spot. The direction of propagation
depends on the slope of temporal delay vs. position in the excitation waveform. (B)
and (C) Phonon-polariton focusing plus steering specified through a parabolic plus
linear relation between temporal delay and spatial location of approximately 50 spots.

wavevectors. Note that some features that appear in the data of fig. 3-7 (and fig. 3-8)

are due to left-propagating polaritons, polariton reflections off of various crystal faces,

imperfections in the excitation waveform or the probe geometry, or photorefractive

damage (which does not seem to influence the polariton generation efficiency).

Further spatiotemporal coherent control schemes allow for coherent manipulation

of a propagating response by an excitation field that moves along with it through

the sample. In fig. 3-8 (A), the coherent addition of phonon-polariton wavepackets

as they propagate through the host crystal is demonstrated. The output of the pulse
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Figure 3-6: Phonon-polariton spatial coherent control. Responses to impulsive excita-
tion with (A) one, (B) two, (C) four, and (D) nine excitation regions are shown. The
time delay between successive frames is 6.7 ps. Phonon-polariton responses moving
from left to right are shown. Their counterparts moving in the opposite direction are
not shown.

and (C), respectively]. This type of terahertz phased-array generation is reminiscent

of array sources ubiquitous in radar and ultrasound technologies [122] that operate at

far lower frequencies. The single-cycle phonon-polariton responses propagate with no

measurable dispersion across macroscopic distances, in excellent agreement with the

simulations shown in the lower panels of fig. 3-7. Although single pulses have been

used at each excitation region, multiple pulses or complex time-dependent waveforms

could be used, permitting, for example, periodic excitation at each spot with the

far-field wavefront manipulated through phase or frequency scanning as well as the

time delay scanning illustrated here.

The simulations were performed by specifying the spatiotemporally controlled

relative positions and times of origin of the separate terahertz responses, matching the

initial terahertz field amplitude distribution at each region of origin to that observed

experimentally, and propagating the terahertz responses in two spatial dimensions.

A constant index of refraction was assumed, which is valid for low phonon-polariton
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shaper is cylindrically focused such that each beam reaches a vertical "line" about 1

mm high and 50 m wide at the sample. The approximately 20 beams are separated

horizontally, and the time between pulses is delayed such that the pulses move from

left to right across the crystal at a speed that matches the phonon-polariton group

velocity. The phonon-polariton response generated by the first excitation pulse and

travelling to the right is thereby amplified by successive excitation events, yielding

an increase in phonon-polariton amplitude of about 10x and an intensity increase

of about 100x. By comparison, the data also show left-propagating responses that

originate from each excitation region and that are not amplified and appear far weaker.

A systematic scan of the delay time between adjacent excitation regions corrob-

orates that the amplification is maximal when the group velocity of the propagating

phonon-polariton wavepacket is properly matched. In fig. 3-8 (B), the maximum is

found at a sweep velocity of (50 ± 10) m/ps, which is in excellent agreement with

the group velocity of 47 ,um/ps for the experimentally determined central wavevector

of 42 mm - 1 . The gain as a function of the number of excitation pulses is illustrated

in fig. 3-8 (C) and demonstrates that substantial terahertz wave amplification may be

accomplished through spatiotemporal coherent control. In conjunction with internal

or external terahertz focusing elements, the present results permit large amplitude

phonon-polariton wavepacket generation. A comparable amplitude is not achievable

by using just a single excitation pulse because its intensity would be well above the

damage threshold of the crystal. Although the principle of constructive addition of

phonon-polaritons has been demonstrated earlier with just two manually adjusted

pulses [123], a previous attempt at multiple-pulse constructive addition produced

barely detectable results due to an incompletely developed pulse shaping apparatus

[124].

The present capabilities also point toward spectroscopic applications including

the programmable steering of phonon-polaritons into integrated terahertz waveguide

structures [94] for multiplexed waveguide-based terahertz spectroscopy measurements.

The generation of amplified and focused, high-intensity phonon-polaritons may en-

able nonlinear terahertz spectroscopy and control of nonlinear lattice dynamics, an-
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Figure 3-8: Phonon-polariton generation and amplification. (A) Amplification is re-
alized by a series of "line" sources moving from left to right at a rate that matches the
phonon-polariton group velocity. The last excitation pulse arrives before the fourth
frame. Thereafter the amplified response continues moving to the right. Phonon-
polariton amplification as a function of (B) the delay between two regions and (C)
the number of amplifying beams.

harmonic crystals near structural phase transitions, or liquid-state intermolecular

dynamics [961.

3.5 Improved, Echelon-Based Phonon-Polariton Am-

plification

A long-standing goal of the Nelson group has been to generate and observe large

displacements in ionic crystals in order to determine anharmonic contributions to

the potential energy surface. For the class of materials known as ferroelectrics [18],

which are ionic crystals possessing a permanent electric dipole within the unit cell,

these anharmonic components of the potential-energy surface give rise to a number of
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properties of great technological importance. For instance, ferroelectric materials are

widely used as piezoelectric transducers and actuators, insulators in high dielectric

constant capacitors, ferroelectric random access memory (FRAM) in computers, and

they are promising candidates for large-scale (many megabytes or larger) non-volatile

random access memory devices widely anticipated in the computer industry. Although

non-parabolic potential energy contributions have been modelled theoretically [19],

there has only been one report in the literature (to the best of our knowledge) which

has measured properties related to the nonlinear lattice potential in the THz frequency

range [102]. This frequency range is of particular interest since the vibrational modes

in many cases correspond to modes along the known non-parabolic potential energy

surface.

The dearth of measurements of the nonlinear contributions to the potential energy

surface for ferroelectrics at THz frequencies is largely due to the lack of good sources

of high-intensity coherent THz radiation. In this section, we will demonstrate an

improved method for generating large-amplitude phonon-polariton amplitudes based

on the travelling-wave amplification scheme described in section 3.4. These large

amplitude phonon-polariton waves may be used to probe the lattice potential of the

host crystal in which they are generated, or the large THz electromagnetic component

may be coupled out of the generation crystal for use with other materials.

As described above, a single excitation pulse may be only used to generate phonon-

polaritons of a certain maximum amplitude without causing irreversible damage to

the generation crystal (i.e. ablation of the crystal). Multiple, spatially separated

excitation pulses allow for a "gentler" means to create very large amplitude phonon-

polaritons, as shown in section 3.4. In order to create the largest possible phonon-

polariton amplitudes using the distributed addition scheme, then, the individual

pulses should each be as close to the permanent damage threshold as is possible.

Although the pulse-shaping approach did allow for generation of phonon-polaritons

larger than is possible with a single laser excitation pulse, none of the individual pulses

within the excitation waveform was near to the crystal damage threshold. This was

partly due to the efficiency of the pulse shaping apparatus itself, and limited in part
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by grating efficiency. Additionally, the damage threshold of the liquid crystal spatial

light modulator (LC SLM) itself placed a limit on the largest input pulse that can be

used.
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Figure 3-9: Echelon-based scheme for creating large amplitude phonon-polaritons.

In order to extend the phonon-polariton amplification scheme described in sec-

tion 3.4 to be able to generate very large amplitude phonon-polaritons, we used

refractive delays imparted by a glass echelon to create a series of pulses distributed

in space and time, as shown in fig. 3-9. The echelon itself consists of stack of 40

anti-reflection coated glass substrates arranged in a step-like structure, where each

substrate is approximately 0.375 mm thick. The echelon therefore delays the pulse

within different regions of the laser beam by varying amounts, producing the same

type of waveform used for phonon-polariton amplification in section 3.4. Demagni-

fication of the beam transmitted by the glass echelon was then used to decrease the

spatial separation of consecutive excitation spots to the appropriate size for gener-

ating the very large phonon-polariton amplitudes. Since the glass substrates have a

much higher damage threshold than the LC SLM used in section 3.4, this apparatus

may be used with more intense input laser pulses than is possible with the LC SLM

apparatus. Note that the relatively simple imaging interferometer shown in fig. 3-9, a

variation on a Jamin interferometer [125], contains only two mirrors and is passively

phase-stabilized since both arms of the interferometer propagate through the same

set of optics. Ordinary aluminum-coated mirrors on 0.375 inch glass substrates were

used, and they were oriented with the uncoated surface facing the probe beam as
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indicated. The probe wavelength here was 400 nm, and the probe pulse was velocity-

matched by tilting it at an angle in to avoid smearing in the measurement of the

amplified phonon-polariton response.
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Figure 3-10: (a) Interferometric measurement of a large-amplitude phonon-polariton
single-cycle wave generated with an echelon-based pulse shaping scheme. (b) Actual
shape of the phonon-polariton field. (c) Simulation of the effects of interferometric
measurement of a large-amplitude phonon-polariton, leading to a concentric-ring type
structure observed in (a).

Fig. 3-10 (a) shows a measurement of a large-amplitude phonon-polariton wave

as it passes by a vertical line within the crystal. Due to the large amplitude of the

phonon-polariton, the phase shift imparted to the signal arm of the probe interferom-

eter (relative to the reference arm of the probe interferometer) exceeded 2rT, creating

the unusual ring-like shapes shown in (a). The actual phonon-polariton field more

resembles that shown in (b), which consists of a single negative and a single positive

lobe (a single cycle pulse). The peak field of the phonon-polariton created a phase

shift of approximately 2.5ir. Since signal from interferometry is proportional to the

cosine of the phase difference between the two arms of the interferometer, the maxi-

mum intensity observed corresponds to a phase shift of wr. For reference, a simulation

of the intensity for a phonon-polariton with a peak field sufficient to create a phase

shift of 3. Due to the difficulty in determining the exact phase shift imparted at

the peak of the phonon-polariton field, we have placed a lower bound on its value of
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15 KV/cm.

The above measurements were made with a laser excitation pulse of 1.5 mJ energy.

Subsequent to the measurements shown here, other members of the group rebuilt

the apparatus such that greater than 50 kV/cm THz fields were generated. Even

larger fields should be obtainable by using 4 mJ laser pulses that are now available.

Experiments aimed at measurements of the non-parabolic character of the potential

energy surface using these very large THz fields are now underway. More broadly,

time-resolved measurements using THz "excitation" fields of large amplitude will be

made using variably delayed THz and visible probe pulses. Wide-ranging applications

of THz nonlinear optics and spectroscopy are anticipated.

3.6 Typesetting THz waveforms

For many fundamental and practical reasons, the linear spectral filtering approach

that is well established in the optical regime for femtosecond pulse shaping (discussed

in chapter 2) is not easily adapted to the THz regime. Instead, the THz pulse shaping

methods reported to date have utilized either temporally shaped femtosecond excita-

tion waveforms [126, 127, 128, 129] or specially fabricated materials or devices, with

limited results in terms of the complexity and fidelity of the THz waveforms generated

[130, 131, 132].

In this section we describe a new phonon-polariton-based method for generating

tailored terahertz waveforms by shaping the spatial profile of the excitation pulses

used to generate them. Since phonon-polaritons propagate in a plane almost per-

pendicular to the direction of the excitation beam (see fig. 3-3), the spatial profile

of the femtosecond laser pulse exerts a strong influence on the temporal profile of

the generated phonon-polariton response. As the phonon-polariton wave intercepts

the crystal-air interface, the electromagnetic component, imprinted with the specified

THz waveform, is able to radiate out into air and may be used for further experiments

or applications.

It can be shown analytically in one dimension that in the impulsive, plane wave
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excitation limit, the observed THz waveform E(x, t) resembles the spatial derivative

[133, 134] of the excitation beam profile Iexc(X)

E (x+ ,t) OC ±+xIxc(X), (3.23)

where c is the speed of light in vacuum and n is the THz frequency index of refraction

which is nearly constant at frequencies well below the phonon resonance. Therefore,

the spatial excitation profile that is needed to produce a user-defined THz waveform

is to a first approximation calculated by integration. For higher frequencies it is

necessary to back-propagate the THz waveform from the probe region to the excitation

region prior to integration, and thus to compensate for dispersion and absorption

effects. This is straightforward, so in both cases there exists a relatively easy recipe

to determine the necessary spatially varying excitation profile. The next step is to

simply 'typewrite' that excitation profile onto the crystal by shaping the spatial profile

of the excitation pulse. The THz waveforms may be optimized through feedback-

controlled adaptive shaping of the spatial excitation beam, although this technique

was not implemented here.
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Figure 3-11: Two complementary excitation profiles a) and b) whose sum is spatially
uniform c), and the corresponding measured THz waveforms d) and e) whose sum is
uniformly zero f).

An example is shown in fig. 3-11. Note that the excitation profiles (a) and (c)

are complementary, i.e. they add up to a constant value I(x) + 2 (x) = const. as
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seen in fig. 3-11(e). If the THz waveform is proportional to the spatial derivative, it

is easy to show that OxI2(x) = -xI(x) = exp(iir)I(x). This argument also holds

for higher frequencies because the frequency spectrum and dispersive or absorptive

effects are identical for the two waveforms. Figures 3-11(b) and (d) show the measured

waveforms. As expected they are out of phase by r and add up to zero as seen in

fig. 3-11(f).

The laser pulses used to excite phonon-polaritons had a central wavelength of

790 nm, a duration of 40 fs, a repetition rate of 1 kHz, and 10 100 ,uJ of energy.

A computer-controlled spatial light modulator (see chapter 2) was used to generate

user-defined one-dimensional excitation profiles trhough amplitude modulation of the

incident pump beam. The SLM was operated in amplitude-modulation mode, in

which the nematic liquid crystal layer of the SLM was aligned such that it variably

rotated the polarization of the pump beam at different spatial locations. This spatially

varying polarization was converted to an amplitude modulated beam with a polarizer,

and then imaged onto a 4 mm by 10 mm large and 0.5 mm thick x-cut LiNbO3 crystal.

In all cases, the polarization of the excitation beam at the sample was parallel to the

optic axis, which is oriented vertically in figure 3-12. The excitation profiles varied

along the x-direction (a cross section of the excitation intensity along the x-direction

is shown in each figure) but were constant along the y-direction, typically over a few

millimeters. A charge-coupled device camera was used to record the spatial excitation

profile of all THz waveforms generated.

Phonon-polaritons were detected by measuring the transient birefringence induced

in variably delayed probe pulses (see fig. 3-12). Lock-in detection was used to help

eliminate noise arising from scattered light. The time needed for data acquisition was

typically on the order of several minutes. Note that the spatial resolution (FWHM

of the probe beam) was (13 ± 2) /ym and the probe beam was variably delayed to

measure the time-dependent index variation at a spatial position well separated from

the excitation region (see figure 3-12). The size of the probe beam was chosen such

that the highest polariton frequencies expected could be measured accurately, i.e.

the probe spot was small compared to the finest features of the spatially varying
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Figure 3-12: Experimental setup for the generation and detection of shaped THz
waveforms.

excitation profile. Coherent detection allowed us to measure the THz electric field

rather than its intensity, yielding phase as well as amplitude information.

Figure 3-13 shows negatively chirped, unchirped, and positively chirped phonon-

polariton responses. The excitation profiles in column 3-13(a) show that the spacing

between adjacent peaks is nonuniform in the top and the bottom rows but constant in

the middle row. Column 3-13(b) shows that the spatial excitation profile is translated

into the corresponding phonon-polariton waveform and that the uniform/nonuniform

excitation profiles lead to unchirped/chirped phonon-polariton waveforms. The win-

dowed Fourier transforms of the waveforms in column 3-13(b) are shown in column 3-

13(c). Here, the chirp manifests itself in an upward or downward tilt of the time-

frequency distribution. Note that the unchirped and the chirped waveforms have

the same overall temporal duration. Since the chirped waveform may in principle

be compressed, through removal of any nonuniform spectral phase, its bandwidth-

limited duration would be shorter than its original duration. To support the shorter

duration, the chirped waveforms require a larger spectral bandwidth, as seen in col-

umn 3-13(c). The maximum spectral bandwidth corresponds to the narrowest feature
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Figure 3-13: Unchirped and chirped THz waveforms. The excitation pattern is shown
in column (a), the measured THz waveform in column (b), and the windowed Fourier
transform in column (c).

of the excitation profile.

To demonstrate that the present technique is suitable for encoding signals in THz

waveforms, we have generated spatially varying excitation profiles that are able to

imprint a waveform resembling one byte worth of information. The bits are equally

spaced, and each bit in the THz waveforms is represented by a single-cycle pulse

generated by a single Gaussian shaped "line" feature within the excitation profile.

The spatial light modulator allows single bits to be switched on or off in a simple

manner. A compilation of nine consecutive experiments is shown in figure 3-14.

An intensity plot of a vertical section of the excitation profile together with the

corresponding byte is displayed in figure 3-14(a), and the measured phonon-polariton

responses are shown in figure 3-14(b). Each excitation line generates a single-cycle

response which corresponds to a single 'bit'. The center frequency of a single 'bit' is

1.1 THz and the bandwidth around 1 THz.

The decay of the signals in figure 3-14(b) is due primarily to the fact that the

phonon-polaritons propagate across the crystal with a small forward wave vector

component.[88] When they reach the back of the crystal, they reflect forward, and

at this point the probing is no longer phase matched. This effect can be eliminated

either by tilting the crystal with respect to the excitation beam angle of incidence
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Figure 3-14: Generation of THz waveforms representing a byte. (a) Intensity plot
of a vertical section of the excitation profile as a function of the spatial position to-
gether with the corresponding number in binary coding. (b) measured THz waveform
versus probe delay time. The narrow dark line at time zero in (b) is caused by an
instantaneous electronic contribution to the Kerr signal.

[135] or by using a crystal with the back side cut at an angle that matches the

forward propagation component (26 degrees in LiNbO3 ) so that polariton propagation

is parallel to the back side. Polariton damping can be reduced substantially through

cooling of the crystal to 77 K [136], or alternatively, it may be accounted for by an

appropriate modification of the excitation beam profile. Finally, coupling of THz

radiation out of the crystal may be optimized by cutting the side of the crystal to be

perpendicular to the phonon-polariton propagation direction and/or through use of

an index-matching medium.

Although the above examples of terahertz pulse shaping have been limited to shap-

ing the temporal characteristics of the generated phonon-polariton through shaping

of the excitation field in one spatial dimension, it is straightforward to extend these

methods into two dimensions. In fig. 3-15, two-dimensionally shaped spatial excita-

tion patterns (created with Fourier-beam shaping methods discussed in section 2.6)

have been used to create spatiotemporally shaped phonon-polariton waveforms. Shad-

owgraph imaging was used to monitor the phonon-polariton waveforms as they prop-

115



(a)

(b)

Figure 3-15: Generation of two-dimensionally shaped terahertz waveforms. Each
panel is roughly 2.5 mm (wide) by 2 mm (tall).

agate. In (a), the excitation beam profile was that of a semi-circle, resulting in a

phonon-polariton with a curved wavefront that focuses as it propagates. In (b), the

excitation beam profile was two pairs of lines that cross after propagating roughly

0.8 mm. Prior experiments have required multiple static optical elements to create

phonon-polariton waveforms with specific properties: spherical lenses (spot excita-

tion) [117]; cylindrical lenses (line excitation); transmission gratings (multiple-fringe

excitations) [123, 121]; axicon-lens arrangement (ring excitation) [137]. Instead, these

as well as more arbitrary spatial excitation profiles may be simply generated through

Fourier beam-shaping methods, in order to generate phonon-polariton waveforms as

desired for experiments.

In conclusion, we have demonstrated in this section that spatial shaping of fem-

tosecond excitation pulses leads to well defined THz phonon-polariton waveforms in

LiNbO 3. The method requires no specialized materials or techniques other than a

commonplace electrooptic crystal and the ability to create spatially shaped beam

profiles. By coupling the generated THz radiation into free space, the corresponding

THz electromagnetic field can be used for further experiments or applications.

In this chapter, we have demonstrated versatile spatial and/or temporal coherent

control over propagating modes. While the present measurements have been con-
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ducted exclusively on phonon-polaritons, other propagating modes including exciton-

polaritons and spin waves could also be excited and controlled in a similar manner.

We note that although phonon-polariton excitation through ISRS does not require

control over the optical phases of different excitation pulses, the phases are well de-

fined and to a considerable extent can be controlled, as described in the previous

chapter. Polarization specification also could be exploited in coherent control over

various systems, including spin waves [10].
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Chapter 4

Coherent Four-Wave Mixing

Spectroscopy Based On

Two-Dimensional Femtosecond

Pulse Shaping

4.1 Introduction

Nonlinear spectroscopic methods have been widely applied over the past several

decades to diverse problems of both fundamental and applied importance. From two-

dimensional (2D) nuclear magnetic resonance (NMR) spectroscopy [4] widely used

in determining solution-phase structures of complex biomolecules, to real-time ob-

servations of chemical reactions [138], to Angstrom-level measurements of thin films

probed with laser-generated acoustic waves [139], nonlinear spectroscopic methods

can provide a vast amount of information about, for instance, a system's structural

properties, relaxation processes, interactions with its surroundings, or dynamics when

undergoing change. In addition to their ability to access nonequilibrium states of a

system, nonlinear spectroscopic methods derive much of their usefulness from their

ability to selectively measure properties of interest that are not clearly observable in
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linear measurements. This is especially the case for condensed-phase measurements

where complex inter- or intramolecular interactions, possibly occurring on time-scales

faster than the measurement itself, broaden spectral lines in linear absorption mea-

surements and obscure the desired information content of the spectrum. Consider a

molecule of interest dissolved in a polar solvent such as water. The solvent molecules

organize around the molecule of interest in a multitude of configurations that fluctu-

ate over a large range of timescales, creating a variety of local solvation environments

that change during the course of the measurement. The resulting absorption spec-

trum may then be very broad due in part to the large, inhomogeneous distribution of

local solvation environments surrounding the molecule of interest. While the linear

absorption spectra do in principle contain information about, for example, the homo-

geneous and inhomogeneous linewidths, the two are inextricably convolved with each

other.

Nonlinear spectroscopic methods are often able to peer beneath broad, congested

linear absorption spectra, to isolate quantities of interest. In the case of 2D NMR,

methods such as correlation spectroscopy (COSY) or nuclear Overhauser effect spec-

troscopy (NOESY) can be used to spread spectra along two dimensions to reveal

spin-couplings between adjacent or nearby nuclei. These and other related methods

in NMR have been so successful that scientists have long sought to develop analo-

gous experimental techniques in vibrational and electronic spectroscopy. The field

of two-dimensional vibrational spectroscopy, especially, has made great progress in

recent years [140, 141, 3, 20]. To date, two-dimensional vibrational spectroscopy

been applied to a wide variety of interesting problems, including, the determination

of anharmonicities and vibrational couplings within small molecules [142], the ex-

amination of the ultrafast timescales of hydrogen bonding in liquid water [143, 144],

and the study of protein folding [5]. Analogous two-dimensional optical spectroscopic

methods that probe electronic resonances have achieved more limited success, largely

due to technical difficulties with the available experimental tools [20, 145, 146, 147].

Figure 4-1 schematically illustrates a typical experimental apparatus used for 2D

optical (or infrared) spectroscopy. A single, short input pulse is divided up into four
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pulses with a series of beamsplitters. Three of the pulses (black lines) are focused to a

common point within the sample to generate a nonlinear signal in the direction of the

detector, and a fourth (reference) pulse (shown in blue) is overlapped with the signal

to characterize the signal via spectral interferometry. The signal is recorded as a

function of one or more of the pulse delays, and this data is then Fourier-transformed

to yield a 2D spectrum. Foremost among the challenges with this approach is that

the signal is interferometrically detected. Since the phase of the emitted signal is a

function of the phases of the input beams, it is important that the relative path lengths

within all beams do not fluctuate by more than a small fraction of the wavelength. In

the case of infrared vibrational experiments, where the wavelengths are on the order

of 3-6 um, such an apparatus can be made to be reasonably insensitive to vibrations

or other possible path length variations during the course of the measurements. For

optical multidimensional spectroscopy, where the wavelengths are typically in the

range of 0.4-0.8 um, the path length variations are much more problematic.

delay lines

input I
pulse 1 I

lens

Figure 4-1: Schematic illustration of experimental apparatus used for 2D optical and
infrared spectroscopy. A single input pulse is split into four pulses. Three of these
pulses (black lines) may be variably delayed before they are focused to a common
point within a sample and generate a nonlinear signal in the direction of the detector
D. The fourth pulse (blue line) is interferometrically combined with the signal in the
direction of the detector in order to characterize the signal.

Beyond differences in the mechanical stability of 2D optical and infrared spec-

troscopies, there is a broader issue that both optical and infrared 2D spectroscopy

face, and that is the limited ability to which the input pulses may be shaped. In

fact, the only control afforded by the method is the arrival time of the pulses used
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to generate the nonlinear response. This is in contrast to 2D NMR, where sophisti-

cated radio-frequency pulse sequences with specified frequencies, timings, and phase

relationships between the pulses are the foundation upon which the 2D methods are

based. Incorporating separate pulse shaping apparatuses (see chapter 2) into the in-

dividual beams of 2D optical infrared spectroscopy is no easy task, though, especially

considering the difficulties of maintaining interferometric phase stability.

In this chapter we will discuss a powerful new approach to 2D (or generally,

multidimensional) optical spectroscopy that is based on the 2D pulse shaping methods

discussed in chapter 2. We will show how our pulse shaping based approach eliminates

the problems of mechanical stability between the different beams and at the same time

opens up many exciting new possibilities. The chapter will begin with an overview

of the theoretical background for nonlinear spectroscopy and will make use of the

simple approach of diagrammatic perturbation theory [21]. Next, the experimental

apparatus will be described and its capabilities will be elaborated. Finally, results on

three prototype systems will be used to illustrate the exciting possibilities with this

powerful new method.

4.2 Nonlinear Optical Response

Four-wave mixing spectroscopic methods are based on the mixing of three input light

fields, defined here as Ea, Eb, E, to generate a fourth light field (the signal) Es,

usually in a unique direction. In the present case, the three input fields as well as the

output field are degenerate, or nearly so, meaning their center frequencies are close

together, giving the method its full name degenerate four-wave mixing (DFWM). The

input fields may be written in a general form as

E,(r, t) = En(t) exp [i (kr - wt + ,(t))] + c.c., (4.1)

where r is the spatial coordinate, where the nth field has the slowly-varying enve-

lope En(t), wavevector k, carrier frequency w,, time-dependent phase (such as for

a shaped pulse, or when using multiple phase-related pulses) 0=(t) , and where c.c.
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indicates complex conjugate such that the input fields are real. All fields are consid-

ered to be linearly polarized along a common axis, which is sufficient for the analysis

and measurements in this chapter. Note that boldface terms indicate vectorial quan-

tities. A commonly used beam arrangement for DFWM spectroscopy is the boxcars

geometry, where three input fields, Ea, Eb, and E, originating from three corners

of an imaginary box, are focused to a common point within a sample, producing a

signal output field Es in the direction of the fourth corner of the box, as shown in

fig. 4-2. Although in fig. 4-2 (left) double-sided arrows are used to indicate that the

timing of the input pulses may be varied, other parameters may be adjusted during

measurements, such as the center frequency or the phase of a given pulse.

boxcars FWM geometry outgoing beams
Erf+E. E, E, Ec+E

Ea

E,,
ic a

tref t b

Figure 4-2: (left) Boxcars beam geometry for DFWM spectroscopy. (right) Output
DFWM fields are generated in three directions, labelled as beams E, Es,, and Es,,.

The third-order macroscopic polarization response p(3 ) (r, w) resulting from three

incident fields is given by

p(3)(r, t) = (3) Ef(r, t)Eg(r, t)Eh(r, t), (4.2)
f,g,h

where X(3) is the third order dielectric susceptibility tensor, and where the summation

is performed over all possible combinations of the three incident fields. Of the 27 terms

that result from the evaluation of eq. 4.2, only 6 are dependent upon all three of the

incident fields-these can be distinguished from the rest by their wavevector. It will be
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discussed in section 4.5.2 how these 6 terms correspond to six possible time-orderings

of the three interactions between the sample and the input fields. Considering just

one of these 6 terms, multiple output beams are generated, as shown in eq. 4.3.

P(3 ) (r, t) = X(3)Ea(r, t)Eb(r, t)Ec(r, t) (4.3)

=(3) Ea(t)Eb(t)Ec(t)ei((-ka+kb+kc)r-(-WbWc)t+a(t)b(t)c(t))

+Ea (t)Eb(t)Ec(t) ei((ka-kb-kc)r-(wa- Wb-Wc)t+(a (t)+b (t)-c(t))

+E (t)Eb(t)E (t)ei ((k + k b+k )r- (W+Ub+ne) t+nt e e (t)+ b (t )+c (t )) +C.C. 

In eq. 4.3, the polarization response to the three input beams produces four separate

output beams that propagate in different directions, as can be seen by examining the

wavevector of each of the four terms. For example, the last term propagates with

a wavevector ka + kb + k, which for the boxcars geometry, corresponds to a beam

propagating in the direction of beam E,. The other three terms propagate in direc-

tions different from the three input fields, and these terms (labelled Es, Es,, and E.,,

in fig. 4-2, right) constitute the degenerate four-wave mixing (DFWM) polarization

response. Use of the term "degenerate" in DFWM implies that the three input fields

as well as the output fields all have the same, or nearly the same, frequency, which

is the case here. The output field in the direction of E, has a frequency that is the

sum of all the input frequencies. It is not a degenerate signal and will therefore be

ignored for the remainder of the chapter.

It is important to note that each of the three output DFWM light fields in eq. 4.3

has a different frequency, wavevector, and phase dependence on the three incident

fields. The input field whose frequency, wavevector, and phase relationship to the

output field is opposite to that of the other two input fields is called the conjugate

field. For instance, the third term has a wavevector given by ka + kb - k, which

indicates that Ec is the conjugate field. When using the boxcars geometry, the signal

that propagates in the direction of the fourth corner of the box is perfectly phase-
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matched [114]. Because of this, the signal at the fourth corner of the box is in

general the strongest, although the extent to which the other two signals are weaker

due to improper phase-matching depends upon the specifics of the refractive index

(and thickness) of the sample. Additionally, the three output signal fields contain,

in general, different information about the sample response. It will be discussed in

the section 4.3, that when short, non-overlapping pulses are used for the three input

fields, the timing of the conjugate field relative to the other two input fields selects

which one of the three different responses that will propagate in the direction of the

fourth corner of the box.

4.3 Time-Dependent Perturbation Theory

of Degenerate Four-Wave Mixing

One crucial aspect of the polarization response not elaborated in eq. 4.3 was the de-

-(3)tailed form of the third order nonlinear optical susceptibility, (3). In this section, we

will use semiclassical perturbation theory [148, 21], where the light fields are treated

classically but the system is treated quantum mechanically, to derive general expres-

sions for the macroscopic polarization response. After that, we will explicitly calculate

the first-order polarization response for a two-level system in order to demonstrate

the use of the formalism. Then, a related diagrammatic approach will be used to cal-

culate photon echo and transient grating signals (two classes of DFWM processes) for

a two level system. Finally, we will discuss the features of measurements of systems

with more levels.

In time-dependent perturbation theory, it is customary to split the Hamiltonian

of the system, H(t), into two parts, Ho which describes the system in the absence of

applied fields, and V(t) which describes the influence of the incident electric fields on

the system:

H(t) = Ho + V(t) (4.4)
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The time-dependent portion of the Hamiltonian is given by

V(t) = - (E(r, t) + Eb(r, t) + Ec(r, t)) A·/, (4.5)

where is the transition dipole operator that describes the coupling of the states

of the system resulting from an incident electric field. Note that vectorial notation

(boldface variables) is used for the fields and material polarization in order to keep

track of the different directions in which polarizations may be emitted, but that the

spatial dependence of p (implied by the dot product in eq. 4.5) will be ignored.

Working in the interaction picture (see chapter 5 of reference [148] or chapter 2

of reference [21], for example), we can write the Liouville-von Neumann equation of

motion:

pt = [VI (t), pI(t)], (4.6)Ot h

where p(t) is the interaction picture density matrix and VI(t) is the interaction

picture time-dependent Hamiltonian corresponding to V(t). Following the usual pro-

cedure of integrating eq. 4.6 and then iteratively substituting it into itself [21], we

obtain expressions for the interaction picture density matrix up through third order:

p(l)(t ) - () d (to[(o) I(to)] (4.7)
0

2 t2 tl
(2 i (4.8)

p)(t2) - (- / dt dto [Vi(tl), [V(to)Pi(to)] (4.8)
o o

3 t3 t2 tl

pi (t3)=( ) Idt 2 dtl dto [VI(t2), [V(tl), [VI(tO)p(to)]]] (4.9)

The nth order polarization response P(n)(r,t,) is then given by

P( )(r, t) c (,(t)) = Tr [u(t.)p?)(t"_)], (4.10)
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where Tr indicates the trace operation, and ((t)) is the expectation value of the

interaction picture dipole operator ,i(t). The usual procedure for calculating polar-

ization responses in the time domain is to assume well-separated pulses, and then

calculate the polarization in the case when each of the input fields is considered to

be a pulse. If it is desired, the response function may then be convolved with each

of the input pulses (a triple convolution), followed by imposing the rotating wave

approximation to throw out "antiresonant" terms.

4.3.1 Explicit Calculation of the First-Order Polarization Re-

sponse of a Two-Level System

We will now examine the first-order response of a simple two-level system, in order to

point out a few general features of the formalism, before moving on to a discussion of

the third-order response functions that describe DFWM measurements. A schematic

illustration of a delta-like input pulse Ea (black vertical line) that arrives at time

to = Tr, and the system's response to it P(1)(tl) (red curve) are shown in fig. 4-3.

Mathematically, this process can be described by substituting eq. 4.7 into eq. 4.10 for

the case when n=1, to get

P(1)(r, tl) oc Tr (tl) dto[Vi(to),pi(to)] (4.11)

Comparing eq. 4.11 to fig. 4-3, we can see that the function of the commutator

operation (and integral) is to "propagate" the density matrix in time from an initial

time to=0 until time to=To, which corresponds to t=0. The interaction picture

dipole operator ,uIt(tl) then determines the expectation value of the dipole moment

as a function of tl. In most cases, we can assume that the system is at equilibrium

prior to the arrival of the input pulse, such that there is no evolution of the system

during the time interval r0.

In order to calculate P( l )(r,t), we first need to determine ,i(t), p(t), and VI(t).

For a two-level system that, the equilibrium density matrix p, (assumed to be in the
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Figure 4-3: Schematic illustration of input pulse E, (vertical black line) and system
response P(l) (red curve). Note that the top-hat function (thin line) indicates the
range of values over which the integral in eq. 4.11 is evaluated.

ground state) and equilibrium Hamiltonian Ho may be written as:

Ho = E 
El

Po (: oK

0r 0

The interaction picture transition dipole matrix may be determined according to

!i(t) = Uot(t)lAUo(t) (see chapter 2 of reference [21]), where the equilibrium time-

evolution operators U~ (t) and Uo (t) are defined as:

exp[iElt/h]exp[iEt/h]

Uo (t) =
0 exp[-iElt/h]

(4.13)

Using equations 4.13, we can calculate ,UI(t):
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PI(t) = Uo (t)Po(t)

exp[iEot/h]

O

( 0 ol exp[-iEot/h]

exp[iElt/h] PIlo 0 0 exp[-iElt/h]

0

/ulo exp[iwlot]

puol exp[-iwlot])

TO

(4.14)

where the off-diagonal transition dipole matrix elements here are identical (uol = 0lo),

and where wo10 = (E - Eo)/h. Since the time-dependent portion of the Hamiltonian

in the interaction picture is given by VI(t) = -E(r, t)li(t), no additional calculation

is required to determine VI(t). The electric field of the delta-like input pulse given by

Ea(r, t) = Ea6(t) exp[i(kr - wat)]. (4.15)

Substituting the above equations into eq. 4.11, we obtain

P( 1)(r, t) cx Tr[
0

/plo exp[iLlotl]

H/o1 exp[-iWlotl] ] |dtoEa6(to - T) exp[i(kr - wto)]
0 0

(4.16)

0

[( po exp[iw1oto

(4.17)

Note that since the system is assumed to be an equilibrium state up until the inter-

action with the pulse, there is no evolution during the time period to and we may

therefore set %o = 0 such that the first pulse is defined to arrive at the time to = 0.

Before evaluating the above equation explicitly, we will phenomenologically introduce
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damping terms by substituting Qkl for Wckl, where

Qkl = Wkl + irkl (4.18)

Here rkl represents either the rate of homogeneous dephasing for the state Pkl, when

k:l, or the inverse of the lifetime of the state Pkl when when k=l. Alternatively,

these damping terms may be introduced from the beginning in the form of a damping

superoperator as part of the full Hamiltonian [21, 149]. We then obtain for the

polarization response

P(l)(r, tl) oc 01/1oEa exp(ikar)((tl) exp(-roltl) sin(wlot1), (4.19)

where the Heaviside step function (tl) has been introduced such that there is only

a polarization response at times following the input pulse (which occurs at tl=0).

Note that the the use of an input field whose temporal shape is that of a delta pulse

makes the integral trivial. Equation 4.20 describes the free-induction decay of the

system assuming all oscillators within the system are identical. In the case when there

is an inhomogeneous distribution G(w,) of two-level systems with slightly different

splittings, perhaps due to local solvation environments, the ensemble polarization

response P()s(r,tl) becomes

00

P(?)s(r, tl) oc dwloP(1)(r, tl) exp[-(wlo - wo)2 /2r2 ]
-00

(c / 0i/1loEa cos(kar)e(ti) exp(-Foitl) exp(-a 2 t2/2) sin(wloti). (4.20)

The term w, is the center frequency of the inhomogeneous distribution, and a charac-

terizes the width of the inhomogeneous distribution. In eq. 4.20 the inhomogeneous

distribution G(w) was assumed to be of a Gaussian form in order to produce a simple

analytical result.

The form of the ensemble polarization response, P(n)s(r,tl) is a damped sinusoid

whose decay is determined by the inhomogeneous distribution of oscillators as well as
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the homogeneous dephasing time. The direction in which the first-order polarization

response propagates is determined by ka, such that the emitted polarization response

propagates in the same direction as the transmitted input field. The magnitude of

the response is proportional to the product of the transition dipole matrix elements,

/,u01o,0, as well as the factor Ea that expresses the amplitude of the input field. To cal-

culate the ensemble polarization response to a realistic input pulse of finite duration,

eq. 4.20 would be convolved with an oscillatory input pulse, followed by imposing the

rotating-wave approximation to discard the antiresonant terms, although we will not

do so here.

4.3.2 Polarization Response for DFWM

We will now turn our attention to the calculation of the third-order DFWM response

to three delta-like input pulses. A general equation for the third-order polarization

response can be obtained by substituting eq. 4.9 into eq. 4.10 for the case when n=3,

to obtain

P( 3 )(r, t3 ) OC Tr il(t,) dt2 dt dto

[8(t2 - T2)/I(t 2), [(tl- )/i(tl), [6(t0 - To)LI(to),pI(to)1]]] ]. (4.21)

The computations involved within eq. 4.21 are schematically represented in fig. 4-4.

Each commutator operation propagates the system until the next interaction with the

light field. As before, the system does not evolve during the time interval r0 since the

system is assumed to be in its equilibrium state. The system evolution during time

interval 1 and rT2 is governed by the temporal separation of the three input pulses,

as well as their order.

Instead of constructing matrices for VI(t), 1 I(t), etc., and evaluating eq. 4.21

explicitly, it is customary to use a form of double-sided Feynman diagrams to analyze

nonlinear optical responses in systems. The principles for constructing Feynman
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Figure 4-4: Schematic illustration of system-light interactions for four-wave mixing
and the evolution of the system during the time intervals r0, rT, 72 , and 3 . Three
pulses, Ea, Eb, and Ec (vertical black lines) are incident upon the system, generating
a third-order polarization response (red curve). The top-hat functions (thin lines)
represent the range of values over which the integrals in eq. 4.21 are evaluated.

diagrams are included in section 4.7, adapted from reference [21]. The basic idea

behind the Feynman diagram approach is illustrated in fig. 4-4. All that is required

to determine the polarization response of the system to a series of delta input pulses

is to calculate the evolution of the system during the time intervals 71, 2 , and 7 3 . As

stated earlier, if the system is at equilibrium during time interval 70, which is almost

always the case, then there is no evolution of the system until the interaction of the

first input pulse with the system. Assuming the system is a two level system initially

in the ground state (as before), there are two possible DFWM diagrams when using

the pulse sequence illustrated in fig. 4-4, labelled R1 and R2 in fig. 4-5. The pulse

sequence corresponds to the photon echo measurement. R1 and R2 and are expressed

as

R 1+R2 C0 o 140(T1)E)(2)E(T3) exp[-rol (7 + 73)] (l1+exp[- 11T 2]) exp [iwol(Ti -T 3 )].

(4.22)

The polarization response of an inhomogeneous distribution of systems can now
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Figure 4-5: Possible DFWM diagrams for a two level system, initially in the ground
state. R1 and R2 correspond to a photon echo measurement, while R3 and R4 corre-
spond to a transient grating measurement.

be calculated via eq. 4.23:

P(3 ) (r, t) oc d exp (W W,)2 ) E Rk, (4.23)

0 k

where, as before, w, is the center frequency of the inhomogeneous distribution corre-

sponding to the wol transition, ur determines the inhomogeneous linewidth, and the

summation is over the contributing diagrams R1 and R2. The resulting macroscopic

polarization response is then

P(3)(r, t) exp[-Fo(71 +3)](1+exp[-jr2]) exp[_2(TlT3)2/2] exp[-iw(Tl-T3)],

(4.24)

where the Heaviside functions are not explicitly shown to keep the expression com-

pact. There are several interesting aspects of eq. 4.24. The Gaussian term resulted

from the integration over the inhomogeneous distribution of oscillators and physically

represents the rephasing of the oscillators that comprise the system. That is, the sig-

nal envelope, as a function of 3, will have its maximum amplitude when T3 equals

T1 the echo in photon echo. As T1 is increased, the maximum amplitude of the signal

envelope as a function of T3 decreases due to the homogeneous dephasing (from Fol

of the individual oscillators within the system). As T2 is increased, the contribution

from diagram R2 decreases according to the lifetime (Fl) of the upper state. A 2D

photon echo spectrum, the 2D Fourier-transformation of eq. 4.24 along T1 and 3, con-
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sists of a single peak whose lineshapes along the diagonal and antidiagonal reveal the

inhomogeneously broadened and homogeneous lineshapes, respectively (see fig. 4-6).

i Cco

3, S0

-o

o.

C:

Co,

ol1 [arb.] freq. [arb.]

Figure 4-6: (left) Simulation of the 2D spectrum of a photon echo signal for an
inhomogeneously broadened two-level system with T2 = 0. (right) A slice through the
diagonal yields the inhomogeneously broadened lineshape (blue) while a slice through
the antidiagonal yields the homogeneous lineshape (dashed green).

If we change the timing of the pulses such that the conjugate field, E,(r,t), arrives

at the sample second, the transient grating diagrams R3 and R4 (fig. 4-5) constitute

the signal for our two-level system. We can now repeat the above procedure to find the

polarization response for the transient grating signal of the two-level system, yielding

P(3 ) (r, t) oc exp[-F 01 (-l + T3)](1 + exp[-Fllt- 2]) exp[-7r +e3) xp-iw(7l + 3)],

(4.25)

which is nearly identical in form to eq. 4.24, with the only exception that the sign

of 73 is reversed in the last two terms. This difference in sign is significant as it

eliminates the ability to distinguish inhomogeneous and homogeneous contributions

to the lineshape for transient grating measuremnents, as seen in fig. 4-7. This concludes

the possibilities of performing DFWM on two-level systems.

We will next consider the ensemble polarization response of a three-level system

where a ground state may be coupled by the radiation field to two states. This

configuration is similar to the 5S-5P transitions for the rubidium atom that will be

discussed in section 4.5.2. For the moment, however, we will keep things general,

and merely assume that there are three levels, labelled 10), 1), and 2), and where
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Figure 4-7: (left) Simulation of the 2D spectrum of a transient grating signal for an
inhomogeneously broadened two-level system with T2 = 0. (right) Slices along the
diagonal (blue) and antidiagonal (dashed green) are not able to discern the homoge-
neous contribution to the lineshape as in fig. 4-6.

an incident light field may couple 10) to either of the other two levels, as shown in

fig. 4-8 (a). With the introduction of the third level, many new diagrams contribute

to the signal. These are shown in fig. 4-22, and are labelled R1-R16 (ignore diagrams

R1 7-R3 2 for now as they require a fourth state). By choosing the arrival time of the

conjugate field to be before the other incident fields, we can restrict our consideration

to only 8 diagrams, which correspond to the photon echo measurement. Among the 8

contributing photon echo diagrams, R1, R2, R5, and R6 are signals arising from two-

level systems, which have already been calculated. In the two-dimensional spectrum,

diagrams R1-R2 and R5-R6 will produce peaks along the diagonal of the 2D spectrum,

centered at w 0lo and wa20, respectively. The remaining four diagrams, R9 , R10, R13, and

R1 4, produce off-diagonal peaks in the 2D spectrum, as can be seen by examining the

time evolution within the diagrams during - and 73. Specifically, diagrams R9 and

Rio evolve with the frequency w10 during 1 and frequency w20 during T3, producing a

cross-peak above the diagonal. Diagrams R13 and R14 evolve with the frequency °;20

during 71 and frequency wlo during T3 , producing a cross-peak below the diagonal.

A 2D spectrum for such a three-level ("V" shaped) system is shown in fig. 4-8.

A slice through the diagonal of fig. 4-8 reproduces the linear absorption spectrum of

the system. The cross peaks indicate couplings. In 2D infrared spectroscopy, cross

peaks are used to help determine structural parameters, such as the relative angles
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Figure 4-8: (a) Energy level diagram for a three-level system. (b) Simulation of a 2D
spectrum for a three-level system where 2 = 0, indicating diagonal and off-diagonal
peaks. The same dephasing time (homogeneous linewidth) was used for all coherences,
and the system was assumed to have no inhomogeneous broadening. Furthermore,
all transition dipole moments were assumed to be equal.

between the transition dipoles, and the lineshapes of the given peaks are used to

study relaxation dynamics.

4.4 Experimental Apparatus

The apparatus used for the experiments in this chapter is shown in fig. 4-9. The ac-

tive component of the experiment is the two-dimensional pulse shaper configured in

the diffraction-based pulse shaping arrangement discussed in section 2.8. Diffraction-

based pulse shaping is used to generate four outputs that may each be independently

shaped in phase and amplitude to create four nearly arbitrarily shaped output wave-

forms. The four regions are shown in the fig. 4-9 as blue, green, red, and light blue

horizontal stripes within the beam. As described in section 2.8, a pair of razor blades

was positioned at the focal plane (FP) to block all but the first-order diffraction spots

produced by the sawtooth phase functions applied by the LC SLM. Notice that after

a lens collimates the laser beam, the four shaped regions of the beam propagate copla-

nar and are therefore not arranged in the useful boxcars geometry discussed in the

previous sections. Preliminary experiments in this coplanar geometry were reported

in reference [68]. In order to configure the apparatus for the boxcars geometry, a
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spatial mask with four holes on the vertices of an imaginary square was used to mask

each horizontal region of the shaped laser beam. The imaginary square defined by

the four holes of the mask was rotated by about 25 degrees from vertical such that

each of the four holes of the mask was positioned within a different horizontal slice

of the laser beam. The four transmitted regions of each of the horizontal slices were

thus arranged in the boxcars geometry. The red, green, and light blue regions of the

output pulse constituted the three input fields used to generate the nonlinear signal.

The dark blue region was used for a reference local oscillator (LO) beam in order to

characterize the emitted field, as will be discussed further, below. In some cases, the

LO beam was blocked with a card at the position of the spatial mask.

signal
... + LO

r kVs sampled
LA IULLJt;

mask

L1 FP

f

SLM

Figure 4-9: Experimental apparatus for degenerate four-wave mixing spectroscopy
based on two-dimensional femtosecond pulse shaping.

After the spatial mask, the four beams were focused to a common point within

the sample by another lens. All transmitted beams were then blocked except for the
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the signal beam. In the cases when the LO beam was not blocked at the mask plane,

the LO beam was incident upon the sample at such an angle that it copropagated

with the outgoing signal beam. We will analyze the function of the LO pulse later

in this section. When the LO pulse was used, it was necessary to attenuate it since

the nonlinear signals were generally quite weak and would otherwise be completely

overwhelmed by the much larger LO pulse.

Two methods were used to attenuate the LO pulse. For relatively strong signals,

it was sufficient to reduce the amplitude of the sawtooth phase function on the LC

SLM such that the LO beam amplitude was correspondingly reduced to about 2%

of its maximum possible intensity. Due to the finite bit depth of the LC SLM,

however, it is not possible to reduce the amplitude of the sawtooth phase function

and still achieve good control over shaped outputs that are very weak. Essentially,

the finite bit depth of the LC SLM doesn't allow for continuous adjustment of the

pulse amplitude at values near to zero---below 2%, the amplitude drops abruptly. The

second method that was used for attenuating the LO pulse was to place a neutral

density (ND) filter within its beam path. Unfortunately, the glass substrates used for

the ND filters possessed a small but significant amount of wedge shape to them, such

that a beam transmitted through one of the ND filters would be deviated relative

to the other beams. Therefore, a weak (0.1 optical density) ND filter on a nearly

identical substrate was inserted into the path of the other three beams in addition to

the stronger (2.0 optical density) ND filter in the path of the LO pulse, such that all

beams were deviated by the same angle and therefore overlapped properly. The signals

were either measured with a photodiode or a spectrometer. When a photodiode was

used, one of the three input beams was chopped at half the repetition rate of the laser

pulses to allow for lock-in detection.

A tremendous benefit of the apparatus is that all beams propagate through the

same set of optics, such that the relative path length traversed by all beams is in-

terferometrically stable. This property greatly facilitates the characterization of the

emitted signal, required for most two-dimensional spectroscopic methods, since the

signal field is detected by measuring the interference fringes between it and the co-
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propagating LO reference field within a spectrometer. Small path length variations

on the order of the wavelength of the laser pulses cause the interference fringes be-

tween the signal and LO to shift significantly and introduce crippling distortions in

the measured signals. The common path geometry used here makes the apparatus

insensitive to vibrations in the mounts and holders for each optic. Only relatively

high-order vibrational modes, for instance the "warping" of a mirror or lens, are ca-

pable of introducing phase shifts between the beams. Air currents were not found to

compromise the interferometric stability of the apparatus. During a full day of op-

eration, the apparatus was not found to drift noticeably, and the root mean squared

stability was measured to be A/50.

Other groups have developed diffraction-based approaches for creating phase-

stable two-dimensional DFWM apparatuses where refractive elements were used when

scanning the delay one or more of the incident pulses [146, 150]. Although these ap-

proaches do possess excellent stability, they rely upon methods for delaying pulses

which shift the envelope of a pulse along with its carrier phase. This means that

as the delay is shifted, the phase of the delayed beam is also shifted, imparting a

corresponding phase shift to the third order signal field. Since the delay and phase

of the LO pulse are fixed, the interference fringes between it and the signal field also

shift as a function of the delay of one of the input pulses. This requires that very

small delay steps be used so that the interference fringes do not shift by more than

half a period between successive measurements. Unfortunately, reproducibly delaying

pulses by fractions of a wavelength is not a simple task. In the experiments described

in references [146, 150], an additional measurement was used at each time step in

order to precisely record the time delay between the delayed pulse and a reference

pulse. This external measurement of the delay allowed for correction of phase errors

due to the mechanical stages used to impart the delay.

Unlike pulse delay devices based on optical path-length variations (delay stages)

or refractive delays based on glass components of adjustable thicknesses, delays gen-

erated by a pulse shaping apparatus only shift the carrier envelope. This means that

with our pulse-shaping based approach, it is not necessary to increment delays by
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fractions of the wavelength, reducing the number of measurements required and sim-

plifying the eventual data analysis. For envelope-delayed pulses, there is no benefit to

using delay increments smaller than approximately 1/4 of the duration of the pulse.

A 40 fs FWHM laser pulse centered at 800 nm requires only 100 delay steps per

picosecond (4 delay points per 40 fs envelope duration) when using envelope-delayed

pulses, while approximately 1500 delay steps (4 delay points per 2.7 fs optical period)

are required when using envelope and phase delayed pulses. In NMR, this decoupling

of a signal from its carrier frequency is known as detecting in the rotating frame, and

similarly reduces the number of required data points.

As discussed in chapter 2, the range of delay times accessible by the pulse shaper

is approximately ±4 ps. Depending on the delay of the pulse, the amplitude varies

(see fig. 2-14). If desired, amplitude shaping of the output pulse could be used to

compensate for the natural rolloff of the pulse as it is delayed or advanced from time

zero. Alternately, the rolloff may be accounted for in the data analysis by either

characterizing the rolloff prior to the experiment or by recording the intensity of a

pulse for all delays during a measurement.

One drawback of the apparatus is that much of the input laser energy is wasted.

Fortunately the experiments reported here did not suffer from the low efficiency of the

apparatus since there was an abundance of energy provided by our laser source-a

1 kHz amplified Ti:sapphire laser, with 1.5 mJ pulses of 50 fs duration and a center

wavelength of 800 nm. The losses arise from both the pulse shaping apparatus, which

is about 20% efficient, and the spatial mask, which is about 5% efficient. In the pulse

shaping portion of the apparatus, most of the losses arise from two passes through

a 50% beamsplitter. The 1200 lp/mm holographic grating is itself 90% efficient per

pass. On previous occasions, we have used the pulse shaper with the LC SLM slightly

tilted such that the reflected, modulated beam was sent out of the system at a small

angle relative to the input and could be picked off with a mirror. The efficiency of

this pulse shaping arrangement is about 80%. Methods to improve the efficiency of

the spatial masking process are currently under consideration. One approach would

be to reshape the beam with a custom refractive optic such that the beam only has
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intensity in the region of the mask over the holes.

A wide variety of methods may be used to detect the emitted signal. The simplest

scheme uses a photodiode or a photomultiplier tube to measure the time-integrated

intensity of the signal as the pulse delays (or center frequencies, or optical phases,

etc.) are varied. Note that such a scheme only records the energy of the signal

pulse, and not its temporal properties. The questions of when was the signal emitted

and what was its phase are critical for 2D time-domain spectroscopic measurements.

Characterization of the emitted signal via methods based on FROG (see section 2.3)

are not convenient since FROG requires many measurements (typically 50 or more)

as a function of inter-pulse delay in order to characterize a signal. For a FWM

measurement involving scanning the time delay between two incident pulses for a total

of 300 steps, a full FROG trace would need to be recorded at each step, making the

total number of measurements 15,000. Instead, experimenters typically use spectral

interferometry [65, 60, 66] to rapidly characterize the signal field in just one or two

measurements using a multichannel spectrometer.

In spectral interferometry, a reference field Eref (fig. 4-2, left) that is already

well-characterized is combined with the output signal beam and then the intensity of

the coherent superposition of both fields is recorded by a spectrometer. The spectral

intensity recorded is given by

1(w) = IEs(w)eiOs(w) + Eref(W))ei(ref(w)+ 21rT) 2

= (w) + Ief(w) + 2 Es(-)Eref(w)I cos( (w) - ,,ref(w) - TL), (4.26)

where the signal and reference pulses have been expressed in the frequency domain,

and where is the delay between the (first moments of the) signal and reference

pulses. The cross-term in eq. 4.26 is a function of the time delay between the signal

and reference fields, T, and the difference between the spectral phases of the signal

and reference fields. Typically, the reference field spectral phase and amplitude are

independently determined through a measurement such as FROG [59]. One addi-
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tional measurement may be used to determine the spectral amplitude (E,(w)lI) of

the signal field, such that the remaining unknown quantities T and c() may then

be determined by the measured spectral interferogram, as described in [65, 66]. As

opposed to the 15,000 measurements required for the above example with FROG,

only 600 measurements are required for this implementation of spectral interferome-

try. Inverse Fourier-transformation with a computer may then be used to reconstruct

the temporal phase and intensity of the signal field if desired.

4.5 Experimental Results

In the remainder of this chapter, we will present the first generation of experiments

based on our new approach to coherent nonlinear optical spectroscopy. As with any

new method, a first objective is to generate results from systems that we believe

can be modelled accurately so that the method itself can be tested thoroughly. To

that end, the first experiments discussed are heterodyne-detected transient grating

measurements of liquid diiodomethane, a nonresonant system that is Raman active.

Single- and multiple-pulse excitation are used to generate and manipulate ground elec-

tronic state wavepackets excited via impulsive stimulated Raman scattering. Next,

one- and two-dimensional DFWM measurements of atomic rubidium vapor are de-

scribed. Some of the versatility of the apparatus is demonstrated with measurements

conducted in the frequency domain (via spectral filtering of the input beams), and

in a hybrid time-frequency domain measurement (delayed pulse in one input beam,

and spectral filtering of other beams). Finally, we will present photon-echo measure-

ments on potassium dimer molecules in the gas phase, with different pulse sequences

that exert a strong influence on the system response. We also demonstrate powerful

phase-cycling methods borrowed from multidimensional NMR, which allow for the

isolation of the nonlinear signal of interest in the presence of competing signals that

would otherwise seriously degrade the measurements.
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4.5.1 Transient Grating Measurements on Diiodomethane

Two vibrational modes of diiodomethane are accessible by our laser pulses, the C-I

symmetric stretch at 488 cm - 1 and an I-C-I bending mode at 123 cm -1 (see fig. 4-

11). These vibrational modes may be excited by ISRS (see section 3.2) as part of

a DFWM measurement. The pulse configuration will be that of a transient grating

measurement (SII), with the delay between the first two pulses set to zero. Since

there are no resonant transitions in diiodomethane that occur within the spectral

bandwidth of our laser, pairs of light-matter interactions occur simultaneously. For a

given Raman-active vibrational mode, then, two diagrams contribute to the DFWM

signal, as shown in fig. 4-10. The expected signal for delta-like input pulses is

P(3 )(r, 7 2 ) cX ( 2 ) exp(-ro 1 T2 ) sin(wo0T2). (4.27)

Note that the polarization response is identical to the free-induction decay result

derived in section 4.3.1 for the response of two-level system to a delta-like input pulse

(see eq. 4.20). However, it should be noted that the free-induction decay in that

calculation was a first-order response that was resonant with the frequency of the

incident laser field, while the present vibrational free-induction decay is a second-

order response that is resonant with neither incident field but with differences among

the Fourier components contained within their bandwidths. Furthermore, the result

is identical to that obtained classically when ISRS was introduced section 3.2. Since

there are two Raman-active modes in diiodomethane whose frequencies are within

the bandwidth of the laser pulse, both modes will be excited, making the generated

signal the sum of the two free-induction decay signals.

T2 > 11XOI I
IOXOI IOXOI 10)

R1 R2

Figure 4-10: Two contributing Feynman diagrams describing a nonresonant transient-
grating DFWM measurement involving a single vibrational mode.
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Figure 4-11 shows the transient grating signal (c) for diiodomethane in a 1 mm

path length cuvette at room temperature, consisting of both slow and fast oscillatory

components, as well as a large nonresonant electronic response at time zero (not

described in the Feynman diagrams for this process). The frequencies of the fast

and slow oscillations agree with the expected frequencies, shown in (d). The pulse

sequence is illustrated in (b), where the conjugate pulse, EC, arrives at the sample

time-coincident with pulse Ea. At a variable delay time controlled by the pulse

shaping apparatus, a probe pulse, EC is then scattered to create a signal pulse Es

whose dependence upon T2 is identical to that of the polarization response of the

system. Added coherently to the variably delayed probe pulse is a reference pulse

ELO whose delay is perfectly matched to that of the probe pulse. The time-integrated

intensity Is(72) recorded by the photodiode as a function of the probe/LO delay is

given by

IS(T2 ) I ES('2) + ELO(T2)12

cX Is(T2) + ILO(72) + 21 E, ( 2)1 IELO(T2)I cos(a)

ILO(2) + 2 Es(T2 ) ELo(T2 ) cos (Aq), (4.28)

where the the approximation holds true for signals that are much weaker than the

reference pulse, and where 5 here represents the phase difference between Es and

ELO. When the phase of one of the input beams (beam EC) is flipped by 7r with

the pulse shaper, the argument of the cosine term is then shifted by 7r, imparting an

opposite sign to the signal as shown in the green trace in (c). The green signal has

been displaced from the blue trace for the sake of clarity. Since this detection scheme

relies upon interference between the emitted signal and the reference pulse, all four

incident beams must be interferometrically stable, which is clearly the case here.

A second set of transient grating measurements is shown in fig. 4-12. This time, the

pulse shaping capabilities were used to produce a pair of output pulses for each of Ea

and E, with a variable interpulse separation, A. The configuration is similar that used
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Figure 4-11: (a) Diiodomethane molecule, and Raman-active vibrational modes ac-
cessible by the laser pulses. (b) Pulse sequence and beam geometry. (c) Heterodyne-
detected transient grating signals with (green) and without (blue) one of the input
beam phases flipped by r. (d) Fourier transform of blue signal in (c), indicating the
expected vibrational modes.

by Weiner et al. [6] for multiple-pulse excitation used to coherently control crystalline

vibrational modes. The pulse sequence is shown in (a). Note that the second pulse

within each pulse pair was fixed at time zero and the first pulse was shifted in time to

precede the second pulse by A. A transient grating measurement was performed for

many different values of the interpulse separation. The full two-dimensional data set

is shown in (b). Thick white lines in the shape of the letter V indicate the nonresonant

electronic response (saturating the colormap). Quite intuitively, when the interpulse

delay corresponds to an integer multiple of a vibrational period, an enhancement of

the vibrational response is observed. For instance, when A=0.27 ps, which is one

vibrational period of the bending mode, a stronger oscillatory signal at the bending

mode frequency is observed. For A=0.41 ps, which is a half-integer multiple of the

period of the bending mode, the slower oscillatory signal is no longer observed. In

these cases, the coherent vibrational response driven by the second pulse is in phase or

out of phase, respectively, with the coherent response driven by the first pulse. Slices

for various values of A are shown in (c), where the measured signals contain either

fast or slow oscillatory components. This is clearly seen in the Fourier transform of
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the full data set in for all values of A shown in (d), where either vibrational mode

may be suppressed or enhanced (peaks near 120 cm -1 and 500 cm - 1 ) depending upon

the interpulse delay.

(a) ak A LO

C X T2 X,

0.5

0.4
O.

< 0.3

0.2

L.

CU

Cn
C
a)
.

0.5

C' 0.4

< 0.3

0.2

(d),

-0.5 0 0.5 1 1.5 0 0.5 1 1.5 0 500 1000

2 [ps] T2 [ps] w [cm-']

Figure 4-12: (a) Double-pulse excitation pulse scheme. (b) Transient grating data
recorded as a function of interpulse delay A and probe delay 2. (c) Horizontal slices
through (b) for selected values of A. (d) Fourier-transform of (b) for different values
of A.

From the transient grating measurements shown in this section, it is clear that

the DFWM apparatus based on 2D pulse shaping may be used for sophisticated non-

linear optical measurements requiring interferometric phase stability (for heterodyne

detection) and precise delays between pairs of incident pulses. All pulse delays, phase

modulations, and pulse shapes (i.e. multiple pulse waveforms) were created by vary-

ing the pattern on the computer-controlled LC SLM. Multiple pulse excitation is

easily implemented and can help to simplify the system response. Furthermore, the

ability to manipulate the phase of the signal beam by modulating the phase of the

input pulses foreshadows the phase-cycling methods that will be used in later sections

to eliminate spurious signals not dependent upon all input beams.

4.5.2 DFWM Measurements of Rubidium Atoms

Atomic rubidium vapor is a convenient four-level system for users of ultrafast lasers

because it possesses multiple electronic resonances in the vicinity of the Ti:sapphire
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laser bandwidth (around 800 nm). The commercially available (Triad Technology

Inc.) rubidium sample cell consists of a 2 inch path length quartz cell containing

20 mTorr of helium buffer gas in addition to a small amount of rubidium. The cell

was heated to approximately 130° C. Fig. 4-13 shows the relevant energy levels and

the transition wavelengths. Depending on the bandwidth of the laser pulse, some or

all of the transitions may fall within the laser bandwidth, such that the system may

effectively be: a 2-level system (laser bandwidth only spans the 5S-5P 1/ 2 transition);

a 3-level system with a "V" shape (laser bandwidth spans both 5S-5P transitions); a

3-level system with a second excited state (laser bandwidth only spans the 5S-5P3/ 2

and 5P 3/2-5D transitions); or a 4-level system where the laser bandwidth spans all

possible resonances.

1 \ . an~-~-
Io/ ,

761 nm

12>-

795 nm
Inf\ 

H-

O zU

776 nm

r-5P3/2
- 5P,,2

781 nm
. rcoIV/--O0

Figure 4-13: Energy level system for gas phase Rb atoms and corresponding transition
wavelengths.

Our first DFWM measurement on rubidium atoms constitutes a mixed time-

frequency domain measurement. Pulses Ea ad E were each shaped such that their

spectral amplitude consisted of two reasonably narrow frequency bands centered at

the two 5S-5P transition frequencies. Pulse Eb was then variably delayed in time, and

the time-integrated signal was then measured with a photodiode, yielding an oscilla-

tory transient whose frequency corresponds to the energy difference between the 5P

levels, as shown in fig. 4-14 (a). When the phase of the blue spectral components of

beams Ea and Ec are both shifted by 7r with the pulse shaping apparatus, the phase

of the transient signal also shifts by ir (b). It should be noted that the oscillations

persisted much longer than the time window shown here, ruling out the possibility

that the transients are simply a measure of the beats produced in the excitation
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pulses as a result of the spectral shaping (a pulse with two frequency stripes creates

an oscillating pulse envelope in time). Based on the width of the two spectral stripes

used, the FWHM duration of the waveforms in Ea and Eb should be about 0.7 ps,

centered at time zero. The amplitude envelope of the oscillations in fig. 4-14 results

from two separate effects.

-0
C,

Cr

(1)

II:

L_

a).-
t

-0.5 0 0.5 1 -0.5 0 0.5 1

3 [pS] %3 [ps]
R, R12 R13 R16 I R12 R,3 R,6

IOXOI IOXOI IOXOI IOXOI IOXOI IOXOI IOXOI IOXOI

12XOI HIXOI MXOI 12XOI 12XOI MXOI I1XOI 12XOI
12X11 11X21 11X21 12X11 12X11 11X21 11X21 12X11
IOXl 11XOI IOX21 12XOI IOXi I 11XOI IOX21 7 12XOI
IOXOI IOXOI IOXOI IOXOI IOXOI IOXOI IOXOI IOXOI

Figure 4-14: Hybrid time-frequency domain DFWM measurements in rubidium va-
por. (a) Relevant diagrams contributing to transient signal. (b) Phase-shifting the
"blue" spectral components of Ea and Ec by 7r results in a ir phase shift of the mea-
sured transient (green curve).

The signals in fig. 4-14 can be easily understood by inspection of the relevant

Feynman diagrams. For rubidium vapor, there are a total of 32 diagrams correspond-

ing to all possible DFWM quantum pathways. These diagrams are shown in fig. 4-22

within section 4.7. They are divided up into three categories. The left two columns

contain the photon echo diagrams (also called SI, or rephasing diagrams), while the

middle two columns contain the transient grating diagrams (also called SII, or non-

rephasing diagrams), and the right two columns contain an additional set of diagrams

called SIII diagrams. Note that in each of the three groups, the time-ordering of the

conjugate field (left-tilted arrow of the first three interactions) dictates which set of
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pathways contribute to the signal observed at the fourth corner of the box. For SI

diagrams , the conjugate field precedes the other two fields, while for SII diagrams,

the conjugate field interaction occurs between the other two interactions, and for SIII

diagrams the conjugate field interaction occurs last. In the case when the conjugate

field precedes the other two input fields, signals resulting from the SI diagrams propa-

gate in the direction of the fourth corner of the box. Signals from the other two sets of

pathways (SII and SIII) are not suppressed, but merely travel in a different direction

than the fourth corner of the box. They travel in the direction Es, and E,,, as shown

in fig. 4-2). Note that the SIII diagrams as well as diagrams R1 7-R23 involve two

sequential ket-side "absorptions," which means that these pathways are not possible

for a two-level system use of the SIII time ordering for a two-level system should

therefore produce no signal in the direction of the fourth corner of the box.

Out of the 32 total diagrams, we will restrict our attention to only those diagrams

that do not involve the level 13), R1-R1 6 in fig. 4-22, which are sufficient for the

present purposes. Since pulses Ea and Ec are overlapped in time and pulse Ec arrives

at the sample after a delay of T2, both the SI and SII diagrams should contribute to

the signal in the direction of the fourth corner of the box. For the three level system

being considered, diagrams R1-R1 6 are accessible. Of these diagrams, only four evolve

in a coherence during T2 (Rg, R12, R13 , and R16) meaning that the other 12 diagrams

produce a constant signal as a function of T2 (in the limit of long lifetimes, which is

certainly the case for these measurements) which may interfere with the 4 diagrams

that have a coherence during 2 . In fig. 4-22 (a), these four relevant diagrams are

indicated. These diagrams interfere with the 12 diagrams that do not evolve in a

coherence during T2. When the phase of the "blue" spectral component within Ea

and E, is phase shifted by 7r, the four pathways indicated incur a 7r phase shift, such

that the resulting interferences with the non-evolving terms is phase-shifted by it.

Although there is certainly more to explore with the hybrid time-frequency domain

experiments, such as multi-color time-domain experiments that will allow the maxi-

mum level of control over the possible quantum pathways on the basis of pulse timing

and spectral tuning, there are also interesting possibilities for purely spectral-domain
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measurements. A two-dimensional measurement directly in the spectral-domain is

shown in fig. 4-15 (a). For this scan, fields Ea and Eb covered all three spectral tran-

sitions except for the I1) - 13) transition due to there being no laser bandwidth at

the corresponding wavelength. Pulse E, the conjugate field, consisted of a narrow

frequency component. The DFWM signal generated in this configuration was then

measured with a spectrometer (vertical axis) as a function of the center frequency of

E,.
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Figure 4-15: Two-dimensional spectrum of Rb. The y-axis represents the detection
frequency of the spectrometer, and the x-axis represents the excitation frequency of
the conjugate field, labelled here as w. (a) Measured 2D spectrum. The faint line
along the diagonal is scattered light from Ec as it was being scanned. (b) Schematic
illustration labelling various peak positions. Green and blue circles represent the
expected peaks. Red circles represent additional peaks observed in the experiment,
possibly due to effects out of the perturbative limit.

Many peaks are observed in the 2D DFWM spectrum of rubidium. The most

prominent peaks, labelled A-D in the schematic in fig. 4-15 (b), arise from diagrams

R1-R16. Since the three input pulses are time-coincident, neither group of quantum

pathways (SI, SII, or SIII) is selected by pulse ordering. Although the peaks A-D

have the same overall shape as the 2D photon echo spectrum for a three-level system

(fig. 4-8), an additional set of 16 diagrams (R1 7-R32) are able to contribute to the

2D DFWNl spectrum of rubidium. Peaks E-H in (b) arise from quantum pathways

involving the state 13), although there are also contributions from SI, SII, and SIII

diagrams in peaks E and F. Peaks G and H in (b) arise from SIII pathways. Peaks
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E and h were not observed in the 2D spectrum of rubidium, and the spectral range

in (a) therefore does not cover this range. There are also three weak peaks, I-K,

observed in the 2D DFWM spectrum of rubidium that are not explainable with these

diagrams.

Peak Label Corresponding Diagrams

A R1 , R2 , R3 , R4

B R5 , R 6, R 7, R8

C R9, Ro0, R11, R16

D R1 2 , R13, R1 4, R1 5

E R 2 1 , R 23 , R3 2

F R 1 8 , R 2 0 , R 2 2, R2 4 , R2 8

G R27

H R 2 5 , R 3 1

I-K ???

Table 4.1: Peak labels for 2D rubidium spectrum in fig. 4-15 and corresponding
Feynman diagrams. The diagrams are shown in fig. 4-22.

Further measurements should help to uncover the origin(s) of the unexpected

peaks I-K. One possible cause is that the input light fields are sufficiently strong that

they are no longer in the weak-limit where third-order perturbation theory is valid.

Due to the narrow linewidth of rubidium's absorptions, it is difficult to estimate the

optical density of the peak absorption. Recently, however, a new rubidium cell was

obtained that contains close to a 0.5 atm buffer gas pressure such that the absorption

lineshape will be resolvable with our spectrometer due to pressure broadening (approx.

0.5 nm). Another possible cause of the unexplained peaks is that they may arise

from a higher-order nonlinear optical processes (i.e. fifth-order, seventh-order). If

this is the case, then the phase-cycling schemes described in the next section (in

combination with the use of a LO pulse to permit phase-sensitive detection) may be

used to discriminate between signals originating from higher-order nonlinear optical

processes. Also, the spectrum of Ea and Eb could be manipulated (i.e. tuned to only

span one or two resonances) in order to determine the dependence of the signal on

various spectral contributions of these pulses.
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Unlike the 2D Fourier-transform measurements, which can take on the order of 1-

12 hours to record and which require involved procedures for data analysis, the present

2D spectrum was obtained in less than 1 minute. The data acquisition time will be

even faster once a a recently acquired MEMS-based 2D SLM is used in place of the LC

SLM. The MEMS device can operate at 500 Hz, while the LC SLM typically operate

at 2-4 Hz. Further measurements and analysis should be performed to determine the

connection between the novel 2D scan approach used above and the methods used in

2D Fourier-transform spectroscopy to obtain absorptive 2D spectra [3, 20, 146, 47].

These methods involve adding a measured 2D photon echo spectrum with a measured

2D transient grating spectrum to yield the 2D absorptive spectrum. The absorptive

spectrum is especially useful when the sought-after information is contained within

the broad wings of the lineshape or when the sign of the individual peaks within the

2D spectrum is desired [3].

To determine the absorptive spectrum using our novel spectral scanning approach,

the appropriate combination of SI and SII pathways must be sampled. This may be

easily achieved by shifting the spectrally broad pulses Ea and Eb in time such that

neither overlaps temporally with the spectrally narrow pulse Ec. Then, in order

to select the SI pathway, Ea and Eb should follow Ec in time, or to select the SII

pathway, one of the pulses (for instance Ea) should precede Ec and the other pulse

(Eb) should follow Ec. These measurements will require heterodyne detection in

order to determine the absolute signs of the peaks, and phase cycling methods may

be necessary to remove artifacts from the data (see phase-cycling discussion below).

It may even be possible to use a double-pulse waveform within one of the beams,

for instance Ea, such that one of the pulses arrives before E, and the other arrives

after Ec. Since Eb would still be timed to follow Ea, this pulse sequence would yield

the absolute value 2D spectrum in a single experiment. The group of Peter Hamm

uses a similar two-beam approach for 2D infrared spectroscopy [151]. Unlike their

method, which relies upon two interactions between a spectrally narrow field and the

sample followed by one interaction between the sample and a spectrally broad field,

our method still allows for independent manipulation of each interacting field. Our
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method should also allow for the prospect of incorporating a waveplate and polarizer

in the path of each separate input pulse. Use of variably-polarized input pulses has

allowed for powerful simplifications of 2D infrared spectra [152].

4.5.3 Potassium Dimer

A final set of photon-echo experiments, en route to two-dimensional time-domain

spectroscopy, were performed on potassium dimer molecules in the gas phase. Ru-

bidium, it turns out, is not a good sample for photon echo measurements since the

system is not inhomogeneously broadened and since all atoms start in the same ini-

tial state. In eq. 4.24, was saw that the Gaussian inhomogeneous distribution was

responsible for the "echo" behavior that causes the peak of the signal to appear at

a time after the final input pulse. In the absence of significant inhomogeneity,

then, the signal would simply be expected to rapidly decay as a function of -3. The

large inhomogeneous broadening in potassium dimer arises from the large number of

rovibrational transitions between the X1 Z+ and A1E+ electronic energy surfaces.9 a AlE +eletn e ur faces .
The potassium dimers were contained within in a home-built heat pipe that was

heated to 420°. The heat pipe contained approximately 10 g of solid potassium within

a buffer gas of 100 mbar helium buffer gas. In the temperature range we used, the

first approximately 7 vibrational levels of the the X state were populated. With our

laser center wavelength of 815 nm, we were able to access the v=20-30 vibrational

levels of the excited state. Note that the center wavelength of the laser pulse was

tuned so that two strong electronic resonances of atomic potassium (the doublet), at

766.5 nm and 769.9 nm, did not fall within the bandwidth of the laser pulse.

In order first to confirm that we had generated potassium dimers within the heat

pipe, we performed a two-pulse, time-integrated photon echo measurement using a

modified FROG apparatus to produce a two-pulse photon-echo signal. The pulse

sequence used is shown in fig. 4-16, where one of the second two pulses, E, is the

conjugate field. A complicated transient is obtained (a), with many peaks in the

Fourier-transformation (b). Since these peaks occurred at integer multiples of the

vibrational periods of the ground and excited electronic states of potassium dimer,
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Figure 4-16: (left) Schematic illustration of relevant electronic energy levels for potas-
sium dimer. (a) Time-integrated photon-echo trace of potassium dimer with a com-
plicated oscillatory structure. (b) Fourier transform of (a), indicating oscillatory
frequencies at integer multiples of the ground electronic state and excited electronic
state vibrational frequencies.

and not at the frequency corresponding to the potassium doublet (1.7 THz) it was

clear that the heat pipe was operational.

We next used our pulse-shaping based apparatus to perform three-pulse pho-

ton echo measurements on potassium dimer molecules. Time-integrated three-pulse

photon-echo measurements on potassium dimer are shown in fig. 4-17. When the de-

lay T1 was set to 540 fs, the observed transient in (a) contained only a single frequency

component [see (b)] at the frequency corresponding to the ground state vibrational

period. When T1 was set to 540 fs and the delay T2 was scanned, an oscillating tran-

sient (a) recorded as a function of T2 was observed whose frequency of approximately

2.8 THz corresponds to the vibrational frequency of the ground electronic state (b).

When T1 was set to 720 fs, the observed transient (c) measured as a function of r3

oscillated with a frequency corresponding to the ground state vibrational frequency

(d). Thus it is clear that the choice of pulse sequence is able to influence whether

or not the measurement is sensitive to dynamics on the excited or the ground elec-
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tronic surface. These effects have received a fair amount of attention in the literature

[153, 154, 155, 156]. The basic idea is that the time delay between pulses Ec and

Ea controls whether or not the system evolves on the ground or excited state energy

surfaces during T3 . See ref. [154] for a detailed explanation.

c a b

X T A delay 4
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Figure 4-17: (a) Time-integrated three-pulse photon echo measurement of potassium
dimer molecules, where the delay between the first two pulses was set to be 540 fs,
and its Fourier transform (b). When T1 was set to be 720 fs, the resulting transient
(c) oscillated at the frequency of the excited state vibrational frequency (d).

The next step was to introduce a local oscillator beam that could be used to char-

acterize the emitted signal in time through spectral interferometry. Unfortunately,

this step was not straightforward since we quickly discovered that there were stray

pulses within the pulse shaping apparatus itself that were obscuring our spectral inter-

ferometry measurements. A schematic illustration showing the two types of unwanted

pulses is shown in fig. 4-18. The first type of unwanted pulse results from very weak

crosstalk between shaped regions Ea, Eb, Ec in the direction of the signal beam. An

unwanted pulse occurred at time zero. All of these stray pulses interfered within the

spectrometer and obscured the desired signal. In general, these third-order signals

are quite small, such that even weak stray pulses that are 1/1000 of the input pulses

are still on order with or larger than the measured nonlinear signals.

Note that the time-integrated heterodyned measurements on diiodomethane in
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section 4.5.1 were not found to be sensitive to the crosstalk or t=O peaks. That is

because the stray peaks will only interfere with the local oscillator pulse when they

are within their coherence length (i.e. when the pulses overlap, assuming bandwidth-

limited pulses)-otherwise they will add incoherently, giving rise to a constant back-

ground signal that does not adversely affect the measurements. Considering the pulse

sequence for the diiodomethane measurements, which was two time-coincident pump

pulses followed by time-coincident probe and LO pulses, the only times at which a

stray pulse would occur are at time zero or at the time of the probe pulse. At time

zero, there there is already an unavoidable nonresonant electronic response, and so

an additional distortion there is not a cause for concern. A possible stray pulse at

the time of the probe would be shifted temporally but with a fixed phase relative to

the LO pulse, leading to a constant term for all delays. Therefore, the heterodyned-

transient grating measurements were insensitive to the stray pulses.

c1_ S C
a -- --- -

LO >0

Figure 4-18: . Schematic illustration of weak stray pulses in the direction of the LO
pulse that distort the spectral interferometry measurements. Pulses a, b, and c are
the three input fields that generate the outgoing signal S. In this case, the detector
(det.) is a spectrometer.

The reason why the stray pulses cause troubles when using spectral interferom-

etry is that the duration of the pulses within the spectrometer are very long. The

duration of a pulse at the spectral plane of a spectrometer is roughly the recipro-

cal of the spectral resolution-on the order of 10 ps for the spectrometer we used.

This means that pulses within the 10 ps window will interfere, causing distortions to

the desired signals. Fortunately, we can apply phase cycling methods borrowed from

multidimensional NMR in order to isolate the interference terms of interest.

In the case when there are no stray pulses, the intensity Idet(w) recorded by the
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spectrometer is given by

I(w) oc IELO(w) exp[iOLO()] + Ea(W)Eb()Ec(W) exp[i/a(w)] exp[ib(w)] exp[-iow] 2

cX ILO(J) + Is(w) + 2 /Is(w)ILo(w) COS(LO - qa(W) - Ob() + 5c(w)). (4.29)

When there are stray pulses, many additional cross terms will be produced, but none

of them has the same phase dependence on the main three input pulses and local

oscillator pulse as the desired cross term in eq. 4.29. The phase dependence of the

various terms is indicated in shorthand form in eq. 4.30, where the last term is the

one which we seek to isolate.

I(qLOa, b, c)

ox ALoei CLO + Asei o + Aaei ¢a + Abei Ob + Acei¢cAtoei Oto 12

Ao + A2 + A + A2 + A + A o

- 2ALoAto COS(OLO - tO) + 2AsAto cos(Os - qto) + 2AaAto CoS(a - to)

+ 2AbAto COS(b - tO) + 2AcAto cos(Oc - to) + 2ALAC cos(OL - O,)

- 2AsAc cos(Os - Oc) + 2AaAc cos(qa - c) + 2AbAc cos(Ob - )

+ 2ALoAb COS(OqLO - b) + 2AsAb cos(5s - b) + 2AaAb coS(Oa - ()b)

+ 2ALoAa cOS(OLo - Oa) + 2AsAa cos(s - qa) + 2ALOAS cos(OLo - a- b + (tc)

(4.30)

The basic approach is to perform multiple measurements where the phases of the input

pulses have been varied for each measurement, and then to combine the measurements

such that the unwanted terms disappear. If subtract from the first "measurement"

given in eq. 4.30 a measurement in which the phase of the pulse Ea (which controls

the phase of the stray light As) is shifted by Ir, we obtain
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II(LO, b, $ cb, O) -I (LO, O , Ob, ,c) I (+LO, .a + , a 7 b, Oc)

= 4AsAto cos(s - to) + 4AaAto Cos(oa - to) + 4AsA, cos(s - ,)

+ 4AaAc cos(ba- - b) + 4AsAb cos(q/s - b) + 4AaAb COS(¢ba - qb)

+ 4ALOAa COs(OLO - a) + 4ALoAs cos(LO - - b + 0c). (4.31)

Note that the effect of this procedure is the elimination of terms not dependent

upon the phase of pulse E,. This may be repeated with two more measurements to

eliminate all terms not dependent upon the phase of pulse Eb, and then four more

measurements to eliminate all terms not dependent upon ELO, which then isolates

the term of interest. This set of 8 measurements, in three stages, would be written

as:

I1 - I(OLO, a, b, c) -I(OLO, a + 7, b, c)

I2 -I1(OLO, Oa, b, c) - I1(OLO, a, b + 7, c)

13 I- I2(LO, a, Ob, Oc) - I2(OLO + '7F, 0a, b, 0c)

= 16ALoAs coS(7Lo - - Ob + c) (4.32)

A simulation of such a phase-cycling process is included in fig. 4-19. The first

plot, (a), shows a series of spectral interferograms as a function of the delay of the

LO. A complicated set of interference fringes is observed. After each phase-cycling

stage, the unwanted signal contributions diminish. Finally in (d), 8 measurements

have been combined, yielding the expected pattern for a signal field emitted at a time

of 1.3 ps that interferes with a variably delayed reference pulse. The fringe spacing

(along the vertical dimension)is inversely proportional to the temporal separation of

the two pulses that interfere. When the two pulses overlap, the fringes disappear,

leaving a single large feature, as can be seen for a LO delay of 1.3 ps. In experiments,

it is not necessary to scan the LO pulse in time, although we have found the LO
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Figure 4-19: Simulation of LO scans, illustrating how phase-cycling can be used to
eliminate spurious signals that are not dependent on the phase of all beams. (a)
Original interferogram, no phase cycles. (b) Two phase cycles. (c) Four phase cycles.
(d) Eight phase cycles, yielding the correct signal free of distortions

delay scans to be useful when investigating the effects of the unwanted pulses due

to cross talk. etc. A single spectral interferogram recorded for a given LO delay can

provide all the necessary information to characterize the emitted signal field. Eight

cycles are sufficient to isolate the third-order nonlinear optical signal from spurious

pulses, provided that the spurious pulses are only dependent upon the phase of a

single input pulse (i.e. not a nonlinear signal of a different order). Related phase

cycling schemes can be used to discriminate between nonlinear signals of a different

order (i.e. separate 5th order response from 3rd order response).

Figure 4-20 shows two stages of the phase cycling process used in preliminary

experiments. For the photon-echo pulse sequence shown in (a), the time-integrated

signal in (b) was obtained as a function of 72, with m- held constant at 0.54 ps.

An arrow in (b) points to a specific peak in the time-integrated signal (2 = 1 ps)

which we investigated with several phase-cycled LO scans. The LO scan shown in (c)

has already been through the first step of the phase cycling process (two combined

measurements). There are broad features centered at a time of about 1.5 ps, the
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position at which the echo signal is expected, as well as smaller features that originate

from the insidious t=0 pulse. Repeating the phase cycling operation performed in

(c) (a single phase cycle) with one of the non-cycled phases flipped by r causes the

interference fringes to flip in sign, as can be seen in (e). The difference between

(c) and (e) is plotted in (d), where the smaller features originating from t=0 have

been eliminated and the expected interference pattern is much clearer. Thus, (d)

constitutes is a spectrum that has been through two stages of the phase cycling

process (4 measurements). When the measurement in (d) is repeated but with one

of the non-cycled phases flipped by ir, the sign of the interference fringes is switched.

The difference between (d) and (f) would then constitute the full three stages of phase

cycling (total of 8 measurements).

t=o (a)
' 830

5: 820

T1 T2 T1 ) 810

800
c a b s LO

1 1.5 2
LO delay [ps] LO delay [ps]

I , I .

?i(b

I ~h

o; V\ jk\lllu i y.v , 800 Am:
In I A r 

z,[ps] 1 1.5 2 1 1.5 2
~T: [Ps] LO delay [ps] LO delay [ps]

Figure 4-20: (a) Photon-echo pulse sequence. For r1=0.54 ps, 2 is scanned in time,
yielding the transient in (b). For a fixed value of T2=1 ps [see arrow in (b)], LO scans
were recorded for varying amounts of phase-cycling (c)-(f).

A second set of LO scans is shown in fig. 4-21, where this time, the delay is set

to r2=1. 3 ps [which, again, corresponds to a peak in the time-integrated photon-echo

signal (b)]. As expected, the peak of the echo signal has shifted in time to about

1.85 ps (c)-(d). It is worth noting that the fringes observed in figures 4-20 and 4-21

160

�-·

"'gi, c�, \-le
- ---- '-� ,3s

7-� -- '---�·Cz:.·a,

Yi�-�·-
�i�i Li--�--- --'C

" i.
c�-�-c r*�

:· -r?.-�1 _y=·Y�t_-- _._�. ;I·�.



do not have an overall tilt to them, as would happen if mechanical or refractive delay

lines were used because these delay methods shift both carrier phase and envelope.

Since 800 nm light has a period of about 2.7 fs, there would be about 370 tightly-

spaced fringes running diagonally across the 1 ps LO scans in the LO scans of fig. 4-20

and 4-21. By using the pulse shaper to shift the envelope of the pulse without shifting

the phase, it is not necessary to resolve oscillations of the carrier phase. The same

principles apply for regular 2D scans, not just the LO scan. Also note that there a

are a few instances where dark vertical lines appear in the data [i.e. at 1.5 ps and

1.7 ps in fig. 4-21 (c)]. These dark lines resulted from unusually large fluctuations in

the laser power due to a faulty chiller unit that has since been repaired.

t=O (a)

T1 T2 T 

c a b s LO
t2 [ps]

I

I

LO delay [ps] LO delay [ps]

Figure 4-21: . (a) Photon-echo pulse sequence. For r1=0.54 ps, r2 is scanned in time,
yielding the transient in (b). When 2 is set to be 1.3 ps [see arrow], the observed
phase-cycled signal shifts to the expected time at about 1.85 ps (c),(d). Two sets of
phase cycling (four measurements) were used in each of (c) and (d).

4.6 Conclusion and Outlook

A powerful new approach to coherent nonlinear optical spectroscopy has been pro-

posed and demonstrated. Signals may be selected on the basis of input beam wavevec-

tor, input pulse timings, input pulse spectral content, signal phase dependence,
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carrier-free interferometric detection, etc. As such the methodology combines aspects

of optical nonlinear spectroscopy with aspects of 2D NMR spectroscopy.

Near term goals include further elaboration of the above capabilities on rubidium

vapor and potassium dimer molecules. A collaboration is under way with the group

of Steve Cundiff at JILA in Boulder, CO to study biexciton dynamics and disorder

effects in semiconductor quantum well structures, which also have resonances within

the bandwidth of our laser. A noncollinear optical parametric amplifier capable of

20 fs pulses in the range 450-700 nm is currently being built, such that we may extend

the experimental approach out to the visible region of the spectrum where molecular

aggregates and carotenoid systems provide some of the most interesting possibilities

for investigation. The future is bright for 2D optical spectroscopy.

4.7 Appendix: Principles for Constructing Feyn-

man Diagrams

The principles for constructing Feynman diagrams are reproduced here in modified

form from chapter 6 of reference [21].

1. A diagram represents a particular quantum pathway along which the system

may evolve that contributes to an emitted signal. All possible pathways (i.e.

all valid diagrams) for a given pulse sequence must be included in order to

determine the full response of the system.

2. The two vertical lines represent the ket (left line) and bra (right line) of the

density matrix. Temporal evolution is represented from the bottom to the top.

During each time increment t, separating successive system-field interactions,

the system is in the state Il)(ml and accumulates a factor of exp(iRQmtn). In

many cases, damping is introduced phenomenologically via Ql =m W, + iFlm.

When l=m, the term rmm represents the reciprocal of the lifetime of the density

matrix population m)(ml, and when I m, Flm represents the reciprocal of

the dephasing time of the density matrix coherence 1l)(ml.
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3. Each diagram carries a sign of (-1)n, where n is the number of interactions on

the right; (bra) side. This overall sign is especially important to consider in cases

when there are multiple diagrams that will be summed together.

4. Each interaction between the system and an incident field is represented by an

arrow. These arrows point either up and to the right or up and to the left.

An arrow pointing towards the diagram represents absorption while an arrow

pointing away from the diagram represents emission.

5. Arrows that have a right tilt are contribute a term of exp[-i(0a(t) - kar)] to the

emitted signal. Arrows that have a left tilt contribute a term of exp[i(Oa(t) -

kar)] to the emitted signal. The overall wavevector and phase of the signal

contribution associated with each diagram is the sum of the input wavevectors

and phases. These considerations arise out of the rotating wave approximation

implicit in the diagrams.

6. Each interaction between the field and the system on the ket side contributes a

factor of lm to the magnitude of the diagram, where 11) and m) are the initial

and final states. Interactions on the bra side contribute a factor of llm*.

7. By convention, the last arrow always points left from the ket side, representing

emission of the signal. Its wavevector and phase are given by the sums of the

wavevectors and phases of all preceding arrows.

8. Diagrams must end in a population, Pmm, by virtue of the trace operation.

Furthermore, the diagram (almost) always starts in a population.

9. Consideration of the strength of the relevant transition dipole moments as well

as the width of the laser spectrum relative to the transitions between the sys-

tem's eigenstates can help avoid writing out unnecessary diagrams.

10. For DFVWM spectroscopy, two arrows will tilt left and two arrows will tilt right.

Of the first three arrows, the left-tilting arrow represents the interaction with

conjugate field.
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11. The full response of the system is twice the real part of the sum of all valid

diagrams.
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Figure 4-22: All 32 Feynman diagrams for DFWM spectroscopy on four-level systems
resembling the Rb atom (level structure, lower right) that are initially in the ground
state. The diagrams are grouped into SI (photon echo) diagrams, SII (transient
grating) diagrams, and SIII (other) diagrams. Note the timing of the interaction
between the system and the conjugate field in each group: for SI the conjugate field
interacts first; for SII the conjugate field interacts second; and for SIII the conjugate
field interacts third.
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